
Exploiting Collective Effects in a
System of Interacting Quantum

Emitters

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science

(MSc)

eingereicht an der
Fakultät für Mathematik, Informatik und Physik

der Universität Innsbruck

von
David Plankensteiner, BSc

Betreuer:
Univ. Prof. Dr. Helmut Ritsch

Mitwirkender Betreuer:
Dr. Claudiu Genes

Institut für Theoretische Physik

Innsbruck, am 24 November 2014





Abstract
We study a chain of closely spaced two-level atoms subject to dipole-dipole interactions
and collective decay. Phenomena like super-radiance can occur, which is physically very
interesting but detrimental in many applications, including Ramsey or Rabi spectroscopy.
Advanced control and manipulation of the collective effects is therefore of interest.
We first advance a proposal that allows for the exploitation of the mutual interactions
in order to reduce the collective decay. This is done by modifying the symmetry of the
states of the system via manipulation of the individual phases of each atom in the chain.
This reduces the collective decay rate exponentially with the atom number N , i.e. the
system becomes more sub-radiant by adding more atoms to the chain.
In a first step, we distribute the individual phases equally among the atoms in the
chain in order to achieve maximal asymmetry. The resulting states are then used in the
well-known Ramsey spectroscopy. We show that, using these asymmetric states, the
resulting signal sensitivity exhibits a scaling with N that shows an improvement over
the case of independently decaying atoms (1/

√
N).

The same method of phase-spreading is used to protect a multipartite entangled state
(spin-squeezed state) against decay. Analytical results for two interacting atoms are
explicitly calculated and yield favourable results. Dynamics of larger systems are
computed numerically.
Up to this point, the coherent part of the dipole-dipole interaction in the atom chain
does not play a major role. In the last part of the thesis, however, we suggest a
technique that involves making use of the energy shifts that are introduced by the
mutual dipole-dipole interaction. Specifically, the most robust multipartite state is
identified and energetically separated from shorter-lived states. This separation gets
larger by a reduction of the interatomic distance, i.e. by increasing the dipole-induced
energy shifts. Phases similar to the ones used in the previous applications are directly
imprinted on the system by a proper design of the driving laser’s configuration. This
method essentially allows for the application of a π-pulse on the system (initially in
the ground state) in order to coherently transfer the population into the most robust
state. Finally, an experimental realization employing a magnetic field gradient yielding
time-dependent phases is discussed. Numerical simulations of the dynamics of the system
validate the efficiency of the suggested procedure.
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Zusammenfassung
Wir untersuchen eine Kette dicht gedrängter Zwei-Niveau Atome, in der Dipol-Dipol
Wechselwirkung und kollektiver Zerfall von Relevanz sind. Zweiteres führt zu Phänome-
nen wie etwa Super-Radianz, die in vielen Anwendungen, darunter Ramsey und Rabi
Spektroskopie, einen unvorteilhaften Einfluss haben. Daher ist ein besseres Verständnis
und die Kontrolle über diese kollektiven Effekte von größtem Interesse. Zu diesem Zweck
wird eine Kette von äquidistanten Zwei-Niveau Atomen untersucht.
Eine Methode, die es erlaubt die gegenseitige Wechselwirkung der Atome auszunutzen,
um den kollektiven Zerfall zu reduzieren, wird gezeigt. Dies kann durch einen Bruch
der Symmetrien der Zustände des Systems erreicht werden, welcher wiederum durch
Manipulation der individuellen Phase eines jeden Atoms in der Kette herbeigeführt
wird. Im Anschluss wird gezeigt, dass dieser reduzierte kollektive Zerfall des Ensembles
mit steigender Anzahl von Atomen N exponentiell abnimmt, was effektiv bedeutet,
dass die Sub-Radianz des Systems durch hinzufügen neuer Atome zu der Kette weiter
gefördert wird.
Als ein erstes Beispiel für die Vorteile, die eine solche Zerfallsreduktion bietet, werden
die Einzelphasen von Zuständen, die in der gemeinhin bekannten Methode der Ramsey
Spektroskopie verwendet werden, gleichverteilt, um maximale Asymmetrie zu erzeugen.
Mit Hilfe dieser neuen, asymmetrischen Zustände, wird dann gezeigt, dass man eine
Skalierung der resultierenden Signalgenauigkeit mit der Atomzahl erreichen kann, die
über den Fall unabhängig zerfallender Atome (1/

√
N) hinausgeht.

Für die selbe Art der Phasenverteilung wird eine weitere Anwendung präsentiert, näm-
lich der Schutz eines verschränkten Vielteilchen-Zustandes (Spin-Squeezed Zustand) vor
Zerfall. Im Zuge dessen werden analytische Ergebnisse für zwei wechselwirkende Atome
hergeleitet, welche die Vorteile von phasenverteilten Zuständen verdeutlichen. Diese
Ergebnisse werden dann durch numerische Simulationen auf Ketten mehrerer Atome
ausgeweitet.
In den bis zu diesem Punkt diskutierten Anwendungen war die Dipol-Dipol Wechsel-
wirkung der Atome in der Kette nur ein störender Faktor von geringer Relevanz. Im
letzten Teil dieser Arbeit wird jedoch ein Vorschlag unterbreitet, wie man die Energiever-
schiebungen, die in den Energieniveaus durch die Wechselwirkung der Dipole induziert
werden, ausnutzen kann, um einen äußerst robusten Vielteilchen-Zustand zu präparieren.
Hierbei wird zuerst der Zustand mit der längsten Lebensdauer identifiziert und es wird
gezeigt, dass man ihn durch eine Reduktion der Distanz zwischen den Atomen in der
Kette, was effektiv einer drastischen Zunahme der Wechselwirkung der atomaren Dipole
entspricht, energetisch von den restlichen Zuständen separieren kann. Nachdem diese
Separation geschehen ist, kann man den Zustand energetisch ansprechen, jedoch müssen
weiters noch Phasen, ähnlich denen, die in den vorigen Anwendungen verwendet wurden,
direkt über den treibenden Laser auf das System übertragen werden, um die Symmetrie
der Anregung an die Asymmetrie dieses langlebigen Zustandes anzupassen. Diese Metho-
de macht es möglich, einen π-Puls auf das System (welches anfänglich im Grundzustand
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ist) anzuwenden, sodass sich dieses dann in dem Zustand mit der geringsten Zerfallsrate
befindet. Zuletzt wird diskutiert, wie man solche Phasen in einem treibenden Laser
experimentell realisieren könnte. Dies kann mit Hilfe eines Magnetfeldgradienten erreicht
werden, dessen induzierte Energieverschiebungen äquivalent zu zeitabhängigen Phasen
sind. Numerische Simulationen der Dynamik des Systems bestätigen die Effizienz der
vorgeschlagenen Prozedur.
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Chapter 1

Introduction

There are many modern research fields such as quantum metrology [2] and quantum
information processing [3] where technology has reached the level at which the most
fundamental effects of interaction between atoms in an ensemble is of significant relevance.
It has hence recently been of growing interest to further the understanding of those
fundamental effects and learn how to control, manipulate and even use them to our
advantage. There have been recent proposals [4, 5] as how to reduce the collective
emission, which often is a limiting factor, by manipulating the phases of each emitter in
an ensemble individually.
The purpose of this thesis is to analyze and exploit collective effects of quantum emitters
in possible applications. While mutual decay and dipole-dipole interactions are described
for more general systems, the discussion is soon restricted to a chain of two-level atoms
with a small interatomic distance (lattice constant). Still, such a chain configuration
already has a vast amount of applications, some of which that are also discussed in this
thesis, such as Ramsey spectroscopy, state protection and preparation.
First, the theoretical premise for the treatment of the system is set in Chapter 2. After
a brief discussion of the quantum mechanical model of an ensemble of two-level atoms,
the time dependent dynamics are presented. The time evolution is computed via the
well-known master equation, which is characterized by a Hamiltonian operator that is
defined beforehand and a Liouvillian superoperator in standard Lindblad form. The
interatomic interaction in the chain consists of dipole-dipole interaction as well as
mutual decay. While the dipole shifts are included in the dynamics by a respective term
in the Hamiltonian, the mutual decay rates are the dissipative rates in the Liouvillian.
These collective effects are discussed for two-level atoms in an arbitrary geometry, just
before the restriction to a chain configuration is made.
Afterwards, the mutual decay rates are used as elements of a matrix and it is established
that the states of the system under consideration can only decay through certain
channels (decay channels) with rates that are the eigenvalues of this matrix. The scaling
of these rates, specifically the minimal and maximal one, with an increasing number of
atoms is investigated. The results gained for various applications throughout the thesis
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1 Introduction

are compared to this scaling.
Once the framework of decay has been presented, an idea as how to reduce the collective
decay by breaking the symmetry of the states under consideration is provided. This is
done by individual manipulation of the phase of each atom in the chain. A corresponding
proposal will be the main concern of the thesis. To further motivate the effectiveness
of reducing the symmetry, states with equally distributed phases containing only one
excitation are considered. Even though those states are not, in general, eigenstates of
the system Hamiltonian, they form a basis in the subspace of single excitation states.
Furthermore, it is shown that the phase-spread states become eigenstates of the system
in the limit of extremely small lattice constants in the chain [6]. The derivation of an
analytical expression for the decay rates of these states is presented and the minimal
and maximal decay rates are compared to the eigenvalues of the decay rate matrix.
To conclude this chapter, the previously discussed proposal of phase distribution is
formulated once again in terms of rotations on the Bloch sphere that can be applied to
an arbitrary state of the atomic chain in order to reduce its symmetry.
The following chapters each present one specific application where favourable results due
to the proposed reduction of symmetry and decay are gained. Chapter 3 and 4 discuss
applications in which the phase-spread rotations that have been previously defined are
proven to be of great use. Namely, chapter 3 contains a brief discussion of Ramsey
spectroscopy, which is a well established method in quantum metrology. The fact that
the emission rate is a limiting factor in the signal sensitivity of this spectroscopic method
makes the proposed reduction of decay highly desirable. Numerical methods are applied
in order to show that application of the phase-spread rotations does indeed yield better
results than when following the common method of Ramsey spectroscopy.
In chapter 4, on the other hand, preparation of an entangled state in form of a spin
squeezed state is discussed. It is then shown that by applying the same phase-spread
rotations once again, one can even protect the entanglement in such a state against
decay. This, of course, is also highly desirable since entanglement is an expensive
resource in quantum processing.
Chapter 5 contains a new proposal. Instead of preparing a state and then applying
an operation of phase-distribution in order to reduce its decay rate, the aim in this
chapter is the direct preparation of a robust state [7]. This is done by first numerically
identifying the state with the lowest decay rate. The dipole-dipole interactions can then
be used in order to produce energetic shifts lifting the degeneracy in the single-excitation
subspace and are eventually large enough to energetically separate the states from one
another far enough to be able to specifically address this state. Since the state under
consideration is asymmetric, the laser used to drive the system has to imprint this
asymmetry in the form of phases similar to the ones previously defined in the context
of the phase-spread rotations. In order to demonstrate the working principle of such an
asymmetric driving, the phases that need to be imprinted are artificially included in
the Hamiltonian that describe the exciting laser. The optimal phases turn out to be
the same ones used in the phase-spread rotations and the efficiency of the procedure
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is confirmed by numerical results. Once the general motivation has been given and
sufficiently justified, a proposal as how to experimentally realize such a phase imprinting
driving is discussed. Specifically, this can be achieved by utilizing a magnetic field
gradient, which shifts the single atom excited states progressively. This is motivated
by a brief analytical discussion, followed by application of numerical methods, again
showing great efficiency of the procedure.
Chapter 6 offers general conclusions and an outlook on future matters of research.
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Chapter 2

Theoretical Concepts

In this chapter a detailed description of an ensemble of quantum emitters and the
collective decay of such a system is provided. For the mathematical description it is
irrelevant if said ensemble consists of two-level atoms or spin-1/2 particles or any other
sort of emitter, since the dynamics are equivalent from a mathematical point of view.
For example, choosing these emitters to be two-level atoms simply manifests itself on
the labelling of the levels of these emitters. Namely, from here on out the levels of a
single emitter shall be called |g〉 for the ground state and |e〉 for the excited state.
The collective effects of such an ensemble of atoms consist of the mutual decay but also
the dipole-dipole interaction. The strength of both of these depends on the geometry of
the arrangement of the atoms. The simplest, yet unrealistic case would be to assume
equal coupling between all atoms. This, however, makes little sense for a detailed
discussion. The focus will therefore be on a little more involved case, namely a chain
configuration with equal distance between all atoms.

2.1 System Hamiltonian and Eigenstates
Describing an ensemble of two-level atoms is mathematically equivalent to describing
an ensemble of spin-1/2 particles. Therefore, the states and energies of a single atom
are eigenstates and eigenvalues of the σz Pauli-Matrix,

σz |e〉 = |e〉 ,
σz |g〉 = − |g〉 . (2.1)

Note, that the eigenvalues here are to be taken in units of the quantized spin h̄
2 , i.e. an

atom in the excited state corresponds to a spin-1/2 particle with a spin of h̄
2 aligned in

the z-direction.
Further dynamics of a single atom can be described by the remaining Pauli-Matrices,
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2 Theoretical Concepts

namely

σ± = 1
2(σx ± iσy), (2.2)

σ+ |g〉 = |e〉 , σ− |e〉 = |g〉 .

The operators σ+ and σ− are called raising and lowering operator, respectively.
An ensemble of N such atoms span a Hilbert space of dimension 2N , i.e. operators in
that space are 2N × 2N matrices, including the system Hamiltonian. Neglecting the
dipole-dipole interaction, this Hamiltonian has the simple form

H0 = ω0

2

N∑
i=1

σ(i)
z , (2.3)

where ω0 is the transition frequency of one atom. The additional index i of the operator
σ(i)
z denotes that the operator σz is applied to the i− th particle only, namely

σ(i)
z = 12(i−1) ⊗ σz12(N−i) . (2.4)

Here, 1n is simply the identity matrix of dimension n × n. It is obvious that the
eigenstates of the Hamiltonian in (2.3) are simply tensor products of the single atom
states. The corresponding eigenvalues are also just a sum over the eigenvalues of σz of
the state of each atom,

H0 |ege...g〉 = ω0(1
2 −

1
2 + 1

2 + ...− 1
2) |ege...g〉 . (2.5)

Here, the short form of the tensor product was used, i.e. |ege...g〉 = |e〉⊗|g〉⊗|e〉⊗...⊗|g〉.
It is also obvious that there are 2N such states, spanning the entire Hilbert space as it
must be the case for an eigenbasis of a hermitian operator.
However, things are not quite as simple. To fully describe the coherent dynamics of the
system one needs to account for dipole-dipole interaction between the atoms. This is
described by the dipole Hamiltonian

Hdip =
∑
j 6=k

Ωjkσ
+
j σ
−
k , (2.6)

yielding a complete system Hamiltonian of

H = H0 +Hdip = ω0

2

N∑
j=1

σ(j)
z +

∑
j 6=k

Ωjkσ
+
j σ
−
k . (2.7)

This newly introduced dipole Hamiltonian is responsible for coherent energy transfer
between the atoms. The discussion of the strength of the dipole-dipole interaction,
namely the Ωjk in (2.6), will be given in the following section. For now, the predominant
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2.1 System Hamiltonian and Eigenstates

problem shall be the fact that this Hamiltonian does not share the simple eigenstates
of H0, i.e. [H0, Hdip] 6= 0. As it will be shown later, an analytical computation is not
possible except for some special cases. This is due to the form of the Ωjk.
Assuming an equal strength of dipole-dipole interaction between all atoms of the
ensemble, i.e. Ωjk = Ω ∀ j 6= k, as is the case for two atoms, it is possible to rewrite
the Hamiltonian in terms of the collective operators Sz and S2. These are defined as

Sν = 1
2

N∑
i=1

σ(i)
ν , where ν ∈ {x, y, z},

S2 = S2
x + S2

y + S2
z . (2.8)

Therefore, eigenstates of the system are common eigenstates of two collective operators.
Such states are more commonly known as Dicke states [8]. They are denoted by |S,M〉,
where S = N

2 and |M | ≤ S, such that

S2 |S,M〉 = S(S + 1) |S,M〉 ,
Sz |S,M〉 = M |S,M〉 . (2.9)

The eigenvalue S is more commonly thought of as the size of the collective spin of a state,
whileM is just the total of spin-1/2 particles aligned in the z-direction. The ground state
is the one where all spins point downwards in the z-direction, i.e. |S = N

2 ,M = −N
2 〉,

since this state corresponds to the minimal eigenvalue of H0 (lowest energy). In the
picture of two-level atoms, the ground state, of course, contains zero excitations.
Note, that for simplicity the Hilbert space is usually restricted to the symmetric states
where S = N

2 , reducing the dimension from 2N to just N + 1. In this context symmetric
is synonymous for invariant under swapping of particles. For example, the symmetric
state containing a single excitation is

|N2 ,−
N

2 + 1〉 = 1√
N

N∑
j=1

σ+
j |G〉 , (2.10)

where |G〉 = |g〉⊗N is the collective ground state. Unfortunately, this symmetric
description is not sufficient for any further treatment of the underlying Hamiltonian
from (2.7). Hence, one needs to include the asymmetric states in the description, which
are highly degenerate, in order to describe the entire Hilbert space of dimension 2N . Even
though the DIcke states are not eigenstates of the general system Hamiltonian, their
similarity and symmetry properties can be helpful in further discussions. Specifically,
it will be shown that states of lower symmetry decay much slower than those of high
symmetry. This will later coin the terms sub-radiance and super-radiance, respectively.
In conclusion of this brief introductory discussion, it is important to again state that
the eigenstates of our system cannot be expressed analytically due to reasons that will
become clear in the following.
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2 Theoretical Concepts

2.2 Collective Dynamics
It is clear that atoms in an ensemble with dipole-dipole interaction cannot be treated
independently. The strength of the interaction of the atoms depends on the type of
atoms as well as their geometry. As before, our treatment will be restricted to identical
two-level atoms. First, a description of collective effects will be given for arbitrary
geometries, though later on the main focus will lie in the investigation of an atomic
chain.
As will be seen in the following, both the collective dipole-dipole coupling and the
mutual decay of the atoms can be included by describing the dynamics of our system
via a Master Equation.

2.2.1 Description of Dissipation - Master Equation
The time evolution of a state with density matrix ρ of a lossless system with Hamiltonian
H can be computed via a unitary time evolution operator, i.e. the time-dependent
Schrödinger equation. This way of computing the time evolution is equivalent to

∂ρ

∂t
= i[ρ,H]. (2.11)

Note, that for our specific system the dipole-dipole interaction that is included in H,
couples the 4N differential equation gained for the densitiy matrix elements.
Losses of the system can be regarded by introducing dissipative terms in the above
equation [9],

∂ρ

∂t
= i[ρ,H] +

∑
j,k

(
CjρC

†
k −

1
2(C†jCkρ+ ρC†jCk)

)
, (2.12)

where the operators Cj are collapse operators that describe the dissipation of the system.
The additional term introduced in (2.12) can be written as superoperator L[ρ] and is
called Liouville operator. Equation (2.12) then reads

∂ρ

∂t
= i[ρ,H] + L[ρ] (2.13)

and is called Master equation1.
For our setup, i.e. damping rates [Γij]Ni,j=1, we can define a Liouvillian in standard
Linblad form in order to describe the losses in the system dynamics [3],

L[ρ] =
N∑

i,j=1

Γij
2 (2σ−i ρσ+

j − σ+
i σ
−
j ρ− ρσ+

i σ
−
j ). (2.14)

1For a thorough derivation of the Master equation, please refer to [9][10]
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2.2 Collective Dynamics

The rates Γij are generalized spontaneous emission rates including the mutual coupling
of the i-th and j-th atom. Obviously, Γij = Γji ∀ i, j and Γii = Γ is the single atom
decay rate.
Just as it was the case for the dipole-dipole interaction (Ωij), the decay rates Γij are of
no simple form. The respective functions to compute both the dipole-dipole shifts and
mutual decay rates will be briefly presented and discussed in the following.

2.2.2 Dipole-Dipole Interaction and Decay

0.0 0.5 1.0 1.5 2.0 2.5 3.0

rij/λ0

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ωij/Γ

Γij/Γ

Figure 2.1: Dipole-dipole coupling and collective emission rates. Both Ωij and Γij have
been plotted in units of the single atom decay rate Γ as functions of the interatomic
distance rij in units of the transition wavelength λ0 at θ = π

2 , i.e. α = 0.

The strength of the interaction among atoms is subject to multiple parameters. Given
that all atoms have the same dipole moment µ, both the dipole-dipole interaction Ωij

and the mutual decay rates Γij depend on the system’s geometry and the relative angle
of this dipole moment θ to said geometry. When Γ is the single atom decay rate and
rij = |ri − rj| denotes the norm of the relative position vector of atom i and j, the
dipole-dipole shifts and decay rates can be computed as [3]

Ωij =− 3Γ
4

((
1− α2

) cos k0rij
k0rij

−
(
1− 3α2

)(sin k0rij
(k0rij)2 + cos k0rij

(k0rij)3

))
, (2.15)

Γij =3Γ
2

((
1− α2

) sin k0rij
k0rij

+
(
1− 3α2

)(cos k0rij
(k0rij)2 −

sin k0rij
(k0rij)3

))
. (2.16)

The parameter k0 = ω0
c
is just the transition wave number and α = cos θ. Note, that

both these functions go to zero for k0rij → ∞, yet Ωij diverges, while Γij → Γ for
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2 Theoretical Concepts

k0rij → 0 (See also [11]).
Let us mention, that from this point on a chain configuration of these atoms will
be considered, with all dipole moments orthogonal to the direction of the chain, i.e.
rij = a|i−j|, where a is the distance between nearest neighbour atoms (lattice constant),
and α = 0 (See Fig. 2.1). Note also that the main concern lies with systems of positive
coupling, i.e. chain configurations where a < 0.5λ0.

2.2.3 Decay Channels
In a physical picture the mutual decay rates Γij are difficult to grasp. A more simplistic
view will therefore be presented. The system can only collectively decay through certain
channels with their respective decay rates (See Fig. 2.2). Mathematically these rates
are simply the eigenvalues of the matrix with elements [Γij]Ni,j=1.

�A

⌦

⌦
2�

2�

�

�S
�A �A

�

4�S/3

�S
�A

Figure 2.2: Schematics of the decay channels for three atoms.2The schematic shows the
decay channels for 3 atoms in a configuration of mutual coupling, namely a triangle, such
that Γii = Γ, Γ12 = Γ13 = γ, γS = Γ + 2γ and γA = Γ− γ.

2Schematics by Laurin Ostermann, Institut für Theoretische Physik, Universität Innbsruck, Technik-
erstrasse 25, A-6020 Innsbruck, Austria
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2.2 Collective Dynamics

In order to show that a system in a state described by a density matrix ρ actually
does decay only through such channels, one has to investigate the Liouvillian from
(2.14).
Since all elements in the previously mentioned decay rate matrix are real and non-zero, it
is possible to find a real and orthogonal matrix, that shall be called T , which diagonalizes
said matrix,

N∑
i,j=1

(T−1)kiΓijTjl =
N∑

i,j=1
TikΓijTjl = γkδkl. (2.17)

Here, γk is the k-th eigenvalue of the decay matrix. Transforming the raising and
lowering operators σ± in the same way leads to another set of such operators working
in the basis where the decay matrix is diagonal. These operators can be defined as

Π±k :=
∑
i

(T−1)kiσ±i . (2.18)

Inverting this definition

σ±i =
∑
k

TikΠ±k , (2.19)

one can express the raising and lowering operators in terms of these new operators and
replace them in (2.14), yielding

L[ρ] =
N∑

i,j=1
k,l=1

Γij
2 (2TikΠ−k ρTjlΠ+

l − TikΠ+
k TjlΠ−l ρ− ρTikΠ+

k TjlΠ−l )

=
N∑

i,j=1
k,l=1

TikΓijTjl
2 (2Π−k ρΠ+

l − Π+
k Π−l ρ− ρΠ+

k Π−l ). (2.20)

Making use of (2.17), this becomes

L[ρ] =
N∑
k=1

γk
2 (2Π−k ρΠ+

k − Π+
k Π−k ρ− ρΠ+

k Π−k ), (2.21)

which can be called a standard Linblad Liouvillian in decay channel form. This also
clearly shows that the dissipation of a state can be written in terms of such channels
that decay with a rate that is an eigenvalue of the decay matrix.

2.2.4 Scaling Laws of Decay Rates
Now that we have established that the system decays with rates that are the eigenvalues
(or a superposition of them) of the decay matrix, the investigation can be extended to

11



2 Theoretical Concepts

questions of scaling. Once again due to the non-periodic functions that are needed to
compute the elements of the decay matrix, analytical treatment is limited. However,
it is quite a simple numerical task to discuss the scaling of the minimal and maximal
decay rate with the atom number N , since it only requires the diagonalization of a
matrix with dimensions N ×N . These values will represent a theoretical limit to the
minimization (sub-radiance) and maximization (super-radiance) of the decay rates of
the treated system. They are only a theoretical limit due to the fact that they represent
the decay rates of the respective channel, but do not account for excitations due to
interaction and coherent population redistribution due to dipole-dipole interaction. Still
the limits can be presented, and in later sections it will be investigated how close one
can get when running numerical simulations for a realistic system setup (See Fig. 2.3).

12



2.2 Collective Dynamics

(a) (b)

(c) (d)

Figure 2.3: Scaling of minimal and maximal eigenvalue. The graphs present the scaling
of the minimal and maximal eigenvalues of the decay rate matrix, γmin and γmax in units of
the single atom decay rate Γ, with the atom number N . (a) and (c) show the real scaling
of minimum and maximum, respectively. It already becomes clear that the minimum
decreases way faster than the maximum grows. (c) and (d) show the logarithmic scaling
where one can see that while the minimum decreases exponentially (linear in logarithmic
plot), the maximum grows only polynomially with N .

2.2.5 Scaling of Decay Rates in a Realistic System
Considering only the eigenvalues of the decay rate matrix is not quite realistic since it
does not account for effects like coherent population redistribution between the atoms
due to dipole-dipole interaction. This can lead to an increase of the minimally possible
decay rate of the eigenstates of the system, i.e. of the Hamiltonian defined in (2.7).

13



2 Theoretical Concepts

An approximate yet more realistic method of estimating the minimal decay rate is to
initialize the system in the fully inverted state and letting it decay freely, explicitly
including dipole-dipole interaction. During this time evolution one can measure the
population of the ground state. Obviously, the states of larger decay rates decay faster.
Hence, when considering sufficiently large times all populations but the state of lowest
decay rate γmin (and the ground state) can be neglected. The ground state population
evolves in time as depicted in Fig. 2.4 and for large times can be safely approximated as

pG(t) ≈ 1− e−γmint, for t ≈ γ−1
min. (2.22)

It is then possible to fit this presumed form of the ground state population. However, it

0 2 4 6 8 10 12 14

Time Γt

0.0

0.2

0.4

0.6

0.8

1.0
Ground State Population for N=7 at a=0.35λ0

Ωij off

Ωij on

Figure 2.4: Ground state population as a function of time. Presented is the population
of the ground state of a chain of N = 7 atoms at a distance of a = 0.35λ0. It becomes
clear that the decay is enhanced if dipole interaction is included, i.e. the ground state
population grows faster in time if Ωij is taken into account as well. The single atom decay
rate Γ has been chosen to be unity, yielding a unitless time.

is convenient to fit to the logarithm of this approximate function since that will simply
yield a linear dependence instead of an exponential one. The decay rates obtained via
this method are displayed in Fig. 2.5. Though larger than the minimal eigenvalue the
scaling essentially remains the same, i.e. exponential in N , which becomes clear when
comparing Fig. 2.3(b) and 2.5(b).
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2.3 Reduction of Decay

(a) (b)

Figure 2.5: Scaling of the fitted minimal decay rate with the atom number. The decay
rates have been fitted according to (2.22) for different atom numbers N at a distance of
a = 0.35λ0. It is again clear that the dipole-dipole interaction has the unfavourable effect
of enhancing the decay rate. Still, as it can be seen in (b) the minimal decay rate exhibits
an exponential decrease (or at least close to it) in N . Unfortunately, numerical methods
are limited to small atom numbers since the computation of the full time evolution requires
solving a set of 4N coupled differential equations.

2.3 Reduction of Decay

For a vast field of applications, some of which will be presented in this very thesis, it
is of interest to reduce the decay of an ensemble of two-level atoms. Some examples
for such applications are quantum memory, increasing the lifetime of entanglement, an
enhancement of quantum metrology (See chapter 3), etc. The simplest theoretical and
also experimental treatment of such an ensemble is, however, addressing all particles in
the ensemble in the same way. This will in all cases lead to a collective state in the
symmetric subspace, as mentioned before. Unfortunately, such states are usually super-
radiant, meaning that not only is the decay not reduced by interaction of the atoms,
but rather even vastly enhanced. Obviously, such an enhanced decay is unfavourable
for a lot of applications and for everything that will be treated in this thesis.
In order to address collective states of low symmetry one has to manipulate each atom
in the ensemble individually, which already poses a problem for an exact theoretical
treatment, but definitely presents a challenge in terms of experimental realizability.
However, as the theoretical and numerical results will show, the effects of super-radiance
can not only be eliminated but even reversed, effectively utilizing collective effects to
achieve vastly lower collective decay. States with such a reduced decay rate will be
dubbed sub-radiant. Furthermore, it will be shown that this reduced rate of decay is
decreased even further when adding more atoms to the chain.
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2 Theoretical Concepts

2.3.1 Phase Distribution
The physical idea behind this reduction of decay is to make use of the interaction
between particles. Specifically, instead of keeping all atoms in phase, as is the case for
super-radiance (symmetric states), one aims to equally spread the phases in order for
them to minimize the symmetry of the state (See Fig. 2.6). Another way to think of

Figure 2.6: Schematics of phase distribution. The symmetric and phase-distributed case
for a chain of N = 3 and N = 4.

this minimization of symmetry is that highest asymmetry causes maximally destructive
interference upon emission, i.e. less photons are emitted and the decay rate is therefore
lower. Mathematically, one can further motivate this idea by trying to find a state
which minimizes the overlap with super-radiant states.

|ψφ〉 = 1√
2N

N⊗
j=1

(|g〉+ eiφ(j−1) |e〉) (2.23)

Unfortunately, analytical investigation is already terminated at this point. However,
one can gain more insight when working in a subspace of the system restricted to only
a single excitation. Also, from a physical point of view, one could anticipate that the
state of the system with the lowest possible decay rate contains a single excitation since
states of that form can only decay to the ground state whilst states of higher excitations
couple to a manifold of states enhancing their decay rate. Hence, for purposes of further
investigation, it makes sense to work in this subspace. Note, however, that no actual
proof that the state of lowest decay rate is in this subspace will be provided.

2.3.2 The Single-Excitation Subspace
The states of our system are also eigenstates of the collective operator Sz. Hence, such a
state can only be a superposition of bare states (bare basis {|e〉 , |g〉}⊗N ) containing the
same number of excitations. Therefore, the eigenbasis of the Hamiltonian can be split
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2.3 Reduction of Decay

into subsets of different excitation numbers. Each subset of states containing a certain
amount of excitations forms a basis in the respective subspace. As it was mentioned
before, however, the analytical form of those eigenstates is unknown, so one can only
make use of states close to the eigenstates and of relevance for physical investigations.
Specifically, we will be considering the subspace containing a single excitation (exciton)
and approximate eigenstates in that space. The lifetime of such states has also been
subject to recent research [12].
The symmetric state in the single-excitation subspace is assumed to be the symmetric
Dicke state containing only one excitation, also referred to as the |W 〉 state,

|W 〉 = 1√
N

N∑
j=1

σ+
j |G〉 . (2.24)

The overlap with the phase-spread state (2.23), that one seeks to minimize, yields

〈W |ψφ〉 = 1
N

N∑
j=1

eiφ(j−1) → 0. (2.25)

Equation (2.25) is satisfied for phases distributed equally over 2π, namely of the form

φ = 2πm
N

, (2.26)

where m is an integer that counts the different possibilities of distributing the phases.
When m = 0, the overlap in (2.25), is maximized instead of minimized, since this
corresponds to a state of zero phases, i.e. the |W 〉 state itself. The same is true for
m = N . Therefore m is limited to 0 < m < N for the phase-spread state to fulfil (2.25).

Phase States

The phase states for different m form a basis in the single excitation subspace. Namely,
the set of states {|m〉}N−1

m=0, where

|m〉 := 1√
N

N∑
j=1

e−iϕ
(m)
j σ+

j |G〉 (2.27)

span the single-excitation Hilbert space of dimension N . The phases were redefined to
include the index j, such that

ϕ
(m)
j = 2πm

N
(j − 1). (2.28)

With this definition of phases the phase states are obviously normalized. In order for
them to form a basis, they have to be mutually orthogonal. This condition is also
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2 Theoretical Concepts

fulfilled,

〈m′|m〉 = 1
N

N∑
j,k=1

ei(ϕ
(m′)
k
−ϕ(m)

j ) 〈G|σ−k σ+
j |G〉 = 1

N

N∑
j,k=1

ei(ϕ
(m′)
k
−ϕ(m)

j )δkj

= ei(m−m
′)

N

N∑
j=1

ei
2π
N
j(m′−m) = δmm′ . (2.29)

Note, that the state |m = 0〉 is the previously used |W 〉 state. Furthermore, it shall be
stated at this point that the phase states are eigenstates of the collective operator Sz to
one degenerate eigenvalue,

Sz |m〉 =
(
−N2 + 1

)
|m〉 , ∀ m. (2.30)

Hence, they are eigenstates of H0, yet not of Hdip effectively making them no eigenstates
of the system under consideration. However, they do share symmetry with, and therefore
physical properties of, the actual eigenstates.
This point can be shown as follows: Considering the dipole-dipole interaction Ωij in a
chain configuration of atoms at extremely small distances, it is sufficiently close that

Ωi,i+2

Ωi,i+1
→ 0, a� λ0, (2.31)

i.e. the interaction between nearest neighbours is dominant over long range interactions.
Furthermore, one needs to assume N to be large in order to push the upper limit of
the sum in (2.32) from N − 1 to N . The dipole Hamiltonian when only considering
interactions with the nearest left and right neighbour then can approximately be written
as

Hdip ≈ Ω
∑
j

(
σ+
j σ
−
j+1 + σ+

j σ
−
j−1

)
= Ω

N∑
j=1

(
σ+
j σ
−
j+1 + σ+

j+1σ
−
j

)
. (2.32)

Here, Ω = Ωj,j+1, ∀ j is the strength of the dipole-dipole interaction between nearest
neighbours. Note that the action of the operator σ−k on a phase state as defined in
(2.27) is

σ−k |m〉 = 1√
N

N∑
j=1

e−iϕ
(m)
j σ−k σ

+
j |G〉 = e−iϕ

(m)
k

√
N

. (2.33)
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2.3 Reduction of Decay

Hence, the action of the dipole Hamiltonian in the approximate form in (2.32) on a
phase state [6][13] is

Hdip |m〉 = Ω√
N

∑
j

(e−iϕ
(m)
j+1σ+

j |G〉+ e−iϕ
(m)
j σ+

j+1 |G〉)

= Ω√
N

∑
j

(e−i 2πm
N e−iϕ

(m)
j σ+

j |G〉+ ei
2πm
N e−iϕ

(m)
j σ+

j+1 |G〉)

= Ω(e−i 2πm
N |m〉+ ei

2πm
N |m〉) = 2Ω cos 2πm

N
|m〉 . (2.34)

From this it becomes clear, that even though the phase states are not eigenstates of the
system, they are indeed very close to them when working in a chain configuration with
small distances between the atoms. It is therefore of interest to investigate the decay of
these states.

Decay of the Phase States

In order to find the decay rate of a state one has to consider the master equation
(2.13). The decay rate is the rate at which the population of state |m〉, namely the
density matrix element ρmm, decreases over time. Given the complete density matrix
ρ = ∑N−1

m,m′=0 ρmm′ |m〉 〈m′| which obeys the master equation, the differential equation
for the element ρmm is

ρ̇mm = 〈m| ρ̇ |m〉 = i 〈m| [ρ,H] |m〉+ 〈m| L[ρ] |m〉 . (2.35)

In order to keep complexity to a minimum, it makes sense to consider (2.35) term by
term. First, using (2.33), the commutator yields

i 〈m| [ρ,H] |m〉 = i 〈m| [ρ,Hdip] |m〉

= i

N

∑
m′,j 6=k

Ωjk

(
ρmm′e

i(ϕ(m′)
j −ϕ(m)

k
) − ρm′me−i(ϕ

(m′)
j −ϕ(m)

k
)
)

= − 1
N

∑
m′,j 6=k

2ΩjkIm{ρmm′ei(ϕ
(m′)
j −ϕ(m)

k
)}. (2.36)

Furthermore, it is clear that the overlap of the first term of the used Lindblad operator
does not conserve excitation and hence is zero for all phase states (as they reside in the
single-excitation manifold).

∑
j,k
m̃,m̃′

Γjk 〈m|σ−j ρm̃m̃′ |m̃〉 〈m̃′|σ+
k |m′〉 = 0, ∀ m,m′ (2.37)
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The remaining terms in the Liouvillian, however, do couple a state in the single-excitation
manifold to others. It is easy to see that

〈m| L[ρ] |m〉 = −
∑
j,k

Γjk
2
(
〈m|σ+

j σ
−
k ρ |m〉+ 〈m| ρσ+

j σ
−
k |m〉

)
= −

∑
j,k

ΓjkRe{〈m|σ+
j σ
−
k ρ |m〉}. (2.38)

Hence, one only needs to compute one overlap in order to find the action of the Liouville
operator,

∑
j,k

Γjk 〈m|σ+
j σ
−
k ρ |m〉 =

∑
m′,j,k

Γjkρm′m 〈m|σ+
j σ
−
k |m′〉 =

=
∑
m′,j,k

Γjkρm′mei(ϕ
(m)
j −ϕ(m′)

k
). (2.39)

So, the master equation yields the following differential equation for the population of
a phase state |m〉,

ρ̇mm = − 1
N

∑
m′

∑
j 6=k

2ΩjkIm{ρmm′ei(ϕ
(m′)
j −ϕ(m)

k
)}+

∑
j,k

ΓjkRe{ρmm′ei(ϕ
(m′)
j −ϕ(m)

k
)}

 .
(2.40)

In order to find the decay rate of ρmm one would have to solve this equation, which is not
possible analytically. However, making the drastic move of discarding all terms where
m′ 6= m, equation (2.40) can be investigated analytically. This part of the differential
equation corresponds to decay directly to the ground state, effectively neglecting all
coherences to other states ρmm′ . When working in the single-excitation subspace, the
states can only decay directly to the ground state. Hence, the idea to gain physical
insight by investigating this part of the differential equation only is justified.
By discarding all terms where m′ 6= m, equation (2.40) is reduced to its homogeneous
part, yielding

ρ̇hommm = −ρ
hom
mm

N

∑
j 6=k

2iΩjk sin (ϕ(m)
j − ϕ(m)

k ) +
∑
j,k

Γjk cos (ϕ(m)
j − ϕ(m)

k )
 = −γmρhommm .

(2.41)

This differential equation can readily be solved by ρhommm = ρhommm (0)e−γmt, hence the
population decays with the rate γm. The expression for this rate has been implicitly
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(a) (b)

(c) (d)

Figure 2.7: Scaling of the phase state decay rate with m at different distances. (a) and
(b) show the decay rate γm/Γ as a function of m at different distances. As expected, for
distances where the mutual decay rates between nearest neighbour atoms are positive,
the minima lie at m = N

2 , while if the mutual coupling between closest atoms is negative,
m = 0 becomes optimal. Furthermore, it is clear from (b) that for a large number of
atoms, i.e. additional negative couplings between atoms farther apart, small values of m
can enhance the decay rate instead of decreasing it.
In (c), on the other hand, the scaling of the phase state decay rate at m = N

2 with the
atom number N is visible. As long as one is working in the area of positive nearest
neighbour couplings, the decay rates appear to shrink with growing N . However, for
distances where nearest neighbour couplings are negative (see a = 0.5λ0), the scaling with
N is becomes comparable to the maximal eigenvalue of the matrix [Γij ] (See Fig. 2.3(c)).
Finally, (d) shows the logarithm of the minimal decay rates, where it becomes clear that,
even though slower, the scaling of the minimal phase state decay rate is still exponential
with N .
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defined in (2.41), but can be further simplified.

γm = 1
N

∑
j 6=k

(
2iΩjk sin (ϕ(m)

j − ϕ(m)
k ) + Γjk cos (ϕ(m)

j − ϕ(m)
k )

)
+

N∑
j=1

Γjj


= Γ + 1

N

∑
j<k

2iΩjk(sin (ϕ(m)
j − ϕ(m)

k ) + sin (ϕ(m)
k − ϕ(m)

j )) +
∑
j 6=k

Γjk cos (ϕ(m)
j − ϕ(m)

k )


= Γ + 1
N

∑
j 6=k

Γjk cos (ϕ(m)
j − ϕ(m)

k ) (2.42)

Using the exact definition of the phases (2.28), one can gain a quite simple expression
for the phase state decay rate, i.e.

γm = Γ + 1
N

∑
j 6=k

Γjk cos 2πm
N

(j − k), (2.43)

making an analytical analysis possible (See also [14][15]). Since especially the minimal
and maximal decay rates are of interest, one seeks to extremize the decay rate with
respect to m. This can be done by taking the derivative of (2.43),

∂γm
∂m

= − 1
N

∑
j 6=k

Γjk
2π
N

(j − k) sin 2πm
N

(j − k) = 0,

⇔ 2πm
N

(j − k) = nπ, n ∈ Z. (2.44)

Note, that this extremization condition is only with respect to m. The global extremes
of the decay rate, however, still depend on the size of the lattice constant a, i.e. on
the specific values of Γjk for different j, k. Since these mutual decay rates can be
positive or negative depending on the interatomic distance, the global extremes are not
necessarily identical to the local extremes given by an m that satisfies the condition in
(2.44). However, one can consider certain distances where the global and local extremes
coincide. One example of such a distance is the limit of very small lattice constants
(a < 0.5λ0), since this restriction corresponds to a majority of positive mutual decay
rates Γjk (See Fig. 2.1).
Obviously, m = 0 satisfies the condition in (2.44). This choice of m corresponds to
the local maximum of γm, as it is expected since the state |m = 0〉 is super-radiant. If
m > 0, then

2πm
N

= nπ ⇔ m = N

2 . (2.45)

Choosing m in such a way will yield a local minimum for small distances between the
atoms in a chain, yet can result in a maximum if the distance between the atoms is
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chosen in such a way that the majority of the mutual decay rates is negative. Since the
mutual decay rates in a chain configuration change sign at a distance of about a ≈ 0.5λ0
(See Fig. 2.1), one can anticipate the transition to the case where m = 0 is optimal to
occur in this region. This is illustrated in Fig. 2.7(a). Note also, that for odd numbers
of atoms, the extremizing m is no longer an integer but a half-integer. Even though the
state that corresponds to this value of m = N

2 is not an element of the phase state basis
{|m〉} for odd N , it is still a valid state in this subspace. The function of the decay
rate will yield two identical local extremes when investigated for integer m only in the
case of an odd atom number N at m = N±1

2 . However, the one true local extreme is of
course at m = N

2 .
Numerical results of decay rates for different m can be seen in Fig. 2.7 and validate
every point in the above discussion.

Dipole Shifts of the Phase States

0 2 4 6 8

m
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6

Phase State Dipole Shift δωm/Γ for N = 10

a=0.1λ0

a=0.4λ0

a=0.5λ0

Figure 2.8: Dipole shifts for different m. As opposed to the decay rates (See Fig. 2.7),
for a distance of a = 0.5λ0 the minimum still remains at m = N

2 . This is due to the fact
that the mutual dipole-dipole interaction remains positive for this distance (See Fig. 2.1).
However, at distance a = 0.4λ0, the minimum is not where it would be expected. This
is again caused by the specific form of the Ωij and unfortunate sign change of negative
parts of the function at larger distances (next-nearest neighbour and farther). The results
of minimization hold, though, when restricting the investigation to very small distances
in the chain (a ≈ 0.1λ0).

It is of further interest to investigate the dipole shifts of the phase states. The energy
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shift ∆ωm of a state |m〉 that is caused by the dipole Hamiltonian Hdip can be computed
by

∆ωm = 〈m|Hdip |m〉 =
∑
j 6=k

Ωjk 〈m|σ+
j σ
−
k |m〉

=
∑
j 6=k

Ωjk

N
ei(ϕ

(m)
j −ϕ(m)

k
) = 1

N

∑
j 6=k

Ωjk cos 2πm
N

(j − k). (2.46)

The relation in (2.33) was once again used for this calculation. The similarity of the
function for the dipole shift ∆ωm in (2.46) to the computation of the decay rate γm
in (2.43) is obvious. Therefore, extremization of (2.46) does not have to be performed
since it obviously yields the same result as for γm (see (2.44)). Hence, the state of lowest
decay rate |m = N

2 〉 (at small distances in the chain) is also subject to the minimal
dipole shift. Note that the dipole shifts, as opposed to the decay rate, can be negative.
The minimal dipole shift is therefore the maximally negative one. The dipole shifts for
different states |m〉 have been plotted in Fig. 2.8.

In conclusion, it is again noteworthy that these phase states are of great physical
relevance when discussing collective effects of decay in an ensemble of two-level emitters
containing one excitation only. This is due to their symmetry properties, which are
quite similar to the properties exhibited by eigenstates of the system, even though the
states are not identical. This motivates further investigation of such phase-distributed
states and their applications on realistic systems, including more than one excitation.

2.4 Rotations on the Bloch Sphere
The state of an ensemble of two-level quantum systems can be described by a Bloch
vector. Said vector is the expectation value of the total spin operator S = (Sx, Sy, Sz).
The set of all Bloch vectors spans a three-dimensional sphere with a diameter of length
N , the Bloch sphere. A change of the state of an ensemble, e.g. by applying an exciting
laser, is mathematically equivalent to a rotation of the Bloch vector on the Bloch sphere.

2.4.1 General Rotations on the Bloch Sphere
The Pauli matrices are generators of three-dimensional rotations. A rotation of the
Bloch vector of a single particle around an angle φ therefore is just eiφ2 σν , when rotated
about the axis ν ∈ {x, y, z}. This can be generalized to describe rotations of the
collective Bloch vector, namely

Rν [φ] =
N∏
j=1

ei
φ
2 σ

(j)
ν . (2.47)
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The operators σ(j)
ν act on the j-th particle non-trivially, as in (2.4). Rotations of the

form (2.47) rotate each single particle Bloch vector around the same angle φ. This
corresponds to an addressing of all atoms in the same way effectively working on the
symmetric subspace. This also leaves the length of the collective Bloch vector invariant.
Note also, that when working with rotations on the Bloch sphere, it is assumed that
the excitation of the atoms is instant, i.e. there is no time for transitions (decay) to
take place.
The definition in (2.47) can, however, be extended to rotations which address each
particle individually, simply by replacing the angle φ by a set of distinct angles {φj}Nj=1,
rotating each single particle Bloch vector around an arbitrary angle. Such an individual
addressing is necessary in order to change the symmetry of a state.

2.4.2 Phase-Spread Rotations
It was mentioned before that states of lower symmetry appear to decay more slowly.
An example of such low symmetry states was given by the phase states (2.23). However,
the system has first to be prepared in such a state or at least in a state close to it. The
aim now is to formulate so-called phase-spread rotations which can be applied to an
arbitrary state and achieve the goal of putting the system in a state close to the phase
states. This is possible and hence gives rise to the hope that one can reduce the decay
of the system by the application of such rotations.
The aim is to reduce the symmetry by manipulating the individual phases of the atoms
in the chain while leaving the state otherwise invariant, i.e. the number of excitations in
the state remains unchanged. Since the single atom states are eigenstates of the Pauli
matrix σz, such a manipulation of phases can be achieved by phase-spread rotations
about the z-axis

R(m)
z =

N∏
j=1

eiϕ
(m)
j σ

(j)
z /2. (2.48)

Here, the equally spread phases ϕ(m)
j as defined in (2.28) were used. The integer m

again simply counts the possibilities of equally distributing N phases over 2π. Note
that, due to symmetry of the rotations in m, it is sufficient to consider the range where
0 ≤ m ≤ bN2 c, where b

N
2 c is the largest integer smaller or equal to N

2 .
For states that have a Bloch vector with some extension in the x-y-plane, application of
a phase-spread rotation as in (2.48) will have the effect of equally spreading these x-
and y-components about the z-axis such that they add up to zero, yielding a state with
a Bloch vector aligned with the z-axis.

Two Atom Case

To further motivate the application of such phase-spread rotations, it is of use to invest-
igate the case of N = 2. Two bases can be chosen, the bare basis {|gg〉 , |ge〉 , |eg〉 , |ee〉}
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2 Theoretical Concepts

and the collective basis {|G〉 , |S〉 , |A〉 , |E〉}. These two bases are connected by

|G〉 = |gg〉 , |S〉 = 1√
2

(|eg〉+ |ge〉),

|E〉 = |ee〉 , |A〉 = 1√
2

(|eg〉 − |ge〉). (2.49)

The states |S〉 and |A〉 are commonly referred to as the symmetric and asymmetric state,
respectively. Note that, the collective basis is the actual eigenbasis of the Hamiltonian
as defined in (2.7) and also coincides with the Dicke states for N = 2. Hence, it is
most useful to work in this basis. Furthermore, it is noteworthy that the states in
the single-excitation subspace, i.e. |S〉 and |A〉, are just the phase-states as defined in
(2.27), with |S〉 = |m = 0〉 and |A〉 = |m = 1〉. Both these properties are a particularity
of the two atom case.
Defining the mutual decay rates to be Γ11 = Γ22 = Γ and Γ12 = Γ21 = γ, the system
can decay through two decay channels with respective decay rates of γS = Γ + γ and
γA = Γ− γ. When computing the decay rates as shown in (2.43), it is easy to see that
the symmetric decay rate γS corresponds to the symmetric state, while the asymmetric
state decays with γA. When working in areas of small distances between the two atoms
(a < 0.5λ0), the asymmetric decay rate is significantly lower than the symmetric one.
The choice of m in the phase-spread rotations is obviously limited to be m = 1,
yielding phases of ϕ(1)

1 = 0 and ϕ(1)
2 = π. These phases also lead to the property that

R(1)
z = −

(
R(1)
z

)−1
. Since both the ground state |G〉 and the fully inverted state |E〉 are

invariant under rotations about the z-axis (up to negligible global phases), the only
action of the phase-spread rotations will be on symmetric and asymmetric state.

R(1)
z |S〉 = 1√

2
(
e−i

π
2 |eg〉+ ei

π
2 |ge〉

)
= −i |A〉 (2.50)

R(1)
z |A〉 = −i |S〉 (2.51)

The global phase is, of course, of no relevance for the dynamics of the system. Hence,
when given a state that is a superposition including the symmetric state, one can
reduce its decay rate by applying such a phase-spread rotation. This application will
effectively change the contribution of the symmetric state to the decay, that is γS, to
the (eventually vastly) lower decay rate γA. This motivates the idea that one can also
use the phase-spread rotations in order to reduce the decay in larger systems of high
symmetry.
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Chapter 3

Protected State Ramsey Spectroscopy

A well known procedure that is routinely performed on an ensemble of two-level atoms
is the so-called Ramsey spectroscopy. The aim is to find the resonance frequency ω0 of
the addressed transition of the atoms in the ensemble with optimal precision. Due to the
fact that the procedure includes an as long as possible period of free time evolution of
the atoms, decay and collective effects are of great relevance. As it will be seen shortly,
the mutual decay of such a system is a limiting factor in the measurment precision. It
is therefore of interest to reduce said decay to a minimum. When performing Ramsey
Spectroscopy, the common method is to address all atoms in the same way, effectively
working on the symmetric (super-radiant) subspace of the system. This motivates the
idea that not only one could eliminate the effect of super-radiance, but even exploit
collective effects using phase-spread operations as discussed in Sec. 2.3. It will be shown
that one can indeed utilize the phase-spread operations leading to a significant gain in
the sensitivity when compared to the common procedure of Ramsey spectroscopy [4].

3.1 Ramsey Procedure
The standard Ramsey Procedure consists of three parts. With the ensemble initially
being in the ground state, the first step is to apply a π

2 -pulse, which corresponds to a
rotation as defined in (2.47),

Ry

[
π

2

]
=

N∏
j=1

ei
π
4 σ

(j)
y = ei

π
2 Sy . (3.1)

The application of this rotation to the ground state yields an initial state of the form

Ry

[
π

2

]
|G〉 =

(
|e〉+ |g〉√

2

)⊗N
= 1√

2N
N∑
k=0

(
N

k

) 1
2

|N2 ,−
N

2 + k〉 . (3.2)

Note that the first equality is the representation in the bare basis using single atom
states |e〉 and |g〉, while the second is the representation of the state as a superposition
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3 Protected State Ramsey Spectroscopy

of symmetric Dicke states (collective states) |S,M〉. After the preparation of this state
the system is subject to free time evolution and therefore to decay for a certain time
τ . Then a second π

2 -pulse is applied, rotating the system into a state close to the fully
inverted state |E〉 = |e〉⊗N (See Fig. 3.1).
After the entire procedure the state inversion of the system, namely 〈Sz〉, is measured.

Figure 3.1: Standard Ramsey Procedure. The first π
2 -pulse is applied instantaneously,

such that the system is in a state with a Bloch vector perfectly aligned with the x-axis
at time t = 0. This is followed by free time evolution until t = τ , and finally a second
π
2 -pulse is applied.

Such a signal is shown in Fig. 3.2 as a function of the detuning ω = ω0 − ωl, where
ωl is the reference frequency. Signal analysis, namely investigation of the slope of this
function gives rise to the minimal signal sensitivity, δω, which is

δω = min
[

∆Sz(ω, τ)
|∂ω〈Sz〉(ω, τ)|

]
. (3.3)

Here, ∆Sz =
√
〈S2

z 〉 − 〈Sz〉2 is the variance of Sz. The minimization is performed with
respect to ω.
Since the system is in a superposition of all symmetric states (3.2), it is clear that
the decay rate of the ensemble will be enhanced by collective effects (super-radiance).
Even when ignoring all interactions and treating the atoms as independent, the signal
sensitivity is vastly limited by the decay rate Γ,

δωind = eΓτ/2
√
Nτ

. (3.4)

It is clear that due to the simplified treatment this expression is not correct but provides
a lower boundary for the common Ramsey procedure, since super-radiance will further
limit the resolution to larger values than given by independent treatment. This, of
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Figure 3.2: Signal as a function of the detuning between the atomic transition and the
excitation frequency.

course, is again only for positive coupling between the atoms, i.e. positive Γij. Hence,
when working in a chain configuration, it is again of use to work with the restriction to
small distances between nearest neighbour atoms. Furthermore it is noteworthy that
the independent signal sensitivity is minimal at τopt = 2/Γ.

3.2 Enhancement via State Protection
The basic idea now is to apply the rotations as defined in (2.48) in order to protect the
system from decay during the free time evolution thereby retaining a state that is closer
to the initally prepared one. The aim is to achieve a better signal sensitivity than when
performing the common Ramsey technique.
A procedure similar to the one shown in Fig. 3.1 can be performed, which will include
an additional rotation that will reduce the symmetry of the system. Namely, after the
initial π

2 -pulse, a phase-spread rotation will be applied, resulting in a state with zero
average classical dipole (See Fig. 3.3).

R(m)
z Ry

[
π

2

]
|G〉 =

N∏
j=1

eiϕ
(m)
j σ

(j)
z

(
|g〉+ |e〉√

2

)⊗N
(3.5)

This pulse can loosely be dubbed Generalized Ramsey Pulse. The phases, once again,
are ϕ(m)

j = 2πm
N

(j − 1) with 0 < m < bN2 c. As before, b
N
2 c is the largest integer that is

29



3 Protected State Ramsey Spectroscopy

smaller or equal to N
2 . Unfortunately, there is no simple expression for states of this

form. Analytical results are therefore fairly limited. In order to get to results that show
the signal sensitivity, numerical methods will have to be applied.
After the free time evolution, the phase-spread must be reversed before the second
π
2 -pulse is being applied. Hence, instead of just applying Ry

[
π
2

]
one has to apply

Ry

[
π
2

]
(R(m)

z )−1, which can be referred to as the second generalized Ramsey pulse.

Figure 3.3: Modified preparation step for Protected State Ramsey spectroscopy.

3.3 Numerical Results
A full numerical simulation of Ramsey spectroscopy requires the computation of the
free time evolution of the treated system and hence is numerically intense. Therefore
numerical results will only be presented for small atom chains (See Fig. 3.5).
When comparing Fig. 3.5(a) and Fig. 3.5(b) (or Fig. 3.5(c) and Fig. 3.5(d)) it can be
seen that the difference between the case where no phases are applied (m = 0) and the
independent decay, but also their difference to the application of the optimal phase-
spread rotations (m = N

2 ), are larger for smaller distances. This is due to the scaling
of the collective effects with distance (See Fig. 2.1). Note also, that the enhancement
achieved by applying optimal phase-spread rotations is also larger for more atoms
(compare Fig. 3.5(a) and Fig. 3.5(b)). When recalling that the lowest possible decay
rate of such a system scales most favourably in N (See Fig. 2.3(b)), and furthermore
recounting the fact that one effectively reduces the system’s decay by applying these
phase-spread rotations, this effect of additional enhancement for larger atom numbers
can be expected.
It was mentioned that the function of the signal sensitivity for independently decaying
atoms possesses a minimum at τopt = 2/Γ. The naive hope at this point is to use this
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Figure 3.4: Scaling of the optimal sensitivity with the atom number. The minimal
sensitivity (with respect to detuning and time) is plotted. It has been modified such that
the scaling of the independent sensitivity from (3.4) (δωind ∝ 1/

√
N) is rendered constant

and normalized to unity (with Γ = 1). From this it is clear that the proposed method
of Protected Ramsey spectroscopy yields a sensitivity that goes beyond the standard
quantum limit.

in order to find the minimal decay rate of a system as treated in the Ramsey procedure
and investigate its change with N , yielding a scaling similar to the minimal eigenvalue of
the decay rate matrix. This will give some insight on the efficiency of the phase-spread
rotations, namely how close one can get the system to the minimally possible rate of
decay (see also Fig. 2.4). The decay rate will be computed as

Γmin = 2
τopt

. (3.6)

The real result of interest is, however, shown in Fig. 3.4, where it is clearly shown that
the scaling of the signal sensitivity with the atom number N gained via the proposed
method of Ramsey spectroscopy goes beyond the scaling in the case of independently
decaying atoms (3.4). As you can see in Fig. 3.6, the system is quite close to the
minimal decay rate further justifying the application of phase-spread rotations and
explaining the results shown in Fig. 3.5.
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Figure 3.5: Signal sensitivity of standard and protected Ramsey spectroscopy. (a) and
(b) display the signal sensitivity for two atoms at distances of a = 0.2λ0 and a = 0.4λ0,
respectively. The same distances have been used in (c) and (d). It is clear that for these
choices of distances applying the phase rotations enhances the sensitivity. Furthermore,
it is clear that smaller distances increase the enhancement achieved by application of
phase-spread rotations.
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(a) (b)

Figure 3.6: Scaling of the minimal decay rate. The scaling of the minimal decay rate as
computed in (3.6) with the atom number N is displayed in (a). As a reference the minimal
eigenvalue from Fig. 2.3(a) is also shown. The computation has been performed in a chain
at distance a = 0.35λ0. The larger decay rate for N = 3 is due to this particular choice of
distance. When considering three atoms at the distance chosen, the negative coupling
between the two outermost atoms outweighs the positive nearest-neighbour couplings (see
Fig. 2.1 at a distance of a = 0.7λ0), effectively reversing the effect of the phase-spread
rotations, therefore increasing the decay rate. In (b) the logarithm of the decay rates has
been plotted in order to show the exponential scaling of the minimal decay rate with N .
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Chapter 4

Protection of a Spin-Squeezed State

For some time now, spin squeezing has been subject to various investigations and
applications [16] . The usefulness of spin-squeezed states is therefore obvious, which
is owed to the fact that systems that are in a spin-squeezed state have been shown to
contain two particle quantum correlations, i.e. entanglement, which is a well-known
and useful resource for quantum information.
It is therefore of interest to investigate the lifetime of such spin-squeezed states and
whether or not one is able to prolong this lifetime by state protection as it was used in
chap. 3.

4.1 Theory of Spin Squeezing
Since spin squeezing itself is not affiliated with the collective effects that cause decay
and the reduction of those as is discussed throughout this thesis, a brief theoretical
overview will be provided at this point.
An ensemble of N two-level atoms can be treated as an ensemble of pseudo-spin-1/2
particles. Hence, the state of the system can be described by the eigenstates |S,M〉 of
the collective operators S2 and Sz, as defined in (2.8), where 0 ≤ S ≤ N

2 and |M | ≤ S.
Such a state gives rise to a normalized Bloch vector of

n = 〈S〉
|〈S〉|

, (4.1)

where S = (Sx, Sy, Sz).

Measure of Squeezing - Squeezing Parameter

Just as it is the case for coherent and squeezed Fock states [17], coherent and squeezed
spin states are of minimal uncertainty in the phase space. In terms of operators, these
uncertainties of a spin state are given by the variances of operators belonging to a
Bloch vector orthogonal to the Bloch vector n itself. Namely, the phase space of a spin
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4 Protection of a Spin-Squeezed State

state is the plane perpendicular to the Bloch vector of the state. It is spanned by two
perpendicular vectors n⊥ and n⊥′ (See Fig. 4.1). One can use these vectors to define

Figure 4.1: Schematic of phase space of a coherent and squeezed spin state. As opposed
to what one would expect from squeezed Fock states, the phase diagram of a spin-squeezed
state does not show an ellipse.

two operators

S⊥ = n⊥ · S,
S⊥′ = n⊥′ · S, (4.2)
with n ⊥ n⊥ ⊥ n⊥′ . (4.3)

These operators are conjugate and hence subject to the Heisenberg uncertainty relation,

∆S⊥∆S⊥′ ≥
1
2 |〈[S⊥, S⊥

′ ]〉|. (4.4)

Here, ∆S⊥ =
√
〈S2
⊥〉 − 〈S⊥〉2 is the variance of the operator S⊥. Using the definition in

(4.3) and the commutator relation of the collective operators [Si, Sj] = i
∑
k εijkSk, this

relation simplifies to

∆S⊥∆S⊥′ ≥
1
2 |〈S〉|. (4.5)

As it was mentioned, both coherent and spin-squeezed states are of minimal uncertainty,
i.e. the uncertainty relation in (4.5) reaches equality for the variances of the respective
perpendicular operators. For a coherent spin state, however, both variances are also
equal, describing a circle in the phase space while for a spin-squeezed state one is smaller
than the other, though they still hold equality in the Heisenberg uncertainty relation as
schematically shown in Fig. 4.1.
In order to measure the squeezing of a state, one can define a so-called Squeezing
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Parameter which shall be denoted as ξ from here on out. There have been many
different definitions of such parameters. It will be defined here in such a way that ξ = 1
for a coherent spin state and 0 < ξ < 1 for a squeezed spin state,

ξ := min
φ

[√
N∆Sφ
|〈S〉|

]
. (4.6)

At this point the variance of the rotated operator Sφ was used. It is clear that in order
for ξ to be a reliable measure of squeezing one has to extremize the variance in the
phase space. Hence, one has to rotate one of the perpendicular operators around the
Bloch vector of the state and minimize the corresponding variance with respect to the
rotational angle φ. A rotation of this form can be performed as it was discussed in
(2.47), using the Bloch vector as rotational axis and gives rise to the following definition
of Sφ,

Sφ = eiφ(n·S)S⊥e
−iφ(n·S) = S⊥ cosφ+ S⊥′ sinφ. (4.7)

Note, that due to the very definition of the perpendicular operators S⊥ and S⊥′ their
expectation values vanish, which is obvious considering

〈S⊥〉 = 〈n⊥ · S〉 = n⊥ · 〈S〉 = 0. (4.8)

Therefore, the definition of the squeezing parameter further simplifies to

ξ = min
φ


√
N〈S2

φ〉
|〈S〉|

 , (4.9)

where the minimization is, as mentioned, performed with respect to the rotational angle
φ.

Squeezing a Coherent Spin State - One-Axis Twisting

Now that a measure for the amount of squeezing a state contains has been defined, it is
of interest how to actually squeeze a state. Since the focus here is the protection of such
a squeezed state against decay and not on the process of squeezing itself, it is sufficient
to make use of the simplest known way to squeeze a state. This is achieved by time
evolution of a system with the so-called One-Axis Twisting Hamiltonian [16]

Hχ = χS2
ν . (4.10)

Here, ν ∈ {x, y, z} has to be chosen according to the state one seeks to squeeze.
Squeezing with a poorly chosen operator could leave the state invariant. Note, that to
be certain one could also use S⊥ as defined in (4.3) instead of Sν . The parameter χ
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defines the strength of the squeezing. The Hamiltonian in (4.10) gives rise to a unitary
time evolution operator of the form

Uχ(τ) = e−iχτS
2
ν . (4.11)

Applying this to a coherent spin state for a certain time τ will yield a squeezed spin
state with phase space variances shaped like the one displayed in Fig. 4.1. Note that the
time and strength of the squeezing operation have to be small enough for the norm of
the Bloch vector to remain sufficiently large. Otherwise the definition of the squeezing
parameter given in (4.9) is no longer valid, i.e. ξ →∞ for |〈S〉| → 0. In general it is
sufficient to restrict time and strength to χτ � π/4.

Ground State Squeezing of Two Atoms

At this point a brief example of squeezing a coherent spin state shall be given. It is
easy to check that the ground state |G〉 = |−N

2 ,−
N
2 〉 is a coherent spin state. The

normalized Bloch vector simply points in the z-direction and hence the perpendicular
operators are Sx and Sy, with respective variances ∆Sx =

√
〈S2

x〉 =
√
N
2 and ∆Sy = ∆Sx.

Therefore, equality in (4.5) is achieved,

∆Sx∆Sy = N

4 = 1
2 |〈Sz〉| =

1
2 |〈S〉|. (4.12)

This means that the ground state is indeed a coherent spin state. One can then
arbitrarily choose between S2

x and S2
y to perform the squeezing operation as defined

in (4.11). In the case of two atoms (N = 2), the resulting squeezed state |SS〉 is a
superposition of the ground and fully inverted state |E〉 (neglecting a global phase),

|SS〉 = Uχ(τ) |G〉 = cosµ |G〉+ i sinµ |E〉 , (4.13)

where µ := χτ

2 . (4.14)

As one can see, the state |SS〉 is basically the GHZ-state |GHZ〉 = 1√
2(|G〉 + |E〉)

for µ = π
4 , which yields a zero-norm Bloch vector and therefore a divergent squeezing

parameter. This shows the necessity of the restriction to χτ � π
4 .

The variance of the rotated operator Sφ as defined in (4.7) is

〈S2
φ〉 = cos2 φ〈S2

x〉+ sin2 φ〈S2
y〉+ 2 cosφ sinφRe{〈SxSy〉}. (4.15)

It is easy to see that 〈S2
x〉 = 〈S2

y〉 = 1
2 for the squeezed state |SS〉. Also, it is quite

simple to check that Re{〈SxSy〉} = − cosµ sinµ. Hence, the variance has a minimum of

min[〈S2
φ〉] = 1

2 + min[−2 cosµ sinµ cosφ sinφ] = 1
2 − cosµ sinµ. (4.16)

38



4.2 Protection of Spin Squeezing

Note that, when plotting 〈S2
φ〉 as a function of the rotational angle φ in a polar plot,

the result is a shape similar to the one all the way on the right in Fig. 4.1.
The norm of the Bloch vector is the absolute value of the expectation value 〈Sz〉 =
− cos2 µ sin2 µ. Combining all these results, we gain the following expression for the
squeezing parameter,

ξ =
√

1− 2 cosµ sinµ
| cos2 µ− sin2 µ|

. (4.17)

It is again clear that ξ < 1 for µ > 0, as long as one keeps to the restriction that was
given before, i.e. µ� π

4 , since ξ will yield an indeterminate division at this point (0
0).

4.2 Protection of Spin Squeezing
The basic idea now is to utilize phase-spread rotations like the ones in (2.48) in order
to protect such a spin-squeezed state from decay. It will be seen later that such kind
of a protection does work indeed. However, it does best for states that have a Bloch
vector aligned with the z-axis. This can be explained by the fact that the phase-spread
rotations around the z-axis most efficiently protect anything that lies in the xy-plane.
The norm of the Bloch vector of a squeezed state, in general, is smaller than the norm of
the initial state before the squeezing is performed. Upon decay, the norm of the Bloch
vector increases until the vector reaches its full length of N/2. Due to the definition of
the squeezing parameter (ξ ∝ 1/|〈S〉|) it is clear that it is larger if the norm is protected
more efficiently. Hence, protection of the squeezing parameter of a state that is almost
an element of the xy-plane is not favourable.
Note, that the statement that protection is most efficient if the protective rotations are
applied about an axis closely aligned to the Bloch vector may motivate the idea of using
phase-spread rotations around the Bloch vector itself if the state is far from aligned
with the z-axis. Since the Bloch vector changes in time this would require the use of
time-dependent phase-spread rotations. However, application of the rotations changes
the time evolution of the Bloch vector. Hence, one would need to know the effect of
the rotations in order to compute them, making an exact computation of that time
evolution impossible. One might be able to make some analytical approximations in
order to gain results (see chap. 6), but this goes beyond the purpose of the investigations
at this point.

4.3 Results
Due to the complicated dynamics of the treated system analytical methods are quite
limited. One can only treat systems of low particle numbers, and even then the analysis
is somewhat cumbersome. However, it is possible to simulate the time evolution of larger
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systems numerically and investigate the effectiveness of the attempted state protection
as discussed before.

4.3.1 Ground State Squeezing of Two Atoms
For purposes of illustrating the principle that is proposed here, it is useful to once again
investigate one of the simplest cases of spin squeezing, the squeezing of the ground
state of two atoms. It is still possible, even though tedious, to compute the full time
evolution of the system and hence the time evolution of the squeezing parameter as
well as the effect of the protective phase-spread rotations as they have been proposed.
The squeezed ground state of two atoms |SS〉 as it was computed in (4.13) gives rise to
a density matrix of the form

ρ0 = cos2 µ |G〉 〈G|+ sin2 µ |E〉 〈E|+ i cosµ sinµ(|E〉 〈G| − |G〉 〈E|). (4.18)

It is easy to see that this state has a normalized Bloch vector of n = (0, 0,−1). For a
time-dependent density matrix, the expectation values of Sx and Sy are

〈Sx〉 = tr(Sxρ(t)) =
√

2Re{ρES(t) + ρSG(t)},
〈Sy〉 = −

√
2Im{ρES(t) + ρSG(t)}. (4.19)

Making use of the master equation as it was defined in (2.13), one can write the
differential equations for the density matrix elements ρES(t) and ρSG(t), respectively,

ρ̇ES = −1
2(γS + 2Γ− 2i(∆− Ω))ρES, (4.20)

ρ̇SG = −1
2(γS − 2i(∆ + Ω))ρSG + γSρ

ES. (4.21)

At this point the following definitions were used.

Γ12 = γ, Γ11 = Γ22 = Γ, Ω12 = Ω,
γS = Γ + γ, γA = Γ− γ. (4.22)

Since the equation in (4.20) is homogeneous, it is clear that ρES(t) ∝ ρES(0) and, since
ρES(0) = 0 for the initial state under consideration, it follows that ρES(t) = 0 ∀ t. This
fact also makes the differential equation for ρSG homogeneous and one can simply follow
the same argumentation as before, to the end that 〈Sx〉 = 〈Sy〉 = 0 ∀ t. Therefore, the
Bloch vector of the state points in z-direction and its norm is |〈S〉| = |〈Sz〉| ∀ t.
One therefore only needs to compute 〈Sz〉 and 〈S2

φ〉 in order to find the time evolution
of the squeezing parameter,

〈Sz〉 = ρEE(t)− ρGG(t) = 2ρEE + ρSS + ρAA − 1, (4.23)

〈S2
φ〉 = Re{e−2iφρGE(t)}+ ρSS(t)− ρAA(t)

2 + 1
2 . (4.24)
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The phase-spread rotations that are to be used for two atoms, take the simple form

Rz =
∏
j

eiπ(j−1)σ(j)
z /2 = ei

π
2 σ

(2)
z , (4.25)

and as it was mentioned before have the effect of interchanging the occupation of the
symmetric state |S〉 and the asymmetric state |A〉 and vice versa. The other states (|G〉
and |E〉) remain invariant under rotations around the z-axis. Hence, the sole effect of
the phase-spread rotations is to swap the populations ρSS and ρAA. For simplicity, it
therefore makes sense to define a function that contains these populations, so one has
to consider the effect on this function only rather than on the entire expectation values,

g±(t) : = ρSS(t)± ρAA(t), (4.26)
Rzg

±(t) = ±g±(t). (4.27)
It is obvious that 0 ≤ g+(t) ≤ 2 ∀ t. Since the decay rate γS of the symmetric state
is larger, the population of the symmetric state is also larger in the beginning, and
therefore it holds that 0 ≤ g−(t) ≤ 1 for sufficiently small times. However, since at
some point all population except for the asymmetric state will have decayed to the
ground state, g−(t) can actually be negative at large times.
Note, that from the invariance of the states |E〉 and |G〉 under rotations about the
z-axis follows that the initial squeezed state |SS〉 is only changed by a local phase upon
application of the phase-spread rotation. This local phase, though, is irrelevant in the
time evolution of the squeezing parameter, rendering the first protective rotation useless.
It will, however, be seen that the second rotation applied after some time will enhance
the squeezing that has not decayed up to that time.
Again, using the master equation, one can write the differential equations for all
necessary density matrix elements,

ρ̇EE = −2ΓρEE, (4.28)
ρ̇SS = γS(ρEE − ρSS), (4.29)
ρ̇AA = γA(ρEE − ρAA), (4.30)
ρ̇GE = −(Γ + 2i∆)ρGE. (4.31)

These differential equations can readily be solved as
ρEE(t) = sin2 µe−2Γt, (4.32)

g±(t) = sin2 µ

γSγA

(
γ2
S(e−γSt − e−2Γt)± γ2

A(e−γAt − e−2Γt)
)
, (4.33)

Re{e−2iφρGE(t)} = e−Γt cosµ sinµ sin 2(φ−∆t). (4.34)
The expectation values (4.23) and (4.24) are then

〈Sz〉 = 2 sin2 µe−2Γt + g+(t)− 1, (4.35)

〈S2
φ〉 = 1

2
(
1 + g−(t)

)
− e−Γt cosµ sinµ sin 2φ, (4.36)
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4 Protection of a Spin-Squeezed State

where resonance (∆ = 0) was assumed. The squeezing parameter is proportional to
the variance of the rotated operator (4.36), and hence minimization over the angle φ
gives minφ[− sin 2φ] = −1 ∀ t. Combining all these results, we obtain a time-dependent
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Figure 4.2: Squeezing parameters for squeezing of the two atom ground state. The
distance between the two atoms was chosen to be a = 0.1λ0, with an initial squeezing
strength of µ = 0.1π. Clearly, the squeezing parameter where the phase-spread rotation
was applied, ξp(t), is smaller at shorter times than the freely decaying squeezing parameter
ξu(t).

squeezing parameter of the form

ξu(t) =

√
1 + g−(t)− 2e−Γt cosµ sinµ
|2 sin2 µe−2Γt + g+(t)− 1| . (4.37)

Note, that since g±(0) = 0, it is easy to see that ξu(0) is identical to the squeezing
parameter gained for the initial state in (4.17). This expression for the time-dependent
squeezing parameter does not include any manipulation by the phase-spread rotations
and can therefore be considered the time evolution of unprotected squeezing.
The original idea of protecting the squeezing against decay was to apply phase-spread
rotations to the initial state and then undo them after a time evolution. However, as it
was mentioned, the decay of the squeezing in the initial state is not affected by rotations
around the z-axis. The only effect of protection one can hope to achieve is hence at
the point when the phase-spread rotations are undone. It is easy to see that the effect
of R−1

z is the same as for Rz, as shown in (4.27). So, when R−1
z is applied after some
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time, g+(t) remains invariant and so does |〈Sz〉|, as it would be expected for a rotation
around the z-axis. On the other hand, g−(t) changes sign and the squeezing parameter
for the protected case ξp is thus

ξp(t) =

√
1− g−(t)− 2e−Γt cosµ sinµ
|2 sin2 µe−2Γt + g+(t)− 1| . (4.38)

Since for sufficiently small times 0 ≤ g−(t) ≤ 1, it is obvious that ξp(t) ≤ ξu(t) at
those times, meaning that the protected state is more squeezed than when there are
no protective rotations. For larger times g−(t) can be negative, though, and hence the
phase-spread rotation destroys some squeezing rather than enhancing it. The squeezing
parameters are plotted in Fig. 4.2, where all the discussed points can be seen graphically.
In this specific case, since the first protective phase-spread rotations do not have any
effect on the initial state, ’state protection’ is a poor choice of terminology. It would
actually be more precise to call the procedure ’squeezing enhancement’, since it simply
enhances the squeezing that is left in the state. For quite large times the squeezing
is destroyed rather than enhanced until the squeezing has fully decayed and the state
is once again invariant under rotation around z-axis. This is the case when the state
has decayed to the ground state. Note, that the mentioned invariance of the initial
state is restricted to this very special case of squeezing a two-atom state that has a
Bloch vector aligned with the z-axis. If it was a state that had a Bloch vector that has
some expansion in another direction or simply just a larger number of atoms under
consideration, this would no longer be the case and the term ’state protection’ would
once more become accurate. However, analytical discussion of the time evolution of
such states is somewhat more involved and goes beyond the purpose of illustrating the
efficiency of our procedure.

4.3.2 Numerical Results for Larger Systems
Now that the principle workings of the protected scheme have been discussed and shown
for two atoms, one can extend the results to larger systems using numerical methods.
However, due to the high dimension of the Hilbert space ( 2N), one is again limited to
atom numbers that are sufficiently small (N < 10). In this region, though, it can be
shown that the protective scheme works quite well and, once again, protection is even
more efficient for larger numbers of atoms due to the reduced minimal decay rate.

Ground State Squeezing

First off, one can again consider the simplest case of squeezing the ground state, but
for a larger number of atoms. Furthermore, it can be shown that the optimal m for the
phases ϕ(m)

j is once again m = N/2, i.e. the integer restriction of m breaks down for
odd atom numbers, in order to allow for a phase shift of π between nearest neighbour
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Figure 4.3: Squeezing parameters for odd numbers of atoms. (a) shows the squeezing
parameters for ground state squeezing of N = 5 atoms at distance a = 0.3λ0 with different
phase-spread rotations applied m = 0, ..., N/2. (b) shows the same setup but for N = 7
atoms at distance a = 0.4λ0. From both plots it is clear that, for an odd number of atoms
N the optimal m is no longer an integer, but a half integer, namely m = N/2.

atoms, as can be seen in Fig. 4.3. From here on out only two cases shall be considered:
the unprotected squeezing parameter ξu(t) shall correspond to m = 0 and the protected
squeezing parameter ξp(t) to m = N/2, respectively.
It was previously mentioned that protection of squeezing works best for states that
have Bloch vectors aligned with the z-axis. To this end it is of course necessary to
compare the results. In Fig. 4.3 it can already be seen that this protection of squeezing
works quite well for the ground state of a chain of N atoms. Note, that compared to
the other applications in this thesis that focus on reduction of decay, larger distances of
the atoms in the chain have been chosen. This is due to the fact that for extremely
small distances the dipole-dipole interaction becomes strong enough to cause oscillatory
behaviour in the squeezing parameter due to its coherent redistribution of population.
Also, the decay of the protected squeezing parameter ξp(t) would take much longer due
to the further reduced decay rate which would in turn make the computation of longer
time evolutions necessary. Hence, to keep matters numerically simple and since it is
sufficient to demonstrate the principle, larger distances have been chosen.

Squeezing Arbitrary States

Now that the efficiency for the procedure of protection for an initial state with a Bloch
vector aligned with the z-axis was shown, it is of interest to investigate states that are
not of that form. To this end it shall be sufficient to consider states that have been
rotated around the y-axis by an angle α from the ground state and therefore have a
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(a) (b)

Figure 4.4: Squeezing of states with higher excitation. Both plots present the squeezing
parameter N = 6 atoms at a distance of a = 0.3λ0. (a) shows the vastly faster decay of
the state that is rotated around the y-axis by α = π/4 compared to the case of ground
state squeezing (α = 0), while (b) shows the even faster decay for a rotation by α = π/2.

Bloch vector with some expansion in the x-direction. To particularize, these states are
of the form

|ψα〉 = Ry[α] |G〉 = eiαSy |G〉 . (4.39)

The closer α is to π, the larger the number of excitations in the state |ψα〉 and hence its
decay rate. It is possible, however, to protect the squeezing against decay up to some
point. The decay is so fast that even though making use of the protective rotations is
useful, the squeezing still decays quite fast. This is illustrated in Fig. 4.4.
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Chapter 5

Preparation of a Robust Multipartite
State

Investigation of methods as to how to reduce or even minimize the decay of a chain
of two-level atoms has been the focus up to this point. Now, however, one seeks to
eliminate the need for such methods by restricting all excitations of the system to the
state that has the lowest decay rate, i.e. the longest lifetime. It will be shown that it is
possible to coherently drive the system such that eventually close to all population ends
up in this state of lowest decay rate. This driving is achieved by resonant addressing of
the state (energy conservation). However, there is still a need for the phases (2.28) that
have been used in every application so far. These phases have to be imprinted on the
system by a laser used to perform the excitation. The experimental realization of such
a phase imprinting may pose some technical difficulties as one needs control over the
system on the level of individual two-level emitters, which will also be addressed in this
chapter.

5.1 Driving Scheme
Using a laser in order to coherently drive a system can mathematically be described by
a Hamiltonian of the form

Hη(t) =
N∑
j=1

(ηjσ+
j e
−iωlt2 + η∗jσ

−
j e

i
ωlt

2 ). (5.1)

Here, ωl is the frequency of the laser. The strength with which the j-th atom is driven
is governed by the parameter η, which is modified by the arbitrary phases {φj}Nj=1,

ηj := ηe−iφj . (5.2)
The complete Hamiltonian for the time evolution of the system when driven by Hη(t) is
then

H(t) = H0 +Hdip +Hη(t). (5.3)
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5 Preparation of a Robust Multipartite State

Figure 5.1: Schematics illustrating the asymmetric driving. The driving strength η is
modified by the phase φj for the j-th atom in a chain of N atoms. Due to transverse
driving no further phases are acquired by the laser.

The time-dependence can be eliminated by a simple transformation into the interaction
picture. This is most convenient and hence the investigation of the time evolution will
be carried out in this picture, where the complete Hamiltonian is of the form

H = ∆
2

N∑
i=1

σ(i)
z +

∑
i 6=j

Ωijσ
+
i σ
−
j +

N∑
j=1

(ηjσ+
j + η∗jσ

−
j ), (5.4)

where ∆ = ω0−ωl is the detuning between the atomic transition and the laser frequency.
All examples given so far show that reducing the decay in a system requires a reduction
of symmetry of the state the system is in. Hence, one can anticipate that the state
of lowest possible decay rate is one of minimal symmetry. When driving the system
with a Hamiltonian without phases, i.e. φj = 0∀ j (ηj = η), one can only excite the
symmetric states. This is where the form of the phases as they have been introduced
above becomes of importance. At this point no further definition of the phases {φj}Nj=1
will be given, but it shall be mentioned that just as it was for the phase states in the
single-excitation manifold (2.27), a phase shift of π between nearest neighbours will
prove to be most favourable for our purpose. This will also be discussed later on. A
general transverse driving with Hη of a chain of atoms is illustrated in Fig. 5.1.
Imprinting phases, however, is not sufficient to drive the state of lowest symmetry. If
there are no energy shifts, e.g. by dipole-dipole interaction, states that possess the same
number of excitations also have the same energy and are therefore highly degenerate.
Since a state of a low decay rate has a very narrow linewidth while a state of large decay
rate has a broad one (Lorentzian line shapes), they cannot be energetically separated
in a reliable way, even if the degeneracy is lifted. In order to achieve sufficient energy
separation the system needs to be subject to quite large energy shifts. Fortunately, such
shifts can readily be implemented by taking advantage of the dipole-dipole interaction
Ωij . This interaction causes energy shifts lifting the degeneracy and due to the fact that
Ωij →∞ as a→ 0 (See Fig. 2.1), one simply has to place the atoms in the chain very
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close together (a ≈ 0.1λ0). This energy shift and lifting of degeneracy is schematically
shown in Fig. 5.2(a). The amount by which a state |ψ〉 gets shifted can be computed by

∆ω = 〈ψ|Hdip |ψ〉 . (5.5)

It will be shown that the state that possesses the lowest decay rate is subject to the
maximally negative dipole shift.

Number of
Excitations

Figure 5.2: Schematics showing the excitation subspaces with dipole-dipole interaction
present. (a) illustrates the effect of the dipole interaction Ωij lifting the degeneracy in the
excitation subspaces. (b) shows the driving of the transition to the state of lowest decay
rate |ψmin〉 in the single-excitation subspace by Hη. The state is shifted by an amount of
∆ω due to the dipole-dipole coupling.

5.2 Energetic Properties of the Longest-Lifetime State
As a first step towards numerical simulation of the dynamics, it is of interest to investigate
the properties of the state possessing the minimal decay rate (longest lifetime). This
specific state shall be called |ψmin〉.
In order to find the state with the lowest decay rate one can neglect the coherences
between the states and simply investigate the decrease of the population in time. All
eigenstates are a superposition of states containing the same amount of excitations (in
the bare basis) and the action of the raising and lowering operators σ±j on states of that
form is known. We can therefore obtain an equation for the decay rate of a state |ψ〉 as
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5 Preparation of a Robust Multipartite State

it was found for the phase states in the single-excitation subspace from (2.38).

γψ =
N∑

j,k=1
ΓjkRe{〈ψ|σ+

j σ
−
k |ψ〉} =

∑
j,k

ΓjkRe{tr(σ+
j σ
−
k |ψ〉 〈ψ|)} (5.6)

Even though the decay rate as computed in (5.6) is not exact (coherent coupling to
other states with the same number of excitations was discarded), it is sufficient in order
to find the minimum.

Number of Excitations
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Figure 5.3: Number of excitations for state of lowest decay rate and dipole shifts.(a)
shows that the state with the lowest decay rate contains only one excitation, as computed
by (5.7). (b) displays the dipole shifts of all states in the single-excitation subspace for
different atom numbers. The state with the lowest decay rate |ψmin〉 is subject to the
maximally negative dipole shift, while the super-radiant state of highest symmetry |W 〉 is
shifted maximally positively.

One question of interest is how many excitations the state of lowest decay rate actually
holds. It was mentioned before that due to the minimal number of couplings this state
has to be in the subspace which contains only a single excitation. At this point a
numerical investigation of this shall be provided, undermining this claim. The state
with the lowest possible decay rate is found by minimizing (5.6). Since all states are
eigenstates of the collective operator Sz with eigenvalues that range from −N

2 to N
2 (in

integer steps), the number of excitations nψ in a state |ψ〉 can simply be computed by

nψ = 〈ψ|Sz |ψ〉+ N

2 . (5.7)

50



5.2 Energetic Properties of the Longest-Lifetime State

In Fig. 5.3(a) it can be seen that up to a sufficiently large number of atoms N the state
of lowest decay rate does indeed only contain a single excitation. This may also be true
in general, i.e. for any number of atoms in a chain configuration. Since this, however,
would require an analytical expression for the decay rate of a state for an arbitrary
number of atoms containing an arbitrary amount of excitations, no further proof will
be provided.

Dipole Shifts
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Figure 5.4: Lorentzian line shape functions. The line shapes of the symmetric and
asymmetric state in the case of N = 2 atoms are illustrated. Their linewidths are given
by their respective decay rates γS = Γ + γ and γA = Γ− γ with Γii = Γ and Γ12 = γ. The
shifts of the center of the lines have been plotted in units of the dipole-dipole coupling
Ω12 = Ω21 = Ω. It is clear that the asymmetric state |A〉 is shifted by −Ω while the
symmetric state is shifted by +Ω. (a) shows them at a distance of a = 0.3λ0, where the
states clearly show a significant overlap, as opposed to (b) where the dipole shifts are
strong enough to truly separate the lines. This is due to the vastly increased strength of
the shifts at the distance a = 0.05λ0.

Now that it was established that one only needs to work with states containing a
single-excitation, it is of further interest to investigate the dipole shift of the state of
minimal decay rate, as computed in (5.5). The shifts of the states in the single-excitation
subspace are shown in Fig. 5.3(b). Just as it was the case for the phase states in the
single-excitation manifold, the state of lowest decay rate is subject to the maximally
negative dipole shift (for comparison see Fig. 2.8). Note, that Fig. 5.3(b) is not a
schematic, the dipole shifts for all states have been computed numerically. The fact
that one can restrict the computation to the single-excitation subspace already yields a
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5 Preparation of a Robust Multipartite State

significant advantage in computational time even though the results in Fig. 5.3(b) did
not require a full time evolution of the system.
It has also been mentioned that the dipole shifts have to be large enough in order to
energetically separate the spectral lines of the states from one another. This separation
of the line shape functions is shown in Fig. 5.4.

5.3 Artificial Phases
The choice of phases for the driving as it is illustrated in Fig. 5.1 is of course of
utmost importance for the efficiency of the driving. For a first test of the proposed
procedure, one can simply choose the phases {φj}Nj=1 in (5.2) to be the phases {ϕ(m)

j }Nj=1
as they have been used before (see (2.28)). Furthermore, one can choose the index m
to be optimal, namely m = N/2. It shall be stated at this point that, even though m
was previously restricted to be an integer, the choice of the phases is now completely
arbitrary. Hence, one can also choose m arbitrarily. It has been checked, however, that
even for odd numbers of atoms, the choice m = N/2 is optimal. This gives phases of

φj = ϕ
(N2 )
j = π(j − 1), (5.8)

and therefore a driving Hamiltonian

Hη = η
∑
j

(
σ+
j e
−iπ(j−1) + σ−j e

iπ(j−1)
)
. (5.9)

However, this shall only serve as a test of the procedure, since it is in no way physically
justified to choose the phases in such a way. One could argue that, when driving
longitudinal, i.e. in the direction of the atom chain, the laser acquires a phase-shift
of eikla when travelling from one atom to the next. In order for kla = π, however, the
atoms would need to be separated by a distance of a = 0.5λ0 (assuming resonance,
i.e. kl = k0). This distance does not result in sufficient energy shifts by dipole-dipole
interaction for the states to be energetically well separated and is therefore undesirable.
Note also, that only transverse driving is considered here, i.e. the laser does not acquire
any phases in between particles due to propagation (See Fig. 5.1).

5.3.1 Two Atom Case
Once again, the simplicity of treating only two atoms proves useful to gain some
analytical insight. The complete Hamiltonian, including phases in the driving, for
N = 2 is

H = ∆
2 (σ(1)

z + σ(2)
z ) + Ω(σ+

1 σ
−
2 + σ+

2 σ
−
1 ) + η(σ+

1 − σ+
2 + σ−1 − σ−2 ). (5.10)
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Since the system is initially in the ground state, it makes sense to consider the action
of the phase-driving operator (σ+

1 − σ+
2 ). Straight forward application of this operator

yields

(σ+
1 − σ+

2 ) |G〉 =
√

2 |A〉 . (5.11)

The asymmetric state |A〉 is the state with the longest lifetime (decay rate γA = Γ− γ).
This action of the operator therefore shows that the phase-imprinting is successful when
attempting to drive the asymmetric state. However, since

(σ+
1 − σ+

2 ) |A〉 = −
√

2 |E〉 , (5.12)

one still needs to make use of the dipole shifts in order to tune this transition to
the fully inverted state |E〉 far off-resonant. Otherwise, the system would saturate
at a point where half the population is in the asymmetric state and driving into and
out of this state is hence of equal probability. Also, as it was mentioned before, the
energetic separation of the symmetric and asymmetric state needs to be sufficiently
large. Fortunately, this is also achieved with the dipole shifts (See Fig. 5.4).
Given sufficiently large dipole shifts one then needs to match the laser frequency to the
transition from the ground to the asymmetric state. Namely, since the dipole shift on
the asymmetric state is

∆ωA = 〈A|Hdip |A〉 = −Ω, (5.13)

the detuning has to be chosen as

∆ = ω0 − ωl = ω0 − (ω0 − Ω) = Ω. (5.14)

Unfortunately, even for the two-atom case analytical investigation is limited. It shall
be stated here that the full time evolution was computed numerically and has yielded
results very similar to the ones shown for larger numbers of atoms in the following
section.

5.3.2 Numerics
The driving with these artificial phases can be extended to a full time evolution even for
larger atom chains and yields great results, making a physical realization of the phases
as they are in (5.8) highly desirable. Note, that the detuning ∆ in the Hamiltonian (5.4)
once again has to be matched to the transition frequency to the state of minimal decay
rate |ψmin〉, including the dipole shifts as computed in (5.5). Namely, the frequency of
the driving laser has to be ωl = ω0 + ∆ωmin, and hence

∆ = ω0 − ωl = −∆ωmin = 〈ψmin|Hdip |ψmin〉 . (5.15)
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Figure 5.5: Driving the state of lowest decay rate with artificial phases. At a distance
of a = 0.05λ0 in a five atom chain with a pump strength of η = 0.8Γ, (a) shows that
the driving results in almost perfect Rabi oscillations with small (negligible) population
in states of higher excitations due to two-photon processes. (b) displays the saturating
process of the system when driving for long times. The efficiency displayed justifies the
choice for the artificial phases.

In Fig. 5.5 it can be seen just how efficient the procedure is when working with artificial
phases since the system displays almost perfect Rabi oscillations between the ground
state and the state of lowest decay rate. Larger numbers of particles make the procedure
more difficult due to more long-range, i.e. positive dipole-dipole couplings. It is therefore
harder to energetically separate states for a chain of many atoms, hence when driving
one will populate states of larger decay rate in the system.
Also, as it is expected for a driving of a two level transition, given large enough times
the system will acquire a steady state, i.e. saturate at a point where both the ground
state and the state of minimal decay rate possess a population of 1/2 (See Fig. 5.5(b)).
It has now been established that the procedure works in a somewhat efficient way.
Instead of driving the system in a saturated state, however, one might aim to perform
a π-pulse and then let the state decay freely, namely defining the pump strength as a
function of time, such that

η(t) = η0(θ(τ − t)− θ(t)) (5.16)

where θ(t) is the Heaviside function. This is illustrated in Fig. 5.6(a) and Fig. 5.6(b)
shows just how slow the state decays. The simulations so far have been done on a
complete, realistic system driven with artificial phases. In order to extend to larger atom
numbers, one can again use the fact that the state of interest lies in the single-excitation
subspace. This will, however, neglect any two-photon processes that would lift the
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5.3 Artificial Phases

(a) (b)

Figure 5.6: π-pulse scheme. (a) schematically shows η(t) as it is defined in (5.16). (b)
shows the numerical result when applying a pumping of that form, yielding an almost
perfect π-pulse from t = 0 to t = τ , followed by the extremely slow free decay of the
populated state.

system into states of higher excitations and hence is only valid for extremely small
distances between the atoms in the chain (a ≈ 10−2λ0). Still, this is an approximation,
but it is sufficient to show that the proposed procedure works even for large numbers of
atoms. Results for more particles that can be computed easily due to the simplified
numerics are shown in Fig. 5.7 and essentially yield the same results as before.
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Figure 5.7: Driving with artificial phases in the single-excitation subspace. (a) The
efficiency of the procedure for large numbers of particles, i.e. N = 20, can be shown due
to the reduced numerical effort. (b) shows how much slower the system saturates due to
the vastly lower decay rate in the case of larger atom numbers, N = 12.

5.4 Utilizing a Magnetic Field Gradient

The discussion up to this point has revolved around driving a system with phases in
the driving Hamiltonian. The question that has yet to be answered, however, is how to
realistically construct a driving of such a form. It was established that the procedure
works quite efficiently for a phase shift of π between nearest neighbour atoms in a chain.
In order to realize this, one can make use of a magnetic field gradient. A magnetic field
will simply introduce an energy shift of the atom levels via the Zeeman effect that is
linear in the strength of the field B. It is therefore valid to scale the detuning with the
atom index, providing a modified Hamiltonian of the form

HB
0 = ∆

2

N∑
i=1

σ(i)
z + ∆B

N∑
i=1

(i− 1)σ+
i σ
−
i , (5.17)

where ∆B(i− 1) is the energy shift of the excited state of the i-th atom in the chain.
The magnetic field is set to be zero at the position of the first atom, hence this atom
does not experience any energy shift by the field. This is displayed schematically in
Fig. 5.8. The system shall then be driven by a pumping Hamiltonian without phases
(φj = 0 ∀ j in (5.2)), namely

Hη = η
N∑
i=1

(σ+
i + σ−i ). (5.18)
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5.4 Utilizing a Magnetic Field Gradient

Figure 5.8: Schematics illustrating driving with magnetic field gradient. When driving
with no phases, i.e. each atom with the same strength η, the excited state of the i-th
atom is shifted by ∆B(i− 1) if a magnetic field gradient ∇B is present.

5.4.1 Two Atom Case
The complete Hamiltonian for two atoms when including the detuning due to the
magnetic field gradient ∆B, reads

H = ∆
2 (σ(1)

z + σ(2)
z ) + ∆B(σ+

2 σ
−
2 ) + η(σ+

1 + σ+
2 + σ−1 + σ−2 ) + Ω(σ+

1 σ
−
2 + σ+

2 σ
−
1 ).
(5.19)

It is still possible to compute the energy shifts that the states are subject to in this case.
The respective shifts (without the dipole shifts included) are

〈G|∆Bσ
+
2 σ
−
2 |G〉 = 0, 〈E|∆Bσ

+
2 σ
−
2 |E〉 = ∆B,

〈A|∆Bσ
+
2 σ
−
2 |A〉 = 〈S|∆Bσ

+
2 σ
−
2 |S〉 = ∆B

2 . (5.20)

These energetic shifts are schematically shown in Fig. 5.9. Note, that the levels |S〉,
|A〉 and |E〉 get shifted to |S ′〉, |A′〉 and |E ′〉, respectively. However, one still aims
to populate the state |A〉. From this brief calculation it is clear that the symmetric
and asymmetric state get shifted in the same way due to the magnetic field gradient.
Hence, the gradient does not further the energetic separation of these states. It does,
however, introduce phases in the driving Hamiltonian. Since in the interaction picture
the driving Hamiltonian Hη remains the same, this phase-imprinting is not obvious.
Upon transforming the complete Hamiltonian into a partially time-dependent picture,
though, time-dependent phases are introduced, yielding

Hη(t) = η(σ+
1 + σ+

2 e
i∆B

t
2 + σ−1 + σ−2 e

−i∆B
t
2 ). (5.21)
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5 Preparation of a Robust Multipartite State

Figure 5.9: Illustration of the energy shifts in the collective states of two atoms introduced
by the magnetic field gradient and dipole-dipole interaction.

This form of driving is not as effective as artificial phase-imprinting. At time t = 0,
for example, the system will be driven in the symmetric instead of the asymmetric
state since the phases vanish at that point. With a period that is dependent on the
magnitude of ∆B the Hamiltonian will transition from driving the symmetric state to
driving the asymmetric state and back to driving the symmetric one. The idea now is
that the period is fast enough such that the asymmetric state does not decay before
being pumped again. Yet, the period has to be large enough for the state to actually
accumulate population of significance during the time where the phases are close to
matching the asymmetric state (namely ∆Bt/2 ≈ π). One therefore has to optimize the
procedure with respect to ∆B. Since this optimization requires computation of the full
time evolution in dependence of ∆B, it is best to perform it numerically.
Before moving on to numerical simulations, however, the idea of time-dependent phases
will be extended to a larger chain of atoms.

5.4.2 Time-Dependent Phases

Combining the Hamiltonians from (5.17) and (5.18) yields a total Hamiltonian that
is again time-independent, but can be transformed into a partially time-dependent
picture, as it was done for the case of two atoms. This results in phases of the form
used in (5.2), but time-dependent ones. Namely, the previously used phases become
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φj = φj(t) = −∆B(j − 1)t/2 in the driving Hamiltonian that is then

Hη(t) =
N∑
j=1

(σ+
j e

i∆B(j−1) t2 + σ−j e
−i∆B(j−1) t2 ). (5.22)

Note, that this form of the driving Hamiltonian is of no further use but to illustrate
the important point that the phases introduced by a magnetic field gradient are indeed
time-dependent. Again, the phases vanish at certain (periodic) times which means that
the Hamiltonian used to drive the system selects a symmetric (or close to symmetric)
state rather than an asymmetric one. In order for such a symmetric state not to
accumulate any population of relevance it is once more important to match the detuning
of the Hamiltonian to the transition to the state of lowest decay rate according to the
dipole shifts and the newly introduced shift by the magnetic field. Furthermore, the
period of the phases has to be fast enough so that the population of the state with
the lowest decay rate does not decay in the meantime, which does not pose much of a
problem, though, since this state is indeed very long-lived.
The optimal detuning ∆ in the Hamiltonian can be computed as in the case of artificial
phases (5.15), however one has to include the shift introduced by the magnetic field,
namely

∆ = 〈ψmin|∆B

∑
j

(j − 1)σ+
j σ
−
j +Hdip |ψmin〉 . (5.23)

It shall be stated again at this point that the detuning introduced by the magnetic field
is a parameter over which one has to optimize numerically since, unfortunately, there
is no easy way to compute it analytically beforehand. This optimization will result
in a detuning ∆B that yields a slow enough period in the phases for the state with
minimal decay rate to accumulate some population, yet fast enough that it does not
decay when the phases do not match the symmetry. For larger numbers of atoms the
optimal detuning ∆B is smaller due to the scaling of the minimal decay rate with the
atom number N (See Fig. 2.3), as it can also be seen in the following section.
Performing a scan over ∆B, it is found that the population behaves symmetrically
around zero as a function of the magnetic field detuning, as shown in Fig. 5.10(b).
Furthermore, the efficiency of the procedure can be seen in Fig. 5.10(a).

5.4.3 Numerics
In order to show results even for larger chains of atoms one can again use the fact
that the state of lowest decay rate only contains a single excitation. As can be seen
in Fig. 5.11, though, larger numbers of atoms in principle yield the same results, but
with even slower decay (saturation) due to the scaling of the minimal decay rate with
the atom number. As the number of atoms grows, however, so does the overlap of the
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Figure 5.10: Driving the asymmetric state with a magnetic field gradient. The graphs
show the efficiency of the procedure when making use of the detuning introduced by the
magnetic field for two atoms at a distance of a = 0.03λ0. The pump has to be chosen quite
strong (η = 12Γ), which does not pose a problem, however, since other transitions are
so far off-resonant due to dipole shifts. (a) shows the time evolution when the detuning
is optimized according to maximal population of the asymmetric state, i.e. the state of
lowest decay rate. One can also see the beginning of the saturation due to decay, as it
is expected. (b) presents the population of the asymmetric state as a function of the
magnetic field detuning ∆B. The time at which it has been plotted has been chosen
optimal, i.e. the time of the first (largest) maximum of the population of the asymmetric
state in (a).

energetic line shape functions of the states in the single-excitation manifold. It is hence
important to decrease the distance in order to increase the separation of the lines due
to the dipole shifts. Also note that it takes longer times for the state of minimal decay
rate to accumulate population which, however, is no problem since this specific state
grows more robust with the atom number, as it was just mentioned.
In conclusion, it can be stated that driving the state of the lowest decay rate is indeed
possible, even without the physically not quite explicable artificial phases that have
been used before by making use of a magnetic field gradient. Obviously, one can also
use this scheme to perform a π-pulse similar to the way it has been done before (See
Fig. 5.6).
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Figure 5.11: Driving the state of lowest decay rate in the single-excitation subspace.
Results for larger numbers of atoms, in this case N = 4 can be presented by reducing the
entire Hilbert space to the single-excitation subspace. The distance has been reduced to
a = 0.02λ0 in order to enhance the dipole shifts. Once again, (a) shows the time evolution
in the presence of driving, while (b) shows the population as a function of the detuning
∆B.

61





Chapter 6

Conclusions and Outlook

Conclusions

A general discussion of the collective effects in an ensemble of quantum emitters has been
provided and particularized to a chain of two-level atoms. Specifically, the collective
decay of the system was considered. It was established that the theoretically minimal
decay rate exhibits an exponential scaling with the number of atoms. This result was
extended to realistic systems making use of numerical computations.
An enhanced method of Ramsey spectroscopy was discussed, yielding a better optimal
sensitivity than in the standard quantum limit. This was done via state protection. Fur-
thermore, the same mechanism of state protection was applied to spin-squeezed states,
showing that it is possible to make spin squeezing more robust. Finally, a proposal that
allows the direct preparation of a robust state, namely the eigenstate of the system
with the longest lifetime was put forward. The efficiency of the proposed procedure was
validated by numerical simulations and we further suggested to experimentally realize
such a state preparation by employing a magnetic field gradient.

Future Investigations

Another common method in quantum metrology is the so-called Rabi spectroscopy
[18]. Instead of two π/2-pulses with free time evolution in between (as in Ramsey
spectroscopy), the Rabi method involves a single π-pulse that is applied over a certain
time only. Also, instead of assuming the pulse to be instantaneous (rotation on the Bloch
sphere), as it was done in this thesis, a continuous excitation can be considered. The
idea is to formulate the phase-spread rotations in terms of a time-dependent excitation
and use this in order to achieve a sensitivity better than what has been possible up to
this point.
So far it has also not been considered that these methods of spectroscopy are actually
subject to dephasing, be it laser-induced or caused by collisions of the atoms in the
ensemble. As in the case of mutual decay, this dephasing can be described by a
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Liouvillian operator. It is hence of interest, whether one could reduce this dephasing by
symmetry manipulation of the states of the ensemble.
Furthermore, it has been shown that making use of quantum correlations, i.e. spin
squeezing, in the Ramsey spectroscopy can lead to an enhancement of the sensitivity
beyond the standard quantum limit [19–21]. It has been shown in this thesis, that state
protection via the application of phase-spread rotations yields favourable results for both
the Ramsey spectroscopy and the decay of a spin-squeezed state. This motivates the
idea that including spin squeezing as well as state protection in the Ramsey procedure
may very well lead to an even better sensitivity than when making use of only one of
these enhancing effects.
In the matter of spin squeezing, it was also mentioned that there may be a more efficient
method of protection for spin-squeezed states that have a Bloch vector far from aligned
with the z-axis by using phase-spread rotations around the Bloch vector itself. It was
explained, though, that this cannot be done via exact computation, but it might be
possible to find an approximate form of the rotations.
One could also attempt a form of spectroscopy on the transition between the ground
state of the system and the state of lowest decay rate in the single excitation manifold.
This would possess the advantage of a vastly reduced decay rate, yet one would need
to abandon all favourable scaling with the atom number, as the system is effectively
reduced to one two-level transition.
It is also of uttermost interest to investigate the entanglement properties of the robust
asymmetric state that is prepared via the procedure proposed in the last chapter. For
the two atom case it has been shown that the state that is prepared is the asymmetric
state, which is a Bell state (maximally entangled state). We will use tools like Quantum
Fisher information or von Neumann entropy to analyze the entanglement properties
of multipartite robust states [7]. If these investigations yield similar results for more
atoms as those for only two, the robust state that is prepared would indeed be a robust
highly (or even maximally) entangled state [22]. Since entanglement is a highly valuable
resource in quantum information, the preparation of such a state would be applicable
in a vast field of theoretical and experimental research.
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