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Abstract

The dynamics induced by light forces onto polarizable, point-like particles such as
atoms, molecules or nanospheres in standing wave light fields is a well studied research
topic. Trapping, cooling and pattern formation of particles in such geometries is well
understood from the theoretical and experimental point of view.
Even though these configurations offer a wide range of methods to simulate solid

state materials at a fundamental level, the formed structures cannot be considered as
crystals as they are known from condensed matter physics. This is due to the fact that
in contrast to the standing wave case, in nature generally no a priory order is given.
Pattern formation in this case results from dynamical adjustment of the inter-particle
distances and particles settle at distances where the system’s energy is minimal. In
general this dynamics is more complex than the one realized in standing wave traps.
In this thesis we establish configurations which enable more complex dynamics and

couplings of particles compared to the traditional standing wave case by using light fields
with different polarizations. Due to the fact that collective coherent scattering of laser
light by polarizable point particles creates long range forces, the system’s properties
can be tailored by choice of injected laser powers, frequencies and polarizations.
The polarizable particles are modelled as infinitesimally thin layers, so called beam

splitters, which can reflect, transmit and absorb a certain amount of light. A transfer
matrix approach enables us to calculate fields and forces induced by the non-interfering
pump fields.
We find long range ordering of particles in a translationally invariant system where

inter-particle distances and pattern formation can be tuned by variation of laser fre-
quencies and powers. The observed pattern formation is fundamentally different from
the one realized in standing wave potentials.
In a further step, we introduce a setup to induce resonant, long range inter particle

coupling between particles trapped in a standing wave trap.
These dynamical effects should be observable in existing experimental setups with

effective 1D geometries such as atoms coupled to the field of an optical nanofibre or
nanospheres inside a hollow core fibre.



Zusammenfassung

Die durch Lichtkräfte auf polarisierbare, punktförmige Teilchen, wie Atome, Moleküle
oder Nanokugeln in Stehwellen-Feldern induzierte Dynamik, ist ein gut erforschtes
Feld. Das Fangen beziehungsweise Kühlen und die Strukturbildung von Teilchen in
solchen Geometrien ist sowohl von theoretischer als auch von experimenteller Seite gut
verstanden.

Obwohl diese Konfigurationen viele Methoden zur Simulation von Festkörpern bereit-
stellen, können die dabei geformten Strukturen nicht als Kristall definiert werden, wie
man es aus der Festkörperphysik kennt. Das liegt daran, dass in der Natur im Gegensatz
zum Stehwellenfall a priori keine Ordnung vorgegeben ist. Strukturbildung resultiert in
diesem Fall aus dynamischer Anpassung der Abstände zwischen den einzelnen Teilchen,
welche dabei an Positionen minimaler Energie gefangen werden. Grundsätzlich ist diese
Dynamik komplexer als jene, welche mit Hilfe von Stehwellen-Fallen realisiert wird.
In der vorliegenden Arbeit entwickeln wir Konfigurationen, welche es ermöglichen,

komplexere Dynamik und Kopplungen zwischen Teilchen zu erreichen indem Licht mit
unterschiedlichen Polarisationen verwendet wird. Aufgrund der Tatsache, dass kollektive
kohärente Streuung von Laserlicht an polarisierbaren Punktteilchen langreichweitige
Wechselwirkungen generiert, können die Eigenschaften des Systems durch die Wahl der
eingestrahlten Intensitäten, Frequenzen und Polarisationen angepasst werden.

Die polarisierbaren Teilchen werden als unendlich dünne Schichten, sogenannten Beam-
Splittern, modelliert, welche einen gewissen Anteil an Licht reflektieren, transmittieren
und absorbieren können. Ein Transfer-Matrix Ansatz ermöglicht die Berechnung der
Felder und der Kräfte, welche durch nichtinterferierende Pump-Felder induziert werden.

Dabei ergibt sich eine weitreichende Ordnung von Teilchen in einem translationsinva-
rianten System, wo die Abstände zwischen Teilchen beziehungsweise die sich einstellende
Ordnung durch die Laser Frequenzen und Intensitäten variiert werden können. Die beob-
achtete Strukturbildung ist fundamental verschieden von jener in Stehwellen-Potentialen.
In einem weiteren Schritt führen wir eine Konfiguration ein, welche resonante, weit-

reichende Wechselwirkung zwischen Teilchen in einer Stehwellen-Falle erlaubt.
Die vorhergesagten dynamischen Effekte sollten in bereits existierenden experimen-

tellen Aufbauten mit effektiver 1D Geometrie wie Atome, welche an das Feld einer
optischen Nanofaser koppeln, oder Nanokugeln in Hohlfasern, realisierbar sein.
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Chapter 1

Introduction

Coherent interference of light scattered from extended ensembles of polarizable par-
ticles leads to important modifications of the total force on the particles as well as
new inter-particle light forces, even if the light fields are far detuned from any optical
resonance [1, 2]. One particularly interesting example are atoms in or close to 1D optical
micro structures [3, 4] as e.g. an optical nanofibre, where even a single atom can strongly
modify light propagation and forces [5, 6]. In a milestone experiment Rauschenbeutel
and co-workers recently managed to trap cold atoms alongside a tapered optical fibre [4]
and related setups predict and demonstrate strong back-action and inter-particle interac-
tion [7–9] leading to the formation of periodical self-ordered arrays [10, 11]. Even in free
space interesting dynamical effects of collective light scattering were recently predicted
and studied in standard 1D optical lattices of sufficient optical density [12, 13].
In this work we extend an existing model [12–15] towards multiple frequencies

and polarizations of the fields illuminating the particles. This includes a new class
of geometries where crystalline order can be dynamically generated and sustained
even without prescribing a standing wave lattice geometry. As a generic example the
polarizations of two counter-propagating fields can be chosen orthogonally, so that
incident and scattered fields do not directly interfere. Light scattering thus occurs
independently for both fields and the forces on the particles can simply be added up.
However, any structure forming by the scattering of one field component will be seen by
all other fields and thus change their scattering properties and the induced forces. On
the one hand this mediates non-linear interaction between the different fields, while on
the other hand, it generates inter particle interactions throughout the sample inducing
a wealth of non-linear complex dynamical effects. Besides such dynamic self-ordering
phenomena we also study the possibilities to induce tailored long range interactions
via multicolour illumination and collective scattering of particles trapped in prescribed
optical potentials.

The results and effects predicted in this thesis are very general and should be valid for
various realization methods. The aim is not to give a detailed calculation for a special
experimental setup but to show some interesting effects which could be observed in
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1 Introduction

several geometries where light fields with orthogonal polarizations can be realized.
This work is organized as follows: In chapter 2 we discuss the basic equations we need

to introduce the well-established generalized multiple scattering model used through-
out this thesis the so called beam splitter method [12–15]. After some fundamental
discussions we will also give a detailed description of this method, and generalize it to
support multiple polarizations and frequencies.
In chapter 3, before treating the models marking the central piece of this thesis, we

will give a short introduction of possible experimental realization methods.
The chapters 4 and 5 are a more detailed discussion of the results already presented

in the preprint [16], which was submitted to New Journal of Physics recently.
In chapter 4 the beam splitter formalism is applied to an orthogonal beam trap

consisting of an array of particles irradiated by two counter propagating beams of
orthogonal polarization and possibly different wave numbers. For two particles we
analytically derive conditions on the pump power ratios and wave numbers to trap or
stabilize them at a given separation. These results are then numerically extended to
higher particle numbers.
In chapter 5 the usual experimental setups for optical lattices are generalized by an

additional beam polarized orthogonally to a prescribed standing wave. We analyse how
it perturbs the trapped particles and induces peculiar interaction patterns.

7



Chapter 2

Fundamental discussion

In this chapter we would like to give an introduction to the basic method used throughout
this thesis. The so called beam splitter method states that the propagation of far detuned
light through a one dimensional atomic lattice or an array of dielectric membranes can be
well described in a plane wave approximation with multiple scattering by a corresponding
series of beam splitters [12–15]. A very analogous situation arises when the light is
transversely strongly confined by optical structures so that scattering dominantly occurs
along a preferred direction.
The fundamental equations to describe the propagation of electromagnetic fields

through media are Maxwell’s equations, where E and B correspond to the electric and
magnetic field. The fields D and H are defined as D = εE = ε0E + P and B = µH
where P stands for the polarization density of the material, ε [ε0] is the permittivity of
the material [of the vacuum] and µ the permeability.

∇ ·D = ρ (2.1a)
∇ ·B = 0 (2.1b)

∇× E + ∂B
∂t

= 0 (2.1c)

∇×H− ∂D
∂t

= j (2.1d)

In the following we will always assume no currents or charges, resulting in ρ = 0 and
j = 0.

From (2.1) the equations which are needed to introduce the beam splitter formalism
can be easily calculated. This evaluation marks the first part of this chapter. Before
explicitly talking about the beam splitter method itself we introduce the terminology
of polarizable media. In this case we distinguish between classical polarizability and
atomic polarizability which needs quantum optical treatment. In the third part we give
a detailed description of the beam splitter method used in this thesis.

8



2 Fundamental discussion

2.1 Basic equations
There are two basic equations known from classical electrodynamics, which are the
basis of the beam splitter method used. We will shortly recall how these equations are
derived and discuss their meaning in terms of the beam splitter method.

2.1.1 Inhomogeneous Helmholtz equation in 1D
The inhomogeneous Helmholtz equation describes the spacial dynamics of the electric
field E(x, t) = E(x) exp(−iωt). It is obtained by the separation of the inhomogeneous
wave equation for a polarizable material with polarization density P

∆E− 1
c2
∂2E
∂t2

= µ0
∂2P
∂t2

. (2.2)

Equation (2.2) can easily be obtained by calculating the curl of equation (2.1c) giving

∇× (∇× E) + ∂

∂t
(∇×B) = ∇× (∇× E) + µ

∂

∂t
(∇×H) = 0. (2.3)

Together with (2.1d), meaning (∇×H) = ∂D
∂t

= ∂
∂t

(ε0E + P) and the relation ∇ ×
(∇× E) = ∇(∇ · E)−∇2E = −∆E we find (µ=µ0)

−∆E + µ0ε0
∂2E
∂t2

+ µ0
∂2P
∂t2

= 0. (2.4)

Defining the speed of light as c := 1/√µ0ε0 yields equation (2.2).
Performing a separation ansatz in 1D

D(x, t) = D(x)e−iωt = (ε0E(x) + P (x)) e−iωt, (2.5)

results in the purely spatial equation

∂2E(x)
∂x2 + ω2

c2 E(x) = −µ0ω
2P (x). (2.6)

This is the so called 1D inhomogeneous Helmholtz equation describing the spatial
dynamics of electric fields propagating through dielectric media.

2.1.2 Maxwell stress tensor
Due to the fact that we want to study particles, i.e. atoms or dielectric spheres exposed
to electromagnetic radiation, we need to find out how the induced forces onto objects
in electromagnetic fields can be calculated. This can be achieved via the Maxwell
stress tensor, which will be introduced in this chapter. The derivation and a detailed
discussion can be found in [17].
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2 Fundamental discussion

As known from electromagnetism the force onto a charged particle with charge q
moving with velocity v through fields E and B can be calculated via the generalized
Lorentz force FL = q(E + j×B). If we generalize this force for a finite volume with
charge density ρ and current j this is the so called mechanical force induced by the
fields Fmech =

∫
V (ρE + j×B)d3x. The total force onto an object in an electromagnetic

field is then given as the sum of mechanical force and field force, where the latter is
given by Poynting’s theorem Ffield = ε0

∫
V ∂t(E×B)d3x.

Using Maxwell’s equations for free space (P = 0) giving the relations ρ = ε0∇ · E
and j = 1

µ0
∇×B− ε0∂tE the integrator for the mechanical force can be rearranged in

the following form

ε0E(∇ · E) + j×B = ε0E(∇ · E)−B×
(

1
µ0
∇×B− ε0∂tE

)
= ε0

(
E(∇ · E)− c2B× (∇×B) + B× ∂tE

)
. (2.7)

Using B× ∂tE = −∂t(E×B) + E× ∂B, which can be easily verified by applying the
product rule, we rewrite equation (2.7) to

= ε0
(
E(∇ · E)− c2B× (∇×B)− ∂t(E)×B)− E× (∇× E)

)
= ε0

(
E(∇ · E)− E× (∇× E) + c2 (B(∇ ·B)−B× (∇×B))

)
− ε0∂t(E)×B). (2.8)

We used equation (2.1c) to replace the time derivative of B in the second term.
The total force onto a polarizable particle is

F = Ffield + Fmech

= ε0

∫
V

(
E(∇ · E)− E× (∇× E) + c2(B(∇ ·B)−B× (∇×B))

)
. (2.9)

The calculation of the curls and scalar products in equation (2.9) can be easily done by
writing the fields in its components (in three dimensions) E1

E2
E3

 ·

 ∂x1

∂x2

∂x3

 ·
 E1
E2
E3


−

 E1
E2
E3

×
 ∂x1

∂x2

∂x3

×
 E1
E2
E3



=


1
2∂x1E

2
1 + ∂x2E1E2 + ∂x3E1E3 − 1

2∂x1E
2
2 − 1

2∂x1E
2
3

∂x1E1E2 + 1
2∂x2E

2
2 + ∂x3E2E3 − 1

2∂x2E
2
3 − 1

2∂x2E
2
1

∂x1E1E3 + ∂x2E2E3 + 1
2∂x3E

2
3 − 1

2∂x3E
2
1 − 1

2∂x2E
2
2

 . (2.10)

The following pattern for every component α ∈ {1, 2, 3} can easily be read off from
equation (2.10)

[E(∇ · E)− E× (∇× E)]α =
∑
β

∂xβ

(
EαEβ −

1
2E · Eδαβ

)
. (2.11)
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2 Fundamental discussion

The same calculation can be done for the B fields yielding to the same results.
Defining the Maxwell stress tensor as

Tαβ = ε0

[
EαEβ + c2BαBβ −

1
2
(
E · E + c2B ·B

)
δαβ

]
, (2.12)

allows us to calculate the components of the force as

Fα =
∫
V

∑
β

∂xβTαβd
3x. (2.13)

Making use of the divergence theorem one can show that the force onto objects in
electromagnetic fields can be calculated through

Fα =
∮

S

∑
β

TαβnβdA. (2.14)

2.2 Polarizabilities
As the thesis’s title suggests, we study the dynamics of polarizable particles. In this
section we would like to give a short introduction to the different origins of polarization.
This section should not be seen as a detailed discussion about polarizable media but
as a simplified picture to get some insight into the thematics. Generally calculating
polarizabilities from first principle is non-trivial and we reduce our considerations to
the simplest cases.

First we will introduce a very intuitive picture how dispersive materials are polarized
and second we will also show that single atoms can be considered as polarizable particles
as well and calculate atomic polarizabilities. In this thesis we focus on linear polarizable
media, which holds for many experimentally relevant cases.

2.2.1 Polarizable media
In dielectric media the electric fields do not lead to currents inside the medium like it
would be the case for inductors but a polarization density (polarization per volume)
P is induced as it is already defined in chapter 2.1.1. Now we want to consider which
mechanism leads to this polarization and what is happening inside the medium. After
putting dielectric media into an electric field single dipoles are induced which add
up to a total polarization per volume P = Np, where p is the dipole-moment of the
elementary dipoles and N is the number of single dipoles inside the corresponding
volume. Generally, one distinguishes between three different mechanisms inducing this
polarization [18]:

• The deformation of the orbitals of the material due to the electric field (αel)

11



2 Fundamental discussion

Figure 2.1: Schematic view of the mechanism leading to polarization of dispersive media.
The dipoles surrounding every single dipole take influence onto the local electric field Eloc.

• The displacement of ions (αion)

• The orientation of permanent dipoles inside the material in the external field
(αorient)

All these mechanisms sum up to a total polarizability α = αel + αion + αorient which
in the case of linear polarizable media is the proportionality constant to calculate the
induced dipole moment out of the local field at the position of every single elementary
dipole via

p = αEloc. (2.15)

The local field is mainly governed by the material’s structure, i.e. the relative positions
of the single dipoles. In figure 2.1 a schematic picture of the mechanism described
above is shown. Time dependent radiation fields lead to oscillations of the dipoles inside
the medium resulting in dipole radiation with the same frequency as the one from the
incoming light.

2.2.2 Atomic polarizabilities
In contrast to the materials discussed in the previous chapter, also single atoms act
as polarizable particles [19, 20]. Therefore, we consider a two-level system {|g〉 , |e〉}
in dipole approximation exposed to a classical light field. The dipole approximation
contains the assumption that the wavelength of the light imposed on the atom is much
larger than the diameter of the atom. The corresponding Hamiltonian is (in rotating
wave approximation)

H = ~ωeg |e〉 〈e| − degE(rA, t) |e〉 〈g| − dgeE∗(rA, t) |g〉 〈e| . (2.16)

12



2 Fundamental discussion

The energy-zero point is set at the level of the ground state and dipole matrix-elements
are defined as deg := 〈e| d̂ |g〉 and dge := 〈g| d̂ |e〉. The operator d̂ = −er is the quantum
mechanical dipole operator.

The second term in (2.16) stands for the absorption of a photon and the third term
for emission. The atom is considered to be at position rA and the field E(rA, t) is
polarized along the chosen quantization direction, i.e. E(rA, t) = E(rA)eze−iωt + c.c, if
we assume quantization along the z-axis.

The Hamiltonian (2.16) fulfils the Schrödinger equation i~∂t |ψ(t)〉 = H |ψ(t)〉, which
can be solved using the ansatz

|ψ(t)〉 = ag(t) |g〉+ ae(t) |e〉 , (2.17)
leading to the following system of differential equations for the time dependent ampli-
tudes ag(t) and ae(t)

∂tag(t) = i

~
dgeE∗(rA, t)ae(t), (2.18a)

∂tae(t) = −iωegae(t) + i

~
degE(rA, t)ag(t). (2.18b)

Changing to the frame rotating at frequency ωeg allows us to get rid of the transition
frequency term in (2.18b). This is performed via the substitution ae(t) = ãe(t)e−iωegt.
In the resulting system of equations we can effectively include spontaneous emission via
an additional damping term with damping constant γ

∂tag(t) = i

~
dgeE∗(rA, t)ae(t), (2.19a)

∂tãe(t) = i

~
degE(rA, t)ag(t)− γãe(t). (2.19b)

This system can easily be solved by first order perturbation theory yielding

|ψ(t)〉 = |g〉+ 1
2~(deg · ez)E(rA)

[
ei(ωeg+ω)t

ωeg + ω − iγ + ei(ωeg−ω)t

ωeg − ω − iγ

]
|e〉 . (2.20)

The induced atomic dipole moment can now be calculated via the expectation value
p(rA, t) = 〈ψ(t)| d̂ |ψ(t)〉 which leads us to

p(rA, t) = 1
2~E(rA)

[
ei(ωeg+ω)t

ωeg + ω − iγ + ei(ωeg−ω)t

ωeg − ω − iγ

]
dge(deg · ez)e−iωegt+

+ 1
2~E(rA)

[
ei(ωeg+ω)t

ωeg + ω − iγ + ei(ωeg−ω)t

ωeg − ω − iγ

]∗
deg(dge · ez)eiωegt

= 1
2~E(rA)dge(deg · ez)[
eiωt

ωeg + ω − iγ + e−iωt

ωeg − ω − iγ
+ e−iωt

ωeg + ω + iγ
+ eiωt

ωeg − ω + iγ

]
=: E(rA)

[
α∗(ω)eiωt + α(ω)e−iωt

]
ez = α(ω)E(rA)eze−iωt + c.c. . (2.21)
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Figure 2.2: Frequency dependence of the real part (blue curve) and imaginary part
(black curve) of the atomic polarizability α from equation (2.23).

where we defined the atomic polarizability tensor as (k, l ∈ 1, 2, 3)

αk l(ω) :=
dkged

l
eg

2~

[
1

ωeg + ω + iγ
+ 1
ωeg − ω − iγ

]
. (2.22)

Due to the fact that we chose the quantization axis in z-direction and the electric field
is polarized parallel to this axis, we are able to reduce the tensor polarizability to a
scalar quantity (d3 ≡ dz)

α(ω) =
dzged

z
eg

~

[
ωeg(ω2

eg − ω2)
(ω2 − ω2

eg)2 + 4γ2 + i
2γωωeg

(ω2 − ω2
eg)2 + 4γ2

]
(2.23)

= Re(α) + Im(α).

Figure 2.2 shows the plot of the real and imaginary part of the atomic polarizability
given in (2.23). Obviously the real part is zero if ω = ωeg and the imaginary part has
its maximum at this point. Generally, the real part corresponds to dissipative effects
where the imaginary part stands for spontaneous emission.

Writing the induced atomic dipole moment in complex notation, i.e. p(rA, t) =
p(rA)eze−iωt + c.c. and comparing coefficients in equation (2.21) results in the linear
relation

p̃(rA) = α(ω)Ẽ(rA), (2.24)

where we defined the two vectors p̃(rA) := p(rA)ez and Ẽ(rA) := E(rA)ez.
Finally we notice that a time dependent electric field with frequency ω induces a

harmonically oscillating dipole with the same oszillation frequency, cf. equation (2.21).
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2 Fundamental discussion

Figure 2.3: Naming convention for the amplitudes at the jth beam splitter. xj defines
the position of the jth beam splitter

2.3 Beam splitter method
On the basis of the last chapters we are now able to introduce the central method used
in this thesis: the beam splitter method. This is a semi-classical and one-dimensional
model description of light scattering by linear polarizable particles. It allows us to
describe the propagation of light through slices of dispersive media or atoms in one
dimension. In this chapter we would like to give a short introduction to the basic
properties of this method. Further reading can be found in publications on related
topics [12, 13, 15, 21].
Considering the beam splitter method, every single dipole in the array acting as a

light scatterer is modelled as a so called beam splitter, which can transmit, absorb and
reflect a certain amount of light. We use the convention introduced in [15] namely that
the incoming amplitudes on the jth beam splitter are named like shown in figure 2.3.

2.3.1 Definition of the transfer matrices
Let us first consider a single beam splitter at position xj which is illuminated from
both left and right sides with monochromatic light E(x, t) = E(x) exp(−iωt). The
spatial dynamics of this field is then described by the 1D Helmholtz equation (2.6). The
polarization density reads

P (x) = ηαδ(x− xj)E(x), (2.25)

where η stands for the area density of particles combined to a single beam splitter,
k = ω/c is the wave number and α the polarizability as discussed in chapter 2.2. Here
we restrict ourselves to scalar polarizabilities, for a generalization of the beam splitter
method to multi-level atoms we refer to a work by Xuereb et al. [22].
If we consider an array with N beam splitters at positions x1, ..., xN and define the

dimensionless parameter ζ := kηα/(2ε0) the spatial dynamics is given via

(
∂2
x + k2

)
E(x) = −2kζE(x)

N∑
j=1

δ(x− xj). (2.26)
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2 Fundamental discussion

The solution of equation (2.26) between two beam splitters, x ∈ (xj, xj+1) reads

E(x) = Cje
ik(x−xj) +Dje

−ik(x−xj) ≡ Aj+1e
ik(x−xj+1) +Bj+1e

−ik(x−xj+1). (2.27)

The amplitudes Aj, Bj left and Cj, Dj right of the beam splitter at the position xj are
related by the linear transformation matrix MBS.

The constant ζ ∈ C is the fundamental parameter to describe the interaction between
the atom and the light field. Generally, the real part Re(ζ) corresponds to dissipative
effects while the imaginary part Im(ζ) accords to spontaneous emission. This can be
easily understood via equation (2.23). As for atoms the following relation for the real
part of ζ applies

Re(ζ) > 0, for ω < ωeg, (2.28a)
Re(ζ) < 0, for ω > ωeg. (2.28b)

The imaginary part Im(ζ) is always positive, cf. figure 2.2.
If we want to treat macroscopic objects like silicon beads using the beam splitter

method, the real part of ζ stands for light which is reflected back into the light mode,
while the imaginary part describes light that is absorbed inside the medium.

To derive the transfer matrix we consider a single beam splitter at position xj. The
spatial components of the fields left and right of this jth beam splitter are given by

Ej(x) =
{
Aje

ik(x−xj) +Bje
−ik(x−xj), for x < xj

Cje
ik(x−xj) +Dje

−ik(x−xj), for x > xj.
(2.29)

Of course these fields need to fulfil the continuity condition at position xj, Ej(x →
x−j ) = Ej(x→ x+

j ), where + and − stands for the limit performed from the right and
the left side. In contrast to that, the derivatives of the field are continuous but not
differentiable at the beam splitter position xj as the following calculation shows. We
integrate equation (2.26) over an interval of length 2ε (ε� 1) around xj.

∫ ε

−ε

(
∂2
x + k2

)
El,r(x)dx = −2kζ

∫ ε

−ε
δ(x− xj)El,r(x)dx︸ ︷︷ ︸

El,r(x=xj)∫ ε

−ε
∂2
xEl,r(x)dx+ k2

∫ ε

−ε
El,r(x)dx = −2kζEl,r(x = xj)

∂xEl,r(ε)− ∂xEl,r(−ε) + k2
∫ ε

−ε
El,r(x)dx = −2kζEl,r(x = xj)

lim
ε→0

[∂xEl,r(ε)− ∂xEl,r(−ε)] + lim
ε→0

k2
∫ ε

−ε
El,r(x)dx︸ ︷︷ ︸

−→0

= −2kζEl,r(x = xj)

=⇒ ∂xE(x→ x+
j )− ∂xE(x→ x−j ) = −2kζE(x = xj)
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2 Fundamental discussion

In summary, the boundary conditions for the fields are as follows

El(x→ x−j ) = Er(x→ x+
j ), (2.30a)

∂xE(x→ x−j )− ∂xE(x→ x+
j ) = 2kζE(x = xj). (2.30b)

We used the naming convention that the fields on the left side (x < xj) of the beam
splitter are the ones with index l and the ones on the right side (x > xj) are the ones
with index r.

The field amplitudes are connected via the scattering matrix(
Bj

Cj

)
=
(

rl t,
t rr,

)(
Aj
Dj

)
. (2.31)

We assumed different reflection coefficients for light from the left and the right side, rl
and rr but we will show that for a single beam splitter rl = rr. For higher numbers of
beam splitters this equality will no longer be true.
Rearranging (2.31) leads us to the definition of the transfer matrix(

Cj
Dj

)
= 1

t

(
t2 − rlrr rr
−rl 1

)(
Aj
Bj

)
. (2.32)

Using the boundary conditions (2.30) we are now able to find out how the reflection
and transmission coefficients, r and t, are connected with the parameter ζ. For light
from the left side, the incoming, reflected and transmitted fields have the form

Ein = Aje
ik(x−xj), (2.33a)

Etrans = tAje
ik(x−xj), (2.33b)

Erefl = rlAje
−ik(x−xj). (2.33c)

Setting the fields (2.33) into (2.30a) leads us to the first condition for the reflection
and transmission coefficients

Aj + rlAj = tAj,

1 + rl = t, (2.34)

and calculating (2.30b) for the fields (2.33) results in

lim
x→x−

j

∂x(Ajeik(x−xj) + rlAje
−ik(x−xj))− lim

x→x+
j

∂xtAje
ik(x−xj) = 2kζAj(1 + r)

ik − ikrl − ikt = 2kζ(1 + rl). (2.35)

Of course the same calculation can be done for light coming from the right side. In
this case rl has to be replaced by rr in (2.34) and (2.35). From the equations (2.34)
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2 Fundamental discussion

and (2.35) the following relations can be found

r ≡ rl = rr = iζ

1− iζ , (2.36a)

t = 1
1− iζ . (2.36b)

The transfer matrix (2.32) can be rewritten by using (2.36) and we get(
Cj
Dj

)
=
(

1 + iζ iζ
−iζ 1− iζ

)
·
(
Aj
Bj

)
=: MBS ·

(
Aj
Bj

)
. (2.37)

This is the transfer matrix for a single beam splitter.
Arrays of beam splitters can now be described by the total transfer matrix which

is obtained by matrix multiplication of the transfer matrices for every single beam
splitter. Propagation between the beam splitters can be described by a propagation
matrix which can be read off from (2.27)(

Aj+1
Bj+1

)
=
(
eik(xj+1−xj) 0

0 e−ik(xj+1−xj)

)
·
(
Cj
Dj

)

=: Mp(xj+1 − xj) ·
(
Cj
Dj

)
. (2.38)

The values of the electric fields in the array are fixed by the incoming beam amplitudes
A1 and DN . The total reflection and transmission coefficients are calculated with the
help of the total transfer matrix of the setup and define the remaining amplitudes at
the boundaries as B1 = rtotl A1 + ttotDN and CN = rtotr A1 + ttotDN self-consistently.
Due to the fact that the product of transfer matrices are always of the form (2.32)

we can define the group1 of transfer matrices (T , ·), where · stands for the standard
matrix-multiplication, and T is defined as follows [15]

T :=
{
T ∈ C2×2

∣∣∣∣∣∃ rl, rr, t ∈ C : T = 1
t

(
t2 − rlrr rr
−rl 1

)
≡ T (rl, rr, t)

}
. (2.39)

In this case the coefficients rl and rr no longer have to be the same because for arrays
of beam splitters reflection from left and right must not be equal [15].

1A group is a set G together with an operation ·, short written as (G, ·) which fulfils the following
conditions (a, b, c ∈ G) [23]:
• Closure: a, b ∈ G→ a · b ∈ G
• Associativity: a · (b · c) = (a · b) · c
• Existance of a neutral element: ∃e ∈ G→ a · e = e · a = a

• Existance of an inverse element: ∃i ∈ G→ i · b = b · i = e (i := b−1)
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2 Fundamental discussion

It is easy to show that (2.39) fulfils all the group axioms. First we need to find out
that T1 · T2 ∈ T if T1, T2 ∈ T . For that we define two matrices T1, T2 ∈ T

T1 = 1
t

(
t2 − rlrr rr
−rl 1

)
, (2.40a)

T2 = 1
T

(
T2 −RlRr Rr

−Rl 1

)
. (2.40b)

Multiplying the matrices (2.40) results in

T tot = 1
tT

(
−Rlrr + (−rlrr + t2)(−RlRr + T2) rr − rlrrRr + Rrt

2

−Rl + rlRlRr − rlT
2 1− rlRr

)

=: 1
tnew

(
(tnew)2 − rnew

l rnew
r rnew

r

−rnew
l 1

)
(2.41)

where we defined

tnew = tT

1− rlRr

, (2.42a)

rnew
l = (Rl − rlRlRr + rlT

2)tnew, (2.42b)
rnew
r = (rr − rlrrRr + Rrt

2)tnew. (2.42c)

To check if T tot is an element of T we calculate the entry T tot
11 with (2.42) and check if

this fullfills the following equation

(tnew)2 − rnew
l rnew

r

tnew = −Rlrr + (−rlrr + t2)(−RlRr + T2)
tT

. (2.43)

Due to the fact that this is the case and also knowing that all matrices out of T have
determinant 1, meaning they are invertible, i.e. there exists an inverse element, we are
able to state that (T , ·) is a group (The neutral element is trivial in this case because
it corresponds to the unity matrix). In addition, one should notice that the transfer
matrices have a reflection symmetry where σzTσz = T−1 and σz =

(
0 1
1 0

)
is the Pauli

Matrix for the z direction.
We are now able to calculate several fields for an array of beam splitters just by

matrix multiplication. The calculation of the forces on polarizable particles is straight
forward as shown in the following chapter.

2.3.2 Force onto a single beam splitter
Using the Maxwell stress tensor (2.12) we are able to calculate the force on every single
beam splitter with equation (2.14). Due to the fact that the beam splitter method is a
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2 Fundamental discussion

one dimensional method we can simplify (2.12) to

Txx = ε0

[
ExEx + c2BxBx −

1
2(E2

x + E2
y + E2

z + c2[B2
x +B2

y +B2
z ])
]

= −ε02
(
E2 + c2B2

)
, (2.44)

where we used the fact that the electric and magnetic fields are always orthogonal to
the propagation direction resulting in Ex = Bx = 0 (assuming field propagation in x
direction). Another simplification of equation (2.44) can be achieved by using the fact
that electromagnetic waves are transversal, i.e. |cB| = |E|, resulting in

Txx = ε0E2. (2.45)

In the case of infinitesimally thin beam splitters we are dealing with, the integration
volume is given via V = A/2 δl, where δl corresponds to an infinitesimally small length
parallel to the x-axis. This length has no influence on the integral in (2.14). The two
surfaces with size A/2 are chosen parallel to the beam splitter, which is localized at
position x = xj. Therefore the vector n is defined as n = A/2 sign(x− xj)ex. Under
these assumptions the integral (2.14) can be calculated through

Fα = A2
[
−Txx(x→ x−j ) + Txx(x→ x+

j )
]
. (2.46)

Using Maxwell’s stress tensor (2.45) together with the fields (2.29) yields the time
averaged force per unit area on the jth beam splitter as [13]

Fj = ε0
2
[
|Aj|2 + |Bj|2 − |Cj|2 − |Dj|2

]
. (2.47)

This simple but powerful formalism to calculate the fields and forces on single atoms,
atom clouds or other dielectric media such as membranes or elastic dielectrics allows
us to describe complex dynamics such as self–organization or even laser cooling in any
effective 1D geometry [21, 24–26].

2.3.3 Generalization for multiple frequencies and polarizations
Previous models were restricted to a single pump frequency and polarization in a
counter propagating geometry. Here we show that it is straightforward to generalize
the beam splitter method to allow for multiple frequencies and polarizations. The field
propagating in the x-direction shall then be written as E(x, t) = Ey(x) exp(−iωyt)ey +
Ez(x) exp(−iωzt)ez, where Ey(x) [Ez(x)] is defined as the component polarized in the
direction of ey [ez] oscillating with frequency ωy = kyc [ωz = kzc]. In this setup, the
beam splitter model can be employed for each component independently, as long as
the particles don’t scatter photons from one mode into the other. Here we wrote that
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2 Fundamental discussion

the total field is a sum of linearly polarized fields, but using two orthogonal circular
polarizations would not change the main conclusions.
Note that the coupling parameter ζ introduced in equation (2.6) is proportional to

the atomic polarizability and the wave vector. In this thesis we will assume that the
polarizability is the same for ky and kz, hence ζz = ζykz/ky. Of course, a more realistic
treatment of α is easily possible within our framework but it would add unnecessary
complexity.
In the following chapters we will study how the introduction of different frequency

fields provides new prospects of manipulating arrays of particles, ranging from equidistant
lattices to individually tuned inter-particle distances as well as the design and control
of motional couplings.
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Chapter 3

Possible realization methods

Before continuing with the model calculations considered in this thesis we would like to
give a short overview of possible experimental realisations which have been developed
recently. Even though the beam splitter method is a one dimensional method there
are some experimental configurations which fulfil several conditions for being described
within this method.

The main condition which has to be fulfilled is that the particles have only one
effective degree of freedom meaning the interesting dynamics occurs along one axis. If
this condition holds other three dimensional effects such as scattering losses in all three
dimensions can be included into the imaginary part of the parameter ζ.

Originally, the beam splitter method was developed to describe atoms in 1D optical
lattices [12, 13]. In recent years new experimental setups with effective 1D geometry
have been developed, which can perfectly be described by the beam splitter method.
In this chapter we will give a short description of two of these 1D geometries which
could reproduce the results discussed in this thesis. In addition, we will show how the
parameter ζ, which describes the scattering properties of each particle can be estimated
for special experimental setups.

3.1 Atoms trapped in the evanescent field surrounding
an optical nanofibre

The first approach was developed by Rauschenbeutel and co-workers a few years ago [4].
They established a method to trap caesium atoms alongside a tapered nanofibre. The
diameter of this fibre (usually 500 nm) is smaller than the wavelength of the incoupled
laser (1064 nm) resulting in an high evanescent field outside the fibre. Generally they
realize a two-colour optical dipole trap. This fibre-based atom trap is a quasi 1D
geometry meaning that it can be well described with the beam splitter method. The
experimental setup is shown in figure 3.1a.

The red-detuned light field attracts the atoms towards the nanofibre while the blue-
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3 Possible realization methods

Figure 3.1: (a) Experimental setup to generate an atom-trap alongside a tapered
nanofibre. The trapping potential is generated as a combination of a blue- and a red-
detuned laser fields. (b) Fluorescence image of the trapped atomic ensemble. (source: [4]).

detuned field repels them from the fibre. The radial dependencies of these two potentials
are different (cf. figure 3.2a), resulting in a net potential minimum a few hundred
nanometres from the nanofibre surface. To confine the atoms in axial directions the
red detuned laser is imposed from both sides, resulting in a standing wave potential.
Azimuthal confinement is due to the fact that the used HE11 is azimuthally dependent.
These confinements result in atom traps on both sides along the nanofibre cf. figure 3.2d.
Related setups by other groups have also been established in the last few years [9].

As we believe that this trap configuration could also be used to verify the systems we
are considering in the following chapters, we would like to give a short argumentation
why all the conditions for being treated with the beam splitter method are fulfilled.

Due to the fact that every atom trapped at the surface of the fibre can interact with
the fibre mode via the evanescent field it has the same scattering properties as a beam
splitter. It can absorb photons from the fibre mode and emit them back into the fibre
mode. The scattering loss due to spontaneous emission corresponds to the imaginary
part of ζ.
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3 Possible realization methods

Figure 3.2: Potential generated for atoms along a tapered nano fibre. (a) Radial
dependencies as a function of distance from the nanofibre. The red-detuned light field
results in an attractive potential (red curves) while the blue-detuned light field generates
a repelling force (blue curves). Due to the different radial dependence the resulting
potential has a minimum a few hundred nanometres outside the fibre (black curve). (b)
Contour plot of the potential. Axial confinement is obtained by a standing wave trap.
(c) Azimuthal dependence of the potential, (d) schematic view of the generated array of
trapping sites. (source: [4]).
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3.2 Nanospheres in a hollow core fibre
A second approach uses classical objects, namely nanospheres. Aspelmeyer and co-
workers established a method to trap and manipulate nanospheres inside the core of a
hollow core fibre [27].
These fibres are hollow nanofibres surrounded by an photonic band gap material

which ensures maximal light propagation inside the fibre. In figure 3.3 a lateral-cut of
such a fibre is shown.

Figure 3.3: Lateral-cut of a hollow core fibre by NKT Photonics (source: [27]).

The nanospheres used in this experiment have a radius of 127 nm, i.e. they are much
smaller than the wavelength of the laser light (1064 nm). This allows us to describe
the particles as single dipoles which scatter light back into the fibre mode (i.e. the
geometry must not be taken into account). Of course this setup can be very well treated
with the beam splitter method meaning that every nanosphere is modelled as a beam
splitter, which scatters light back into the fibre mode. Scattering losses and heating of
the spheres due to absorption can be included to the imaginary part of ζ.

3.3 Estimation of the parameter ζ
As far as experimental setups are concerned it is crucial to know the parameter ζ, as
defined in section 2.3, for the specific particles used in the experiment. In this chapter
it is shown how this parameter can be evaluated out of the measured reflection and
transmission of the particle.
In equation (2.36) the dependence of the complex reflection and transmission coeffi-

cient r and t on the parameter ζ is given. The measurable quantities in this case are
R := |r|2 and T := |t|2 which can be written in terms of the real- and imaginary part of
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the parameter ζ

R = Re2(ζ) + Im2(ζ)
1 + 2 Im(ζ) + Im2 ζ + Re2(ζ)

, (3.1a)

T = 1
1 + 2 Im(ζ) + Im2 ζ + Re2(ζ)

. (3.1b)

Equations (3.1) defines a system which can be solved for Re(ζ) and Im(ζ) resulting in

Re(ζ) = ±
√

(1 +R + T )2 − 2(1 +R2 + T 2)
2T , (3.2a)

Im(ζ) = 1−R− T
2T . (3.2b)

The sign of the real part of ζ depends on the properties of the used particles, i.e. whether
they are high-field seekers or low-field seekers, cf. equation (2.28b). In summary, the
real and imaginary part of ζ can be easily estimated by measuring the reflected and
transmitted light of a single particle.
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Chapter 4

Light forces in counter propagating
beams with orthogonal polarization

In this chapter we explore forces and dynamics of a 1D array of scatterers modelled
by a chain of beam splitters at distances dj := xj+1 − xj irradiated from both sides by
light with orthogonal polarizations (ey and ez) and possibly distinct frequencies (ωy
and ωz), cf. figure 4.1. In contrast to a standard optical lattice setup as treated in
previous publications [12, 13] no a priori intensity modulation due to wave interference
is present and we start with a translation invariant field configuration.
Hence the light field itself does not prescribe any a priori local ordering and only

multiple light scattering from the particles themselves creates spatially varying trapping
forces. Due to the translation invariance of the setup no absolutely stable particle
configuration can be expected. However, the coupled particle field dynamics can induce
relative order. Hence our central goal is to find conditions, when the light forces induced
by two non-interfering beams are sufficient to obtain stationary stable particle arrays,
and analyse how this spontaneous crystal formation arises.

Figure 4.1: Sketch of the intensity distribution of two light fields of orthogonal polariza-
tion and different colour propagating through a 1D array of thin beam splitters. Light
with orthogonal polarization is imposed from left and right.
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4 Light forces in counter propagating beams

4.1 Stability conditions for two beam splitters
To get some first insight, we start with the simplest non-trivial example of two beam
splitters at a distance d = x2 − x1. The pump intensities from the left and right beam
are given as Iy = cε0

2 |Ay,1|2 and Iz = cε0
2 |Dz,2|2, respectively. Here we choose the

convention that all variables with index y corresponding to light polarized in direction
of ey, which is injected from the left (negative x-axis), and index z corresponding to
ez-polarized light injected from the right. The individual beam splitters are counted
from left to right with integer indices, so that Bz,2 is the B-amplitude of the light field
polarized parallel to ez at the second beam splitter, cf. equation (2.27).
We also have to keep in mind that the coupling parameter ζ = kηα/(2ε0) explicitly

depends on the wave numbers ky and kz. We will assume that the atomic polarizability
α is frequency independent, i.e. the same for both frequencies used and hence the
effective interaction parameters are defined as ζz ≡ kz

ky
ζ, ζy ≡ ζ.

To calculate the forces on each beam splitter of this system one first has to know all the
amplitudes to use (2.47) which can be easily achieved via transfer matrix multiplication.
Figure 4.2 shows all amplitudes which have to be considered in this system.
We will not list the detailed calculation, but just shortly give an idea how the

mechanism works. The following linear equation can be solved for By,1 and Cy,2

(Ay,1, By,1)T = (MBS)−1 · (Mp(d))−1 · (MBS)−1 · (Cy,2, 0)T . (4.1)

With this result one can calculate (Ay,2, By,2)T = (MBS)−1 · (Cy,2, 0)T . Now using
equation (2.47) results in the force Fy,2 induced by light with wave number ky and
polarization along ey onto the second beam splitter. We use light with different
polarizations and as discussed in section 2.3.3 the corresponding forces can be calculated
separately and added to obtain the total force on both beam splitters. Proceeding with
(Cy,1, Dy,1)T = (Mp)−1 · (Ay,2, By,2)T and using equation (2.47) again, leads us to the

Figure 4.2: System of two beam splitters. The amplitude’s first index stands for the
wavelength, the second corresponds to the beam splitter number. Ay,1 and Dz,2 are
proportional to the incoming intensities from each side. In our system the amplitudes Dy,2
and Bz,1 will always be zero, because only two light sources with different polarizations
and wavelengths on the left and right side are considered.
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Figure 4.3: Force on left (4.2a) (solid lines) and right beam splitter (4.2b) (dashed lines)
as function of distance d in units of Iy/c for ζ = 0.01 and k = ky = kz = 2π/λ. For equal
pump power P = Iz/Iy = 1 and frequency (blue curves) two the forces add to zero and
vanish at distances d = λ/8 and d = 3λ/8. For asymmetric pump intensities P = 0.7 (red
curves) a net centre of mass force remains. The black curve shows a similar behaviour
occurring for different pump frequencies kz

ky
= 1.2 of the same power P = 1. The red

(green) dot marks unstable (stable) stationary points.

force Fy,1. Analogous to the previous calculations one can also find the forces Fz,1 and
Fz,2 induced by light with wave number kz and polarized along ez. The only thing one
has to take care of is that for different wavelengths the parameter ζ changes. In the
following, we will assume the same polarizability for both wavelengths which means that
for the second wavelength, ζ has to be replaced by ζ2 ≡ k2

k1
ζ in the transfer matrices.

The total forces can then be found via F1 = Fy,1 + Fz,1 and F2 = Fy,2 + Fz,2.
Despite the simple physical situation the corresponding general analytic solution

already is rather unhandy. Thus we first restrict ourselves to real valued ζ neglecting
absorption in the beam splitter or equivalently neglecting spontaneous emission in an
atom fibre system. Assuming small values of ζ and dropping terms of O(ζ3) and higher,
we then find the following approximate formulae for the force on the two particles

F1 = 1
c

Iy 2ζ2 (4 cos2(dky)− 1)
1 + 4ζ2 cos2(dky)

−
Iz 2(kz

ky
ζ)2

1 + 4(kz
ky
ζ)2 cos2(dkz)

 , (4.2a)

F2 = 1
c

 Iy 2ζ2

1 + 4ζ2 cos2(dky)
−
Iz 2(kz

ky
ζ)2 (4 cos2(dkz)− 1)

1 + 4(kz
ky
ζ)2 cos2(dkz)

 . (4.2b)

For a given set of control parameters, namely the pump power ratio P := Iz/Iy and
the wave numbers ky and kz, the beam splitters will settle at a distance d0 for which the
two forces are equal i.e. F1|d=d0 = F2|d=d0 and the configuration is stable ∂dF1|d=d0 > 0
and ∂dF2|d=d0 < 0. In this case, the system can still exhibit centre of mass motion but
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4 Light forces in counter propagating beams

the particles are fixed at a constant distance. From equation (4.2) we see that a stable
configuration in the special case of equal wave numbers, k = ky = kz requires

∆F = F1 −F2 = 1
c

4ζ2 cos(2d0k)
1 + 4ζ2 cos2(d0k)) (Iy + Iz) = 0. (4.3)

Independent of the injected laser intensities, which just appear as a multiplicative
factor, this corresponds to two particles at distance ds0 = (2n+1)π

4k = (2n+1)λ
8 (n ∈ N) cf.

figure 4.3. Here the solutions for odd n correspond to a stable configuration, while
even n leads to unstable behaviour. As numerical example we plot the full distance
dependent forces for three typical sets of parameters in figure 4.3, where stationary
distances of equal force can be read of the intersection points. If these occur at zero
force, the centre of mass is stationary as well.

4.1.1 Stability analysis as a function of distance
The centre of mass is stationary if the total force, i.e. the sum of both forces (4.2),
vanishes. To find out whether there are some special distances d for which the system
is stable when light with different polarizations is used, we search for the zeros of
equations (4.2). We assume k1 = k2 ≡ k in (4.2).
For small ζ the distances of zero force on each particle can be approximated by

d±1 = 1
ky

arccos
± 1

2ky

√√√√ k2
yIy + k2

zIz

Iy + (kz/ky)2ζ2 (Iy − Iz)

+ n1π

 n1 ∈ Z, (4.4a)

d±2 = 1
kz

arccos
± 1

2kz

√√√√ k2
yIy + k2

zIz

Iz − ζ2 (Iy − Iz)

+ n2π

 n2 ∈ Z. (4.4b)

Conditions (4.4) imply F1|d=d±
1

= 0 and F2|d=d±
2

= 0, respectively. Any solution
fulfilling d−1 = d−2 thus results in a stable and stationary configuration, where the forces
on both beam splitters vanish and small perturbations induce a restoring force, as cf.
figure 4.3. Such solutions can only be determined numerically and are not guaranteed
to exist for any set of parameters.

4.1.2 Stability analysis as a function of intensities
In section 4.1.1 we saw that distances with vanishing force on both beam splitters,
leading to a stable or trapped configuration for given pump-power ratios and wave
numbers for the special case k = ky = kz require equal pump power. If we reverse the
line of argumentation and ask for pump-power ratios and wave numbers where the two
beam splitters can be trapped at a given distance d, the result allows us to study the
full system i.e. different polarizations and frequencies. In this case precise distance
control is possible.
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First we need to find the zeros of (4.2) with respect to P :

P1 =
(4 cos2(dky)− 1)(k2

y + 4k2
z ζ

2 cos2(dkz))
k2
z (1 + 4ζ2 cos2(dky))

(4.5a)

P2 =
k2
y + 4k2

z ζ
2 cos2(dkz)

k2
z (1 + 4ζ2 cos2(dky))(4 cos2(dkz)− 1) . (4.5b)

Both solutions P1 and P2 have to be positive, which is not valid for all values of d
(cf. figure 4.4). The denominator diverges for d = nπ

3k2
, with n ∈ {1, 2, 4, 5, 7, ...} (all

multiples of 3 are neglected for n). In addition, both, P1 and P2, have to be positive for
physical reasons. Figure 4.4 shows the functional dependence of the solutions (4.5a) and
(4.5b) on the distance d. Due to the condition that both solutions have to be positive,
not all distances lead to a physical solution. If k2 > k1, just distances in the intervals
(0, π

3k2
), ( 2π

3k2
, 4π

3k2
) and so on are allowed as can be seen in figure 4.4. In the case where

k2 < k1, the intervals remain the same, but k2 has to be replaced by k1.
To obtain a trapping condition for the wave numbers i.e. wave numbers where the

total force F1 + F2 vanishes, we solve P1 = P2, finding

k±z = 1
d

arccos
±

√
cos(2dky)√

2(1 + 2 cos(2dky)

+ 2πn, n ∈ Z. (4.6)

Equation (4.6) enables us to calculate the needed wave numbers, to trap the beam
splitters at a given distance d. The associated pump-power ratio can be calculated
via (4.5a) or (4.5b).
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Of course one can also can ask for a self-organized system in this context. Again we
calculate F1 − F2 = 0 for P and get

P = −(2 cos(dk1)2 − 1)(k2
1 + 4k2

2ζ
2 cos(dk2)2)

k2
2(1 + 4ζ2 cos(dk1)2)(2 cos(dk2)2 − 1) . (4.7)

We notice that for k1 = k2 ≡ k the pump-power ratio (4.7) simplifies to P = −1. This
does not fulfil the condition that P has to be positive, meaning that for any given
distance d there is no possibility to imply a centre of mass motion in the case that
k1 = k2 ≡ k.
In principle, determining stationary states for a larger number of beam splitters is

straightforward by first solving equations (2.37) and (2.38) for the fields and using these
to calculate the forces. However, to determine a completely stationary configuration of
N splitters for a given input field configuration, we have to solve N non-linear equations
to guarantee a vanishing force at each beam splitter as function of the N − 1 relative
distances. This problem can have no or infinite many solutions. Often one does not get
an exact solution, but solutions with vanishingly small centre of mass force.
As a rather tractable example we plot the zero force lines as function of the two

relative distances for the case of three beam splitters illuminated by light of equal power,
P = 1, but different colour, kz/ky = 1.1 in figure 4.5. One finds many intersections
of these lines, where two forces vanish, but only for a few distances we get triple
intersections where the forces on all three mirrors vanish and stationary order can
be achieved. These solutions then still have to be checked for stability against small
perturbations to find a stable steady state.
In general we see that despite the lack of externally prescribed order the particles

mostly tend to arrange a configuration with stationary distance. While finding explicit
analytical formulas here is rather tedious, a numerical evaluation requires very little
effort and can be easily performed for large parameter ranges. This will be done in the
following section.
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4 Light forces in counter propagating beams

Figure 4.5: Zero force lines for three beam splitters as function of the two distances for
kz/ky = 1.1, ζ = 0.1 and equal power P = 1. Common crossings of all three lines (red
circles) denote a stationary (but possibly unstable) configuration with no centre of mass
motion.

4.2 Self-ordering dynamics
To investigate the dynamics of a higher number of beam splitters even the numerical
solution for stationary states from the force equations gets more and more tedious.
Hence it is more instructive to change into the time domain picture and solve the
dynamical Newtonian equations of motion (4.9) for various initial conditions until an
equilibrium configuration is reached. To arrive at a stationary solution we assign a mass
to the beam splitters and add an effective friction term with friction coefficient µ to the
classical Newtonian equations of motion [13],

mẍj = −µẋj + Fj(x1, ..., xN). (4.8)

In the following simulations we assume that the system is in the so called over-damped
regime, meaning that the characteristic time scale of undamped cloud motion, i.e.
the oscillation period, is much larger than the relaxation time of the cloud’s velocity
towards a constant value due to viscous friction. Under this assumption the equations
of motion (4.8) are reduced to a set of differential equations of first order [13],

ẋj = Fj(x1, ..., xN)
µ

. (4.9)

First we would like to check if the analytical result (4.4a) which was obtained from
a static approach, can be reproduced in this dynamical picture. For that purpose
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Figure 4.6: Dynamics for N = 2 beam splitters, using P = 1, ky = kz and ζ =
0.01 starting at initial distance λ/2. The colour coding in the background shows the
corresponding evolution of the total field intensity Itot := Iy + Iz.

we simulate the dynamics of two beam splitters in the symmetric case (P = 1 and
kz/ky = 1) with equation (4.9).

In a traditional standing wave trap, the beam splitters would settle at the chosen initial
equidistant spacing dinit = π/k = λ/2, cf. equation (5.19), which can be determined self-
consistently [13]. However, for two trap beams of orthogonal polarization no prescribed
periodicity is present and the particles themselves create a field configuration which
confines their motion through multiple scattering.
For two particles we find that they rearrange from their starting distance point

towards a smaller distance. They settle again at a stable configuration where the
resulting distance is close to the estimated one in the static case da = 3λ/8 cf. figure 4.6
and figure 4.7. The small difference between the analytical and numerical result
in figure 4.7 results from neglecting orders O(ζ3) in (4.2a) and (4.2b).
Another fundamental question is what influence the imaginary part of ζ takes con-

sidering the stability of the system. In the analytical calculations performed in the
previous chapters we assumed ζ ∈ R. In the numerical case it is easy to estimate how
long this assumption is true. For that purpose we plot the dependence of the obtained
stable distance between the two beam splitters on the imaginary part of ζ for fixed
values of Re(ζ), cf. figure 4.8.

Obviously the system is stable if the imaginary part of ζ is sufficiently small but
in all cases we find that there exists a threshold for the imaginary part of ζ. Above
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Figure 4.7: Comparison of the dynamically obtained distance d := x2 − x1 (red line) to
the analytic result da given in equation (4.4a) (dashed line). The same parameters as
in figure 4.6 are used.

0

0.5

1

1.5

2

2.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Im(ζ)

D
ist

an
ce

d
[in

un
its

of
1/

k
]
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4 Light forces in counter propagating beams

Figure 4.9: Force on left (orange) and right beam splitter (green) as function of the
wave number ratio kz/ky and distance for two partly absorbing beam splitters with
ζ = 1/12− i/150 and P = 1.

this threshold the two particles are pushed together and no stable configurations with
non-zero distance can be realized. This enables us to conclude that as long as the
imaginary part of ζ remains smaller than the real part of ζ the system is stable and the
expected effects should be the same. In the following we will mainly focus on real ζ to
reduce the number of free parameters.

Let us now exhibit some more of the intrinsic complexity of the system in a numerical
example. In figure 4.9 we plot the forces on the two beam splitters as function of distance
and relative wave number for fixed equal pump intensity from both sides. Clearly the
intersection of the two force surfaces shows a complex pattern with a multitude of
stationary distances which can be controlled e.g. via the chosen frequency ratio.
In an alternative approach we can numerically find a stable stationary distance of

the two beam splitters as function of pump power and wave number ratio by time
integration of their motion with some damping added, cf. figure 4.10. We see that
depending on the parameters for a given initial condition the system can settle to a
large range of different stationary distances, exhibiting rather abrupt jumps at certain
critical parameter values.

Generally a numerical evaluation requires very little effort and can easily be performed
for large parameter ranges. This allows us to consider higher numbers of beam splitters
as it is done in figure 4.11 with N = 10 beam splitters, we find that there are also stable
and trapped solutions. Despite the fact that there is no externally prescribed order,
the particles mostly tend to arrange at configurations with stationary distance, which
differs from the one realized by a traditional standing wave, cf. figure 4.12.
We also find that in the special case where kz/ky = 1 P = 1 is the only choice to

obtain equally spaced beam splitters that are stable and trapped. This agrees with
the analytical results for two beam splitters (4.4a). Interestingly, the final distances
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wave number ratio kz/ky and the pump power ratio P obtained by numerical integration
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the corresponding evolution of the total field intensity Itot := Iy + Iz.

37



4 Light forces in counter propagating beams

d0 ≈ 0.47λ

λ/2

0 5 10 15 20 25 30
Time t [arb. units]

D
ist

an
ce

s
d

i

Figure 4.12: Change of the relative distances di := xi+1 − xi for the same parameters
as in figure 4.11. Obviously they converge towards a stable equidistant order of reduced
distance.

d1 = d2 = ... = dN converge to the result of the standing wave case as the number of
beam splitters N is increased, cf. figure 4.13. In this case, a setup with orthogonally
polarized trap beams has the same trapping properties as a standing wave setup, as
N →∞. The beam splitters themselves form an effective Bragg reflector to synthesize
a standing wave configuration, which then traps the particles.

A substantially more complex behaviour is found for the case of two colour illumination
with different intensities, Iy 6= Iz. The trajectories for some representative cases can be
found in figure 4.14. Interestingly, there is still a wide range of parameters where one
obtains stationary patterns, but generally a non-equidistant spacing and a finite centre
of mass force is obtained, cf. figure 4.15. As above for two beam splitters, this force
can be controlled via the pump power ratio to stabilize the centre of mass or induce
controlled motion. Of course, the configuration not only depends on the operating
conditions, but also on the initial conditions allowing a multitude of different stationary
configurations.

In summary, we conclude that the particles prefer to form crystalline structures held
in place by collective multiple scattering. The more particles we have, the more complex
these patterns can get and the more different solutions there are. The complexity of
the problem increases further, if one allows for a variation of the individual coupling
parameters ζ, e.g. representing number fluctuations of the trapped atoms in a lattice or
size variation of trapped beads.
Note that although appearing similar at first sight, the mechanism is different from

standard optical binding of polarizable beads, which works on transverse shaping of the
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splitter number N. Symmetric parameters have been chosen, i.e. P = 1, k = ky = kz,
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(see also figure 4.8).
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Figure 4.14: (a) Trajectories of N = 10 beam splitters for P = 1, kz/ky = 1.3 and
ζ = 0.01. The colour coding in the background shows the change of the total field intensity
Itot := Iy + Iz during the reorganization process of the system. The system gains a centre
of mass force and the formed pattern is stable but no longer equidistant. (b) Trajectories
as in (a) for parameters ζ = 0.01, P = 1.3 and ky = kz. Again there is a centre of mass
force in the long time limit but the formed pattern is stable.
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Figure 4.15: Dependence of the relative distances di := xi+1 − xi (after the system has
reorganized and stabilised) on the pump-power ratio P for N = 4 particles. If we assume
k = ky = kz there is only one point (P = 1) where d1 (red curve), d2 (blue curve) and d3
(green curve) have the same values. This corresponds to a formation of a equally spaced
lattice. The dashed black lines show the relative distances for kz/ky = 1.1. In this case
no stable equidistant system can be realized.

incoming light with the particles acting as small lenses [28]. We neglected transverse
effects in our model from the start.
Let us finally note that the discussed results also correspond to a setup using two

counter propagating beams of equal polarization, but sufficiently different frequencies,
so that scattering between the different colours is suppressed. From the particle’s point
of view, the interference pattern of the combined fields then oscillates so rapidly that
they cannot follow and the two forces stemming from the two fields can be calculated
independently. Such frequency shifts are a common method to generate 3D optical
lattices by using a different frequency in each dimension. But in contrast to those
cases, we get a mutual interaction between the light intensities of the different frequency
components here. During the evolution the spatial shifts of the beam splitters induced
by one field are seen by all other fields and influences their propagation.
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Chapter 5

Tailored long-range interactions in a
bichromatic optical lattice

Optical lattices for ultracold atoms are an extremely well-established and controllable
technology. In general, parameters are chosen in a way to avoid back-action of the
particles on the fields. The underlying physics helps here to achieve this goal as particles
tend to accumulate in zero force regions, where their influence on the lattice light
is minimized [12, 13]. This is radically changed in an orthogonally polarized beam
setup described above, where trapping forces are only created by the back-action of the
particles on the two beams and interactions in the lattice occur via multiple collective
scattering.

In the following chapter we will consider a second generic example to generate tailored
long-range interactions in an optical lattice. In particular we study the extra forces
introduced by a second perturbation field of different wavelength in a given optical
lattice formed by two strong counterpropagating beams of equal wave number k and
polarization ey, cf. figure 5.1. By adding an extra beam of different wave number kp
and polarization ez we can introduce tailored perturbations and couplings, as the field
gradient is generally non-zero at the positions of the original lattices sites.

Figure 5.1: Sketch of the intensity distribution of two light fields of orthogonal polariza-
tion and different colour propagating through a 1D array of thin beam splitters. Symmetric
standing wave trap (red) illuminated by an extra field with orthogonal polarization (blue).
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5 Tailored long-range interactions in a bichromatic optical lattice

For generality, we allow pump-power asymmetries for the dominant standing wave
field P := Ir/Il, where the first indices l and r stand for left and right suggesting the
direction of incidence. The intensity of the additional perturbation field is called Ip.
The same index notation will also be used for the corresponding field amplitudes.

5.1 Single beam splitter in a bichromatic optical lattice
First we want to discuss the force onto a single beam splitter in a perturbed standing
wave. The force induced by a standing wave laser field is already discussed in [13] and
reads

F = 2(Il − Ir)(|ζ|2 + Im(ζ))
c|1 + iζ|2 + −4

√
IlIr Re(ζ) sin(2kx+ ϕ)

c|1 + iζ|2 (5.1)

=: Frp + Fdp. (5.2)

The first term in (5.1) corresponds to the radiation pressure where incoherent reflection
is included via |ζ|2 and the second term is the dipole force whose direction is dependent
on the sign of Re(ζ). Due to the lack of a field intensity gradient in this case the
additional force from the perturbation field contains just the radiation pressure term

Fp = 2Ip(|ζp|2 + Im(ζp))
c|1 + iζp|2

. (5.3)

We assumed ζ 6= ζp. The perturbation force is independent of the wavelength of the
perturbation field and acts in beam direction. The total force onto a beam splitter in
such a perturbed optical lattice is Ftot = F +Fp. From this we can deduce the potential
of this force via V (x) = − ∫ x0 Ftot(x′)dx′, which leads us to

V (x) = −(Frp + Fp)x−
2
√
IlIr Re(ζ)

kc|1 + iζ|2 (cos(2kx+ ϕ)− cos(ϕ)) . (5.4)

As expected, the additional field induces an asymmetry of the potential. The value of
this asymmetry is fixed by the sum of forces Frp + Fp. If there is no pump asymmetry
for the standing wave field the force Frp is equal to zero which means that the potential
asymmetry only depends on the perturbation field intensity and the matter-light
interaction ζp. Obviously the asymmetry of the potential can be triggered by the
parameters Ip and ζp of the perturbation field. In figure 5.2 a representative example
of equation (5.4) is shown. Note that due to the asymmetry the potential depth is no
longer symmetric. This can easily be understood because the potential on their right
side of the beam splitter is lowered since there is less radiation pressure in the direction
of the perturbation field because it counteracts the force from the trapping beam while
in the other direction these forces sum up leading to a higher potential.
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Figure 5.2: The potential given in (5.4) for different parameters. The solid, blue curve
corresponds to ζ = ζp = 0.01 P = 1 and Ip = 0. The potential gets asymmetric if the
perturbation field is switched on; ζ = ζp = 0.01 P = 1, Ip = 5Iy (green curve) and P = 1,
Ip = Iy, ζ = 0.01, ζp = 0.1 (red curve). In addition the minima are shifted in this case.

The potential (5.4) has its minima at

xmin = 1
2k arcsin

[
c(Frp + Fp)|1− iζ|2

4
√
IlIr Re(ζ)

]
+ (2n+ 1) λ4 , n ∈ Z. (5.5)

The minima of the potential of a perturbed optical lattice are shifted while the relative
distance between two minima remains the same cf. figure 5.2.

5.2 Two beam splitters in a bichromatic optical lattice
The first relevant system to study interactions and couplings introduced by an additional
field of different frequency are two beam splitters trapped at a distance d in a far detuned
optical lattice at stable positions x0

1 = x0− d/2 and x0
2 = x0 + d/2. Here x0 denotes the

stable centre of mass coordinate calculated as follows. The incident fields from left and
right are assumed as Al =

√
2Il/cε0 exp(ikx1) and Dr =

√
2Ir/cε0 exp(−ikx2), so that

the remaining amplitudes at the boundaries are Bl = rAl + tDr, Cr = tAl + rDr.
The total force onto the array of beam splitters is then given by

Ftot = ε0

2
[
|Al|2 + |Bl|2 − |Cr|2 − |Dr|2

]
= ε0

2
[
|Al|2 + |rAl + tDr|2 − |tAl + rDr|2 − |Dr|2

]
, (5.6)
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where the following rearrangement can be done

|rAl + tDr|2 = (r∗A∗l + t∗D∗l )(rAl + tDl),
= |r|2|Al|2 + |t|2|Dr|2 + r∗A∗l tDr + rAlt

∗D∗r
|tAl + rDr|2 = |t|2|Al|2 + |r|2|Dr|2 + t∗A∗l rDr + tAlr

∗D∗r .

This implies the following relation

|rAl + tDr|2 − |tAl + rDr|2
= |Al|2(|r|2 − |t|2)− |Dr|2(|r|2 − |t|2) + (rt∗ − r∗t)(AlD∗r − A∗lDr),
= |Al|2(|r|2 − |t|2)− |Dr|2(|r|2 − |t|2)− 4 Im(rt∗) Im(AlD∗r). (5.7)

Using the relations Im(AlD∗r) = 2
√
IlIr/(cε0) sin(k(x2− x1)) and x0 = d/2 (assuming

equal mass for both beamsplitters), the total force can be calculated as

Ftot = 1
c

[
(1 + |r|2 − |t|2)(Il − Ir)− 4 Im(rt∗)

√
IlIr sin(2kx0)

]
. (5.8)

Finding the zeros of (5.8) is straightforward and we find

x0 = 1
2k arcsin

[
(Il − Ir)(1 + |r|2 − |t|2)

4 Im(rt∗)
√
IlIr

]
+ nπ

k
. (5.9)

For the system of two beam splitters the reflection and transmission coefficients r and t
of the total system derived from the total transfer matrix are

t = eik(x2−x1)

ζ2 (e2ik(x2−x1) − 1)− 2iζ + 1 , (5.10a)

r = −
ζ
(
(ζ − i)e2ik(x2−x1) − ζ − i

)
ζ2 (e2ik(x2−x1) − 1)− 2iζ + 1 . (5.10b)

Knowing this, it is straightforward to calculate the centre of mass coordinate given in
equation (5.9). The beam splitter method allows us to derive the lattice forces on the
first and second particle

F1 = ε0
2
[
|Al|2 + |Bl|2 − |(1 + iζ)Al + iζBl|2 − | − iζAl + (1− iζ)Bl|2

]
, (5.11a)

F2 = ε0
2
[
|(1 + iζ)Al + iζBl|2 + | − iζAl + (1− iζ)Bl|2 − |Cr|2 − |Dr|2

]
. (5.11b)

The additional perturbation field is described by the perturbation amplitudes Ap =√
2Ip/cε0 exp(ikpx1), Bp = rAp and Cp = tAp and generates the additional forces on

each particle (ζp = k/kpζ)

F1p = ε0
2
[
|Ap|2 + |Bp|2 − |(1 + iζp)Ap + iζpBp|2 − | − iζpAp + (1− iζp)Bp|2

]
,

(5.12a)

F2p = ε0
2
[
|(1 + iζp)Ap,z + iζpBp|2 + | − iζpAp + (1− iζp)Bp|2 − |Cp|2

]
. (5.12b)
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Figure 5.3: Dependence of the coupling constants κ1 (red) and κ2 (blue) on the pertur-
bation field intensity Ip,z for ζ = ζp = 0.1, k = kp and P = 1. As soon as the perturbation
field is switched on, the constants differ.

Here we restrict the corresponding added dynamics of the two beam splitters to small,
time dependent perturbations ∆x1(t),∆x2(t)� d from the equilibrium positions.
Due to the fact that we assume small perturbations from the equilibrium position,

the forces (5.11) and (5.12) can be linearised. This linearisation is done as follows.
The force F1 depends only on the positions x1(t) and x2(t) of the two beam splitters.

Replacing these variables via x1(t) = x0 − d/2 + ∆x1(t) and x2(t) = x0 + d/2 + ∆x2(t)
results in a force dependent on ∆x1(t) and ∆(t) := ∆x2(t)−∆x1(t). Assuming small
∆x1(t) and ∆(t) we perform a 2D Taylor approximation to first order, resulting in

F1 = a+ b∆x1 + c(∆x2(t)−∆x1(t)), (5.13)

where we defined real constants a,b and c, which are lengthy expressions depending on
the system’s parameters.
The same method works for the remaining forces F2, F1p and F2p, where the latter

two only depend on the relative distance ∆(t)

F2 = u+ v∆x2 + w(∆x2(t)−∆x1(t)), (5.14a)
F1p = K1p +K2p(∆x2(t)−∆x1(t)), (5.14b)
F2p = K3p +K4p(∆x2(t)−∆x1(t)). (5.14c)

Performing these calculations we find that some of the obtained constants are zero
(a = u = 0) while others have the same values. We define −K := b = v, κ1 := K2p + c,
−κ2 := K4p + w with c = w and Fext := K1p = K3p. This result yields us to the
following equations of motion.

m∆ẍ1(t) = −K∆x1 + κ1(∆x2(t)−∆x1(t)) + Fext, (5.15a)
m∆ẍ2(t) = −K∆x2 − κ2(∆x2(t)−∆x1(t)) + Fext. (5.15b)
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5 Tailored long-range interactions in a bichromatic optical lattice

The solution of the system (5.15) can be calculated analytically. First we need to
find the homogeneous solution using the ansatz ∆xH1 (t) = c1 exp(λt) and ∆xH2 (t) =
c2 exp(λt). Setting this ansatz into equations (5.15) results in the following linear set of
equations (written in matrix notation)(

mλ2 +K + κ1 −κ1
−κ1 mλ2 +K + κ2

)
︸ ︷︷ ︸

=:M

(
c1
c2

)
= 0. (5.16)

The eigenvalues of the matrixM can easily be calculated and are given as λ1 = ±i
√
K/m

and λ2 = ±i
√

(K + κ1 + κ2)/m resulting in the eigenfrequencies ω1 =
√
K/m and

ω2 =
√

(K + κ1 + κ2)/m. The corresponding eigenvectors are given by v1 = (1 1)T
and v2 = (−κ1/κ2 1)T . This results in

∆xH1 (t) = a1 cos(ω1t+ φ1)− a2
κ1

κ2
cos(ω2t+ φ2), (5.17a)

∆xH2 (t) = a1 cos(ω1t+ φ1) + a2 cos(ω2t+ φ2). (5.17b)

The inhomogeneous solution can be found with the ansatz ∆xI1(t) = A and ∆xI2(t) = B.
Setting this into the equation and comparing the coefficients results in ∆xI1(t) =
∆xT2 (t) = Fext

K
. The total solution is given as the sum ∆xtot1,2 = ∆xH1,2(t) + Fext

K
. In

compact notation this means(
∆x1(t)
∆x2(t)

)
=
(

1
1

)
(a1 cos(ω1t+ ϕ1) + Fext

K
) + a2

(
−κ1
κ2
1

)
cos(ω2t+ ϕ2) (5.18)

with ω1 =
√

K
m

and ω2 =
√

K+κ1+κ2
m

.
Note that the coupling constants κ1 and κ2 here are not necessarily equal, cf. also

figure 5.3, as there is no energy conservation enforced for the motion of the two beam
splitters. Since the parameters can be chosen in a way so that the coupling constant
κ1 is equal to zero, one-sided couplings can be achieved. This means that only the
motion of beam splitter number two is coupled to beam splitter number one, which
does not couple to the rest of the system. The direction of this effect is governed by the
direction of incidence of the perturbation beam. Besides, κ2 > 0 holds for all values
of Ip, meaning that no antisymmetric modes can be obtained if κ1 < 1, cf. (5.18). An
example plot of (5.18) can be found in figure 5.4.
Generally, we find that tuning the perturbation field intensity offers a variety of

different dynamics not accessible with traditional standing wave setups. This motivates
a more detailed treatment of this system, using numerical methods.
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Figure 5.4: Example plot of (5.18) for a1 = 0 and a2 = 1 (antisymmetric mode);
κ1
κ2

= 1.25 and Fext = 0.2 (red lines). Solid lines correspond to ∆x1 and dashed lines
to ∆x2. The blue lines show the expected classical antisymmetric modes meaning that
Ip,z = 0.

5.3 Many beam splitters in a bichromatic optical lattice
As shown in [13] the effective self-consistent lattice constant in a standing wave with
asymmetric pump A := Il−Ir√

IlIr
, with Il := ε0

c
|Al|2, Ir := ε0

c
|Dr|2 adjusts to

dsw = λ

2

(
1− 1

π
arccos

[
−ζ2√4 +A2 +

√
4− ζ2A2

2(1 + ζ2)

])
. (5.19)

In an optical lattice, multiple scattering induces long range interactions between the
particles in the form of collective oscillation modes. In the self-consistent configuration
the particles arrange at intensity maxima at minimal field gradients, so that this
interaction is strongly suppressed for small perturbations. Adding, however, a second,
perturbative field by a single running wave beam of wave number kp injected from one
side induces an additional force on each particle perturbing the regular periodic order.
This perturbation then acts back on the original standing wave field. Note that a single
plane wave by it self would only add a constant force, but this force is modified by
multiple scattering depending on the particle distances.
As an instructive example we show these perturbing force acting on N = 4 beam

splitters in figure 5.5. We see that the additional force is different for all the particles
and changes as a function of the lattice constant relative to the wavelength of the
perturbing light. Hence, by a proper choice of parameters almost any combination of
magnitudes and signs of forces on the different beam splitters can be achieved.

This effect can be exploited for different purposes to control and study lattice dynamics.
As a first and direct application it is possible to tailor a specific field to induce oscillations
of selected particles in the optical lattice by deflecting them from their equilibrium
position. As shown in figure 5.5, the force on the individual beam splitters depends
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Figure 5.5: Perturbation induced force Fip on N = 4 beam splitters at their unperturbed
equilibrium positions in an optical lattice as function of the lattice constant d. We have
set ζ = 0.1, P = 1 and Ip,z = Il,y. The red line corresponds to the force F1p, the blue line
to F2p, the green line to F3p and the magenta line to F4p.

strongly on the prescribed lattice constant. This means that there is a wide range of
realizable dynamics as long as the lattice constant can be tuned, cf. equation (5.19).
This can be potentially refined by simultaneous use of several perturbation frequencies.

For example, using the parameters from figure 5.5 we anticipate interesting behaviour
for a lattice with spacing dsw ≈ 0.23λp+mπ, m ∈ N as in that case F1p = F3p = −F2p =
−F4p (cf. dash-dotted line in figure 5.5). This behaviour is verified by calculating the
trajectories via (4.8), the results are shown in figure 5.6. Obviously it is possible to
correlate the motion of distant beam splitters in an optical lattice via the additional
beam. After switching on the perturbation at t = 0, particles no. one and three show
amplified oscillations, while the other’s oscillations are damped.

In a second approach the additional field is designed to enhance interactions between
selected distant areas in the lattice. As shown in figure 5.7, exciting an oscillation of
one particle weakly coupled to the standing wave field will usually have little effect on
the other trapped particles. But after adding a perturbation field with carefully chosen
parameters, this oscillation can be transferred to the other particles, forcing them to
move along. Note that due to the fact that the additional perturbation (coupling) field
is imposed from only one side, this coupling effect is not symmetric and excitations
can flow in a desired direction. For example, a perturbing field entering from the left
hand side will maximally transfer the motion of the rightmost beam splitter. This setup
allows to correlate the motion of particles and can even be used as a channel to transfer
e.g. quantum information through the lattice, very much like phonons in ion crystals.
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Figure 5.6: Perturbation induced motion of N = 4 beam splitters in a lattice due to an
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Figure 5.7: Example plot for the resonant coupling of three beam splitters, trapped in a
standing wave configuration with d0 = λp/2. We used ζ = 0.01, ζp = 0.1, Il = Ir = 20Ip
and k/kp = 0.99. The rightmost beam splitter is displaced from the equilibrium position
at t = 0, resulting in a damped oscillation (damping parameter µ = 0.01). The black
curves show the resulting dynamics for Ip = 0. The green (x3(t)), blue (x2(t)) and red
(x1(t)) curves show the dynamics if the coupling field is switched on. Note the resonant
coupling between x1 and x3.
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Chapter 6

Conclusions

We have shown that even in the case of non-interfering counter propagating light fields
of different polarization and frequency, stable lattice configurations of particles held in
space by multiple coherent scattering are possible. In contrast to conventional optical
lattices the light here plays a decisive dynamical role as multiple scattering is essential
to form and stabilize the structure. Compared to prescribed optical lattices the physics
is much closer to the case of solids, where lattice dynamics in form of phonons not
only keeps the atoms in place but also mediates long range interactions. Interestingly,
in conventional optical lattices such interactions can be tailored by adding additional
coupling fields of suitable frequency and polarization.
While we have performed our calculations only for 1D geometries, where a semi-

analytic scattering approach can be used, similar effects should be present in 3D
geometries as well.

In general for very far detuned optical fields these effects will be rather small but their
importance will grow with the size of the lattice as well as in transversally confined fields.
Particularly strong effects can be expected in fields guided by nano optical devices such
as nano fibres or hollow core fibres. Here even for a few particles strong interactions
can be expected.
In this thesis we have restricted ourselves to the bichromatic case for the sake of

simplicity. Nevertheless one can expect even more complex dynamics for an increasing
number of input fields as the forces onto the particles show a more complex distance
dependence. Note that here we have ignored any internal optical resonances of the
particles. Working close to such resonances certainly should strongly increase the effects
but also will complicate the analysis.

Let us finally mention here that the system does not necessarily require a fixed set of
beam splitters as a starting point. As an alternative we can consider each beam splitter
to be formed by a small sub ensemble of atoms in a 1D beam configuration, as it has
been proposed before [12, 13]. In our case on non-interfering counterpropagating beams,
one can expect that under suitable conditions the cold atoms arrange in small groups
forming at local field intensity maxima [11]. Groups of atoms at certain spatial sites
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6 Conclusions

then commonly form beam splitters shaping a self-consistent lattice structure.
In contrast to conventional lattices, back-action of the particles onto the fields is an

essential part of the dynamics and the field thus strongly mediates collective interactions.
Light scattering on one end of the lattice influences the lattice depth at the other end,
which opens a completely new branch of ultracold atom optical lattice physics. Note
that atoms trapped in optical resonator fields [29] exhibit similar dynamical coupling
effects, but in that case the back action is strongly restricted by the resonator geometry
limiting the available interaction wave vectors.
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