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Introduction
The simplest example of a bistable system is a sphere at rest at the top of a hill
with two adjacent valleys. In an ideal world the sphere will rest there forever. The
equilibrium experienced by the sphere is unstable, i.e. even the tiniest perturbation will
cause the sphere to roll down the hill. Our real world, however, is full of perturbations,
thus a real sphere on earth will always roll down the hill due to wind, moon’s gravity
or other perturbing forces1. Eventually the sphere ends up in one or the other valley,
but it is unpredictable in which because perturbing forces are usually unknown.
The electronic pendant of such a static bistable system is the RS flip-flop2 first
implemented by Jordan and Eccles in 1918 [1].

That bistability, multistability and chaotic behavior are a result of non-linearity of
differential equations became apparent in the late 19th century at the emergence of
chaos theory. Investigating the three-body problem Poincaré summed up his findings
about integrability of differential equations in [2]. Duffing first characterized non-
linear response curves of mechanical systems subject to external vibrations exhibiting
bistable behavior [3]. In the 1920s van der Pol studied the response of electric triodes
to forced vibrations [4] and found that in a certain regime the system oscillates
at either of two possible frequencies, but never at both simultaneously, due to the
non-linearity of the problem [5]. Lamb found double-frequency solutions in his theory
of the optical maser [6] that may, however, occur simultaneously, even in the steady
state. The observation of bistable behavior in non-linear absorptive [7] and dispersive
media [8] in Fabry-Perot-Interferometers triggered the field of quantum electronics.
The book of Gibbs [9] provides a thorough introduction to the topic. At the same
period of time Drummond and Walls introduced a quantum theory of non-linear
media in a cavity [10], while first experiments were not conducted until the early
1990s [11].

Optical bistability effects as discussed in quantum electronics are connected to
hysteresis, so the selection of a stable solution in the bistable regime depends on
the history of the system. With the advent of optical lattices as effective quantum
simulators [12] a new type of bi- and multistability was accessible: spontaneous
symmetry breaking at quantum critical points. In contrast to hysteresis the actual
state of the system does not depend on its history.

Approaching Feynman’s vision of a universal quantum simulator [13] optical lattices
realized by standing waves in optical resonators seem to be a promising setup. At
current stage almost arbitrary physical models can be implemented on optical lattices,
including Abelian [14] and non-Abelian [15] gauge theories.

1unless it is subject to strong friction
2The perturbing forces are thermal fluctuations and electromagnetic noise.
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In 2002 Ritsch and Domokos found that atoms in a transversely pumped cavity align
along one of two possible self-organized checkerboard patterns [16]. The symmetry is
spontaneously broken at the transition to a super-radiant phase at critical pump.
The atoms’ alignment maximizes scattering of the transverse field into the cavity
which causes self-trapping of particles in a runaway process. The atomic motion in
the optical potential wells is cooled via the cavity [17, 18]. A more detailed analysis
of the self-organization process is found in [19]. A complete and thorough summary
of state-of-the-art theory and experiment of ultracold atoms in high-finesse optical
resonators is found in [20].

By the replacement of non-linear media as of quantum electronics by single atoms
or a cloud of cold atoms the quantum nature of both photon field and atomic motion
became accessible. Optical resonators allow for strong coupling of atoms/polarizable
particles and photon field, so we expect rich dynamics and steady states even at low
photon number and small particle numbers.

As the title suggests this thesis is about Nonlinear Optomechanical Dynamics
of a Quantum Particle in a Single-Mode Cavity. But what does that imply? The
non-linearity stems from the non-linear optics that will be encountered. We will find
refractive indices that change with varying light intensity. The term optomechanical,
however, calls for a clarification. An optomechanical system is usually understood as
a cavity with one or more moveable mirrors that oscillate, but the system considered
here is a cavity with two fixed mirrors. Where is the mechanical part? It is in the
quantum particle. The quantum particle moves inside the cavity and shifts the
resonance frequency via interaction with the light field, just like a moving mirror
does by changing the length of the cavity. The quantum particle may be an atom or
any other type of polarizable particle. The terms particle and atom will therefore be
used synonymously.

We will derive the quantum optical master equation from first principles and
model an effective Hamiltonian for a quantum particle in a single-mode cavity. The
properties of the system will be examined in a semi-classical and a fully quantum
mechanical manner and their results will be compared to each other.

Except for section 1.2 all calculations will be given in natural units, i.e. ~ = c =
kB = 1. Italic letters like m are numbers, roman letters like p are operators, bold
italic letters like k are vectors and bold roman letters like E are vector operators.
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1 Master Equation for Generic Quantum
Optical Systems with Vacuum Inputs

The master equation is the equation of motion for the density operator of a finite
part of the Hilbert space of a very large composite system. The finite part under
consideration is generally termed the system, the part traced out is called the bath and
often contains infinitely many degrees of freedom. In quantum optics the bath Hilbert
space is modeled as an infinite set of harmonic oscillators with angular frequencies
ranging continuously over all positive real numbers. The density of oscillators κ(ω)
in the interval [ω, ω + dω] is given by the mode density of the electromagnetic field
and thus depends on the spatial dimensionality of the bath. For the derivation
of the master equation given below the bath is the electromagnetic field in three
dimensions. We will briefly discuss the approximations that enter [21, 22, 23]. Tracing
over the bath of harmonic oscillators will eventually yield a non-unitary, though trace
preserving, time evolution.

1.1 Derivation of the Master Equation

The Hilbert space of the bath is assumed to have much more degrees of freedom than
that of the system. The concept of system and bath is modeled on its thermodynamic
counterpart. The bath is considered large enough such that the effects of the system
on it are negligible. On the opposite, the system dynamics is significantly affected by
the bath properties. Mathematically this is expressed by

ρ(t) = ρsys(t)⊗ ρbath(t0) ∀t, (1.1)

i.e. the system and bath density operators factorize at all times and the bath remains
in its initial state1. Eq. (1.1) is called the weak coupling assumption.2

1A driven bath may show some explicit time-dependence that is, however, independent from the
systems dynamics.

2Our derivation follows mainly chapter 5.1 of [21], since they provide the most relevant physical
and mathematical grounds of the master equation. They also consider thermal excitations of the
bath. The most general results are given in chapter 6.1 of [22], who considers arbitrary bath inputs.
We will also provide these results below, however, without any rigorous derivation.
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1 Master Equation for Generic Quantum Optical Systems with Vacuum Inputs

1.1.1 Thermal States
In many cases ρbath is a thermal state,

ρbath(T ) = Z−1∑
i

exp
(
−Ei
T

)
|Ei〉〈Ei| (1.2)

or

ρbath(T ) = Z−1
∫
ν(E) exp

(
−E
T

)
|E〉〈E| dE (1.3)

for a discrete and continuous Hilbert space, respectively. Z and Z are normalization
constants known as (canonical) partition functions. ν(E) is the density of states
(DOS) and depends on the system Hamiltonian, the spatial dimensionality of the
system and, for many-body systems, on the (anti-)commutation relations of the
particle species involved. For our purposes it is advantageous to reformulate eq. (1.3)
in terms of harmonic oscillators with angular frequency ω

ρbath(T ) = Z−1
∫
κ(ω)ρho(ω, T )dω, (1.4)

where ρho(ω, T ) is, up to a normalization constant, the density matrix of a harmonic
oscillator of angular frequency ω and temperature T

ρho(ω, T ) =
∞∑

nω=0
exp

−
(
nω + 1

2

)
ω

T

 |nω〉〈nω| . (1.5)

As before, κ(ω) is the density of harmonic oscillators in [ω, ω + dω] and |nω〉 are
harmonic oscillator eigenstates (see also eqs. (1.11)). That the electromagnetic field
is a quantum field of bosons whose particle number is not conserved already enters
the expression for ρho. There is no chemical potential µ that controls the number of
particles (for particle number conservation H→ H− µN) and the oscillator quantum
number nω may be greater than 1. In quantum optics, however, one usually considers
the limit T → 0 for which

ρbath(T = 0) = Z−1
∫
κ(ω) |0ω〉〈0ω| dω, (1.6)

i.e. ρbath becomes a vacuum bath.

1.1.2 The Master Equation for Vacuum Baths
We consider a system interacting with a bath of harmonic oscillators in rotating wave
approximation (see section 2.1.4):

Hbath =
∫
ωb†ωbωdω (1.7)

Hint = i

∫
κ(ω)

(
b†ωc− c†bω

)
dω (1.8)

2



1.1 Derivation of the Master Equation

where [
c, c†

]
= 1 (1.9)[

bω, b†ω′
]

= δ
(
ω − ω′

)
(1.10)

and all other commutators equal zero.
c(†) and b(†) destroy (create) excitations in the system and bath, respectively. The

nature of these excitations is irrelevant in our formalism. In quantum optics they
are usually identified as photons, but they could as well be other bosonic particles
or quasi-particles. At that point it seems reasonable to introduce the Fock states of
the bath which also form the energy eigenstates. For n(′)

ω(′) ∈ N the Fock states are
defined as

|nω〉 ≡

(
b†ω
)nω

√
nω!

|0〉 (1.11a)

bω |0〉 ≡ 0 (1.11b)〈
nω
∣∣n′ω′〉 = δnn′δ(ω − ω′) (1.11c)

and |0〉 is called the vacuum state of the bath. Fock states are eigenstates to the
number operator Nω

Nω ≡ b†ωbω (1.12)
Nω |nomega〉 = nω |nω〉 (1.13)

The system Hamiltonian Hsys remains unspecified. All we demand is that

cI(t) = e−iHsystceiHsyst

= ce−iω0t, (1.14)

where ω0 is the system’s resonance frequency. We transform to an interaction picture
to arrive at

Hint, I = i

∫
κ(ω)

(
b†ωei(ω−ω0)tc− c†bωe−i(ω−ω0)t

)
dω. (1.15)

The integrand in eq. (1.15) is rapidly oscillating. Main contributions to the integral
will come from a region where ω ≈ ω0. Therefore we introduce a finite cutoff θ � ωsys
in the bath integral

Hint, I = i

∫ ω0+θ

ω0−θ
κ(ω)

(
b†ωei(ω−ω0)tc− c†bωe−i(ω−ω0)t

)
dω (1.16)

and assume that within this finite range κ(ω) ≈
√

γ
2π = const. In atomic physics the

decay rate of a state, γ, is usually determined by measurement, in cavity QED, where
γ → 2κ, it may be tuned by changing cavity properties or selecting a different mode.
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1 Master Equation for Generic Quantum Optical Systems with Vacuum Inputs

Therefore γ just enters as a parameter in our calculation, for a detailed derivation
and analytic expression of γ based on microscopic properties we refer to the original
work of Weisskopf and Wigner [24]. We define

b(t) =
√

1
2π

∫ ω0+θ

ω0−θ
bωe−iωtdω (1.17a)

[
b(t), b†(t′)

]
= 1

2π

∫ ω0+θ

ω0−θ
e−i(ω−ω0)(t−t′)dω

≡ δs(t− t′), (1.17b)

where δs(t− t′) is a slowly varying delta function, which acts like a delta function at
timescales τ � 1

θ . We plug in the weak coupling assumption eq. (1.1) and vacuum
inputs to define

ρbath(t) = |0〉〈0| ∀t. (1.18)

The time evolution of ρI is given by

ρ̇I(t) = −i [Hint, I(t), ρI(t)] (1.19)

which can be integrated and expanded in a power series in Hint, I [21]

ρI(t) = ρI(t0)− i
∫ t

t0

[
Hint, I(t′), ρI(t′)

]
dt′

= ρI(t0)− i
∫ t

t0

[
Hint, I(t′), ρI(t0)

]
dt′

−
∫ t

t0

∫ t

t0

[
Hint, I(t′),

[
Hint, I(t′′), ρI(t′′)

]]
dt′′dt′

= etc. (1.20)

The series could be expanded to include arbitrarily many terms, which, however, is
not very useful for any practical calculations. We continue with the second order
expression of eq. (1.20) and differentiate with respect to t to arrive at the integro-
differential equation

ρ̇I(t) = −i [Hint, I(t), ρI(t0)]−
∫ t

t0

[
Hint, I(t),

[
Hint, I(t′), ρI(t′)

]]
dt′. (1.21)

Employing the weak coupling assumption ρI(t′) becomes

ρI(t′) = ρsys, I(t′)⊗ ρbath, I
= ρsys, I(t′)⊗ |0〉〈0| . (1.22)

When we insert the explicit form of Hint, I we use

b(t)b†(t′) |0〉 =
[
b(t), b†(t′)

]
|0〉

= δs(t− t′) |0〉 (1.23)

4



1.1 Derivation of the Master Equation

and employ the cyclic property of the trace

Tr {ABC} = Tr {BCA}
= Tr {CAB} (1.24)

when tracing over the bath. Noting that

Trbath {bω |0〉〈0|} = 0 (1.25a)

Trbath
{

b†ω |0〉〈0|
}

= 0 (1.25b)

we find

Trbath {[Hint, I(t), ρI(t0)]} = 0. (1.26)

Using

Trbath {bωbω |0〉〈0|} = 0 (1.27a)

Trbath
{

b†ωb†ω |0〉〈0|
}

= 0 (1.27b)

eventually yields

ρ̇sys, I(t) = γ

∫ t

t0

(
cρsys, I(t′)c† + cρsys, I(t′)c†

− c†cρsys, I(t′)− ρsys, I(t′)c†c
)
δs(t− t′) dt′. (1.28)

Keeping in mind that ρsys, I(t′) evolves on longer timescales than the bath operators,
the slowly varying δ-function δs(t− t′) behaves like a real δ-function. By virtue of∫ t

t0
δs(t− t′) dt′ =

1
2 (1.29)

we evaluate the time integral in eq. (1.28) and obtain

ρ̇sys, I(t) = γ

2
(
2cρsys, I(t)c† − c†cρsys, I(t)− ρsys, I(t)c†c

)
. (1.30)

Undoing the system interaction picture and suppressing the functional time de-
pendence of the operators involved, we arrive at the master equation for vacuum
inputs

ρ̇sys = −i [Hsys, ρsys] + γ

2
(
2cρsysc† − c†cρsys − ρsysc†c

)
. (1.31)

The general form of the master equation can be derived in a similar manner. We
follow chapter 6.1 of [22] and define

Tr
{
ρbathb(ω)b†(ω′)

}
=
(
N(ω) + 1

)
δ(ω − ω′) (1.32a)

Tr
{
ρbathb†(ω)b(ω′)

}
= N(ω)δ(ω − ω′) (1.32b)

Tr
{
ρbathb(ω)b(ω′)

}
= M(ω)δ(2ω0 − ω − ω′) (1.32c)

Tr
{
ρbathb†(ω)b†(ω′)

}
= M∗(ω)δ(2ω0 − ω − ω′). (1.32d)
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1 Master Equation for Generic Quantum Optical Systems with Vacuum Inputs

Redoing the time evolution integrals with this definitions eq. (1.32) yields the master
equation for general inputs [21]

ρ̇sys = −i [Hsys, ρsys] + γ

2
(
N(ω0) + 1

)
·
(
2cρsysc† − c†cρsys − ρsysc†c

)
+ γ

2N(ω0) ·
(
2c†ρsysc− cc†ρsys − ρsyscc†

)
− γ

2M(ω0) ·
(
2c†ρsysc† − c†c†ρsys − ρsysc†c†

)
− γ

2M
∗(ω0) ·

(
2cρsysc− ccρsys − ρsyscc

)
. (1.33)

The terms in the first two lines of eq. (1.33) correspond to a system in a thermal
bath with occupation number N(ω0) = 〈N(ω0)〉 (see eq. (1.45)). The terms in the
other two lines stem from phase dependent correlations which are non-vanishing if
the bath is e.g. in a squeezed state. A shorthand notation for the master equation is

ρ̇ = Lρ, (1.34)

where L is the Liouville (super-)operator, or Liouvillian. The Liouvillian needs to
be of the so-called Lindblad form [25] as in eq. (1.30), which has a rather simple
representation and is, most importantly, trace preserving:

∂t Tr {ρ} = γ

2 Tr
{

2cρc† − c†cρ− ρc†c
}

= γ

2 Tr
{

c†cρ− c†cρ− c†cρ
}

= 0. (1.35)

The time evolution from the master equation differs significantly from the time
evolution generated by the Schrödinger equation: It is non-unitary. This may sound
like a mathematical detail, but that is what allows to describe effects like decay and
spontaneous emission, which cannot be accounted for in the original Schrödinger
equation. Non-unitary dynamics can be simulated by adding stochastic terms to the
Schrödinger equation to give the Quantum Stochastic Schrödinger Equation (QSSE)
[21]. The QSSE can be solved by means of the Quantum Monte Carlo Wavefunction
Method (QMWF), which will be discussed in greater detail in section 4.3. The
operator pendant of the QSSE are the Heisenberg-Langevin equations, which play a
big part in the input-output formalism, an electronics-alike scheme that is concerned
with the response of a system (e.g. resonators) to a given input field.3

1.2 Why Vacuum Inputs?
In section 1.1.1 we already encountered thermal states. The average number of
bosonic excitations, such as photons, in a thermal state is given by the Bose-Einstein

3Rigorous derivations of the Heisenberg-Langevin equations can be found in [26] or chapter 3 of
[21]. A neat application of the input-output formalism is shown in [27]

6



1.2 Why Vacuum Inputs?

distribution

〈Nω〉 = 1
e
ω
T − 1

, (1.36)

where the temperature T is in units of ~
kB

. Eq. (1.36) gives the mean number of ex-
citations created by thermal fluctuations. Due to the exponential in the denominator,
eq. (1.36) decreases rapidly with increasing ω for ω ≈ T . This expectation value,
however, is for each mode with given excitation energy ω. To find the total number
of excitations for a given temperature we also need to know the number of modes
involved. To get some definitive numbers we will plug in ~, kB and c explicitly:

〈N〉 =
∑
p

〈Np〉

=
∑
p

1

e
~ωp
kBT − 1

(1.37)

→ V

(2π~)3

∫ 1

e
~ωp
kBT − 1

d3p. (1.38)

Photons obey

p = ~k (1.39)

ωp = c
|p|
~

= c|k|. (1.40)

Therefore we can perform the integration of the angular parts of eq. (1.38) and
replace dp by ~

cdω to arrive at

〈N〉 = V

2π2

∫ 1

e
~ω
kBT − 1

ω2

c3 dω. (1.41)

Multiplying the integrand of eq. (1.41) by ~ω yields the well-known Planck’s radiation
law. We are, however, not interested in the full spectrum but rather in the part that
might potentially affect our system under consideration. Only a small interval around
the resonance frequency ω0 will contribute, thus we approximate eq. (1.41) to

〈N(ω0)〉 ≈ V

2π2
1

e
~ω0
kBT − 1

ω2
0
c3 ∆ω. (1.42)

∆ω is the bandwidth of the bath, which is typically much larger than κ, but smaller
than the typical system energy ω0,

κ� ∆ω � ω0. (1.43)

7



1 Master Equation for Generic Quantum Optical Systems with Vacuum Inputs

We take ∆ω ≈ θ−1, where θ is the same as in eq. (1.17). The volume V in eq. (1.42)
is still undefined, but we can give a rough estimate for it. Assuming the cavity has a
surface area AC , then approximately half of the photons in the volume

V = AC · c ·∆t (1.44)

will reach the cavity. Now the relevant time scale ∆t in eq. (1.44) for our bath
correlation functions is nothing but the inverse of the bandwidth ∆ω. Putting that
into eq. (1.42) yields

〈N(ω0)〉 ≈ AC
4π2

1

e
~ω0
kBT − 1

ω2
0
c2 , (1.45)

so ∆ω cancels out. For arbitrary processes that have ∆ω � ω0 eq. (1.45) gives the
number of bath particles (photons) that have to be considered, usually termed bath
occupation number. The bath occupation number is very insensitive to the details of
the processes involved as long as eq. (1.43) holds. Therefore eq. (1.43), called the
separation of time/frequency scales, is one of the main pillars upon which the validity
of the quantum optical master equation rests.

32.521.510.50
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Figure 1.1 Logarithm of the bath occupation number 〈N(λ0)〉 given by eq. (1.46) at
T = 300K for various wavelengths λ0. The colored region highlights the visible range.

For better comparison with experimental setups we rewrite eq. (1.45) in terms of
wavelengths, using ω0 = 2πc

λ0
:

〈N(λ0)〉
AC

≈ 1
λ2

0

1

e
2π~c
λ0kBT − 1

. (1.46)

Fig. (1.1) shows a logarithmic plot of eq. (1.46) in units of mm−2. We see that in
the visible range A−1

C 〈N(λvis)〉 � 10−20mm−2 and even in the near infrared we have

8



1.2 Why Vacuum Inputs?

A−1
C 〈N(λnir)〉 � 1mm−2. It is therefore perfectly valid to assume the heat bath of a

quantum optical system is in the vacuum state eq. (1.18).4

4Optical microcavities have AC < 1mm2, so the numerical values shown in fig(1.1) represent upper
bounds for the bath occupation number.
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2 The Model Hamiltonian for an Atom in
a High Finesse Cavity

The physical system under consideration is an atom trapped by the light field of
a high-finesse cavity. The atomic center of mass motion, the internal excitations
and the cavity light field as well as their mutual interaction will be treated in a
fully quantum-mechanical manner. The quantum theory of light and its fundamental
interactions with matter will provide the solid ground upon which we shall construct
our model.

2.1 Discussion of the Model Hamiltonian

In this section we will discuss the different contributions to the Hamiltonian separately.
The motivation and derivation will be rather coarse, so the interested reader is referred
to the standard literature on this topic where necessary.

2.1.1 The Free Electric Field

The three-dimensional quantized vector potential A for an empty resonator is found
to be 1

A(r) =
∑
λ

∫ √ 1
2ωkε0V

(
ε∗k, λa†k, λv

∗
k(r) + vk(r)ak, λεk, λ

)
d3k, (2.1)

with [
a†k, λ, ak′, λ′

]
= δλλ′δ(k − k′), (2.2)

ωk = |k|, (2.3)

where V is the quantization volume, ε0 the permittivity of free space, εk, λ the
(possibly complex) polarization unit vector and the mode function vk(x) is a solution
to the three-dimensional Helmholtz equation [22](

∇2 + k2
)
vk(x) = 0. (2.4)

1The representation of the quantized electromagnetic field operators in the Coulomb gauge will
mainly follow chapter III of [28].
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

The mode functions vk(x) are normalized according to∫
v∗k(x)vk(x) dnx =

∫
dnx ≡ V (2.5)

for n = 1, 2, 3.
The quantized electric and magnetic field operators are defined analogously to

their classical electrodynamic counterparts:

EH(r, t) = −∂tA(r, t) (2.6)
BH(r, t) = ∇×A(r, t). (2.7)

These definitions apply for the corresponding Heisenberg operators only, labeled by
the subscript H, but we would like to continue our discussion in the Schrödinger
picture. Eq. (2.7) does not trouble us at all, since it holds in the Schrödinger picture as
well. For eq. (2.6) we need a little workaround. We transform A(r) to the Heisenberg
picture, apply eq. (2.6) and then return back to the Schrödinger picture. This yields
the Schrödinger electric field operator

E(r) = i
∑
λ

∫ √
ωk

2ε0V

(
ε∗k, λa†k, λv

∗
k(r)− vk(r)ak, λεk, λ

)
d3k. (2.8)

The electric field will be the main generator of particle-light interactions as will be
derived below. The Hamiltonian of the free electromagnetic field is written as

Hem = ε0
2

∫ (
E2(r) + B2(r)

)
d3r

=
∑
λ

∫
ωk

(
a†k, λak, λ + 1

2

)
d3k. (2.9)

The ground state energy term ωk
2 in the integrand yields an infinite contribution

called the vacuum energy. Since it is a number and not an operator it affects all states
equally and does not generate any dynamics. Its manifestation is topic of ongoing
discussions in high-energy physics and cosmology which we shall not be concerned
with [29]. It is formally removed by normal ordering2, a reordering of subsequent
applications of creation and annihilation operators that puts all creation operators
to the left and all annihilation operators to the right. The expression to be normally
ordered is enclosed by colons, e.g.

: aa†aa† : = a†a†aa. (2.10)

Removing the infinite constant we arrive at

Hem =
∑
λ

∫
ωka†k, λak, λ d3k. (2.11)

2Normal ordering originates from quantum field theory. Normally ordered strings of operators with
at least one annihilation operator have zero vacuum expectation value. Wick’s theorem [30] allows
for the expression of arbitrary strings of creation and annihilation operators as a combination of
normally ordered strings of operators, so one has to consider normally ordered operators only. The
interested reader is referred to the thorough introductory book of Peskin and Schröder [31] for more
details.
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2.1 Discussion of the Model Hamiltonian

2.1.2 Atom-Light Interaction
The Hamiltonian for charged particles (e.g. electrons) interacting with electromagnetic
fields via minimal coupling reads3

H =
∑
α

1
2mα

[pα − qαA(rα)]2 + VCoul. (2.12)

In principle, we are done, but eq. (2.12) is not very handy for any practical calculations.
In the case of atoms interacting with light at optical frequencies, i.e. λopt ≈ 10−7 −
10−6m, we may simplify this expression. Since the extend of an atom, i.e. the radius
of the electron orbitals, is much smaller than the wavelength of the incident light,
re− ≈ 10−10m� λopt, we can perform the long wavelength approximation

H ≈
∑
α

1
2mα

[pα − qαA(Ra)]2 + VCoul, (2.13)

where we assume that the field each electron experiences is approximately the same
as at the atom’s center of mass position Ra.4 Defining the dipole moment operator

d =
∑
α

qαrα (2.14)

we apply the unitary transformation

U = exp [−id ·A(Ra)] (2.15)
H′ = UHU†

=
∑
α

p2
α

2mα
+ VCoul + εdip +

∑
λ

∫
ωka

†
k, λak, λ d

3k − 1
ε0

d ·D′(Ra). (2.16)

D′(Ra) is the transformed displacement operator

D′(Ra) = iε0
∑
λ

∫ √
ωk

2ε0V

(
ε∗k, λa

†
k, λv

∗
k(Ra)− vk(Ra)ak, λεk, λ

)
d3k

= ε0E(Ra). (2.17)

So the transformed displacement operator is of the same form as the untransformed
electric field operator. The form of the particle-light interaction part is thus often
termed as d times E, as opposed to the initial p times A. The long wavelength
approximation became a dipole approximation. VCoul is the Coulomb potential acting
among the charged particles. The dipole self-energy εdip represents another infinite,
but constant, contribution to the Hamiltonian. It will not be considered because it
does not alter the system dynamics, just like the vacuum energy before. The fourth
term on the right hand side of eq. (2.16) is the already normally ordered Hamiltonian

3Here we follow Complement AIV of [28].
4Whenever we talk about an atom’s position we are referring to the location of its center of mass.
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

of the free electromagnetic field eq. (2.11). By virtue of eq. (2.17) we get the resulting
particle-field Hamiltonian

Hpf =
∑
α

p2
α

2mα
+ VCoul +

∑
λ

∫
ωka

†
k, λak, λ d

3k − d ·E(Ra). (2.18)

2.1.3 The Cavity
In cavity quantum electrodynamics (C-QED) the quantization volume V from
eqs. (2.8) and (2.5) is taken as the volume enclosed by the cavity. However, one can
approximate the mode functions inside the cavity, simplifying calculations without
noticeably changing the physics. A first step is to solve the paraxially approxim-
ated form of eq. (2.4), which would give us the well known Gaussian beams [32].
In the vicinity of the beam waist, however, we may even go further and treat the
electromagnetic field as one-dimensional standing wave and the quantization volume
becomes a quantization length. Equivalently, we could have approximated the cavity
by two infinite mirrors a distance L apart. So we eventually arrive at

E(x) = i
∑
λ

∫ √
ωk

2ε0L

(
ε∗k, λa†k, λu

∗
k(x)− uk(x)ak, λεk, λ

)
dk, (2.19)

where uk(x) is now a solution to the 1D Helmholtz equation(
d2

dx2 + k2
)
uk(x) = 0, (2.20)

which is solved by

uk(x) =
√

2 cos(kx+ φ). (2.21)

The factor
√

2 stems from our normalization condition eq. (2.5). Since we are free to
choose φ on our behalf, we opt for φ ≡ 0. For m ∈ N

ωC = kC

= 2πm 1
L
, (2.22)

where
1
L

= νFSR (2.23)

is the free spectral range of the cavity. ωC is the frequency of a specific mode, an
integer multiple of νFSR, eq. (2.22). The cavity wave-number kC is usually termed
recoil wave-number krec since it is proportional to the recoil momentum transferred
to the atom or particle by absorption of a single photon,

kC ≡ krec. (2.24)
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2.1 Discussion of the Model Hamiltonian

For a high-finesse cavity with a narrow transmission window, which means that κ
from eq. (2.44) is much smaller than νFSR, we may consider a single mode only. For
our purpose we choose m� 1.

Omitting the index k the mode function takes the form

u(x) =
√

2 cos(krecx). (2.25)

and the electric field operator inside the cavity then reads

E(x) = i

√
ωC
ε0L

cos(krecx)
(
ε∗krec, λCa†krec, λC − akrec, λCεkrec, λC

)
. (2.26)

The Hamiltonian eq. (2.18) then reduces to

Hpf =
∑
α

p2
α

2mα
+ VCoul + ωkCa

†
kC , λC

akC , λC −
1
ε0

d ·E(Xa). (2.27)

with Xa the atom’s center of mass position along the cavity axis. Since there will
be no other modes involved but the single cavity mode, we will drop the subscripts
kC , λC of the cavity mode operators for practical convenience

a(†)
kC , λC

→ a(†). (2.28)

2.1.4 The Atom
The atom, as we know it, is a complex structure of electron orbits. We may obtain
analytical expressions for the orbital structure for its simplest form only, the hydrogen
atom. And yet the single-mode cavity permits for a fully quantum mechanical
treatment of any kind of atoms, with certain sound approximations being made.
Since there is only one mode in our cavity, we may drive a very specific transition
that involves two orbitals only. This means that we neglect contributions from other
orbitals and treat the atom effectively as a two-level system. However, some criteria
must be met. The transition under consideration must be a dipole transition, i.e.
∆l = 1.5 For large detuning between cavity mode and the transition frequency of
choice one has to ensure that no other transition is close to the mode frequency,
independent of their multipole moment. Quadrupole or higher order transitions at
resonance may contribute as much as far off-resonant dipole transitions. We reduce
the atom’s internal state space to a two-level system with states |g〉 and |e〉, denoting
the ground state and excited state, respectively. Speaking about two-level systems it
seems inevitable to introduce the Pauli operators

σ+ = |e〉〈g| (2.29)
σ− = |g〉〈e| (2.30)
σz = |e〉〈e| − |g〉〈g| (2.31)

5For a standard electronic orbital labeling scheme see e.g. chapter 7 of [33]. For a brief introduction
to multipole operators, selection rules etc. see chapter 10.8 of [33].
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

and their well-known commutation relations

[σ+, σ−] = σz (2.32)
[σ±, σz] = ∓ 2σ±. (2.33)

With that at hand we are now able to tie contributions from both kinetic and
Coulomb energy of the ground and excited state to a single parameter: the total
energy difference, denoted ωa.6 Separating relative and center of mass motion of
electrons and nucleus we may replace

∑
α

p2
α

2mα
+ VCoul → ωaσ+σ− + p2

a

2ma
. (2.34)

where pa is the atom’s center of mass momentum. In the 1D case we replace the
momentum operator by its projection along the cavity axis, pa → pa.

The kinetic energy of the electrons’ relative motion as well as the total Coulomb
energy is absorbed into ωa. We proceed similarly for the interaction part. Since we
can arbitrarily choose the phase of a wave-function we may define the matrix element

d ≡ 〈e|d |g〉 (2.35)

to be real-valued. Assuming real polarization vectors and mode functions, i.e.
ε∗kC , λC = εkC , λC and u(x) = u∗(x), respectively, we define

g(x) =
√

ωC
2ε0Lm

d · εkC , λCu(x)

=
√
ωC
ε0L

d · εkC , λC cos(krecx)

≡ g0 cos(krecx). (2.36)

Adopted to the two-level description, the dipole interaction term becomes

−d ·E(Xa)→ −ig(Xa)
(
a† − a

)
(σ+ + σ−) . (2.37)

Summarizing, we find the Hamiltonian for a two-level system interacting with a
single-mode electromagnetic field

H′ = p2
a

2ma
+ ωaσ+σ− − ig(Xa) (σ+ + σ−)

(
a† − a

)
+ ωkCa†a. (2.38)

The first term on the right hand side of eq. (2.38) is the kinetic energy of the atom’s
center of mass motion, which is basically the kinetic energy of its nucleus. The last
term on the right hand side of eq. (2.38) gives the energy of the intracavity photons.
Taking a closer look on the interaction part, we observe four processes being formally
considered:

6Though not stated explicitly, ωa may also account for Stark shifts arising from couplings to
non-resonant energy levels.
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2.1 Discussion of the Model Hamiltonian

(i) σ+a - excitation of the atom via absorption of a photon,

(ii) σ−a† - emission of a photon via de-excitation of the atom,

(iii) σ+a† - emission of a photon and excitation of the atom,

(iv) σ−a - de-excitation of the atom and absorption of a photon,

two of which are energy conserving and two which are not. Discarding the non-energy
conserving terms is part of the rotating wave approximation. The subject is clearer if
one transforms eq. (2.38) to an interaction picture:

H′I = p2
a

2ma
− ig(Xa)

(
σ−a†ei(ωC−ωa)t − σ+ae−i(ωC−ωa)t

+ σ+a†ei(ωC+ωa)t − σ−ae−i(ωC+ωa)t
)
. (2.39)

The first two, energy conserving, terms on the right hand side of eq. (2.39) oscillate
with ± (ωC − ωa), while the other two, so-called counter-rotating, terms oscillate
with ± (ωC + ωa). In the case where

ωC + ωa � |ωC − ωa| , (2.40)

a typical situation for quantum optical systems, one argues that the counter-rotating
terms average to zero quite rapidly [21, 23]. More rigorously, if we calculate the time
evolution operator UI(t0, t0 + ∆t) for (ωC + ωa)−1 � ∆t � |ωC − ωa|−1, we find
that the contributions from co- and counter-rotating terms scale with |ωC − ωa|−1

and (ωC + ωa)−1, respectively. By virtue of eq. (2.40) we find

|ωC − ωa|
ωC + ωa

� 1. (2.41)

Plugging in some typical values, ωC , ωa ≈ 1015 Hz, |ωC − ωa| ≈ 107 Hz, we get

|ωC − ωa|
ωC + ωa

≈ 10−8 � 1, (2.42)

so eq. (2.41) is well satisfied. Returning to the Schrödinger picture and dropping
the counter-rotating terms we arrive at what is known as the Jaynes-Cummings
Hamiltonian [34]

HJC = p2
a

2ma
+ ωaσ+σ− − ig(Xa)

(
σ−a† − σ+a

)
+ ωCa†a (2.43)

including atomic motion and a position-dependent coupling constant g(Xa).
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

2.1.5 External Cavity Pumping and Spontaneous Emission
The effective equation of motion for a system immersed in a heat bath, the master
equation has been discussed in chapter 1. There are two parts in our model that
couple to a bath:

• the atom via spontaneous emission with decay rate γ

• the cavity via leakage with leakage rate 2κ.

After the general discussion in chapter 1 all we have to do is find the corresponding sys-
tem operators earlier denoted as c(†). Spontaneous emission implies the de-excitation
of the atom. The operator that de-excites the atom is σ−. Analogously, the loss of a
photon is obtained by application of a. The resulting contributions to the Liouvillian
read (see eq. (1.30))

JCρ = κ
(
2aρa† − a†aρ− ρa†a

)
(2.44)

Jaρ = γ

2 (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (2.45)

and

J = JC + Ja. (2.46)

The resulting master equation is

∂tρ = −i [H, ρ] + J ρ
≡ Lρ. (2.47)

Rather than just observe the cavity’s decays we would like to drive it with an
external laser pump field. The laser field pumping the cavity is a time-dependent
coherent state in the bath modes∣∣∣βωpe−iωpt〉 ≡ D(βωpe−iωpt) |0〉

≡ exp
[
βωpe

−iωptb†ωp − β
∗
ωpe

iωptbωp
]
|0〉 , (2.48)

where D(α) is also called the displacement operator.7 Filling the bath with a coherent
state might shatter our vacuum assumption from section 1.2. Therefore we rewrite
the interaction Hamiltonian to give

Hint = i

√
κ

π

∫ ω0+θ

ω0−θ

((
b†ωa− a†bω

)
−
(
β∗ωe

iωpta− a†βωe−iωpt
)
δ(ω − ωp)

+
(
β∗ωe

iωpta− a†βωe−iωpt
)
δ(ω − ωp) dω

)
. (2.49)

7Unfortunately the operators defined in eq. (2.17) and eq. (2.48) are named alike although their
mathematical form and physical interpretation are quite different.
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2.2 Adiabatic Elimination of the Internal Atomic States

The terms in the first line in eq. (2.49) mutually cancel when they act on the
coherent state eq. (2.48) while the second line is an operator that acts on the system
Hilbert space only. Thus we can absorb the second line of eq. (2.49) into the system
Hamiltonian Hsys, which gives rise to the coherent pump term8

Hp(t) = −iη
(
a†e−iωpt − aeiωpt

)
(2.50)

with

η =
√
κ

π
βωp . (2.51)

2.2 Adiabatic Elimination of the Internal Atomic States
At the current stage the system Hamiltonian reads (eqs. (2.43) and (2.50))

Hsys = HJC + Hp

= p2
a

2ma
+ ωaσ+σ− − ig(Xa)

(
σ−a† − σ+a

)
+ ωCa†a− iη

(
a†e−iωpt − aeiωpt

)
.

(2.52)

The explicit time dependence from eq. (2.50) can be eliminated by a transformation
to a rotating frame

U(t) = exp[−iωp
(

a†a + σz
2

)
t] (2.53)

we transform

H′sys = U(t)HsysU†(t)− iU†(t)∂tU(t)

= p2
a

2ma
−∆aσ+σ− − ig(Xa)

(
σ−a† − σ+a

)
−∆Ca†a− iη

(
a† − a

)
(2.54)

with

∆a = ωp − ωa (2.55a)
∆C = ωp − ωC . (2.55b)

Time-independent operators in the Schrödinger picture obey

∂t 〈 · 〉 = Tr { · ∂tρ}
= Tr { ·Lρ} . (2.56)

Therefore we combine eqs. (2.45) and (2.54), and note that

σ+σ− = 1
2 (σz + 1) , (2.57)

8Here we assume β∗ωp
= βωp .
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

to obtain the equations of motion for the mean-values of the atomic variables9

∂t 〈σ−〉a =
(
i∆a −

γ

2

)
〈σ−〉a + g(Xa) 〈σz〉a a (2.58a)

∂t 〈σ+〉a =
(
−i∆a −

γ

2

)
〈σ+〉a + g(Xa) 〈σz〉a a†. (2.58b)

The subscript a denotes that the trace is only performed along the atomic degrees
of freedom i.e.

〈 · 〉a = Tr { · }a
= 〈e| · ρ |e〉+ 〈g| · ρ |g〉 . (2.59)

In case that κ from eq. (2.44), ∆a from eq. (2.58) and γ of eq. (2.45) obey

γ, ∆a � κ (2.60)

the atomic variables evolve on much faster timescales than the cavity. The internal
states of the atom approach a steady-state under the constraints provided by the
cavity. The cavity field is considered constant at the short time scales of the atomic
variables and the atomic variables have to adapt. Therefore the atomic variables
are enslaved by the cavity field, one of the many manifestations of Haken’s slaving
principle. This slaving principle provides the basis for adiabatic elimination.10 The
action of the atom on the cavity dynamics is then governed by the steady-state
solutions of eqs. (2.58)

〈σ−〉a, ss =
g(Xa) 〈σz〉a, ss a
−i∆a + γ

2
(2.61a)

〈σ+〉a, ss =
g(Xa) 〈σz〉a, ss a†

i∆a + γ
2

. (2.61b)

When we trace over the internal atomic states in their steady-state in eq. (2.54) using
the results of eqs. (2.61) we are left with (by virtue of eq. (2.57))

Tr
{

H′sys
}
a

= p2
a

2ma
−∆a 〈σ+σ−〉a, ss − ig(Xa)

(
〈σ−〉a, ss a† − 〈σ+〉a, ss a

)
−∆Ca†a− iη

(
a† − a

)
= p2

a

2ma
− ∆a

2
(
〈σz〉a, ss + 1

)
+ 〈σz〉a, ss

2|g(Xa)|2∆a

γ2

4 + ∆2
a

a†a

−∆Ca†a− iη
(
a† − a

)
. (2.62)

9Here σ±, z are extended to the full Hilbert space σ±, z → σ±, z ⊗ 1 ≡ σ±, z. The notation is often
ambiguous, but whether or not the extended version of σ±, z is in charge should be clear from
context.
10See [35], [36] and [37] for general introduction to synergetics. See [38] for adiabatic elimination in
stochastic differential equations and [21] for specific application in quantum optics.
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2.2 Adiabatic Elimination of the Internal Atomic States

The resulting effective Hamiltonian depends on 〈σz〉a, ss which is found for vacuum
baths as

〈σz〉a, ss (Xa) = −
∆2
a + 1

4γ
2

∆2
a + 1

4γ
2 + 1

2 |g(Xa)|2a†a
. (2.63)

If we define

U0 = −〈σz〉a, ss
2g2

0∆a

γ2

4 + ∆2
a

, (2.64)

with g0 from eq. (2.36), we may rewrite eq. (2.62) as

Tr
{

H′sys
}
a

= p2
a

2ma
− ∆a

2
(
〈σz〉a, ss + 1

)
−
(
∆C − U0|u(Xa)|2

)
a†a− iη

(
a† − a

)
.

(2.65)

With the steady-state expression for 〈σz〉a, ss, eq. (2.63), U0 is an operator on the
photonic and momentum subspace. In the far detuned limit where

∆a � γ (2.66a)

∆a �
η

κ
(2.66b)

we find

〈σz〉a, ss ≈ −1, (2.67)

which is independent of Xa and a†a. The increase of ∆a has to be within the
constraints discussed in section 2.1.4, otherwise the validity of our two-level model
would break down. Eq. (2.66a) permits for neglecting the effects of spontaneous
emission from the atom. Looking at the internal states |g〉 and |e〉 only, this may
sound a bit unnecessary at first. However, if we include the atom’s motion along
the cavity, we should become aware that the Liouvillian eq. (2.45) is incomplete.
Spontaneous emission of a photon goes along with a recoil on the atom11, which is
not considered in eq. (2.45). The corresponding system operator reads

c = σ−

∫ 1

−1
Φ(u) exp [−ikrecXau] du, (2.68)

where u is the projection of the unit photon momentum vector onto the cavity axis
and Φ(u) the corresponding distribution of projected values. Going to the far detuned
limit allows retaining the form of eq. (2.45) a posteriori.

With eq. (2.67) the nature of U0 changes from operator to number. This enables us
to use it as a parameter in our Hamiltonian rather than worrying about its operator
structure

U0 →
2g2

0∆a

γ2

4 + ∆2
a

= U0. (2.69)

11This is the basic mechanism for laser cooling.
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2 The Model Hamiltonian for an Atom in a High Finesse Cavity

Eq. (2.67) also removes the second term on the right hand side of eq. (2.62).
Collecting the above results and approximations we arrive at the effective Hamilto-

nian

H′1p1m ≡ Tr
{

H′sys
}
a

= p2
a

2ma
−
(
∆C − U0u(Xa)2

)
a†a− iη

(
a† − a

)
. (2.70)

We apply a unitary transformation

U = exp
[
−iπ2 a†a

]
(2.71)

and plug in the explicit form of the mode function eq. (2.25) to get

H1p1m = p2
a

2ma
−
(
∆C − U0 cos2(krecXa)

)
a†a + η

(
a† + a

)
. (2.72)

The two forms eqs. (2.70) and (2.72) are physically equivalent. However, as becomes
apparent in section 4.4.1, the mathematical form of eq. (2.72) turns out to be
advantageous for our purposes. Eq. (2.72) is the Hamiltonian for a two-level atom
moving along the axis of a one-dimensional single mode cavity. This sounds like a
special case, but there are many quantum particles and objects that can be prescribed
or approximated as two-level atoms. The form of the Hamiltonian eq. (2.72) is
therefore capable of handling a much wider class of physically realized quantum
particles than just two-level atoms. It may also account for a Bose-Einstein condensate
(BEC) with very weak interparticle interaction (low scattering length) [39]. In the
following chapters we will analyze the one particle - one mode system evolving under
eqs. (2.72) and (2.44) and try to characterize its properties for different parameters
U0, η, ∆C and κ. We will not be concerned, however, with the true nature of the
quantum particle inside the cavity.
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3 General Discussion of the Hamiltonian
and Semi-Classical Treatment of the
One Particle-One Mode System

The Hamiltonian eq. (2.72) looks very innocent, but the effective interaction term
derived in section 2.2

Hint, eff =
(
∆C − U0 cos2(krecXa)

)
a†a (3.1)

is obviously non-linear. Including dissipation the system’s equation of motion obeys
a master equation, which explicitly reads

ρ̇ = −i
[
H1p1m, ρ

]
+ κ

(
2aρa† − a†aρ− ρa†a

)
≡ L1p1mρ. (3.2)

A first approach to characterize the system is to look at the Heisenberg equations of
motion for mean values, which are directly obtained from eq. (3.2) via

∂t 〈A〉 = ∂t Tr {Aρ}
= Tr {A∂tρ}
= Tr {AL1p1mρ} , (3.3)

where A is a time-independent operator in the Schrödinger picture. Eq. (3.3) yields
the equations of motion for the field amplitude α = 〈a〉 and mean photon number
n =

〈
a†a
〉

∂tα = Tr {aρ̇}

=
[
i
(
∆C − U0

〈
cos2(krecXa)

〉)
− κ

]
α+ η (3.4)

∂tn = Tr
{

a†aρ̇
}

= η (α∗ + α)− 2κn. (3.5)

Without interaction, i.e. U0 = 0, we can separate particle and field space and solve
them independently.1 The solution is a direct product of the initial momentum
distribution and a coherent field state (see eq. (2.48))

|α(t)〉 = D (α(t)) |0〉 . (3.6)
1The case U0 = 0 is called the empty cavity because the presence of the atom does not alter the

cavity dynamics. In a truly empty cavity, however, a particle momentum space would be superfluous.
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3 General Discussion of the Hamiltonian and Semi-Classical Treatment of the One Particle-One Mode System

If the cavity is initially in a vacuum state, the field amplitude α obeys

α(t) = η

κ− i∆C

(
1− e(∆C−κ)t

)
. (3.7)

In this way the empty cavity is trivially solved. Hence we expect that for small U0 a
product ansatz can still be a good approximation. With increasing U0, however, this
ansatz may give less and less accurate results.

In the remainder of this chapter we are concerned with the system’s steady-state
properties. We set the left hand sides of eqs. (3.4) and (3.5) equal to zero and combine
the results to formulate a self-consistency equation

n = η2

κ2 +
(
∆C − U0 〈cos2(krecXa)〉

)2 . (3.8)

The second term in the denominator of eq. (3.8),(
∆C − U0

〈
cos2(krecXa)

〉)2 ≡ ∆2
eff (Xa), (3.9)

can be interpreted as an effective detuning ∆eff (Xa) that depends on the particle
position Xa. Since ∆2

eff ≥ 0 we find

n ≤ η2

κ2 (3.10)

in the steady-state. The U0 cos2-interaction term that contributes to ∆eff plays
two roles. Evidently it shifts the cavity’ resonance frequency via ∆eff , eq. (3.9).
Combining eqs. (2.55b) and (3.9) we get

∆eff = ∆C − U0
〈

cos2(krecXa)
〉

= ωp − ωC − U0
〈

cos2(krecXa)
〉

≡ ωp − ωeff , (3.11)

where we defined the effective cavity frequency

ωeff = ωC + U0
〈

cos2(krecXa)
〉

(3.12)

Whether the interaction term increases or decreases the resonance frequency depends
on the sign of U0 because 〈

cos2(krecXa)
〉
≥ 0 (3.13)

in any case. A shift of the resonance frequency at constant cavity length corresponds
to a shift of the cavity’s refractive index via internal medium. A positive shift marks
a decreased refractive index and vice versa. Therefore a refractive index below 1
seems to be theoretically achievable [20].
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3.1 The Harmonic Oscillator Regime of Particle Motion

If we return to the Hamiltonian eq. (2.72) the second role of the interaction term
in the self-consistent mean-value equations becomes apparent. U0 cos2(krecXa)a†a
serves as trapping potential for the particle, which becomes

V(Xa) = nU0 cos2(krecXa) (3.14)

in terms of mean intensity. From that point of view U0 is the potential depth per
photon. Its sign determines whether the atom is a low-field seeker or a high-field
seeker, i.e. whether it is pushed towards the nodes or antinodes of the cavity light
field, respectively.

Exploring the steady-state properties for different parameter values, we see that
this double role of the interaction term makes the one particle - one mode problem a
non-trivial one. A fluctuation in the photon number may change the depth of the
potential and by that the refractive index via the shape of the particle wave-function
and the changing refractive index acts back on the photon number.2 Since the mean
value equation eq. (3.8) is intrinsically non-linear, we expect to find multiple self-
consistent solutions in some ranges of the parameter space and probably witness
multistability.

To obtain self-consistent solutions to eq. (3.8) we proceed according to the following
scheme:

(i) we assume a steady-state mean photon number n

(ii) we assume a potential U0 cos2(krecXa)n without taking care of the quantum
nature of the photon field

(iii) we solve the corresponding Schrödinger equation for the particle (analytically
or numerically, depending on the employed model)

(iv) we calculate the expectation value
〈
cos2(krecXa)

〉
for the various eigenfunctions

(v) we vary ∆C and try to identify conditions when eq. (3.8) holds self-consistently
for the photon number.

From this semi-classical treatment we expect a guideline to multistability regions in
the parameter space. It does, however, by no means provide a steady-state solution
to the master equation.

3.1 The Harmonic Oscillator Regime of Particle Motion
In a first approach, we may consider a deep trap limit. For large photon numbers
and strong light-momentum coupling, i.e.√

U0
ωrec

〈a†a〉 � 1, (3.15)

2An intensity-dependent index of refraction is a typical problem of non-linear optics.
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3 General Discussion of the Hamiltonian and Semi-Classical Treatment of the One Particle-One Mode System

we can treat the optical potential as harmonic oscillator potentials at each lattice
site. Assuming the atom is strongly localized at a given side, we approximate

cos2(krecXa) ≈ 1− k2
recX2

a (3.16)

yielding a harmonic oscillator potential. Looking at the mean-value equations of
motion eq. (3.3) we discover a nice property of the harmonic oscillator. The equations
(see eqs. (3.4) and (3.5))

∂tα
(∗) =

(
i∆C ± iU0

(
1− k2

rec

〈
X2
a

〉)
− κ

2

)
α(∗) + η(∗) (3.17a)

∂tn = η (α∗ + α)− κn (3.17b)

∂t
〈

X2
a

〉
= 1
m

(〈paXa〉+ 〈Xapa〉) (3.17c)

∂t (〈paXa〉+ 〈Xapa〉) = 2
m

〈
p2
a

〉
+ 4U0

(
k2
rec

〈
X2
a

〉)
n (3.17d)

∂t
〈

p2
a

〉
= 2U0k

2
rec (〈paXa〉+ 〈Xapa〉)n (3.17e)

turn out to form a closed set [40]. Eqs. (3.17) describe a harmonic oscillator with
time-dependent trap frequency, time-dependent solutions can be obtained numerically
[40], [41]. A stationary analysis reveals a variety of steady-states [41].

We hope to find similar elegant solutions at higher orders as well. Extending
eq. (3.16) to fourth order

cos2(krecXa) ≈ 1− k2
recX2

a + 1
3k

4
recX4

a, (3.18)

we repeat the previous calculation. Our expectations are declined, however, as the
mean-value equations of motion do not turn out to form a closed set. Their explicit
form is found in appendix A in eqs. (A.6). It appears that closure is reserved to the
harmonic oscillator model.

The previous discussion has been purely classical. Returning to a semi-classical
treatment we put the approximation eq. (3.16) in eq. (3.8) to find

n = η2(
∆C − U0

(
1− k2

rec

〈
X2
a

〉))2 + κ2
. (3.19)

We neglect the quantum nature of the photonic potential, i.e. only the mean value〈
a†a

〉
= n enters our calculation. The quantum nature of particle motion, however,

enters via the harmonic oscillator eigenstates. As given below,
〈

X2
a

〉
can be calculated

analytically for each harmonic oscillator eigenstate. We then try to find self-consistent
solutions of eq. (3.19) for various harmonic oscillator eigenstates. Our quantum
particle is subject to the potential

V (x) = |U0|nk2
recx

2. (3.20)
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3.1 The Harmonic Oscillator Regime of Particle Motion

Comparing the expressions

1
2mω

2
hox

2 = V (x) = |U0|nk2
recx

2 (3.21)

we arrive at

ωho = 2
√
ωrec|U0|n

ωho
ωrec

= 2
√
|U0|
ωrec

n � 1 . (3.22)

For the harmonic oscillator state

|nho〉 =

(
a†ho

)nho
√
nho

|0〉ho , (3.23)

where nho is the harmonic oscillator excitation number and |0〉ho denotes the harmonic
oscillator ground state, the expectation value of x2 is found to be〈

x2
〉
nho

= 〈nho| x2 |nho〉

= 2nho + 1
2mωho

, (3.24)

which gets us to

k2
rec

〈
x2
〉
nho

= (2nho + 1) ωrec
ωho

= 2nho + 1

2
√
|U0|
ωrec

n
. (3.25)

Eventually we are looking for self-consistent solutions of

n = η2

κ2 +

∆C − U0

1− 2nho+1

2
√
|U0|
ωrec

n

2 (3.26)

for different nho, where n enters on both sides of the equation. We solve eq. (3.26)
graphically. Fig. (3.1) shows contours in the ∆C-n−plane where eq. (3.26) holds for
a chosen set of parameters.

The contours suggest that the effect of the interaction term increases with higher
intensity (larger n), which can be seen in the shift of the resonance frequency.3 With
increasing photon number n, implying a higher pump rate η, the resonance frequency
asymptotically approaches U0, which corresponds to complete localization at the

3The resonance frequency is the value ∆C,max for which the contour reaches its maximum photon
number nmax.
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Figure 3.1 Contours of self-consistent photon numbers for eq. (3.26) and the lowest
harmonic oscillator eigenstates: κ = 1, U0 = −10. The quantities are given in units of
ωrec.

potential minimum. Since the expectation value
〈
x2〉 increases with nho, eq. (3.25),

higher harmonic oscillator modes are less localized and therefore the corresponding
resonance frequency is less shifted. For a given ∆C the excited states nho 6= 0 show
up to two different n which solve eq. (3.26). This may give rise to multistability in
some regions of our parameter space.

3.2 Periodic Potential using Wannier Functions

While a harmonic oscillator potential is a valid approximation for large photon
numbers (strong localization), it gets inaccurate for low photon numbers and high
oscillator excitation numbers nho because the potential depth is not large enough to
form many bound states. In that case we need to consider the full optical lattice. In
order to relate the results to the harmonic oscillator for large n we make use of the
Wannier states, which are localized states in a periodic potential. For simplicity we
assume periodic boundary conditions at the edges of the cavity and hope that the
error is small when the cavity length L is much larger than the wavelength of the
desired cavity mode λC , L� λC .

The procedure carried out is analogous to the harmonic oscillator case, only that we
need to numerically compute the Wannier states for each n, since there is no analytic
expression available. We will briefly introduce Wannier functions and continue with

28



3.2 Periodic Potential using Wannier Functions

an interpretation of the obtained self-consistency contours.

3.2.1 Definition and Basic Properties of Bloch States

We still neglect the quantum nature of the optical lattice and solve the stationary
Schrödinger equation in the periodic potential [42]

V (x) = U0n cos2(krecx)

= U0n

2 (1 + cos(2krecx)) (3.27)

This is done best in momentum space, where the potential couples the states |q〉 ↔
|q ± 2krec〉. We then look for eigenstates of the Hamiltonian

H =
(
p + q

)2 + V(x) (3.28)

for different q in the first Brillouin zone, q ∈ [−kkrec, krec]. The spacing between two
different values of q, ∆q, is given by the length of the lattice L or the number of
lattice sites Nls under consideration, respectively:

∆q = π

L

= krec
Nls

. (3.29)

For each q we get eigenfunctions Ψmq(x), which are just the eigenfunctions to
the mth eigenvalue of the Hamiltonian for a given q represented in real space,
Ψmq(x) = 〈x|m, q〉, the so-called Bloch functions [43]. From this set of functions we
may construct a set of localized, orthonormal functions [44]

wn(x−R) = 1√
Nls

∑
q

e−iqRΨmq(x)

= 1√
Nls

∑
q

e−iqRΨmq(x−R)eiqR

= 1√
Nls

∑
q

Ψmq(x−R) , (3.30)

the so-called Wannier functions 4. Each wm(x−R) is localized at R, where R is a
lattice site position, an integer multiple of π

krec
. The wm(x−R) obey∫

w∗n(x−R1)wm(x−R2) dx = δmnδR1R2 . (3.31)

4In line 2 of eq. (3.30) we employ Bloch’s periodicity property of eigenfunctions for periodic
potentials: Ψmq(x+R) = Ψmq(x)eiqR, where R is a lattice site position [43].
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3 General Discussion of the Hamiltonian and Semi-Classical Treatment of the One Particle-One Mode System

The phases of the individual Bloch functions in eq. (3.30) are still arbitrary. While a
transformation like

Ψmq(x)→ Ψ′mq(x) = eiαmqΨmq(x) (3.32)

does not change the properties of the Bloch functions, the properties of the corres-
ponding Wannier function may be very sensitive to the specific choice of the αmq
[45]. Though this is not relevant for our purposes, and hence we do not examine
the varying behavior of Wannier functions for different choices of αmq, it should be
mentioned for the sake of completeness.

Fig. (3.2) shows the energy bands of the Bloch states |Ψmq〉 for the lowest m in
dependence of the potential depth |U0n|. A band crossing the E = 0-line (dashed
line in fig. (3.2)) indicates the transition from free to bound states.

Bloch Band Energy for the Lowest Bands

|U0n|/ωrec

E
/
ω
re
c

6050403020100

30

20

10

0

-10

-20

-30

-40

-50

-60

Bloch Band Energy for the Lowest Bands

|U0n|/ωrec

E
/
ω
re
c

6050403020100

30

20

10

0

-10

-20

-30

-40

-50

-60

Even Bands

Bloch Band Energy for the Lowest Bands

|U0n|/ωrec

E
/
ω
re
c

6050403020100

30

20

10

0

-10

-20

-30

-40

-50

-60

Bloch Band Energy for the Lowest Bands

|U0n|/ωrec

E
/
ω
re
c

6050403020100

30

20

10

0

-10

-20

-30

-40

-50

-60

Odd Bands

E4

E3

E2

E1

E0

Bloch Band Energy for the Lowest Bands

|U0n|/ωrec

E
/
ω
re
c

6050403020100

30

20

10

0

-10

-20

-30

-40

-50

-60

Figure 3.2 Energy for the lowest Bloch bands: For large potentials the dimensionless
energy of the lowest band goes as

√
|U0|
ωrec

n− |U0|
ωrec

n, eq. (3.22). The lowest bands form
an almost equidistant ladder for large potentials (harmonic oscillator regime).

For deep potentials the energy bands approach the harmonic oscillator ladder with
equal spacing between the energy levels. The spacing between the levels is then given
by eq. (3.22). Once we have numerical values for the wm(x−R) we again try to find
self-consistent solutions to

n = η2(
∆C − U0 〈cos2(krecx)〉n,m

)2
+ κ2

, (3.33)
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3.2 Periodic Potential using Wannier Functions
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Figure 3.3 Contours of self-consistency of eq. (3.33) for the lowest Wannier states:
κ = ωrec, U0 = −10ωrec: The dashed lines indicate the transition from free to bound
states.

where 〈
cos2(krecx)

〉
n,m

=
∫
w∗n,m(x) cos2(krecx)wn,m(x) dx (3.34)

and wn,m(x) is the mth Wannier function to the potential for mean photon number
n given in eq. (3.27), localized at R = 0. Fig. (3.3) shows contours of self-consistency
for eq. (3.33) in the ∆C-n−plane, analogously to the harmonic oscillator case.

Once the Wannier states form bound states, above the dashed lines in fig. (3.3),
the contours in fig. (3.3) become very much like those in fig. (3.1), below they show
different behavior. The properties of unbound states cannot be accounted for in the
harmonic oscillator model, hence the discrepancy. Following the contours Wn6=0 from
left to right, we see that they take a sharp turn just when they enter the bound
regime. The turn indicates that the effect of the atom on the index of refraction
decreases just before it starts to increase again. The nature of this phenomenon
becomes apparent when we look at the spatial distribution of the Bloch or Wannier
states, fig. (3.4). Just before the states become bound, they tend to localize at the
potential maxima Vmax = 0. A classical point of view suggests that, just before being
bound in a single potential well, a moving particle has its lowest velocity at the top
of each potential hill and therefore it is most likely found there.

Due to the non-monotonous effect of the particle in the transition from free to
bound states, the self-consistent contours in fig. (3.3) exhibit up to three different,
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Figure 3.4 Spatial distribution of a quantum particle in a 2nd Bloch band Wannier
state. The blue filled curve shows the absolute square of w2(x) for an average photon
number n = 1.36 and U0 = −10ωrec. At these parameters some of the Bloch states
forming the Wannier state are already bound, see fig. (3.2). The red line sketches the
shape of the optical potential in arbitrary units.

self-consistent n for a given detuning ∆C , pump rate η and band m. Thus it is not
unlikely that fully quantum mechanical simulations yield multistabilities in the same
range of parameters, too. Given that the spatial part of the density matrix may be a
mixture/superposition of several bands, it seems more likely that the system might
support multistable solutions.

3.2.2 Stability of Self-Consistent Solutions

Stability analysis is usually performed in a time-dependent context. Though we are
looking at stationary cases only, we may still provide some physical arguments to
classify self-consistent solutions of eq. (3.33) as stable or unstable. The following
paragraph is just meant to illustrate the idea of stability analysis. Since we are
considering a single Bloch band only, the outlined scheme is certainly not complete.

Fig. (3.5) shows a map of the difference function

f(∆C , n) = η2(
∆C − U0 〈cos2(krecx)〉n,m

)2
+ κ2

− n. (3.35)

with m = 2, κ = ωrec, η = 4ωrec and U0 = −10ωrec. f(∆C , n) > 0 means that
the photon number appearing from the resonance condition (rhs. of eq. (3.33)) is
larger than the actual photon number. What does that imply? The momentum wave
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3.3 Limits of Self-Consistent Mean Value Equations

function in that regime permits for a larger photon number, the photon number
increases through pumping. The larger photon number acts back on the momentum
space and changes the resonance condition. This process continues until a (possibly)
steady-state is reached at

f(∆C , n) = 0. (3.36)

The opposite process takes place for f(∆C , n) < 0. How does this affect the stability
of our self-consistent solutions of eq. (3.33) at f(∆C , n) = 0? According to the
previous passage a self-consistent solution can be regarded stable if

∂nf(∆C , n) |f(∆C , n)=0< 0. (3.37)

The black line in fig. (3.5) indicates the points where f(∆C , n) = 0 and is one of
the contours found in fig. (3.3). The solid part corresponds to stable self-consistent
solutions while the dotted part shows unstable ones. Two stable self-consistent
solutions exist for a certain range of ∆C . We expect that traces of that bistable
behavior might be found in a fully quantum-mechanical simulation as well.

In [46] a self-consistency equation for the steady-state photon number expectation
value is formulated for the same model Hamiltonian eq. (2.72) employing a Wigner-
function approach. The stability of the obtained solutions is classified according to
the response to small time-dependent perturbations. In [39] the dynamic properties
of eq. (2.72) are characterized via spectral analysis of the photon field amplitude and
contour shapes of phase space orbits. Though our analysis was conducted naively,
the contour in fig. (3.5), along with our stability consideration, is remarkably similar
to the results found in both [46] and [39].

3.3 Limits of Self-Consistent Mean Value Equations
The shape of the self-consistency contours are very sensitive to the model of the
spatial/momentum distributions. The resemblance discovered between figs. (3.1) and
(3.3) appears by construction, since Wannier states approach harmonic oscillator
states in a tight binding limit. The choices made seemed natural, but one may as well
follow a different ansatz, plugging in mixtures or superpositions of different states
for the spatial/momentum wave function, or supposing a coherent photonic state
instead of just dealing with a classical potential, an infinite variety of possibilities.
The contours will look different each time and there is little hope to find a steady-
state solution. The contour plots, however, can be used as guidelines5 to interesting
parameter ranges. Solving the mean value equations only may be insufficient, but
it provides for parameter values that seem interesting enough to be investigated in
greater detail. Consequently we will turn to numerical methods that contain the full
quantum properties of the system.

5literally
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Figure 3.5 Map of the difference function f(∆C , n) as of eq. (3.35) for κ = ωrec,
η = 4ωrec, U0 = −10ωrec and Bloch band index m = 0. Positive values suggest that the
system tends to evolve to larger photon numbers n than the current value, the opposite
holds for negative values. The black line shows f(∆C , n) = 0 with the solid part and
dashed part being identified as stable and unstable solutions of eq. (3.33), respectively.
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4 Numerical Solution of coupled
Atom-Field Dynamics

4.1 Computational Basis and Initial Conditions
Before we start numerical computations we have to pick a basis for our quantum
system. A natural choice is a direct product of photon Fock states and atomic
momentum states. The basis states read

|n, k〉 = |n〉 ⊗ |k〉 . (4.1)

|n〉 is a photon Fock state, eqs. (1.11), with n being the number of photons

a†a |n〉 = n |n〉 . (4.2)

|k〉 is an eigenstate to the atomic momentum operator. In this setup with given
cutoffs the Liouvillian can be numerically represented as a sparse matrix and we
are able to find its lowest eigenvalues and eigenvectors for Hilbert spaces up to
d ≈ 700. Another option would be to employ the eigenstates of the Hamiltonian as a
computational basis for L. In that basis, however, the jump terms of the Liouvillian
generate transitions among all basis states and the numerical representation of the
Liouvillian would be anything but sparse. In such a setup a direct solution of the
master equation would only be feasible for Hilbert spaces up to d ≈ 100. Similar
reasons apply for QMWF (4.3). Quantum jumps among all basis states are just
computationally harder than jumps among a few. For that reason it is preferable
to remain in the |n, k〉-space, where jump terms only couple neighboring photon
number states.

For any practical numerical computation we have to truncate the Hilbert space.
Assuming a Poisson-like distribution and considering 〈n〉 ≤ η2

κ2 we can safely set the
photon number cutoff ncut to ncut ≈ 4 η

2

κ2 . For the atomic momentum space, however,
a rigorously justified cutoff is not so easily found, especially when the effective cavity
detuning generates heating in the particle momentum space. Therefore we can only
judge a posteriori if the momentum space truncation was chosen sensibly. On the other
hand we must not choose the momentum cutoff too high. The Doppler shift changes
the detuning ∆a to ∆a ± krec |p|m (the ± is owing to the standing electromagnetic
wave inside the cavity and the two possible directions of motion along the cavity
axis). For large enough momenta

∆a ± krec
|p|
m
≈ η

κ
, γ (4.3)
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and we would be outside the far-detuned limit, eqs. (2.66). In that regime the
adiabatic elimination of section 2.2 cannot be performed and the validity of our
model Hamiltonian eq. (2.72) would break down. If the particle had such high
momentum, Doppler cooling would stop further heating once it left the far-detuned
limit. Since we do not encounter such high momenta in our simulations this is merely
a hypothetical remark.

4.1.1 Initial Conditions

We assume that the atom is initially at rest, meaning that its momentum wave function
is sharply peaked around p = 0, therefore setting |Ψ0〉 = |n0, 0〉. As mentioned in
section (3.2.1) the cos2 term drives transitions among the states |q〉 ↔ |q ± 2krec〉
where we now have q = 0. The interaction with the resonator mode then only couples
the symmetric superpositions

|0〉
1√
2

(|−2krec〉+ |2krec〉)

1√
2

(|−4krec〉+ |4krec〉)

· · · . (4.4)

Since the states in eq. (4.4) are eigenstates to p2 we can use them as basis states
instead of bare momentum states1, reducing the size of the Hilbert space by a factor
2. In the following sections we would like to discuss three alternative methods to
solve for the equations of motion.

4.2 Direct Solution of the Master Equation
Sometimes the (conceptually) simplest solution is not the best, however it should be
mentioned for completeness. The master equation can be implemented as a set of
linear differential equations for each element of ρ with the Liouvillian represented
by a sparse matrix in the |n, k〉-basis. If we find the left and right eigenvectors
and -values of the Liouville matrix we are done2. In a d-dimensional Hilbert space
ρ has d2 elements and the corresponding Liouvillian is d2 × d2. The dimension of
our Hilbert space is d = (kcut + 1)(ncut + 1), i.e. adding another photon number or
momentum state can sensitively increase the numeric size of the master equation.
Picking a relatively small Hilbert space with ncut = 30 and kcut = 15 we already end
up diagonalizing a 246016× 246016 matrix. The size of the matrix, however, is not

1This does not hold for q 6= 0 because the p2 operator would induce transitions between the symmet-
ric and antisymmetric superpositions 1√

2 (|q − 2krec〉 ± |q + 2krec〉), 1√
2 (|q − 4krec〉 ± |q + 4krec〉)

etc.
2Though ρ is Hermitian, the Liouville matrix is not and therefore has left and right eigenvectors

and -values, see sec.(4.4.1)
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4.3 Quantum Monte-Carlo Wave Function Method (QMWF)

the real problem. In solid state physics, for example, much larger sparse matrices
are handled using e.g. the Lanczos algorithm [47]. The main difference between
the two cases is the form of the matrix. In solid state physics one is looking for
the lowest eigenvalues of a specific Hamiltonian3, whereas the Liouville matrix is
non-Hermitian. Numerical experiments in Matlab with the eigs command yield a
factor of approximately 1000 in computing time in finding lowest eigenvalues between
Hermitian and non-Hermitian matrices of same size and sparsity. A direct solution
of the full master equation is thus not feasible for reasonable cutoffs in the physically
interesting regime. However, we can obtain the lowest eigenvalues for smaller system
sizes in reasonable time. This permits for a study of the long time behavior and,
essentially, the steady-state.

4.3 Quantum Monte-Carlo Wave Function Method
(QMWF)

The QMWF has already been mentioned in chapter 1. To apply the QMWF we need
to transform the master equation to a Quantum Stochastic Schrödinger equation
(QSSE) first. This gets us [21]

(S) ∂t |Ψ(t)〉 =
(
−iHsys +√γb†(t)c−√γc†b(t)

)
|Ψ(t)〉 (4.5)

(I) ∂t |Ψ(t)〉 =
(
−iHsys −

γ

2 c†c +√γb†(t)c−√γc†b(t)
)
|Ψ(t)〉 (4.6)

in Stratonovich and Ito differential calculus, respectively. The Stratonovich form
mimics the mathematical form of the original, non-stochastic differential equation,
such as eq. (4.5) is just the original Schrödinger equation with the bath operators in
eq. (1.8) being interpreted as stochastic terms. For practical computational reasons,
however, it is advantageous to handle stochastic differential equations in Ito form.
The transformation between Ito and Stratonovich form as well as more details on the
matter can be found in [38]. We continue in Ito calculus, eq. (4.6) and use b(†) the
same way as in section 1.1. From eq. (4.5) we started the derivation of the master
equation. Integrating eq. (4.6) for a small time step ∆t and vacuum baths yields

|Ψ(t+ ∆t)〉 =
(
1− iHeff∆t+√γ∆B†(t)

)
|Ψ(t)〉 , (4.7)

where

∆B(†)(t) ≡
∫ t+∆t

t
b(†)(t′) dt′ (4.8)

and

Heff = Hsys − i
γ

2 c†c. (4.9)

3Hamiltonians are Hermitian by definition.
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4 Numerical Solution of coupled Atom-Field Dynamics

∆B(†)(t) is called an Ito noise increment, a stochastic term. How can we interpret
eq. (4.7) physically? Let us have the heat bath to be the vacuum modes of the
electromagnetic field. Now we build up a perfect photodetector with efficiency 1, i.e.
every photon that leaks out of the system in an interval ∆t will be detected. ∆t has to
be chosen such that the probability for two or more photons in ∆t is vanishingly small.
Now in each interval our wave function will either evolve according to 1− iHeff∆t or
perform a quantum jump, following c∆B†(t). When the system performs a jump, we
will detect a photon due to ∆B†(t), if it does not jump, we do not detect a photon.
The detection (and non-detection) of the photon represents a measurement process
and therefore induces a collapse of the wave function. The collapse destroys the
coherence of the wave function, which implies that we can simulate the detection
behavior by flipping a coin. All we need to know is the corresponding probabilities.
Using that the square of wave function amplitudes give probabilities, we find that
the jump probability pjump, which equals the probability for photon detection in a
perfect detector, is

pjump(t) = γ Tr
{

c∆B†(t) |Ψ(t)〉〈Ψ(t)|∆B(t)c†
}

= γ 〈Ψ(t)| c†c |Ψ(t)〉∆t
= γ‖c |Ψ(t)〉‖2∆t. (4.10)

If we read the detector we always know the state of the system. This goes by
continuous measurement4. If we do not read the detector, however, the state is a
classical mixture of a jump part and a coherent part with decay, given by Heff . We
start with a pure state and then flip a coin at every time increment whether the
wave function evolves according to

|Ψ(ti + ∆t)〉 = (1−Heff∆t) |Ψ(ti)〉
‖(1−Heff∆t) |Ψ(ti)〉‖

(4.11)

with p = 1− pjump or jumps and becomes

|Ψ(ti + ∆t)〉 = c |Ψ(ti)〉
‖c |Ψ(ti)〉‖

(4.12)

with p = pjump. We can continue this procedure until we reach the time t, keeping
track of the wave function in each time step, which is called a quantum trajectory.
We then repeat this Monte-Carlo time evolution many times and merge the single
trajectories |Ψj(t)〉 to the density matrix

ρ(t) = lim
]trajectories→∞

1
]trajectories

]trajectories∑
j=1

|Ψj(t)〉〈Ψj(t)|. (4.13)

Assuming that we do not follow the exact number of counts, simulating and averaging
over a large number of trajectories, gives us a numerical approximation to the real

4See e.g. [48] for a detailed description of continuous measurement theory.

38



4.4 Rate Equations

density matrix [49]. This scheme is known as Quantum Monte Carlo Wave Function
Method (QMWF). One advantage of the QMWF is, since we are evolving wave
functions only, it is less memory consuming than a direct solution of the master
equation and the trajectories can be simulated in parallel. On the other hand, we only
get a probabilistic solution, which, however, converges fast enough (in the number of
trajectories) to the exact solution. Usually a few hundred trajectories are enough
to obtain a valuable solution. Sometimes even a single trajectory can give a good
qualitative picture of the underlying dynamics. For a steady-state solution one has
to perform time evolution for a very long time, especially if the system has a slowly
evolving subspace. A more efficient way to get stationary solutions is to follow a single
trajectory for a very long time and replace the ensemble average by a time average
[49]. The mathematical setup of QMWF is very intuitive in terms of the measurement
process and therefore closely connected to the physical processes occurring in the
system under consideration. By that reason, if a property does not occur in QMWF
after long time evolution, it will usually not be encountered in experiment either.

4.4 Rate Equations

To avoid a direct solution of the master equation, we have already encountered the
QMWF simulation method. Another way to circumvent the large dimensionality of
the Liouvillian is to consider the diagonal elements of ρ only. As a first approach we
simply neglect the off-diagonal elements of ρ. A thermal state in energy basis, for
example, has diagonal elements only and rate equations for diagonal elements have
been successfully applied in quantum optics from laser theory up to Sisyphus-cooling
[50]. A meaningful application of this approximation, however, requires a sensible
choice of basis in our Hilbert space. While picking the eigenstates of H seems natural,
the result of this procedure is a bit unsatisfactory:

H |Ej〉 = Ej |Ej〉

ρ =
∑
j

ρjj |Ej〉〈Ej |

∂tρii = 〈Ei| ∂tρ |Ei〉

= 〈Ei|
∑
j

(
−i
[
H, ρjj |Ej〉〈Ej |

]
+κ

(
2aρjj |Ej〉〈Ej | a† − a†aρjj |Ej〉〈Ej | − ρjj |Ej〉〈Ej | a†a

))
|Ei〉

=
∑
j

(
−i (Ej − Ei) δij + κ

(
2 |〈Ei| a |Ej〉|2 − 〈Ei| a†a |Ej〉 δij − 〈Ej | a†a |Ej〉 δij

))
ρjj

= 2κ

−〈Ei| a†a |Ei〉 ρii +
∑
j

|〈Ei| a |Ej〉|2 ρjj

 . (4.14)
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So κ serves as a parameter for setting the time scales, but the steady-state of this
equation would be independent of κ as all rates are linear in κ. This is certainly
an inappropriate feature if we want to mimic the steady-state of the full master
equation. One way to resolve this issue is to employ the eigenstates of the effective
Hamiltonian

Heff = H − iκa†a. (4.15)

Since Heff is non-Hermitian, it is instructive to examine some general results on
non-Hermitian operators first.

4.4.1 Non-Hermitian Operators
H |Ej〉 = Ej |Ej〉 and its Hermitian adjungate yield E∗j = Ej and 〈Ei|Ej〉 = δij

if H is Hermitian, i.e. H† = H. These relations, however, do not hold for general
non-Hermitian operators. A general non-Hermitian operator A has left and right
eigenvectors and -values obeying

A |rj〉 = rj |rj〉 (4.16)
A† |lj〉 = lj |lj〉 (4.17)
〈li|rj〉 = δij . (4.18)

Since the indexing in the two sets of eigenvectors is not necessarily in mutual
correspondence, the δij is merely symbolic.5 Numerically computed left and right
eigenvectors are usually normalized according to

〈r̃i|r̃i〉 = 1 =
〈
l̃i
∣∣∣l̃i〉 (4.19)

This implies that 〈
l̃i
∣∣∣r̃j〉 = giδij (4.20)

with some complex number gi. In order to get |ri〉 and |li〉 of eq. (4.18) one sets

|ri〉 = αi |r̃i〉 (4.21a)

|li〉 = βi
∣∣∣l̃i〉 (4.21b)

αiβi = g−1
i . (4.21c)

There are infinitely many possibilities of choosing αi and βi, but two seem preferable
(cf. Fourier transform):

- symmetric: αi ≡ βi =
√
g−1
i ,

- one-sided: either αi = 1 or βi = 1.
5In actual numerical computations one should not forget about that!
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For practical reasons the system operators are usually expressed in the computational
basis of section 4.1 and so are |ri〉 and |li〉. By changing the norm from eq. (4.20) to
eq. (4.18) one has to be aware that this affects the transformation of state vectors
from |ri〉 , |li〉- to |n, k〉-basis too. Let {ri}j and {li}j denote the jth element of the
ith right and left eigenvector and Ψnk

j the jth element of an arbitrary state vector |Ψ〉
in computational basis. The corresponding coefficients of |Ψ〉 in the right eigenvector
basis, Ψr

i , are then

Ψr
i =

∑
j

{li}j Ψnk
j gi (4.22)

with gi as defined in eq. (4.20).
Keeping the scalar product in the form of eq. (4.18) we find

〈li|A |rj〉 = 〈li| rj |rj〉 = rjδij

= 〈li| l∗i |rj〉 = l∗i δij

→ l∗i = ri. (4.23)

Thus, at first sight, dealing with non-Hermitian operators seems to double the effort
in finding eigenvectors for its proper description. This can be circumvented if we
exploit symmetry relations between left and right eigenvectors, if there are any. To
find such relations, we superimpose transformations on the eigenvalue equations and
see to what symmetries the operator A is constrained. Let us assume

A† |li〉 = M {A |ri〉} , (4.24)

where M is arbitrary, but invertible, i.e. ∃M−1 such that M−1 {M {·}} = 1 · . We
get

A† |li〉 = M {A |ri〉}
= li |li〉
= M {ri |ri〉} . (4.25)

From previous results we know that li = r∗i , thus it feels natural to assume

M {·} = ·∗, (4.26)

which yields

A† |li〉 = A∗ |ri〉∗ . (4.27)

So we arrive at the important result that

if A† = A∗, (4.28)
then |li〉 = |ri〉∗ . (4.29)
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4 Numerical Solution of coupled Atom-Field Dynamics

Different operations M might then exploit different symmetries of the operator A,
which then yield different transformations from right to left eigenvectors. Complex
conjugation, however, suffices for our purposes. The reason behind the unitary
transformation eq. (2.71) in section 2.2 was to bring our model Hamiltonian in the
form of eq. (4.28). We stop our discussion of non-Hermitian operators at this point
and continue deriving effective equations for the diagonal elements of ρ.

4.4.2 From the Master Equation to Rate Equations

We return to the master equation and expand ρ in the right eigenstates of the effective
Hamiltonian

Heff = p2

2m + η
(
a† + a

)
+
(
−∆C + U0 cos2 (kx)− iκ

)
a†a (4.30)

Heff |rj〉 = Ej |rj〉 (4.31)

H†eff |lj〉 = E∗j |lj〉 (4.32)

and take into account the diagonal elements only

ρ =
∑
j

%jj |rj〉〈rj | (4.33)

=
∑
j

〈lj | ρ |lj〉,

keeping in mind that for
∑
j %jj = 1, Tr ρ = 1 even if 〈ri|rj〉 6= δij . Rewriting the

master equation in terms of Heff we get

∂tρ = −i
[
Heffρ− ρH†eff

]
+ 2κaρa† (4.34)

=
∑
j

−i
[
Heff%jj |rj〉〈rj | − %jj |rj〉〈rj |H†eff

]
+ 2κ%jja |rj〉〈rj | a†.

Sandwiching with 〈li| · |li〉 we arrive at

∂t%ii = −i [Ei − E∗i ] %ii + 2κ
∑
j

|〈li| a |rj〉|2 %jj , (4.35)

which is the equation of motion for the diagonal elements %ii, commonly termed rate
equations. The rate equations completely neglect any coherence between different
eigenstates of Heff and may therefore be applied in weakly entangled systems6 only.
A justification for their applicability can rarely be given a priori, since entanglement
properties as well as the eigenstates of Heff themselves are highly sensitive to the
system parameters manifested in the effective Hamiltonian.

6weak or no entanglement between the eigenstates
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4.4 Rate Equations

4.4.3 Perturbative Expansion of Off-Diagonal Elements in the
Steady-State

Setting ∂tρ = 0, the above set of differential equations turns into a set of algebraic
equations and their solution are the steady-state values of the diagonal elements of ρ.
In this limit, we may perturbatively account for the off-diagonal elements %i 6=j , hoping
to extend the range of applicability of the rate equations. We assume that the time
evolution of the off diagonal elements %i 6=j is dominated by the diagonal elements %ii,
but we also take the couplings %i 6=j ↔ %i 6=j and %i 6=j ↔ %j 6=i into account. This yields

∂t%i 6=j = −i
[
Ei − E∗j

]
+ 2κ

(
〈li| a |ri〉 〈rj | a† |lj〉 %i 6=j

+ 〈li| a |rj〉 〈ri| a† |lj〉 %j 6=i +
∑
k

〈li| a |rk〉 〈rk| a† |lj〉 %kk
)

∂t%j 6=i = ∂t%
∗
i 6=j , (4.36)

which is a pair of equations for each i 6= j. Solving for the steady-state we may
express the solutions in terms of the diagonal elements %kk only:

%i 6=j = −2κ
[
−i
(
Ei − E∗j

)
+ 2κ 〈li| a |ri〉 〈rj | a† |lj〉

−4κ2

∣∣∣〈li| a |rj〉 〈ri| a† |lj〉∣∣∣2
i (E∗i − Ej) + 2κ 〈lj | a |rj〉 〈ri| a† |li〉

]−1

×
∑
k

(
〈li| a |rk〉 〈rk| a† |lj〉 − 2κ〈li| a |rj〉 〈ri| a

† |lj〉 〈lj | a |rk〉 〈rk| a† |li〉
i (E∗i − Ej) + 2κ 〈lj | a |rj〉 〈ri| a† |li〉

)
%kk.

(4.37)

Writing the master equation as

∂t%mm =− i [Em − E∗m] %mm
+ 2κ

∑
k

|〈lm| a |rk〉|2 %kk + 2κ
∑
i 6=j
〈lm| a |ri〉 〈rj | a† |lm〉 %i 6=j , (4.38)

and plugging in the approximate steady-state solution for %i 6=j , we find

0 ≈ −i [Em − E∗m] %mm + 2κ
∑
k

|〈lm| a |rk〉|2 %kk − 4κ2∑
i 6=j
〈lm| a |ri〉 〈rj | a† |lm〉

×
[
−i
(
Ei − E∗j

)
+ 2κ 〈li| a |ri〉 〈rj | a† |lj〉

−4κ2

∣∣∣〈li| a |rj〉 〈ri| a† |lj〉∣∣∣2
i (E∗i − Ej) + 2κ 〈lj | a |rj〉 〈ri| a† |li〉

]−1

×
∑
k

(
〈li| a |rk〉 〈rk| a† |lj〉 − 2κ〈li| a |rj〉 〈ri| a

† |lj〉 〈lj | a |rk〉 〈rk| a† |li〉
i (E∗i − Ej) + 2κ 〈lj | a |rj〉 〈ri| a† |li〉

)
%kk

(4.39)
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for the steady-state.
To obtain the steady-state solution, one has to find the null space of the right-hand

side of eqn. (4.39). Once we have a steady-state solution we may check its faithfulness
a posteriori. We calculate the off-diagonal elements explicitly by means of eqn. (4.37)
and apply the full N2 ×N2 Liouville superoperator from the left.

‖Lρ‖2
‖ρ‖2

� 1 (4.40)

is a necessary, but not sufficient, criterion to claim that our approximation is reason-
able.

We could repeat the above procedure to obtain a perturbative expansion of the
full density matrix. However, the outlined scheme does not respect Haken’s slaving
principle (see section 2.2) and thus we cannot expect any faithful physical behavior.
Eq. (4.39) remains an intermediate result for further theoretical considerations of the
rate equations. We will stick with the original form of the rate equations eq. (4.35)
for further numerical experiments.

4.4.4 Numerical Implementation of the Rate Equations
Some properties of ρ are highly sensitive to numerical precision. Therefore, a straight-
forward implementation of eq. (4.35) can lead to strange or unphysical results. The
equation of motion for a density matrix must preserve its trace and its positive defin-
iteness, properties that should be respected by the rate equations as well. Rewriting
the rate equations as matrix equation

∂t~ρdiag = M~ρdiag, (4.41)
with ~ρdiag, j = %jj , (4.42)

we find criteria for M . Since we simply drop the off-diagonal terms (eq. (4.34)) we
cannot expect that these criteria are met by a direct implementation of eq. (4.35).
Obtaining M from eq. (4.35) yields a matrix with negative diagonals and positive
off-diagonals. This structure is already sufficient to maintain positive definiteness.7
Trace preservation implies that the sum of all rows of M is a zero row and guarantees
the existence of at least one steady-state. By virtue of eq. (4.34) all transitions
between diagonal elements of ρ via off-diagonal elements of ρ are discarded as well.
Though the diagonal decay terms in M are accurate, the off diagonal couplings
are not and therefore all rows do not sum up to zero unless these elements are
renormalized to cancel the diagonal loss terms.

Mij → M̃ij = δijMij − (1− δij)
Mjj∑
iMij 6=i

Mij (4.43)

With this modification we are able to find possible steady-states in a weakly inter-
acting regime and may simulate the full system dynamics as well due to the low

7if the initial elements were positive
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4.4 Rate Equations

dimensionality of the rate equations. When we use the rate equations to generate
the time evolution of a system we have to keep in mind that the representation of
the initial density matrix in the right eigenstates of Heff has to follow eq. (4.22).
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5 Numerical Solutions to the Master
Equation

We would like to compare the different numerical and approximate methods in-
troduced in chapter 4 to each other. For that purpose we choose η = 2ωrec and
κ = ωrec to allow for low enough Hilbert space cutoffs. For different coupling strengths
U0 ∈ {−0.5, −1.0, −1.5, −2.0} ωrec we calculate the steady-state of the master equa-
tion for detunings ∆C ∈ {−5.50, −5.25, . . . , −0.50} ωrec. We try to find the null
space of the master equation and the stationary limit of the rate equations, respect-
ively. We will refer to these methods as null-space methods. In QMWF we cannot
find an exact steady-state. However, we can extend time evolution such that κt� 1.
For the same range of parameters we average over 1000 trajectories and evolve up to
time t = 310ω−1

rec. QMWF is performed in the C++QED framework [51]. For all three
methods we compute the photon number expectation value n, its variance (∆n)2

and the variance of momentum (∆p)2, which indicates the particle’s temperature.
The results are discussed in the next section and shown in fig. (5.1).

5.1 How Well do the Rate Equations Agree?

QMWF and null-space methods give approximate solutions with their respective
limitations and drawbacks mentioned in chapter 4. We are now curios about the
quality of the rate equations’ results. We picked a few values from the range of
parameters in fig. (5.1) and plotted the corresponding photon and momentum
distribution on both linear and logarithmic scale. Fig. (5.2) is taken from off-resonant
values with low photon numbers. Since the momentum distribution is invariant under
k → −k we may generate distributions function in the basis states of eq. (4.4) that
only need positive momentum indices. The value of U0 is not very large, too, which
suggests only perturbative impact from the interaction term on the system properties
- good prerequisites for faithful results by the rate equations?

Fig. (5.3) shows another pair of distributions, this time a little closer to resonance.
The photon number is larger, but U0 is smaller than for the previous example of
fig. (5.2). According to fig. (5.1) we find excellent agreement of all three methods
for the photonic degree of freedom for both examples, but noticeable (fig. (5.2))
and striking (fig. (5.3)) deviations regarding momentum properties (i.e. heating
of the atom). The origin of this disagreement is largely indebted to the different
solution methods. QMWF evolves in time while the null-space methods balance
transition rates. The latter are very sensitive to cutoffs, missing gain/loss channels can
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Figure 5.1 n, (∆n)2 and (∆p)2 provided by the different solution methods: null space
of rate equations (red) and master equation (blue), and C++QED (green). The data
lines are for κ = ωrec and η = 2ωrec. The C++QED trajectories have been evolved to
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Figure 5.3 p(n) and p(k) provided by the different solution methods: rate equations
(red), master equation(gblue) and C++QED(green). Parameters are U0 = −0.5ωrec,
∆C = −0.75ωrec, κ = ωrec and η = 2ωrec. The C++QED trajectories have been
evolved to t = 310ω−1

rec

significantly alter the null-space properties, even if their couplings are weak. For that
reason the null-space methods produce slowly decreasing momentum distributions.

The rate equations, however, reproduce the results from the full master equation
very well. The agreement is excellent on both linear and logarithmic scales.

Figs. (5.4) and (5.5) show two pairs of distributions for parameters close to
resonance. Fig. (5.1) suggests that the rate equations yield photon number mean-
values and variances similar to QMWF and the master equation, but momentum
variances (∆p)2 do not fit to the values obtained from either QMWF or the master
equation. Fig. (5.5) underlines the rate equations’ deviating behavior by revealing
momentum distributions p(k) that do not reproduce any of those provided by the
other two methods.

The agreement of the photon number distribution p(n) is better but not excellent.
Slightly different behavior among the null-space methods is found in the logarithmic
plot of p(n). Due to strikingly different properties in momentum space it seems that
the rate equations resemble the results of p(n) from the other methods by chance.
This coincidental behavior is confirmed by fig. (5.6). ∆C = −1.75ωrec is just a little
bit off ∆C = −1.50ωrec from fig. (5.5), but the rate equations do not resemble any
of the other two methods’ distributions, not even in photon number space.

We conclude that the rate equations are applicable for sufficiently large detuning
∆C . Their range of applicability widens as the interaction strength U0 decreases.
Eventually, the empty cavity is solved for all values of ∆C . Utilization of the rate
equations in the empty cavity case, however, does not provide much additional insight
due to its analytic solubility, eq. (3.7). For larger U0 and ∆C close to resonance,
∆eff = 0 (eq. (3.9)), we have to come back to either the master equation or QMWF.
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Figure 5.4 p(n) and p(k) provided by the different solution methods: rate equations
(red), master equation(gblue) and C++QED(green). Parameters are U0 = −2.0ωrec,
∆C = −0.50ωrec, κ = ωrec and η = 2ωrec. The C++QED trajectories have been
evolved to t = 310ω−1
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Figure 5.5 p(n) and p(k) provided by the different solution methods: rate equations
(red), master equation(gblue) and C++QED(green). Parameters are U0 = −2.0ωrec,
∆C = −1.50ωrec, κ = ωrec and η = 2ωrec. The C++QED trajectories have been
evolved to t = 310ω−1
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5.2 Time Evolution on Different Scales

In the previous section we found that the null-space methods and QMWF produce
significantly different momentum distributions. This was attributed to their different
approaches in computing the steady-state. We will try to link these results via the
rate equations. The rate equations can be used to predict the time evolution of
the system as well. Contrary to solving the full master equation this can be done
in reasonably short time with little numerical effort. The rate equations are just
a simplified form of the master equation, the QMWF approximates the behavior
of the master equation, hence we expect a temporal evolution that is very much
alike. We will compare the dynamics of a system subject to the rate equations with
that generated by QMWF in C++QED. We hope to resolve the ∆p discrepancy
between the null-space methods and QMWF that appeared in the previous section
by investigating the time scales at which certain subspaces evolve.

For that purpose we choose parameters from the range where the data from fig. (5.1)
and the subsequent discussion suggest that the rate equations faithfully reproduce
results of more detailed calculations. It is apparent that not all properties of the
initial state of C++QED can be captured in formalism of the rate equations. The
diagonal elements of ρ do not contain any phase information and therefore multiple
states may share the same diagonal elements of ρ. For that reason the initial values
for the two methods will deviate slightly, but we expect them to approach each other
and the steady-state value in roughly the same period of time.

Fig. (5.7) shows the evolution of n. Though we have evolved the system up to
t = 310ω−1

rec we only show the interval t ∈ [0, 10]ω−1
rec because the photonic dynamics

appear to be fast. The same is true for (∆n)2 shown in fig. (5.8). We observe that

51



5 Numerical Solutions to the Master Equation

RateEqns
C++QED

U0 = −2.0ωrec, ∆C = −3.5ωrec

ωrec t
n

1086420

5

4

3

2

1

0

RateEqns
C++QED

U0 = −1.5ωrec, ∆C = −3.0ωrec

ωrec t

n

1086420

5

4

3

2

1

0

RateEqns

C++QED

U0 = −1.0ωrec, ∆C = −2.5ωrec

ωrec t

n

1086420

5

4

3

2

1

0

RateEqns

C++QED

U0 = −0.5ωrec, ∆C = −1.0ωrec

ωrec t

n

1086420

5

4

3

2

1

0

Figure 5.7 Time evolution of n provided by QMWF (C++QED, blue) and the rate
equations (red) for κ = ωrec and η = 2ωrec. The dashed line indicates the steady-state
value given by the rate equations.

both methods provide the same time scales for dynamical behavior and approach
the same values for long times.

Considering (∆p)2 only, the results from the rate equations, in their range of
physically valid applicability, agree very well with those obtained from the master
equation. The rate equations are just a simplified form of the master equation, hence
this does not seem to be a big surprise. But the QMWF just mimics the behavior
of the master equation, thus it should also match its results, as it does for the field
values n and (∆n)2. The gap can be bridged by the rate equations. They can easily
be diagonalized due to their lower dimensionality. This means that, besides retrieving
the steady-state values, we can also calculate the time evolution of mean values and
variances and compare them to the evolution generated in C++QED.

We extend the time range thousandfold and analyze its properties. We observe a
continuous growth of (∆p)2 throughout the full range of time. It is apparent that the
system has not yet reached its steady-state for t ≈ 3× 105ω−1

rec, a time much longer
than in any experiment.

For an optical transition in Sodium 3× 105ω−1
rec corresponds to approximately 20

seconds. For heavier elements or nano-particles the corresponding period of time
is even longer. Micro-cavity experiments last up to milliseconds, so we are already
exploring a region beyond experimental access.

Cooling processes in longitudinally pumped cavities were predicted to be slower for
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Figure 5.8 Time evolution of (∆n)2 provided by QMWF (C++QED, blue) and the rate
equations (red) for κ = ωrec and η = 2ωrec. The dashed line indicates the steady-state
value given by the rate equations.

larger number of atoms [19], which may similarly hold for heating processes as well.
Since we are only dealing with one particle, larger particle numbers may qualitatively
relate to larger absolutes of U0 in a not necessarily linear manner. Indeed, the curves
of fig. (5.9) appear to have larger slope for smaller absolutes of U0. On the other
hand (∆p)2 seems to approach its steady-state value faster for larger absolute values
of U0, fig. (5.10). The difference between the steady-state values of (∆p)2 in the
plots of fig. (5.10), however, is mainly due to different values of ∆C , see fig. (5.1). At
that point it would be interesting whether the momentum relaxation is faster for a
transversely pumped configuration.

The rate equations’ agreement with the C++QED results is surprisingly good. This
suggests that we might exploit the rate equations to study the system’s long-term
evolution for time scales usually inaccessible to QMWF due to long computation
time. The mismatch of momentum variance from different methods in fig. (5.1) has
been strapped down to a difference of characteristic time scales. Whereas the photon
number and its variance approach their steady-state in a few ω−1

rec, the momentum
variance will not reach a steady-state in any reasonable period of time. We can
therefore conclude that the rate equations and the master equation provide the
formally correct numeric steady-state, but the system’s evolution into such takes
arbitrarily long.
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Figure 5.9 Time evolution of (∆p)2 provided by QMWF (C++QED, blue) and the rate
equations (red) for κ = ωrec and η = 2ωrec.
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Figure 5.10 Long Time evolution of (∆p)2 provided by QMWF (C++QED, blue) for
κ = ωrec and η = 2ωrec.
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6 QMWF With C++QED

In the previous chapters we gained some insight into the available solution methods
and their applicability in different parameter regimes. It turned out that a direct
numerical solution of the full master equation is limited by available memory, which
limits the dimensionality of the Hilbert space under consideration as well. Eq. (3.10)
would then allow for low pump rates η only. The rate equations do not suffer
from that shortcoming, but become invalid close to the system resonance frequency
∆C = U0

〈
cos2(krecXa)

〉
, which is just the range in which we expect interesting

physical effects. Hence QMWF seems preferable for a generic exploration of the
long-time behavior of the one particle one mode system in this limit. Larger systems
or more accurate results (larger number of trajectories) afflict computation time only,
which is an acceptable constraint.

Below we choose a set of parameters that require photon number cutoffs that are
too large for a direct solution of the master equation (large η) and for which the rate
equations do not provide credible results. We study the variation of the long-time
behavior given by the QMWF with changing parameters rather than observing the
time evolution for constant parameters.

As before, the QMWF is performed in the C++QED framework [51]. To accelerate
dynamics at the beginning the simulation starts with one photon in the cavity. The
particle’s initial momentum wave function is sharply peaked around p = 0. As before,
time integration is performed until t = 310ω−1

rec ≡ 310κ−1. This is long enough to
reach an almost stationary state with very weak time-dependence.

6.1 From Single Trajectories to Density Matrices

Fig. (6.1) shows examples of final states of individual trajectories computed by
C++QED. The color represents the modulus squared of the wave function amplitudes
(in arbitrary units), the diagonal elements of the corresponding density matrix
|Ψj〉〈Ψj | in computational basis (see eqs. (4.13) and (4.1)). C++QED computational
basis includes states with momenta that are odd integer multiple of krec as well.
Due to low width in momentum space of the initial wave function and the inversion
symmetry preserving character of the Hamiltonian, these states are not populated
at all. Therefore the odd momentum states will not be considered in our analysis,
fig. (6.1). The total density matrix is now an average over all single trajectory density
matrices, eq. (4.13). For practical reasons we plot diagonal elements only, which
provides sufficient information for an estimation of many characteristic properties
like mean-values and variances.
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Figure 6.1 A non-representative sample of C++QED quantum trajectories for η = 5ωrec,
∆C = −7.5ωrec, κ = ωrec at t = 310ω−1

rec. The color highlights the modulus squared
of the amplitudes in |n, k〉-basis in arbitrary units with increasing numbers from blue
to red (see e.g. fig. (6.2); the scaling, however, is different for every plot). C++QED
computes values for the odd momentum states as well (top line), but we will consider
even momentum states only (bottom line).
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Figure 6.2 The diagonal elements of ρ for η = 5ωrec, ∆C = −7.5ωrec, κ = ωrec at
t = 310ω−1

rec. The color highlights the modulus squared of the amplitudes in |n, k〉-basis.

Fig. (6.2) shows the diagonals of the total density matrix ρ for one point in
our parameter space. A comparison with fig. (6.1) and a closer inspection of a
greater number of single quantum trajectories suggests that peaks at different photon
numbers stem from classical mixtures of different trajectories rather than being a
manifestation of a larger number of quantum superpositions. We see that the states
can be very different and can be well distinguished by e.g. their photon number.
This is a strong sign of multistability and large fluctuations. The three leftmost final
trajectories in fig. (6.2) appear to form Poissonian like field states around mean
photon numbers that seem to be correlated with the shape of momentum distribution.
This supports the semi-classical picture of chapter 3 where different Bloch bands (↔
different distribution shapes) have different self-consistent mean photon numbers.
The three rightmost final trajectories in fig. (6.2) seem to form superpositions of
different Bloch bands and corresponding field states. They may give rise to significant
particle-field entanglement. Scanning through C++QED final trajectories we observe
that final trajectories of the first type (three leftmost) are much more abundant
than those of the second type (three rightmost). Since all final trajectories enter the
density matrix with equal weights, we expect low particle-field entanglement in our
one-particle-one-mode system. Nonetheless we would like to examine the system’s
entanglement properties a little closer.
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Figure 6.3 The momentum distribution p(k) for the system with the parameters of
fig. (6.2). The distribution is symmetric around k = 0, i.e. invariant under k → −k.
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Figure 6.4 The photon number distribution p(n) for the system with the parameters
of fig. (6.2) showing two peaks at distinct photon numbers. This bimodal behavior is
strong evidence for optical bistability.
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6.2 Entanglement Properties of a Bipartite System

6.2 Entanglement Properties of a Bipartite System
Entanglement in quantum systems has first been considered in the famous and
controversially discussed paper by Einstein, Podolsky and Rosen [52]. In 1964 Bell’s
formulation of his well-known inequality [53] has boosted research in quantum
information theory. Many papers have been published on the matter since then, both
theoretical and experimental. An extensive introduction to quantum information and
a comprehensive list of references can be found in [54]. We are looking at the simplest
object that can show entanglement: a bipartite quantum system. Bipartite quantum
systems, the two-qubit system in particular, have been studied extensively in the past
two decades. Various measures for pure state (e.g. entropy of entanglement [55]) and
mixed state entanglement (e.g. entanglement of formation [56]) have been investigated.
Entanglement measures do not allow for an effective numerical computation in general.
Following [57] (and [58]) we therefore opt for negativity under partial transposition
N (ρ). We will briefly introduce the necessary definitions required for its computation.

For a bipartite d2-dimensional system composed of two d-dimensional subsystems
A and B, H = HA ⊗HB, the basis states may be labeled by two indices |ij〉 with i
running in A and j running in B. Therefore the elements of the density matrix ρ
may carry four indices ρij, i′j′ . (

ρTA
)
ij, i′j′

= ρi′j, ij′ (6.1)(
ρTB

)
ij, i′j′

= ρij′, i′j (6.2)

then defines the partial transposition along subsystem A and B, respectively. The
negativity under partial transposition is then defined as

N =

∥∥∥ρTA∥∥∥
1
− 1

2

=

∥∥∥ρTB∥∥∥
1
− 1

2 , (6.3)

where ‖·‖1 denotes the sum of the absolutes of the eigenvalues. The negativity then
corresponds to the absolute value of the sum of all negative eigenvalues of the partially
transposed density matrix.

6.2.1 Upper Bound of Negativity under Partial Transposition
Let us consider a maximally entangled state in the Hilbert space H = Cd ⊗ Cd,

|Ψmax〉 = 1√
d

(|00〉+ |11〉+ · · · + |d− 1, d− 1〉) . (6.4)

Any other maximally entangled state can be generated from |Ψmax〉 via local unitary
transformations (LU), i.e. UA ⊗ 1B and 1A ⊗UB , respectively. The density matrix of
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this state then reads

ρmax ≡ |Ψmax〉〈Ψmax| =



1
d 0 · · · 0 1

d 0 · · · · · · 0 1
d

0 0 · · · 0 0 0 · · · · · · 0 0
...

... . . . ...
...

... . . . . . . ...
...

0 0 · · · 0 0 0 · · · · · · 0 0
1
d 0 · · · 0 1

d 0 · · · · · · 0 1
d

0 0 · · · 0 0 0 · · · · · · 0 0
...

... . . . ...
...

... . . . . . . ...
...

...
... . . . ...

...
... . . . . . . ...

...

0 0 · · · 0 0 0 · · · · · · 0 0
1
d 0 · · · 0 1

d 0 · · · · · · 0 1
d



. (6.5)

So there is a non-zero entry 1
d at each index

[(m− 1) d+m, (n− 1) d+ n] | m, n ∈ {1, 2 . . . d} .

Partial transposition along A or B then gives non-zeros 1
d at indices

[(n− 1) d+m, (m− 1) d+ n] .

Since m, n ≤ d, the assignment

k = (n− 1) d+m | k ∈
{

1, 2, . . . d2
}
, (6.6)

is unique for a given pair of m and n. The row index and the column index of
each non-zero entry in ρ

T{A,B}
max are connected via m ↔ n in eq. (6.6). This means

that all off-diagonal non-zero entries of ρT{A,B}max form pairwise permutations. The
total partially transposed density matrix then decomposes into a direct sum of
a d-dimensional identity part 1diag and a direct sum of non-overlapping, pairwise
permutations Pi↔j

ρTAmax = ρTBmax

= 1
d

(
1diag ⊕

⊕
m<n

P(n−1)d+m↔(m−1)d+n

)
. (6.7)

The eigenvalues of the total matrix are just the eigenvalues of the individual direct
summands. Negative eigenvalues stem from the 1

2
(
d2 − d

)
pairwise permutations.

The eigenvalues vi of a permutation cycle of length l are the complex roots of the
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Figure 6.5 Negativity under partial transposition obtained from C++QED with 200
trajectories (C++ 200), 1000 trajectories (C++1000) and from the null space of the
Liouvillian (MastEqn): A comparison of the two C++QED data lines suggests that the
data for 1000 trajectories has converged well enough. The difference between C++QED
and master equation results emerging at higher values of ∆C do not seem to be of
statistical origin.

equation (vi)l = 1. For l = 2 this yields v± = ±1. So we have everything at hand to
straightforwardly compute the sum of the absolutes of the negative eigenvalues:

Nmax = 1
2d
(
d2 − d

)
= 1

2 (d− 1) . (6.8)

For H = Cd ⊗ Cf , following the arguments of the Schmidt-decomposition [59][60],
we get

Nmax = 1
2
(
min (d, f)− 1

)
. (6.9)

6.2.2 Entanglement in the One-Particle-One-Mode System

Unlike expectation values and variances, entanglement is manifested in the off-
diagonal entries of ρ. Therefore only the QMWF or a direct solution of the master
equation are able to provide data for entanglement measures. The two subspaces of our
system that we hope to find entangled are the photon number space and the particle’s
momentum space, respectively. We compare the numbers for negativity under partial
transposition for density matrices provided by null space of the Liouvillian and the
QMWF for the same range of parameters as in chapter 5 (fig. (6.5)). We see that the
values from both methods are in the same order of magnitude. Close to resonance,
however, we find that the QMWF produces a density matrix that has larger negativity
than that obtained from the null space of the Liouvillian. This means that either the
number of trajectories was chosen too small or this deviation stems from the slow
dynamics encountered in momentum space (sec. 5.2). Comparing QMWF results
from C++QED with 200 and 1000 trajectories we see that the number of trajectories
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6 QMWF With C++QED

Parameter Range/Value

η {3, 4, 5, 6} × ωrec
∆C {−11.5, −11, · · · , −4.5} × ωrec
κ 1ωrec
U0 −10ωrec
tf 310ω−1

rec

Table 6.1 Set of parameters used for QMWF in C++QED on a 128⊗ 96-dimensional
Hilbert space.

has already little effect on the computed values, fig. (6.5). The mismatch might be
owing to the slow momentum dynamics already encountered in section 5.2.

We find N � 1 throughout the parameter range, which is much smaller than for a
fully entangled pair of qubits. In [61] time-dependent entanglement properties in a
similar setup is investigated. Decreasing partial transpose negativity N is found for
for particle-field entanglement with increasing time. Entanglement in ring cavities
may persist up to t = 1500ω−1

rec [62]. The entanglement observed, however, is between
two moving particles and not between particle and field. Entanglement in single
quantum trajectories can be very high, but entanglement measures for the total
density matrix ρ are sensitive to phases between different trajectories. Apparently
entanglement in a system is usually much lower than the mean entanglement of
QMWF trajectories. The numeric values of N (ρ) in our computations suggest that
entanglement between the field and momentum subspace is almost negligible in the
stationary limit. Any observed multistability would be of classical nature.

6.3 QMWF on a Larger Hilbert Space
We have already discussed different solution methods and the QMWF has emerged
as the most applicable. Eventually we will investigate a Hilbert space with ncut = 95
and kmax = 64. We choose the following parameters given in tab. (6.1).

As before, each quantum trajectory will be evolved until t = 310ω−1
rec. Fig. (6.6)

shows a plot of the diagonal elements of the obtained density matrices.
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Figure 6.6 Color map of diagonal elements of density matrices in |n, k〉-basis in arbitrary units for the set of parameters given in
tab. (6.1).
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Figure 6.7 Photon number n and variance (∆n)2 computed by C++QED for the
parameters of tab. (6.1): (∆n)2 � n indicates regions of bi- or multimodal photon
number distributions.

We can distinguish different momentum modes (Bloch bands) by their number
of peaks along the momentum axis k in figs. (6.6) and (6.2). We see that different
momentum modes reach their maximum photon number for different detunings ∆C .
This behavior follows our semiclassical considerations of chapter 3. It seems that
higher momentum modes only appear if the corresponding self-consistent solutions of
eq. (3.33) exist. Low entanglement between photon and momentum space supports
the idea of having a classical mixture of different modes rather than a superposition.
This might permit for a utilization of eq. (3.33) for the individual momentum modes.
The relative weights for each mode are governed by eq. (3.8), which may have multiple
solutions as well. As ∆C approaches 0, higher and higher momentum modes will be
populated. At some point our momentum cutoff would become too small and the
physical validity of our results would break down.

Fig. (6.7) shows a plot of the photon number, n, and its variance, (∆n)2. For
∆C ≤ −9ωrec we find that (∆n)2 ≈ n, which is characteristic of (almost) coherent
states. Coherent states are solutions to the empty cavity, eq. (3.7), and we can
therefore conjecture that the interaction term has little impact on the photon field
in that regime. For ∆C > −9ωrec the situation is different. Speaking in terms of the
semi-classical model we find higher momentum modes (Bloch bands) becoming more
highly populated and additional peaks appear in the photon distribution. Therefore
the variance (∆n)2 is much larger than n in that range and indicates potential
multistability.
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Figure 6.10 Data points for the mean photon number n for the parameters in tab. (6.1)
from C++QED. The solid lines are self-consistent contours of eq. (3.33) for the lowest
Bloch band m = 0 as found in fig. (3.3).

6.4 Comparison to Semi-Classical Computations

Fig. (6.10) shows the QMWF results from C++QED for the mean photon numbers
n in comparison to the self-consistent contour of eq. (3.33) for the lowest Bloch band
m = 0 (solid lines). For ∆C ≤ −9ωrec the QMWF data fits to the semiclassical
results. Though self-consistent solutions of eq. (3.33) exist in that range for higher
bands, m > 0, as well, they are not populated. These solutions are stable according
to the stability analysis conducted in section 3.2.2, but a look at fig. (3.3) reveals
that these states are not bound for large negative values of ∆C . But this is not
the essential point here. Looking at larger values of ∆C we find free states at small
photon numbers. They key process in this situation is cavity mediated (laser) cooling.
Whenever the effective detuning ∆eff (eq. (3.9)) is lower than zero, the atomic
motion is cooled, i.e. its width in momentum space ∆p decreases in time through
the loss of cavity photons [17]. It is very easy to graphically determine the sign of
∆eff,m for each band m for a given ∆C . For ∆eff = 0 the mean photon number
reaches its maximum value on the self-consistent contours of figs. (3.3) and (6.10).
∆eff is positive for all ∆C to the right of the maximum photon number along the
self-consistent contour and negative to the left, respectively. The dynamics of the
system is an interplay between heating an cooling of different bands. For a given
value of ∆C some bands are heated while others are cooled, depending on the value
∆eff,m, where m is the band index, as usual. The sign of ∆eff,m indicates whether
it is heated (+) or cooled (-). Since we consider individual bands and not the total
system, heating and cooling of individual bands is understood as whether transitions
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6.4 Comparison to Semi-Classical Computations

to higher and lower bands are preferred, respectively.
The picture of different eigenstates forming along the self-consistent contours of

eq. (3.8) is very tempting but not necessarily complete. It would require that the
relaxation time to self-consistency is much faster than typical transition times between
two bands (Haken’s slaving principle, see sec. 2.2). But transitions between different
bands in our description are basically driven by photon dynamics and overlaps of
Wannier states for different photon numbers/potential depths. Relaxation to self-
consistency (along constant values of ∆C) is also a photonic process, therefore it is
very unlikely that both processes occur at largely different time scales. Consequently
one should consider the value of ∆eff,m across the whole ∆C-n−plane. With this
little extension our previous considerations remain valid. We would like to conclude
our comparison of QMWF and our semi-classical approach of section 3.2 with this
qualitative analysis of dynamic processes. It is remarkable that our simple, stationary
approach qualitatively resembles results from a fully quantum mechanical simulation
for long times. For a quantitative comparison we would have to extend the semi-
classical model of section 3.2 to a time-dependent version that provides transition
rates.
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7 Conclusion and Outlook

The semi-classical treatment of the one particle - one mode system developed in
this thesis appears to capture many features of fully quantum mechanical solution
methods such as QMWF. Moreover, it permits for a simple interpretation of the
raveled, non-linear dynamics in terms of Bloch states in a periodic potential. With
that simple picture at hand a time-dependent semi-classical model may be developed
whose stationary solution may provide the relative weights of the individual Bloch
bands in the steady state. Due to low particle-field entanglement found in the one
particle - one mode system, the results of such a model could qualitatively compete
with QMWF.

Both the semi-classical modeling and the QMWF revealed optical bi- and multista-
bility for a certain range of parameters. In the semi-classical picture of bands of
localized Wannier states even single bands show regions that permit for two stable,
self-consistent solutions. Looking at final states of single quantum trajectories we
found that the system evolves into both stable states separately, superpositions are
rare.

In search of other possibilities of approximate numerical solutions we have en-
countered the rate equations, a concept familiar from laser theory. Their formulation
for a generic dissipative quantum system has been given in terms of left and right
eigenstates of a non-hermitian effective Hamiltonian. An ansatz for a possible exten-
sion that permits for a perturbative expansion of off-diagonal elements of the density
matrix has been provided. A refinement of this ansatz with respect to Haken’s slaving
principle might yield interesting results.

The model of the rate equations developed in this thesis was sufficient to link
the results of QMWF and the steady state of the master equation. It revealed that
evolution in momentum space is very slow compared to field dynamics and that the
formally correct steady state is only reached after very long time.
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[58] Karol Życzkowski, Pawe l Horodecki, Anna Sanpera, and Maciej Lewenstein.
Volume of the set of separable states. Phys. Rev. A, 58:883–892, Aug 1998.

[59] Erhard Schmidt. Zur theorie der linearen und nichtlinearen integralgleichungen.
Mathematische Annalen, 63(4):433–476, 1907.

[60] Artur Ekert and Peter L. Knight. Entangled quantum systems and the schmidt
decomposition. American Journal of Physics, 63(5):415–423, 1995.

[61] András Vukics, Wolfgang Niedenzu, and Helmut Ritsch. Cavity nonlinear optics
with few photons and ultracold quantum particles. Phys. Rev. A, 79:013828,
Jan 2009.

[62] Wolfgang Niedenzu, Raimar M Sandner, Claudiu Genes, and Helmut Ritsch.
Quantum-correlated motion and heralded entanglement of distant optomech-
anically coupled objects. Journal of Physics B: Atomic, Molecular and Optical
Physics, 45(24):245501, 2012.

75





A Mean Value Equations of Motion for
an Approximate One Particle - One
Mode Hamiltonian

We expand the cos2-term of the one particle - one mode Hamiltonian (eq. (2.72))

H1p1m = p2

2m + η
(
a† + a

)
+
(
−∆C + U0 cos2(krecx)

)
a†a (A.1)

to fourth order

cos2(krecx) = 1 + cos(2krecx)
2 ≈ 1− k2

recx2 + k4
recx4

3 (A.2)

for small fluctuations of x around an antinode, krec 〈x〉 = mπ | m ∈ N. This yields
the approximate Hamiltonian

H̃1p1m = p2

2m + η
(
a† + a

)
+
(
−∆C + U0

1 + cos(2krecx)
2 ≈ 1− k2

recx2 + k4
recx4

3

)
a†a.

(A.3)

Via the master equation

∂tρ̃ = L̃ρ̃

≡ −i
[
H̃, ρ̃

]
+ κ

(
2aρ̃a† − a†aρ̃− ρ̃a†a

)
(A.4)

we may calculate the mean value equations of motion for time independent Schrödinger
operators by virtue of (see also eq. (2.56))

∂t 〈 · 〉 = Tr { · ∂tρ̃}

= Tr
{

· L̃ρ̃
}
. (A.5)

We derive the mean value equations of motion for a(†), a†a and hermitian combin-
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ations of x and p up to fourth order under the Hamiltonian H̃1p1m as in eq. (A.3):

∂t 〈a〉 =
(
−i∆C + iU0

(
1− k2

rec

〈
x2
〉

+ k4
rec

3
〈

x4
〉)
− κ

)
〈a〉+ iη

(A.6a)

∂t
〈

a†
〉

= ∂t 〈a〉∗

=
(
i∆C − iU0

(
1− k2

rec

〈
x2
〉

+ k4
rec

3
〈

x4
〉)
− κ

)〈
a†
〉
− iη

(A.6b)

∂t
〈

a†a
〉

= η
(
−i
〈

a†
〉

+ i 〈a〉
)
− 2κ

〈
a†a
〉

(A.6c)

∂t
〈

x2
〉

= 1
m

(〈px〉+ 〈xp〉) (A.6d)

∂t (〈xp〉+ 〈px〉) = 2
m

〈
p2
〉

+ 4U0

(
k2
rec

〈
x2
〉
− 2

3k
4
rec

〈
x4
〉)〈

a†a
〉

(A.6e)

∂t
〈

x4
〉

= − 2
m

(〈
px3

〉
+
〈

x3p
〉)

(A.6f)

∂t
〈

p2
〉

= 4U0

(1
2k

2
rec (〈xp〉+ 〈px〉)

−1
3k

4
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x3p
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+
〈

px3
〉))〈
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〉

(A.6g)
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m
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