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Kurzfassung

Diese Masterarbeit widmet sich der Untersuchung der Gültigkeit der Kumulanten Entwick-

lung, welche ursprünglich von Kubo im Jahre 1962 als Näherungsmethode konzipiert wurde,

mittels derer man Korrelationen zwischen statistischen Variablen bis zu einer gewünschten

Ordnung entfernt, was zu weniger Rechenzeit führt. Allerdings auf Kosten der exakten

Lösung, was den Verlust von quantenphysikalischen Eigenschaften wie Verschränkung oder

Super- & Subradianz bedeuten kann. Die Kumulanten Entwicklung wird sich als effizientes

Werkzeug im Umgang mit komplexen Quantenphänomenen herausstellen.

Weiterhin finden wir jenseits seiner Bedeutung als Näherungsmethode, dass der Vergleich

zwischen verschiedenen Ordnungen womöglich für Experimente interessante Parameterbere-

iche aufdecken und beim Ausloten der Grenzen zwischen klassischer und Quantenphysik

behilflich sein kann.

Diese Arbeit trägt hoffentlich dazu bei das Verständnis, die Validität sowie den Nutzungs-

bereich der Kumulanten Entwicklung zu fördern, zu ergründen und auszuweiten, um ihr den

Weg in weitere wissenschaftliche Zweige zu ebnen.



Abstract

This thesis delves into the exploration of the validity and expansion of the cumulant ex-

pansion, a mathematical tool introduced by Kubo in 1962 in order to eliminate correlations

between statistical variables beyond a desired order to simplify calculations, yielding faster

computation time at the cost of the exact solution, which can mean losing quantum physics

such like entanglement or super- & subradiance. The cumulant expansion will emerge as

a computationally efficient approach, showcasing remarkable performance in handling com-

plex quantum phenomena.

Notably, our research reveals that the cumulant expansion transcends its conventional role.

Beyond mere computational utility, we leverage its application by comparing different or-

ders, offering insights into parameter regimes of interest. This comparison becomes crucial

in clarifying the boundaries between classical and quantum physics. In doing so, we extend

the scope of the cumulant expansion.

This thesis contributes to a deeper understanding of the cumulant expansion’s capabilities

and broadens its application, paving the way for enhanced insights across various scientific

domains.
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1 Introduction

Light is easily one of the most important constituents of the physics of our world. Our

eyesight fully depends on it, making it one of the oldest topics in physics. Euclid for

example treated perspective already[1] and even in ancient china people worked on theories

regarding the propagation of light through lenses[2]. Way later, in the 19th century, J.

C. Maxwell derived the speed of light in vacuum using his famous formulas, yielding a

connection between optics and electrodynamics as he found light to be an electromagnetic

wave. Roughly hundred years later N. Bohr expanded our understanding of the origin

of light by introducing one of the first quantum models for atoms[3]. He proposed, that

electrons in the atom shells can only take discrete rather than continuous energy states and

transitions between them appear among other techniques through absorption or emission of

the electromagnetic interaction particle, i.e. photons of energy h̄ω, where ω is the transition

frequency between the two states.

Especially interesting in the context of this thesis is the concept of spontaneous emission in

open systems. If an atom is not in the ground state, it has a probability to interact with the

electromagnetic vacuum and emit a photon into a random direction in order to minimize

its own energy, as studied by Einstein with his famous Einstein-coefficients[9]. This leads

to an instantaneous jump to a lower energy state at random times. Such transitions are

categorized by their transition frequency and the decay rate Γ corresponding to the decay

channel.

Every atom eventually undergoes this random process individually. However R. H. Dicke

found out, that in addition in the quantum regime, i.e. when atoms are spaced by less than

the transition wavelength, identical atoms change to a collective behaviour, showing modified

energy levels and decay rates compared to the individual case, resulting in phenomena like

the famous Dicke super- and subradiance and superradiant pulses with relevance in biological

systems as well [4].

The decay rate Γij for the transition from a state i to j, describes the mean time identical

atoms in an ensemble need to decay along that channel and is thus a very statistical quantity.

Much more the whole quantum theory is a statistical theory and therefore one will often

encounter typical statistical approaches like calculating the mean or the expectation value

of quantum mechanical operators when treating a problem quantum mechanically.

Another common issue apart of the statistical nature of quantum mechanics is that the

Hilbert space of a problem and thus its complexity grows exponentially.
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Introduction

For example in the case of N two-level emitters the describing state vector grows with 2N

and thus operators, which are represented by matrices, with 2N × 2N [5], quickly lead to

untreatable systems. Realistic biological systems e.g. with hundreds of atoms involved are

barely treatable and need computers to work for years.

The only way to grant access to such systems without using more capable computers, is

approximating results. For higher order bosonic annihilation/creation operator correlation

functions one can e.g. use Wick’s theorem[6] and express the product by taking all contrac-

tions. Another approach capable of treating less restricted quantities is applying the widely

used mean-field approximation, which uncorrelates two statistical quantities A and B such

that the expectation value of the product is simplified to be ⟨AB⟩ ≈ ⟨A⟩⟨B⟩. One can

extend the expansion theory for higher order products and regard the mean-field approxi-

mation as the lowest order case of the ”cumulant expansion”, introduced by Ryogo Kubo in

1962 [7], who was first to generalize it so the considered stochastic variables don’t need to

be ordinary c-numbers but may be quantum mechanical operators instead, making it useful

for equations containing such operators.

Since quantum theory is a stochastic theory, cumulants play a key-role as they determine

probability distributions. The cumulant expansion turns out to be a very mighty tool to

approximate not just quantum, but all kinds of dynamics where statistical fluctuations are

present.

In the context of quantum physics, and in this thesis specifically quantum optics, its usage

allows to neglect quantum correlations beyond a desired order, making underlying ordinary

differential equation systems tractable. The complexity of problems then scales polynomially

rather than exponentially [5]. In our case this grants access to simulations of large arrays of

quantum emitters and studies on their quantum optical properties.

However it remains an approximation method for which the convergence towards the correct

result is not mathematically proven yet, but due to its universality it is definitely worth look-

ing into its performance, its limitations and its further usage. To this end this thesis seeks

to motivate the usage of the cumulant expansion by quantifying its errors and demonstrate

its performance on the benchmark problem of N-identical interacting dipoles. We will find

exceptional performance even in high-density regimes for different geometries, interesting

interpretations of comparisons between correlations and their cumulant expansion, analyti-

cally mimic the cumulant expansion procedure and demonstrate its power for the example

of an antenna ring.
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2 Theory

This section about the underlying theory in this thesis is commenced with a wrap up of

two-level systems as well as the inter-atomic coupling via dipole-dipole interaction and fol-

lowed up by a description of the underlying equations, being the Master and especially the

Quantum-Langevin equation. Cumulants and the cumulant expansion will be explained and

finally there will be a quick introduction to the very basics of the QuantumCumulants.jl julia

package, supported by an example.

2.1 Two-level systems

Almost all systems considered in this thesis are ensembles of equally distributed quantum

emitters with two energy levels. The one with higher energy is called the excited state |e⟩

and the one with lower energy ground state |g⟩.

For 2-level systems measurements, rotations, and transformations can be performed via the

three well known Pauli matrices and the identity matrix, being

σx = |e⟩⟨g|+ |g⟩⟨e|

σy = i(|e⟩⟨g| − |g⟩⟨e|)

σz = |e⟩⟨e| − |g⟩⟨g|

1 = |e⟩⟨e|+ |g⟩⟨g|

(1)

They have eigenvalues ±1 and products of Pauli matrices lead to either unity or another

Pauli matrix according to the relation

σασβ = i
∑
γ

ϵαβγσγ + δαβ1 (2)

Here ϵαβγ denotes the Levi-Civita tensor and δαβ the Kronecker Delta.

From these we can deduce two further, non-Hermitian, operators namely the rising and the

lowering operators σ+ ≡ σeg and σ− ≡ σge

σ+ = σx + iσy = |e⟩⟨g|

σ− = σx − iσy = |g⟩⟨e|
(3)

These operators either transform an emitter in the ground state to the excited state or vice

versa.
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Another notation used throughout the thesis is the generalized version σij = |i⟩⟨j|. The sum

over all projectors is conserved and equal to unity and from equation 2 a product relation

can be deduced

σijσkl = δjkσ
il

n∑
i=1

σii = 1
(4)

where n denotes the total number of possible energy states, being n = 2 in the case of the

two-level atom. These relations are used to simplify and rewrite equations.

2.2 Dipole-Dipole Interaction

When an atom with transition frequency ω0 in an ensemble of identical two-level atoms,

which can be considered as dipoles, decays from its excited state |e⟩ to the ground state |g⟩,

it emits a photon, which can lead to excitation in one of the other ensemble components.

This ultimately means the electromagnetic fields of the atoms are coupled to each other -

referred to as dipole-dipole interaction - and the surrounding electric vacuum. In order to

deduce the corresponding relations, we treat a single quantum emitter in an electromagnetic

field, described by the hamiltonian H.

H = H0 +HInt +HF (5)

H0 = h̄ω0σ
+σ− is the free space hamiltonian for the two-level quantum emitter, where ω0 is

the transition frequency and σ+ = |e⟩⟨g| is the transition operator shifting the energy level

from the ground to the excited state and vice versa σ− is the adjoint.

HInt = −d⃗ · E⃗(0, t) is the dipole interaction component of the hamiltonian. By going from

the position to the energy basis the interaction term can be rewritten as follows:

HInt = −d⃗ · E⃗(0, t) = µ⃗(σ+ + σ−)E⃗(0, t) (6)

In order to find an expression for the electric field it can be mode expanded in a box of

volume V = L3 with periodic boundary conditions, assuming no external sources and a

constant refractive index along the direction of propagation.
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E⃗(r⃗, t) =
∑
k⃗,λ

√
h̄ωk

2ϵ0V
e⃗k⃗,λe

ik⃗r⃗ak⃗,λ(t) (7)

This expansion also suggests a splitting of the electric field vector into forward and backward

propagating components.

E⃗(r⃗, t) = E⃗+(r⃗, t) + E⃗−(r⃗, t) (8)

e⃗k⃗,λ is the polarization unit vector with k⃗ being the wave vector and ωk the frequency

corresponding to a field mode and λ ∈ [1, 2] the polarization.

ak⃗,λ respectively its adjoint a†
k⃗,λ

are the bosonic annihilation respectively creation operators,

fulfilling the canonical commutation relation [ak⃗,λ, a
†
k⃗,λ

] = δk⃗,⃗k′δλ,λ′ . Using these one can

define the hamiltonian for the free electric field:

HF =
∑
k,λ

h̄ωka
†
k⃗,λ

ak⃗,λ (9)

Inserting the mode expanded expression for the electric field into equation 6 gives rise to

mixing terms between transition and annihilation/creation operators, although the non-

conserving interaction terms can be neglected in the rotating-wave approximation(RWA),

namely σ+a†
k⃗,λ

+ σ−ak⃗,λ.

The free-field and interaction hamiltonian can further be trivially generalized to the case

of N identical coupled quantum emitters by indexing the position vectors and transition

operators to specify on which subsystem they are acting on.

Thus the total hamiltonian from equation 5 takes the following form:

H = h̄ω0

∑
j

σ+
j σ

−
j +

∑
k⃗,λ

h̄ωka
†
k⃗,λ

ak⃗,λ

+
∑
k⃗,λ

∑
j

h̄g
(j)

k⃗,λ

(
σ+
j ak⃗,λe

ik⃗r⃗j + a†
k⃗,λ

σ−
j e

−ik⃗r⃗j
) (10)

g
(j)

k⃗,λ
=

√
ωk

2h̄ϵ0V
e⃗k⃗,λµ⃗j is the coupling strength of the j-th emitter, but since N identical

quantum emitters are treated, the expression simplifies, as |µ⃗j | = |µ⃗| holds.

Now, in order to capture the time evolution of the annihilation operator, the Heisenberg

equation of motion can be utilized, stating:

ȧk⃗,λ =
i

h̄
[H, ak⃗,λ] = −iωkak⃗,λ − i

∑
j

gk⃗,λe
−ik⃗r⃗jσ−

j (11)
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An elegant way to solve this differential equation is to make use of a retarded Green’s function

corresponding to the present differential operator L = ∂t+ iωk → G(t− t′) = e−iωk(t−t′) and

taking boundary conditions into account. The solution is then obtained via convolution of

the retarded Green’s function with the inhomogeneity:

ak⃗,λ(t) = ak⃗,λ(0)e
−iωkt − i

∑
j

gk⃗,λe
−ik⃗r⃗j

∫ t

0

σ−
j (t

′)eiωk(t
′−t)dt′ (12)

This gives rise to another splitting of the forward and backward propagating electric field.

For the example of the forward propagating field the splitting would be thus

E⃗+(r⃗, t) = E⃗+
in(r⃗, t) + E⃗+

0 (r⃗, t) (13)

with the initial part

E⃗+
in(r⃗, t) =

∑
k⃗,λ

√
h̄ωk

2ϵ0V
e⃗k⃗,λe

ik⃗r⃗ak⃗,λ(0)e
−iωkt (14)

although we assume initial vacuum and thus the term can be neglected. As a side note it

would cause quantum noise.

The second term E⃗+
0 (r⃗, t) can be solved using the so-called Markov-Approximation, where

one defines an operator s(t) such that

σ−
j (t) ∝ σ−

j (0)e
−iω0t, s−j := σ−

j (t)e
iω0t ∝ σ−

j (0) (15)

and thus the integral can be simplified as follows

∫ t

0

dt′σ−
j (t

′) = s−j (t)

∫ t

0

dt′e−iω0t
′
= σ−

j (t)

∫ t

0

dt′e−iω0(t
′−t) (16)

which is valid since the time-dependence of the system is encoded primarily in the resonance

frequency of the emitters.

Thus the second term in equation 13 reads:

E+
0 (r⃗, t) = −i

∑
k⃗,λ

∑
j

√
h̄ωk

2ϵ0V
e⃗k⃗,λgk⃗,λe

ik⃗(r⃗−r⃗j)σ−
j (t)

∫ t

0

dt′ei(ωk−ω0)(t
′−t) (17)
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Utilizing, that polarization unit vectors and wave vectors form an orthonormal basis and

going from a sum over the wave vectors to an integral by taking a high density of modes into

account, one ends up with a series of integrals, which can be solved and lead to a relation

between the transition operators and the electric field, containing the Green’s Tensor.

E⃗+(r⃗, t) = E⃗+
in(r⃗, t)−

3h̄Γ0

4|µ⃗|
∑
j

σ−
j (t)G(k0, r⃗ − r⃗j)ˆ⃗µj (18)

Here Γ0 =
ω3

0 |µ⃗|
2

3πc3ϵ0h̄
is the single quantum emitter decay rate and

G(k, r⃗) = eikr
[(

1

kr
+

i

(kr)2
− 1

(kr)3

)
1 − (ˆ⃗r ◦ ˆ⃗r)

(
1

kr
+

3i

(kr)2
− 3

(kr)3

)]
(19)

is the Green’s Tensor for an oscillating dipole. Furthermore ˆ⃗r = r⃗
|r⃗| is the normalized posi-

tion vector and ◦ denotes the dyadic product.

E⃗−(r⃗, t) can obviously be treated analogously.

It is further possible to define ξ := krjk and to separate the Greens function into real and

imaginary part G(ξ) and F (ξ)

G(ξ) = −3

4

[
(1− cos2(θ))

cos(ξ)

ξ
− (1− 3cos2(θ))

(
sin(ξ)

ξ2
+

cos(ξ)

ξ3

)]
F (ξ) =

3

2

[
(1− cos2(θ))

sin(ξ)

ξ
− (1− 3cos2(θ))

(
cos(ξ)

ξ2
− sin(ξ)

ξ3

)] (20)

to obtain trivial expressions for collective coupling strengths and the collective decay rates.

Ωjk = Γ0G(k0, rjk)

Γjk = Γ0F (k0, rjk)
(21)

The polarization angle θ is measured between the connection line between atoms and the

dipole vector µ⃗ as shown in the sketch below.

They lead to the intuitive results, that in the so called Dicke limit, when the inter-dipole dis-

tance converges to zero, the coupling Ωjk diverges while the collective decay rate converges

towards the single emitter decay rate Γjk → Γ0 and for the case of a very large distance

rjk → ∞, emitters behave just as single uncoupled quantum emitters, meaning Ωjk → 0

and Γjk → Γ0δjk, as clearly visible in figure 3.
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Figure 3: Inter-atomic coupling and collective decay rate from equation 21 dependent on
the inter-atomic distance for the case of tangential and transverse polarization. For very
small rjk the coupling acts attractively in the tangentially polarized case, i.e. Ωjk < 0, and
repulsively in the transversal case vice versa.

2.3 Energy level and decay rate modifications in quantum systems

Spontaneous decay of excited atoms is known to stem from its coupling to vacuum fluc-

tuations of the electro-magnetic field [9]. Further Dicke showed, that coupling of several

identical atoms, which lay in the vicinity of each other, leads to correlations and thus to a

collective radiation behaviour. In contrast to independent atoms exhibiting a total sponta-

neous emission intensity proportional to the number of atomsN , collectively decaying atoms,

whose radiation changes due to constructive/destructive interference of spontaneously emit-

ted light, display a delayed intensity maximum, which is proportional to N2[10].
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In the case of two two-level atoms there are four collective states in total

{|gg⟩, |ge⟩, |eg⟩, |ee⟩} (22)

where |ij⟩ = |i⟩ ⊗ |j⟩ is a simplified notation and an index indicates which emitter one is

referring to. The hamiltonian is given by H0 +HInt and thus looks like

H =
∑
i

ω0σ
+
i σ

−
i +

∑
i,j

Ωijσ
+
i σ

−
j = ω0(σ

+
1 σ

−
1 + σ+

2 σ
−
2 ) + Ω(σ+

1 σ
−
2 + σ+

2 σ
−
1 ) (23)

Diagonalizing the hamiltonian, as done for the coupling and dissipation part in ref. 4,

yields the systems Eigenstates, differing from non superposing systems by exhibiting two

new states, namely the symmetric |S⟩ and the antisymmetric state |A⟩.

|G⟩ = |gg⟩

|S⟩ = 1√
2
(|eg⟩+ |ge⟩)

|A⟩ = 1√
2
(|eg⟩ − |ge⟩)

|E⟩ = |ee⟩

(24)

The new states have corresponding coupling induced modified energies ES/A = ω0 ± Ω and

thus the degeneracy is lifted, while |E⟩ and |G⟩ remain at their respective energies. The

states |S⟩ and |A⟩ are also part of the Bell basis. For very small inter-subsystem spacings r,

the coupling diverges and would lead to ±∞ energy. This distance, where the model breaks

down, is about the Bohr radius.

The through coupling modified energy level scheme exhibits two independent decay channels

γS/A = Γ0 ± γ depending on wether the collective excited state decays via the symmetric or

the antisymmetric state. γ is given by γ = Γ0F (k0, r) and for γ > 0 the channel including

the symmetric state shows a higher decay rate than the single atom decay rate Γ0 and is thus

called ”superradiant”. The opposite case of a reduced decay rate for the channel including

the antisymmetric state is therefore called subradiant.

9
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Figure 4: Visualization of the modification of the energy levels in a two atom system, shifted
by±Ω for the super- respectively subradiant state accompanied by two non-interacting decay
channels γS and γA when involving the symmetric or the antisymmetric state[9]

.

2.4 Fundamental equations in quantum physics

2.4.1 Master equation

In order to find the time evolution of the state defining density matrix under consideration

of dissipative effects one has to solve the Master Equation. Here we derive it for the problem

of N identical coupled quantum emitters to which end an expression for the electric field

was derived in section 2.2.

The time evolution of a density matrix ρ =
∑

j pj |Ψj⟩⟨Ψj |, where pj are the weights associ-

ated with different quantum states |Ψj⟩ and which satisfy the condition
∑

j pj = 1 to ensure

that the total probability adds up to one, is computed using the well known von Neumann

equation with the time evolution determining hamiltonian from equation 5.

ρ̇ = − i

h̄
[H, ρ] = − i

h̄
[H0 +HInt, ρ]

= − i

h̄
[H0, ρ]−

i

h̄

∑
j

[
[σ+

j , ρ](µ⃗j · E⃗+(r⃗j)) + (µ⃗j · E⃗−(r⃗j))[σ
−
j , ρ]

] (25)

Now the expression for the electric field[17] can be inserted, exemplary shown for the electric

field in forward direction term.

− i

h̄

∑
j

[σ+
j , ρ](µ⃗j · E⃗+(r⃗j)) =

− i

h̄

∑
k

[σ+
k , ρ]

µ⃗k · E⃗+
in(r⃗k)−

3h̄Γ0

4

∑
j

σ−
j (t)

ˆ⃗µk ·G(k0, r⃗k − r⃗j) · ˆ⃗µj

 (26)
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Doing the analogue for the backward propagating electric field, splitting the Green’s Tensor

into real and imaginary part aswell as redefining r⃗kj = r⃗k − r⃗j for simplicity leads to the

following equation:

ρ̇ = − i

h̄
[H0, ρ] +

3iΓ0

4

∑
k,j

[σ+
k σ

−
j , ρ]

(
ˆ⃗µk · ℜ(G(K0, r⃗kj)) · ˆ⃗µj

)

−
∑
k

[σ+
k , ρ]

 i

h̄
µ⃗k · E⃗+

in(r⃗k) +
3Γ0

4

∑
j

(
ˆ⃗µk · ℑ(G(k0, r⃗kj)) · ˆ⃗µj

)
σ−
j


−
∑
k

 i

h̄
µ⃗k · E⃗−

in(r⃗k)−
3Γ0

4

∑
j

(
ˆ⃗µk · ℑ(G(k0, r⃗kj)) · ˆ⃗µj

)
σ+
j

 [σ−
k , ρ]

(27)

To break this large equation further down, the quantum noise operators can be defined

for the quantum noise generating term in the electric fields E⃗±
in as well as their arising

commutation relation.

ξ−j (t) :=
i

h̄
√
Γ0

(µ⃗jE⃗
+
in(r⃗j , t)) =

i√
Γ0

∑
k⃗,λ

gk⃗,λak⃗,λ(0)e
−iωkteik⃗r⃗j

[ξm(t), ξ†n(t
′)] =

3

2
δ(t− t′)ˆ⃗µm · ℑ(G(k0, r⃗mn)) · ˆ⃗µn

(28)

The expression for the Master Equation for N coupled identical quantum emitters thus

becomes

ρ̇ = − i

h̄
[H0 +Hdip, ρ]−

∑
j,k

[σ+
j , ρ](δjk

√
Γ0ξ

−
j (t) +

Γjk

2
σ−
k )

+
∑
j,k

(δjk
√

Γ0ξ
+
j (t) +

Γjk

2
σ+
k )[σ

−
j , ρ]

(29)

with a more treatable formulation of the dipole interaction hamiltonian.

Hdip =
∑
j,k

h̄Ωjkσ
+
j σ

−
k (30)

where Ωjk is the coupling strength between dipole j and k and Γjk the collective decay rate.

Ωjk = −3Γ0

4
ˆ⃗µj · ℜ(G(k0, r⃗jk)) · ˆ⃗µk

Γjk =
3Γ0

2
ˆ⃗µj · ℑ(G(k0, r⃗jk)) · ˆ⃗µk

(31)
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Theory

2.4.2 Quantum Langevin equation

An equivalent way to calculate the time evolution of a system is to use the Quantum Langevin

equation. Going from the Master to the Quantum Langevin equation is equivalent to going

from the Schroedinger to the Heisenberg picture and shifting the time dependence from the

state vector to the operators. When using the unitary time evolution operator U(t) = e−
i
h̄Ht

with its action on a state vector U(t)|Ψ(0)⟩ = |Ψ(t)⟩ and the transformation of an operator

from the Schroedinger picture OS to the Heisenberg picture OH given by U(t)OSU
†(t) = OH,

we can derive an expression for the time derivative of the expectation value of operator O.

⟨Ȯ⟩ = Tr(ρ̇ ·O) (32)

Using this and tracing over the whole Master equation [29] while making use of the cyclic

property of the trace Tr(ABC) = Tr(BCA) = Tr(CAB), one can find an expression for

the time evolution of operator O.

Ȯ =
i

h̄
[H,O] +

∑
jk

[σ+
j , O]

(
δjk

√
Γ0ξ

−
j (t) +

Γjk

2
σ−
k

)

−
∑
jk

(
δjk

√
Γ0ξ

+
j (t) +

Γjk

2
σ+
k

)
[σ−

j , O]

(33)

This is the Quantum Langevin equation for operators O, which commute at equal times

with the bosonic ladder operators a and a†.

The Quantum Langevin equation provides the same information as the master equation.

But since we are mostly interested in averages, we can simplify the Quantum Langevin

equation by assuming any occurring noise to be white noise so averages over the quantum

noise operators ξj vanish, and use the following equation for computation.

Ȯ =
i

h̄
[H,O] +

∑
j,k

Γjk(σ
+
k Oσ−

j − 1

2
{σ+

j σ
−
k , O}) (34)

12



Theory

It is trivial to proof, that both approaches, using the Quantum Langevin and the master

equation, generate the same results e.g. for the time evolution of expectation values, which is

equivalent to the comparison between the solutions for expectation values calculated via the

density matrix ρ, gained from the master equation, and the solutions obtained by applying

an averaging to the operator O given by a corresponding Quantum-Langevin equation.

So we need to show, that

⟨O⟩ = Tr(ρ(t) ·O) = Tr(ρ ·O(t)) (35)

which is simple, when considering the time evolution operator U(t) stemming from the

Schroedinger equation. With ρ = U(t)ρU†(t), the hermitian property of U(t) and the cyclic

property of the trace we can move the time dependence from the density matrix to the

operator.

Tr(ρ(t) ·O) = Tr(U(t)ρU†(t)O) = Tr(ρU†(t)OU(t)) = Tr(ρO(t)) (36)

Hence averages over operator entries reproduce the exact solution and all correlations be-

tween the atoms are covered.
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Theory

2.5 Cumulant expansion

When solving the Quantum Langevin or the master equation, the entire information about

the system is obtained, although maybe only some specific expectation values are needed

for computation. Inserting any operator into the Quantum Langevin equation leads to a

complex operator equation, but averaging over these transforms them into more tractable

c-number equations. But calculating equations of motion for an exemplary model like e.g.

the Jaynes-Cummings model, done in ref. 5, quickly visualizes, that this does not break

down the complexity either, as the equations contain averages of ever longer operator prod-

ucts, whose equations of motion have to be calculated as well, not leading to a closed set of

equations.

Thus in order to find a solution some sort of approximation is necessary.

One adequate approximation is the cumulant expansion, initially introduced by R. Kubo

[7], which is based on the expansion of averages of higher-order operator products in terms

of lower order expectation values.

In probability theory one obtains moments for a set of statistical variablesX = {X1, X2, ..., Xn}

via a moment generating functional MX[j]

MX[j] = ⟨ejX⟩ (37)

for a parameter vector j ∈ Rn and n being the dimension of vector X.

By taking the natural logarithm of MX[j] we obtain the corresponding cumulant functional

KX[j], which can be expressed as power series containing the n-th cumulant κn, which then

can be obtained by taking the n-th derivative at j = 0 by construction.

KX[j] =

∞∑
n=1

jn

n!
κn

κn =
dn

djn

∣∣∣
j=0

KX[j]

(38)

The first four cumulants (sometimes called semi-invariants) are often referred to as mean,

variance, skewness and kurtosis.
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Theory

An example would be the cumulants of a normal distribution N (µ, σ) of a random variable

X, for which the cumulant generating function can be found to be

KX[j] = ln⟨ejX⟩ = ln(

∫
dXejXN (µ, σ))

= ln(

∫
dXejX

1√
2πσ

e−
1
2 (

X−µ
σ )2)

= ln(

∫
ej(zσ+µ) 1√

2πσ
e−

1
2 z

2∣∣dX
dz

∣∣dz)
= ln(eµj

∫
ejzσ

1√
2π

e−
1
2 z

2

dz)

= ln(eµj+
1
2σ

2j2) = µj +
1

2
σ2j2

(39)

In the third step X = zσ + µ was substituted, so that
∣∣dX
dz

∣∣ = σ and in the fourth we used,

that
∫
ezj 1√

2π
e−

1
2 z

2

dz = e
j2

2 .

Therefore the cumulants are indeed the mean, the variance and all cumulants of order ≥ 3

vanish for this specific probability distribution with a centered gaussian.

κ1 = µ

κ2 = σ2

κn = 0 ∀ n ≥ 3

(40)

In general odd cumulants, being related to skewness, provide information about the direction

and extent of the asymmetry in a probability distribution and are thus particularly useful

when describing asymmetric systems and vice versa even cumulants for symmetric systems.

On this whole basis a joint cumulant as a measure for the correlations between statistical

variables can be alternatively defined for a product of order n of a set of statistical variables

X and is denoted by ⟨ · ⟩C

⟨X1X2...Xn⟩C =
∑

p∈P (I)

(|p| − 1)!(−1)|p|−1
∏
B∈p

⟨
∏
i∈B

Xi⟩ (41)

where I = 1, ..., n, P (I) is the set of all partitions of I, with the number of partitions being

given by the Bell numbers, |p| the length of the partition p and B runs over the blocks of

each partition.
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Theory

To clarify the process, it is shown for the example n = 3 with the following joint cumulant

⟨X1X2X3⟩C =⟨X1X2X3⟩ − ⟨X1X2⟩⟨X3⟩ − ⟨X1X3⟩⟨X2⟩

− ⟨X1⟩⟨X2X3⟩+ 2⟨X1⟩⟨X2⟩⟨X3⟩
(42)

R. Kubo proposed that the statistical variables may be quantum operators instead and the

cumulant expansion method follows from Theorem I in ref. 7, which states that the joint

cumulant of a set of operators is zero if any one (or any subset) of them is statistically

independent of the others. So if simply assuming, that the joint cumulant of a given order is

zero, we obtain an expression of an average in terms of only lower-order averages. Equation

42 thus becomes

⟨X1...Xn⟩ =
∑

p∈P (I)\I

(|p| − 1)!(−1)|p|
∏
B∈p

⟨
∏
i∈B

Xi⟩ (43)

with P (I)\I as the set of all partitions of I not containing I itself. For the example of n = 3

we end up with the following equation

⟨X1X2X3⟩ =⟨X1X2⟩⟨X3⟩+ ⟨X1X3⟩⟨X2⟩

+ ⟨X1⟩⟨X2X3⟩ − 2⟨X1⟩⟨X2⟩⟨X3⟩
(44)

The cumulant expansion can be used recursively until arriving at first order, which corre-

sponds to the lowest order mean-field approximation and renders the dynamics of the system

under consideration classical.

The cumulant expansion can greatly reduce the problem complexity by breaking down the

amount of equations of motion to something numerically or for small problems even analyt-

ically solvable.

16



Theory

2.6 Introduction to the QuantumCumulants.jl package

QuantumCumulants.jl is a package inside the julia programming language and capable of

performing the cumulant expansion up to any desired order. It is easy to use and supported

by a detailed documentation [8].

One commences by defining c-numbers as symbolic variables, as well as the hilbert space

and the occuring operators.

Next one defines hamiltonian, jump operators and decay rates and specifies the operators

of interest.

Now we can use the meanfield() function to generate the equation of motion according to the

modified Quantum Langevin equation [53] for the operators of interest and cumulant expand

it up to a specified order. Then the complete!() function scans for right-hand-side terms in

the e.o.m., which are not appearing on the left and calculates the cumulant expanded e.o.m.

for these as well, yielding the complete system of coupled differential equations.

One can then transform the completed equations to an ordinary differential equation system

object, pass a set of parameters for the former defined symbolic variables and numerically

solve this. The package also offers functions to calculate the correlation function between

two operators, their spectrum and much more. For more information please refer to the

corresponding documentation in ref. [8].
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3 Validity of the cumulant expansion approximation

Currently quantum simulations of systems of large size are rarely feasible without approxi-

mation methods and thus the cumulant expansion plays an important role in getting insight

into the dynamics of large complex systems.

But this is only valid of course under the condition, that the approximation performs suffi-

ciently well.

An estimation of its performance under a variety of conditions is crucial to figure out for

which cases this approach is even viable or if it is viable at all.

Therefore different systems will be simulated under variation of parameters, which either

change its time evolution or the system itself. The analyzed relevant parameters are the

interatomic distance d, the polarization angle θ, being measured relative to the connection

line of the atoms, the system size and the geometry. But also the impact of choosing a

certain initial state and the effect of a driving term in the hamiltonian will be discussed

where it is causing relevant discrepancy.

3.1 Chain and ring geometry

First let us specify the geometries of the quantum arrays we use.

We will focus on chains and rings of N identical point-like quantum emitters.

In the case of the chain one simply transforms ξ → ξ · |j − i| in equations 21 and sums over

the atom indices i and j to calculate the total coupling and decay rates between every atom

and for every decay channel in an all-to-all connected scenario. The dipole vector orientation

will be controlled by the angle θ measured between dipole orientation and the connection

line between the atoms.

In the case of the ring we have to pass position and dipole moment vectors to Ω and Γ.

Figure 8: Sketch of an arbitrary ring with N = 4 for visualizing purposes.
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Validity of the cumulant expansion approximation

First the angle for the position of an atom j ∈ {1, 2, ..., N} is ϕ(j) = 2π(j−1)
N , measured

in the x-y-plane. The angle ϕ′ between connection vector d⃗ and polarization vector µ⃗ is

trivially given by ϕ′ = ϕ
2 , defined for ϕ′ ∈ [0, π].

Second follows from geometrical considerations, that

d

2
· 1

R
= sin(

∆ϕ

2
) ⇐⇒ R(d) =

d

2sin(∆ϕ
2 )

=
d

2sin( π
N )

(45)

for the radius, using the angle ∆ϕ between the radial vectors of two neighbouring dipoles,

given by ∆ϕ = 2π
N for equal distribution. Now, by going over the atom index j and specify-

ing the inter atomic distance d, we fully specify the position vector.

3.2 Hamiltonian and simulation details

Averages over operator entries obtained from the Quantum Langevin equation are exact.

However similar computational effort is necessary compared to the master approach and

therefore one only gains time when using lower order correlations by e.g. performing the

cumulant expansion.

We will proceed by estimating the performance of the cumulant expansion in the following

sections, but need to specify the hamiltonian as part of the corresponding Quantum Langevin

equation beforehand.

In our case the basic hamiltonian for our system of identical point-like two-level quantum

emitters is the sum of the free-field atom hamiltonian H0 and the dipole hamiltonian Hdip:

H0 =

N∑
j

ωσ+
j σ

−
j

Hdip =

N∑
i

N∑
j

Ωijσ
+
i σ

−
j ∀ i ̸= j

(46)

Here ω is the transition frequency between the two energy levels of our two-level atoms,

Ωij is the coupling between atom i and j. σ+
i , σ

−
i are the jump operators acting on atom i

described in equation 3.

We neglect terms with i = j, because we consider ensembles of identical atoms and the self-

coupling thus induces an identical energy shift in every atom. Therefore the self-coupling is

irrelevant for studying dynamics.

19



Validity of the cumulant expansion approximation

However if the system is desired to be initially in the collective ground state, this hamiltonian

does never lead out of it, although it is advantageous to have this initial state, as there is

no automated way for correctly defining different initial states in the QuantumCumulants.jl

package yet and for large systems it can get quite time consuming finding them manually.

Besides that starting in the initial ground state is unavoidable for most experimental real-

izations. Therefore in order to force a dynamic it is necessary to add a so called driving

term, which can have a variety of shapes. For the following simulations it will be mostly

chosen as a simultaneous pumping of all atoms up to a certain time. We will also drop the

phase terms in our driving hamiltonian Hdrive, as we will work with perpendicular radiation

of our two-dimensional arrays and thus Hdrive is given via equation 47

Hdrive =
N∑
i

η(σ+
i + σ−

i ) · P (t) (47)

and the hamiltonian for most of the upcoming simulations - unless stated differently - is

thus

H = H0 +Hdip +Hdrive. (48)

As a side note one could realize such a driving for example via an external laser. η defines

the pumping strength, which is set to η = Γ0 in the upcoming simulations and P (t) will be

a step-function, although it can be chosen arbitrarily.

P (t) =

1 Γ0 · t < 5,

0 Γ0 · t ≥ 5

(49)

This choice ensures, that both driven and non-driven dynamics are captured.

The upper state population or the probability to find an atom in the excited state, being

described by the expectation value of the transition operator |e⟩⟨e|i or σee
i for an atom i,

which projects the time average of the transition from the excited state to itself, is the

mainly considered operator in this thesis.

Since the task is to capture the dynamics of the system and to evaluate the performance of

the cumulant expansion, it is sufficient to work with natural units in the simulations, i.e.

h̄ = 1.
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Validity of the cumulant expansion approximation

3.3 Error measure

To find possible systematics in performance decrease or increase when performing a cumu-

lant expansion, we need to define an error measure for the difference between exact and

approximated solution.

In this section we quantify the difference between operator expectation value dynamics in

different orders of cumulant expansion and in order to do so, we need to define an error

measure.

Although there is in general a variety of such, it is desirable to choose a measure which

is cumulative, so it covers all occuring deviations, and is using absolute values, so positive

and negative differences do not cancel out. One measure fitting these requirements in a

simple and intuitive manner is a modified version of the so called ”City-Block distance” or

”Manhattan distance” [11] divided by the length of the time vector n. We will refer to it as

”normalized City-Block error” (NCBE)

NCBE =
1

n

n∑
i

|ŷi − yi| (50)

with ŷi and yi being the function value at time bin i of the actual respectively the predicted

values. The NCBE is symmetric with respect to its arguments. This error is used instead

of more standard error measures like for example the equivalent standard deviation for vi-

sualizing reasons, as the standard deviation happens to be extremely small for the occuring

differences. In the context of this thesis the actual values will mostly correspond to the

values of the exact solution and the predicted ones to the lower order solution values.
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Validity of the cumulant expansion approximation

3.4 Validity dependent on polarization and inter-atomic distance

The time evolution of transition operators in our considered quantum optical systems de-

pends amongst other parameters on the coupling strength between the dipoles Ωij(d, θ) as

well as the collective decay rates Γij(d, θ) which in turn depend on the atomic spacing d

and their polarization θ. We will quantify how different orders perform relative to the exact

solution, starting with the difference between exact and mean field solution for a system

of two atoms starting in the collective excited state without external driving when varying

spacing d and polarization θ, where θ = 0 is longitudinal and θ = π
2 transversal polarization.

Figure 9: NCBE for a non driven system initially in the collective excited state of two
atoms for simulations over a time span of Γ0 · t ∈ [0, 10] while varying inter-atomic spacing
d and polarization θ. The excited state population expectation value ⟨σ22⟩ is compared in
2nd and 1st order. It will be in theory averaged over all atoms, but due to the symmetry
⟨σ22

1 ⟩ = ⟨σ22
2 ⟩ holds in this particular case so we only have to compute the excited state

population of a single atom.

The deviations are not surprising at all. While in first order atoms are independent and

decay exponentially with Γ0, their coupling modifies their decay rate when considering cor-

relations between the atoms. It is observed, that the first order cumulant expansion or

classical solution differs more from the exact solution or in other words ”gets worse” the

stronger the coupling and collective decay rate is, i.e. the smaller d gets or the larger the

density. On another note the NCBE behaves like a superposition of π-periodic trigonomet-

ric functions, stemming from the trigonometric polarization dependence in the coupling and

collective decay rate functions [21].
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Validity of the cumulant expansion approximation

Apart of that we find improved approximation results for transverse polarization compared

to tangential polarization with more tolerance to the same error for about d ≈ 0.12λ0, since

the electric field in the former case couples weaker to the other dipole.

However the results change drastically when going back to a driven system.

3.5 Ω and Γ zero-crossings

Before doing so, we will explain the shape of figure 9 by plotting the collective coupling

constant Ωij(d, θ) and the collective decay rate Γij(d, θ). We will see that the error map is

in full agreement with the coupling map and that there would technically be one more dip

related to the collective decay rate too small to resolve.

The underlying idea is, that since higher order correlations in our equations of motion stem

from operator products arising from either the interaction hamiltonian or the dissipative

term in the corresponding Quantum-Langevin equation, they are all weighted by either a

coupling Ωij(d, θ) or a decay rate Γij(d, θ). If in an extreme case all of these quantities van-

ish simultaneously, only lower order correlations remain in our equations of motion, leading

to full agreement between the exact and the first order cumulant expanded solution. These

quantities however do not generally vanish simultaneously, so there will only be improve-

ment but no exact solution obtained, when cumulant expanding the equations of motion.

Hence it plays an important role in the estimation of the cumulant expansion performance,

we quantify where the coupling and decay rates defined in equation 21 are almost or equal

to zero for a system of two and a system of three atoms and we will refer to it as ”zero-

crossings”.

In driven systems error peaks will occur far beyond the first zero-crossing, leading to irrele-

vance of this error influential parameter, while in the non-driven case in figure 9 it basically

solely defines the error map. There we compare results in different orders and the error map

follows exactly Γ12(d, θ).

When going to larger systems, additional decay channels and couplings to next neighbours

arise, leading logically to more zero-crossings of higher order correlation terms due to the

zero-crossings of the parameters in smaller and smaller regimes as well. One can imagine,

that such a map like figure 12 will be almost completely dark for systems of length 5 already.

This further motivates the cumulant expansion for larger systems, as the error reducing ac-

tion of this effect increases with the number of coupling and dissipation terms.

Validity of the cumulant expansion approximation
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Figure 12: A heatmap showing all spots of the coupling and collective decay functions,
where they are close to zero, hinting, but not solely determining, parameter vectors, where
a cumulant expansion approach is valid. On the left are the zero-crossings for a system
of two dipoles and on the right for three dipoles, having additional zero-crossings for the
coupling between first and third atom and for the additional decay channel as well. Black:
Ω12, Brown: Ω13, Orange: Γ12, Skin color: Γ13. Dips arising from weaker components, like
e.g. Γ13, will contribute less to a cumulant expansion performance increase than e.g. Ω12.

Since the inter subsystem spacing d occurs inside of Ωij and Γij as argument in trigonomet-

ric functions and denominators, increasing system size while keeping density constant leads

to weaker contributions of associated coupling and decay rate as well as faster oscillations

and thus more frequent zero-crossings, simply due to the form of the functions.

3.6 Driven systems

When applying an external drive to a system with sub wavelength spaced atoms initially in

the collective ground state, the NCBE of operator dynamics in different orders, primarily

controlled by the hamiltonian, is determined by the counteraction between higher order and

lower order inducing terms, i.e. coupling and dissipation versus driving and free-field atom

term in our case. While the interaction term introduces higher order correlations, the chosen

driving term, resembling a laser drive, does not and thus a dominating driving term results

in improved lower order results and a dominating coupling term vice versa.

In figure 13 it is shown how the interaction between atoms only gets relevant at a certain

amount of dynamics happening. Something similar to power broadening appears, where

only enough power is necessary to force dynamics and hence observe these. Consequently

significant errors are only induced by interaction when pumping with sufficient strength.
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Validity of the cumulant expansion approximation

Figure 13: NCBE for the collective excited state population in 2nd and 1st order dependent
on d for different pumping strengths η, when pumping constantly over the whole simulation
duration. Subsystems are tangentially polarized and simulated for time spans Γ0 · t ∈ [0, 10].
Clearly the peaks shift to the left when increasing pumping strength.

Also stronger pumping obviously requires stronger coupling, i.e. smaller inter-atomic spac-

ing, to be dominated and thus the peaks shift towards smaller spacing with stronger pump-

ing.

Having strong coupling Ω >> η locks the system in the ground state again, making changes

to it require even stronger pumping and therefore a mean-field approach is feasible again,

but only since no or little dynamics will be observable at all.

This ultimately means, that the comparison between different order cumulant expansion

results can be utilized to sense for parameter regimes maintaining a balance between well

observable dynamics and the occurrence of quantum effects.

The same effect as terms with η arising from the driving hamiltonian Hdrive have terms

with ω stemming from the other lower order inducing term H0. Even in the case of a closed

system the time evolution of the excited state population of atom m σ̇22
m is dependent on

ω despite the commutator [H0, σ
22
m ] vanishing, since σ22 commutes with itself, because it

depends on the ladder operators via the driving term and these are in turn dependent on ω

and therefore σ̇22
m does.
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Validity of the cumulant expansion approximation

This can be trivially shown by solving the Heisenberg-equation using the terms of interest

for one jump operator and the other will be given by the complex conjugate.

σ̇21
m =

i

h̄
[H0 +Hdrive, σ

21
m ]

=
i

h̄
[
∑
j

(ωσ22
j + η(σ21

j + σ12
j )), σ21

m ]

=
i

h̄
(ωσ21

j δjm + [
∑
j

ησ12
j , σ21

m ])

=
i

h̄
δjm(ωσ21

j + η(σ11
j − σ22

j ))

=
i

h̄
δjm(ωσ21

j − ησz
j)

(51)

This consequently means σ22
m ≡ σ22

m (ω) and again larger values of ω result in a shift of the

peak to the left, i.e. towards stronger coupling.

In the case of σ̇21
m for two atoms ω would have a slightly lower impact on the peak shift than

η simply because the expectation value it weights is smaller.

3.6.1 Error peaks in higher orders

The effect causing the peaks in figure 13 not only occurs for the comparison to the solu-

tion under classical consideration, i.e. the cumulant expansion up to first order, but for

comparisons of arbitrary orders for arbitrary geometries, as this effect is based on general

correlations, as shown in figure 14 for a dipole chain of length 3.

We can also observe special behaviour at polarizations θm ≈ ±54.7◦+n ·180◦ with n ∈ Z for

the first time, being the magic angles. At these specific angles Ωij(d, θ) is zero thus resulting

in a smaller NCBE compared to other polarizations.

As a side note the magic angle does not occur for the non-driven case in figure 9 due to

the initial conditions. The excited state population dynamic exhibits no oscillations, which

are connected to the energy shift Ω12, and only decays described by a sum of exponentials

containing Γ0 and Γ12. Consequently it is not affected by the magic angle. Hints for this

behaviour will be given in section 4.1.
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Validity of the cumulant expansion approximation

The peak appears for the comparison of every order at the same parameters, only the errors

amplitude and the specific peak shape changes when varying the orders one considers or,

as we will see later on, when varying pump type or pump strength. Logically the error is

higher for higher order differences, as going down in orders means neglecting more and more

correlations, hence increasingly deviating from the exact solution.

(a)

(b)

Figure 14: Shown is the NCBE between simulation results of the average excited state
population for a chain of length 3 calculated in 2nd and 3rd order cumulant expansion in (a)
and 1st and 3rd in (b) under variation of d and θ. The system is initially in the collective
ground state and is driven with a constant pumping strength η = Γ0. Note the error
collapsing effect at the magic-angles(red dashed line). The white dots indicate parameter
tuples for which the underlying time evolutions are shown exemplary in figure 17.
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Validity of the cumulant expansion approximation

Figure 17: The time evolution corresponding to the marked white dots in figure 14 at θ = π
2

and d = 0.1 on the left and d = 0.2 on the right. One sees, that very small changes in the
systems density can provide huge impact on especially lower order correlations, changing
the first order solution from finding equilibrium fast to having heavy perturbations in the
case of a driven coupled ensemble.

3.6.2 Different pump functions

When looking at figure 13, but also figure 17, one probably noticed the sudden jumps at

random positions. These irregularities are non-trivially linked to not just the pumping

strength, but also the pumping type in a very unsystematic manner. Jumps happen more

often when comparing higher order solutions. The following plot shows the NCBE for six

different driving functions.

Figure 18: The NCBE for different inter-atomic spacings d when comparing average excited
state population results in 2nd and 1st order while pumping with a variety of driving func-
tions, as for example constant, gauss or linearly increasing pulses to show its impact on the
jumps and total error. Distance is as always given in units of the transition wavelength ω0.
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Validity of the cumulant expansion approximation

Here in figure 18 the pumping functions Pn(t) are normalized such, that
∫ 10

0
dtPn(t) = 1,

where 0 and 10 denote the starting and end point in time of our simulation, to assure com-

parability amongst the protocols, so they all drive the system with the same total energy.

P1(t) =
1

N
e−

(t−5)2

2

P2(t) =
1

N
(1− θ(t− 5))

P3(t) =
1

N
(5− 0.5t)

P4(t) =
t

N

P5(t) =
1

N
(1− cos(t))

P6(t) =
1

N

(52)

θ(t) denotes the Heaviside step function and N is a normalization constant.

When having normalized pump functions, former jumps disappear, so consequently jumps

are linked to the normalization of a pump function and thus its amplitude, while the tail to

the left of the peaks remains.

The key message of this plot however is that interestingly the errors amplitude is not just

dependent on the pumping strength, but on the pumping type as well! The centered gauss

pulse for example generates a nine times larger NCBE than the constant pulse at their peaks,

while inserting the same amount of energy.

Finite rectangular and gaussian pulses seem to be especially unfavoured when performing

cumulant expansions on correlation functions in driven systems.

To investigate how irregularities depend on the amount of energy inserted by the pump,

we normalize the centered gaussian pulse to different values. One does not only see the

already discussed shift towards smaller spacings with stronger pulses, but also that irreg-

ularities appear more often for larger energy transfers, characterized by jumps and dips.

In this case adding roughly three to the value we normalize to generates one additional

dip and the sudden jump to the left of the peaks shifts alongside the peak. The number

of dipoles in the considered system by the way also enhances irregularities and their amount.
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Validity of the cumulant expansion approximation

Figure 19: Plotted is the NCBE for two dipoles when varying their spacing, when they
start in the collective ground state and get driven by a gaussian pulse centered at Γ0 ·
t = 5. The gaussian pulse, encoded in the pump function P (t) in our hamiltonian, is
normalized to different values, which corresponds to different energy transfers. The graphs
are artificially scaled up such that their amplitudes are roughly equal to make differences
in irregularities visible, as weaker pulses would induce less dynamics and thus logically
lower absolute differences between different order solutions without any further value for
interpretations.

3.6.3 Dynamics around error maxima

An obvious next step is to analyze how the peak position is related to the main competitors,

being the coupling Ωij(d, θ) and the pumping strength η, and how system dynamics change

in its vicinity.

It was already mentioned in section 3.6, that one can use error maps in driven systems

to look for parameter regimes, where quantum effects play a dominant role while having

non-trivial and well observable system dynamics. Comparison between any orders can be

utilized, but it is beneficial to compare to the first order cumulant expansion results for the

largest deviations from the exact solution and hence error.

We will sweep through different driving powers and inter-atomic spacing to find said param-

eters and to plot maximum error curves.

We plotted the NCBE between different orders in figure 20 and found, that with a higher

difference in orders the curve becomes steeper, meaning that the required pump power for

generating the maximum increases significantly with increasing coupling strength.
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Validity of the cumulant expansion approximation

Figure 20: The NCBE between different orders cumulant expansion of the average upper
state population in a chain of length four with transverse polarization is shown depending
on pump strength and spacing, resembling the peak shift with increasing pump strength
towards larger couplings. From top to bottom it is the NCBE stemming from the comparison
between 2nd, 3rd and 4th to 1st order results.

Figure 21: A plot, in which the 2D-plots in figure 20 were scanned for the parameters yielding
the maximum error, i.e. the parameter tuples (d, η) yielding error peaks. For multiple η one
or more time steps during the simulation cause instabilities, in which case the last function
value arising from a stable solution is substituted, causing the graphs to have steps. For the
O(4/1)-case we see two jumps between maximum error branches.

Where maxima occurred, one notices that this maximum-curve, especially visible in the

case where exact and first order cumulant expanded solution are compared, can split into

multiple branches.
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Validity of the cumulant expansion approximation

The maximum error curve there shows two jumps between such branches in figure 21. Ergo

it is possible to have multiple parameter tuples, which fit the rough description of being

quantum mechanically and dynamically interesting and branches along stronger coupling

fade faster when decreasing the driving strength.

But what actually happens in terms of time evolution at and around the peaks? To reply

to this we plot the time evolution of the average excited state population expectation value

for four configurations.

To the left of the maximum peak, the strong coupling locks the system to the ground state

and prevents high population of the excited state, yielding low error capabilities. On both

left branches the excited state population converges similarly and is drastically higher than

in the first case and for d = 0.082λ0 we see something we will observe more often later

on, namely that with lower coupling of the quantum emitters, the excited state popula-

tion converges faster towards its equilibrium determined by drive and coupling, at least for

our considered systems. It is then more successfully approximated by a mean-field approach.

Figure 24: Shown is the NCBE when comparing 4th and 1st order solutions for ⟨σ22⟩(t)
dependent on d and θ just like in figure 20 with four marked spots at η = 4.24 and four
distances specified in the plot labels on the left in units of the transition wavelength λ0 and
exact solutions for the time evolution of ⟨σ22⟩ corresponding to these parameters on the
right, having transversely polarized atoms.

To sum the recent chapters up: the total error dynamics is determined by the competi-

tion between higher and lower order correlations as well as drops due to zero-crossings and

driving type and strength induced jumps, exhibiting interesting phase-like behaviour for the

performance of different orders of cumulant expansion.

All these considerations are generalizable to any hamiltonian and thus system. One just

needs to interchange the upcoming parameters.
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Validity of the cumulant expansion approximation

3.7 Validity dependent on atom number

As the cumulant expansion in the context of this thesis is primarily meant to give access

to information about the dynamics in very large systems, the system size is probably the

most important parameter to consider when estimating its performance. To do so again the

average upper state population in a chain of length N = 2 to 6 was simulated for an atomic

spacing of 0.1λ0 and a tangential polarization of all atoms, starting in the collective ground

state and constantly pumping with η = Γ0 until t = 5
Γ0

. This simulation was performed in

all orders up to the system size N and the NCBE was calculated between all of these orders.

The results are shown in table 1 below and the time evolutions, which are compared here,

are shown in figure 25.

Figure 25: Average upper state population of all atoms, given by 1
N

∑N
i σ22

i with N=6 the
number of atoms for the chain geometry in all six orders, showing significant improvement
only from the 4th order on. However 2nd and 3rd order already exhibit the characteristic
very slow decay compared to the purely exponential drop in 1st order.

Table 1: NCBE between different orders with NCBE(N,i) denoting the NCBE between exact
and i-th order cumulant expanded solution for the chain geometry.

N 6[10−2] 5[10−2] 4[10−2] 3[10−2] 2[10−2]
NCBE(N,N-1) 0.02069 0.03286 0.07847 0.26381 1.2151
NCBE(N,N-2) 0.02821 0.24155 0.78771 0.22751
NCBE(N,N-3) 2.41013 0.58069 1.37152
NCBE(N,N-4) 2.40548 0.74109
NCBE(N,N-5) 2.43819
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Validity of the cumulant expansion approximation

In the first row the NCBE between exact solution, which can be interpreted as cumulant

expansion up to Nth order, and solution in (N-1)th order is denoted by NCBE(N,N-1) and

similarly the NCBEs between all orders for chains with N = 2 to 6 are covered.

Another geometry of interest is the ring, where every atom behaves perfectly alike due to

its symmetry and thus the average dynamics of the average upper state population is given

by 1
N

∑N
i ⟨σ22

i ⟩ = ⟨σ22
1 ⟩ = ⟨σ22

2 ⟩ = ...

Figure 26: Shown is again the NCBE between all possible orders as in figure 25 but for
the ring geometry, showing proper approximated results from the 2nd order on already.
Note, that the upper state population in mean-field approximation interestingly converges
equilibrium significantly faster than any other order.

Table 2: NCBE between different orders for the ring geometry, following the notation from
table 1.

N 6[10−2] 5[10−2] 4[10−2] 3[10−2] 2[10−2]
NCBE(N,N-1) 0.0107 0.04724 0.04896 0.11938 2.40246
NCBE(N,N-2) 0.11974 0.06131 0.04911 0.33015
NCBE(N,N-3) 0.21093 0.52724 0.12507
NCBE(N,N-4) 0.49927 0.65213
NCBE(N,N-5) 1.31343

Although an improvement with increasing system size could have been expected for each

geometry, since under constant density every atom one would add to the system contributes

less and less to the interaction terms and therefore neglecting correlations between these

atoms should get more and more viable, there is sadly no pattern recognizable for either

geometry and the performance also does not generally improve with larger system sizes, as

demonstrated in figure 25 for the third order cumulant expansion for N = 6. It is just a

tendency.
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Validity of the cumulant expansion approximation

The discrepancy of the third order result from the exact solution in the chain-case may be

connected to findings of the university of Strathclyde, Glasgow [14]. It was shown, that odd

cumulants can have wrong convergence for N → ∞, consequently resulting in ever larger

deviations when increasing the system size for very similar models. Very well possible, that

a chain of length six in our model is sufficiently large already to observe this effect, but for

confirmation one would have to investigate more in its N → ∞ scaling.

However it is remarkable, that fourth and fifth order cumulant expansion results in the case

of the N = 6 - chain are almost indistinguishable from the exact solution by eye with ex-

ceptional NCBE’s of the order of 10−4. Overall though it turns out that compared to the

chain the dynamics of quantum emitters arranged in a ring structure suffer less from an

approximation via cumulant expansion.

As a side note the results improve for shorter and get insignificantly worse for longer sim-

ulation times. The former can be seen by eye already in both plots. However reducing

simulation times piece-meal and add up the subdivided simulations is not a valid approach,

as the simulation times have to be at least as long as the inverse decay rate of the most

subradiant state or its impact on the system dynamics is not captured. A simulation over a

time span of 1
Γ0

for example logically ignores anything subradiance related.

To sum it up using the fastest order to simulate without losing correlations between atoms,

the 2nd order, already displays promising NCBE’s of the order of 10−2. And remember,

this holds for a spacing of 0.1λ0, so for quite dense quantum systems, and since the approx-

imation improves almost continuously for larger spacings, a motivation for the cumulant

expansion used in any less dense system is given. It is particularly useful when solving

combinatorial problems with an easy to check solution with discrete outcome where a rough

solution is easy to correct such as the N-Queens problem for example.
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4 Analytical cumulant expansion in 1st and 2nd order

for two coupled nano-emitters

Analytical solutions have a variety of advantages over simulated ones.

For example they provide exact solutions without the approximations or discretizations

inherent in numerical simulations, while being more comprehensible and might even reveal

fundamental behaviours and dependencies that might be less apparent in numerical solutions

as well as can lead to generalized insights that can apply to a broader range of systems.

This being said, we seek in this chapter for the analytical solution of a simple undriven

two-dipole system, perform the cumulant expansion on it, generate an analytically derived

NCBE error map and talk about the usage of the comparison between any order with the

first order cumulants for investigations regarding the limits between classical and quantum

physics.

4.1 Analytic solutions for a two-dipole system

A good performance of the cumulant expansion relies on higher order correlation terms being

way smaller than their lower order expectation value counterparts, in best case negligible.

Typically higher order correlation terms are expected to have less influence, as coupling

decreases with distance.

The lower impact of higher order correlations and hence the difference between the orders

is demonstrated by solving a system consisting of two coupled two-level atoms analytically

for 1st and 2nd order cumulant expansion, having initially the first atom in the excited and

the second in the ground state.

The starting point is the modified Quantum Langevin equation without white noise for the

expectation value of an arbitrary operator O.

⟨Ȯ⟩ = i

h̄
⟨[H,O]⟩+

∑
ij

Γij⟨(σ+
j Oσ−

i − 1

2
{σ+

i σ
−
j , O})⟩ (53)

Using equation 53 for e.g. the excited state population of the first atom ⟨σ22
1 ⟩ leads to a

differential equation dependent on other expectation values, which have to be solved as well,

finally resulting in a closed system of four coupled differential equations:
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Analytical cumulant expansion in 1st and 2nd order for two coupled nano-emitters

Ȧ1(t) =
d

dt
⟨σ22

1 ⟩ = −iΩ12⟨σ21
1 σ12

2 ⟩+ iΩ21⟨σ12
1 σ21

2 ⟩

− Γ11⟨σ22
1 ⟩ − Γ12

2
⟨σ21

1 σ12
2 ⟩ − Γ21

2
⟨σ12

1 σ21
2 ⟩

Ḃ1(t) =
d

dt
⟨σ21

1 σ12
2 ⟩ = iΩ12⟨σ22

2 ⟩ − iΩ21⟨σ22
1 ⟩ − Γ11

2
⟨σ21

1 σ12
2 ⟩

+ Γ21(2⟨σ22
1 σ22

2 ⟩ − 1

2
⟨σ22

1 ⟩ − 1

2
⟨σ22

2 ⟩)− Γ22

2
⟨σ21

1 σ12
2 ⟩

Ȧ2(t) =
d

dt
⟨σ22

2 ⟩ = iΩ12⟨σ21
1 σ12

2 ⟩ − iΩ21⟨σ12
1 σ21

2 ⟩

− Γ12

2
⟨σ21

1 σ12
2 ⟩ − Γ21

2
⟨σ12

1 σ21
2 ⟩ − Γ22⟨σ22

2 ⟩

Ḃ2(t) =
d

dt
⟨σ22

1 σ22
2 ⟩ = −Γ11⟨σ22

1 σ22
2 ⟩ − Γ22⟨σ22

1 σ22
2 ⟩

(54)

Latin letters will generally denote complex functions of time f : C → C.

Technically it is also necessary to solve ⟨σ21
1 σ12

2 ⟩, but swapping the direction indices in

the jump operators around is trivially given by ⟨σ21
1 σ12

2 ⟩ = ⟨σ12
1 σ21

2 ⟩†, since the general

relation σij
k = (σji

k )† with i, j, k ∈ N holds, immediately observable when constructing the

corresponding e.o.m. This also means, that A1/2(t) are hermitian and thus real.

Further the equations can be simplified under consideration of the symmetries of the two-

atom-system by setting Γ11 = Γ22 = Γ0, Ω21 = Ω12 = Ω, Γ12 = Γ21 and renaming the

operator expectation values as shown in equation 54.

Ȧ1(t) = −Γ0A1(t) + iΩ(B†
1(t)−B1(t))−

Γ12

2
(B1(t) +B†

1(t))

Ḃ1(t) = −Γ0B1(t) + (−iΩ− Γ12

2
)A1(t) + (iΩ− Γ12

2
)A2(t)− 2Γ12B2(t)

Ȧ2(t) = −Γ0A2(t) + iΩ(B1(t)−B†
1(t))−

Γ12

2
(B1(t) +B†

1(t))

Ḃ2(t) = −2Γ0B2(t)

(55)

There seems to be no direct way of solving this equation, so the first step will be to prema-

turely cancel out B2(t) = 0 by transforming the equations such that


A∗

1(t)

A∗
2(t)

B∗
1(t)

B∗
2(t)

 =


1 0 1 0

0 1 1 0

0 1 1 0

0 0 0 0




A1(t)

A2(t)

B1(t)

B2(t)

 (56)

Doing so will neglect the crucial interaction part or in other words the effect of the real part

of B1(t) on A1(t) and A2(t), leading to a fully symmetric coupled differential equation and

it is valid since −Γ12B2(t) will only generate an additive term in the solution for B1(t).
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This step is related to a basis change from an individual to a collective basis.

This allows us to later on use a simplification, as we know already one part of A1/2(t) and

the imaginary part of B1(t), which is the same as the imaginary part of A∗
1/2(t), since A1(t)

and A2(t) are real functions A1/2(t) : R → R.

As B1(t) is a function with complex values and for a complex number α ∈ C applies α+α† =

2ℜ(α) and α− α† = 2iℑ(α), this also applies to the function itself.

Ȧ∗
1(t) = −Γ0A

∗
1(t)− 2iΩℑ(B∗

1(t))− Γ12ℜ(B∗
1(t))

Ḃ∗
1(t) = −Γ0B

∗
1(t) + (−iΩ− Γ12

2
)A∗

1(t) + (iΩ− Γ12

2
)A∗

2(t)

Ȧ∗
2(t) = −Γ0A

∗
2(t) + 2iΩℑ(B∗

1(t))− Γ12ℜ(B∗
1(t))

(57)

As a side note one equation is technically redundant. The symmetry between A1(t) and

B1(t) implies, that A∗
1(t) = B∗

1(t) as well as A∗
2(t) = (B∗

1)
†(t), yielding a trivially solvable

first order differential equation.

Ȧ∗
1(t) = −Γ0A

∗
1(t)− 2iΩℑ(A∗

1(t))− Γ12ℜ(A∗
1(t)) (58)

Thus the composite solutions considering the initial conditions read:

A∗
1(t) = e−Γ0t

(
1

2
e−2iΩt +

1

2
e−Γ12t

)
A∗

2(t) = e−Γ0t

(
−1

2
e−2iΩt +

1

2
e−Γ12t

)
ℑ(B∗

1(t)) = ℑ(B1(t)) = e−Γ0t

(
−1

2
sin(2Ωt)

) (59)

The next step is to find the real part of B1(t). The strategy here is to simplify equations

55 by modifying A
′

1(t) = eΓ0tA1(t) for all expectation values, since the prefactor e−Γ0t

occurs in all equations, yielding a set of coupled equations, which don’t depend on their

function themselves anymore, allowing to take the time derivative of the equation for B
′

1

and construct a second order differential equation by plugging in Ȧ
′

1(t) and Ȧ
′

2(t).

B̈
′

1(t) = (−iΩ− Γ12

2
)Ȧ

′

1(t) + (iΩ− Γ12

2
)Ȧ

′

2(t)− Γ12Ḃ
′

2(t)

= (−iΩ− Γ12

2
)[−iΩ(B

′

1(t)−B
′†
1 (t))− Γ12(B

′

1(t) +B
′†
1 (t))]

+ (iΩ− Γ12

2
)[iΩ(B

′

1(t)−B
′†
1 (t))− Γ12(B

′

1(t) +B
′†
1 (t))]− Γ12Ḃ

′

2(t)

= 2iΩ2 sin(2Ωt) + Γ2
12ℜ(B

′

1(t))− Γ12Ḃ
′

2(t)

(60)
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The imaginary part has been solved already and we are only interested in the real part by

now. Apart of that, luckily the equation for B2(t) is trivially solved by B
′

2(t) = e−Γ0t and

thus we obtain an easy inhomogeneous second order differential equation for the real part

of B
′

1(t).

ℜ(B̈
′

1(t))− Γ12ℜ(B
′

1(t)) = Γ12Γ0e
−Γ0t (61)

This can be solved by performing the sum of homogeneous and particular solution, using

the variation of constants method with the given initial conditions, leading to ℜ(B1(t)) after

back transformation and thus the final result for B1(t).

ℜ(B1(t)) = e−Γ0tℜ(B
′

1(t)) =
1

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

)
(62)

The final solutions for the coupled differential equations 55 are hence:

A1(t) = ⟨σ22
1 ⟩ = e−Γ0t

(
1

2
cos(2Ωt) +

1

2
e−Γ12t

)
− 1

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

)
A2(t) = ⟨σ22

2 ⟩ = e−Γ0t

(
−1

2
cos(2Ωt) +

1

2
e−Γ12t

)
− 1

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

)
B1(t) = ⟨σ21

1 σ12
2 ⟩ = i

2
e−Γ0tsin(−2Ωt) +

1

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

)
B2(t) = ⟨σ22

1 σ22
2 ⟩ = 0

(63)

These are the exact solutions, clearly showing the lower impact of the higher order corre-

lation term B1(t) on the overall dynamic compared to the single operator terms by simply

being smaller. B1(t) being negative also means, that A1(t) is less steep than a classical

counter part indicating subradiance, as we will see in a bit.

The fourth equation Ḃ2(t) = −2Γ0B2(t) also turns out to be in agreement with observations

by Laurin Ostermann stating, that the totally inverted state |e⟩ with all N atoms in the

excited state decays with a collective emission rate Γe =
∑N

i Γ0 = NΓ0, completely inde-

pendent on the geometry. In our case N = 2 and thus B2(t) = e−2Γ0t[13].

Noteworthy is the characteristic extremely slow decay for longer times and the decaying

oscillations of the upper state populations for first and second dipole, with a phase shift of

−π
2 , resembling the continuous photon exchange between the two dipoles under presence of

dissipation.
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Figure 27: Plot of the real part analytic solutions shown in equation 63, visualizing the
modifying effect of the second order term B1(t) on the systems dynamics. The chosen
parameters are Ω = 5.38, θ = π

2 , Γ0 = 1.0 and Γ12 = 0.95.

Now lets see how the e.o.m. look like after performing the first order cumulant expansion

on ⟨σ22
1 ⟩ = a1(t) using equation 43 and complete the set of equations by solving further

occuring expectation values again.

d

dt
⟨σ22

1 ⟩ = ȧ1(t) =− Γ0a1(t)− iΩ(b1(t)b2(t)− b†1(t)b
†
2(t))

− Γ12

2
(b1(t)b2(t) + b†1(t)b

†
2(t))

d

dt
⟨σ22

2 ⟩ = ȧ2(t) =− Γ0a2(t) + iΩ(b1(t)b2(t)− b†1(t)b
†
2(t))

− Γ12

2
(b1(t)b2(t) + b†1(t)b

†
2(t))

d

dt
⟨σ21

1 ⟩ = ḃ1(t) =(−Γ0 + iω)b1(t) + iΩ(b†2(t)− 2a1(t)b
†
2(t))

− Γ12

2
(b†2(t)− 2a1(t)b

†
2(t))

d

dt
⟨σ12

2 ⟩ = ḃ2(t) =(−Γ0

2
− iω)b2(t) + iΩ(b†1(t)− 2a2(t)b

†
1(t))

− Γ12

2
(b†1(t)− 2a2b

†
1(t))

(64)
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This still looks complicated on first sight, but since the prefactors of the expressions ai(t), bj(t)

with i, j ∈ 1, 2, stemming from the self repeating terms, differ already and the imaginary

part is not generally vanishing in ai(t), the only valid solution is extremely simple.

a1(t) = e−Γ0t

a2(t) = b1(t) = b2(t) = 0
(65)

This analytical solution substantiates the first order describing a system under consideration

classical, as it resembles a completely uncoupled system, where the first atom decays on its

own with the characteristic decay rate Γ0 while the second atom is not influenced at all and

will hence stay in the ground state forever, i.e. no photons are exchanged.

Figure 28: Plot of the analytic solutions for the operator expectation values appearing in the
coupled differential equation described in equation 54 as in figure 28 but after performing
the first order cumulant expansion to σ22

1 in equation 63, showing independent atoms.

Apart of the vanishing correlation between the excited state populations carrying B2(t) term

and thus the symmetry breaking between the e.o.m. for A1/2(t) and B1(t), the main reason

the system collapses mathematically to the classical solution is due to the expectation val-

ues of the first order jump operators immediately leading to unphysical behaviour, i.e. not

fulfilling the initial conditions without being trivial.
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Analytical cumulant expansion in 1st and 2nd order for two coupled nano-emitters

When going down in orders, only the dominating envelope, in our case e−Γ0t, remains, so

the general tendency in the non-driven dissipative system limt→∞⟨σ22
i (t)⟩ = 0 still holds,

respectively the boundary conditions have to match, but detailed dynamics mainly captured

by terms containing Ω and Γ12 are discarded. Ergo mean-field approaches are specifically

useful in the context of limit considerations.

The difference between the upper state population expectation value time derivatives in

neighbouring orders corresponds by the way to well known statistical measures. The dif-

ference between order one and two for example is a weighted sum of variances of ladder

operators and thus the error maps using the NCBE are linked to them as well.

˙⟨σ22
1 ⟩O2 − ˙⟨σ22

1 ⟩O1 = (iΩ− Γ12

2
)V(σ12

1 σ21
2 ) + (−iΩ− Γ12

2
)V(σ21

1 σ12
2 )

= Ωe−Γ0tsin(2Ωt)− Γ12

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

) (66)

V(X) denotes the variance of X.

First order terms logically vanish, there is no difference in the beginning and for t → ∞ and

it oscillates with the same frequency as operator expectation values 2Ω.

4.2 Analytic error

After having solved the problem of two dipoles exchanging photons and slowly decaying, we

can analyze the error quantity we used for simulations, i.e. the NCBE [50], in more detail to

gain information about which irregularities and behaviours in general stem from numerical

origins like rounding errors for example and which from the cumulant expansion and the

error measure itself.

To this end a heatmap in analogy to figure 9 is created but using the analytic results.

Following the definition of the NCBE we obtain a formula for this particular case.

NCBE =
1

N

N∑
n=1

|A1(tn)− a1(tn)|

=
1

N

N∑
n=1

∣∣∣∣∣e−Γ0tn

(
1

2
cos(2Ωtn) +

1

2
e−Γ12tn − 1

)

− 1

4

(
−e−(Γ0−Γ12)tn + e−2Γ0tn

)∣∣∣∣∣
(67)

tn ∈ [t1, tN ] denotes the time step at time bin n and N is the total amount of bins.

What we see are the outer lines roughly following the zero-crossing of Ω(θ, d) and special

behaviour at the magic angles. Multiple things are surprising though.
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Analytical cumulant expansion in 1st and 2nd order for two coupled nano-emitters

First of all we see irregular peaks everywhere in the very dense regime behind the outer lines,

occuring as yellow dots, symmetrically distributed with respect to the dipole polarizations

θ. This ultimately means, that the peaks also shown in simulation results, for example in

19, are no numerical errors, but one can show by increasing the time span, that the dots

and rings in the high density regime are flattened out and are caused to converge towards

the shape of a similar error heatmap for two excited dipoles as we saw in figure 9.

Figure 29: Analytic error map based on the NCBE between A1(t) and a1(t), i.e. 2nd and
1st order cumulant expansion of the expectation value of operator σ22

1 . The functions at
each point were evaluated over a time span of Γ0 · t ∈ [0, 10].

This is linked to oscillations at early times, whose frequency varies with Ω and will cause

significant changes due to the nature of the NCBE. So the rings denote excited state popula-

tion expectation values of constant frequency Ω(d, θ), which lead to high deviation between

different orders. One can flatten the rings by simulating over infinite times. Thus also the

peaks in former error maps would be smooth for an infinite amount of time steps.

Second the error at the magic angles does not exhibit a minimum, but a peak instead. At

the magic angles the coupling Ω vanishes and for a large range of d holds Γ12 ≈ Γ0, so

⟨σ22
1 ⟩(t) converges to 1

4 , since

lim
Ω→0,Γ12→Γ0

⟨σ22
1 ⟩(t) = lim

Ω→0,Γ12→Γ0

[
e−Γ0t

(
1

2
cos(2Ωt) +

1

2
e−Γ12t

)
−1

4

(
−e−(Γ0−Γ12)t + e−2Γ0t

)]
= e−Γ0t

(
1

2
+

1

2
e−Γ0

)
− 1

4

(
−e0 + e−Γ0t

)
(68)
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⇒ lim
t→∞

[
lim

Ω→0,Γ12→Γ0

⟨σ22
1 ⟩(t)

]
=

1

4
. (69)

So since the decay for long times to zero is turned off for these specific angles, the cumu-

lative error gets larger for long and consequently diverges for infinite times. It is therefore

dependent on the system and its initial conditions, if an error peaks or dips at the magic

angles. It is only certain, that a heavy deviation from its neighbouring environment on error

maps will happen.

4.3 Limits to quantum effects in quantum optical systems of iden-

tical dipole ensembles

We saw already in the section 3.6 about driven systems, that the cumulant expansion method

can be used for more than just approximations for quantum dynamics. Back then the

comparison between different orders gave the possibility to track necessary density relative

to a certain pumping strength to be able to detect dynamics.

Now, since the cumulant expansion up to first order correlation functions resembles a system

under consideration classical, a comparison between an arbitrary order with the first one

gives rise to investigations towards the correspondence principle and finding out more about

the exact limits of classical and quantum physics.

That quantum effects become significant at the sub-wavelength regime is not strictly true.

Comparisons between first and a different order cumulant expansion can be used to quantify

this unprecise statement.

The simple case of two transversely polarized dipoles from section 4.1 already exhibits, that

in fact differences between classical and quantum behaviour are not mainly captured by the

systems density, but by its coupling parameters, as σ22
1 (d = 0.5λ0, t) is already reasonably

insignificant due to the zero-crossing of the coupling at roughly this distance. In fact the

NCBE between second and first order solution for σ22
1 (t) is about 0.01 for d

λ0
= 0.5, 1.0 and

2.0.

Using mean field comparison to sense for limits however works only, if the first order results

really resemble a system under consideration classical. While this is largely correct for our

nano-photonic arrays up to now, we will show a counterexample in the next section.
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Analytical cumulant expansion in 1st and 2nd order for two coupled nano-emitters

Figure 30: The excited state population in the first atom simulated for the system in 4.1 for
different spacings d in units of the transition wavelength λ0 and thus coupling between the
dipoles. It shows insignificance of quantum effects even in the sub-wavelength regime, estab-
lishing, that the general assumption quantum effects get significant in the sub-wavelength
regime is not true when coupling parameters with zero-crossings before d = λ0 appear.
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5 Example of a ring with antenna unit

In recent sections we could demonstrate exceptional performance of cumulant expansions

on averages in typical quantum optical regimes, i.e. atom spacings of about 0.1λ0 − 1.0λ0,

exhibiting NCBE’s around 10−2 and below. Thus we can confidently deduce system prop-

erties using cumulant expansion up to first and second order for similar systems.

We will stick to analyzing state populations in driven systems of N − 1 identical coupled

quantum emitters, arranged in a ring structure in the sub-wavelength regime, so this array

of quantum emitters again exhibits sub- and superradiant behaviour.

Further we add an atom to the center of the ring, which acts as an absorptive impurity,

so the ring behaves like a lens onto the central atom, which will lead to a highly efficient

single photon antenna. Such a center can among other things enhance collective emission

comparable to an iron core inside a magnetic coil, strengthening the magnetic flux.

This is a design motivated by LHC-molecules as in ref. [4,12], where energy is transported

towards the impurity and then used by the reaction center. In this context we introduce a

third auxiliary energy level, the target state for our antenna, and decay from the second to

the third state inside an atom will correspond to local internal losses.

We use the same hamiltonian as in the preceding chapters resembling a constantly driven

system of coupled quantum emitters.

H =

N∑
i

ωσ22
i +

N∑
i ̸=j

Ωijσ
21
i σ12

j +

N∑
i

η(σ21
i + σ12

i ) (70)

Figure 31: A sketch of the antenna ring containing nine identical quantum emitters and
an impurity in the center. The atoms are equally distributed and have three energy levels.
Decay to the third level corresponds to a local internal loss of excitation.
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Example of a ring with antenna unit

5.1 State population dynamics in 1st and 2nd order

A very similar antenna model has already been studied by Cardoner, Holzinger, Ritsch

[12] and solved exactly with quite interesting results, as for example the appearance of an

extreme dark state exactly for rings with N = 9 ring atoms.

Here we will derive operator dynamics computationally more efficient under utilization of

the cumulant expansion with very little trade off. As a reminder the complexity of the

problem is then reduced from something scaling exponentially with N to something with a

polynomial scaling.

Figure 34: The time evolution of the expectation value of the excited state population in the
second and the third energy level respectively for the antenna unit and a representative single
ring element, as the ring is fully symmetric. We are in a very dense system with ring radius
R = 0.125λ0. The atoms polarization is circular, described by the vector µ⃗ = 1√

2
(1 − i 0)T .

We choose a small constant drive η = 0.1Γ0 - set to be as large as the transition rate between
the second and third level.

We observe, that the light from the pump laser charges up the system, causing rapid popu-

lation of the second energy level in both, ring and antenna. The average population starts

to oscillate around an equilibrium point due to drive and dissipation. The trigonometric

functions describing ring element and antenna are shifted by π. We can interpret this as

a light flux from the ring towards the antenna and as every ring element contributes, the

antenna obviously gains a higher average.

When considering the average excited state population in the third energy level, we observe

a seemingly linear charge up with a larger slope for the antenna unit compared to the ring

constituents. We model our internal losses to be constant decay with rate Γ23 = 0.1Γ0 and

thus a higher excited state population expectation value causes higher population of the

auxiliary state as well.

47



Example of a ring with antenna unit

We can further quantify the antennas efficiency by defining and plotting the gain as ratio

between the average state population in the center and the ring.

Figure 37: Plotted is the antenna gain, i.e. the ratio
⟨σ33

a ⟩
⟨σ33

r ⟩ with ⟨σ33
r ⟩ = 1

N−1

∑N−1
i ⟨σ33

i ⟩ for
two different polarizations. If the ratio is positive, more energy is deposited in the reaction
center than lost by the ring atoms and vice versa if it is negative. On the left for the
ensemble with circular polarization described in figure 34 and on the right with tangential
polarization with the center dipole pointing up the plane.

Clearly the simulation proves particular quality of the antennas storage ability, since the

gain is much larger than one and it also seems to gain population in the auxiliary state

faster, indicated by the early peak.

It is also favoured by an array of circular polarized dipoles compared to the case of tangen-

tially polarized dipoles.

All of this information was obtained on an average laptop in less than twenty seconds.

We can also do the same for a ring of size N = 18 with a central impurity in an outstanding

time of less than a minute of computation to find a gain way higher than just double the

gain of the N = 9-ring.

For comparison calculating the N = 18 - ring in 2nd order cumulant expansion takes about

15 minutes and the exact solution can only be obtained in a reasonable amount of time

by using high performance cluster computers. When using the cumulant expansion in the

latter one can therefore probably even handle simulations with multiple hundreds of atoms

involved.
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Example of a ring with antenna unit

Figure 38: Plotted is again the gain of the ring in the antenna
⟨σ33

a ⟩
⟨σ33

r ⟩ with the same aligned

polarization as described in figure 34, but for N = 18 ring atoms.

Figure 39: Second order results for the state population in ring and antenna in the second
and third energy level and the ring gain for circular and tangential polarization, as shown
for first order in figure 34 and 37.

The figures above show state populations and gain again, but this time simulated using

second order cumulant expanded results. First order results are insignificantly worse than

the second order ones with NCBE’s of about ∼ 10−4 between each other. In fact one can

without access to the exact solution not even know, if the second order results are better than

the first order ones. Regardless the difference is minimal and the mean-field approximation

succeeds in capturing physical results.
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Example of a ring with antenna unit

5.2 Enhanced dark state population using mean-field

Another example for successful use of a mean-field approach and an interesting observation

in agreement with findings of Raphael Holzinger is an enhanced dark state population when

partially irradiating the antenna ring. In section 5.1 all ten atoms were radiated with

energy h̄η with light perpendicular to the dipole plane. Following this scheme, mainly the

superradiant state |ΨS⟩ will be populated.

In our bio-inspired antenna however we want to mainly populate the subradiant state, i.e.

the dark state |ΨA⟩, since less lost excitations to the environment correspond to a higher

population of our target state σ33
N due to the constant rate Γ23 in our model.

To achieve that one has to cause an asymmetry in the radiation of the atoms, either by

changing the direction of the incoming light, so different atoms pick up different phases of

the electric field, or by radiating the ring partially. When choosing the latter and e.g. only

driving the first atom, i.e. the antenna, one can quantitatively show the enhancement of the

dark state population by considering transition amplitudes when driving from the collective

ground state |G⟩ = |g⟩⊗N to the super- and subradiant states. For simplicity we restrict

ourselves to uncoupled atoms and the single-excitation manifold.

Following reference 15 the bright and dark state with one excitation reads

|ΨS⟩ =
1√
N

(σ+
1 +

√
N − 1S+

2 )|G⟩

|ΨA⟩ =
1√
N

(
√
N − 1σ+

1 − S+
2 )|G⟩

(71)

where S+
2 = 1√

N−1

∑N
j=2 σ

+
j is the collective ladder operator for the N − 1 atoms in the

outer ring with its complex conjugate S−
2 . Using these and our antenna driving hamiltonian

HL = η(σ+
1 + σ−

1 ) we can calculate transition amplitudes.

⟨ΨS|HL|G⟩ = 1√
N

⟨G|(σ−
1 +

√
N − 1S−

2 )η(σ+
1 + σ−

1 )|G⟩

=
1√
N

[
⟨G|σ−

1 ησ
+
1 |G⟩+ ⟨G|σ−

2 ησ
+
1 |G⟩+ ...

]
=

1√
N

η

⟨ΨA|HL|G⟩ = 1√
N

⟨G|(
√
N − 1σ−

1 − S−
2 )η(σ+

1 + σ−
1 )|G⟩

=
1√
N

[
⟨G|

√
N − 1σ−

1 ησ
+
1 |G⟩+ ...

]
=

√
1− 1

N
η

(72)
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In order to transform these amplitudes to probabilities we simply have to square the results.

This means, that the probability to go into a dark state increases and to go into a bright

state decreases when increasing the total number of atoms N . In order to capture this

effect even a mean-field approach suffices, as our hamiltonian necessary for explanation of

this effect does not induce higher order operator products when observing time evolution of

individual operators.

This is also supported by a significantly higher antenna gain in simulations when including

coupling and multiple excitations again.

Figure 40: Time evolution of the antenna gain for different ring sizes, while keeping the
inter-atomic spacing constant using mean-field. The gain scales related to equation 72, i.e.
the gain increases with N quite significantly.

Figure 43: Time evolution of the population in the second and third energy level for the
case where only the antenna unit in the center of the ring is irradiated with η = 0.1Γ0 using
mean-field. The fraction between excited state population in the antenna and the ring is
distinctly larger than in the fully irradiated case, thus causing huge transfer into the target
state ⟨σ33

a ⟩.
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6 Conclusions

After recapping two-level systems, dipole-dipole interactions and treating the fundamental

equations, we introduced the concept of cumulants and the cumulant expansion as a gener-

alization of the mean field method.

We used it as an approximation method to express higher order through lower order expec-

tation values and discovered its validity and efficiency.

Focusing on inter-atomic distances of d ≈ 0.05λ0 − 1.0λ0 we found excellent performance

with NCBE’s of about 10−2 and less even for the lowest order in dense quantum systems of

different geometries.

We investigated how this approximation relies on geometric quantities and explored opera-

tor time evolution for different quantum optical emitter arrays.

Furthermore, we could show that it is not just useful for approximating dynamics but for

sensing for parameter regimes of interest. When comparing different orders, one can sense,

for example, in driven systems for the parameters that cause a fine balance between well

observable dynamics and the occurrence of quantum effects, which could certainly be put

to use in experiments.

In a similar shape one can utilize, that the first order cumulant expansion yields results un-

der consideration classical, giving access to comparisons between a classical and a quantum

treatment of problems.

To get more insight into the cumulant expansion, it was performed analytically. We found,

that at least for the case of the two-dipoles the cumulant orders behave similar to a taylor

series expansion. Thus the first order is the leading order determining the envelope and it

shares the same boundaries as any further expansion. Higher orders then modify the result

to take quantum effects, i.e. coupling between emitters causing super- and subradiant states,

into account. So one could reasonably argue, that ever higher orders will have lower impact

on the overall dynamics, which would further motivate its use for large operator product

averages.

Finally we concluded with a demonstration of the extreme computational efficiency on the

example of a ring with a central impurity, generating results for systems consisting of ten

atoms within seconds and we derived interesting quantum phenomena even when using mean

field.
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Conclusions

Overall the cumulant expansion as a generalized mean field method turned out to be a

highly efficient and in the checked parameter regimes valid approximation and does suffer

little from increasing system size.

However it is important to point out, that having significantly lower spacing between the

atoms than their transition wavelength will most likely cause straight up wrong results, so

it is definitely not suited e.g. when looking into microwave transitions in very dense atom

arrays.

Cumulants are relevant in so much more topics than just quantum optics like condensed

matter physics, fluid dynamics and even in finance and economy to capture price fluctuations

and volatility. Having a valid tool to approximate them, so they can be used in realistic

settings with our currently available computational power, is obviously of great use. I hope

i could contribute to showing the validity of this method, motivate its use and maybe even

expand the scope of use.
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