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Abstract

An almost light less laser 1 - this way Vladan Vuletic describes the concept of a

superradiant laser. What sounds a little bit confusing, should build the basis for a

new kind of a ultra frequency-stable laser.

An ideal superradiant laser operating on an optical clock transition of a nonin-

teracting ensemble of cold trapped atoms is predicted to exhibit extreme frequency

stability and accuracy even far below mHz linewidth. In any concrete setup a

sufficiently large number of atoms have to be confined and optically pumped within

an optical cavity. Using a magic wavelength lattice minimizes light shifts and allows

almost uniform collective coupling to the cavity mode. Nevertheless, the atoms

will also be subject to dipole-dipole interaction and undergo collective spontaneous

decay limiting the ultimate frequency stability of the device. In the high density

limit the Dicke superradiant linewidth enhancement, which is directly proportional

to the atom number, broadens the laser line and nearest neighbor couplings will

induce line shifts and fluctuations of the absolute laser frequency. We estimate the

magnitude and scaling of these effects by direct numerical simulations of few atom

systems for different geometries and various densities. Fortunately, for Strontium in

a regularly filled magic wavelength configuration, dipole-dipole interaction is small

and the suppression of collective spontaneous emission can lead to subradiant line

narrowing in such a laser.

1Vladan Vuletic, Nature 484 (2013)
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Chapter 1

Motivation

The invention of the Laser has allowed many important innovations in modern

sciences. For the different capabilities, different properties are most signification,

e.g. a high intensity, a small bandwidth or a short pulse duration. In this thesis we

are concerned with a possible candidate for an ultra frequency-stable laser system.

We hope, that the realization of a superradiant laser will lay the ground for a very

precise atomic clock, which is very useful for a list of applications including GPS

navigation.

At the moment the limit imposed abound the bandwidth is dominated by the

thermal noise (vibrations of the resonator), as shown in figure 1.1 (left). In the

superradiant or bad cavity regime, in principle, it is possible to decouple the atomic

polarization from the cavity mode noise [1, 3], so that the bandwidth of the out

put light field mostly depends on the bandwidth of the used laser transition. For

the Shawolow-Townes full-width half-maximum formula for the linewidth (∆ν,eq.

1.1) exists two different limits one for the good, Γ� κ, and for the bad cavity case,

Γ� κ, i.e.,

∆νST =
1

4π

hν

Pout

(
2Γκ

2Γ + κ

)2

, (1.1)

where Pout is the laser power of the system, Γ represents the spontaneous emission

rate and κ describes the cavity loss. A conventional laser operates in the good cavity

limit. In such a system it is possible to reach smaller bandwidths by increasing the

photon number, e.g. by a stronger pump. For this case the linewidth is described by

∆ν =
κ

4πMc

, (1.2)

1



Figure 1.1: On the left-hand side, two limits are compared: the upper image represents
the good cavity case with a strong intracavity light field, where the vibrations of the
cavity have an impact on the laser light field. The lower schematic shows the bad
cavity limit. Here almost only the stability of the atoms of the active medium is
important for the bandwidth. On the right-hand side, we see the so-called maser
and laser ’Birthdaycake’. (Source: [2, 3])

where Mc are the number of intracavity photons. For the superradiant (bad cavity)

limit this formula simplifies to

∆ν =
Γ2

πκMc

. (1.3)

If it is possible to find a system, where Γ2/κ < Mc, and it can be controlled sufficient

well, it becomes feasible to realize a superradiant laser with a very small bandwidth.

In fig. 1.1(right) the ’maser-laser Birthdaycake’ is visualized. It has four different

parts: it is divided into a laser and maser part and also into a good and bad cavity

region. The upper left corner represents the bad cavity masers, e.g. the Ammonia

(NH3) maser and the one-atom Hydrogen-maser, and lower left region shows the

good cavity, one atom maser. On the right-hand side we see the two laser regions

with the lower corner representing conventional lasers and the upper region denoting

the area, where the superradiant laser would be placed. As Chen mentioned in this

figure, it should become a ’delicious laser’.
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Chapter 2

Introduction

In this chapter, the basic mathematical and physical principles needed to understand

the formalism that describes a superradiant laser are introduced.

2.1 System Dynamics

There are different possibilities to calculate the time evolution of a quantum system.

In this work we investigate a light mode coupled to a bunch of atoms (see section

3.3.2). In the following two formulations, for a closed system, which is energy

conserving, and another one describing an open system, that includes an interaction

with the environment, are introduced.

2.1.1 Schrödinger picture

The Schrödinger picture describes the time evolution by a constant Hamilton operators

and a wave-function, which evolves in time [1, 3] according to the The Schrödinger

equation

i~
d

dt
|ψ(t)〉 = HS |ψ(t)〉 , (2.1)

HS is the time-independent Hamiltonian and constitutes the energy-observable of

the system, |ψ〉 is the time-dependent state vector of the system, describing the

time evolution of the systems quantum state. The formal solution of eq. (2.1)

is |ψ(t)〉 = US(t, 0) |ψ(0)〉, with the unitary operator US(t, 0) = exp (− i
~HSt) the

so-called time evolution operator in the Schrödinger picture.

To illustrate, how it is possible to calculate the time evolution of a state, let us

consider an example. We choose a very simple Hamiltonian, which we will later use

4



to describe an electromagnetic field mode in a cavity (see section 3),

HS =
∑
n

~ω
(
n+

1

2

)
|n〉 〈n| . (2.2)

For this Hamiltonian the time evolution operator is

U(t, 0) = exp

(
− i
~
HSt

)
=
∑
n

exp (−iωnt) |n〉 〈n| . (2.3)

If we choose an energy eigenstate of H as the initial state, i.e. |ψ(0)〉 = |m〉, with

HS |m〉 = ~ω
(
m+ 1

2

)
|m〉, we obtain the time dependent state

|ψ(t)〉 = exp (−iωmt) |m〉 . (2.4)

Here, we see that an energy eigenstate, called stationary state, remains an eigenstate

in time, while only its phase is changed, which this has no physical consequence.

This means that the energy of such an electromagnetic field in this state can not

change. As a consequence, the systems energy is constant, what is not surprising as

it is an eigenstate of the Hamiltonian and in this system no other term (interacting)

exists.

2.1.2 Heisenberg picture

In this picture the quantum state |ψ〉 is constant but the operators evolve by time.

An operator in the Heisenberg picture is defined as OH(t) = eiHt/~OSeiHt/~, OS is

the known operator in the Schrödinger picture. Now we calculate the time derivative

of an operator in the Heisenberg picture,

d

dt
OH =

iH

~
eiHt/~OSeiHt/~ − eiHt/~OS

−iH
~

eiHt/~

=
i

~
eiHt/~ [H,OS] e−iHt/~ =

i

~
[H,OH(t)] .

(2.5)

Above we have shown that the time derivation is governed by the commutator of the

operator itself and the Hamiltonian.
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2.1.3 Interaction picture

The interaction, or Dirac picture, is a representation fundamental for the under-

standing of the following kind of master equation, which will be used to describe

our model of a superradiant laser. It differs from the Schrödinger picture in that

the state and the observable are time dependent [1, 3]. This form of quantum

mechanical description is useful, if it is not possible to find an analytical solution

of the Schrödinger equation, or the time evolution operator, respectively. To get

transform the Hamiltonian into the interaction picture, we split the system, or

’Schrödinger Hamiltonian’, into two parts, H = HS + V , where V is the interacting

or perturbation part and HS is the analytically exactly solvable Hamiltonian. We

define the state in the interaction picture as a unitary transformation of the time

dependent state we get for HS, |ψI(t)〉 = U †S(t, 0) |ψ(t)〉. Now, we calculate the time

evolution of the state in the interaction picture to get an equation similar to the

Schrödinger equation, with a new Hamiltonian for this reference frame. We call it

’the interaction Hamiltonian’ Ṽ (t). The procedure goes at follows

d

dt
|ψI(t)〉 =

(
d

dt
U †S(t, 0)

)
|ψ(t)〉+ U †S(t, 0)

d

dt
|ψ(t)〉

=
i

~
HSU

†
S(t, 0) |ψ(t)〉 − i

~
U †S(t, 0)H |ψ(t)〉

= − i
~
U †S(t, 0)(H −HS) |ψ(t)〉

= − i
~
U †S(t, 0)(H −HS)US(t, 0)U †S(t, 0) |ψ(t)〉

= − i
~
Ṽ (t) |ψI(t)〉 .

(2.6)

Therefore, the transformation from the known Schrödinger Hamiltonian into the

interaction Hamiltonian is

Ṽ (t) = U †S(t, 0)V US(t, 0). (2.7)

A laser driven two-level atom

For a better understanding of the usefulness of the interaction picture we are going

to derive the dynamics of an atom, which is driven by the light field of a laser. In

the following, the atom is described as a two-level system with a ground state |g〉
and an excited state |e〉. As required, we have a Hamiltonian with two parts, one

6



for the two-level atom, HA = ~ωA |e〉 〈e|1, and one for the action of the driving laser

field, HL = ~E(t) · ~̂d, where ~̂d is the 3D quantum mechanical dipole operator. Now,

we can rewrite this operator as:

1 · ~̂d · 1 = (|g〉 〈g|+ |e〉 〈e|) ~̂d (|g〉 〈g|+ |e〉 〈e|)

= |g〉 〈g| ~̂d |g〉 〈g|+ |g〉 〈g| ~̂d |e〉 〈e|+ |e〉 〈e| ~̂d |g〉 〈g|+ |e〉 〈e| ~̂d |e〉 〈e| .
(2.8)

If we use the property that the states are either symmetric or anti-symmetric, the

two terms (〈g| ~x |g〉 = 〈e| ~x |e〉 = 0) in eq. (2.8) are zero, so we get

~̂d = |g〉 〈g| ~̂d |e〉 〈e|+ |e〉 〈e| ~̂d |g〉 〈g| = ~̂D |g〉 〈e|+ ~̂D∗ |e〉 〈g| , (2.9)

with the dipole moment ~̂D = 〈g| ~̂d |e〉. We are now able to derive a new form of the

laser interaction Hamiltonian, if we write the electric field of the laser as
~E(t) =

(
~E exp (−iω0t) + ~E∗ exp (iω0t)

)
,

HL =
(
~E exp (−iω0t) + ~E∗ exp (iω0t)

)
·
(
~̂D |g〉 〈e|+ ~̂D∗ |e〉 〈g|

)
. (2.10)

For this system the atomic Hamiltonian HA is time independent and the laser

Hamiltonian HL is the perturbation. Using eq. (2.7) and assuming that we are in

the resonant case, ωA = ω0, the interaction picture Hamiltonian reads

Ṽ (t) =U †S(t, 0)HLUS(t, 0)

=~E · ~̂D exp (−2iω0t) |g〉 〈e|+ ~E · ~̂D∗ |e〉 〈g|+

~E∗ · ~̂D |g〉 〈e|+ ~E∗ · ~̂D∗ exp (2iω0t) |g〉 〈e|

(2.11)

Now, we perform the rotating wave approximation by neglecting the fast rotating

terms exp (±2iω0t). We define a new variable, called vacuum Rabi frequency, as

Ω ≡ 2
~
~E · ~̂D∗, and furthermore, we restrict this frequency to be a real, Ω = Ω∗. This

yields the interaction Hamiltonian,

Ṽ (t) =
~
2

Ω (|g〉 〈e|+ |e〉 〈g|) . (2.12)

1This is equal to the later used atomic Hamiltonian, HA = ~ωA

2 σz, the difference is only that

both levels have been shifted by ~ωA

2 .
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Figure 2.1: Rabi oscillation for different detunings. Blue ∆ = 0, red ∆ = Ω and
yellow ∆ = 2Ω.

By solving eq. (2.6) using this Hamiltonian with an initial state |ψ(0)〉 = |g〉, we get

a time-dependent description for the state in the interaction picture,

|ψI(t)〉 = cos

(
1

2
Ωt

)
|g〉 − i sin

(
1

2
Ωt

)
|e〉. (2.13)

Now, we want to calculate the possibilities to occupy the two states, pg(t) and pg(t),

so we have to compute the square of the absolute value

pg(t) = cos2

(
Ωt

2

)
=

1 + cos (Ωt)

2
and pe(t) = sin2

(
Ωt

2

)
=

1− cos (Ωt)

2
.

(2.14)

This result is called Rabi cycle and is one of the most popular quantum mechanical

phenomena. If we allow a detuning between the atoms and the irradiated light field,

∆ = ωA − ω0, so we get for upper state a possibility of pe(t) = Ω2

Ω′2
1−cos (Ω′t)

2
, where

Ω′ =
√

Ω2 + ∆2.

2.1.4 Master equation

Up until now, we have only discussed descriptions of energy conserving systems but

for the more realistic description of physical phenomena, it is essential to include

dissipative effects, e.g. spontaneous emission. For this, an interacting environment,

called bath or reservoir, is introduced. With some assumptions and approximations,

it is then possible to eliminate the bath and derive an equation for the effective

dynamics of the system alone in the form of a master equation. [4, 7, 8]

To derive this time evolution it is necessary that the collective of system and
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bath can be described by a quantum mechanical state vector or a density matrix2,

respectively, which has a unitary time evolution (U(t, 0) = exp (− i
~Ht)), with a

Hamiltonian, H = HS +HB +V . HS is the Hamiltonian of the system, HB describes

the bath, and V is the interaction between the two constituents of the Hilbert space.

The time evolution of the whole density matrix, ρSB, is analogous to the solution of

the Schrödinger equation 2.1, which means

ρSB(t) = exp

[
− i
~
Ht

]
ρSB(0) exp

[
i

~
Ht

]
. (2.15)

If we transform into the interaction picture, as introduced in section 2.1.3, we can

rewrite the equation 2.15 from above as

ρSB(t) = exp

[
− i
~

(HS +HB)t

]
T
{

exp

[
− i
~

∫ t

0

dτ Ṽ (τ)

]}
ρSB(0)

× T
{

exp

[
i

~

∫ t

0

dτ Ṽ (τ)

]}
exp

[
i

~
(HS +HB)t

] (2.16)

with the time-ordered exponential integral

T
{

exp

[
− i
~

∫ t

0

dτ Ṽ (τ)

]}
=1 +

∞∑
n=1

(
− i
~

)n ∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·

×
∫ τn−1

0

dτnṼ (τ1)Ṽ (τ2) · · · Ṽ (τn),

(2.17)

where t > τ1 > τ2 > · · · . Since we are only interested in the dynamics of the system,

we are able to eliminate the bath by performing the partial trace over the baths

density matrix

ρ(t) ≡ ρS(t) = TrB{ρSB(t)}. (2.18)

For this it is essential that the two subsystems are decoupled at the initial time t=0.

In this way the initial state can be written as ρSB = ρS(0)⊗ ρB(0). Combined with

2A density matrix is an operator acting on a Hilbert space, representing the possible mixed state
of the system. For a pure state |ψ〉 it is the projector onto the state, ρ = |ψ〉 〈ψ|, while generally it
is defined as convex combination of projectors, ρ =

∑
i pi |ψi〉 〈ψi|, with

∑
i pi = 1

9



eq. (2.16) and the Baker-Campell-Hausdorff formula, it results in

ρ(t) = ρ(0) +
∞∑
n=1

(
− i
~

)n
TrB

{∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn

×[Ṽ (τ1), [Ṽ (τ2), · · · [Ṽ (τn), ρSB]]]
}
.

(2.19)

Now, we assume that TrB {V (t)ρB} = 0 and use the Born approximation, which

claims that the perturbation is weak and we are thus able to neglect all terms above

second order. Then, the time evolution of the density matrix of the system equates

to
d

dt
ρ(t) = − 1

~2

∫ t

0

dτTrB

[
Ṽ (t),

[
Ṽ (t− τ), ρSB

]]
. (2.20)

Let us consider a system-bath interaction Hamiltonian of the form

V = ~
N∑
k=1

(
c†kdk + ckd

†
k

)
, (2.21)

where ck is a system operator and dk is an operator for the reservoir and N is the

number of interaction operators between the system and the environment. After a

transformation into the interaction picture this looks like

Ṽ (t) = ~
N∑
k=1

(
c̃†k(t)d̃k(t) + c̃k(t)d̃

†
k(t)
)

(2.22)

and the operators become

c̃k(t) = exp (iHSt/~)ck exp (−iHSt/~), (2.23a)

d̃k(t) = exp (iHBt/~)dk exp (−iHBt/~). (2.23b)

Now, we combine eq. (2.22) and retransform of eq. (2.20) into the Schrödinger

picture to get a master equation in so called Lindblad form

∂ρ

∂t
= i [ρ,HS] + L [ρ] , (2.24)

where L [ρ] is the Liovillian superoperator acting on the density matrix ρ, which is

10



defined as

L[ρ] =
∑
k,l

[(
c†kρcl − ρclc

†
k

)
Γ

(1)
lk +

(
ckρc

†
l − ρc

†
l ck

)
Γ

(2)
lk

+
(
c†kρc

†
l − ρc

†
l c
†
k

)
Γ

(3)
lk + (ckρcl − ρclck) Γ

(4)
lk + h.c.

]
.

(2.25)

The different Γs are rates, which are related by two-time averages of the reservoir

operators

11



Γ
(1)
lk (t) =

∫ t

0

dτ exp (iΩlτ)TrB

(
d̃†l (t− τ)d̃k(t)ρB(0)

)
, (2.26a)

Γ
(2)
lk (t) =

∫ t

0

dτ exp (iΩlτ)TrB

(
d̃l(t− τ)d̃†k(t)ρB(0)

)
, (2.26b)

Γ
(3)
lk (t) =

∫ t

0

dτ exp (iΩlτ)TrB

(
d̃l(t− τ)d̃k(t)ρB(0)

)
, (2.26c)

Γ
(4)
lk (t) =

∫ t

0

dτ exp (iΩlτ)TrB

(
d̃†l (t− τ)d̃†k(t)ρB(0)

)
. (2.26d)

The next step is to assume that the bath has a very short correlation time compared

to the timescale of the system. For this it is essential that the bath has an infinite

number of degrees of freedom, and a large bandwidth, so that the bath has no

memory. This is called Markov approximation and it is possible to raise the upper

integration limit to infinity.

2.2 Dipole-dipole-interaction and Superradiance

Let us present a second approach towards a master equation. In this section we derive

a quantum Langevin equation for N equal two-level systems, which are coupled to a

quantized field mode [5, 6, 2] and then transform this into the master equation for

the system. The Hamiltonian has three parts, one for the atoms, Ha, one for the

electric field, Hf and one for the interaction between the field and the atoms, Hint

H = Ha +Hf +Hint, (2.27)

where

Ha =
N∑
i=1

~ωa
2
σiz, (2.28a)

Hf =
∑
λ=1,2

∫
d3~k ~ωb†

λ~k
bλ~k, (2.28b)

Hint =
N∑
i=1

(
~µegσ

+
i + ~µgeσ

−
i

)
~E(~xi). (2.28c)
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Here ωa is the transition frequency of the atom, b†
λ~k

and bλ~k are the creation and

annihilation operators for the light mode with the frequency ω and wave vector
~k. σ+

i and σ−i are the rising and lowering operator of the i-th atom and ~E(~x) =
~E(+)(~x) + ~E(−)(~x) is the electric field, which is described by

~E(+)(~x) =
∑
λ

∫
d3kEk~ελ~kbλ~ke

i~k~x, with Ek := i

√
~ω

2ε0(2π)3
, (2.29)

where ελ~k is the relative permittivity and ~E(−) is defined as the complex conjugated

of ~E(+).

The positions of the atoms are assumed as fixed in these Hamiltonians, such that

we neglect any motion of the atoms. In practice that could be realized by a well

engineered optical lattice, where one atom sits in every lattice site as in a so-called

Mott state. Further, it is important that the distance between two atoms is larger

than the Bohr radius, otherwise it is very likely that other effects, e.g. forming of

molecules, came into play. Now, we calculate the Heissenberg-Langevin equation for

all bk-operators under the assumption that ~µ ≡ ~µeg = ~µge, which corresponds to the

quantized Maxwell equation

ḃλ~k(t) =
i

~
[
H(t), bλ~k(t)

]
= −iωbλ~k(t) +

i

~
E∗k~µ · ~ελ~k

(
N∑
α=1

e−i
~k~xαsα(t)

)
, (2.30)

where sα ≡ σ+
α + σ−α . With the solution of eq. (2.30), we get an expression for the

dipole interaction

~µ · ~E(+)(~x, t) =~µ · ~E(+)
in (~x, t)+

i

~
∑
λ

∫
d3k|Ek~µ · ~ελ~k|

2×

×
∫ t

t0

dt′e−iω(t−t′)

(
N∑
α=1

e−i
~k(~x−~xα)sα(t′)

) (2.31)

In this formula the integral represents the retarded Green function. Now, we are

13



able to calculate the equation of motion for any atomic system operator c(t),

ċ(t) = i

[
N∑
α=1

~ωa
2
σz(t), c(t)

]

− i

~

N∑
α=1

[sα(t), c(t)] ~µ · ~E(+)(~xα, t)−
i

~

N∑
α=1

~µ · ~E(−)(~xα, t) [sα(t), c(t)] .

(2.32)

We replace ~µ · ~E(±) with this expression from eq. (2.31) so that the second line of eq.

(2.32) becomes

− i

~

N∑
α=1

[sα(t), c(t)] ~µ · ~E(+)(~xα, t)−
i

~

N∑
α=1

~µ · ~E(−)(~xα, t) [sα(t), c(t)]

+
1

~2

∑
λ

∫
d3k|Ek~µ · ~ελ~k|

2

∫ t

t0

dt′e−iω(t−t′)

{∑
α,β

ei
~k~xαβ [sα(t), a(t)]sβ(t′)

}

− 1

~2

∑
λ

∫
d3k|Ek~µ · ~ελ~k|

2

∫ t

t0

dt′eiω(t−t′)

{∑
α,β

e−i
~k~xαβsβ(t′)[sα(t), a(t)]

}
=: (∗),

(2.33)

with ~xαβ = ~xα − ~xβ. We use
∑

λ |~µ · ~ελ~k| = ~µ2 − (~̂k · ~µ)2 with the unit wave vector

~̂k = ~k/k and get

(∗) = − i
~

N∑
α=1

[sα(t), c(t)] ~µ · ~E(+)(~xα, t)−
i

~

N∑
α=1

~µ · ~E(−)(~xα, t) [sα(t), c(t)]

+
~µ2

2~ε0
1

(2πc)3

∑
α,β

∫
dΩ~k

[
1− (~k · ~µ)2

] ∫ t

t0

dt′
∫ ∞

0

ω3dω e−iω(t−t′−~k ~xαβ/c) [sα(t), c(t)] sβ(t′)

− ~µ2

2~ε0
1

(2πc)3

∑
α,β

∫
dΩ~k

[
1− (~k · ~µ)2

] ∫ t

t0

dt′
∫ ∞

0

ω3dω eiω(t−t′−~k ~xαβ/c)sβ(t′) [sα(t), c(t)] .

(2.34)

Moreover, we replace sβ(t′) with σ+
β (t)eiωa(t−t′)+σ−β (t)e−iωa(t−t′), calculate the retarded

Green function3 and integrate over the solid angle and frequency. Finally, we perform

3If we perform the positive limit for ε(t→ 0+) we end up with∫ t

t0→−∞
dt′e−i(ω−iε±ωeg)(t−t′) =

1

i(ω − iε± ωeg)
≡ −iP 1

ω ± ωeg
+ πδ(ω − ωeg)∫ t

t0→−∞
dt′ei(ω−iε±ωeg)(t−t′) =

1

−i(ω − iε± ωeg)
≡ +iP 1

ω ± ωeg
+ πδ(ω − ωeg)
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the rotating wave approximation and for for eq. (2.33) we get

(∗) =− i

~

N∑
α=1

[sα(t), c(t)] ~µ · ~E(+)(~xα, t)−
i

~

N∑
α=1

~µ · ~E(−)(~xα, t) [sα(t), c(t)]

+
∑
α,β

[sα(t), a(t)]
Γ

k3
a

∫ ∞
0

dk

2π
k3F (krαβ){(

−iP 1

k + ka
+ πδ(k + ka)

)
σ+
β (t) +

(
−iP 1

k − ka
+ πδ(k − ka)

)
σ−β (t)

}
−
∑
α,β

Γ

k3
a

∫ ∞
0

dk

2π
k3F (krαβ)×

×
{
σ+
β (t)

(
+iP 1

k + ka
+ πδ(k + ka)

)
+ σ−β (t)

(
+iP 1

k − ka
+ πδ(k − ka)

)}
×

× [sα(t), a(t)].

(2.35)

Here, Γ = k3a
3π~ε0 |~µ|

2 is the single atom spontaneous emission rate and

F (ξ) :=

∫
dΩ~k

4π

[
1− (~̂k · ~̂µ)2

]
eik0r

~̂k~̂rαβ

=
sin ξ

ξ

(
1−

(
~̂µ · ~̂rαβ

)2
)

+

(
1− 3

(
~̂µ · ~̂rαβ

)2
)(

cos ξ

ξ2
− sin ξ

ξ3

)
,

(2.36)

with ξ ≡ k0rαβ Now, it is possible to define collective decay rates and energy shifts

introduced by the dipole-dipole interaction,

Γαβ =
3

2
ΓF (krαβ), (2.37)

Ω±αβ :=
Γ

k3
a

∫ ∞
0

dk

2π

k3F (krαβ)

k ± ka
. (2.38)

With this definitions eq. (2.35) assumes a much simpler form, such that the entire
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optical Bloch equation looks as follows

ċ(t) =
i

~

[
N∑
α=1

{
~(ωa − Ω−αα)σ+

α (t)σ−α (t) + ~(−Ω+
αασ

−
α (t)σ+

α (t))
}
, c(t)

]

+
i

~

[∑
α 6=β

~Ωαβσ
−
α (t)σ+

β (t), c(t)

]

− i

~

N∑
α=1

[
σ+
α (t), c(t)

]
~µ · ~E(+)(~xα, t)−

i

~

N∑
α=1

~µ · ~E(−)(~xα, t)
[
σ−α (t), c(t)

]
+

1

2

∑
α,β

Γαβ
{

2σ+
α (t)c(t)σ+

α − σ+
α (t)σ−β (t)c(t)− c(t)σ+

α (t)σ−β (t)
}
.

(2.39)

The expression in the first braces is an “infinite” Lamb shift, which we are able to

absorb into the atomic transition frequency. [9]

Ωαβ := −Ω+
αβ − Ω−αβ = − 3Γ

(kegrαβ)3
P
∫ +∞

−∞

dξ

4π

ξ3Fαβ(ξ)

ξ − kegrαβ
=

3Γ

4
Gαβ(kegrαβ). (2.40)

Furthermore, in equation (2.40) we recover the expression for the coherent term or

the so-called energy shift caused by the dipole-dipole interaction

Gαβ(ξ) = −
(
1− cos2 θ

) cos ξ

ξ
+
(
1− 3 cos2 θ

)( ξ

ξ2
+

cos ξ

ξ3

)
. (2.41)

Finally, the master equation for N atoms with dipole-dipole interaction can be

written as

ρ̇(t) = − i
~

[
N∑
α=1

H̃sys, ρ(t)

]
+

1

2

N∑
α,β=1

Γαβ
(
2σ−α ρ(t)σ+

β − σ
+
α σ
−
β ρ(t)− ρ(t)σ+

α σ
−
β

)
,

(2.42)

with

Hsys =
N∑
α=1

{
~ωaσ+

α σ
−
α − ~µ · ~E(+)(~xα, t)σ

+
α (t)− ~µ · ~E(−)(~xα, t)σ

−
α (t)

}
+

N∑
α 6=β=1

hΩαβσ
−
α σ

+
β

(2.43)

Let us consider two atoms at first. In figure 2.2 we see how the dipole interaction
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Figure 2.2: A symbolic illustration of the collective properties of two two-level atoms
coupled via a the dipole-dipole interaction. (Source: [9])

acts on the energy levels of two two-level atoms. As calculated, we have two different

terms, a coherent one
∑N

α,β Ωαβσ
+
α σ
−
β , which causes a frequency shift of the atom

excitation frequency and a dissipative term (see second part of eq. (2.42)), which

causes a alteration of the decay rate. If we switch to the eigenbasis of Hsys and

introduce triplet and a singlet state, we are able to represent the energy levels

as seen in figure 2.2, where the triplet consists of the doubly excited state |ee〉,
the ground state |gg〉 and the symmetric superposition of the states with one

excited atom 1√
2

(|eg〉+ |ge〉) and the singlet state is the antisymmetric superposition
1√
2

(|eg〉 − |ge〉) similar to a dark state. To get a better understanding of the collective

decay Γαβ and the energy shift Ωα,β, in figure 2.3 the related functions Fαβ(ξ) and

Gαβ(ξ) are plotted for two different configurations. At first, where the dipole’s

orientation is perpendicular to the relative position vector of the two atoms and

secondly where the two vectors are parallel.
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Figure 2.3: The collective decay Fαβ/Γ of dipole-dipole atoms and the energy shift
Gαβ/Γ for two-different geometrical alignments. (Source: [9])
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Chapter 3

Laser

3.1 Einstein rate-equation

Now, we want to discuss the different microscopic processes of how an atom, approx-

imated by a two-level system, interacts with an electromagnetic field [1, 4, 13]. In

the following we describe the progresses acting on an ensemble of equal atoms.

Figure 3.1: Schematic picture of the possible absorption and emission processes of a
two-level atom.

3.1.1 Spontaneous emission

First, we have to consider that some of the two-level atoms are excited, which means

they are in the upper energetic level |2〉. Excited atoms are able to emit a photon

with a certain rate A21 and are transferred to the ground state |1〉 subsequently. The

emitted photon possesses the transition energy, which is the energetic difference of

the two levels, hν = E2 − E1. A21 is called the Einstein coefficient of spontaneous

20



emission. We describe the population change of the excited level N2 induced by

spontaneous emission by

dN2 = −A21N2dt→ N2(t) = N2(0)e−A21t ≡ N2(0)e−t/τsp , (3.1)

where N2(0) is the number of excited atoms at the beginning of the observation. We

are able to define τsp = 1
A21

as the average lifetime of an excited atom, also known

as the spontaneous lifetime. Further, from the uncertainty principle we can borrow

a relation between the average lifetime and the uncertainty in transition energy,

∆E ·∆t > ~
2
. If we have a very long-lived state1 the uncertainty of the frequency of

the emitted photon is very small. This effect is important for the in superradiant

laser, because we aim for a small as possible bandwidth.

3.1.2 Absorption

If atoms are in the ground state, |1〉, and an electromagnetic field is present, it is

possible that one of them absorbs a photon and is excited to the upper level |2〉.
This population change of the ground state can also be described by a differential

rate equation

dN1 = −B12u(ν)N1dt. (3.2)

Analogy to equation (3.1), N1 is the number of two-level systems in the ground

state, B12 is the Einstein coefficient of absorption and u(ν) is the spectral energy

density of the surrounding electromagnetic field. From eq. (3.2) we see that an

energy field around the atoms is necessary to excite them in the first place, and that

the excitation possibility directly depends on the intensity of the field.

3.1.3 Stimulated emission

The stimulated or induced emission is the counterpart of the absorption process,

because both describe an interaction between a photon and an atom, the stimulated

emission with an excited atom and the absorption with an atom in the ground state,

respectively. This means that with a certain probability a photon, with an energy

similar to the transition energy, can stimulate an excited atom to emit a photon with

the same properties, i.e. the same phase, frequency and polarization. Here, we also

1For a long-lived state the statistical dispersion of the moment, when the excited atom decays,
is larger as for a fast decaying one.
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define a rate B21, which is called the Einstein coefficient of stimulated emission.

dN2 = −B21u(ν)N2dt (3.3)

Contrary to the spontaneous emission, the absorption and stimulated emission are

coherent processes, which means that they depend on the radiation field. Coherent

processes do not affect the existing phase relationship of the present electromagnetic

field.

3.1.4 Einstein relation

Now, we combine these three different dynamical processes for two-level atoms

to obtain a better understanding and calculate a relation between these rates in

order to find a population equilibrium. The system of differential equations for the

populations of the upper and lower state reads

d

dt
N1 = −N1B12u + N2B21u + N2A21, (3.4a)

d

dt
N2 = +N1B12u − N2B21u − N2A21. (3.4b)

These two equations are conected, in such a way that the number of atoms is constant

for every time step, i.e., N0 = N1 + N2
!

=const.. To calculate the steady state for

this system of differential equations we set its time derivative to zero. This leads to

a linear equation for the spectral energy density

u(ν) =
A21/B21

(B21/B12) · (N1/N2)− 1
. (3.5)

In a typical setup we consider a black body radiation, so u(ν) underlies Planckian

distribution [12]

u(ν, T )dν =
8πν3

c3
[ehν/kBT − 1]−1 dν, (3.6)

and the population of the states is described by the Boltzmann statistics

N2

N1

=
g2

g1

e−(E2−E1)/kBT , (3.7)

where g1 and g2 are the degrees of degeneracy of the states |1〉 and |2〉. From this

the proportions between the absorption and stimulated emission Einstein coefficients
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and between the spontaneous and stimulated emission Einstein coefficients are

B12 =
g2

g1

B21, (3.8)

A21 =
8πν3

c3
B21 = hνZ(ν)B21. (3.9)

Z(ν) represents the density of the states.

These two relations are universal and do not depend on atomic species or the

chosen two levels.

3.1.5 Determination of the Einstein coefficients by a quan-

tum mechanical wave function description

For a quantum mechanical description of the stimulated emission, it is absolutely

essential to characterize both levels by a wave function ψi. With this it is possible to

write down the dipole matrix element for an electric dipole transition,

~µ21 = −
∫
ψ∗2 e · ~r ψ1dV. (3.10)

If we consider a constant spectral energy density, ρ(ν) ≡ ρ, eq. (3.8) change to [?

]

B21 =
2π2|~µ21|2

3ε0h2
= B12,

A21 =
8πν3

c3
B21 =

16π3ν3|~µ21|2

3ε0hc3
.

(3.11)

Now, these equations for the rates depend on the quantum mechanical dipole matrix

element ~µ21 as defined above.

3.2 Properties of a Laser

The first proposal to build a laser (light amplification by stimulated emission of

radiation) was put forward by C. H. Townes and A. L. Shawlow [14], although they

called it an optical maser in the beginning.

This section will briefly introduce the concept of the functionality of a laser,

illustrate, which components are indispensable for its operation and highlight some

features of the different elements of this tool.
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3.2.1 Pumping

’Pumping’ refers to the process, which provides the system with energy by exciting

the atoms or molecules of the active, or gain medium, which is placed in between

two high quality mirrors, i.e., is a cavity). In order to archive lasing it is necessary

that enough energy is put into the system to create an inversion of the population

on the laser transition. In terms of experimental setups there are many different

possibilities to realize this and also in theory several options to describe this effect

exist.

Historically, the first laser, the Ruby laser by T. Maiman [6], was pumped by

a Xenon flash tube. Beside this first successful implementation, lasers have been

pumped by chemical reactions, gas discharges, electric fields etc.

For the mathematical characterization of pumping, there are two important

decisions one has to make. Firstly, one has to decide, if the pumping process is

transverse or longitudinal to the cavity axis and secondly weather it is a coherent

or an incoherent one. As mentioned above, a process which depends on the present

light field is called coherent. If we talk about coherent pumping, it is a part of the

Hamiltonian, whereas an incoherent one is represented as one of the Liouvillian

terms. For our model of a superradiant laser, we always use a transverse incoherent

pumping.

3.2.2 Laser-cavity

In a common laser an optical-cavity is necessary to define its mode. As mentioned

in chapter 1, for the conventional type of a laser, the linewidth of the cavity is much

smaller than the bandwidth of the active medium (see fig. 3.2). Cavities are like a

Fabry-Perot interferometer, one can calculate the so-called free spectral range2 for

the cavity

∆ν =
c

2L
, (3.12)

with L =
∫ x

0
n(s)ds the optical, and x the geometric distance between the two

mirrors, where n(s) represents the refraction index of the medium in between.

Usually, more than one cavity mode fits into the gain bandwidth, but most of the

time only the one with the largest gain survives in the laser light field. We assume a

linear cavity in the following model.

2The FSR is the frequency difference between two neighbouring cavity modes.
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Figure 3.2: A comparison of the active medium bandwidth and the bandwidth of the
cavity modes. Usually, only the mode with the highest gain survives. (Source: [11])

3.2.3 Active medium

The active medium, also called gain medium, is the main ingredient of a laser. Its

characteristics are primarily determined by the active medium. Prominent examples

are the color, i.e. the frequency, of the laser light. To build a working laser, a three-

or four-level system is required to even enable inversion of the state occupation,

as discussed below. Real atomic systems are (of course) more complicated. Fig.

3.2.3 shows two possible transition sequences realizing a superradiant laser, one with

Barium (Ba) and a second one for Strontium (Sr).

In the following theoretical treatment we will describe the atoms of the active

medium as two-level systems to minimize the Hilbert space allowing faster calculations.

Although, it is not possible to archive inversion with a two-level system, as the

occupation of the states underlies the Boltzmann statistics, which means we can

at best reach an equilibrium between the two populations by an infinitely strong

pumping. However, we can introduce an artificial effective pumping rate, R, which

compensates the fact that we neglect the third and fourth level. The biggest difference

between the setup of a superradiant laser and a regular one is the choice of the laser

transition. In a conventional laser an as high as possible photon number is required.
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Figure 3.3: The energy levels of neutral Barium (Ba) (left). A possible transition
series for the superradiant laser, where the laser transition is between 1D2 and 1S0,
and is pumped through 1P1. For Strontium (Sr) (right) it would be an option to
pump from 1Sr0 to 1P1 and decay to the upper laser states 3P0 via 1D2. (Source:
[9, 8])

This is why usually very fast decaying laser transitions are preferred, while in our

case we strive to using a relatively long-lived upper laser state. In this way the

emitted light should have a smaller bandwidth.

3.2.4 Laser linewidth and line shape

Besides the power, a very narrow linewidth is one of the most important qualities of

a laser. The Scully-Lamb theory [15] described the two-level laser in terms of second

quantization for the first time. With this approach the first models of how it would

be possible to calculate the linewidth and also the spectral profile of a laser could be

derived [16].

In the following to calculate the spectral distribution of the light field inside the
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cavity, S(ω, t), we make use of the Wiener-Khinchin theorem [7],

S(ω, t) =

∫
e−iωτ

〈
a†(t+ τ)a(t)

〉
dτ, (3.13)

where the relative spectrum is described by the Fourier transformation of the two

time field correlation function. Numerically, this is calculated by at first determining

the steady state ρS, which can be calculated as the kernel of the master equation, i.e.

solving ∂ρ
∂t

= i [ρ,H] + L [ρ] = 0. Now, the annihilation operator a is applied and we

let this state evolve. After a time τ has elapsed, we apply the creation operator a†

and Fourier-transform the trace of this aggregate.

For almost coherent light, as it should be the case for a laser, the spectrum follows

a Lorentzian distribution. Later on, in the numerical simulations (see chapter 4) we

fit a Lorentzian to the normalized spectrum. Then, the width of the fitted curve

describes the bandwidth of the intra-cavity light field.

3.3 Quantum mechanical description of a laser

Until now, we have presented very general properties of lasers. In this section

the quantum mechanical model of the system under consideration in this work is

introduced, first for a single pumped atom inside a cavity, then we expand this to a

many-particle model with dipole-dipole interaction between the individual atoms.

3.3.1 Single atom laser

Here, we consider a pumped two-level atom inside a high-Q optical resonator with

one cavity mode. Further, we employ a transverse incoherent pump which allows us

to use the atom as an active medium. In addition two dissipative processes, namely

the cavity loss and spontaneous emission of the atom, are present. Upon Born,

rotating wave and Markov approximation we end up with a standard Lindblad type

master equation,
∂ρ

∂t
= i [ρ,H] + L [ρ] , (3.14)

with the Hamiltonian H and the Liouvillian L. The Hamiltonian describes the atom,

the cavity and also the interaction between them,

H =
ω0

2
σz + ωc a

†a+Hint, (3.15)
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where σz is the occupation of the states separated by transition energy ω0 and the

operators a† and a correspond to the creation and annihilation of a photon with the

frequency ωc in the cavity mode, while

Hint = g
(
aσ+ + a†σ−

)
, (3.16)

where σ+ and σ− are the raising and lowering operators for the atomic dipole. This

represents the so-called Jaynes Cummings interaction between the atom and the

cavity mode with a coupling constant g. The spontaneous emission is described by

the Liouvillian

Lsp [ρ] =
Γ

2

(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
, (3.17)

with the spontaneous emission rate Γ. The incoherent transverse pumping is given

by

Lpump [ρ] =
R

2

(
2σ+ρσ− − σ−σ+ρ− ρσ−σ+

)
, (3.18)

where R is to the pumping rate. Finally, the cavity loss with a loss rate of κ is

accounted by

Lcav [ρ] = κ
(
2aρa† − a†aρ− ρa†a

)
. (3.19)

Derivation of the photon number in a single atom laser

In order to gain a principle insight and check the validity of our simulation we

attempt to treat the master equation analytically. Thus, we derive the so-called

Ehrenfest equations [3] for our system, which equates to computing the equation of

motion for the expectation value of the light field lowering operator 〈a〉, which turns

out to depend on another different other expectation values, like 〈σ−〉, which in turn
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depends on further expectation values, like 〈σza〉, and so on.

d

dt
〈a〉 =− κ 〈a〉 − ig 〈σ−〉 (3.20a)

d

dt
〈a†a〉 =− 2κ 〈a†a〉 − 2g Im 〈σ+a〉 (3.20b)

d

dt
〈σ−〉 =

(
i∆− R

2
− Γ

2

)
〈σ−〉 − ig 〈σza〉 (3.20c)

d

dt
〈σz〉 =− (R + Γ) 〈σz〉+ (R− Γ) + 4g Im 〈σ+a〉 (3.20d)

d

dt
〈σ+a〉 =

(
−i∆− R

2
− Γ

2
− κ
)
〈σ+a〉 − ig 〈σza†a〉 − ig

1 + 〈σz〉
2

(3.20e)

d

dt
〈σza〉 =− (R + Γ + κ) 〈σza〉+ (R− Γ) 〈a〉 − 2ig 〈σ+a2〉+

+ig 〈σ−〉+ 2igσ−a†a
(3.20f)

d

dt
〈σ+a2〉 =

(
−i∆− R

2
− Γ

2
− 2κ

)
〈σ+a2〉−

−ig 〈σza†a2〉 − ig 〈a〉 − ig 〈σza〉
(3.20g)

d

dt
〈σ−a†a〉 =

(
i∆− R

2
− Γ

2
− 2κ

)
〈σ−a†a〉+

+ig 〈σza†a2〉 − ig
2
〈σza〉+ i

g

2
〈a〉

(3.20h)

d

dt
〈σza†a〉 =− (R + Γ + 2κ) 〈σza†a〉+ (R− Γ) 〈a†a〉+

+4g Im 〈σ+a†a2〉+ 2g Im 〈σ+a〉
(3.20i)

To find a closed system of differential equations, we have to truncate this series

by neglecting the higher order correlations 〈σza†a2〉 and 〈σ+a†a2〉. This is justify

by assuming a very small photon number and therefor a double annihilation is very

unlikely.

If we also assume the photon number 〈a†a〉 ≡ 〈n〉 and the inversion of the atoms
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Figure 3.4: Comparison of the expectation value of the photon number computed
by the Ehrenfest theorem (green doted line) with the one obtained by solving the
master equation (blue solid line).

〈σz〉 to be very small, it is possible to obtain a reduced set of differential equations.

d

dt
〈a†a〉 =− 2κ 〈a†a〉 − 2g Im 〈σ+a〉 (3.21a)

d

dt
〈σz〉 =− (R + Γ) 〈σz〉+ (R− Γ) + 4g Im 〈σ+a〉 (3.21b)

d

dt
〈σ+a〉 =

(
−i∆− R

2
− Γ

2
− κ
)
〈σ+a〉 − ig 〈σza†a〉 − ig

1 + 〈σz〉
2

(3.21c)

d

dt
〈σza†a〉 =− (R + Γ + 2κ) 〈σza†a〉+ (R− Γ) 〈a†a〉+ 2g Im 〈σ+a〉 (3.21d)

With this set we are able to derive the expectation value of the photon number 〈a†a〉
for the steady state depending on the system variables.

〈a†a〉 =
4g2Rγ

4κ(R + Γ)(∆2 + γ2)− 2g2 ([R− 2κ]2 − [Γ + 2κ]− 4κ2)
(3.22)

Fig. 3.4 compares the photon number depending on the detuning, between the

cavity mode and the atomic transition energy, δ computed by the Ehrenfest theorem

to the one results by solving the master equation. As expected, both lines agree very

well.
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3.3.2 Many particle laser with dipole-dipole interaction –

superradiant laser

In this section the model of a single atom laser is extended to many atoms and an

interaction between them. To realize that, we consider N identical two-level atoms

held in a regularly spaced configuration, e.g. in a far detuned optical trap, each

of them symmetrically coupled to a single mode of a high Q optical resonator. A

possible setup is depicted in fig. 3.5. Due to the inherent exposure of the atoms to

the vacuum bath the ensemble is affected by coherent dipole-dipole energy exchange

processes and also by collective spontaneous emission [5]. Similarly to the previous

section we assume a transverse incoherent pump, which is equal for all atoms, and

cavity loss. The time-dependence of the N -atom density matrix is again described

explicitly by a Lindblad type master equation with almost the same Hamiltonian as

before, except that we have to include a sum over the atoms and account for the

fact that we get an extra energy exchange term from the dipole-dipole interaction

amongst them,

H =
ω0

2

∑
i

σzi +
∑
i 6=j

Ωij σ
+
i σ
−
j + ωc a

†a+Hint, (3.23)

where σ+
i and σ−i are the raising and lowering operators for the atomic dipole of the

i-th atom with the transition energy ω0, and Ωij denotes the resonant dipole-dipole

energy transfer between the atoms i and j. Hint is again the Jaynes-Cummings term,

featuring the same coupling constant g for each atom. This approximation is justified

in the situation where the atomic ensemble is aligned transverse to the propagation

direction of the cavity mode or its dimensions are much smaller than the length of

the resonator. The collective atomic damping is accounted for by the Liouvillian

Lcd [ρ] =
1

2

∑
i, j

Γij
(
2σ−i ρσ

+
j − σ+

i σ
−
j ρ− ρσ+

i σ
−
j

)
(3.24)

with generalized spontaneous emission rates Γij arising from the coupling of the

atomic transition dipoles through the vacuum field [2]. The incoherent transverse

broadband pumping, which in our model acts on each atom in the same way, leads

to an extra sum over the atoms of the active medium only, i.e.,

Lpump [ρ] =
R

2

∑
i

(
2σ+

i ρσ
−
i − σ−i σ+

i ρ− ρσ−i σ+
i

)
(3.25)
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Figure 3.5: Schematics of a lattice laser setup. A transversely pumped (pumping rate
R) finite atomic ensemble with dipole-dipole couplings Ωij and collective spontaneous
emission Γij inside an optical resonator with a loss rate of κ.

Note, that the collective coupling and decay matrices [Ωij] and [Γij] possess

non-diagonal elements, which have to be calculated as a function of the system’s

geometry [10] (more details in sec. 2.2). In some cases, due to the finite correlation

length of vacuum fluctuations, these nondiagonal parts can be safely neglected. As a

reminder of section 2.2 the two expressions look like

Γij =
3Γ

2
F (k0rij) Ωij =

3Γ

4
G (k0rij) (3.26)

with Γ the single atom linewidth, k0 = ω0/c = 2π/λ0
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Chapter 4

Superradiant laser dynamics with

confined ensembles

Most results presented in this chapter are published in [7].

4.1 Emission spectrum of a superradiant laser

The phase of the output field of a laser underlies random fluctuations induced by

various noise processes, e.g. spontaneous emission. Generally, its Fourier-transform

reassemble a Lorentzian. Therefore, in the following numerical simulation we fit a

Lorentzian to the numerically calculated spectrum. We suppose that the width of

the the fitted curve represents the bandwidth of the system under consideration.

This assumption is valid only in the region above the laser threshold, as we can

see in fig. 4.1. Below the threshold often times multiple peaks are visible. Those

can be categorized into simulations with little interaction and no detuning between

the atoms and the cavity, where the spectra are symmetrically arranged around the

cavity frequency, and heavily interacting or detuned cases, where the spectrum is

dominated by one of the two peaks. For double peak spectra a Lorentzian fit to

determine the width of the curve is not a suitable instrument. Yet, this area is fairly

uninteresting for the quality of the laser anyway, so we do not improve the fitting

process.

A little below the laser limit the shape of the spectrum changes to a single peak,

which above threshold becomes narrow, which will be discussed later on.

35



1.0 0.5 0.0 0.5 1.0
δc

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.5 0.0 0.5 1.0
δc

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Examples for the spectrum of the superradiant laser, one below (left)
and above (right) the laser threshold.

4.2 General properties of superradiant lasing

First, let us exhibit some general features of the dynamics of a laser with all atoms

coupled equally to the cavity mode in the two idealized limiting cases of (a) fully

collective and (b) individual independent spontaneous decay. Mathematically, this

is implemented simply by setting (a) Γij = Γ for the collective case as discussed

in [5] and (b) Γij = Γδij for independent decay as studied in [8]. Surprisingly, the

fully collective case is much easier to deal with numerically as the total collective

spin magnitude is conserved and the Hilbert space for N atoms is restricted to the

N + 1 states of a spin-1/2-system. The effective pumping of the atoms can also be

described as an independent or collective phenomenon, which results in analogous

expressions to those describing the respective decay processes (see 3.24). Here we

refrain from including dipole-dipole induced excitonic shifts of the energy levels.

This assumption can be justified for a completely homogeneous atomic density [4]

but has to be reconsidered for concrete finite size implementations or optical lattice.

We will explicitly account for this in the finite lattice geometries discussed below.

Fig. 4.2 shows the mean photon number as a function of the pump strength R

and the single atom decay rate Γ for the three cases of collective pump and collective

decay, individual pump and collective decay and independent pump and independent

decay for N = 4. We see that the maximum photon number is not so different for

the three cases and appears at small spontaneous decay rates. For fully collective
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Figure 4.2: Stationary photon number as a function of the pump strength R and the
spontaneous decay rate Γ for collectively pumped and collectively decaying atoms (a),
individually pumped but collectively decaying atoms (b) and individually pumped
and individually decaying atoms (c).

pump and collective spontaneous decay, fig. 4.2(a), superradiant emission into free

space limits the optimal operation regime to a lower pump intensity, though.

Now, it is of course most interesting to look at the frequency stability or linewidth

of this laser. As seen in fig. 4.3 the output intensity spectrum exhibits a nonlinear

growth with the atom number (green line), as expected, until it saturates (red

line). Remarkably, however, the linewidth does not narrow with the photon or atom

number, but is even increased by superradiant spontaneous emission. Thus, the

optimal case seems to be collective emission into the lasing mode without superradiant

spontaneous decay. We will investigate this in more detail in the following sections.

4.3 The superradiant lattice laser

Above we have seen that collective decay and collective pump strongly change the

laser dynamics and its properties. Besides modified decay rates governed by eq.

(3.24) in any finite size geometry dipole-dipole interaction as given by eq. (3.23)

has to be taken into account as well. To study the basic physical effects, in this

section we will investigate three different regular geometric arrangements for the

laser active atoms. We compare a linear chain, where we go beyond the single

excitation and nearest-neighbor coupling limits discussed in [11], to an equilateral

triangle and a square configuration. Let us point out, that for two atoms, e.g. [3],

the particular relative arrangement is irrelevant, and therefore the system can be

handled analytically.
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Figure 4.3: Output spectrum of a fully collective laser with different atom numbers
N for Γ = κ/20 and R = κ/5 compared to the empty cavity linewidth (N = 0),
absolute (left) and normalized (right).

4.3.1 A square lattice of four atoms

We first show the photon number, the inversion of the active medium atoms and

the g(2)(0) correlation function for a fixed cavity loss κ while tuning the pumping

rate R and the individual atom decay rate Γ for a four atom laser in a square

lattice. The chosen lattice constant is half of the magic wavelength for Strontium,

λmagic/(2λ0) ≈ 0.58 (see [2, 10]). For the photon number shown in fig. 4.4(a) the

maximum appears at a pumping ratio of R/κ = 2.2, which is equal to the result

from above for individual pumping and collective decay as depicted in fig. 4.2(b).

In fig. 4.4(b) the expectation value of the σz−operator is illustrated, where the

black line represents the crossover to population inversion. On the right-hand side

of the line the atomic population is inverted, corresponding to the lasing case. Fig.

4.4(c) presents the g2(0) function, where the white line highlights a value of g2(0) = 1,

indicating a perfectly coherent light field. The area where g2(0) < 1 could be referred

to as an anti-bunching regime.

4.3.2 A linear chain of three atoms

As an addition to the square lattice, here, the result for a further kind of lattice is

shown. In fig. 4.6 we present the same quantities as above for a tripartite chain.

Furthermore, in fig. 4.5 we see the energy scheme of a chain of three atoms, where

the fastest loss or superradiant decay channel is to go from |e〉 = |eee〉 over the
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Figure 4.4: Stationary operation of a four atom laser on a square lattice. (a) photon
number, (b) atomic inversion, where the black line indicates equal population of the
excited and the ground state, (c) g2(0) function, with the white line at g(2)(0) = 1
representing a coherent state

states |2z〉 = |eeg〉+ |ege〉+ |gee〉, which is the symmetric superposition of all doubly

excited states and |1z〉 = |egg〉+ |geg〉+ |gge〉, the symmetric singly excited state,

to |g〉 = |ggg〉, as discussed in[9].

4.3.3 Comparison of different geometric configurations

Let us study the influence of the geometric arrangement of the particles for different

numbers of atoms and compare the results for the square and triangle discussed

above to a three and four atom chain. In order to obtain a substantial effect despite

our small atom numbers, we choose a smaller lattice constant of d = λ0/10 and a

fixed atomic decay rate of Γ/κ = 0.2.

In fig. 4.7 we show, that for the average values the atom number is more important

than the particular geometric arrangement. Interestingly for four atoms one can

even reach sub Poissonian photon statistics.

Naturally, the results depend on the average distance of the atoms, which is

symmetric shown in the following set of pictures in fig. 4.8 for a square of different

lattice constants d with a fixed spontaneous emission rate of Γ/κ = 0.2. As one

might have expected, fig. 4.8 demonstrates a much more pronounced effect when

varying the distance as opposed to changing the geometry.

Overall, despite fairly strong interactions of the atoms at small distances, the

laser seems to be very robust against such pairwise perturbations, which appear to

average out quite well once the oscillation threshold is surpassed. The differences

increase with pump strength where, on average, more particles are excited.
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Figure 4.5: Decay scheme of three atoms in a chain configuration, but for our chosen
Hamiltonian the energy scale has to go from −3ω0

2
to 3ω0

2
(Source:[9])

4.4 Laser stability and frequency shifts for differ-

ent atomic distances

Of course, the most sought after quality of a superradiant laser is its superb frequency

stability and accuracy. In the first section we have seen that collective spontaneous

decay can broaden the laser line. As dipole-dipole interactions shift the atomic

energy levels, this might as well change the laser line position, which we will study

for a lattice laser in more detail in the following.

4.4.1 Laser linewidth and frequency shift

As is well known, the spectrum of a laser in the bad cavity limit deviates from

the idealized Shawlow-Townes result, but the center of the line still approximately

follows a Lorentzian [6] so that in our numerical analysis the linewidth and its center

position relative to the bare atom line can be determined from a Lorentzian fit

to the steady state spectrum, as described in sec. 2. Therefore, the width of the

Lorentzian corresponds to the laser’s linewidth while the offset in the maximum

describes the energy shift, which is the energy of the light field in the cavity relative

to the cavity ground frequency. Fig. 4.9 and fig. 4.10 present the fitted width γL and

the energy shift δ for different interatomic distances and geometric configurations

as a function of the pumping rate R. For these calculations we used the same
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Figure 4.6: Stationary operation of a three atom laser on a chain lattice. (a) photon
number, (b) atomic inversion, where the black line indicates equal population of the
excited and the ground state, (c) g2(0) function, with the white line at g(2)(0) = 1
representing a coherent state.
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Figure 4.7: Photon number (a), atomic inversion (b) and g2 function (c) of our laser
as a function of the pump strength R for different atomic arrangements and a fixed
spontaneous decay rate Γ = 0.2κ.

parameters as above and we do not include a detuning between the atoms and the

cavity mode(∆ = ωc − ω0 = 0).

In fig. 4.9 we depict the linewidth and frequency shift of a laser with four

atoms in a square configuration as a function of the pump strength for different

interatomic distances. We observe a minimum linewidth at a moderate pump strength

of R/κ ≈ 1.9, which corresponds to an operation at the maximally achievable photon

number, as shown in fig. 4.4.

For a stronger pump the perturbations due to collective interactions dominate,

though significant effects appear for very closely positioned atoms, i.e. d < λ0/2, only.

Even with just four atoms it is possible to achieve a linewidth significantly below the

resonator’s linewidth. The predicted frequency shift with respect to the bare atom

frequency (as depicted in fig. 4.9) remains very small for larger interatomic distances
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Figure 4.8: Photon number (a), atomic inversion (b) and g2 function (c) of our laser
as a function of the pump strength R for a square of different lattice constants d
and a fixed spontaneous decay rate Γ = 0.2κ.

0 5 10 15 20 25 30
R/Γ

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

γ
L
/Γ

d = λ0/10

d = λ0/5

d = λmagic/2
d = λmagic

(a)

0 5 10 15 20 25 30
R/Γ

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

δ/
Γ

d = λ0/10

d = λ0/5

d = λmagic/2
d = λmagic

(b)

Figure 4.9: Laser linewidth (left) and frequency shift (right) for a square atom
arrangement at different distances as a function of the pump strength for a fixed
atomic decay rate of Γ = 0.2κ.
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Figure 4.10: Laser linewidth (left) and frequency shift (right) for different geometric
configurations and equal lattice constant (d = λ0/10) as a function of the pump
strength for a fixed atomic decay rate of Γ = 0.2κ.

and reaches a maximum value when the laser is operated at R/κ ≈ 3, close to the

maximum photon number. This could certainly be an observable phenomenon, but

it is not detrimental for the operation of such a laser. Obviously, for a realistic setup

we assume much too high a value for the atom-mode coupling g, which however

seems justified as one of our individual atoms could represent 103 to 104 atoms in an

experiment.

Interestingly, for the linewidth and shift properties, geometric effects are more

important than they are for the average intensity. A square arrangement of the

atoms creates a much larger shift than a triangular or a linear array, as can be seen

in fig. 4.10. Note, that the increased shift with the atom number could lead to

observable perturbations for larger ensembles. Again, operation at a lower pump

intensity may help to minimize this effect.

4.4.2 Laser sensitivity to cavity length fluctuations

A central criterion for the stability of a laser is its sensitivity to fluctuations of the

effective cavity length, which at present is one of the main limitations of reference

oscillator stabilized lasers. Despite spectacular recent progress [1], comprehensive

control at this level is still an extraordinary technical challenge. With the atoms

acting as reference oscillators less effort in order to achieve technical stabilization is

expected in an ideal superradiant laser. In the following we will study the effect of
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Figure 4.11: Average photon number for atoms on a square with d = λ0/10 (left) and
d = λmagic/2 (right) for varying cavity detuning and an atomic decay rate Γ = 0.2κ.

a varying cavity frequency described by an effective detuning (∆) on the average

photon number fig. 4.11 and the frequency mismatch between the bare atomic

transition frequency and the laser field (δa = ω0 − ωL) as seen in fig. 4.12 depending

on the average atomic distance. As shown in fig. 4.11(a) for closely positioned atoms

the interaction evokes a significant blue shift of the cavity frequency, generating the

maximum photon number. For atoms in a magic wavelength lattice, fig. 4.11(b), this

shift is much smaller and close to the interaction-free case. The detuning sensitivity

of the laser output spectrum to the detuning in these two cases is depicted in fig.

4.12, additionally the red line represents the threshold, where the inversion of the

population begins. On the left-hand side of the red line, which is under the laser

limit, the values of the detuning is rather imprecise.

We see that the laser frequency pulling via the cavity changes with the interaction

and increases with the pumping and the intracavity photon number. Nevertheless, as

indicated by the solid and dashed lines, the effective laser frequency change remains

within an atomic linewidth even for cavity fluctuations on the order of the cavity

width. At low pump strength and small inversion a sort of self-synchronization of the

atomic dipoles via direct interactions can lead to very strong suppression of cavity

fluctuations at the expense of very little output light, while for stronger pumping

interaction effects are suppressed and the cavity drifts have a more significant impact

on the laser frequency. Overall, we observe that by choosing optimal operating

conditions a decoupling of the cavity fluctuations from the laser frequency can be

suppressed very effectively, even in the case of atomic interactions. However, this
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Figure 4.12: Frequency shift for a square atom configuration with d = λ0/10 (left)
and d = λmagic/2 (right) for varying detuning and a fixed atomic decay rate of
Γ = 0.2κ. The dashed line indicates δa/Γ = −1 and the solid line corresponds to
δa/Γ = 1. The red line represent the laser threshold, 〈σz〉 = 0, where to its right we
are in the operating area of the laser.
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decoupling generally also reduces the output power of the laser. In fig. 4.13 the two

cases of strong an no interaction are compared directly. As expected, the interaction

free case is absolutely symmetric in detuning. For strong interaction in a red detuned

cavity the g2(0)-function increase faster and the linewidth gets broader than for a

blue one. Finally, we also recognize that for the strongly interacting regime the

minimum is not at the position of the resonance.
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Chapter 5

Conclusions and outlook

By means of numerically solvable examples containing only few particles, we evaluated

the influence of dipole-dipole interaction and collective spontaneous emission on

radiative properties of a superradiant laser in a lattice geometry. In general, for

fairly closely spaced atoms, shifts and frequency of the laser light uncertainties are

of the order of the free space atomic linewidth. For very densely packed ensembles

superradiant free space decay will substantially broaden the laser line. Quantitatively,

various limiting cases can lead to a different scaling behavior of the photon number

and linewidth or even to different photon statistics. Fortunately, for a Strontium

setup based on a magic wavelength lattice, the detrimental effects remain very small,

although they could attain an observable magnitude.

To improve the validity of the results of this work for larger systems, it would be

necessary to simulate a higher number of atoms in a the different configuration, but

to perform this calculations in a finite time we have to use extra approximations,

for instance minimizing the Hilbert space by exploding its symmetries, recently, an

SU4-approach was proposed, whereas the so-called truncated Wigner approximation

might also be helpful. Another possibility for improvement is to use a different kind

of numerical methodology, e.g. Monte Carlo wave function calculations.

With the possibility to simulate more atoms, it would be rather interesting

to study a three-dimensional geometry, like a cube. In such geometries it might

be feasible to vary the coupling constant between the field and the atoms, which

simulates the standing wave mode profile. Furthermore, it would be worth looking

at how different directions of the individual dipole moments influence the properties

of the superradiant laser.

In this work we still assumed a rather ideal and to sum extent artificial pumping
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mechanism. A more realistic pumping via extra levels or an injection of excited

atoms would, of course, add extra noise and has to be designed very carefully. In any

case, from the point of view of stability and shifts, the operation at weak pumping

strengths seems favorable, although the very weak output field could be a technical

challenge.

In the last years some experiments in the field of superradiant laser were conducted,

a particularly prominent one is the realization with Rb by J. Thompson et. al., which

operates as a Raman laser. The number of experiments will grow in the next years,

e.g. F. Schreck, at the University of Amsterdam, plans to build a superradiant laser

on an optical lattice.
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