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Zusammenfassung

Photonen besitzen nicht nur Energie sondern auch Impuls und tiben daher Kréfte auf
materielle Teilchen aus. Fiillt man einen optischen Fabry-Pérot-Resonator mit polarisier-
baren Teilchen (Atome, Molekiile oder Nano-Teilchen) und bestrahlt diese transversal
mit Laserlicht verursachen diese Kréfte eine komplexe Dynamik. Die Teilchen streuen das
Licht in den Resonator und erzeugen damit gleichzeitig ihre eigene optische Falle. Um ihre
Energie zu minimieren, gehen sie von einer homogenen in eine regelméafige, kristalline An-
ordnung tiber, wodurch die Streuung maximiert und ein tiefes optisches Potential erzeugt
wird. Uber Verluste durch die Spiegel kénnen die Teilchen kinetische Energie abgeben
(,cavity cooling”) und der geordnete Zustand wird stabil. Diese Selbstorganisation von
polarisierbaren Teilchen in Resonatoren ist im Fall von nur einem monochromatischen
Laser-Pumpstrahl bereits bekannt und experimentell nachgewiesen.

In dieser Arbeit simulieren wir die dynamische Entwicklung der Teilchen unter gleichzei-
tiger Beleuchtung mit mehreren Frequenzen die in verschiedenste Lichtmoden unterschied-
licher Frequenz gestreut werden. Die Lichtfelder dieser Moden konkurrieren nun darum,
die Teilchen in die jeweils fiir sie glinstigste Anordnung zu drangen. Diese Dynamik
endet in einem stabilen Gleichgewicht, welches die Teilchenenergie minimiert und die
Streuung lokal maximiert. Je nach Anzahl der Teilchen und Moden gibt es eine Vielzahl
solcher stabiler Teilchenkonfigurationen, die aber im Gegensatz zum Einzelmodenfall eine
unterschiedliche, gestreute Gesamtintensitat zur Folge haben.

Durch Rauschen, welches in realen, gedampften Systemen immer préasent ist, konnen
die Teilchen aber ihre Gleichgewichtsposition nach einiger Zeit wieder verlassen und
finden dadurch stabilere Konfigurationen, in welchen mehr Licht gestreut wird. In dieser
Weise passt sich das System an die vorherrschende Beleuchtung an und fungiert als
adaptives Lichtsammelsystem. Auch wenn man zuféillig zwischen einigen fix gewéhlten
Beleuchtungen hin und her schaltet, steigt die gestreute Gesamtintensitat langsam mit der
Zeit an, weil sich die Teilchen nach und nach an alle verwendeten Beleuchtungen anpassen.
Diesen Prozess kann man auch als ,Lernen* interpretieren: Das System hat Information
iiber eine bestimmte Beleuchtung, die schon einmal oder 6fters angewendet wurde, in der
Konfiguration der Teilchen abgespeichert und kann somit besser auf diese reagieren. Die
Funktionsweise dhnelt dabei der eines Hopfield-Netzes, welches ein einfaches Modell fiir
das assoziative Gedachtnis ist.

Experimentell konnte so ein Aufbau sowohl mit kalten Gasen als auch mit Nano-
Teilchen in Losungen realisiert werden.



Abstract

Photons do not only carry energy but also momentum and thus they induce forces on
material particles. Filling an optical Fabry-Pérot resonator with polarisable particles
(e.g. atoms, molecules or nano-particles) and illuminating them with laser light from
a direction transversal to the cavity axis, these forces give rise to a complex coupled
dynamics. The particles scatter laser light into the resonator and thus create their own
optical trap. In order to minimise their energy, they redistribute from a homogeneous to a
crystalline particle order, whereby scattering is maximised while a deep optical potential
is formed. Via losses through the mirrors the particles can dissipate kinetic energy
(“cavity cooling”), which renders the ordered state stable. Using only one monochromatic
laser beam, this self-organisation of polarisable particles in resonators is well understood
and has already been experimentally demonstrated.

In this thesis we simulate the dynamical evolution of particles subject to simultaneous
transversal illumination with many light colours (i.e. frequencies) which scatter into
several resonator modes with distinct frequencies. Thereby the mode fields compete to
push the particles into their respective preferred order, which ends in a stable equilibrium
locally minimising the optical potential energy while locally maximising scattering. Using
many particles and modes there exists a huge number of such stable particle configurations,
which in contrast to the single-mode case result in differently strong total scattering.

Including noise, which is always present in real, damped systems, the particles might
leave their equilibrium positions after some time and thus eventually find stabler config-
urations, which are associated with stronger scattering. This way the system adapts to
the prevailing illumination and serves as an adaptive light collection system. Also when
randomly switching between few fixed multi-colour illuminations, the total scattered
intensity slowly increases with time as particles gradually improve their adaptation to all
used illuminations. This process can also be interpreted as learning: The system has
saved information about a certain already applied illumination in the configuration of
the particles and can thus better react on reapplication. Moreover, it bears similarities
to Hopfield networks, a simple model for associative memory.

Experimentally, such adaptive dynamics could be implemented in a wide range of
systems from cold atoms and molecules to nano-particles in solutions.
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Chapter 1.

Introduction

Laser light induces forces on polarisable particles (e.g. atoms, molecules and nano-
particles) and thus can be used to manipulate their motional degrees of freedom. When
the laser is far detuned from any internal resonance and coherent scattering dominates
over spontaneous emission, a standing wave in a free-space set-up creates a potential
where the trap-depth is proportional to the local light intensity. Such optical lattices are
used extensively for trapping and controlling cold and ultra-cold atoms [I].

As opposed to free space, in high-finesse optical resonators the back action of the
particles onto the field is not negligible [2] leading to a coupled particle-field dynamics.
This gives rise to a wealth of interesting effects including cavity cooling [3], 4], where the
kinetic energy of the particles is dissipated via cavity losses.

[luminating polarisable particles in a cavity from the side at sufficiently high intensity
leads to a phase transition from homogeneous to crystalline particle order accompanied
by super-radiant scattering [5, [6]. Via scattering into the cavity the particles create their
own trapping potential and thus simultaneously minimise their energy and maximise
scattering by redistributing into a Bragg-like ordered configuration. In a lossy cavity this
self-ordering process is accompanied by a collective cooling mechanism, which is efficient
even for high particle numbers [7HI], such that a stable configuration with constant
scattering is attained in the long-time limit. As in such a system the particles adapt to
varying frequencies and geometries of the illumination so that scattering into the cavity
is maximised, it can be considered an adaptive light collection system.

In this thesis we extend the existing set-ups to many simultaneously applied laser
pumps with various frequencies, each of which scatters into a specific mode and tries
to push the particles into their ordered configuration. This leads to a multitude of
stable ordered patterns with different scattering strength. Besides studying those stable
configurations for few particles, we also numerically simulate the time evolution of many
particles and modes for time-varying illuminations and under the influence of noise using
a simplified classical model. This way the computational resources stay reasonably small
even for many particles. Also, if the cavity resonances are sufficiently far apart, we can
neglect cross-scattering and the computational resources only scale linearly with the
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number of modes, which is in contrast to the full quantum mechanical case, where the
limits of computability are already reached for only two modes and few particles [10].

Note that for cavities with many degenerate modes a complicated dynamics already
occurs in the single frequency case [11], [12]. Interestingly, also in free space, self-ordering
and spatial bunching have been observed and extensively studied [13, [14]. In this case,
complicated dynamics have also been predicted for the multi-frequency case [15].

This thesis is organised as follows: First, we explain the basic physics involving light
forces and single-frequency self-organisation in Chapter 2 We move on to the multi-
frequency case in Chapter 3] where we specify the set-up and develop the theoretical model
used throughout this thesis, which corresponds to the multi-frequency generalisation of the
model used in e.g. [5]. That is, we start from a two-level atom and eliminate the internal
atomic dynamics, such that we effectively end up with linearly polarisable particles. Hence,
we will use the expressions atom and particle interchangeably throughout this thesis.
In Chapter [ we search for stable configurations using few particles and modes, which
can still be graphically depicted. By means of visualisations we point out fundamental
differences between single- and multi-colour laser pumps and qualitatively examine where
the complicated potential landscape comes from. Finally, the time evolution for static
multi-frequency illumination with noise and for time-varying illumination conditions
is simulated in Chapter [5] where we observe adaptive behaviour which increases the
scattered intensity with time.

The content of this thesis was recently published in Ref. [16].



Chapter 2.

Basic concepts

In this chapter we will introduce some basic physical concepts used in this thesis, whereby
the interaction of atoms with light and the resulting mechanical forces form the basis.

2.1. Light forces

Let us first imagine a light beam with frequency w which propagates through a cloud of
atoms with resonance frequency w,. We observe two types of effects: On the one hand,
the speed of propagation of light is modified by the presence of atoms, while on the
other hand light is absorbed, attenuating the beam. These effects are called dispersive
interactions, corresponding to an alteration of the real part of the refractive index with
respect to free space, and dissipative interactions, originating from a non-zero imaginary
part of the refractive index.

From the atoms’ viewpoint, the interaction with photons leads to a shift of the atomic
resonance w = w, by Uy (ac-Stark shift), which is a dispersive effect, and a radiative
broadening I'y of the atomic ground state, which is a dissipative effect. Note that for an
atom interacting with the vacuum field, the same effects are responsible for the Lamb
shift and the natural linewidth of the excited state v [17].

In a simple picture the interaction of light with atoms can be explained in terms of
absorption and emission of photons by the atoms. Hereby stimulated emission corresponds
to dispersive effects and spontaneous emission to dissipative effects. As photons carry
momentum, absorption and emission of photons result in forces on atoms in light fields.
There are two types of radiative forces acting on atoms, which can be categorised according
to their origin: The dispersive dipole force and the dissipative radiation pressure [17).

In a propagating plane wave, an atom absorbs photons resulting in a recoil kick into
the propagating direction. After a time specified by I'y, a further kick is exerted on the
atom due to spontaneous emission into a random direction. To significantly exert a force
many such cycles are necessary and thus the recoil kick stemming from the emission is
averaged to zero, leading to a vanishing net force. So the only remaining force comes
from the absorption and is directed into the propagating direction of the wave. This

10
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dissipative force is called radiation pressure and is proportional to the phase gradient of
the field and I'y. As stimulated emission compensates absorption in one cycle, it does
not lead to a net force in the propagating wave set-up. But since this process occurs at a
random time, it still leads to phase fluctuations. The velocity-dependence of the radiation
pressure is the basic mechanism responsible for Doppler cooling [I§] and magneto-optical
traps [19].

In a standing plane wave photons are absorbed from both sides such that the radiation
pressure vanishes, and spontaneous emission only leads to fluctuations proportional to
I'y. However, interpreting the standing wave as two counter-propagating running waves,
photons are redistributed between the two waves by stimulated emission. This leads
to a momentum transfer of twice the photon momentum in one absorption-emission
cycle and thus to a force proportional to the intensity gradient of the field, called dipole
force. As the photon only changes momentum but retains its frequency, the dipole
force is conservative. Thus a far-detuned standing wave creates a periodic potential
known as optical lattice, which allows for flexibly simulating solid state systems like the
Bose-Hubbard model [20].

2.2. Atoms in optical cavities

Nt

Figure 2.1.: Atoms with linewidth v move in an optical resonator with cavity decay rate
k and interact with one cavity mode with a coupling constant g. In standard set-ups, the
cavity is pumped longitudinally through one of the mirrors with the pump strength ;. If
the atoms are pumped transversally with a strength n;, they scatter light into the cavity
creating their own trapping field, which leads to self-ordering when 7, is above a certain
threshold.

Placing particles in a high-finesse cavity significantly alters the mechanical effects of
light leading to many phenomena not present in free space. This is mainly because
particles and photons interact for several round trips resulting in a longer interaction time.
Thus, in the strong coupling regime the back action of the particles on the light field is
not negligible leading to coupled atom-field dynamics. The coupling of a two-level atom
to a quantised field mode in the case of a lossless cavity is described by the well-known
Jaynes-Cummings model [21].

11
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In a realistic cavity however, light may leak out of the cavity with a decay rate k, as
depicted in Fig. In standard set-ups, the resonator is driven by a laser with frequency
w and pump strength n; through one of the mirrors. Inside of the cavity, two-level atoms
couple to the cavity field with a coupling constant g and spontaneously decay with the
rate .

A very useful phenomenon in such a set-up is cavity cooling [3], where kinetic energy
of all particles is collectively reduced via the cavity dissipation channel characterised by
the cavity linewidth x. Here one exploits the time-delayed reaction of the cavity field
(and thus the optical potential) on the particle motion, which for favourable parameter
choices results in a friction force. But damping also leads to momentum diffusion, which
in the optical domain at room temperature can be attributed to vacuum fluctuations of
the cavity mode amplitude. In an alternative picture, the fluctuations can be traced back
to the randomness of the photon loss through the two cavity mirrors. The competitive
interplay of friction and diffusion finally leads to an equilibrium with a temperature
close to kgT =~ hkx. One advantage with respect to direct laser cooling schemes where
energy is dissipated via spontaneous emission (e.g. Doppler cooling) is that this limit
can be well below the Doppler limit kg1 =~ h7vy. By not relying on spontaneous emission,
reabsorption of photons can be avoided allowing for higher atomic gas densities. Note
that we do not need to know the exact internal structure of the atom, making cavity
cooling applicable to the broader range of polarisable particles, including molecules and
nano-particles. However, the cooling time increases with the particle number, which
results in limited scalability.

2.3. Self-organisation of atoms in a cavity

Now we slightly change the set-up: Instead of pumping through the mirrors along the
cavity axis, we directly illuminate the atoms from the side of the cavity (i.e. from the
transversal direction) with pump strength 7, (see Fig. , such that light is coherently
scattered into the cavity via the atoms. Of course, the fields scattered by individual atoms
interfere with each other. Each atom interacts with the collectively scattered interference
field, leading to a mechanical force and thus atomic motion, which in turn changes
the scattered field. This complex coupled dynamics creates a long range atom-atom
interaction via the field and thus leads to a wealth of new phenomena. Particularly, above
a certain threshold for the pump strength 7, the atoms self-organise into a crystalline
pattern such that scattering into the cavity is maximised [5].

Let us have a closer look at this process with the help of Fig. [2.2] where the onset of
self-organisation is depicted. We start with a homogeneously distributed atomic cloud in
a high-Q optical cavity, which is transversally pumped by a red-detuned standing-wave
laser with wavelength A and wave number k = 27/\. For simplicity we assume plane
waves and a sinusoidal mode function f(z) = sin(kz), where z is the direction along
the cavity axis. The pump laser forms an optical potential in the transverse direction

12
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Figure 2.2.: The onset of a self-ordered pattern. Left: Homogeneously distributed atom
cloud. Center: The standing wave laser creates an optical potential attracting the atoms
to the anti-nodes of the field. Right: Atoms coherently scatter into the cavity and create
their own potential in the longitudinal direction. If the pump intensity is above a threshold,
they redistribute into one of two regular chequerboard patterns, maximising scattering into
the cavity. The lower plots show a 2D-simulation using 50000 particles. This picture was
adopted from [22].

and due to the red detuning the atoms move to the regions with high intensity, forming
stripes separated by A/2 (see center of Fig. [2.2).

Initially, no light is scattered since light which is coherently scattered by a homogen-
eously distributed atom ensemble destructively interferes. But as we have a finite particle
number, density fluctuations lead to the buildup of a small scattered field in the cavity,
which gives rise to a small dipole force towards the anti-nodes (i.e. intensity maxima at
kx = /2 + lr with some integer [) of this field acting on the particles. As more and
more particles tend to be closer to the anti-nodes, more light is scattered enhancing
this tendency and finally resulting in a runaway effect. Yet there is one problem: Since
the anti-nodes of the cavity field are separated by A/2, light scattered from adjacent
anti-nodes destructively interferes. However, it turns out that the atoms randomly choose
a specific pattern gathering at anti-nodes with either even or odd [/ such that sin(kx) is
either close to 1 or —1. The atom clouds are now separated by A and thus coherently
scattered light constructively interferes, which gives rise to a quadratical increase of
scattered intensity with the particle number, an effect called superradiance. Due to
interference of cavity field and pump field, the particles redistribute according to one of
the two equivalent chequerboard patterns (see right picture in Fig. , as neighbouring
stripes in the transversal direction have opposite phase. Thus the phase of the output
field of the cavity produced by the two distinct patterns differs by 7. This measurable

13
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phase relation has been used to prove the effect experimentally in [6].

The system also comprises an efficient cooling effect necessary for stabilisation of the
self-ordering process. As in standard cavity cooling schemes [3], the temperature limit is
proportional to x, however, in the current system the cooling efficiency does not depend
on the particle number [5, [7]. In a more general model, scattering into several modes is
considered [2].

In this thesis we will examine an “upgrade” of the system described above: Instead of
transversally pumping with only one single frequency, we consider several laser pumps
with different frequencies, where each is scattered into one specific cavity mode with
similar frequency. Using parameters where self-organisation is energetically favourable,
the atoms will try to organise according to the cavity field. If the mode frequencies are
far apart, we can neglect interference between the individual cavity mode fields and add
up their intensities, which are proportional to sin?(nkz) for the n-th mode. However,
generally the maxima of the intensities of each mode field do not coincide and so the
different fields compete to push the atoms to their maxima. From the atoms’ point
of view, this results in a complicated potential landscape with many local minima of
different depth, where the precise shape of the optical potential mainly depends on
which modes are pumped. This leads to a wealth of phenomena beyond single-frequency
self-organisation, a few of which will be explored in the course of this work.

14



Chapter 3.
Model

Here we will introduce the mathematical model describing the physical system used in this
thesis. For this we will start with two-level atoms and quantised fields obeying a quantum
master equation. In the course of the derivation, we will first adiabatically eliminate
the inner degrees of freedom of the atoms, rendering the two-level atoms polarisable
quantum particles. Thereafter we will perform a semi-classical approximation for both,
fields and particles, such that we end up with a set of coupled stochastic differential
equations [23], which are not only valid for atoms in a certain regime, but for polarisable,
interaction-free, point-like particles in general. This comprises atoms, molecules and
nano-particles. One could also derive the equations without quantum noise by starting
from the completely classical model of a point-like dipole, as in [24].

3.1. Set-up

T4

Figure 3.1.: Scheme of particle ensemble moving inside a lossy optical resonator charac-
terised by the decay rate s illuminated by laser beams with various frequencies and pump
strengths 11, n2 and ns.

We consider N identical two-level atoms of mass m with resonance frequency w, and

linewidth v in a standing-wave optical resonator supporting a large number of modes
of similar finesse with wave numbers k,, := nk (n € N) and corresponding frequencies

15
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wy, := ck,, where k is the wave number of a chosen base mode and c is the speed of light
in vacuum. For simplicity, we restrict ourselves to one dimension x along the cavity
axis and consider the normalised mode functions f,(z) = sin(k,x), as depicted in Fig.
[3.1] The resonator is lossy with a cavity linewidth &, which is frequency-dependent in
general. The atoms are transversally illuminated by lasers with frequencies w, ,, each
of which is close to a specific mode frequency w,,, but far detuned from the atomic
frequency such that the atoms stay in their ground state |g) with high probability. Thus
we can neglect spontaneous emission and adiabatically eliminate the excited state |e).
This way, the atoms coherently scatter pump light by a specific laser, whose amplitude
and phase depend on the position of the atoms, into its corresponding cavity mode.

3.2. Master equation

Describing such an open quantum mechanical system in principle requires to solve the
master equation for the density matrix p(t) describing the state of the system. It can be
written as )

1

pz—h[H,p]-i-ﬁp, (31)

where the Liouvillian damping operator
Lp = kn(2a,pal, — ala,p — pala,) (3.2)

includes the dissipative effects. As spontaneous emission is neglected, only the cavity
loss with the rate 2x,, contributes. Here a,, and aL denote the bosonic creation and
annihilation operators of a photon in the n-th mode, respectively.

3.2.1. Hamiltonian in the dipole approximation

The coherent dynamics are given by the Hamiltonian of the system, which comprises the
kinetic and potential energy of the atoms, the potential energy of the cavity mode fields,
and the interaction between atoms and field in the dipole approximation (e.g. [25])

2

J

Hp=>Y_ % + hw, ZU;U]' + 1Y wepala, — Zcsz(xj), (3.3)
J n J

where z; and p; are the position and momentum operators of the center-of-mass (CM)
motion of the j-th atom, respectively. The internal atomic degrees of freedom are taken
account of by the lowering operator o; := |e), (g| and the raising operator a; = |g); (el.

The latter two are used to express the dipole moment operator as d; = dZye; =
d(o; + J}), where d is the transition dipole moment. The electric field operator is
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composed of the classical pump field with complex amplitudes &, and the quantised
cavity field, namely

E(l’) _ Epump(t) ‘I‘ oo [L’ t Z( —zw;),nt g* iwp, nt) +ZZ cnfn( )( CLL),

n
(3.4)
where the square root is the field created by a single photon, V' is the mode volume and
€p is the vacuum permittivity. Thereby we assume that the pump field is constant along
the x-direction, which is a good approximation if the region of interest is in the center of
a wide laser beam.

3.2.2. Rotating wave approximation

Inserting the field back into the Hamiltonian, we encounter terms oscillating with different
frequencies:

° anaj- and af o; are oscillating with |we.,, — wa.

c‘fne_wpv"ta;- and Ere™rrlo; are oscillating with |wy,,, — w,|.

e a,0; and aTJ are oscillating with |we,, + wa.
t t 1
Epe Wty and Enerntal are oscillating with |wp, + wal.

We assume that |we, — wal, |Wpn — Wa| <K wy, such that w, =~ w., = wy,. In this case,

the terms evolving with the sum of two frequencies are fast rotating compared to the

terms evolving with the difference and will almost average to zero. Thus we neglectﬂ

those terms, which is commonly known as the rotating wave approximation (RWA) [26].
The interaction term in the rotating wave approximation reads

dB = ih 3 (e 00} = e o) +ih 3 Galw)) (an0] = ojal) . (35)

with the laser Rabi frequency 7, := d€, /h and a position-dependent coupling G, (z) :=
gnfn(x), containing the single photon Rabi frequency g, := d\/hw../(2¢V)/h.

3.2.3. Rotating frame

In order to get rid of the explicit time dependence originating from the large optical
frequencies, we would like to consider the system in a rotating frame of reference. As there
is one specific pump frequency w,,, close to every mode frequency w.,, we use a frame
rotating with w,,,, for the n-th mode field, leading to the detunings d.,, := wy, — wen (see
Fig. . For the internal atomic degrees of freedom, though, there is not only a single

'We additionally need to assume that the Rabi frequencies are much smaller than the atomic resonance,
hence 7], gn K Wo & Wen N Wpn-
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T(w) WFSR
—_— [ ] [ ] [ J
K1 K2 K3
Z 5c,1 / 50,2 / 50,3
w
Wp,1 We,1 Wp,2 We,2 Wp,3 We,3

Figure 3.2.: Transmission spectrum of a standing-wave optical resonator with the free
spectral range wpggr. Each pump frequency w, ,, is close to a specific cavity resonance peak
at wen (|0en| € wrsr), which requires that the peaks are sufficiently distinct (k, < wrsr)-

corresponding pump frequency as the atoms feel all pump frequencies. However, this
is not problematic if we assume that all cavity frequencies w.,, (and pump frequencies
wpn) are far away from the atomic resonance, such that the atom cannot distinguish
between them. Under this assumption it makes sense to introduce a frequency €2, which
is chosen among the pump frequencies (e.g. the lowest one, Q = w,,; as in Fig. , since
its deviation from the actual pump frequencies A,, := w,,, — 2 is small compared to the
atomic detuning J, := 2 — w, for all n. This also implies that |d,| > Aw,, where Aw, is
the spread of the cavity resonance frequencies (see Fig. [3.3)).
By substituting the operators in the Hamiltonian by

—iQt —iwp,nt
o; — oje Ay, —> ape Wt (3.6)

and taking the product rule of differentiation into accouniﬂ, we obtain the Hamiltonian
in a rotating frame

HRF:Z2m héa ZUJJ—hZcSma an—th(nn ’A”tT — i etAnt )—
n,j]

J
—thgn ;) (O’ a,e Ant — aLaje’A"t> )
7‘7

(3.7)

Still, Hrr has an explicit time-dependence because of the deviation of 2 from an arbitrary
pump frequency A,.

2Formally, this rotation amounts to applying the unitary operator U(t) = exp(it(}., wpnala, +
Q> a}aj)). The new Hamiltonian in the rotating frame is then given by Hrp = UHU + ihUUT.
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Aw, v

agiis w
g w
wc,n ~ wp,n @

Figure 3.3.: Absorption spectrum of a radiating atomic dipole compared with the cavity
resonances. In our model |0,| is much larger than the spread of the cavity resonance
frequencies Aw,, which implies that all w, s can be summarised by one close-by frequency
Q2 as they are the same from the atom’s viewpoint. Assuming that |0,| is much larger than
the atomic linewidth v leads to negligible excitation of the atom.

3.2.4. Effective Hamiltonian

In the low saturation regime (|d,| > =), we can adiabatically eliminate the internal
degrees of freedom of the atom. For this, we rewrite the Hamiltonian in terms of the

operator
Gjn = 0jeitnt (3.8)

which evolves on the time scale of §, + A,,. The Heisenberg equation for this operator is
non-linear and reads

B 1 ~ Lo~ ~ z i (Wp,n—w
Ojn = ﬁ[H’ Jj,n] = 10400 + Z (gm(xj)am + Tim) ;e (@pn p,m)t’ (3.9)

where we used the commutation relations

(6] 00 G jm] = Ojoie!Bm At = 5, g%l @rm—wnn)t

: (Grns G G jm] = 010 (3.10)

As almost the whole population is in the ground state, we substitute the inversion by a
c-number o3 = —1, rendering the equation linear. This substitution is sometimes called
bosonisation since the two-level atom is considered an infinite ladder like a bosonic mode
[2].
Also, as |0, + Ap| & 04| > |dcn| the operator 6;,, evolves much faster than the field
operators a,. Hence we can assume that they instantaneously adapt to a changing field
(0jn =0), yielding
1

Gin = === (G () + )" rrmr ), (3.11)

a m
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Putting this back into the Hamiltonian gives rise to cross-scattering interference terms
containing e @rn—wrm)t which oscillate with the pump frequency differences. For
n # m these terms almost average to zero as their oscillation is much faster than
the response time of the atomic motion and the oscillation of the field terms, that is
|0cn| K WrsRr = Went1 — Wen S |Wpn — wWpm| (see Fig. . Thus we can neglec‘ﬂ those
cross-scattering, fast-rotating terms and finally obtain the effective Hamiltonian

2
H = Z 2])—7; + hz {— (&m — Uon, Z sin2(knxj)) aLan + My Z sin(knz;)(a, + aL)
j n j

J

(3.12)

with the effective pump strength 7, := ¢,7,/d, and the light shift per photon Uy, :=
9n/da-

With , this yields an effective master equation describing the coupled center-
of-mass and field quantum dynamics. Since the internal atomic dynamics have been
eliminated, the atoms act as a medium with a refractive index resulting in position-
dependent shifts Uy, >-; sin?(k,z;) of the bare cavity resonances d., = 0. In addition
to that, we obtain the usual pump term for longitudinal pumping (see e.g. [3]) but
with a pump strength 7, >°; sin(k,z;) depending on the atom positions. A very similar
Hamiltonian for the single-frequency case which could be intuitively generalised to ([3.12])
has been used in [2] 7, 27].

We conclude this section with a summary of the assumptions made during the derivation
of the effective Hamiltonian:

[0al >, (3.13a)
10a] > Aw, 2 |AL] Vn, (3.13b)
|5c,n| << WFSR 5 |Wp,n - wp,m| Vn 7é m. (313C)

3.3. Semi-classical treatment

Employing the phase space representation of quantum mechanics, we formulate the
operator-based master equation in the language of statistical mechanics. As opposed
to the classical case, for a quantum system the distribution functions do not fulfil all
properties of a genuine probability distribution, particularly they may take on negative
values. Hence they are called quasi-probability distributions.

Due to the similarity to classical theories, this is the appropriate formalism to compare
our system to the classical limit and conduct semi-classical approximations. In this vein,
we transform our high-dimensional master equation to a partial differential equation (PDE)
for the Wigner function, a quasi-probability distribution. After that we systematically

3To justify this we further need to fulfil the condition for the Rabi frequencies |Up |, |nn| < wrsg, as
in the RWA above.
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truncate the order of the PDE to obtain a Fokker-Planck equation, which can be re-
formulated as a set of coupled stochastic differential equations (SDE). The SDEs can be
easily interpreted and solved numerically.

3.3.1. Wigner phase space distribution

The Wigner phase space distribution of a quantum state described by a density operator
p is given by [2§]

W(zx,p) 27rh/ d¢ exp (—pﬁ) <x+ f'p‘x — §> (3.14)

where x and p are c-numbers and not operators. The distribution can be generalised to
a combined Wigner function W (z,p, o, a*) of CM motion and field, where we consider
both, atoms and field in phase space [23]. To rewrite the master equation in terms of
this quasi-probability distribution, we use the operator correspondences [29]

Tp (x + ;;) W(z,p) px > (93 — Z;;p) W(x,p) (3.15a)
pp ( - ?;) W (z,p) pp < (p + ?i) W (z,p) (3.15b)
ap ( + ;;i) W(a, o) pal < (cz* + ;;;) W(a, ") (3.15¢)
atp o (a* _ ;i) W(a,a") 00 & <a - ;%) W(a,a%).  (3.15d)

In the course of the derivation we encounter commutator and anti-commutator of functions
g(x) of the position operator x

20g(x) (ih Lol
[g(x),p]HlEQEN:H“ 5l <2> a—plW(x,p) (3.16a)
20 g(x) (ih Lol
{g(f),P}ng\Iﬁ B <2> aTng(%p), (3.16b)

which are derived in Appendix [A]

As our master equation contains functions of operators, whose derivatives do not
vanish, the resulting PDE contains infinite expansions with high-order derivatives of W.
In the following we will motivate some approximations which allow us to truncate those
expansions, finally yielding a Fokker-Planck equation, only containing derivatives up to
second order.
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3.3.2. Fokker-Planck equation

Our master equation contains the functions g(z;) = sin(k,z;) or g(z;) = sin?(k,z;)
for which we obtain 8'g(x;)/dx} ~ k}. Moreover, for the width Ap of a Gaussian-like
distribution function W (p) the following relations hold

‘ oW 1 i8W’< 1 (3.17)

maxaip NAip: 87]) NKp

Hence, if hk,,/Ap < 1 only the first terms in the expansion (3.16]) contribute significantly,
which justifies truncating the expansion at first order to avoid third-order terms in the
PDE, taking also field derivatives into account. Within this approximation we can use

l9(x), p] <> iﬁg:z(,iW(x,p) (3.18a)
{9(z), p} <> 29(x)W (z, p). (3.18b)

Physically, the condition fik,/Ap < 1 means that width of the momentum distribution
Ap should not be altered significantly upon emission or absorption of a photon associated
with a recoil kick hk, [23]. We can reformulate this condition in terms of the temperature
T associated with Ap and the recoil energy Fr [2] as

LY S

k?BT > ER,n = n ER. (319)

2m 2m
This is the semi-classical approximation of the CM motion of the particles, requiring
that the atom ensemble is not too cold such that the wave packets of the particles are
small compared to the optical wavelength.

There is a further assumption regarding the field. To avoid the third order derivative

in the Uy ,,-term
1 1 0? 0
2
- | — 2
<|a"| 2 48an8a;> 8ij (3:20)

we have to neglect the second-order derivative 9% /9«0, compared to |, |>. A sufficient
condition is to consider fields close to coherent states with photon numbers much larger
than 1 [23]. Consequently, we can also neglect 1/2 over |a,|>. In this step, the semi-

classical approximation of the cavity fields was made.
Under these assumptions, we obtain a Fokker-Planck equation for the combined Wigner
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function W(xy, ..xn, D1y ooy DN, Qs ooy Qg O ooy Q)
d 0 0
U n in’ kn j _5cn a_ Yn .
Z( 0, zj:Sln ( ZC]) ) ) (aan& 8@206”)

—W =

dt
. ) 0 0
+1 Znn sin(k,z;) (aan — 80[2)

n,j
0
+ hz k., (Uo,n|@n|2 sin(2k,z;) 4+ 0y, cos(knz;)(a, + a;)) o (3.21)
i J
a Z m 895]
0 o o
i Zﬁn < 804* 80@80@) ] W

3.3.3. Stochastic differential equations

This Fokker-Planck equation can be transformed into a set of stochastic differential
equations for the stochastic variables with the distribution W (summarised by the vector
X = (T1,-- TN, D1y, PN> Q1 - - -, apr)T) of the form

dX = A(X,t)dt + B(X, t)dW, (3.22)

where dW is a L := (2N + M)-dimensional Wiener process. A and B have to be
determined from the FPE using the correspondence [3()]

of ("" t_ —Z et ZZ axl (@.0f(x,t)],  (3.23)

’L].j].

where A is the drift vector and
Dij(z, ) ZszBjk = [BB");; (3.24)

is the diffusion matrix.
Applying this to our Fokker-Planck equation ([3.21)) yields the coupled stochastic
differential equations

dz; _Pi dt (3.25a)

= —hz ko, (onn|an|2 sin(2k,x;) + (o + ) Cos(knxj)) dt (3.25Db)

da,, =i (5(:’” —Uon Y. sin2(kna:'j)> o dt — kpapdt — i, Y sin(k,z;)dt+
7 j (3.25¢)

+ ,/%(dwl,n 4 idWa,,).
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The noise only affects the field, as cavity loss is the only dissipation channel. If we had
included spontaneous emission, also the momentum equation would have a noise term.

3.4. Classical treatment

Since we are interested in qualitative effects for multi-color pump lasers, we will deal
with classical particles throughout this thesis by using the equations without the
field noise. Moreover, we will neglect the n-dependence of x,, ., and U,. For k this
simply means that the loss rate of the mirrors is constant over the used frequency range,
while for o, this choice is technically reasonable when implementing the laser beams with
standard comb technology. As all cavity frequencies are far detuned from the atomic
resonance and wpgsp < W, also the frequency dependence of Uy, x w.,/d, can be
neglected. This way we get a set of coupled non-linear differential equations
P

iy =2, (3.26a)

pj=—h> kg (U0|Ozn|2 sin(2k,x;) + nn(an + ) cos(k;nxj)) (3.26b)

Oy =1 (5c - U ZsinQ(knxj)) ap — KOy, — 10y, Zsin(knxj). (3.26¢)
- .

J

The force on the j-th particle

Fi(zj, a1, ...,an) = —h>_k, (Uo|an\2 sin(2k,x;) + (o + ) cos(k;nxj)> (3.27)

as given in depends on the position and all fields, which are dynamical variables
themselves. The term proportional to Uy has a periodicity of A/2, while the other term
proportional to 7, is A-periodic. The sign of a,, + o = 2R («,) determines which of the
two equivalent self-organised patterns is formed.

3.5. Bad cavity limit

In the bad cavity limit [27], where the cavity modes decay fast on the timescale of the
atomic motion (k > wg := hk?/(2m)), it can be assumed that the fields are always in
their steady state &, = 0 and thus react instantaneously to a changing atom configuration.
From ([3.26c) we obtain

B > sin(knx;)
= 0c — Up X sin®(kyaj) + ik

(3.28)

(21, .y TN)

The force (3.27)) now solely depends on all particle positions F; = Fj(z1, ..., zn).
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3.6. Over-damped motion

Although cavity cooling and thus friction is already included in the coupled equations
(3.26]), we can alternatively add a large additional friction term to avoid the search for
suitable parameter ranges, which is not necessary for the demonstration of the qualitative
effect. The momentum equation ([3.26b]) with external damping thus gets

pj = Fj — up;, (3.29)

with the external damping rate p. For large damping, we can neglect p; compared to
the other terms. With (3.29) and (3.26a]) we obtain the equation of motion for the
over-damped case

;=1 (3.30)

where the velocity is proportional to the force. Hence, particles stop as soon as they find
a stable point and do not oscillate around them. This is very practical if we just want to
find stable points.

3.7. Stability criterion

At an equilibrium point the force on every particle has to be zero, which in the bad cavity
limit yields N non-linear equations

Fy(z1,.,ay) =0 Vi (3.31)

The solutions of this equation are candidates for stable points.

Now one might be tempted to introduce a collective potential V' (z1, ...,z ) such that
F; = —0V/0x;, and determine minima and maxima (and thus stability) by analysing
the definiteness of the Hessian matrix of the potential. However, it turns out that
such a potential does not exist in general [27]. That is because in general we obtain
OF;/0x; # OF;/0x; implying that 9*V/0x;0x; # 0*V/dx;0x;, which contradicts Young’s
theorem. Note that this behaviour is not surprising as we deal with an open, non-
conservative system, where the lasers pump energy into the system while energy is lost
through the mirrors.

Instead, we consider the asymptotic stability of the dynamic over-damped system
[31]. As stated before, in the over-damped case the velocity of each particle is simply
proportional to the force on this particle

z=F(x) x F(x) (3.32)

where = (z1,...,2x5)T and F(x) = (Fi(x), ..., Fx(x))T. The force can be linearised
around an equilibrium point x, which yields a differential equation

T =F(xe) +Tp(xe)(® — ) = Tp(xe) (T — xe), (3.33)

=0
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where Jp is the Jacobian matrix of F. For the variable dx =  — x,. we get the linear
system

ox = Jp(x.)ox (3.34)

which is globally asymptotically stable if and only if ®X;(Jz) < 0 where \;(A) are the
eigenvalues of A. As only the sign of the eigenvalues is important we can translate the
criterion to RN (Jr) < 0 for all 4.

If the linearised system is stable (i.e. the above criterion is fulfilled) then the nonlinear
system is locally asymptotically stable. On the other hand, if for some i, R\;(Jr) > 0,
then the nonlinear system is not locally asymptotically stable. Otherwise no conclusion
can be made.

This provides for a simple criterion which just involves analysing the eigenvalues of
the Jacobian of the force vector.

3.8. Defining an illumination pattern

To define a multi-colour illumination pattern we have to choose a set of modes addressed
by the lasers. Since a specific mode with position frequency nk is denoted by its index n,
the set of modes can be specified by an index set I C N. Moreover, we have to fix the
pump strengths 7,, which we summarise by a vector n.

For instance, by choosing I = {1,2,3,4,5} and n = n(1,0,1,0,1) the first, third and
the fifth mode are pumped with the same effective pump strength 7, while all other
modes are not pumped. Thus in case of equal pump strengths, a certain pattern can be
identified with a sequence of 0’s and 1’s (i.e. off/on).
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Chapter 4.

Self-ordered states and light scattering
of particles in a multimode field

In a first approach to understand the behaviour of atoms in a multi-mode field, we look
for stable atom configurations and light fields for fixed atom positions under multi-colour
pumping. We restrict ourselves to few particles and low-order cavity modes, such that we
can easily visualise the stationary points and the amount of scattered light depending on
the particle positions for a few instructive examples. We assume red detuning (J, < 0)
leading to high field seeking particles. For fixed atom positions it makes sense that the
field has already reached its steady state (3.28). As discussed in Section [3.7] there is no
collective potential yielding the force on each particle. Therefore we invoke the stability
criterion for determining the stability of equilibrium points, which also implies that in
the over-damped limit the atoms would dynamically find exactly those stable points.

Analytically, from (3.31]), (3.27)) and (3.28)) we know that equilibrium points have to
fulfil the equation

Z knni cos(k,x;) X

2
x Uy | sin(k,z;) (Z Sin(knmj)> = sin(kya;) sin®(knzy) | 4+ 60 Y sin(kaz;)| =0
J Jmn J

(4.1)

for all 7, where we assumed 7, € R. For . < 0 and if Uy can be neglected, that is if
|Uo| N < |d.|, we obtain the simplified expression

Fy o< > kyn cos(kyx;) sin(kyz;) =0 Vi (4.2)

n,j

For finding the stable points, in principle we have to solve this equation to obtain the
equilibrium points. Next, by analysing the eigenvalues of the Jacobian of the expression
above, we can decide which of the solutions are stable.
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4. Self-ordered states and light scattering of particles in a multimode field

However, even with those approximations this transcendental equation is very difficult
to solve analytically for more than one mode. Therefore, we will be mostly forced to
retreat to numerical studies in the following.

While moving on from the simple single-colour to the multi-colour set-up, we will
observe which qualitative changes occur.

4.1. Single-colour

We first check how the well-known single-colour case looks like in our very simplified
model. For negligible Uy, this case can still be solved analytically for an arbitrary particle
number N, as shown in Appendix [Bl The configuration is stable when all atoms are
either at wells where © = A\/4+mA\ or x = 3\/4+mA, where A = 27/k is the wavelength
of the only involved cavity mode and m € Z. Due to periodicity, wells shifted by A
are totally equivalent and atoms in those wells scatter with same phase. This result is
not very surprising: Each well corresponds to one of the two equivalent chequerboard
patterns with opposite scattered phase, as discussed in Section

Numerically, the stability criterion is straightforwardly implemented allowing us to
find points where the forces on all particles vanish even without neglecting Uy. For two
particles, these stable points can be visualised in a 2D-plane. This is done in Fig. [4.1],
where we plot the stable points and the zero-force lines underlaid with the scattered light
intensity |a(z1,xo)|* within one wavelength.

The results are the same as in the analytical calculation: We obtain two equivalent
stable points at (\/4, A/4) and (3A/4,3\/4). Moreover, from the background plot we see
that those configurations maximise the scattering. At (A/4,3)\/4) and (3\/4,\/4) the
light scattered by the particles destructively interferes.
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Figure 4.1.: Black dots indicate the stable configurations for two particles illuminated
by a single laser as function of their positions x; and z2 within one wavelength A of the
pumped mode. The density plot shows the scattered light intensity |a(z1,22)|? and the
contours give zero-force lines for each particle. In the single frequency case there are
two equivalent stable configurations at (z1,z2) = (A/4,A/4) and (3A/4,3\/4) within one
wavelength, scattering with opposite phase of each other. The parameters are n = 5k/8,
NU() = —/1/10, (Sc = NU() — K.

4.2. Multi-colour

Now we add pump lasers of different colour (i.e. frequency) and observe which qualitative
changes of the scattered light pattern and the distribution of the stable points occur. For
illustration in this section we use the lowest modes n € {1,2,3,4,5}, where the modes
are pumped with equal strength, which allows us to define a certain illumination pattern
by a sequence of five 0’s and 1’s. The total scattered light is given by the sum of all

mode intensities
Ptot = Z |an|2- (43)

4.2.1. From single-colour to multi-colour

As we have seen, for one pump frequency configurations where both particles sit on
the anti-nodes with the same phase are stable. This leads to the periodic pattern in
configuration space shown in Fig. [£.2] on the left, where we pump the fifth mode n =5
(or, given as a Ol-sequence, (0,0,0,0,1)). We see that this is only a continuation the
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4. Self-ordered states and light scattering of particles in a multimode field

pattern of Fig. [£.1, where we had n = 1.

Now we proceed to the multi-colour case: Adding more pump lasers with the same
effective pump strength close to the modes with n = 1,3,4 (resulting in the pattern
(1,0,1,1,1)), on the one hand shifts existing stable points and, on the other hand, creates
some new stable points (see Fig. on the right). Most importantly, however, the
amount of scattered light varies for different stable configurations such that they cease
to be equivalent, giving rise to a complex landscape with many different local scattering
maxima. This also implies that the trapping strength is different. Hence, we can already
anticipate that the particles are more likely to end up in a high-scattering configuration
if randomly distributed in the cavity.
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Figure 4.2.: Scattered light intensity and stable configurations (black dots) for two
scatterers as function of position within one wavelength of the fundamental mode. The
density plot shows the associated cavity light intensity P, and the contours give zero-force
lines for each particle illuminated with frequencies near the five lowest order modes wy,,
n € {1,2,3,4,5}. On the left we only pump at the 5-th mode, i.e. m;/n = (0,0,0,0,1),
while on the right four modes are pumped, i.e. n,./n = (1,0,1,1,1). The parameters are as

in Fig. 1.1

4.2.2. Composition of a pattern

Obviously, the complicated irregular intensity pattern in the multi-colour set-up Py
comes from adding up several single-frequency patterns with different periodicity, between
which the particles have to find some compromise configuration to maximise scattering.
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T2
o>

[

Figure 4.3.: Composition of an intensity pattern for 3 pump frequencies n/n = (0,1, 1,1, 0).
On the left we plot the total scattered light intensity Py, stable points and the zero-force
lines as in Fig. [£.2] On the right we colour-code the different mode intensities, which allows
us to distinguish between the modes. In white areas all three modes oscillate, corresponding
to intensity maxima in the left picture. The parameters are as in Figs. and

For instance, the pattern invoked by the illumination (0,1,1,1,0) in Fig. [1.3] (left)
is composed of the single-frequency patterns in Fig. 4.4, Clearly, the positions with
optimum scattering do not necessarily coincide, which can be seen in Fig. [4.3| (right),
where the three modes involved are colour-coded by three complementary colours, and
mode overlapping is visualised by additive colour mixing. As we would expect, at the
points of highest scattering all modes overlap, resulting in white spots in the plot.

In multi-colour patterns encountered so far we observe that the strongest scattering
occurs when both particles are at the same place (i.e. 71 = x3), effectively resembling the
case of one particle with stronger coupling strength. To understand this from formulas,
we rewrite the mode field for two particles in relative coordinates X = 3(z1 + x) and
T = 1 — X3, yielding

2sin(k, X ) cos(kn3)
s — 2Up[sin® (k,, X ) cos?(kn2) + cos?(k, X ) sin®(k,%)] 4 ir’

an (X, 7) = (4.4)

Neglecting Uy, the basic form of a single-mode intensity is thus given by the square of the
enumerator |a,|* o« sin®(nkX) cos*(nk%). With respect to z, this expression is always
maximal when both particles are at the same position z = 0 (or, due to periodicity, some
integral multiple of A apart). As this is valid for all n, also the total scattered intensity
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Figure 4.4.: Single mode intensities |as|?, |a3]? and |a4|? of the modes building up the
multi-colour pattern generated by the illumination (0,1, 1, 1,0) shown in Fig. 4.3

P, is maximal when & = 0, which is the reason why maximum scattering occurs on the
diagonal for all illuminations.

As in the single-colour case shown in Fig. [4.T] starting from any stable configuration
and shifting both atoms by A/2 results in a stable configuration again, where light with
opposite phase gets scattered. This can be best seen in relative coordinates (see Fig. :
The left half plane scatters with the opposite phase of the right half plane, where stable
configurations separated by A/2 in the X-direction are equivalent counterparts.

As mentioned before, maximum scattering occurs at £ = —\,0, A\ and low scattering
at £ = £A/2. Obviously, the pattern is symmetric around &, which corresponds to
invariance with respect to particle exchange.

4.2.3. Three particles

Already in the two particle case there exist a wealth of different complex patterns, even
when using equal pump strengths. Of course, with three particles those patterns get
much more complicated. However, we can still graphically depict the location of the
stable points by small spheres in a cube of edge length A, as in Fig. [£.7] where the colour
and size of the spheres stand for the total scattered light P,;. As for two particles, most
light is scattered on the diagonal (x; = x5 = x3).

In the right pictures of Fig. and the same illumination (1,0, 1, 1,1) is governing
for two and three particles, respectively, and thus allows us to compare those two cases.
Obviously, the maxima on the diagonals are identically distributed, but off the diagonal
there are much more possible stationary distributions of particles in the three particle
case. This meets our expectation that the number of stable points strongly increases
with the particle number, but we did not find a corresponding scaling law.

In realistic systems, there are usually large ensembles of particles with a huge con-
figuration space and many stable points. We will make use of this fact in the Chapter
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Figure 4.5.: Here the situation of Fig. Figure 4.6.: When . > 0, the stable
(right) is depicted in relative coordinates points are at scattering minima, thus also
X = %(ml + 22) and T = x1 — x2. Max- configurations on the black line are stable.
imum scattering occurs for £ = —\, 0, A. We choose 0. = k, while the illumina-

tionn/n = (1,0, 1,1, 1) and the remaining
parameters are the same as in Fig. @

Bl

4.2.4. Order parameter

For larger particle numbers we cannot graphically depict the stable points anymore.
Hence we need qualitative measures for the grade of order of a certain configuration.

The simplest measure of order with respect to the n-th mode is the order parameter
as defined in [7]

1 :
0, = N ;sm(k:nxj). (4.5)

For perfect ordering it adopts the values 1 and —1, depending on which of the two
equivalent ordered configurations prevails. For a homogeneous distribution, in contrast,
we have ©,, = 0 for all n. If we neglect Uy, the order parameter is proportional to the
field NO©,, x a,.

The total order parameter

Ot = Y |On] (4.6)

n
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4. Self-ordered states and light scattering of particles in a multimode field

Figure 4.7.: Stable equilibrium configurations for three particles represented by spheres,
whose size and color encode the amount of scattered light P, in this configuration.
[lumination is set to n;/n = (1,0,1,0, 1) on the left and n,./n = (1,0,1,1,1) on the right
with the other parameters fixed as in Fig. @

measures how well the particles are adapted to all modes, i.e. how good the compromise
between adaptation to each mode is. This quantity is related to P, and for Uy ~ 0 their
maxima are at the same place. A homogeneous distribution leads to ©;,; = 0, but the
maximum value is not so easy to determine and differs for various illuminations. It can
get as large as the number of modes for some special illuminations (e.g. all n’s odd/even),
however, generally the maximum value is lower as the anti-nodes of different modes
usually do not coincide. Though, it still a useful measure to compare configurations.

4.2.5. Dependence on the cavity detuning

Although we place the main emphasis in this thesis on qualitative effects and not so
much the realistic implementation, it is still important to discuss the possible values and
effects of crucial parameters.

Particularly the value of the cavity detuning 4. is critical for self-organisation. We
have to make sure that sign of the prefactor of the dominant A-periodic part of the force
, namely sgn(Ra,), only depends on the sign of the order parameter sgn(©,), i.e.
which of the two equivalent crystalline patterns the actual atom configuration is closer
to. Since sgn(Ray,) = sgn(Rn,) sgn(O,,) sgn(d, — Uy X sin?(knx;)), where Uy < 0, it is
sufficient to make sure that

b — Up Y _sin(kyz;) <0, (4.7)
J

which is guaranteed when ¢, < NU,. Hence it is save to choose §, = NUy — Kk or
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4. Self-ordered states and light scattering of particles in a multimode field

d. = NUy/2 — 2k, which are the values we used for our calculations. This topic was
discussed in more detail in [7].
The denominator of |a,|?

(56 — Uy Z sin2(knxj)) + K2 (4.8)

shows that scattering is resonantly enhanced when 0, is suitably shifted from the bare
cavity resonance 6. = 0. Scattering at perfect ordering (# = +1) is maximal when
0. = NUy. However, this value is not allowed due to the above restriction, such that
realistically scattering is most efficient when 6. is slightly smaller than NU,. With
b = NUy — k we get the dependence |a,|? o< k72

For 0. > 0 (and Uy < 0), we also get a fixed sign of . — Uy 3, sin?(k,2;) which would
allow self-organisation at least under the aspects considered before. In this case the
stable configurations result in minimum scattering, which can be seen in Fig. [4.0]
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Chapter 5.

Adaptive dynamics

In the previous chapter we studied light fields and forces at fixed particle positions,
where points of vanishing force give equilibrium positions. The equations of motion
, however, also describe dynamical properties of the system. In this chapter we will
numerically examine the dynamical adaptation of the particles to static illuminations
under the influence of noise and to time-varying illuminations. Since stable configurations
are associated with high scattering, we expect that adaptation gradually increases the
amount of scattered light and thus optimises light collection.

As known from the single mode case the delayed field response during the self-ordering
for negative cavity detuning induces friction (i.e. cavity cooling) such that the system
reaches a steady state [§]. Although finding suitable parameter ranges where system
inherent cooling works efficiently in the multi-colour case is an interesting task as such,
in this work we are qualitatively interested in the adaptation of the particles to different
illuminations. Thus we simply mimic cavity cooling as well as other possible damping
effects e.g. by a background gas or optical molasses in the system by adding an effective
linear friction force as in (3.29)), such that we can easily control the friction strength by a
parameter p. This is only an approximation to the actual full dynamics, but will guide
the system towards a stable or at least metastable state.

5.1. Static illumination with noise forces on particles

In any real system damping is accompanied by noise forces on the particles. For a static
multi-frequency illumination pattern, we expect that this renders the stationary configur-
ations metastable and that the particles will eventually leave any such configuration and
evolve towards another metastable state, which possibly results in stronger trapping and
scattering. As for d, < 0 there is a tendency towards high scattering configurations, on
the long haul this process should lead to a dynamical optimisation of scattering for the
applied illumination, that is the particles should be able to find the global scattering
maximum after venturing through other parts of configuration space.

In our model, noise is natively included in the full dynamics via the Wiener
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~ 0.15

0 A/4 A/2 3\/4 A 5\/4 3\/2
x1

Figure 5.1.: Typical trajectory of two particles in static illumination /7 = (1,0,1,1,1,0,1)
experiencing random momentum kicks at time intervals At = 2/x and friction u = 2k,
where the yellow dot indicates the initial position. As in Fig. [£:2] the background density
shows the scattered intensity P, and red dots indicate stable equilibrium positions in the
strongly damped limit. The other parameters are n = /5, NUy = —k and . = NUp/2—2k.

processes AW, and dWs, representing field fluctuations as derived in [§], which can be
traced back to the damping of the field mode via cavity losses. While in a quantitatively
correct description these and even more noise sources would have to be carefully modelled
and scaled, here we simply introduce noise forces as random momentum kicks on individual
particles, as used for Brownian motion. In our simulations the particles evolve according
to the equations of motion with the additional friction term proportional to u, but after
a fixed time step At they experience a momentum kick whose strength and direction
are randomly chosen from a normal distribution with a width proportional to v/At and
an associated temperature. This simplified model still leads to the qualitative effect
discussed above.

In Fig. [5.1] we show a typical simulated trajectory for two scatterers over an extended
time. While the particles rapidly evolve in the dark areas, the trajectory concentrates
around bright areas of the background picture P, denoting local scattering maxima.
The system thus explores a large volume of configuration space but preferentially stays at
points of strong scattering. That is because it takes more time to diffuse out of strongly
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5. Adaptive dynamics

scattering trapping wells as compared to others. Note that the background picture
including the red dots indicating stable points is obtained by using the techniques from
the previous chapter, that is assuming over-damped motion in the bad cavity limit. For
a dynamic field, which we simulate now, scattering does not solely depend on the particle
configuration and thus one cannot make a simple picture like that. Especially, from the
trajectory we see that there are no stable points where the particles stop. Nevertheless, for
relatively large u, actual scattering along the trajectory at least qualitatively corresponds
quite well to the background picture and particles at least tend to stay close to red dots,
which justifies the inclusion into the figure for illustrative purposes.

N[>

\l‘\ ”“H}JH \“J

>

0 .
0 1000 2000 3000 4000 0 1000 2000 3000 4000
wprt wrt

Figure 5.2.: Time evolution of (a) the positions of the two particles modulo A and (b) the
scattered light intensity P for the trajectory of Fig. with wg = k72/10. The particles
spend most time at points of high scattering at z1 2 ~ \/4 or 3\ /4.

The effect of localisation near scattering maxima is displayed more quantitatively in
Fig. . In picture (a) we plot the time evolution of the two atom positions modulo A
(due to periodicity). Most of the time both particles are at the same position, hopping
between A/4 and 3\/4, which correspond to the positions with highest scattering. This
becomes apparent from picture (b), where we observe that the total scattered light P
drops when the particles leave these positions.

Due to this behaviour the system can be considered an adaptive light collection system:
Given any multi-frequency illumination, the particles dynamically adapt such that light
scattering into the cavity (and thus the cavity output field) is maximised for most of the
time.

5.2. Varying pump light

In this section we consider time-varying multi-colour pump light. For simplicity, we
regard over-damped dynamics without noise and the field in the bad cavity limit. More

38



5. Adaptive dynamics

specifically, we choose a set of illumination patterns and consecutively apply them to
our system, each one long enough such that the system relaxes to a steady state before
switching to the next illumination. Pumped with the first illumination, the particles
will soon find a stable point close to their initial configuration, which locally maximises
scattering. When we change the illumination conditions and apply a new pattern, the
current particle configuration is most probably not stable anymore, which forces the
particles to a new stable point with respect to the new illumination. Repeating this
process in a periodic or random sequence, we investigate the time evolution of scattered
light and atom configurations. The tendency should be the same as in the previous
section: Scattering is expected to increase since strongly scattering wells have larger
depths and basins of attraction. However, now the particle have to adapt to several
multi-colour patterns. Under this viewpoint, we want to find out if and under which
conditions the particles evolve towards configurations which result in significantly larger
scattering than in the beginning.

5.2.1. Periodic pump sequences for three particles

In a first simple and instructive example we consider three particles, which are consec-
utively illuminated by five illuminations containing only the seven lowest order modes
n € {1,2,3,4,5,6,7} in a fixed, periodic sequence. In this case we can think of changing
an illumination as subsequently imposing five different optical potential landscapes as
in Fig. .7 Under a certain illumination particles relax to a close-by sphere, then the
distribution of spheres changes (i.e. illumination is changed) and the particles find a new
sphere. This process continues in a periodic manner.

We visualise the atomic motion in a three dimensional cube in Fig. [5.3] After a few
initial position changes, the atoms find a suitable closed loop in configuration space
and periodically follow the illumination sequence. Due to the complexity of the optical
potential landscape, for different initial positions a multitude of such loops is attained
for the same illumination sequence. Particles with close-by initial configurations often
enter the same loop (e.g. (c¢) and (d)). Also, we can see that once all particles meet, i.e.
find the diagonal in Fig. like (e) and (f), they stick together, effectively forming one
particle with higher coupling strength. In all example loops at least two particles meet,
which is due to the (unrealistically) low particle number leading to a small configuration
space, and the use of low-order modes leading to relatively few stable points. However,
as we have seen in Fig. [4.7] scattering is high for such configurations. Note that the
deterministic behaviour demonstrated in this example is due to simplifications we made.
In realistic systems, noise would eventually cause the particles to separate and leave a
closed loop.

Each loop has a characteristic output intensity for each mode |a,|*, which could be
used as signatures to experimentally distinguish between them. For the example loops
in Fig. these intensity sequences are shown in Fig. [5.4 Obviously, (c¢) and (d) are
equivalent after the first switch, which is already clear from the trajectory as they end
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A2

Figure 5.3.: Configuration space trajectories for three particles with periodically time-
varying illumination starting at different initial positions denoted by green dots and the
letters (a)-(h). n/n periodically cycles through five different illumination conditions given
by (1,0,1,0,0,0,1), (0,1,1,0,1,1,0), (0,0,1,0,1,0,0), (0,1,1,1,1,1,0), (1,1,1,1,0,1,0).
The illumination changes after the system has reached a stable point (red dots). The
parameters are n = k/5, NUy = —k and 0. = NUy/2 — 2k.

up in the same loop. However, due to symmetry also (a) and (b) have the same form as
(c) and (d) at least after the second switch. Also the two loops on the diagonal (e) and
(f) are equivalent.

Of course, due to its periodic nature the intensity does not increase during the process
as the same loop is repeated many times. This changes if some randomness is introduced
to the dynamics. Such fluctuations can originate from noise as in the previous section or
from a randomly varying pump light as follows.
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Figure 5.4.: Output intensities for each mode of the loops with initial conditions (a)-(h) as
shown in Fig. [5.3|for 10 switches of the illumination Ns,. (a), (b), (c) and (d) are equivalent
to each other after the first switch. Also (e) and (f) are the same due to symmetry.

5.3. Time evolution of larger ensembles with varying
pump light

All the previous examples dealt with low particle numbers interacting with few low
order cavity modes, which illustrate the basic physical mechanism of multicolour self-
ordering. More interesting and realistic examples appear for large particle numbers with
a correspondingly high-dimensional configuration space, and many high-order modes
causing a huge number of stationary states. In such a scenario it is very unlikely for
the particles to find a global scattering optimum, and many intermediate configurations
appear. As we are dealing with classical particles, the necessary computing resources
stay reasonably small even for 1000 particles.

Again, for one realisation we use five illumination patterns where the pumped mode
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5. Adaptive dynamics

frequencies nk are chosen such that n € I = {ny,n; + An,...,n; + 99An} with n; = 1003
and An = 7, which only involves high-order modes. When choosing I we tried to avoid
that the used frequencies are multiples of each other by using odd numbers for n; and
An. As all modes are pumped with equal strength, we can define an illumination by a
sequence of 1’s and 0’s of length 100. Practically, for one set of illuminations we produce
five random 01-sequences with equal probability of 1 and 0, such that in one illumination
approximately 50 frequencies are actually pumped. For simplicity we will use the index
n' to denote the modes, where n’ = 1 corresponds to n = ny, n’ =2 to n = ny + An and
SO on.

In the following discussion we will usually use 100 particles (N = 100), which are
initially randomly distributed in an area of length of the fundamental wavelength
A = 27 /k. Although more particles would give statistically more reliable results, also
computing time increases, which made us settle at 100 particles as a compromise.

5.3.1. Optimum of one illumination

To find out which orders of magnitude we should expect from the scattered intensity, we
calculate some rough estimates.
By pumping a single mode to which the particles are perfectly ordered we get a
maximum scattered intensity of
N2
NU, ot i/iP ’

Py = ’O‘maﬂc‘z = |77‘2 (5.1)
’50 -
which does not depend on n as we use equal pump strengths.
If there was a position where the light is scattered maximally into all modes the photon
number in the cavity would be

N2
Popt = Z‘Odn,maz|2 = Zlnn,?‘éc_NU0+i/€|2’ (52)
which for equal pump strength is simplified to
N2
P, . = N,|n|? : 5.3
pt ’77‘ ’(Sc . NUO +Z'//i|2 ( )

where N, is the number of pumped modes (NN, ~ 50). Practically such a configuration
does not exist, as there is usually no point where all modes have an anti-node.

For the parameters used so far in this chapter (n = /5, NUy = —k and 6, =
NUy/2 —2k), N =100 and N, ~ 50 we obtain

Pg ~ 120 Popt ~ 6000,

where P, can vary for about £1000 if we assume that the number of pumped modes
varies for about 10.
We expect that the actual scattered intensity is well below F,, but higher than Fj.
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5.3.2. Hlumination sets

As mentioned before, we will use the following illumination sets with position frequencies
nk, where n € I = {ny,n; + An,...,ny + 99An} with n; = 1003 and An = 7, and [
contains 100 elements. One specific illumination 1/n is given by one line, i.e. a sequence
of length 100, which specifies if a certain frequency in I is switched on or off. The yellow
highlighting marks pump frequencies which are switched on in all illuminations of a set.
Later we will see, that the value of those frequencies has a crucial impact on the adaptive
behaviour of the particles.
[Nlumination set (1):

00001001001011100110101010111010
01001111100111111001100100100110
11000011100010100110110111100000
11010000011011001011000100000110
00011101111001101010110011110100

0011100010101010000001111011101001000011010011 1 1 1 101000000100111001
1000111101100010001111001111100000011000011001 1 0 1 110111100110110100
0111001000001011100100111011011010101011110000 1 1 1 011010100110011100
0001000011011100110100101000101000100000011111 1 1 1 111000110101010001
1100101100001010101010000110010111010100001001 1 0 1 010101100000000110

[ = T =N

[lumination set (2):

11010000000101000111110111101011
10010000010011110011000101010010
00111000101100011011111000010100
10101001111010000010010101010011
11100001110000011101010010111001

010100101 1101000101100010100111000110100110010011100001000101101011
110100101 0100111111100101100110010101000101110011111000011100101111
11001110 1 0000101011001010010000010101000000110101010100100011100010
010100101 1110011000100101100111000101111010000100100101111111011101
010011111 0110110000111010001001110001010111010010101110011010100010

N =

[Mlumination set (3):

10 1 10110011010111010 1 1101 1 10100100111100101000101000111110101110100000001001001111001001100011011101
11 1 00100000001111100 1 1101 1 11100101010100111000010100000111000000000111110100000100010101101110110111
111 00111101011001100 1 1110 1 10000011001111001101100010010101101110011001000101000001000100101100110010
00 1 01011011000110100 1 0011 1 11101110011000011111100001101100110111000010001010010000110000011110101010
01 1 01011000010010010 1 1110 1 00000000011001000000100001101010110111110011100010011101110011101000001111

5.3.3. Periodic sequences

Connecting to the previous chapter we start with applying a periodic pump sequence
of illumination set (2). In Fig. we show the time evolution of the total scattered
intensity P,,; and the order parameters ©,, for one random initial atom distribution. Of
course, due to the more complicated mode landscape it takes more illumination switches
than for the low particle and mode-order case in the previous section until a stable loop
is found. For this specific initial particle distribution we find that after 15 switches the
time evolution gets periodic. Taking a look at the order parameters reveals that for each
illumination one specific order parameter dominates: particles order according to mode
n' =99 (blue) for illuminations 1-3 and to mode n’ = 91 (black) for illuminations 4-5.
Hence it is also not surprising that the total scattering intensity at stable points ranging
from 145.2 to 157.2 is only a little higher than that of a single laser with perfect particle
order Py &~ 120. Also, scattering does not significantly increase from the initial value.
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Let us also take a look at the form the time evolution of P,,;: When the illumination
is changed, the amount of scattered light drops immediately to values as low as 20, as
at this time the atom ordering is not suitable anymore. Then the particles find a new
order corresponding to the new illumination reestablishing a scattering strength close
to before. To ensure that particles reach the steady state before the next illumination
change, this reordering happens very fast compared to the time between the switches,
rendering the dip very narrow in the plot.

—~
=
~

1.0 = e

O]

Figure 5.5.: Scattered intensity P, and the order parameters ©,, for a fixed, periodic
sequence of illumination set (2). After 15 switches the time evolution is periodic, where
the period is 5 switches AN, = 5 as we apply 5 different illuminations. The parameters
are as in Fig. 5.3

5.3.4. Random sequences

When we apply random sequences of illumination of a certain illumination set, particles
will not attain closed loops and the system will evolve non-predictably on a longer
timescale. Due to the randomness a larger portion of configuration space is explored and
we expect an enhancement of scattering, similar to the case in Section [5.1 where the
randomness came from the noise forces acting on the particles.

However, an adaptation such that scattering increases significantly does only work well
when certain requirements are fulfilled. In the next section we show a negative example.

One mode wins

Fig. shows order parameters and scattered intensity for two realisations (i.e. different
random sequences and initial distribution) using illumination set (1). In both cases, the
particles organise mainly with respect to one mode leading to one order parameter close
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to 1, while P, (ranging from 145 to 170) does not significantly increase over the single
mode scattering of 120 and stagnates in the long term.

Figure 5.6.: Scattered intensity P;,; and the order parameters O, of 100 particles which
are pumped with illuminations randomly chosen out of illumination set (1) for two different
realisations (a) and (b). After a few switches, the particles order according to mode (a)
n' =82 and (b) n’ = 80, respectively. The parameters are as in Fig. [5.3

In realisation (a) and (b) the dominant order parameters are Ogs and Ogy, respectively.
Interestingly, in our chosen illumination set (1), these are exactly the highest modes
which are switched on in all five illuminations marked in yellow in Section [5.3.2] Thus it
becomes clear that once the particles order according to one of those frequencies, the
configuration is close to a stable point under all illuminations and the particles are not
forced to move significantly. However, it also hinders the particles to find a configuration
which adapts to all modes and thus the scattered intensity stagnates at a low value.

Adaptation to many frequencies

To avoid such situations we find that it is sufficient to make sure that high-order modes
are not switched on in all illuminations, while this is still acceptable for low-order modes.
This can be explained as follows: Thinking of the mode landscape as a potential which
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is the inverse of a superposition of all mode intensities, high frequencies (short length
scale) tend to determine the position of the stable points while low frequencies (long
length scale) only weight those, i.e. attach a depth and basin of attraction to them. In
a complex system (many modes and particles) as the present, particles can quite soon
adapt to a high-order mode, but only very slowly approach a configuration adapted to a
low-order mode due to the huge number of stationary points in between. A high-order
frequency present in all illuminations acts like a barrier on this way, stopping further
adaptation as we have seen before. Also if such a barrier does not exist, particles do
not eventually order according to a single low-order mode, but adaptation stops at a
compromise configuration where scattering into many modes is high.

Here we present some working examples, where the scattered intensity increases
significantly. We observe that this adaptation stops after some time, showing that the
particles have found some dynamically stable area in configuration space.

For that we apply random sequences of the illumination sets (2) and (3), where the
highest modes pumped in all illuminations are n’ = 42 and n’ = 26, respectively, both
much lower than in illumination set (1). The time evolution of P, for one realisation is
plotted in Fig. , where we observe that P, (starting from a value of about 140) is
roughly monotonically increasing, demonstrating that the particles continuously improve
their adaptation to the all five illuminations simultaneously. After approximately 8000
switches, this adaptation process stops and P,,; stays within a range of 461 to 507 with
the mean value 485, which is nearly 3.5 times the initial value. The atoms stop moving
significantly (see Fig. (c)) since they have found an area in configuration space which
is well adapted to all modes. This can be seen from the order parameters in (d), where
after 8000 switches many reach values up to 22, which is about half of the theoretical
maximum 50.

Both, the number of switches needed to reach such a state and the resulting light
intensity strongly vary for different realisations. This becomes clear from Fig. (a),
where we compare three different realisations (including the one from Fig. . The
green intensity stagnates after 15500 switches at a mean value of about 663, over 4.5
times larger than the initial intensity, while the blue intensity does not stagnate within
integration time, but increases similarly fast as the other examples. Note that the final
intensity is about one order of magnitude lower than P,,;.

From Fig. (b) we observe that the number of particles in clusters Ny + 1 (i.e.
particles which stick together with zero distance) is to a certain extend proportional to
P,oi. Or, put differently, the system can better adapt to many modes if the effective
particle number N — Nj is lower (and the resulting effective configuration space lower
dimensional), which results in stronger scattering. This is consistent with the two- and
three-particle case in Chapter 4, where we observed that strongest scattering occurs on
the diagonals. As mentioned before, in realistic systems such clusters would be eventually
split up by noise forces. Also in 2D or 3D models, such clusters can be expected to form
much slower due to the larger configuration space.

This adaptive ordering can be interpreted as acquisition of memory of past illuminations.

46



5. Adaptive dynamics

Gtot

O]

.......................................

Ll
20000

0 5000 10000 15000 20000 0 5000 10000
NSU} NS'LU

15000

Figure 5.7.: Time evolution of (a) scattered intensity, (b) total order parameter, (c)
particle positions and (d) order parameters of 100 particles pumped by random sequences
of illumination set (3). After a significant increase Py, stagnates, only fluctuating around
a mean value of 485. The parameters are as in Fig. [5.3

When we apply any of the five illumination patterns after a long time evolution, more
light will be scattered for each configuration than for the random particle distribution in
the beginning. Hence, the system remembers that this illumination has been repeatedly
applied before, whereby the information is stored in the order of the atoms.

Large set of illuminations

When we apply random sequences of illuminations chosen out of a large illumination
set (1000 instead of 5), the scattered intensity initially increases in a similar manner
up to a value of about 500 (see Fig.|5.9| (a)). However, as each illumination is applied
much less frequent (on the average 20 times instead of 4000 times for 20000 switches), a
dynamically stable situation is not found within the integrated time.
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Figure 5.8.: Comparison of the time evolution of (a) the scattered intensity P, and (b)
the number of particles in clusters Ny for three realisations as in Fig. Illumination
pattern (3) was applied for the red and blue curves, while for the green curve illumination
pattern (2) was used. The final value of P, as well as time after which it stagnates varies.

Pumping with more frequencies

Again, we apply random sequences of five illuminations, this time using 1000 frequencies
close to nk with n € {ny,n; + An,...,n; + 999An} and n; = 1003 and An = 7. As
before, we randomly choose five 01-sequences of length 1000 with equal probability of 0
and 1, resulting in about 500 pumped frequencies per illumination.

In Fig. (b) we plot P,y for two realisations. While the input intensity is 10 times
higher than previously, the scattered intensity after 10000 switches is only approximately
2 times higher. Overall we observe an increase from about 420 to 1085, corresponding to
a relative increase of only 2.5, which shows that using these illuminations is less efficient.

Using more particles

From (5.1) we see that the scattered intensity depends quadratically on the particle
number, that is P, oc N2. Here we will simulate the time evolution for 1000 particles,
which should result in scattering enhancement of a factor 100. In Fig. [5.10| we compare
P, and total order parameters for 1000 particles under random sequences of illumination
set (3) with two 100-particle simulations shown in Fig. |5.8 which are scaled accordingly
and where the same illumination set has been used. However, we observe that there is
no significant difference after the first 2000 switches.

Since the illumination defining the characteristic length scale of the potential landscape
is the same as in the 100-particle case, more particles end up in the same well leading to
stronger clustering. In this realisation, the effective particle number after 2000 switches
has decreased to 201, which already gets close to N = 100.
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Figure 5.9.: Scattered intensity for two realisations using a random sequence of (a) 1000
illuminations with approximately 50 pumped frequencies and (b) 5 illuminations with 500
frequencies. The parameters are as in Fig.
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Figure 5.10.: Comparison of the time evolution of (a) the scattered intensity P, with
N = 1000 particles (red curve) and N = 100 particles (green and blue curves), where the
N = 100 curves are multiplied by 100 (that is, scaled according to P,y o< N2). In (b) the
total order parameters for those realisations are shown. There is no significant difference
between N = 1000 and N = 100. In all three realisations illumination pattern (3) was used,
while the remaining parameters are as in Fig. [5.3
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Chapter 6.

Conclusion and outlook

Polarisable particles in a high-finesse cavity which is driven from the side by a red detuned
laser with a sufficiently high pump strength organise into one of two equivalent regular
patterns which scatter with opposite phase. By that the system’s energy is minimised
while scattering into the cavity is maximised. In this work we extended the single laser
drive with one frequency to a multi-colour drive where each laser scatters into a distinct
cavity mode. This results in a complicated potential landscape giving rise to a multitude
of stable patterns with varying scattering efficiency and stability, which leads to a wealth
of intriguing phenomena beyond simple self-ordering.

Employing a simple classical model, we showed that by including momentum diffusion
the particles can hop between various stable patterns, whereby they tend to stay longer
in high-scattering configurations. This gradually leads towards an optimisation of
scattering. When we sequentially apply several multi-frequency illuminations, the system
continuously improves adaptation to find a compromise between the applied illuminations
even without noise. We found that this adaptation leads to a significant increase of
scattered intensity compared to a nearly homogeneous distribution. After the particles
have evolved for some time, the system can react faster on a reappearing illumination
pattern having memorised past conditions. Hence we can consider the system an adaptive
and self-learning light collection system with built-in memory.

Experimentally, this model could be implemented in the framework of cold gases of
atoms in high-Q cavities, which was also the main viewpoint in this thesis. However,
one can also think of alternative set-ups using mobile nano-particles in solutions. Note
that the technology needed to create many equidistant frequencies matching those of the
cavity is available by using frequency combs. The emitted cavity field is an accessible
quantity for experiments, allowing for real-time monitoring of the prevailing particle
configuration [32], 33].

In this work we tried to qualitatively convey basic phenomenons of multi-frequency
self-ordering and thus made many grave simplifications. An extension of this work
could aim for a more realistic treatment of the same aspects. Particularly, it would be
interesting to use system inherent cavity cooling instead of the artificially added friction
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6. Conclusion and outlook

term, which together with noise would lead to a gas in a dynamical equilibrium with
some corresponding temperature.

But also within these simplifications this work should be put on a more stable footing
by using a more systematic approach. For instance, to make more meaningful conclusions
we have to use statistical methods more extensively (e.g. averaging over a large number
of realisations). Also, considering longer time evolutions would be interesting, e.g. when
comparing the behaviour for different particle numbers or to see if the adaptation of
seemingly non-stagnating realisations stagnates later on. Moreover, we would like to
compare the actually reached value of the scattered intensity with the global scattering
maximum, which we were not able to find for the general multi-particle and multi-mode
case. Here one could employ numerical optimisation methods like Metropolis algorithms
or try to analytically show the unproven expectation that the global maximum has to be
on the diagonal of configuration space.

Finally, one could push further into the field of neural networks and explore the
analogies to Hopfield networks [34], which provide a model for understanding human
memory and can be used for pattern recognition.
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Appendix A.

Operator correspondences for functions
of the position operator

We want to rewrite a master equation containing functions of the position operator
into a partial differential equation for the Wigner function W (z, p). Using the operator
correspondences given by , an arbitrary infinitely often differentiable function g(x)
of the position operator x acting on a density matrix p has the correspondence

ih 0 & g™(0) ih 0 \"
g(@)p <9 (554‘28]3) W(z,p) —nz:%) ol 554‘5879 W (z, p)

(A1)

where we used the notation g™ (0) = agi (@)

o Similarly, we obtain

oo l T i Lo
i) (o= 5 ) wien) =51 20D () Swen. (2

=0

The correspondences for commutator and anti-commutator are

dg(z) (in)' &
o)l 3 GO (F) S (A30)

29'g(x)
Il Oxt

ih\' &
<2> a—plW(m,p). (A.3b)

{g(x),p} < Y

le2N
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Appendix B.

Stable particle configurations in the
single-frequency case for N atoms

We apply the stability criterion discussed in section on the simple case of N atoms
within a single-mode field while neglecting U, and for d. < 0. The equilibrium points
have to fulfil the single-mode form of equation (4.2])

F; o< Y cos(kx;)sin(kz) =0 Vi (B.1)
]

Hence we need that either

1. cos(kxz;) =0 Vi or

2. cos(kz;) # 0 for at least one ¢ and >_; sin(kx;) = 0.
From F; o< > sin(kz;) cos(kx;) we get the Jacobian

Jij = ng o cos(kw;) cos(kx;) — ;5 sin(kx;) > sin(kay). (B.2)
ZEj ]

For the stability criterion we need to calculate the eigenvalues of this matrix.

Case 1

As cos(kz;) = 0 we have sin(kx;) = £1. The Jacobian is diagonal, so the eigenvalues are

the diagonal elements
Ni = —sin(kz;) > sin(kay). (B.3)
!

There are three different scenarios:

o If all sin(kx;) are the same (e.g. all +1 or all -1) we get A\; < 0 Vi. Hence those
points are stable.
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B. Stable particle configurations in the single-frequency case for N atoms

e In the balanced scenario (same number of +1 and -1) we get \; = 0 and we can’t
make a conclusion about the stability. However, as >, sin(kz;) = 0 those points
are included in case 2 and the classification can be postponed.

e Otherwise (unbalanced) we always get A; > 0 for at least one i. These points are
unstable.

Case 2

As the matrix with the entries J;; = cos(kx;) cos(kx;) is the product of one vector with
itself, all but one eigenvalues are zero. The non-zero eigenvalue is the normalisation
squared of this vector, hence
A= cos®(kxy).
1

As at least one cos(kz;) # 0 we have A; > 0 and all equilibrium points obtained by case
2 are unstable.

Thus the only stable points are fulfilling cos(kz;) = 0 and sin(kx;) = 1 or sin(kz;) = —1
for all i. That is kx; = 7/2 + 2mm or kx; = 3w/2 + 2mm for all i (m € Z) which are in
the diagonal of the N-dimensional space.
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Appendix C.

Dimensionless form of the equations of
motion

For numerical simulations we need to work with the dimensionless equations of motion.

For this we want to consider dimensionless quantities. Spatial quantities are transformed

with k& and time quantities with wr = % A system is then fully determined by choosing

the dimensionless quantities, k and wg (or m). Specifically, we get
e position: x; — kx;

e momentum: p; — &

spatial frequency: k, =nk —n

time: t — wprt

Uo

e frequencies: e.g. Uy — p

o field: o, — o,

This leads to the coupled equations of motion (3.26])

jéizjt; - 2% (C.1a)

(?(Ej%t)) =— Zn:n (g}imn\z sin(2nkz;) + Z;(oan + o)) cos(nk:avj)) (C.1b)

dzij;t) =1 (j; — ZZ j sin2(nkxj)) ay, — a:;a” — Z'ZZZ; zj:sin(nk:xj). (C.1c)
For the over-damped motion (3.30) we obtain

jéfjg) = —26‘:% ;n (g}i|an|2 sin(2nkz;) + Z;(an +ar) cos(n/mj)) : (C.2)
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C. Dimensionless form of the equations of motion

with the field in the steady state (3.28))

N > sin(nkx;)
n - 50 U 92 . .
wr % — L3, sin (nkxj) + i
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