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Abstract

The fundamental theorem of arithmetic states that every integer larger than one can be
uniquely represented as a product of prime numbers. The procedure of finding these prime
numbers is called factorization. In contrast to multiplication the factorization problem is
challenging to solve. The reason is probably its NP-complete nature, which remains to
be proven. Especially, the factors of bi-primes, which can be represented as a product of
two primes, are very difficult to determine. Indeed, the most powerful supercomputer with
the most efficient classical factorization algorithm is incapable of solving the factorization
problem for sufficiently large bi-primes. This is due the fact that all known non-quantum
factorization algorithms possess exponential time-complexity-growth. Hence, the factoriza-
tion procedure is of great interest in the field of encryption. The factoring-based encryption
methods, referred to as RSA-cryptosystems, follow a simple but powerful procedure which
will be discussed in more detail later.

In this thesis we first consider the bi-prime factorization problem as an optimization prob-
lem in binary representation. Harvesting quantum mechanics, we exchange the classical
bits with qubits. This allows us to translate the classical optimization problem into a
quantum mechanical one, which provides a factorization Hamiltonian. We use quantum
annealing based on the adiabatic transfer from an initial Hamiltonian to the factorization
Hamiltonian to solve the problem. Measurements on the classical bits described by quan-
tum mechanical observables solve the bi-prime factorization problem and give the correct
factors, i.e., the correct prime numbers. This is true for certain adiabatic conditions. We
compute the correct factors for multiple different cases. We also find a bi-prime, where the
factors cannot be determined with high probability. Increasing the adiabatic evolution-
time of the quantum annealing process results in worse solutions.
The larger the bi-prime, the higher the count of qubits which manifests in an increase of
computation time. Approximating the full quantum dynamics by utilizing the Ehrenfest
theorem together with the so-called generalized cumulant expansion method can reduce the
computation time. The Ehrenfest theorem is used to obtain a system of non-autonomous
nonlinear and coupled ordinary differential equations (ODEs) in first order consisting of
averages with orders from one up to infinity. An average of order n is the average of the
product of n considered observables. The cumulant expansion is utilized to truncate the
Ehrenfest ODE system and simultaneously provides a way to discard certain or all quan-
tum dynamical correlations. The latter is the first-order cumulant expansion and known
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as mean-field expansion. The mean-field expansion is expected to produce a quantum ad-
vantage for the bi-prime factorization problem. Indeed, the mean-field approach, which we
call the first-order cumulant approach, reveals features, which can be understood as hints
for a possible quantum advantage. The mean-field expansion provides the correct solutions
for very small bi-primes as fast as the full quantum dynamics. However, increasing the
bi-primes shows that the mean-field expansion requires a longer adiabatic evolution-time
to acquire the correct factors. For the largest investigated bi-prime the correct solution
is never found using the first-order expansion but the results give a hint that using a
sufficiently long evolution-time should provide the correct factors. Since the generalized
cumulant expansion method is used, it is possible to allow certain quantum correlations.
This is achieved by increasing the expansion order. We assume that the higher-order ex-
pansions approach more and more the full quantum dynamics, which is reached at orders
equal to or higher the total bit-number of the bi-prime. The assumption turns out to be
false, since one receives divergent solutions for these expansion orders. The origins of the
divergences are not clear. We introduce a thorough discussion, where these divergences
possibly come from.





Zusammenfassung

Der Fundamentalsatz der Arithmetik besagt, dass jede natürliche Zahl größer Eins ein-
deutig als Produkt von Primzahlen geschrieben werden kann. Dieses Produkt wird als
Primfaktorzerlegung bezeichnet und wir nennen das Procedere, welches die korrekten
Primzahlen bestimmt, das Faktorisierungsverfahren. Im Gegensatz zur Multiplikation
wird das Faktorisieren von natürlicher Zahlen mit Anwachsen der Zahlengröße sehr her-
ausfordernd, da es wahrscheinlich NP-complete ist. Dies gilt noch zu beweisen. Besonders
schwierig ist das Faktorisieren von Fastprimzahlen zweiter Ordnung, auch Semiprimzahlen
genannt. Solch eine Zahl kann nur als Produkt von zwei Primzahlen repräsentiert werden.
Für genügend große Semiprimzahlen wird das Faktorisieren immens aufwendig, sodass die
Berechnung der Faktoren sogar für den besten klassischen Faktorisierungsalgorithmus auf
dem stärksten Supercomputer zeit-technisch impraktikabel ist. Dies ist der Fall, weil alle
klassischen Faktorisierungsalgorithmen eine exponentiell anwachsende Zeitkomplexität be-
sitzen. Daher ist das Semiprimzahlfaktorisierungsverfahren von großem Interesse für Inter-
netkryptographie. Die Verschlüsselungsmethoden werden RSA-Verschlüsselungen genannt
und basieren auf ein einfaches, aber sehr mächtiges, Verfahren, welches später detaillierter
besprochen wird.

In dieser Arbeit betrachten wir das Semiprimzahlfaktorisierungsproblem zunächst als Op-
timierungsproblem in Binärdarstellung und übersetzen dieses dann anschließend in die
Quantenmechanik. Dafür werden die klassische Bits mit Qubits ausgetauscht. Somit er-
halten wir von einem klassischen ein quantenmechanisches Optimierungsproblem, welches
durch einen Faktorisierungshamiltonian beschrieben wird. Wir setzten Quantum Anneal-
ing in Form eines adiabatischen Transfers von einem Anfangshamiltonian in den Fak-
torisierungshamiltonian um. Dies löst anschließend das Semiprimzahlfaktorisierungspro-
blem. Die klassischen Bits werden dann über Messungen entsprechender Observablen be-
stimmt. Diese Messungen liefern die korrekten Bits unter speziellen adiabatischen Vor-
aussetzungen. Die richtigen Faktoren werden für verschiedene Semiprimzahlen bestimmt.
Wir besprechen ebenfalls eine Semiprimzahl, wo die Lösungen nicht mit großer Wahrschein-
lichkeit bestimmt werden können und diese sogar abnimmt, wenn die adiabatischen Evo-
lutionszeit des Quantum-Annealing-Prozesses verlängert wird.
Es gilt, je größer die Semiprimzahl, desto größer die Zahl von Qubits. Das wirkt sich
enorm auf die Berechnungszeit aus. Wir approximieren die volle Quantendynamik, in-
dem das Ehrenfest Theorem zusammen mit der verallgemeinerten Kumulantenentwicklung
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umgesetzt wird. Dies reduziert die Berechnungszeit. Das Ehrenfest Theorem kann verwen-
det werden, um ein nicht-autonomes nichtlineares gekoppeltes gewöhnliches Differential-
gleichungssystem (GDGL System) erster Ordnung zu erhalten, wo die Variablen durch
Erwartungswerte von erster bis unendlicher Ordnung gegeben sind. Ein Erwartungswert
n-ter Ordnung bezeichnet den Erwartungswert des Produkts von n zu untersuchenden Ob-
servablen. Die Kumulantenentwicklung stellt eine Möglichkeit zur Verfügung, das Ehren-
fest System auf eine gewisse Größe zu reduzieren und somit bestimmte oder alle quan-
tendynamischen Korrelationen zu vernachlässigen. Das Letztere ist die Kumulantenen-
twicklung 1. Ordnung und wird als die Molekularfeldnäherung (mean-field approach)
bezeichnet. Diese Näherung wird verwendet, um die Existenz eines möglichen Quan-
tenvorteils nachzuweisen. In der Tat weisen die Lösungen der Molekularfeldnäherung
bestimmte Eigenschaften auf, welche auf einen Quantenvorteil für das Semiprimzahlen-
faktorisierungsproblem hindeuten. Die Molekularfeldlösungen geben die korrekten Fak-
toren für sehr kleine Semiprimzahlen gleich schnell wie die volle Quantendynamik, jedoch
benötigt das klassische Verfahren für größer werdenden Zahlen längere Evolutionszeiten.
Für die größte untersuchte Semiprimzahl wurden keine korrekten Faktoren gefunden. Aber
man findet den Hinweis, dass für hinreichend große Zeiten die richtige Lösung erlangt wer-
den sollte. Weil wir die verallgemeinerte Kumulantenentwicklung verwenden, können wir
mit steigender Ordnung mehr und mehr Quantenkorrelationen in die Lösung mit einfließen
lassen. Wir nehmen an, dass die Lösung bei einer Zunahme der Entwicklungsordnung sich
mehr und mehr der vollen Quantendynamik, welche für Entwicklungsordnungen größer gle-
ich der Anzahl der totalen Bit-Zahl oder höher entspricht, annähert. Es stellt sich heraus,
dass die Annahme nicht zutrifft, da für die meisten Semiprimzahlen divergierende Lösun-
gen erhalten werden. Der Ursprung der Divergenzen ist nicht klar. Daher führen wir eine
genaue Besprechung und Analyse der auftretenden Divergenzen durch.
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Chapter 1

Introduction

It is claimed, that Carl Friedrich Gauß once said [1]:

Mathematics is the queen of the sciences - and number theory is the queen of
mathematics.

Number theory, more commonly known under its older name arithmetic, is a branch of
pure mathematics. It is referred to as the study of integers and arithmetic functions.
The fundamental theorem of arithmetic states, that every positive integer larger than one
can be represented uniquely as a product of prime numbers [2, 3]. These integers are
called composite. It is well-known that multiplication of given factors to a product can be
done rather easily, whereas the factorization of a product into its factors is difficult. To
obtain the factors for small integers it is enough to use pencil and paper. We can utilize
classical factoring-algorithms, e.g. sieve of Eratosthenes, Fermat’s or Euler’s factorization
method, to determine the factors of large integers [4, 5, 6]. However, if the integers under
consideration are sufficiently large the known classical algorithms become exponentially
slower and we need quantum algorithms, e.g., Shor’s algorithm [7], introduced by Peter
Shor in 1994, to receive the factors with polynomial growth of time. Indeed, all known
classical factoring-algorithms possess an exponentially growing time complexity, whereas
Shor’s algorithm scales polynomially. Not all factorization problems are equally hard to
solve. A particularly difficult one is the bi-prime factorization. Bi-primes are composite
integers which can be represented by two prime numbers. In the case of the prime numbers
being large, randomly chosen and of similar size but not too close for Fermat’s factorization
method [5] to be efficient, the factorization of the product can be unfeasible for even the
fastest classical prime factoring algorithm executed on the fastest classical computer. This
knowledge provides a perfect starting point to develop factoring-based encryption methods
such as RSA key encryption or RSA digital signature [8]. RSA encryption methods are
widely utilized, e.g., Internet encryption such as SSH-RSA key encryption for secure access
of remote servers. The procedure is the following [9]. Two large prime numbers a and b
with large differences are chosen randomly and are kept secret. These numbers are then
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multiplied with each other which provides a bi-prime ω. This bi-prime ω is released as
part of the public key. Inserting ω into Carmichael’s totient function gives an integer
λ(ω) which is kept secret. An integer e is released as another part of the public key, where
1 < e < λ(ω) and gcd(e, λ(ω)) = 1. The numbers e, λ(ω) are called coprimes. Furthermore,
d is the modular multiplicative inverse, which is kept secrete as the private key exponent.
Quantum algorithms could render RSA encryption methods useless. Since the discovery
of Shor’s algorithm, physicists have tried to find more efficient quantum algorithms to
solve the bi-prime factorization problem [10]. Especially, quantum algorithms running
on an adiabatic quantum computer [11] are promising, because the principle of adiabatic
quantum computation could be more attainable in near future. Some examples are given
in [12, 13].

An interesting question is now, whether one can find a quantum advantage for the bi-prime
factorization problem using an annealing approach. Thus, one should derive a classical al-
gorithm based on a well-known quantum algorithm [12, 13] for the factorization problem
and compare the performance between the two algorithms. If the quantum algorithm pro-
vided the factors faster than the classical one, we would see a quantum advantage. For
an adiabatic quantum algorithm, the full quantum dynamics can be obtained by using
the time-dependent Schrödinger equation [14]. This can be transformed into a quantum
inspired classical algorithm by using mean-field methods or higher order cumulant expan-
sions. Therefore, we utilize Ehrenfest’s theorem [15] as well as the generalized cumulant
expansion method [16]. These two methods are implemented in a package called Quantum-
Cumulants.jl [17] in the programming language Julia. We utilize QuantumCumulants.jl
to derive the classical solutions for different bi-primes and undergo a thorough examina-
tion of the results. The solutions are the measurements of later defined projectors, thus,
the results of both classical and quantum algorithms are classical. However, for clarity,
we refer to the solution of the classical algorithm as the classical solution. To discard all
quantum mechanical effects, we expand the problem in the first-order of the generalized
cumulant expansion method. The full quantum dynamics is obtained by using the pack-
age QuantumOptics.jl [18]. Indeed, comparing the first-order cumulant expansion solution
with the results utilizing the full quantum dynamics provides hints for a possible quantum
advantage. Since we can increase the order of expansion, we can permit more and more
quantum correlations until we end up at the full quantum-dynamical description. The full
quantum dynamics is reached at the expansion order which is equal or larger the total
number of qubits. The results are, in a sense, investigations of a domain where quantum
effects appear. We acquire results, which need to be examined more carefully. Considering
bi-primes and adiabatic evolution-times, where correct factors are obtained by both the
classical and the quantum algorithm, the solutions evolve divergent oscillations. We found
two exceptions which we discuss in this thesis as well. We call the expectation values of
the projectors of a given solution divergent if the expectation values are much larger than
one or much smaller than zero. These are the boundaries that label the results as physical
reasonable.



Chapter 2

Theoretical Concepts

In this chapter we introduce all the fundamental theoretical concepts and frameworks which
are necessary to formulate the mathematical bi-prime factorization problem in classical as
well as full quantum-mechanical terms.

First, we introduce the concept of bi-primes. We continue by describing the bi-prime fac-
torization as an optimization problem. Afterwards, the optimization is being translated
into a quantum-mechanical framework. The properties of quantum mechanics are har-
nessed by describing the problem in terms of qubits. The adiabatic theorem provides a
full quantum dynamical description to receive the correct factors of a given bi-prime by
using Schrödinger’s equation. In chapter 3, we observe that for most of the investigated
bi-primes the factors are correct, but the bi-prime 95 reveals an unsual behavior that re-
sults in providing the wrong factors. We examine this case further by utilizing the entropy
of entanglement and the bipartite quantum mutual information. Afterwards, we intro-
duce the cumulants approach, which allows to obtain a classical approximation of the full
quantum dynamics. The formulation of the cumulants approach requires the discussion
of the Ehrenfest theorem, the generalized cumulant expansion method as well as a short
introduction to QuantumCumulants.jl.

For the entire discussion, we set ℏ = 1, where ℏ denotes the reduced Planck’s constant.

2.1 The Factorization Problem
The fundamental theorem of arithmetic states that every integer larger than 1 can be
factorized and represented uniquely by a product of two or more prime numbers [2, 3].
To acquire the respective prime numbers of a given integer, one needs special procedures
generally known as prime factorization methods. In the following subsection 2.1.1 we
introduce a mathematical formulation for describing bi-primes.
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2.1. THE FACTORIZATION PROBLEM 4

2.1.1 Bi-primes

We consider a bi-prime ω ∈ N with ω = ab, where a and b are prime numbers. The binary
representation [19] is a simple way to describe ω as a sum of n ∈ N terms of shape ωm2

m

where ωm ∈ {0, 1} and m ∈ {0, 1, · · · , n − 1}. The values ωm are called binary-digits or
bits. Here, n is the number of terms necessary to construct the value ω. We call n the
total number of bits. Let ω be a n-bit integer, then, the binary representation of ω has the
shape

ω =
n−1∑
m=0

ωm2
m. (2.1)

Thus, the integer ω can be written as ω = [ωn−1 · · ·ω1ω0] in a short way. The two primes
a and b possess total bit numbers k, l ∈ N, respectively, such that ω = ab. The binary
representations are given by

a =
k−1∑
i=0

ai2
i b =

l−1∑
j=0

bj2
j, (2.2)

where ai, bj ∈ {0, 1}. The bi-prime relation is given by

ω =
n−1∑
m=0

ωm2
m =

k−1∑
i=0

l−1∑
j=0

aibj2
i+j = ab. (2.3)

It is clear, that the total bit-number of ω is either n = k+ l or n = k+ l− 1 (This applies
if the largest bit-digit of ω fulfills ωn−1 = 0). The bit-digits ai, bj can be determined by
describing the problem as an optimization problem. This is done in subsection 2.1.2. For
the sake of convenience, we consider for further investigations only n = k+ l and k > n/2.
The partition (k, l = n− k) is usually not known in advance. For an arbitrary integer the
correct value of k lies somewhere in the domain [n/2 + 1, · · · , n] [12]. Since we want to
find a quantum advantage for the bi-prime factorization problem, we consider only primes,
where k and l are already known.

2.1.2 Factorization as an Optimization Problem

In mathematics, optimization is a tool for finding extrema of a specific function f(x) by
varying the entries xi of x = (x1, x2, · · · , xn) ∈ Rn, where x is referred to as an event and
xi are called decision variables [20]. We call f(x) a cost function if the wanted extrema are
minima. The optimization problem of f(x) is often considered as a decision problem. The
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event is then a function of difference between estimated and true values. Optimization
can be used, e.g., for parameter estimation. This allows to determine the correct bit-
configurations of a and b to solve the bi-prime factorization problem.

We start with the optimization problem by considering the integers in decimal represen-
tation. The natural equation ω = ab provides an ideal form for defining a cost function
for bi-prime factorization. Let fω be the cost function, where ω denotes the examined bi-
prime. We know, that ω− ab = ω− ba = 0. It would be convenient to find a cost function
fω, that possesses minima for the tuples (a, b) and (b, a). Fortunately, we can define:

fω : N2 → N
(x, y) 7→ (ω − xy)2. (2.4)

The square in Equation 2.4 ensures that fω(x, y) is non-negative. This is a convention of
cost functions [20]. The global minima can mathematically be derived by

∇fω
!
= 0 =⇒ (x, y) = (a, b) ∧ (x, y) = (b, a). (2.5)

Hence, fω vanishes at the global minima and fulfills exactly the condition above. The plot
in Figure 2.1 visualizes this for the example ω = 15.

1 2 3 4 5 6
x

1

2

3

4

5

6

y

f15(x, y)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 2.1: Determination of the minima of f15(x, y) = (15−xy)2 indirectly by visualizing√
f15(x, y). The red dots indicate the locations of the minima, i.e., (x, y) = (3, 5)∧(x, y) =

(5, 3), thus, the solutions for 15 = ab. The colormap shows
√
f15(x, y).
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The specific form of fω(x, y) is also known as quadratic loss function. The factorization
of bi-primes is now described as an optimization problem. Since our goal is to harness
the properties of quantum mechanics, we want to describe the optimization problem to
determine the correct factors a and b using qubits instead of classical bits. This requires the
classical cost function to be in terms of classical bits, which can be acquired by considering
the integers now in binary representation introduced in subsection 2.1.1. The bi-prime
relation reads

ω[ωn−1 · · ·ω1ω0] = a[ak−1 · · · a1a0] · b[bl−1 · · · a1b0], (2.6)

where k > n/2 > l. This implies that only the lower triangular part in Figure 2.1 is
important for the discussion in this thesis. The solution is always unique. We can write
Equation 2.4 in terms of the bit-digits of a and b:

fω(a0, a1, · · · , ak−1, b0, b1, · · · , bl−1) = (ω − a(a0, a1, · · · , ak−1) · b(b0, b1, · · · , bl−1))
2, (2.7)

where we have now n unknown bit-digits. Minimizing Equation 2.7 provides the correct
bit-configurations for a and b, hence, solves the bi-prime factorization problem. In sec-
tion 2.2 we show how the classical optimization problem can be translated into a quantum
theoretical model with quantum bits of information.
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2.2 Adiabatic Quantum Computation
It is clear, that the optimization problem in subsection 2.1.2 is non-trivial to solve. The
fundamental idea of solving the bi-prime factorization problem is to transform the cost
function in Equation 2.4 into a quantum mechanical object which can be solved by utilizing
the principle of adiabatic quantum computation (AQC) [11]. It provides a way to obtain
the, e.g. , ground state of a difficult problem Hamiltonian by using the adiabatic theorem
of quantum mechanics. The bi-prime factorization problem in quantum mechanics is a
quantum algorithm suited to run on an adiabatic quantum computer. A process of solving
an optimization problem by utilizing quantum mechanics is called quantum annealing. This
is introduced more precisely in subsection 2.2.2. First, we want to discuss the adiabatic
theorem in subsection 2.2.1.

2.2.1 Adiabatic Theorem

The statement of the adiabatic theorem was originally expressed by M. Born and V. Fock
in their general proof of the theorem [21] in 1928:

A physical system remains in its instantaneous eigenstate if a given perturbation
is acting on it slowly enough and if there is a gap between the eigenvalue and
the rest of the Hamiltonian’s spectrum.

Since the considered initial and target Hamiltonians are time-independent, we discuss the
adiabatic theorem only for this case. However, we keep in mind that a general description
exists [21]. Let Ĥp be the time-independent Hamiltonian of a physical system under con-
sideration, e.g., a system of n qubits on a 2n-dimensional Hilbert space H ∼= C2n , where the
eigenstates are unknown. We introduce another time-independent initial Hamiltonian Ĥ0

on the same Hilbert space H. The eigenenstates and eigenenergies of Ĥ0 are well-known.
We can define a time-dependent Hamiltonian Ĥ(t) with t ∈ [0, T ] of the shape

Ĥ(t) =

(
1− t

T

)
Ĥ0 +

(
t

T

)
Ĥp (2.8)

Ĥ(s) = (1− s) Ĥ0 + sĤp, s ≡ t

T
, s ∈ [0, 1] (2.9)

such that a smooth transition from the initial Hamiltonian Ĥ0 to the target Hamiltonian
Ĥp is possible. The parameter T denotes the evolution time. Let a time-dependent state
|ψ(t)⟩ ∈ H be given. The state |ψ(t)⟩ is governed by the time-dependent Schrödinger equa-
tion. We assume |ψ(0)⟩ = |GS0⟩, where |GS0⟩ denotes the ground state of Ĥ0. According
to the adiabatic theorem, the state fulfills |ψ(T )⟩ ≈ |GSp⟩ with |GSp⟩ being the ground
state of Ĥp if the following two conditions are valid. The overall evolution time T is large
enough, such that Ĥ(t) is slowly varying and if there exists a gap larger than 0 between
the ground state energy and the rest of the Hamiltonian’s spectrum. These two conditions
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for Ĥ(t) prevent the system to undergo a transition from the ground state to an excited
state. We want to discuss the statement of the adiabatic theorem more thoroughly.

A time-dependent eigenstate |ψ(t)⟩ of a Hamiltonian Ĥ(t), acting on a N -dimensional
Hilbert space, is subject to the following Schrödinger equation:

î
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (2.10)

where î denotes the imaginary unit. We define s = t/T and introduce the instantaneous
eigenstates and eigenvalues

Ĥ(s) |ϕi(s)⟩ = Ei(s) |ϕi(s)⟩ , (2.11)

where E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s). We assume |ψ(0)⟩ = |ϕ0(0)⟩, hence, |ψ(0)⟩ is
instantaneously in the ground state of Ĥ(0) and s is varying sufficiently slowly. Then, the
adiabatic theorem states if ∃∆E1(s) = |E1(s) − E0(s)| > 0,∀s ∈ [0, 1], the following is
valid [11]:

lim
T→∞

| ⟨ϕ0(s = 1)|ψ(T )⟩ | = 1. (2.12)

The state |ψ(t)⟩ remains very close to the instantaneous ground states of Ĥ(t). This allows
to derive the validity condition for arbitrary states [14]:

R(T ) =
maxs∈[0,1] |

measure of speed of rotation
of eigenvectors in H︷ ︸︸ ︷

⟨ϕj(s)| (∂s |ϕi(s)⟩) |
∆min

1

T
=

maxs∈[0,1] | ⟨ϕj(s)| ∂sĤ(s) |ϕi(s)⟩ |
∆2

min

1

T
≪ 1,

(2.13)

where ∆min = mins∈[0,1]
i ̸=j

|Ei(s) − Ej(s)| quantifies the minimal gap. In Equation 2.13 we

can see that R(T ) possesses an 1/T proportionality. This allows us to estimate the domain
for T where the adiabatic theorem is valid. The application is performed in chapter 3.
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2.2.2 Quantum Annealing

The optimization process of obtaining an ideal parameter result by utilizing quantum
physics in the form of an energy minimization problem is widely used and finds application
in many different areas such as natural sciences, economics or technologies [22, 23, 24].
This is called quantum annealing. Here, one prepares all (candidate) states usually in a
ground state consisting of states in superposition of equal weight. The state is then evolved
by using the adiabatic theorem (see subsection 2.2.1) which results in receiving the ground
state of a problem under consideration [11].

In our discussion we employ the classical bi-prime factoring optimization problem and
translate it into a quantum-mechanical framework. Therefore, we consider the cost function
fω in Equation 2.7 given by

fω(a0, a1, · · · , ak, b0, b1, · · · bl) = (ω − a(a0, a1, · · · , ak)b(b0, b1, · · · bl))2, (2.14)

where we assume a consists of k+1 and b of l+1 bits, which are denoted by a0, a1, · · · , ak
and b0, b1, · · · bl, respectively. These parameters need to be optimized in order to solve
the bi-prime factorization problem. The new cost function in Equation 2.14 provides the
starting point to construct a factorization target Hamiltonian Ĥp in terms of qubits. We
assume for the rest of the investigation in this thesis a0 = 1 = b0. This is a simplification
which restricts us to only considering odd bi-primes ω. Hence, the number of bits of a
and b reduces to k and l, respectively. We end up with n = k + l bit-digit parameters
a1, · · · , ak, b1, · · · bl, which we need to determine. We refer to those parameters as classical
dynamical bits. The n classical dynamical bits become n dynamical spin-1/2 objects and
are denoted as vectors |ai⟩i ∈ Hi and |bj⟩j+k ∈ Hj+k, where Hm

∼= C2, i ∈ {1, · · · , k},
j ∈ {1, · · · , l} and m ∈ {1, · · · , k, k + 1, · · · , k + l}. The basis vectors of Hm posses the
form

|0⟩m =

(
1
0

)
|1⟩m =

(
0
1

)
. (2.15)

We can construct an arbitrary state |ψ⟩

|ψ⟩ =
n⊗

m=1

(c0,m |0⟩m + c1,m |1⟩m) (2.16)

= |a1⟩1 ⊗ · · · ⊗ |ak⟩k ⊗ |b1⟩k+1 ⊗ · · · ⊗ |bl⟩k+l (2.17)

=
k⊗

i=1

|ai⟩i ⊗
l⊗

j=1

|bj⟩j+k , (2.18)
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where c0,m and c1,m are normalization weights. The representation of ω lives in a 2n-
dimensional Hilbert space H ∼= C2n . The bit-digits ai, bj can be evaluated by introducing
the projectors

P̂m,− = 12×2 ⊗ · · · ⊗ 12×2︸ ︷︷ ︸
m−1

⊗12×2 − σz
2

⊗ 12×2 ⊗ · · · ⊗ 12×2︸ ︷︷ ︸
n−m

(2.19)

=
1− σ

(m)
z

2
, (2.20)

where σ(m)
z is the z- Pauli matrix and 1 is the identity acting on the m-th sub-Hilbert

space Hm. The minus sign in P̂m,− indicates that the z- Pauli matrix is subtracted. In
quantum information theory the notation is given by P̂m,− = |1⟩m ⟨1| = P̂m,1 = Π̂m,1 and
P̂m,+ = |0⟩m ⟨0| = P̂m,0 = Π̂m,0 [25]. In this thesis we employ the ”±”- notation, because this
is more convenient in chapter 4. The operators P̂i,−, P̂j+k,− fulfill the eigenvalue equations

P̂i,− |ψ⟩ = ai |ψ⟩ , (2.21)

P̂j+k,− |ψ⟩ = bj |ψ⟩ . (2.22)

This allows to introduce the two prime numbers a and b, defined in Equation 2.2, as
observables â and b̂ in binary representation:

â = 1+
k∑

i=1

2iâi = 1+
k∑

i=1

2iP̂i,−, (2.23)

b̂ = 1+
l∑

j=1

2j b̂j = 1+
l∑

j=1

2jP̂k+j,−. (2.24)

The expectation values of the observable â is then the value of the classical a

⟨â⟩ = ⟨ψ| â |ψ⟩ = 1 +
k∑

i=1

2i ⟨ψ| âi |ψ⟩ = 1 +
k∑

i=1

2iai = a. (2.25)

The same applies for b̂. The above mathematical framework permits the transformation of
the cost function in Equation 2.14 to the target Hamiltonian Ĥp of the shape

Ĥp = Ω(ω1− âb̂)2 = (ω1− âb̂)2, (2.26)
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where we set the frequency Ω = 1/s. The final states should ideally be either in |0⟩m or
|1⟩m. Thus, it is useful to prepare the qubits in an simultaneous superposition of both basis
states (weighted equally) which is called the |+⟩m state. The |+⟩m = 1/

√
2(|0⟩m + |1⟩m)

can also be written as |0⟩m,x, where the x stands for the x-direction in the Bloch sphere
representation. Hence, |+⟩m is the unit vector in x-direction. The qubits are forced into
|0⟩m or |1⟩m during the transition process. Depending on the situation, all the qubits can
be prepared in the |+⟩m state if we consider an initial Hamiltonian, e.g., with an external
magnetic field aligned in x-direction, which is mathematically expressed by

Ĥ0 = −
n∑

m=1

ξmσ
(m)
x . (2.27)

Here, ξm = ξ ∈ R and σ(m)
x is the x-Pauli matrix. The setup is shown in Figure 2.2.

Figure 2.2: The physical realization of Ĥ(s). At s = 0, all the spins are aligned in x-
direction. During the evolution Ĥ(s = 0) → Ĥ(s = 1), the spins rearrange towards |0⟩m
or |1⟩m. The state |ψp,0⟩ stands for the ground state of Ĥp.

The ground state of the n×n matrix Ĥ0 can be determined straight forwardly and is given
by the non-entangled state

|+⟩ =
n⊗

m=1

|0⟩m + |1⟩m√
2

. (2.28)

We sketch the derivation of the ground state for n = 2. The Hamiltonian in matrix form
has the shape:
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Ĥ0 = ξ


0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0

 . (2.29)

The eigenvalues are {0,±2ξ}, where 0 possess the algebraic multiplicity µ = 2. The
eigenvector corresponding to the ground state energy E0 = −2ξ is determined by

ξ


0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0

 ·


ψ1

ψ2

ψ3

ψ4

 = −2ξ


ψ1

ψ2

ψ3

ψ4

 (2.30)

⇒ ψ2 + ψ3 = 2ψ1 = 2ψ4 ∧ ψ1 + ψ4 = 2ψ2 = 2ψ3, (2.31)

where ψ1, ψ2, ψ3, ψ4 ∈ R. The normalized eigenvector is given by |ψ0⟩ = 1/
√
22·(1, 1, 1, 1)T =

|+⟩1⊗|+⟩2. Using the theory in subsection 2.2.1, we consider Ĥ(s) with the initial Hamil-
tonian above Ĥ(0) = Ĥ0 and rewrite Equation 2.10 in terms of s:

î
d

ds
|ψ(s)⟩ = TĤ(s) |ψ(s)⟩ , (2.32)

where |ψ(0)⟩ = |+⟩. We can now plot the three lowest eigenenergies of the spectrum of
Ĥ(s) for ω = 15 as an example, where ξ = 10. This can be seen in Figure 2.3.

In Figure 2.3 it is obvious that one of the two requirements of the adiabatic theorem
is fulfilled. We have ∀s ∈ [0, 1] a non-zero gap between ground state and the rest of
the spectrum. Hence, the condition of validity in Equation 2.13 has the form R(T ) =
const/T ≪ 1. The second requirement can be estimated by plotting R(T ). This is done
in chapter 3.
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Figure 2.3: Left: Lowest three eigenenergies of Ĥ(s). The ground state energy reaches zero
at s = 1. This means that at s = 1 we achieve the energy minimization of Ĥp. Right: Gaps
between ground state energy and the rest of the spectrum. Since we have a non-zero gap
between ground state energy and the rest of the spectrum ∀s ∈ [0, 1], the first condition of
the adiabatic theorem is valid. The evolution time is given in time-units and the energy in
inverse time-units.



2.3. ENTROPY OF ENTANGLEMENT 14

2.3 Entropy of Entanglement
We can expand the examination of our full quantum description by introducing the Entropy
of Entanglement [26]. It is a measure to express the quantum entanglement between two
subsystems of a composite two-part quantum system. Let Ω be an entire quantum system,
where Ω = A ∪ B with A = {a1, · · · , ak} and B = {b1, · · · , bl}. The subsystems A and B
define the composite two-part quantum system. The entropy of entanglement of A or B is
then the von Neumann entropy of the reduced density matrix ρA or ρB, respectively.

Let IΩ = IA ∪ IB be the index set of the entire quantum system, where IA = {1, · · · , k}
and IB = {k+1, · · · , k+ l}. One could say that we consider a quantum system, where the
first k qubits correspond to the bit-digits of an integer a and the last l qubits correspond
to an integer b. For further investigation, we choose the subsystem A. We receive the
respective time-dependent density matrix ρA(t) as follows:

ρA(t) = TrB(ρ(t)), (2.33)

where ρ(t) denotes the density matrix of the entire system Ω. The von Neumann entan-
glement entropy SA(t) can be expressed by

SA(t) = −Tr(ρA(t)logρA(t)). (2.34)

For pure states, the von Neumann entropy is a measure for the entanglement between the
subsystem A and its complement Ā = B. One could compute the entropy of entanglement
for each qubit as well. We will not discuss this here, since this goes beyond the scope of
this thesis. To quantify the amount of quantum correlations between two finite subsystems
A and B we introduce a second measure called the bipartite quantum mutual information
(QMI) [27], defined as

I(t) = SA(t) + SB(t)− S(t). (2.35)

We use the two discussed measures for obtaining information for a more precise discussion
in chapter 3.
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2.4 Concepts Underlying The Cumulants Approach

A wave function |ψ(t)⟩ ∈ H of a time-dependent quantum-mechanical Hamiltonian Ĥ(t)
is governed by the Schrödinger equation [15]

î
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ . (2.36)

The time-dependence of |ψ(t)⟩ is subject to the unitary time-evolution operator

Û(t, t0) = exp

{
−î
∫ t

t0

dt′Ĥ(t′)

}
, U †U = 1 = UU † (2.37)

where t0 denotes the initial time. The solution of Equation 2.36 is given by

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ . (2.38)

We call this mathematical treatment of the wave function the Schrödinger picture [15].
In the Schrödinger picture all observables OS(t) acting on the Hilbert space H are time-
independent in a sense that no explicit time-dependence is induced by a time-evolution
operator. Such a time-independent operator could be, e.g., a Hamiltonian containing a
time-dependent potential V̂ (t). We choose a complete and an orthonormal set of wave
functions {|ψi(t)⟩} subject to Equation 2.36, which allows to write

|ψ(t)⟩ =
∑
i

ci |ψi(t)⟩ =
∑
i

ciÛ(t, t0) |ψi(t0)⟩ , (2.39)

where ci = ⟨ψi(t)|ψ(t)⟩. Furthermore, we introduce the density operator ρ(t), utilized in
section 2.3, as

ρ(t) = |ψ(t)⟩ ⟨ψ(t)| =
∑
i,j

cic
∗
j |ψi(t)⟩ ⟨ψj(t)| . (2.40)

Applying projective measurements [28] allows to write the density matrix as

ρ(t) =
∑
i

pi |ψi(t)⟩ ⟨ψi(t)| , (2.41)
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where for the probability applies pi = |ci|2. Now, we can express the measurement of an
arbitrary observable OS(t) in terms of the density matrix

⟨OS(t)⟩ =
∑
i

|ci|2 ⟨ψi(t)| OS(t) |ψi(t)⟩ = Tr(OS(t)ρ(t)) (2.42)

Equation 2.42 provides the opportunity to introduce the so-called Ehrenfest theorem, a key
equation in this thesis.

2.4.1 Ehrenfest Theorem

By applying the time derivative on Equation 2.42, we obtain the following expression:

d

dt
⟨OS(t)⟩ =

d

dt
Tr(OS(t)ρ(t)) = Tr

(
dOS(t)

dt
ρ(t)

)
+ Tr

(
OS(t)

dρ(t)

dt

)
(2.43)

=

〈
∂OS(t)

∂t

〉
+ Tr

(
OS(t)

dρ(t)

dt

)
. (2.44)

We continue by computing

dρ(t)

dt
=
∑
i

pi
d

dt
(|ψi(t)⟩ ⟨ψi(t)|) =

∑
i

pi

(
d |ψi(t)⟩
dt

⟨ψi(t)|+ |ψi(t)⟩
d ⟨ψi(t)|
dt

)
(2.45)

= −î
∑
i

pi

(
Ĥ(t) |ψi(t)⟩ ⟨ψi(t)| − |ψi(t)⟩ ⟨ψi(t)| Ĥ(t)

)
(2.46)

dρ(t)

dt
= −î[Ĥ(t), ρ(t)], (2.47)

where [·, ·] denotes the commutator. We inserted Equation 2.36 and its daggered coun-
terpart into Equation 2.46. Equation 2.47 is known as the von Neumann equation [29].
Plugging in the von Neumann equation into Equation 2.44 yields

d

dt
⟨OS(t)⟩ = −î · Tr

(
OS(t)[Ĥ(t), ρ(t)]

)
+

〈
∂OS(t)

∂t

〉
(2.48)

= −î · Tr
(
OS(t)Ĥ(t)ρ(t)−OS(t)ρ(t)Ĥ(t)

)
+

〈
∂OS(t)

∂t

〉
(2.49)

c.p.
= −î · Tr

(
[OS(t), Ĥ(t)]ρ(t)

)
+

〈
∂OS(t)

∂t

〉
(2.50)

d

dt
⟨OS(t)⟩ = î

〈
[Ĥ(t),OS(t)]

〉
+

〈
∂OS(t)

∂t

〉
, (2.51)
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where c.p. stands for the application of the trace’s cyclic property. The Equation 2.51 is
the mathematical formulation of the Ehrenfest theorem and supports the important corre-
spondence principle [14]. The correspondence principle connects the quantum mechanical
commutator structure with the Poissonian structure of classical mechanics:

{Â, B̂}︸ ︷︷ ︸
Poisson brackets

→ 1

î
[Â, B̂]︸ ︷︷ ︸

commutator

. (2.52)

Therefore, the Equation 2.47 is often referred to as the quantum Liouville equation. Equa-
tion 2.51 can also be expressed in the Heisenberg picture [15]:

⟨OS(t)⟩ = ⟨OS(t)⟩S = Tr(OS(t)ρ(t)) = Tr(OS(t)Û(t, t0)ρ(t0)Û
†(t, t0)) (2.53)

= Tr(Û †(t, t0)OS(t)Û(t, t0)︸ ︷︷ ︸
OH(t)

ρ(t0)) = ⟨OH(t)⟩H. (2.54)

The Ehrenfest equation then takes the form

d

dt
⟨OH(t)⟩H = î

〈
[ĤH(t),OH(t)]

〉
H
+

〈
∂OH(t)

∂t

〉
H

(2.55)

In the Heisenberg picture the wave functions are time-independent |ψ(t)⟩H = |ψ(t0)⟩S and
the operators obtain a time-dependence induced by a unitary evolution operator Û(t, t0).
In this thesis we only consider Equation 2.51. From Equation 2.25 we recognize, that we
can use Equation 2.51 to derive a system of non-autonomous nonlinear coupled ordinary
differential equations (ODEs) of first order which allows to determine the time-evolution
of the classical bit expectation values ai = ⟨âi⟩ and bj = ⟨b̂j⟩ directly. However, the term
î
〈
[Ĥ(t),OS(t)]

〉
makes the entire calculations more difficult. The completeness of the

Ehrenfest system requires higher-order averages which implies a fast growth of the system
size. We derive the mathematics and discuss the problem of completeness of the Ehrenfest
system more precisely in chapter 4. The full quantum dynamics can be computed by
solving Equation 2.36 for Ĥ(t) numerically and calculating the expectation value OS(t),
according to

⟨OS(t)⟩ = ⟨ψ(t)| OS(t) |ψ(t)⟩ . (2.56)

Quantum annealing is more conveniently performed by solving the Schrödinger equation,
however solving the Ehrenfest system can reduce computation time. The occurring aver-
ages in the Ehrenfest system can be expanded by utilizing the general cumulant expansion
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method. This allows to suspend certain quantum physical effects such as quantum entan-
glement. Discarding all quantum-dynamical correlations by expanding the full quantum
dynamics in first-order yields a classical solution. This solution is called the mean-field
approach. If the classical solution coincided with the quantum dynamical description for
an arbitrary n qubit system, it would rule out a quantum advantage for the bi-prime
factorization.

2.4.2 Generalized Cumulant Expansion Method

The generalized cumulant expansion method was introduced by R.Kubo in 1962 [16]. In
probability theory a random variable X is defined as a measurable function X : Ω → E,
where Ω denotes a sample space with possible outcomes and E is a measurable space. Here,
Ω needs to be subject to a measure-theoretic definition [30]. A joint cumulant of n ordered
random variables X1, X2, · · · , Xn is defined as the coefficient in the Maclaurin series of the
multivariate cumulant generating function [31] and it can be expressed combinatorially by
the following abstract equation [16, 17]:

⟨X1X2 · · ·Xn⟩c =
∑

p∈P (I)

(|p| − 1)!(−1)|p|−1
∏
B∈p

〈∏
i∈B

Xi

〉
. (2.57)

The joint cumulant is denoted by ⟨·⟩c. In the above we define the index set I = {1, 2, · · · , n}
with all possible partitions P (I). Then, p ∈ P (I) is a possible partition with B ∈ p its
elements. For simplicity, we choose n to be finite, but in general n could be infinite
as well. As an example we set n = 3. The index set is given by I = {1, 2, 3} with
partitions P (I) = {{1, 2, 3}, {1, {2, 3}}, {2, {1, 3}}, {3, {1, 2}}, {{1}, {2}, {3}}}. Utilizing
Equation 2.57 yields for the joint cumulant expression

⟨X1X2X3⟩c = ⟨X1X2X3⟩ − ⟨X1⟩⟨X2X3⟩ − ⟨X2⟩⟨X1X3⟩ − ⟨X3⟩⟨X1X2⟩+ 2⟨X1⟩⟨X2⟩⟨X3⟩
(2.58)

The joint cumulant can be thought of as a general measure of correlations of random
variables [17]. One recognizes, that it is an expansion of expectation values of correlations
up to order n, where the n-th order term, ⟨X1X2 · · ·Xn⟩, only appears once. The key
assumption of the generalized cumulant expansion method is Theorem 1 in [16]. It states
that the relation ⟨X1X2 · · ·Xn⟩c = 0 is assumed to hold if the random variablesX1X2 · · ·Xn

(or any subset of them) are statistically independent [16, 17]. Let the random variables
X1X2 · · ·Xn be chosen such that Theorem 1 holds, then, we can rearrange Equation 2.57.
This allows to obtain an expression of the n-th order average ⟨X1X2 · · ·Xn⟩ depending
only on averages of order n− 1 or less. It has the following combinatorial form [17]:
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⟨X1X2 · · ·Xn⟩ =
∑

p∈P (I)\I

(|p| − 1)!(−1)|p|
∏
B∈p

〈∏
i∈B

Xi

〉
. (2.59)

We receive an expression where the n-th-order average can be expressed as a sum of
products of averages of orders up to n − 1. This is a recursive formula. Returning to
the example with n = 3 we present the first- as well as second-order expansion of the
third-order average:

⟨X1X2X3⟩
2nd order

= ⟨X1⟩⟨X2X3⟩+ ⟨X2⟩⟨X1X3⟩+ ⟨X3⟩⟨X1X2⟩ − 2⟨X1⟩⟨X2⟩⟨X3⟩ (2.60)

⟨X1X2X3⟩
1st order
= ⟨X1⟩⟨X2⟩⟨X3⟩. (2.61)

We say that the order of a considered average can be determined by max
i∈B

|i|. Equation 2.59 is
another key equation in this thesis. Applied to Equation 2.51 one obtains an approximated
description of the bi-prime factorization problem.

The assumption ⟨X1X2 · · ·Xn⟩c(s) = 0 for all s ∈ [0, 1], which provides the recursive
formula in Equation 2.59, allows to define the following relation:

⟨X1X2 · · ·Xn⟩c(s) = ⟨X1X2 · · ·Xn⟩S(s)− ⟨X1X2 · · ·Xn⟩C,o(s), (2.62)

where ⟨X1X2 · · ·Xn⟩S(s) is a n-th order average obtained by Equation 2.56 and ⟨X1X2 · · ·Xn⟩C,o(s)
is given by Equation 2.59 up to an order o. This relation is used in section 6.4.

2.4.3 QuantumCumulants.jl

QuantumCumulants.jl [17, 32] is a Julia package, where the theory of section 2.4 is imple-
mented. A precise description provides [17]:

QuantumCumulants.jl is a package for the symbolic derivation of mean-field
equations for quantum mechanical operators in Julia. The equations are derived
using fundamental commutation relations of operators. When averaging these
equations they can be automatically expanded in terms of cumulants to an
arbitrary order (generalized mean-field approximation). This results in a closed
set of symbolic differential equations, which can also be solved numerically.

For the application of commutation relations QuantumCumulants.jl imple-
ments a simple noncommutative algebra, where any commutation relations are
applied immediately. All other symbolic simplification and rewriting is done
using the Symbolics.jl package.
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To obtain a numerical solution, equations derived with QuantumCumulants.jl
can be converted to ModelingToolkit.jl and subsequently solved with Differen-
tialEquations.jl.

QuantumCumulants.jl turns out to be very useful in the fields of quantum optics as well
as quantum information. We utilize QuantumCumulants.jl to our bi-prime factorization
problem. Analogously to the examples presented in [17], we assume that with increasing
expansion order the results become better and better until the solutions coincide with the
full quantum-dynamical description. We will see that the problem under consideration is
not as banal as this assumption. This is discussed in chapter 5 and in chapter 6.
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2.5 Jacobi Matrix of Ehrenfest ODE Systems
Let Jx(s0)f(x(s), s) be the Jacobi matrix [33] of a given nonlinear non autonomous ordinary
differential equation (ODE) system of first-order of the shape

dx(s)
ds

= f(x(s), s) (2.63)

with x(s) ∈ CN the system variables depending on s ∈ [0, 1] and x(s0) fixed at s0. Here,
N denotes the system size. The Jacobi matrix, often referred to as Jacobian, can be useful
to clarify if a the system under consideration becomes stiff. Therefore, one computes the
eigenvalues λi(s) ∈ Λ(s) = {λ1(s), · · · , λN(s)} of Jx(s)f(x(s), s) ∀s, where λi(s) ∈ C. The
Jacobian can be expressed mathematically by

Jx(s)f(x(s), s) =
[
∂f(x(s), s)
∂x1(s)

, · · · , ∂f(x(s), s)
∂xN(s)

]
=


∂f1(x(s),s)

∂x1(s)
· · · ∂f1(x(s),s)

∂xN (s)
... . . . ...

∂fN (x(s),s)
∂x1(s)

· · · ∂fN (x(s),s)
∂xN (s)

 . (2.64)

Considering now the Ehrenfest systems of the cumulants approach in this thesis, the system
size N depends on the expansion order and on the number of dynamical qubits. For a qubit
system with n dynamical qubits, we use the two transition operators σ(i)

± as well as the
projector P̂i,− acting on each sub-Hilbert space Hi with i ∈ {1, 2, · · · , n} instead of the com-
moly used Pauli operators σ(i)

x , σ
(i)
y , σ

(i)
z . In the case of an Ehrenfest system in arbitrary cu-

mulant expansion we define x(s) = (⟨σ(1)
+ ⟩, ⟨P̂1,−⟩, ⟨σ(1)

− ⟩, ⟨σ(2)
+ ⟩, · · · ⟨σ(1)

+ σ
(2)
+ ⟩, · · · , ⟨σ(1)

+ σ
(2)
+ σ

(3)
+ ⟩, · · · )(s).

The higher-order averages are necessary expressions to receive a complete ODE system (see
chapter 4). For example, the vector x(s) for n qubits in first-, second- and third-order ex-
pansion possesses the lengths:

N
1st

= 3n (2.65)

N
2nd

=
3n

2
(3n− 1) (2.66)

N
3rd

=
3n

2
(5− 6n+ 3n2). (2.67)

The derivation of the above formulas is given in section A.1. We use the Jacobian to
acquire more information about the stiffness of the considered systems in section 6.3.

In section 6.3, we also try to approximate the Jacobian from the Schrödinger expectation
values, i.e., the expectation values obtained by using the time-dependent state |ψ(s)⟩ gov-
erned by Equation 2.32. This helps to examine if the Jacobian eigenvalues stay finite for
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the full quantum expectation values. We start by recalling the expectation values of a
Schrödinger operator:

⟨Ôi(s)⟩ = ⟨Ôi⟩s = ⟨ψ(s)| Ôi |ψ(s)⟩ = ⟨ψ(s0)| Û †(s, s0)ÔiÛ(s, s0) |ψ(s0)⟩ , (2.68)

where Ôi are operator products consisting of σ(m)
± and P̂m,− with m ∈ {1, 2, · · · , n}. We

write the Ehrenfest system of size N as

d

ds
O(s) = f(O(s), s) = f(⟨Ô1⟩s, · · · , ⟨ÔN⟩s; s) (2.69)

and calculate the following partial differentiation

∂fi

∂⟨Ôj⟩s
≈ fi(⟨Ô1⟩s, · · · , ⟨Ôj⟩s+τ , · · · , ⟨ÔN⟩s; s)− fi(⟨Ô1⟩s, · · · , ⟨ÔN⟩s; s)

⟨Ôj⟩s+τ − ⟨Ôj⟩s
, (2.70)

where τ is small. Going one time-step s → s + τ changes the dynamical system f in each
component. By considering the s+τ time-step in the j-th component in the above formula
the partial derivative ∂fi(O(s), s)/∂⟨Ôj⟩s is approximated linearly. One receives, then, the
approximation of the Jacobian

JO(s)f(O(s), s) ≈


∂f1(O(s),s)

∂⟨Ô1⟩s
· · · ∂f1(O(s),s)

∂⟨ÔN ⟩s
... . . . ...

∂fN (O(s),s)

∂⟨Ô1⟩s
· · · ∂fN (O(s),s)

∂⟨ÔN ⟩s

 . (2.71)



Chapter 3

Quantum Dynamics

In this chapter we want to compute the full quantum dynamical solutions of the bi-prime
factorization problem. Therefore, we implement the theory of bi-prime factorization in
section 2.1 together with the quantum adiabatic computation in section 2.2 in Julia utilizing
a framework for open quantum dynamics called QuantumOptics.jl [18]. We investigate
different integers ω with qubit number n where we already know the partition (k, l). The
different ω are presented in Table 3.1.

Table 3.1: Qubit numbers n = k+ l for different ω = ab, where k and l denote the number
of bit digits of a and b, which are given in binary representation [·] as well.

ω n = k + l a b
15[1111] 3 = 2 + 1 5[101] 3[11]
21[10101] 3 = 2 + 1 7[111] 3[11]
33[100001] 4 = 3 + 1 11[1011] 3[11]
39[100111] 4 = 3 + 1 13[1101] 3[11]
51[110011] 5 = 4 + 1 17[10001] 3[11]
57[111001] 5 = 4 + 1 19[10011] 3[11]
93[1011101] 6 = 4 + 1 31[11111] 3[11]
95[1011111] 6 = 4 + 2 19[10011] 5[101]

265[100001001] 7 = 5 + 2 53[110101] 5[101]

The adiabatic theorem requires two conditions. For s ∈ [0, 1], a minimal energy gap
in the spectrum of the Hamiltonian ∆min > 0 must exist and the transition from initial
Hamiltonian Ĥ0 to the target Hamiltonian Ĥp has to be sufficiently slow, hence, T needs
to be large enough. The function R(T ) in Equation 2.13 is a mathematical representation
of these two conditions. Before we continue, we want to find a valid domain for T . Thus,
we plot Rω(T ) for ω ∈ {15, 21, 33, 39, 51, 57}. The results are depicted in Figure 3.1.

Figure 3.1 shows the typical behavior of Rω(T ) ∝ 1/T , which is encoded in Equation 2.13.
In general, the larger T , the smaller Rω(T ) where the relation Rω(T ) ≪ 1 is eventually

23
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Figure 3.1: Adiabaticity condition Rω(T ) as function of the evolution time T ∈ [0, 10] for
different bi-primes ω. We denote the corresponding integer as subscripts. The bi-primes
15 and 21 are three-qubit systems, 33 and 39 are four-qubit systems and 51 and 57 are
five-qubit systems.

fulfilled. All considered integers satisfy Rω(T ) < 1 at T = 10. However, it is not quite
clear if Rω(T ) ≪ 1 is fulfilled. For a more precise analysis we list the values Rω(10) in
Table 3.2.

Table 3.2: Values of Rω(T = 10), where ω denotes the corresponding bi-prime.

ω 15 21 33 39 51 57
Rω(10) 0.0392 0.0391 0.0581 0.1433 0.2936 0.1687

Increasing the number n of qubits in our system implies a more complicated target Hamil-
tonian Ĥp. Thus, we assume that T needs to be increased as well, such that a correct
solution can be obtained. Figure 3.1 and Table 3.2 prove this assumption to be correct,
however, it seems that Rω(T ) is also dependent on the internal structure of Ĥp, since
R15(10) > R21(10) and R51(10) > R57(10). The latter is satisfied for ∀T ∈ [0, 10]. For
large integer factorization the evolution time T can individually be estimated. This im-
plies a possibility to reduce computation time. There is still the question: when is the
relation Rω(T ) ≪ 1 fulfilled? One can introduce the overlap probabilities | ⟨GSp|ψ(s)⟩ |2
and | ⟨ϕ0(s)|ψ(s)⟩ |2 which are called fidelity and ”the remaining in the ground state” (re-
maining ground state population), respectively. Here, |ψ(s)⟩ is the state subject to the
Schrödinger equation in Equation 2.32, |ϕ0(s)⟩ denotes the instantaneous ground state of
Ĥ(s) and |GSp⟩ is the exact ground state of the Ĥp, hence, the solution of the bi-prime
problem. The fidelity gives the probability that |ψ(s)⟩ evolves into the correct final state
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|GSp⟩ and the other overlap shows the probability, that no transition to an excited state
has taken place during the evolution. We consider ω = 15 with T ∈ {0.1, 0.5, 1, 10} as an
example. The fidelity as well as the remaining in the ground state are shown in Figure 3.2.

Figure 3.2: The fidelity and the remaining in the ground state for the cases ω = 15 at
different evolution times T ∈ {0.1, 0.5, 1, 10}.

We can observe in Figure 3.2 that T = 0.1 yields a low probability to end up in the exact
state |GSp⟩, which implies a high probability of a transition to an excited state. This is
expected, because the numerical value in Figure 3.1 is given by R15(0.1) = 3.9197 > 1.
The adiabatic theorem is not valid for this case. If we consider T = 0.5 at s = 1 the fidelity
gives a probability above 70%, that the correct result is obtained. We see for T = 1 the
fidelity is over 90% and for T = 10 we get ≈ 100%. Therefore, the larger T , the higher
the fidelity. The remaining in the ground state shows that the overlap probability becomes
more and more constant for growing T . We assume for ω ∈ {15, 21, 33, 39, 51, 57} a value
T = 10 to be a good choice. In a further step the measurements of the projectors âi and
b̂j are determined, where ω = 15. The measurements are plotted in Figure 3.3.

Figure 3.3 reflects the discussion above. We can follow the entire measurements in de-
pendence of s, where we obtain the expectation values of the classical bits ai and bj by
utilizing ⟨ψ(s = 1)| âi |ψ(s = 1)⟩ = ai and ⟨ψ(s = 1)| b̂j |ψ(s = 1)⟩ = bj. At T = 0.1 the
adiabatic transition is too fast. The numerical values of a1, a2 and b1 lie somewhere be-
tween 0 and 1 at s = 1. If one executes the measurements multiple times, one will obtain
7[111] × 3[11] = 21, which is the wrong solution. Increasing the evolution time T results
in better and, eventually, correct solutions. The blue line approaches zero, whereas orange
and green go to one as can be observed in Figure 3.3. Thus, the quantum dynamics of the
factorization problem provides the correct result.

Now, we want to examine all the bi-primes in Table 3.1. We plot again the expectation
values of the projectors. The results for ω ∈ {15, 21, 33, 39, 51, 57} are visualized in Fig-
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Figure 3.3: Measurements of âi and b̂j for a given ω at T ∈ {0.1, 0.5, 1, 10}. The line
opacities correspond to different T . The colors indicate the evolution of a considered
measurement for a projector during 0 ≤ s ≤ 1, where one should receive either one or
zero for every measurement at s = 1. This can be understood by writing the bi-prime in
bit-digit representation of the form 15[1111] = ω = a · b = 5[101]× 3[11]. The black digits
are always one, since we assume a0 = 1 = b0. The colored ones are the expectation values
of the dynamical qubits at s = 1.

ure 3.4, for ω ∈ {93, 95} in Figure 3.5 and for ω = 265 in Figure 3.10. We choose T = 10
for all bi-primes ω ∈ {15, 21, 33, 39, 51, 57} , according to the discussion in Figure 3.1 and
Table 3.2. The overall evolution time T for larger bi-primes is estimated accordingly.

In Figure 3.4, we compute the factorization solutions for the three-, four- and five-qubit-
systems (except ω = 93). Obviously, the results provide correct bit-digits in all six cases.
However, we recognize that the larger systems partially contain small deviations from zero,
e.g. ⟨a3(s)⟩ > 0,∀s ∈ [0, 1] in Figure 3.4f. These are typical signs, that one uses a rather
fast adiabatic transition for the corresponding problem. The deviations can be resolved
by increasing T . This is visualized for ω = 265 in Figure 3.10. In Figure 3.5 we consider
systems consisting of five (93) and six (95) qubits. We increase T to T = 100, which should
be enough at first glance.
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(a) ω = 15[1111] = 5[101]× 3[11] (b) ω = 21[10101] = 7[111]× 3[11]

(c) ω = 33[100001] = 11[1011]× 3[11] (d) ω = 39[100111] = 13[1101]× 3[11]

(e) ω = 51[110011] = 17[10001]× 3[11] (f) ω = 57[111001] = 19[10011]× 3[11]

Figure 3.4: Quantum dynamics for ω ∈ {15, 21, 33, 39, 51, 57}. The colored bit-digits
indicate the respective expectation values. The bit-digit values are the numerical values at
the end of the evolution at s = 1. We set T = 10.
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(a) ω = 93[1011101] = 31[11111]× 3[11] (b) ω = 95[1011111] = 19[10011]× 5[101]

Figure 3.5: Expectation values of the observables âi and b̂j for ω ∈ {93, 95}. The adiabatic
transition with T = 100 for ω = 93 provides the correct factors a and b, whereas for ω = 95
at T = 100 the values ⟨a2⟩, ⟨a3⟩, ⟨b1⟩, ⟨b2⟩ are in the vicinity of 0.5 with s ∈ [0.2, 1].

In Figure 3.5, we recognize that ω = 95 is a special case for the bi-prime factorization
problem utilizing quantum annealing. To understand this, we plot the partial spectrum as
well as the gaps of Ĥ(s) with Ĥp = (951− âb̂)2 presented in Figure 3.6.

Figure 3.6: Energy spectrum En(s) up to the second excited energy as well as their energy
differences to the ground state energy ∆En(s). The red dot indicates the location of the
minimal gap ∆min ≈ 0.0022.

The minimal gap ∆min ≈ 0.0022 in Figure 3.6 is relatively small, which implies a large
prefactor in Equation 2.13. Therefore, the overall evolution-time T should be chosen much
larger. We can estimate the approximate value for T by using Equation 2.13. Assuming
the constant to be 1 we receive 1/∆2

min ≈ 1/0.00222 ≈ 206612 ≪ T . It turns out that the
cases with very small minimum gap need to be treated differently, which is discussed in
[12]. Since we do not want to go too deep into the discussion of ω = 95, we simply increase
T a little more and plot the fidelity and the remaining in ground state in Figure 3.7.
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Figure 3.7: Fidelity as well as the remaining in the ground state are presented for ω = 95
with T ∈ {10, 50, 100, 200}. For 10 ≪ T < 100 the fidelity is slightly above 50% where
increasing T results in a drop of the probability below 40%. The remaining in the ground
state drops rapidly for s > 0.1 and manifests plateaus in the same way as the fidelity.

In Figure 3.7, it is clear that with increasing T the fidelity shrinks. We set T = 500 and
plot the measurements of âi and b̂j presented in Figure 3.8.

Figure 3.8: Bit-digit expectation values for ω = 95 at T = 500. The acquired bit-digits
provide the factors a and b, which solve 93, i.e., ω = 95[1011111] ̸= 31[11111] × 3[011] =
93[1011101].

In the case of ω = 95 at T = 500 the measurements solve the factorization problem for
ω = 93. Vice versa, this is not the case, since Ĥ(s) for 93 has a much larger minimal gap.
The direct implication is given in Figure 3.5a. Since this is a quite interesting behavior, we
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want to investigate ω = 95 a little further. Therefore, we utilize the entropy of entanglement
(EE) and the bipartite quantum mutual information (QMI) from section 2.3. The results
are shown in Figure 3.9.

(a) EE (b) QMI

Figure 3.9: Entropy of entanglement (EE) as well as the bipartite quantum mutual in-
formation (QMI) for the case ω = 95 at T ∈ {100, 500} and s ∈ [0, 1]. For EE we plot
the von Neumann entropies SA(s) and SB(s) of the subsystems A = {â1, · · · , âk} and
B = {b̂1, · · · , b̂l}, respectively. The QMI is then computed by I(s) = SA(s)+SB(s)−S(s),
where S(s) is the von Neumann entropy of the entire system.

We observe in Figure 3.9 that for EE the entropies SA(s) and SB(s) have a plateau at
(0.4 < s < 1) in the vicinity of 0.7 at T = 100. The plateau values drop then to a
value around 0.24 when increasing to T = 500. Hence, the larger T , the smaller the
entropy of quantum entanglement. At the plateaus both entropies are nearly the same, i.e.
SA(s) ≈ SB(s) and imply S(s) ≈ 0. We have in this case a pure state. Here, the quantum
mutual information QMI is then given by I(s) ≈ SA(s) + SB(s) ≈ 2SA(s) ≈ 2SB(s). The
increase of T provides eventually the wrong solution, simultaneously the degree of quantum
entanglement decreases and the expectation values approach zero or one which implies a
more classical solution.

Now, we consider ω = 265, which is a seven-qubit-system. The measurement results of the
bit-digits are given in Figure 3.10.

Figure 3.10 provides the correct solution for the bi-prime problem ω = 265. The expecta-
tion values, which have their plateau slightly below one or slightly above zero, approach
more and more the respective values if the overall evolution-time is increased.

In this section, we have shown that the quantum mechanical energy minimization problem
discussed in chapter 2, indeed, provides correct solutions for the bi-prime factorization
problem. However, there are solutions, which are not unambiguous. These cases are
beyond the scope of this discussion. This chapter has shown that the quantum dynamics
obtained with the underlying quantum algorithm provides the correct factors, except ω =
95. We now want to compute the solutions by considering the expanded Ehrenfest systems.
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(a) T = 100 (b) T = 200

Figure 3.10: The factorization problem of ω = 265[100001001] = 53[110101] × 5[101].
Considering the problem at T = 100 shows that the plateaus for the bit-digits approaching
zero remain between 0.1 and 0.2. Analogously, ⟨a5⟩ possesses a plateau between 0.9 and 1.
Increasing to T = 200 shifts these plateaus towards the classical values zero and one.

Before using QuantumCumulants.jl, we mathematically derive the commutator relations
for ω = 15 in first- and second-order.



Chapter 4

Cumulants Approach to Bi-prime
Factorization

In this chapter we use the fundamental theoretical concepts from section 2.4 to compute
the commutator relations as well as explicitly derive the Ehrenfest system of ordinary
differential equations (ODEs) for the bi-prime factorization problem in first- as well as
second-order expansion. The obtained system can then be solved numerically. Since the
developers of Quantum Cumulants.jl claim that the package is in early stages of develop-
ment, this mathematical derivation serves as a comparison [17, 32].

4.1 First-Order Expansion

Let Ôm(t) be an operator acting on the m-th sub-Hilbert space Hm. According to Equa-
tion 2.51, the Ehrenfest theorem is given by

d

dt
⟨Ôm(t)⟩ = î

〈
[Ĥ(t), Ôm(t)]

〉
+

〈
∂Ôm(t)

∂t

〉
, (4.1)

where Ĥ(t) is the time-dependent Hamiltonian of the adiabatic transition from the initial
Hamiltonian Ĥ0 to the target Hamiltonian Ĥp in Equation 2.8. Hence, Ĥ(t) has the form

Ĥ(t) = −
n∑

i=1

ξσ(i)
x︸ ︷︷ ︸

=Ĥ0

(
1− t

T

)
+ (ω1− âb̂)2︸ ︷︷ ︸

=Ĥp

(
t

T

)
. (4.2)
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We assume Ôm(t) to be time-independent, i.e. Ôm, which results in the simplification of
the Ehrenfest theorem:

d

dt
⟨Ôm(t)⟩ = î

〈
[Ĥ(t), Ôm]

〉
. (4.3)

One continues by simplifying the commutator expression in the above equation. Since we
only consider odd ω we know that the first bit digits of â and b̂ will always be equal to 1,
where â has k + 1 bit digits and b̂ possesses l + 1 bits. From subsection 2.2.2 the system
has n = k + l dynamical qubits. The commutator can be written as

[Ĥ(t), Ôm] = −
n∑

i=1

ξ[σ(i)
x , Ôm]

(
1− t

T

)
+ [(ω1− âb̂)2, Ôm]

(
t

T

)
. (4.4)

We know from subsection 2.4.2, that expectation values of multiple observables become
the product of expectation values of each observable. Hence, the construction of the ODE
system requires Ôm only to be an expression consisting of Pauli matrices, such that the
derived ODE system is complete. QuantumCumulants.jl uses for the derivation, by default,
the transition operators σ± as well as the projector P̂−, i.e., we define Ôm as an element
of the following set:

Ôm ∈
n⋃

r=1

{σ(r)
+ , σ

(r)
− , P̂r,−} =

k⋃
i=1

{σ(i)
+ , σ

(i)
− , P̂i,−} ∪

l⋃
j=1

{σ(j+k)
+ , σ

(j+k)
− , P̂j+k,−} = A ∪B.

(4.5)

The set includes then all necessary operators for a complete system in first-order cumulant
expansion. This approach is equivalent to the one, which considers Pauli-matrices for the
c-number system. The Pauli-matrices can be written by

σ
(i)
± =

1

2

(
σ(i)
x ± îσ(i)

y

)
= (σ

(i)
∓ )†

⇒ σ(i)
x = σ

(i)
+ + σ

(i)
− , (4.6)

⇒ σ(i)
y = −î(σ(i)

+ − σ
(i)
− ).

Equation 4.4 then takes the form

[Ĥ(t), Ôm] = −
n∑

i=1

ξ[σ
(i)
+ + σ

(i)
− , Ôm]

(
1− t

T

)
+ [(ω1− âb̂)2, Ôm]

(
t

T

)
= −

n∑
i=1

ξ([σ
(i)
+ , Ôm] + [σ

(i)
− , Ôm])

(
1− t

T

)
+ [(ω1− âb̂)2, Ôm]

(
t

T

)
. (4.7)
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We continue by computing the following commutator relations:

[σ
(i)
+ , Ôm] = δi,m


0, , Ôm = σ

(m)
+

(1− 2P̂i,−), , Ôm = σ
(m)
−

σ
(i)
+ , Ôm = P̂m,−

(4.8)

[σ
(i)
− , Ôm] = δi,m


−(1− 2P̂i,−), , Ôm = σ

(m)
+

0, , Ôm = σ
(m)
−

−σ(i)
− , Ôm = P̂m,−

(4.9)

Furthermore, one writes the commutator

[(ω1− âb̂)2, Ôm] = −2ω[âb̂, Ôm] + [â2b̂2, Ôm], (4.10)

where the property [â, b̂] = 0 implies (âb̂)2 = âb̂âb̂ = â2b̂2. Since only the dynamical qubits
are being considered, we use the definition of â and b̂ from Equation 2.23 and Equation 2.24,
respectively. The observables possess the shape:

â = 1+
k∑

i=1

2iP̂i,−, (4.11)

b̂ = 1+
l∑

j=1

2jP̂k+j,−. (4.12)

The squared expressions are given by

â2 = 1+ 2
k∑

i=1

2iP̂i,− +
k∑

i,i′=1

2i+i′P̂i,−P̂i′,−

P̂ 2
i,−=P̂i,−
↪→ = 1+ 2

k∑
i=1

2iP̂i,− +
k∑

i=1

22iP̂i,− +
k∑

i,i′=1
i ̸=i′

2i+i′P̂i,−P̂i′,−

= 1+
k∑

i=1

2i+1(1 + 2i−1)P̂i,− +
k∑

i,i′=1
i ̸=i′

2i+i′P̂i,−P̂i′,−. (4.13)
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A similar equation can be determined for b̂2:

b̂2 = 1+
l∑

j=1

2j+1(1 + 2j−1)P̂j+k,− +
l∑

j,j′=1
j ̸=j′

2j+j′P̂j+k,−P̂j′+k,−. (4.14)

We return to Equation 4.10 and notice that the operator Ôm can either commute with
â or b̂. This requires the case distinctions utilizing the index sets IA = {1, · · · , k} and
IB = {k + 1, · · · , k + l}. Let m ∈ IA, hence, [b̂, Ôm] = 0. This assumption yields

[(ω1− âb̂)2, Ôm] = −2ω[â, Ôm]b̂+ [â2, Ôm]b̂
2

= −2ω
k∑

i=1

2i[P̂i,−, Ôm]b̂+
k∑

i=1

2i+1(1 + 2i−1)[P̂i,−, Ôm]b̂
2

+
k∑

i,i′=1
i ̸=i′

2i+i′ [P̂i,−P̂i′,−, Ôm]︸ ︷︷ ︸
=P̂i,−[P̂i′,−,Ôm]+[P̂i,−,Ôm]P̂i′,−

b̂2

= −2ω
k∑

i=1

2i[P̂i,−, Ôm]b̂+
k∑

i=1

2i+1(1 + 2i−1)[P̂i,−, Ôm]b̂
2

+ 2
k∑

i,i′=1
i ̸=i′

2i+i′ [P̂i,−, Ôm]P̂i′,−b̂
2

[(ω1− âb̂)2, Ôm] = −2m+1ω[P̂m,−, Ôm]b̂+ 2m+1(1 + 2m−1)[P̂m,−, Ôm]b̂
2

+ 2m+1[P̂m,−, Ôm]
k∑

i=1
i ̸=m

2iP̂i,−b̂
2. (4.15)

A similar expression can be acquired for m ∈ IB:

[(ω1− âb̂)2, Ôm] = −2m−k+1ωâ[P̂m,−, Ôm] + 2m−k+1(1 + 2m−k−1)â2[P̂m,−, Ôm]

+ 2m−k+1â2[P̂m,−, Ôm]
l∑

j=1
j ̸=m−k

2jP̂j+k,−, (4.16)

where the commutator [P̂m,−, Ôm] leads to a three-case distinction:
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[P̂m,−, Ôm] =


−σ(m)

+ , Ôm = σ
(m)
+

0, Ôm = P̂m,−

σ
(m)
− , Ôm = σ

(m)
− .

(4.17)

Assuming ⟨1⟩ = 1 and let m ∈ IA. Then, the Ehrenfest system of ODEs for Ôm are given
by

d

dt
⟨Ôm⟩ = −îξ(⟨[σ(m)

+ , Ôm]⟩+ ⟨[σ(m)
− , Ôm]⟩)

(
1− t

T

)
− î2m+1

(
ω⟨[P̂m,−, Ôm]b̂⟩ − (1 + 2m−1)⟨[P̂m,−, Ôm]b̂

2⟩

−
k∑

i=1
i ̸=m

2i⟨[P̂m,−, Ôm]P̂i,−b̂
2⟩
)( t

T

)
. (4.18)

Furthermore, we know that Ôm ∈ A which provides

d

dt
⟨σ(m)

± ⟩ = ±îξ(1− 2⟨P̂m,−⟩)
(
1− t

T

)
± î2m+1

(
ω⟨σ(m)

± b̂⟩ − (1 + 2m−1)⟨σ(m)
± b̂2⟩ −

k∑
i=1
i ̸=m

2i⟨σ(m)
± P̂i,−b̂

2⟩
)( t

T

)
(4.19)

d

dt
⟨P̂m,−⟩ = −îξ(⟨σ(m)

+ ⟩ − ⟨σ(m)
− ⟩)

(
1− t

T

)
. (4.20)

Analogously for m ∈ IB:

d

dt
⟨σ(m)

± ⟩ = ±îξ(1− 2⟨P̂m,−⟩)
(
1− t

T

)
± î2m−k+1

(
ω⟨âσ(m)

± ⟩ − (1 + 2m−k−1)⟨â2σ(m)
± ⟩ −

l∑
i=1

j ̸=m−k

2l⟨â2σ(m)
± P̂j+k,−⟩

)( t

T

)
(4.21)

d

dt
⟨P̂m,−⟩ = −îξ(⟨σ(m)

+ ⟩ − ⟨σ(m)
− ⟩)

(
1− t

T

)
. (4.22)
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We present now the procedure of the cumulants approach in first-order expansion. There-
fore, we return to m ∈ IA and consider Equation 4.19. All averages consist of sums of
sub-averages, i.e. averages which contain the fundamental operators σ± and P̂−. In the
cumulant-approach all these sub-averages with order higher than one are expanded by
utilizing Equation 2.59. The sub-averages can be identified as

⟨σ±b̂⟩ = ⟨σ±⟩+
l∑

j=1

2j⟨σ±P̂j+k,−⟩ (4.23)

⟨σ±b̂2⟩ = ⟨σ±⟩+
l∑

j=1

2j+1(1− 2j−1)⟨σ±P̂j+k,−⟩+
l∑

j,j′=1
j ̸=j′

2j+j′⟨σ±P̂j+k,−P̂j′+k,−⟩ (4.24)

⟨σ±P̂i,−b̂
2⟩ = ⟨σ±P̂i,−⟩+

l∑
j=1

2j+1(1− 2j−1)⟨σ±P̂i,−P̂j+k,−⟩+
l∑

j,j′=1
j ̸=j′

2j+j′⟨σ±P̂i,−P̂j+k,−P̂j′+k,−⟩

(4.25)

The first-order expansion of the sub-averages in Equation 4.23, Equation 4.24 and Equa-
tion 4.25 with order > 1 yields

⟨σ±P̂j+k,−⟩ = ⟨σ±⟩⟨P̂j+k,−⟩ (4.26)

⟨σ±P̂j+k,−P̂j′+k,−⟩ = ⟨σ±⟩⟨P̂j+k,−⟩⟨P̂j′+k,−⟩ (4.27)

⟨σ±P̂i,−P̂j+k,−P̂j′+k,−⟩ = ⟨σ±⟩⟨P̂i,−⟩⟨P̂j+k,−⟩⟨P̂j′+k,−⟩. (4.28)

We call this procedure the mean-field approach. The mean-field approach is a purely
classical solution, since all quantum mechanical correlations are discarded. Inserting all
approximate expressions Equation 4.26-Equation 4.28 into Equation 4.23-Equation 4.25,
keeping an eye on the subscripts, and plugging the resulting equations further into Equa-
tion 4.19 and Equation 4.20, yields a system of coupled nonlinear c-number ODEs. The
system has 3 · n equations and can be evaluated by, e.g., Julia or Mathematica.
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4.2 Second-Order Expansion
The Ehrenfest system with second-order averages contains now the expectation values of
two operators Ôm1 , Ôm2 ∈ A ∪ B, where m1,m2 ∈ IA ∪ IB. Hence, the system of ODEs
possesses the shape

d

dt
⟨(Ôm1Ôm2)(t)⟩ = î

〈
[Ĥ(t), Ôm1Ôm2 ]

〉
= î
〈
[Ĥ(t), Ôm1 ]Ôm2

〉
+ î
〈
Ôm1 [Ĥ(t), Ôm2 ]

〉
(4.29)

Interestingly, the Ehrenfest system of n-order averages, i.e. expectation values of n ob-
servables, can always be reduced to a superposition of averages, where in each term only
commutators of the shape [Ĥ(t),O] appear. The mathematical expression has been proven
in section A.2. This is very useful, since we can consider the entire set of results from
section 4.1 for any order expansion. However, here we will focus on the second-order
expansion.

For the sake of clarity, we only look at the left term on the right-hand side in Equation 4.29
and keep in mind, that for the right term the procedure is analogous:

î
〈
[Ĥ(t), Ôm1 ]Ôm2

〉
= −îξ(⟨[σ(m1)

+ , Ôm1 ]Ôm2⟩+ ⟨[σ(m1)
− , Ôm1 ]Ôm2⟩)

(
1− t

T

)
− î2m1+1

(
ω⟨[P̂m1,−, Ôm1 ]b̂Ôm2⟩ − (1 + 2m1−1)⟨[P̂m1,−, Ôm1 ]b̂

2Ôm2⟩

−
k∑

i=1
i ̸=m1

2i⟨[P̂m1,−, Ôm1 ]P̂i,−b̂
2Ôm2⟩

)( t

T

)
, (4.30)

where Ôm1 ∈ A. Analogously for Ôm1 ∈ B. Obviously, the commutators are all the
same as in section 4.1, however, the averages have now one additional operator Ôm2 with
m2 ∈ IA∪IB. Inserting the possible operators for Ôm1 as well as utilizing the commutator
relations in Equation 4.8, Equation 4.9 and Equation 4.17 yields
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î
〈
[Ĥ(t), σ

(m1)
± ]Ôm2

〉
= ±îξ(⟨Ôm2⟩ − ⟨σ(m1)

± Ôm2⟩)
(
1− t

T

)
± î2m1+1

(
ω⟨σ(m1)

± b̂Ôm2⟩ − (1 + 2m1−1)⟨σ(m1)
± b̂2Ôm2⟩

−
k∑

i=1
i ̸=m1

2i⟨σ(m1)
± P̂i,−b̂

2Ôm2⟩
)( t

T

)
, (4.31)

î
〈
[Ĥ(t), P̂m1,−]Ôm2

〉
= −îξ(⟨σ(m1)

+ Ôm2⟩ − ⟨σ(m1)
− Ôm2⟩)

(
1− t

T

)
. (4.32)

The above equations look familiar. In Equation 4.19 and Equation 4.20, we have the same
structure. Before we continue, we shall compute some multiplications of operators acting
on the same sub-Hilbert space.

σ+σ+ = 0̂, σ+P̂− = σ+ σ+σ−,= 12×2 − P̂− = P̂+

P̂−σ+ = 0̂, P̂−P̂− = P̂− P̂−σ−,= σ− (4.33)

σ−σ+ = P̂−, σ−P̂− = 0̂ σ−σ−,= 0̂.

The relations are also valid for the corresponding Heisenberg operators see section A.3.
The above equations show that for m1 = m2 the two operators on the left-hand side in
Equation 4.29 become one operator acting on the same sub-Hilbert space. Therefore, the
equations simplify to terms of first order and are the same as in section 4.1 except now we
expand up to second order. The cases m1 ̸= m2 remain for further investigation. We must
include the operator relations, such that we can obtain the correct solutions. This is done
for the following sub-averages:
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⟨σ(m1)
± P̂j+k,−Ôm2⟩ =


0, , Ôm2 = σ

(m2)
+ ,Con1

⟨σ(m1)
± P̂j+k,−⟩, , Ôm2 = P̂m2 ,Con1

⟨σ(m1)
± σ

(j+k)
− ⟩ , Ôm2 = σ

(m2)
− ,Con1

⟨σ(m1)
± P̂j+k,−Ôm2⟩ , m2 ̸= j + k

(4.34)

⟨σ(m1)
± P̂j+k,−P̂j′+k,−Ôm2⟩ =



0, , Ôm2 = σ
(m2)
+ ,Con

⟨σ(m1)
± P̂j+k,−P̂j′+k,−⟩, , Ôm2 = P̂m2,−,Con

⟨σ(m1)
± σ

(j+k)
− P̂j′+k,−⟩ , Ôm2 = σ

(m2)
− ,Con1

⟨σ(m1)
± P̂j+k,−σ

(j′+k)
− ⟩ , Ôm2 = σ

(m2)
− ,Con2

⟨σ(m1)
± P̂j+k,−P̂j′+k,−Ôm2⟩ , j ̸= m2 − k ̸= j′

(4.35)

⟨σ(m1)
± P̂i,−P̂j+k,−P̂j′+k,−Ôm2⟩ =



0, , Ôm2 = σ
(m2)
+ , (m2 = i) ∨ Con

⟨σ(m1)
± P̂i,−P̂j+k,−P̂j′+k,−⟩, , Ôm2 = P̂m2,−, (m2 = i) ∨ Con

⟨σ(m1)
± σ

(i)
− P̂j+k,−P̂j′+k,−⟩ , Ôm2 = σ

(m2)
− ,m2 = i

⟨σ(m1)
± P̂i,−σ

(j+k)
− P̂j′+k,−⟩ , Ôm2 = σ

(m2)
− ,Con1

⟨σ(m1)
± P̂i,−P̂j+k,−σ

(j′+k)
− ⟩ , Ôm2 = σ

(m2)
− ,Con2

⟨σ(m1)
± P̂i,−P̂j+k,−P̂j′+k,−Ôm2⟩ , j ̸= m2 − k ̸= j′ ∧m2 ̸= i

(4.36)

where we use the relations from Equation 4.33 and we define the conditions Con1 ≡ (m2 = j + k)
Con2 ≡ (m2 = j′ + k) and Con = Con1 ∨ Con2. We assumed m1 ∈ IA and m2 ∈ IA ∪ IB

to acquire the above averages. To obtain, however, a complete ODE system, it is enough
to note that m1 < m2. This can be justified by the fact, that operators acting on different
sub-Hilbert spaces always commute, hence, we get equal equations for m1 > m2. We show
this in section A.4. Therefore, only the case m1 ∈ IB\{k + l} with m1 < m2 remains.
First, we write down the modified Equation 4.31:

î
〈
[Ĥ(t), σ

(m1)
± ]Ôm2

〉
= ±îξ(⟨Ôm2⟩ − ⟨σ(m1)

± Ôm2⟩)
(
1− t

T

)
± î2m1−k+1

(
ω⟨σ(m1)

± âÔm2⟩ − (1 + 2m1−k−1)⟨σ(m1)
± â2Ôm2⟩

−
l∑

i=1
i ̸=m1−k

2j⟨σ(m1)
± â2P̂j+k,−Ôm2⟩

)( t

T

)
. (4.37)

It is clear, that the sub-average of the above equations ⟨σ(m1)
± P̂i,−Ôm2⟩ and ⟨σ(m1)

± P̂i,−P̂i′,−Ôm2⟩
stay the same. The last sub-average possesses the cases:
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⟨σ(m1)
± P̂i,−P̂i′,−P̂j+k,−Ôm2⟩ =


0 , Ôm2 = σ

(m2)
+ ,m2 = j + k

⟨σ(m1)
± P̂i,−P̂i′,−P̂j+k,−⟩ , Ôm2 = P̂m2,−,m2 = j + k

⟨σ(m1)
± P̂i,−P̂i′,−σ

(j+k)
− ⟩ , Ôm2 = σ

(m2)
− ,m2 = j + k

⟨σ(m1)
± P̂i,−P̂i′,−P̂j+k,−Ôm2⟩ ,m2 ̸= j + k

(4.38)

Now, we have all possible sub-average cases for the left term on the right-hand side in
Equation 4.29. Analogously, we can do the same for the right term, however, in a shortened
manner. Considering the term and inserting definitions of Ôm2 , we receive

î
〈
Ôm1 [Ĥ(t), σ

(m2)
± ]

〉
= ±îξ(⟨Ôm1⟩ − ⟨Ôm1σ

(m2)
± ⟩)

(
1− t

T

)
± î2m2+1

(
ω⟨Ôm1σ

(m2)
± b̂⟩ − (1 + 2m2−1)⟨Ôm1σ

(m2)
± b̂2⟩

−
k∑

i=1
i ̸=m2

2i⟨Ôm1σ
(m2)
± P̂i,−b̂

2⟩
)( t

T

)
, (4.39)

î
〈
Ôm1 [Ĥ(t), P̂m2,−]

〉
= −îξ(⟨Ôm1σ

(m2)
+ ⟩ − ⟨Ôm1σ

(m2)
− ⟩)

(
1− t

T

)
. (4.40)

with m2 ∈ IA. We start once again with m1 ∈ IA. We recognize that it is also important
to distinguish between Ôm2 ∈ A and Ôm2 ∈ B. Firstly, let m2 ∈ IA and m1 < m2. The
sub-averages of the form ⟨Ôm1σ

(m2)
± P̂j+k,−⟩ and ⟨Ôm1σ

(m2)
± P̂j+k,−P̂j′+k,−⟩ remain the same.

The five-operator sub-averages, however, consist of the cases:

⟨Ôm1P̂i,−σ
(m2)
± P̂j+k,−P̂j′+k,−⟩ =


⟨σ(i)

+ σ
(m2)
± P̂j+k,−P̂j′+k,−⟩ , Ôm1 = σ

(m1)
+ ,m1 = i

⟨P̂i,−σ
(m2)
± P̂j+k,−P̂j′+k,−⟩ , Ôm1 = P̂m1,−,m1 = i

0 , Ôm1 = σ
(m1)
− ,m1 = i

⟨Ôm1P̂i,−σ
(m2)
± P̂j+k,−P̂j′+k,−⟩ , m1 ̸= i

(4.41)

Secondly, letm2 ∈ IB andm1 ∈ IA∪IB. Here, the sub-averages contain now two projectors
living in the domain A and one in B. Thus, we obtain
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⟨Ôm1P̂i,−P̂i′,−σ
(m2)
± P̂j+k,−⟩ =



⟨σ(i)
+ P̂i′,−σ

(m2)
± P̂j+k,−⟩ , Ôm1 = σ

(m1)
+ , C̃on1

⟨P̂i,−σ
(i′)
+ σ

(m2)
± P̂j+k,−⟩ , Ôm1 = σ

(m1)
+ , C̃on2

⟨P̂i,−P̂i′,−σ
(m2)
± σ

(j+k)
+ ⟩ , Ôm1 = σ

(m1)
+ ,m1 = j + k

⟨P̂i,−P̂i′,−σ
(m2)
± P̂j+k,−⟩ , Ôm1 = P̂m1,−, C̃on ∨m1 = j + k

0 , Ôm1 = σ
(m1)
− , C̃on ∨m1 = j + k

⟨Ôm1P̂i,−σ
(m2)
± P̂j+k,−P̂j′+k,−⟩ , C̃on1 ∧ C̃on2 ∧m1 = j + k

,

(4.42)

where C̃on1 ≡ (i = m1), C̃on2 ≡ (m1 = i′) and C̃on = C̃on1 ∨ C̃on2. This concludes the
investigation of the sub-averages reduction. The final step is now the utilization of the
cumulants approach. The expectation values above in second-order expansion contain at
most five operators. For convenience, we introduce χr with r ∈ {3, 4, 5}. Here, r denotes
the expansion order of the considered averages. Let us consider the examples:

⟨X̂1X̂2X̂3⟩ = χ3(X̂1, X̂2, X̂3) = ⟨X̂1⟩⟨X̂2X̂3⟩+ ⟨X̂2⟩⟨X̂1X̂3⟩+ ⟨X̂3⟩⟨X̂1X̂2⟩
− 2⟨X̂1⟩⟨X̂2⟩⟨X̂3⟩

⟨X̂1X̂2X̂3X̂4⟩ = χ4(X̂1, X̂2, X̂3, X̂4) = ⟨X̂1X̂2⟩⟨X̂3X̂4⟩+ ⟨X̂1X̂3⟩⟨X̂2X̂3⟩
+ ⟨X̂1X̂4⟩⟨X̂2X̂3⟩ − 2⟨X̂1⟩⟨X̂2⟩⟨X̂3⟩⟨X̂4⟩.

The entire section is implemented in Mathematica which can be viewed in Appendix B for
the toy-model ω = 15 at T = 5.



Chapter 5

Results

In this chapter we present the first-order expansion results of ω listed in Table 3.1 utilizing
the theory from section 2.4, where we ignore ω ∈ {93, 95}. The approximated classical
solutions are compared with the full quantum-dynamical results discussed in chapter 3.
These comparisons provide hints of a possible quantum advantage for the bi-prime factor-
ization problem. Higher-order cumulant expansions are investigated as well. Most results
yield divergences, which inspire to a more precise discussion in chapter 6.

5.1 First-Order Expansion Results
We utilize QuantumCumulants.jl to receive the results of the mean-field approach for the
three- (15, 21), four- (33, 39) and five-qubit-systems (51, 57) in Figure 5.1. Here, we com-
pare the results with the full quantum-dynamical solutions obtained in chapter 3.

First, we treat the case ω = 15 in Figure 5.1. We see that the blue line of the mean-field
expansion approaches zero, which corresponds to the expectation value of the classical
bit-digit a1. The other two converge to one. Hence, the classical results provide the same
correct results as the quantum dynamics at T = 10. There are some visual differences to the
quantum treatment, nevertheless the expansion model solves the problem without doubt.
The same applies for ω = 21 where all lines approach one, thus, we receive 7[111]× 3[11].
This solves the bi-prime factorization problem for the case under consideration. So far, no
significant differences between quantum dynamics and the classical model can be observed
considering a three-qubit system. We continue by looking at the four-qubit-systems, i.e.,
ω ∈ {33, 39}. We start with the bi-prime ω = 33, where we can immediately see that
we obtain the correct results utilizing the classical model. A similar visual shape of the
bit-digit expectation values solves the problem of ω = 39. Now, we increase the system
size to five qubits. These bi-primes are examined more carefully. Even for this system size,
the classical model does not seem to have any significant disadvantages compared to the
full quantum dynamics for both ω = 51 and ω = 57. However, we can observe that some

43
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(a) ω = 15[1111] = 5[101]× 3[11] (b) ω = 21[10101] = 7[111]× 3[11]

(c) ω = 33[100001] = 11[1011]× 3[11] (d) ω = 39[100111] = 13[1101]× 3[11]

(e) ω = 51[110011] = 17[10001]× 3[11] (f) ω = 57[111001] = 19[10011]× 3[11]

Figure 5.1: Comparison between classical model and the full quantum dynamics for ω ∈
{15, 21, 33, 39, 51, 57}. The full quantum dynamics is denoted by QD and the cumulant
expansion by QC. We set T = 10.

expectation values do not reach entirely the plateau at zero but manifest their equilibrium
at a larger value. This is a sign that T should be chosen slightly larger than T = 10
for the classical model. This would be a hint of a possible quantum advantage for the
bi-prime factorization problem. We examine now a 7-qubit system for a possible quantum
advantage.
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We investigate the bi-prime ω = 265 which has 7 dynamical qubits with a 27 dimensional
Hilbert space. The comparison between the full quantum dynamics and the classical results
are visualized in Figure 5.2.

(a) (b)

Figure 5.2: Quantum dynamics (QD) as well as the cumulants approach (QC) with ω =
265. The legend provides the rounded expectation values of the classical bit-digits received
by the corresponding method.

According to Equation 2.13, the choice T = 100 implies a rather fast transition. The
quantum dynamics reaches the plateaus neither for zero nor one for all expectation values in
Figure 5.2a. Nevertheless, we get the correct bit-sequence utilizing the rounded numerical
quantum-dynamical values at s = 1, whereas the mean-field approach yields the sequence
of ω = 285. Thus, the classical method fails. We increase T to T = 200 and receive now for
the quantum dynamics numerical values closer to zero and one. The cumulants solution
still gives the wrong sequence corresponding to the solution ω = 275. We have found a case,
where the factorization is solved faster by the quantum dynamical method. This is a direct
hint that the mean-field approach requires a larger evolution time T than the full quantum
dynamics for growing system size. We recall that T is the actual time necessary to solve a
quantum algorithm on an adiabatic quantum computer. The comparison between classical
and quantum solution provides insights about the importance of quantum effects to solve
the factorization problem. The quantum advantage is given by looking at T , however, since
we only have a classical computer we conclude as follows. We assume the comparisons in
Figure 5.2 as a hint for a quantum advantage for the bi-prime factorization problem,
because the real computation time for solving the problem on a classical computer tells us,
that the results are evaluated faster using the cumulants approach in first-order than the
actual quantum solution for the cases under consideration. At least for manageable system
sizes, it is still efficient to choose T larger for the classical case to receive correct results.
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5.2 Higher-Order Expansion Results
Since we utilize Equation 2.59, we can expand the quantum dynamics to higher-orders. In
this section we show and discuss the results for ω ∈ {15, 21, 33, 39}. The obtained results
provide some interesting observations. It is important to mention, that we expand up to the
order, which represents the full quantum dynamics. A given ω with n dynamical qubits has
maximal order of n. This is a direct implication of the application of Equation 2.59. Thus,
a three-qubit-system possesses maximal order 3 and a four-qubit-system has a maximal
order 4. We apply again QuantumCumulants.jl to obtain the results in Figure 5.3 and in
Figure 5.4

(a) 15, second order (b) 21, second order

(c) 15, third order (d) 21, third order

Figure 5.3: Solutions of ω = 15[1111] = 5[101]× 3[11] and ω = 21[10101] = 7[111]× 3[11]
in second- and third- (maximal) order expansion, where T = 10. The non-full quantum
dynamical solution shows a clear divergence for ω = 15 in (a), whereas this is not the case
for ω = 21

In Figure 5.3, we observe that in second order expansion the case ω = 15 yields a divergent
solution, whereas ω = 21 provides the correct result. In maximal order, we obtain the exact
quantum dynamics for both factorization problems. At first glance, it is not entirely clear,
where this divergent behavior of ω = 15 could come from. We continue the examination
by considering ω ∈ {33, 39} in Figure 5.4.
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(a) 33, second order (b) 39, second order

(c) 33, third order (d) 39, third order

(e) 33, fourth order (f) 39, fourth order

Figure 5.4: Solutions of ω = 33[100001] = 11[1011]×3[11] and ω = 39[100111] = 13[1101]×
3[11] in second-, third- and fourth- (maximal) order expansion. In (a) and (c) we observe
the divergent non-full quantum dynamics for ω = 33.

In Figure 5.4, we find divergent behaviors for ω = 33 in second- and in third-order. The
fourth-order expansion is again the full quantum dynamics. For ω = 39 in second-order
expansion we receive a good solution in the sense that the results are convergent. Nev-
ertheless, we have some oscillations with values larger than one. The remaining cases for
ω = 39 are both correct. Comparing all cases with one another we recognize that the
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divergent results seem only to appear in cumulant expansions with orders 1 < order < n.
Indeed, we have not found divergent solutions in the mean-field approximations so far.
However, the integer ω = 39 seems to be the last non-divergent case, because for the
larger integers ω ∈ {51, 57, 63, 85, 91, 93} no stable second-order expansion solutions have
been found. Apparently, for most bi-primes the annealing must either be classical or full
quantum dynamical in order to give reasonable results. We discuss possible origins of the
occurring divergences in Figure 5.3 and Figure 5.4 in chapter 6.



Chapter 6

Divergences

The divergences appearing in higher-order expansions seem to be quite exotic with unknown
origin. There could be multiple different reasons why divergences occur in the results
between the first- and the maximal-order expansion (see. section 5.2). In the scope of
this thesis we tried many different approaches to resolve these divergences, assuming that
the solutions of the bit-digit expectation values ought to be finite and between 0 and 1 for
arbitrary expansion orders. This implies also the assumption that the generalized cumulant
expansion method in arbitrary order works for the bi-prime factorization problem. The
following list gives a short overview about what has been examined in detail.

Possible Problems: Model, Implementations and QuantumCumulants.jl

• Ensuring the correctness of our model as well as the implementations in the Julia
programming language (e.g. toy-model in Appendix C) multiple times.

• Solving a given Ehrenfest ODE system requires an initial-value vector. It is well-
known, that a small deviation of a given initial-value vector from the correct one
can end up in major divergent solutions. By using the adiabatic Hamiltonian Ĥ(s)
at s = 0 (see subsection 2.2.1), we can determine the correct initial-value vector
(theoretical derivation in section A.5). The vector was computed in multiple different
ways, which provided values coinciding with the theoretical expectations.

• The package QuantumCumulants.jl uses, by default, the transition operators σ+ =
σ12, σ− = σ21 as well as the projector P̂− = σ22. These operators were used in
chapter 4 to derive the commutator relations and the Ehrenfest ODE systems in first-
and second-order expansion. It is also possible to derive equivalent ODE systems by
utilizing the Pauli-matrices σx, σy, σz (see discussion in chapter 4). We changed the
default-settings in QuantumCumulants.jl to the Pauli-settings and received the same
results (see toy-model in section A.6).

• Since QuantumCumulants.jl is mostly used for quantum-optical problems, we could

49
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run into issues considering commutator relations or similar. We derived the mathe-
matics in chapter 4, implemented the resulting commutator relations in Mathematica
and compared the obtained solutions with the ones received by QuantumCumulants.jl
for ω ∈ {15, 21, 33, 39}. The solutions coincide with each other almost perfectly. A
more precise discussion is presented in section 6.1.

Possible Problems: Numerical Computation Since the analysis of the divergences
grew more and more in numerical complexity, we discussed the obtained knowledge with
the two mathematicians Univ.-Prof. Dr. Alexander Ostermann and Univ.-Prof. Lukas
Einkemmer, PhD from the University of Innsbruck.

• To solve a given ODE system numerically, we utilize the Julia package DifferentialE-
quations.jl [34]. Here, we have multiple options to compute the solutions. It might
be important to choose the solvers, the relative tolerances (reltol) as well as the ab-
solute tolerances (abstol) more carefully. One can also use adaptive step-size control
for specific solvers. Hence, we can set the time steps dt to a fixed value and allow
the examination of the divergences from a slightly different angle. For all acquired
results in the previous chapters we used the Runge-Kutta-4-method [35] with the
default tolerances. In section 6.2 we change the settings and discuss the results.

• Important information about the Ehrenfest ODE system can be received by exam-
ining the eigenvalues of the system’s underlying Jacobi matrix. The imaginary parts
of the eigenvalues tell us, how fast the real parts of the eigenvalues oscillate. Since
the Ehrenfest ODE system is nonlinear non-autonomous and coupled, this permits
to gather information of internal dynamics of the system under consideration.We
discuss the results in section 6.3.

• We know from subsection 2.4.2 that the joint cumulant is assumed to be equal to 0.
This was necessary to receive a recursive expression for the n-th order average. We
can introduce a way to examine how close to zero the joint cumulants of all possible
operator combinations actually are. The results help to determine, especially, which
joint cumulants become very large. Therefore, we need the n-th order averages of
both the full quantum dynamics and the QuantumCumulants.jl. This is discussed
more thoroughly in section 6.4.

We consider now the more precise discussions starting with the examination of Quantum-
Cumulants.jl.

6.1 Julia vs Mathematica
We need to consider that QuantumCumulants.jl might be the origin of the divergences.
QuantumCumulants.jl is a package mostly utilized for quantum-optical problems, however,
the bi-prime factorization is of purely non-quantum-optical nature. Maybe QuantumCu-
mulants.jl has difficulties to compute the correct commutator relations or other kinds of
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issues occur. We can prove that this is not the case by using the results from chapter 4
and implementing them into a different software, in this case Mathematica. The implemen-
tations of the theoretical discussions in section 4.1 and section 4.2 in Mathematica-code
provide the exact same Ehrenfest ODE systems as the systems received by QuantumCumu-
lants.jl. This implies, that QuantumCumulants.jl utilizes the same commutator relations as
in chapter 4. Thus, QuantumCumulants.jl should not be the origin of the divergences. We
present the comparisons between the measurements of the bit-digits, received by Math-
ematica and QuantumCumulants.jl, for ω = 15 and ω = 21, respectively, in first-order
expansion at T = 10. The results are presented in Figure 6.1. Furthermore, in Figure 6.2
we observe the case ω = 15 in second-order expansion at T ∈ {5, 10}. We plot also the
second-order expansions for ω = 33 and ω = 39 at T = 10 in Figure 6.3.

(a) (b)

Figure 6.1: Comparison of the mean-field bit-digit measurements between Mathematica
(full lines) and QuantumCumulants.jl (dotted lines) for ω = 15 in (a) and for ω = 21 in
(b) at T = 10.

(a) (b)

Figure 6.2: Comparison of the second-order results between Mathematica (full lines) and
QuantumCumulants.jl (dotted lines) for ω = 15 at T = 5 in (a) and at T = 10 in (b). In
the latter we observe that the evaluation is aborted at the divergent s for T = 10.
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(a) (b)

Figure 6.3: Comparison of the second-order methods between Mathematica (full lines) and
QuantumCumulants.jl (dotted lines) for ω = 33 in (a) and for ω = 39 in (b) at T = 10.

In Figure 6.1 we can observe that the solutions in the mean-field expansion for ω = 15
and ω = 21, respectively, coincide up to a numerical error. Also, Figure 6.2 and Figure 6.3
show, that the measurements of all cases obtained by both softwares overlap up to an error
of numerical nature. Interestingly, the solutions of the cumulants approach in second-
order for ω = 15 at T = 5 inherits a finite oscillation, which has already grown larger
than 1. Increasing T to T = 10 gives divergent behaviors for Mathematica as well as
QuantumCumulants.jl. In Figure 6.3, we can observe similar divergences for ω = 33,
whereas ω = 39 stays finite. It is now clear that QuantumCumulants.jl computes the
commutator relations correctly, thus, provides the correct Ehrenfest ODE system. In the
further discussion we analyze the numerical computations of the Ehrenfest ODE systems
more thoroughly, since we used the default solvers so far.

6.2 Solvers and Tolerances
We use the Julia package DifferentialEquations.jl [34] to solve the Ehrenfest ODE system
numerically. Here, we have different possibilities to actually solve a system of ODEs.
For instance, we can choose a specific solver from a bunch of different explicit or implicit
solvers. We can also change the tolerances absolute tolerance (abstol) and relative tolerance
(reltol), which allow to dictate the precision of a numerical solution. In general, the smaller
the tolerances the more precise the solutions. However, this also means an increase in
computation time. Many other options are available as well to solve an ODE system. For
example, one can set the numerical time-steps dt to a fixed value, hence, one turns off
the adaptive step-size control. Since we assume that the solver choice, the tolerances and
the step-size control are options, which influence the numerical computation the most and
could allow the removal of the occurring divergences, we restrict the numerical analysis to
these settings. Considering line 86 in Appendix C as a template, we can define different
solve-options by the following code:
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1 solve(prob,RK4(),abstol = 1e−8, reltol = 1e−4, dt = 1e−6)

where prob defines a given ODEProblem with certain initial conditions. We use the ex-
plicit Runge-Kutta-4 (RK4) method [35], which we utilized to determine the results in the
previous chapters, to solve the problem and define the tolerances abstol and reltol as well
as the time-steps dt accordingly.

We start our examination measurements obtained via Julia. Therefore, we reconsider a
problem, where we already know the correct results, and compare the RK4 solutions with
the results obtained by utilizing a different solver called Tsitouras 5/4 (Tsit5) [36]. This
solver is tightly related to the Runge-Kutta-Fehlberg-4(5) (RKF4(5)) scheme [37]. The
derivation of the Tsit5 Butcher tableau considers slightly different assumptions than the one
for RKF4(5). We choose the bi-prime problem ω = 51 (see Figure 3.4e) at T ∈ {10, 100}.
The results are presented in Figure 6.4.

(a) RK4 (b) Tsit5

(c) RK4 (d) Tsit5

Figure 6.4: Comparison between the two solvers RK4 and Tsit5 in [(a),(c)] and [(b),(d)],
respectively, with default tolerances and adaptive time-steps, where ω = 51[110011] =
17[10001]× 3[11] at T ∈ {10, 100}. QD stands for the full quantum dynamics and QC for
the QuantumCumulants.jl-solution.

Figure 6.4 reveals that at T = 10 both RK4 and Tsit5 provide, qualitatively, the same
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results. However, at T = 100 the Tsit5 solutions suddenly develop divergences, whereas
the RK4 solution remains stable and gives a better result. By default, we have abstol =
1e-6 and reltol = 1e-3. Decreasing the tolerances to abstol=1e-8=reltol yields the correct
Tsit5-result. This can be observed in Figure 6.5.

(a) RK4 (b) Tsit5

Figure 6.5: Comparison between the two solvers RK4 and Tsit5 in (a) and (b), respectively,
for ω = 51[110011] = 17[10001] × 3[11] at T = 100. One uses the default tolerances for
RK4, whereas the tolerances are set to abstol=1e-8=reltol for Tsit5.

Thus, Figure 6.5 indicates, that it can be important to adjust the tolerances for a given
solver. We consider now the expansion orders from second-order up to the maximal order
for the strongly divergent cases ω ∈ {15, 33} at T = 10. In section 6.3 we talk about the
possible stiffness of the Ehrenfest systems. Hence, we utilize a stiff solver as well. Since
the RK4-method provides good solutions for the lowest and maximal order expansions,
we discuss only the RK4 scheme as non-stiff solver where we adjusted the tolerances. We
choose the stiff solver TRBDF2 [38], which is claimed to be a reliable solver for large ODE
systems [34]. The results for ω = 15 are given in Figure 6.6 and for ω = 33 in Figure 6.7.

The results in both Figure 6.6 and Figure 6.7 show, that adjusting the tolerances for the
solver RK4 yields finite, but still strongly oscillating trajectories beyond the physical upper
boundary 1. The lower physical boundary 0 is still fulfilled. We adjust the tolerances by
hand and try out different combinations. It turns out that only around the combination
abstol = reltol = 0.025 a finite oscillation is possible for ω = 15. If abstol = reltol <
0.025 we obtain the same divergences, whereas for abstol = reltol > 0.025 the divergences
possess a different global form. It seems, that around abstol = reltol = 0.025 an island of
stability emerges. The tolerances are relatively large and there is only one stable tolerance-
combination, which is not intuitive. Normally, the tolerances should be chosen smaller to
acquire a better result. Therefore, the received results are strong indications for a numerical
integration problem. Considering now TRBDF2 we find something similar. Here, we
obtain a very good solution, however, also only for the same tolerance-combination. The
same applies for the case ω = 33 at abstol = reltol = 0.075. We tried this method of
”optimizing” the tolerances for ω ∈ {21, 39, 51, 57} as well. We received finite solutions
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(a) RK4, second-order (b) TRBDF2, second-order

(c) RK4, third-order (d) TRBDF2, third-order

Figure 6.6: Bit-digit measurements for ω = 15[1111] = 5[101] × 3[11] in second- and
third(maximal)-order expansion using RK4 in [(a),(c)] and TRBDF2 [(b),(d)], respectively,
with abstol = reltol = 0.025 and at T = 10.

only for ω = 21 (absol = reltol = 0.025) and ω = 39 (absol = reltol = 0.075). The
results for ω ∈ {15, 21, 33, 39} at the respective tolerance-combinations remain stable if T
is increased. We found tolerance-combinations for the cases ω = 51 and ω = 57, where
the solutions were finite, but still larger than 1. For increasing T these solutions diverge
immediately.

One possibility to examine the assumed numerical integration problem is to use non-
adaptive dt. Since the numerical time-steps are non-changing the oscillations could be
removed. For ω = 15, the results are given in Figure 6.8. Figure 6.8 visualizes that for
fixed time-steps dt =1e-5 the solution coincides with the adaptive approach.
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(a) RK4, second-order (b) TRBDF2, second-order

(c) RK4, third-order (d) TRBDF2, third-order

(e) RK4, fourth-order (f) TRBDF2, fourth-order

Figure 6.7: Bit-digit measurements for ω = 33[100001] = 11[1011] × 3[11] in second-,
third- and fourth(maximal)-order expansion using RK4 in [(a),(c),(e)] and TRBDF2 in
[(b),(d),(f)], respectively, with abstol = reltol = 0.075 and at T = 10.
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(a) RK4, dt = adaptive (b) RK4, dt = 1e-5

Figure 6.8: Solving the bi-prime problem ω = 15[1111] = 5[101] × 3[11] in second-order
expansion using RK4 at default tolerances and T = 5. We compare the solution with
adaptive step-size in (a) with the fixed step-size dt =1e-5 in (b).

We see that the choice of the solver, adjusting the tolerances and using fixed time-steps dt
can be important, however, in our case we cannot tell if the divergences are implications
of these choices or if they emerge due to properties of the expanded Ehrenfest system.
We continue our analysis by examining the eigenvalues of the Jacobian matrices of the
respective Ehrenfest ODE systems for the bi-prime factorization problem.

6.3 Jacobi Matrix Analysis
In this section we compute and plot the eigenvalues of the Jacobi matrix discussed in
section 2.5 ∀s ∈ [0, 1]. We consider a divergent (ω = 15 at T ∈ {5, 5.7}) as well as
a non-divergent (ω = 21 at T = 10) case for a three-qubit system, i.e. n = 3. Since
we obtain divergent solutions for ω = 15 in second-order expansion, we treat only this
case. According to section A.1, the Ehrenfest ODE system has the system size N =
3·3/2(3·3−1) = 36. Hence, the Jacobian is a 36×36 complex matrix, i.e. Jx0(s)f(x(s), s) ∈
Mat36×36(C). It might be interesting to see how the Jacobian develops for expectation
values governed by the Schrödinger equation, since the Schrödinger equation provides the
full quantum dynamics using a different approach than solving an ODE system. Hence,
we also implement and plot the theoretical discussion to approximate the Jacobian in
section 2.5. In Figure 6.9, Figure 6.10 and in Figure 6.11, we compare the results of the
eigenvalues λ for ω = 15 and ω = 21, respectively.

Figure 6.9 is the divergent case at T = 5. The imaginary eigenvalues of the Jacobian re-
ceived by utilizing QuantumCumulants.jl oscillate, whereas those obtained by Schrödinger
do not. Nevertheless, the imaginary parts are in the same regime, i.e., have similar absolute
values and thus have the same global structure. The real parts are quite different. The
global structure seems to be still the same, however, the oscillations are much stronger for
the QC.jl solution. The four branches in the Schrödinger plot at medium s exist also in the
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(a) Re{λ(s)}, QC.jl (b) Re{λ(s)}, Schrödinger

(c) Im{λ(s)}, QC.jl (d) Im{λ(s)}, Schrödinger

Figure 6.9: Comparison between the real and imaginary parts of the Jacobian eigenvalues
λi(s) for ω = 15 at T = 5 determined by QuantumCumulants.jl (QC.jl) and Schrödinger,
respectively.

QC.jl plot, but they are much more chaotic here. The circle-like shape in the Schrödinger
plot, emerging at s ≈ 0.4, is exchanged by a beat-shaped oscillation. Figure 6.10 shows
that increasing T to T = 5.7 results in a growth of the real beat-shaped oscillation as well
as the real branches, whereas the imaginary shapes look similar as for the case T = 5. The
divergences are embedded within the Jacobian eigenvalues, but no direct implication can
be made.

The non-divergent case ω = 21 in Figure 6.11 shows that we obtain for both the real and
the imaginary parts of the eigenvalues λi(s) the same structures and regimes. This tells
us, that the divergences somehow introduce oscillations that influence the global structure
and regimes of the eigenvalues chaotically. According to [39], if the Re{λi(s)} is large and
negative almost certainly stiffness is present. We can define the stiffness ratio [40]:

r(s) =
max1≤i≤n |Reλi(s)|
min1≤i≤n |Reλi(s)|

. (6.1)



6.3. JACOBI MATRIX ANALYSIS 59

(a) Im{λ(s)}, QC.jl (b) Re{λ(s)}, QC.jl

Figure 6.10: Comparison between the real and imaginary parts of the Jacobian eigenvalues
λi(s) for ω = 15 at T = 5.7 determined by QuantumCumulants.jl (QC.jl).

(a) Re{λ(s)}, QC.jl (b) Re{λ(s)}, Schrödinger

(c) Im{λ(s)}, QC.jl (d) Im{λ(s)}, Schrödinger

Figure 6.11: Comparison between the real and imaginary parts of the Jacobian eigenvalues
λi(s) for ω = 21 at T = 10 determined by QuantumCumulants.jl (QC.jl) and Schrödinger,
respectively.

The above expression is a quantitative measure of the stiffness, where the system is stiff
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if r(s) diverges. One needs to be careful with this definition, because if eigenvalues λi(s)
are small, r(s) becomes large which does not necessarily imply the stiffness of the system
under consideration. According to Figure 6.9 and Figure 6.11 we obtain divergent values
for r(s) although ω = 21 is certainly not stiff. Therefore a different measure of stiffness
should be studied, e.g., as provided in discussions about stiffness for linear and non-linear
ODE systems [40]. We will not discuss the stiffness here further, because this is beyond
the scope of this thesis.

So far, in section 6.2 we have found a strong indicator for a numerical integration problem.
But this is only the case if one rules out the divergent oscillations to be correct, since
the divergent solutions are the results for all examinations done, that should prove the
non-existence of a numerical integration problem. However, we assumed that adjusting
the solver, tolerances or numerical time-steps are the options influencing the solutions the
most. In this section, we have found that the divergences are reflected in the trajectories of
the Jacobian eigenvalues depending on s, but we cannot say for certain that the divergences
come from the underlying Ehrenfest systems and whether the system under consideration
is stiff. The obtained information is not conclusive to determine a clear numerical or
mathematical nature of the occurring divergences. The latter would originate from the
generalized cumulant expansion method applied to the bi-prime factorization problem.
We focus now on the last section of the examination of the divergences.

6.4 Joint Cumulants Analysis
In subsection 2.4.2 we assume the joint cumulants of n-th order to be equal to zero. This
allows us to receive the recursive relation to describe the n-th order average in terms of
lower-order averages. In this section, we plot the joint cumulants to see how close to zero
these terms are. Therefore, we use Equation 2.62. It is also interesting to compare the
results with the same joint cumulants, but now determined with Schrödinger expectation
values, i.e. we change ⟨X1X2 · · ·Xn⟩C,o(s) → ⟨X1X2 · · ·Xn⟩S,o(s). This means, we use the
same relation with the same recursive expansions, but we exchange the QuantumCumu-
lants.jl with Schrödinger averages. We use section A.1 and consider ω = 15 with n qubits.
We have then N = 32n/2 · (2 − 3n + n2) = 33 = 27 joint cumulants. In Figure 6.12 we
visualize the joint cumulants for ω = 15 at T ∈ {5, 10} considering the cumulant expansion
orders o = {1, 3}. In Figure 6.13 we examine the joint cumulants for ω = 15 at T ∈ {5, 10}
as well but now for the divergent order o = 2.

In Figure 6.12 one can observe the non-divergent expansion orders o = {1, 3}. The global
shapes and the regimes of the joint cumulant in first-order expansion o = 1 are for both the
QuantumCumulants.jl and Schrödinger relatively similar at T ∈ {5, 10}. Interestingly, not
all joint cumulants are constant for s → 1. Especially, the combinations ⟨σ(1)

+ P̂2,−σ
(3)
− ⟩C,1

and ⟨σ(1)
− P̂2,−σ

(3)
+ ⟩C,1 oscillate strongly around zero. This is the case for QuantumCu-

mulants.jl as well as Schrödinger. The reason for this is the choice of T . The overall
evolution-time T is a good choice, however, it is still a rather fast transition. This means,
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that we do not entirely stay in the ground state of our factoring Hamiltonian. Thus, the
state contains small contributions to different sub-Hilbert spaces, i.e. an oscillation be-
tween higher energetic states and the ground state. Increasing T to T = 100 makes these
oscillations very small. This is demonstrated in section A.7. For o = 3 and QC.jl we
obtain results within a regime, which comes probably from numerical errors between the
QuantumCumulants.jl and Schrödinger solution. The Schrödinger case is perfectly zero
due to the fact, that for o = 3 no cumulant expansion is required.

In Figure 6.13, the global shape of the Schrödinger solution has changed, but the regime
remains the same. The results of the divergent QuantumCumulants.jl solution show, that
the oscillating terms, now ⟨σ(1)

+ P̂2,−σ
(3)
− ⟩C,2 and ⟨σ(1)

− P̂2,−σ
(3)
+ ⟩C,2, from before are clearly

non-zero and grow larger for increasing T . Additionally at T = 5, the combinations
⟨σ(1)

+ P̂2,−σ
(3)
+ ⟩C,2 and ⟨σ(1)

− P̂2,−σ
(3)
− ⟩C,2 appear to have similar behaviors. The values for

σ±P̂ σ∓ increase more and more in amplitude. It seems, that these combinations are the
reason for the divergences. A more precise investigation is provided in section A.7.
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(a) T = 5, o = 1, QC.jl (b) T = 5, o = 1, Schrödinger

(c) T = 10, o = 1, QC.jl (d) T = 10, o = 1, Schrödinger

(e) T = 5, o = 3, QC.jl (f) T = 5, o = 3, Schrödinger

(g) T = 10, o = 3, QC.jl (h) T = 10, o = 3, Schrödinger

Figure 6.12: Comparison of the joint cumulants determined by QuantumCumulants.jl
(QC.jl) and Schrödinger, respectively, for ω = 15 with expansion order o ∈ {1, 3} at
T ∈ {5, 10}.
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(a) T = 5, QC.jl (b) T = 5, Schrödinger

(c) T = 5.7, QC.jl (d) T = 5.7, Schrödinger

(e) T = 5.9, QC.jl (f) T = 5.9, Schrödinger

Figure 6.13: Comparison of the joint cumulants determined by QuantumCumulants.jl
(QC.jl) and Schrödinger, respectively, for ω = 15 with expansion order o = 2 at
T ∈ {5, 5.7, 5.9}.



Chapter 7

Conclusion and Outlook

In this thesis we have presented a procedure how the bi-prime factorization problem de-
scribed as a classical optimization problem in terms of classical bit-digits within a cost
function can be treated quantum mechanically. To obtain a quantum mechanical opti-
mization problem, we have exchanged the classical bits with spins acting as qubits, thus,
introduced observables. Also, we considered the cost function as a ground state problem
by using a corresponding problem-Hamiltonian. The classical bit-digits are acquired by
measuring the respective observables describing the spin orientation of the qubits. The
goal is to obtain the ground state of the problem-Hamiltonian, which we computed by
utilizing the adiabatic theorem. Everything together describes the quantum annealing of
the bi-prime factorization problem. The correct expectation values of the factor bit-digits
for the bi-primes {15, 21, 33, 39, 51, 57, 93, 265} have been received solving the correspond-
ing time-dependent Schrödinger equation without any problems. This shows us, that the
quantum description indeed works. However, we also have found a specific case, for the
bi-prime 95, where the adiabatic evolution gives the false solution for large evolution times,
due to a very small minimal gap. We examined the fidelity, the remaining in the ground
state (probability, that during the adiabatic evolution the respective state remains in the
ground state of the adiabatic Hamiltonian), entropy of entanglement and bipartite quan-
tum mutual information.
Since the system-Hamiltonian scales exponentially with the total qubit number, we ap-
proximated the full quantum dynamics by considering the Ehrenfest theorem as well as
the generalized cumulant expansion method. Since we use the Ehrenfest theorem for each
observable necessary to determine the bit-digit expectation values, we obtain a closed
coupled nonlinear Ehrenfest ODE system in first-order. In a first step, we try to find a
quantum advantage for the bi-prime factorization problem. Therefore, we constructed the
Ehrenfest system in first-order cumulant expansion, also known as mean-field approach.
Hence, we discard all quantum mechanical correlations. For small system-sizes both the
cumulants solution as well as the full quantum dynamics provide the correct factors equally
fast. Increasing the total number of qubits eventually shows that the cumulants solution
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needs a larger overall adiabatic evolution-time to provide the correct factors. This is, in-
deed, a clear hint that a quantum advantage of the bi-prime factorization problem should
to be taken seriously. We show this by considering the bi-prime 265.
The cumulant expansion can be used to gradually include quantum correlations step by
step by including higher order correlations. We assumed that the expansion order succes-
sively approaches the full quantum dynamics. In a sense this is the case, because if the
expansion order coincides with or is larger than the number of qubits, then, we receive the
full quantum dynamics. However, almost all of the results with expansion orders larger
than the mean-field expansion and smaller than the total qubit number possess divergent
behavior. This is very surprising, because it seems that only the mean-field or the full
quantum solution, in general, provide non-divergent solutions.
In the last chapter, we discuss thoroughly the possible origins of these divergences, but it
turns out, that the exact reason for these results is not clear. We narrowed it down to
three possibilities, which we give here as an outlook for further investigation. The first
one is that, although a very careful investigation of the numerical evaluation took place,
there still is a numerical error for the semi-classical cases. The second possibility considers
that the generalized cumulant expansion method does not entirely work for the bi-prime
factorization problem with the problem-Hamiltonian we used. There are many different
possibilities to receive more efficient cost-functions for the factoring problem. Maybe using
a different initial and problem Hamiltonian can resolve the issue. The third possibility tells
us, that the bi-prime factorization problem cannot be expanded in such a manner due to
possible properties such as that it is either NP or NP-complete.
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Appendix A

Supplementary Material

A.1 Determination of System Size N
We know, that the Ehrenfest system consists of time-derivatives of expectation values
of operator multiplications up to a truncation-order. In this section we derive a general
formula which determines the system size N for Ehrenfest systems up to third order.

Let Ôi′ ∈
⋃n

m=1{σ
(m)
+ , σ

(m)
− , P̂m,−} with i′ = (i, r), where i ∈ {1, 2, · · · , n} and r tells which

kind of operator is used on the respective Hilbert space Hi. In first-order expansion we
receive 3 · n expectation values of single operators with the shape ⟨Ôi′⟩. This is discussed
more precisely in chapter 4. The second-order expansion is a little more complicated. We
know from chapter 4 that we effectively get two-operator expectation values ⟨Ôi′Ôj′⟩ if
i′ ̸= j′. Else, the two operators can be written as one operator on the same Hilbert space
due to non-trivial commutator relations. This is discussed more thoroughly in chapter 4.
Considering i′ ̸= j′ we obtain for second-order averages

⟨Ô1Ô2⟩ → 3 · 3
...

⟨Ô1Ôn⟩ → 3 · 3

⇒ 32(n− 1)

⟨Ô2Ô3⟩ → 3 · 3
...

⟨Ô2Ôn⟩ → 3 · 3

⇒ 32(n− 2)

...

⟨Ôn−1Ôn⟩ ⇒ 32



⇒ 32
n−1∑
i=1

(n− i) =
32

2
n(n− 1) (A.1)

69



A.1. DETERMINATION OF SYSTEM SIZE N 70

In sake of simplicity, we use here, e.g., i′, j′ ∈ {1, 2, · · · , n}, because the respective kinds of
operators are not important in this case. The Ehrenfest system size N of a bi-prime with
n qubits in second-order expansion is given by

N = 3n+
33n

2
(n− 1) =

3n

2
(3n− 1). (A.2)

Proceeding similarly for the third-order expansion, we obtain the system size

N = 3n+
32n

2
(n− 1) +

32n

2
(2− 3n+ n2) =

3n

2
(5− 6n+ 3n2). (A.3)

This can be done for arbitrary expansion order. We can compare the results in this sec-
tion with the system sizes received by QuantumCumulants.jl. The results are shown in
Table A.1.

Table A.1: Here, we show that the derived polynomial formulas in n calculate the necessary
system size N to receive a complete Ehrenfest system for the respective expansion order.

n 1st 2nd 3rd QC.jl
3 9 36 63 ✓
4 12 66 174 ✓
5 15 105 375 ✓

Interestingly, we see that the increase of the order results in a growth in the polynomial
power. In a fixed order k, the system scales with nk.
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A.2 Commutator Relation of Hamiltonian With N Op-
erators

Let Ĥ be a Hamiltonian and let X̂1, X̂2, · · · , X̂N be N observables. One starts from the
commonly known commutator relation:

[Ĥ, X̂1X̂2] = ĤX̂1X̂2 + X̂1ĤX̂2 − X̂1ĤX̂2 − X̂1X̂2Ĥ (A.4)

= [Ĥ, X̂1]X̂2 + X̂1[Ĥ, X̂2]. (A.5)

The goal is now to derive a rule, which generalizes above relation for N > 2. Considering
[Ĥ,

∏N
i=1 X̂i] and utilizing Equation A.5 yields

[Ĥ,
N∏
i=1

X̂i] = [Ĥ,

(
N−1∏
i=1

X̂i

)
X̂N ]

= Ĥ

(
N−1∏
i=1

X̂i

)
X̂N −

(
N−1∏
i=1

X̂i

)
X̂NĤ +

(
N−1∏
i=1

X̂i

)
ĤX̂N −

(
N−1∏
i=1

X̂i

)
ĤX̂N

= [Ĥ,

(
N−1∏
i=1

X̂i

)
]X̂N +

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ]

= [Ĥ,

(
N−2∏
i=1

X̂i

)
]X̂N−1X̂N +

(
N−2∏
i=1

X̂i

)
[Ĥ, X̂N−1]X̂N +

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ]

...

[Ĥ,
N∏
i=1

X̂i] = [H, X̂1]

(
N∏
i=2

X̂i

)
+

N−1∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
N∏

k=i+1

X̂k

)
+

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ]

We prove Equation A.6 by induction.

Proof. Let the following induction hypothesis (IH) be given

[Ĥ,
N∏
i=1

X̂i] = [H, X̂1]

(
N∏
i=2

X̂i

)
+

N−1∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
N∏

k=i+1

X̂k

)
+

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ],

(A.6)

where N > 2.
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Base case N = 3:

[Ĥ,
3∏

i=1

X̂i] = [Ĥ, X̂1X̂2X̂3]
Equation A.5

= [Ĥ, (X̂1X̂2)]X̂3 + (X̂1X̂2)[Ĥ, X̂3]

= [Ĥ, X̂1]X̂2X̂3 + X̂1[Ĥ, X̂2]X̂3 + X̂1X̂2[Ĥ, X̂3]

✓
= [Ĥ, X̂1]

(
3∏

i=2

X̂i

)
+

2∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
3∏

k=i+1

X̂k

)
+

(
2∏

i=1

X̂i

)
[Ĥ, X̂3]

Let N > 2 and let the (IH) be valid:

[Ĥ,
N∏
i=1

X̂i] = [H, X̂1]

(
N∏
i=2

X̂i

)
+

N−1∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
N∏

k=i+1

X̂k

)
+

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ]

Induction step N → N + 1:

[Ĥ,
N+1∏
i=1

X̂i] = [Ĥ,

(
N∏
i=1

X̂i

)
X̂N+1]

Equation A.5
= [Ĥ,

N∏
i=1

X̂i]X̂N+1 +

(
N∏
i=1

X̂i

)
[Ĥ, X̂N+1]

(IH)
= [H, X̂1]

(
N∏
i=2

X̂i

)
X̂N+1 +

N−1∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
N∏

k=i+1

X̂k

)
X̂N+1

+

(
N−1∏
i=1

X̂i

)
[Ĥ, X̂N ]X̂N+1 +

(
N∏
i=1

X̂i

)
[Ĥ, X̂N+1]

= [H, X̂1]

(
N+1∏
i=2

X̂i

)
+

N∑
i=2

(
i−1∏
j=1

X̂j

)
[Ĥ, X̂i]

(
N+1∏
k=i+1

X̂k

)
+

(
N∏
i=1

X̂i

)
[Ĥ, X̂N+1].

This completes the proof.
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A.3 Operator Relations in Heisenberg Picture

The Heisenberg operator ÂH(t) is defined as

ÂH(t) = Û †(t, t0)ÂSÛ(t, t0), (A.7)

where Û(t, t0) denotes the unitary time-evolution operator in Equation 2.37 and ÂS is the
corresponding Schrödinger-picture operator. Let ÂS,1, ÂS,2 be given. Then, we obtain

ÂS,1ÂS,2 = Û(t, t0)Û
†(t, t0)ÂS,1Û(t, t0)Û

†(t, t0)ÂS,2Û(t, t0)Û
†(t, t0) (A.8)

= Û(t, t0)ÂH,1(t)ÂH,2(t)Û
†(t, t0) (A.9)

⇒ ÂH,1(t)ÂH,2(t) = Û †(t, t0)ÂS,1ÂS,2Û(t, t0). (A.10)

The relations in Equation 4.33 translate directly into the Heisenberg picture.

A.4 Equivalence for Commuting Operators

The index sets IA and IB are defined in chapter 4. The same applies for the operators Ôm1

and Ôm2 . Let m1 = m+ 1 and m2 = m, where m ∈ IA ∪ (IB\{k+ l}). The operators Ôm

and Ôm+1 act on different sub-Hilbert space, hence, they commute. Equation 4.29 takes
the form

d

dt
⟨(Ôm+1Ôm)(t)⟩ = î

〈
[Ĥ(t), Ôm+1Ôm]

〉
= î
〈
[Ĥ(t), ÔmÔm+1]

〉
=

d

dt
⟨(ÔmÔm+1)(t)⟩.

(A.11)

One could also justify this by utilizing the cyclic property of the trace:

d

dt
⟨(Ôm+1Ôm)(t)⟩ = î

〈
[Ĥ(t), Ôm+1]Ôm

〉
+ î
〈
Ôm+1[Ĥ(t), Ôm]

〉
(A.12)

= î
〈
Ôm[Ĥ(t), Ôm+1]

〉
+ î
〈
[Ĥ(t), Ôm]Ôm+1

〉
=

d

dt
⟨(ÔmÔm+1)(t)⟩.

(A.13)
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A.5 Initial-Value Vector of Ehrenfest Systems
In order to solve the Ehrenfest system of arbitrary expansion order, we need the correct ini-
tial values for all required averages (⟨σ(1)

+ ⟩, ⟨P̂1,−⟩, ⟨σ(1)
− ⟩, ⟨σ(2)

+ ⟩, · · · , ⟨σ(1)
+ σ

(2)
+ ⟩, · · · , ⟨σ(1)

+ σ
(2)
+ σ

(3)
+ ⟩, · · · )T .

According to subsection 2.2.2, the ground state at s = 0 is given by

|ψ(0)⟩ = |ψ0⟩ =
n⊗

m=1

1√
2
(|0⟩m + |1⟩m) (A.14)

where n is the number of total dynamical qubits. Thus, we simply compute the relations
for the operators acting on the l-th Hilbert space

⟨σ(l)
+ (0)⟩ = 1

2n

n⊗
i=1

(j ⟨0|+ j ⟨1|)σ(l)
+

n⊗
j=1

(|0⟩i + |1⟩i) =
1

2n
2n−1(l ⟨0|+ l ⟨1|)σ(l)

+ (|0⟩l + |1⟩l)

(A.15)

=
1

2
(l ⟨0|+ l ⟨1|) |0⟩l =

1

2
= ⟨σ(l)

− (0)⟩ (A.16)

⟨P̂l,−(0)⟩ =
1

2n
2n−1(l ⟨0|+ l ⟨1|)P̂l,−(|0⟩l + |1⟩l) =

1

2
. (A.17)

We define then the operators Ô(l) ∈
⋃n

m=1{σ
(m)
± , P̂m,−} and find

⟨(Ô(α1) · · · Ô(αk))(0)⟩ =
(
1

2

)k

, (A.18)

where α1, · · ·αk ∈ {1, 2, · · · , n} and α1 ̸= · · · ̸= αk. The initial-value vector up to arbitrary
expansion order is given by

(⟨σ(1)
+ ⟩, ⟨P̂1,−⟩, ⟨σ(1)

− ⟩, ⟨σ(2)
+ ⟩, · · · , ⟨σ(1)

+ σ
(2)
+ ⟩, · · · , ⟨σ(1)

+ σ
(2)
+ σ

(3)
+ ⟩, · · · )T =

(
1

2
,
1

2
,
1

2
,
1

2
, . . . ,

1

4
, · · · , 1

8
, · · ·

)T

(A.19)
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A.6 QuantumCumulants.jl Utilizing Pauli-Matrices
In chapter 4 we mention the possibility to change the default settings from QuantumCu-
mulants.jl using the transition operators σ(m)

± as well as the projective operators P̂m,− to
considering the Pauli-matrices σ(m)

x , σ
(m)
y and σ(m)

z . We did the computations and found the
exact same results for both methods, which are presented in Figure A.1 for the bi-prime
problem ω = 15 at T = 5.

Figure A.1: Bit-digit measurements of ω = 15[1111] = 5[101]× 3[11] = 5[101]× 3[11] using
the full quantum dynamics (QD), the default settings of QuantumCumulants.jl (QC) as
well as the Pauli-matrix (Pauli) QuantumCumulants.jl settings.

In Figure A.1 we can clearly see that QuantumCumulants.jl provides the same results for
both the transition-projector as well as the Pauli-matrix settings. This should be the case,
because in section 6.1 we prove that QuantumCumulants.jl calculates the commutator
relations correctly. Hence, the origin of the divergences can be either of numerical nature
or the generalized cumulant expansion method fails in the case of a semi-classical model
with expansion orders higher than the mean-field approach and smaller than the maximal
order.
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A.7 Further Investigation on Joint Cumulants
In this section we show some additional results of the discussion of the joint cumulants
in section 6.4. In Figure A.2, one visualizes the joint cumulants for ω = 15 at a very
large T = 100 with expansion order o = 1 received by utilizing QuantumCumulants.jl and
Schrödinger, respectively.

(a) QC.jl (b) Schrödinger

Figure A.2: Comparison of the joint cumulants determined by QuantumCumulants.jl
(QC.jl) and Schrödinger, respectively, for ω = 15 with expansion order o = 1 at T = 100.

Figure A.2 shows that the larger T , the smaller the oscillating combinations in both cases
discussed in section 6.4. Hence, less contributions of higher-energy levels.

We know from Equation 2.59 that each n-th order average is a superposition of products
of sub-averages of order up to l if the expansion order is equal to l. We plot in Fig-
ure A.3 the sub-averages from the combinations ⟨σ(1)

+ P̂2,−σ
(3)
− ⟩C,2 = ⟨σ(1)

− P̂2,−σ
(3)
+ ⟩C,2 and

⟨σ(1)
+ P̂2,−σ

(3)
+ ⟩C,2 = ⟨σ(1)

− P̂2,−σ
(3)
− ⟩C,2 discussed in section 6.4. Each combination consists of

six different sub-averages:

⟨σ(1)
+ P̂2,−σ

(3)
− ⟩C,2 = ⟨σ(1)

+ ⟩⟨P̂2,−σ
(3)
− ⟩+ ⟨P̂2,−⟩⟨σ(1)

+ σ
(3)
− ⟩+ ⟨σ(3)

− ⟩⟨σ(1)
+ P̂2,−⟩ − 2⟨σ(1)

+ ⟩⟨P̂2,−⟩⟨σ(3)
− ⟩

(A.20)

⟨σ(1)
+ P̂2,−σ

(3)
+ ⟩C,2 = ⟨σ(1)

+ ⟩⟨P̂2,−σ
(3)
+ ⟩+ ⟨P̂2,−⟩⟨σ(1)

+ σ
(3)
+ ⟩+ ⟨σ(3)

+ ⟩⟨σ(1)
+ P̂2,−⟩ − 2⟨σ(1)

+ ⟩⟨P̂2,−⟩⟨σ(3)
+ ⟩.

(A.21)

These terms are plotted in Figure A.3.
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(a) ⟨σ(1)
+ P̂2,−σ

(3)
+ ⟩C,2, QC.jl (b) ⟨σ(1)

+ P̂2,−σ
(3)
+ ⟩C,2, Schrödinger

(c) ⟨σ(1)
+ P̂2,−σ

(3)
− ⟩C,2, QC.jl (d) ⟨σ(1)

+ P̂2,−σ
(3)
− ⟩C,2, Schrödinger

Figure A.3: Sub-averages of the combinations ⟨σ(1)
+ P̂2,−σ

(3)
− ⟩C,2 = ⟨σ(1)

− P̂2,−σ
(3)
+ ⟩C,2 and

⟨σ(1)
+ P̂2,−σ

(3)
+ ⟩C,2 = ⟨σ(1)

− P̂2,−σ
(3)
− ⟩C,2 for ω = 15 at T = 5 in expansion order o = 2.



Appendix B

Mathematica Script of ω = 15

1 (∗Include some libraries∗)
2 Needs["Combinatorica`"]
3 Needs["DifferentialEquations`NDSolveProblems`"];
4 Needs["DifferentialEquations`NDSolveUtilities`"];
5 (∗Start with numbers of dynamical qubits∗)
6 k = 2;
7 l = 1;
8 Remove[V2, v0]
9 (∗Define the EXPECTATION VALUES of the bits, i.e., \langle a^{12} \rangle= a12∗)

10 AllOperators = {{a12, a22, a21}, {b12, b22, b21}, {c12, c22, c21}};
11 AllOperatorst = {{a12[t], a22[t], a21[t]}, {b12[t], b22[t],
12 b21[t]}, {c12[t], c22[t], c21[t]}};
13 AllOperators0 = {{a12[0], a22[0], a21[0]}, {b12[0], b22[0],
14 b21[0]}, {c12[0], c22[0], c21[0]}};
15 AllOperatorsder = {{a12'[t], a22'[t], a21'[t]}, {b12'[t], b22'[t],
16 b21'[t]}, {c12'[t], c22'[t], c21'[t]}};
17 (∗Define the necessary partitions to obtain a complete Ehrenfest ODE system
18 (see Berechnungen 7)∗)
19 (∗We assume that Mathematica cannot handle Conjugate[a12] = a21,
20 hence, we derive a bigger system where we calculate these expressions
21 as well∗)
22 V1 = Table[{Table[
23 Table[{AllOperators[[i]][[1]], AllOperators[[r]][[k]]}, {k, 1,
24 Length[AllOperators[[r]]]}], {r, i + 1,
25 Length[AllOperators]}],
26 Table[
27 Table[{AllOperators[[i]][[2]], AllOperators[[r]][[k]]}, {k, 1,
28 Length[AllOperators[[r]]]}], {r, i + 1,
29 Length[AllOperators]}],
30 Table[
31 Table[{AllOperators[[i]][[3]], AllOperators[[r]][[k]]}, {k, 1,
32 Length[AllOperators[[r]]]}], {r, i + 1,
33 Length[AllOperators]}]}, {i, 1, Length[AllOperators] − 1}];
34 VOperatos = Flatten[V1];
35 VOp = {Flatten[AllOperators],
36 Table[{VOperatos[[2*r − 1]], VOperatos[[2*r]]}, {r,
37 1, (Length[VOperatos])/2}]};
38 VOpder = {Flatten[AllOperatorsder],
39 Table[{(Symbol /@

78
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40 ToString /@
41 Row /@ {{VOperatos[[2*r − 1]], VOperatos[[2*r]]}})[[1]]'[
42 t]}, {r, 1, Length[VOperatos]/2}]};
43 VOpt = {Flatten[AllOperatorst],
44 Table[{(Symbol /@
45 ToString /@
46 Row /@ {{VOperatos[[2*r − 1]], VOperatos[[2*r]]}})[[1]][
47 t]}, {r, 1, Length[VOperatos]/2}]};
48 (∗Define some convenient vectors for later∗)
49 Numbers =
50 Flatten[Table[{Table[
51 Table[{{i, 1}, {r, k}}, {k, 1, Length[AllOperators[[r]]]}], {r,
52 i + 1, Length[AllOperators]}],
53 Table[
54 Table[{{i, 2}, {r, k}}, {k, 1, Length[AllOperators[[r]]]}], {r,
55 i + 1, Length[AllOperators]}],
56 Table[
57 Table[{{i, 3}, {r, k}}, {k, 1, Length[AllOperators[[r]]]}], {r,
58 i + 1, Length[AllOperators]}]}, {i, 1,
59 Length[AllOperators] − 1}]];
60 Numbers =
61 Table[{Numbers[[2*r − 1]], Numbers[[2*r]]}, {r, 1,
62 Length[Numbers]/2}];
63 R = Table[Numbers[[r]][[1]], {r, 1, Length[Numbers]}];
64 kind = Table[Numbers[[r]][[2]], {r, 1, Length[Numbers]}];
65 V0neu = (Flatten[{Flatten[AllOperators0],
66 Table[{(Symbol /@
67 ToString /@
68 Row /@ {{VOperatos[[2*r − 1]], VOperatos[[2*r]]}})[[1]][
69 0]}, {r, 1, Length[VOperatos]/2}]}]);
70 v0 = Flatten[{Table[0.5, {r, 1, 9}],
71 Table[0.25, {r, 1, Length[Flatten[VOpt]] − 9}]}];
72 v0begin = Table[V0neu[[r]] == v0[[r]], {r, 1, Length[v0]}]
73 {a12[0] == 0.5, a22[0] == 0.5, a21[0] == 0.5, b12[0] == 0.5,
74 b22[0] == 0.5, b21[0] == 0.5, c12[0] == 0.5, c22[0] == 0.5,
75 c21[0] == 0.5, a12b12[0] == 0.25, a12b22[0] == 0.25,
76 a12b21[0] == 0.25, a12c12[0] == 0.25, a12c22[0] == 0.25,
77 a12c21[0] == 0.25, a22b12[0] == 0.25, a22b22[0] == 0.25,
78 a22b21[0] == 0.25, a22c12[0] == 0.25, a22c22[0] == 0.25,
79 a22c21[0] == 0.25, a21b12[0] == 0.25, a21b22[0] == 0.25,
80 a21b21[0] == 0.25, a21c12[0] == 0.25, a21c22[0] == 0.25,
81 a21c21[0] == 0.25, b12c12[0] == 0.25, b12c22[0] == 0.25,
82 b12c21[0] == 0.25, b22c12[0] == 0.25, b22c22[0] == 0.25,
83 b22c21[0] == 0.25, b21c12[0] == 0.25, b21c22[0] == 0.25,
84 b21c21[0] == 0.25}
85 (∗Parameters∗)
86 Time = 5.; (∗Time for the adiabatic evolution∗)
87 \[HBar] = 1.;
88 \[Omega] = 15;
89 \[Xi] = 10;
90 (∗Definitions∗)
91 (∗Generalized cumulant expansion method in 2nd order∗)
92 (∗Define symbolic expressions like a12b12∗)
93 \[Chi]2[X1_, X2_, r1_, r2_] :=
94 Which[r1 == r2, 0,
95 r1 < r2, (Symbol /@ ToString /@ Row /@ {{X1, X2}})[[1]][t],
96 r2 < r1, (Symbol /@ ToString /@ Row /@ {{X2, X1}})[[1]][t]]
97 (∗++++++++++++++++++++++++++++++++++++++++++++++++++∗)



80

98 (∗Three−operator−expansion∗)
99 \[Chi]3[X1_, X2_, X3_, r1_, r2_,
100 r3_] := (X1[t]*\[Chi]2[X2, X3, r2, r3] +
101 X2[t]*\[Chi]2[X1, X3, r1, r3] + X3[t]*\[Chi]2[X1, X2, r1, r2] −
102 2*X1[t]*X2[t]*X3[t])
103 (∗++++++++++++++++++++++++++++++++++++++++++++++++++∗)
104 (∗Four−operator−expansion∗)
105 \[Chi]4[X1_, X2_, X3_, X4_, r1_, r2_, r3_,
106 r4_] := (\[Chi]2[X1, X2, r1, r2]*\[Chi]2[X3, X4, r3, r4] + \[Chi]2[
107 X1, X3, r1, r3]*\[Chi]2[X2, X4, r2, r4] + \[Chi]2[X1, X4, r1,
108 r4]*\[Chi]2[X2, X3, r2, r3] − 2*X1[t]*X2[t]*X3[t]*X4[t])
109 (∗++++++++++++++++++++++++++++++++++++++++++++++++++∗)
110 (∗Five−operator−expansion∗)
111 \[Chi]5[X1_, X2_, X3_, X4_, X5_, r1_, r2_, r3_, r4_,
112 r5_] := (\[Chi]2[X1, X4, r1, r4]*\[Chi]2[X2, X5, r2, r5]*
113 X3[t] + \[Chi]2[X2, X5, r2, r5]*\[Chi]2[X3, X4, r3, r4]*
114 X1[t] + \[Chi]2[X1, X4, r1, r4]*\[Chi]2[X3, X5, r3, r5]*
115 X2[t] + \[Chi]2[X2, X4, r2, r4]*\[Chi]2[X3, X5, r3, r5]*
116 X1[t] + \[Chi]2[X1, X3, r1, r3]*\[Chi]2[X2, X5, r2, r5]*X4[t] −
117 2*X1[t]*X3[t]*
118 X4[t]*\[Chi]2[X2, X5, r2, r5] + \[Chi]2[X1, X2, r1, r2]*\[Chi]2[
119 X3, X5, r3, r5]*X4[t] −
120 2*X1[t]*X2[t]*
121 X4[t]*\[Chi]2[X3, X4, r3, r5] + \[Chi]2[X1, X3, r1, r3]*\[Chi]2[
122 X4, X5, r4, r5]*
123 X2[t] + \[Chi]2[X2, X3, r2, r3]*\[Chi]2[X4, X5, r4, r5]*
124 X1[t] + \[Chi]2[X1, X2, r1, r2]*\[Chi]2[X4, X5, r4, r5]*X3[t] −
125 2*X1[t]*X2[t]*X3[t]*\[Chi]2[X4, X5, r4, r5] +
126 X5[t]*(\[Chi]2[X1, X2, r1, r2]*\[Chi]2[X3, X4, r3, r4] + \[Chi]2[
127 X1, X3, r1, r3]*(\[Chi]2[X2, X4, r2, r4] − 2*X2[t]*X4[t]) −
128 2*(\[Chi]2[X1, X4, r1, r4]*X2[t]*X3[t] +
129 X3[t]*X4[t]*\[Chi]2[X1, X2, r1, r2] +
130 X1[t]*(\[Chi]2[X2, X4, r2, r4]*
131 X3[t] + \[Chi]2[X3, X4, r3, r4]*
132 X2[t] + \[Chi]2[X2, X3, r2, r3]*X4[t] −
133 3*X2[t]*X3[t]*X4[t]))) + \[Chi]2[X1, X5, r1,
134 r5]*(\[Chi]2[X2, X4, r2, r4]*X3[t] +
135 X2[t]*(\[Chi]2[X3, X4, r3, r4] − 2*X3[t]*X4[t]) + \[Chi]2[X2,
136 X3, r2, r3]*(X4[t] +
137 X5[t])));
138 (∗Expressions for the correct expansion (see mathematical \
139 derivation)∗)
140 Momone1[X1_, r1_] :=
141 X1[t] + Sum[
142 2^j*\[Chi]2[X1, VOp[[1]][[3*(j + k − 1) + 2]], r1, j + k], {j, 1,
143 l}]
144 Momone2[X1_, r1_] :=
145 X1[t] + Sum[
146 2^(j + 1)*(1 + 2^(j − 1))*\[Chi]2[X1,
147 VOp[[1]][[3*(j + k − 1) + 2]], r1, j + k], {j, 1, l}] +
148 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
149 2^(j1 + j2)*\[Chi]3[X1, VOp[[1]][[3*(j1 + k − 1) + 2]],
150 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, j1 + k, j2 + k]], {j1, 1,
151 l}], {j2, 1, l}]
152 Momone3[X1_, X2_, r1_, r2_] := \[Chi]2[X1, X2, r1, r2] +
153 Sum[2^(j + 1)*(1 + 2^(j − 1))*\[Chi]3[X1, X2,
154 VOp[[1]][[3*(j + k − 1) + 2]], r1, r2, j + k], {j, 1, l}] +
155 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
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156 2^(j1 + j2)*\[Chi]4[X1, X2, VOp[[1]][[3*(j1 + k − 1) + 2]],
157 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, j1 + k, j2 + k]], {j1,
158 1, l}], {j2, 1, l}]
159 Momone4[X1_, r1_] :=
160 X1[t] + Sum[
161 2^i*\[Chi]2[X1, VOp[[1]][[3*(i − 1) + 2]], r1, i], {i, 1, k}]
162 Momone5[X1_, r1_] :=
163 X1[t] + Sum[
164 2^(i + 1)*(1 + 2^(i − 1))*\[Chi]2[X1, VOp[[1]][[3*(i − 1) + 2]],
165 r1, i], {i, 1, k}] +
166 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
167 2^(i1 + i2)*\[Chi]3[X1, VOp[[1]][[3*(i1 − 1) + 2]],
168 VOp[[1]][[3*(i2 − 1) + 2]], r1, i1, i2]], {i1, 1, k}], {i2, 1,
169 k}]
170 Momone6[X1_, X2_, r1_, r2_] := \[Chi]2[X1, X2, r1, r2] +
171 Sum[2^(i + 1)*(1 + 2^(i − 1))*\[Chi]3[X1, X2,
172 VOp[[1]][[3*(i − 1) + 2]], r1, r2, i], {i, 1, k}] +
173 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
174 2^(i1 + i2)*\[Chi]4[X1, X2, VOp[[1]][[3*(i1 − 1) + 2]],
175 VOp[[1]][[3*(i2 − 1) + 2]], r1, r2, i1, i2]], {i1, 1, k}], {i2,
176 1, k}]
177 (∗+++++++++++++++++++++++++++++++++++++++++++++++++++++∗)
178 (∗Ehrenfest theorem with operator multiplied from the right∗)
179 (∗r1 <= k∗)
180 Mom3r1[X1_, X2_, r1_, r2_, k2_] := \[Chi]2[X1, X2, r1, r2] +
181 Sum[2^j*Which[
182 j + k != r2, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]], r1,
183 r2, j + k], j + k == r2,
184 Which[k2 == 1, 0, k2 == 2, \[Chi]2[X1, X2, r1, r2],
185 k2 == 3, \[Chi]2[X1, X2, r1, r2]]], {j, 1, l}]
186 Mom4r1[X1_, X2_, r1_, r2_, k2_] := \[Chi]2[X1, X2, r1, r2] +
187 Sum[2^(j + 1)*(1 + 2^(j − 1))*
188 Which[j + k != r2, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]],
189 r1, r2, j + k], j + k == r2,
190 Which[k2 == 1, 0, k2 == 2, \[Chi]2[X1, X2, r1, r2],
191 k2 == 3, \[Chi]2[X1, X2, r1, r2]]], {j, 1, l}] +
192 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
193 2^(j1 + j2)*
194 Which[j1 + k != r2 != j2 + k, \[Chi]4[X1, X2,
195 VOp[[1]][[3*(j1 + k − 1) + 2]],
196 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, j1 + k, j2 + k],
197 j1 + k == r2 != j2 + k,
198 Which[k2 == 1, 0,
199 k2 == 2 || k2 == 3, \[Chi]3[X1, X2,
200 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, j2 + k]],
201 j1 + k != r2 == j2 + k,
202 Which[k2 == 1, 0,
203 k2 == 2 || k2 == 3, \[Chi]3[X1, X2,
204 VOp[[1]][[3*(j1 + k − 1) + 2]], r1, r2, j1 + k]]]], {j1, 1,
205 l}], {j2, 1, l}]
206 Mom5r1[X1_, X2_, X3_, r1_, r2_, r3_, k2_] :=
207 Which[r2 != r3, \[Chi]3[X1, X2, X3, r1, r2, r3], r2 == r3,
208 Which[k2 == 1, 0, k2 == 2 || k2 == 3, \[Chi]2[X1, X2, r1, r2]]] +
209 Sum[2^(j + 1)*(1 + 2^(j − 1))*
210 Which[j + k != r2 != r3, \[Chi]4[X1, X2, X3,
211 VOp[[1]][[3*(j + k − 1) + 2]], r1, r2, r3, j + k],
212 j + k == r2 != r3,
213 Which[k2 == 1, 0, k2 == 2, \[Chi]3[X1, X2, X3, r1, r2, r3],



82

214 k2 == 3, \[Chi]3[X1, X2, X3, r1, r2, r3]], j + k != r2 == r3,
215 Which[k2 == 1, 0,
216 k2 == 2, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]], r1, r2,
217 j + k], k2 == 3, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]],
218 r1, r2, j + k]]], {j, 1, l}] +
219 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
220 2^(j1 + j2)*
221 Which[j1 + k != r2 != r3 != j2 + k, \[Chi]5[X1, X2, X3,
222 VOp[[1]][[3*(j1 + k − 1) + 2]],
223 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j1 + k, j2 + k],
224 j1 + k == r2 != r3 != j2 + k,
225 Which[k2 == 1, 0,
226 k2 == 2 || k2 == 3, \[Chi]4[X1, X2, X3,
227 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j2 + k]],
228 j1 + k != r2 == j2 + k != r3,
229 Which[k2 == 1, 0,
230 k2 == 2 || k2 == 3, \[Chi]4[X1, X2, X3,
231 VOp[[1]][[3*(j1 + k − 1) + 2]], r1, r2, r3, j1 + k]],
232 j1 + k != r2 == r3 != j2 + k,
233 Which[k2 == 1, 0,
234 k2 == 2 || k2 == 3, \[Chi]4[X1, X2,
235 VOp[[1]][[3*(j1 + k − 1) + 2]],
236 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j1 + k,
237 j2 + k]]]], {j1, 1, l}], {j2, 1, l}]
238 (∗k <= r1 <= k + l∗)
239 Mom3r2[X1_, X2_, r1_, r2_, k2_] := \[Chi]2[X1, X2, r1, r2] +
240 Sum[2^i*Which[
241 i != r2, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i],
242 i == r2,
243 Which[k2 == 1, 0, k2 == 2, \[Chi]2[X1, X2, r1, r2],
244 k2 == 3, \[Chi]2[X1, X2, r1, r2]]], {i, 1, k}]
245 Mom4r2[X1_, X2_, r1_, r2_, k2_] := \[Chi]2[X1, X2, r1, r2] +
246 Sum[2^(i + 1)*(1 + 2^(i − 1))*
247 Which[i != r2, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2,
248 i], i == r2,
249 Which[k2 == 1, 0, k2 == 2, \[Chi]2[X1, X2, r1, r2],
250 k2 == 3, \[Chi]2[X1, X2, r1, r2]]], {i, 1, k}] +
251 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
252 2^(i1 + i2)*
253 Which[i1 != r2 != i2, \[Chi]4[X1, X2,
254 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
255 r2, i1, i2], i1 == r2 != i2,
256 Which[k2 == 1, 0,
257 k2 == 2 || k2 == 3, \[Chi]3[X1, X2,
258 VOp[[1]][[3*(i2 − 1) + 2]], r1, r2, i2]], i1 != r2 == i2,
259 Which[k2 == 1, 0,
260 k2 == 2 || k2 == 3, \[Chi]3[X1, X2,
261 VOp[[1]][[3*(i1 − 1) + 2]], r1, r2, i1]]]], {i1, 1, k}], {i2,
262 1, k}]
263 Mom5r2[X1_, X2_, X3_, r1_, r2_, r3_,
264 k2_] := \[Chi]3[X1, X2, X3, r1, r2, r3] +
265 Sum[2^(i + 1)*(1 + 2^(i − 1))*
266 Which[i != r2 != r3, \[Chi]4[X1, X2, X3,
267 VOp[[1]][[3*(i − 1) + 2]], r1, r2, r3, i], i == r2 != r3,
268 Which[k2 == 1, 0, k2 == 2, \[Chi]3[X1, X2, X3, r1, r2, r3],
269 k2 == 3, \[Chi]3[X1, X2, X3, r1, r2, r3]], i != r2 == r3,
270 Which[k2 == 1, 0,
271 k2 == 2, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i],
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272 k2 == 3, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2,
273 i]]], {i, 1, k}] +
274 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
275 2^(i1 + i2)*
276 Which[i1 != r2 != r3 != i2, \[Chi]5[X1, X2, X3,
277 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
278 r2, r3, i1, i2], i1 == r2 != r3 != i2,
279 Which[k2 == 1, 0,
280 k2 == 2 || k2 == 3, \[Chi]4[X1, X2, X3,
281 VOp[[1]][[3*(i2 − 1) + 2]], r1, r2, r3, i2]],
282 i1 != r2 == i2 != r3,
283 Which[k2 == 1, 0,
284 k2 == 2 || k2 == 3, \[Chi]4[X1, X2, X3,
285 VOp[[1]][[3*(i1 − 1) + 2]], r1, r2, r3, i1]],
286 i1 != r2 == r3 != i2,
287 Which[k2 == 1, 0,
288 k2 == 2 || k2 == 3, \[Chi]4[X1, X2,
289 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
290 r2, r3, i1, i2]]]], {i1, 1, k}], {i2, 1, k}]
291 (∗Ehrenfest theorem with operator multiplied from the left∗)
292 (∗r2 <= k∗)
293 Mom3l1[X1_, X2_, r1_, r2_, k1_] := \[Chi]2[X1, X2, r1, r2] +
294 Sum[2^j*Which[
295 j + k != r1, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]], r1,
296 r2, j + k], j + k == r1,
297 Which[k1 == 3, 0, k1 == 2, \[Chi]2[X1, X2, r1, r2],
298 k1 == 1, \[Chi]2[X1, X2, r1, r2]]], {j, 1, l}]
299 Mom4l1[X1_, X2_, r1_, r2_, k1_] := \[Chi]2[X1, X2, r1, r2] +
300 Sum[2^(j + 1)*(1 + 2^(j − 1))*
301 Which[j + k != r1, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]],
302 r1, r2, j + k], j + k == r1,
303 Which[k1 == 3, 0, k1 == 2, \[Chi]2[X1, X2, r1, r2],
304 k1 == 1, \[Chi]2[X1, X2, r1, r2]]], {j, 1, l}] +
305 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
306 2^(j1 + j2)*
307 Which[j1 + k != r1 != j2 + k, \[Chi]4[X1, X2,
308 VOp[[1]][[3*(j1 + k − 1) + 2]],
309 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, j1 + k, j2 + k],
310 j1 + k == r1 != j2 + k,
311 Which[k1 == 3, 0,
312 k1 == 2 || k1 == 1, \[Chi]3[X1, X2,
313 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, j2 + k]],
314 j1 + k != r1 == j2 + k,
315 Which[k1 == 3, 0,
316 k1 == 2 || k1 == 1, \[Chi]3[X1, X2,
317 VOp[[1]][[3*(j1 + k − 1) + 2]], r1, r2, j1 + k]]]], {j1, 1,
318 l}], {j2, 1, l}]
319 Mom5l1[X1_, X2_, X3_, r1_, r2_, r3_, k1_] :=
320 Which[r1 != r3, \[Chi]3[X1, X2, X3, r1, r2, r3], r1 == r3,
321 Which[k1 == 3, 0, k1 == 2 || k1 == 1, \[Chi]2[X1, X2, r1, r2]]] +
322 Sum[2^(j + 1)*(1 + 2^(j − 1))*
323 Which[j + k != r1 != r3, \[Chi]4[X1, X2, X3,
324 VOp[[1]][[3*(j + k − 1) + 2]], r1, r2, r3, j + k],
325 j + k == r1 != r3,
326 Which[k1 == 3, 0, k1 == 2, \[Chi]3[X1, X2, X3, r1, r2, r3],
327 k1 == 1, \[Chi]3[X1, X2, X3, r1, r2, r3]], j + k != r1 == r3,
328 Which[k1 == 3, 0,
329 k1 == 2, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]], r1,
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330 r2, (j + k)],
331 k1 == 1, \[Chi]3[X1, X2, VOp[[1]][[3*(j + k − 1) + 2]], r1,
332 r2, (j + k)]]], {j, 1, l}] +
333 Sum[Sum[Which[j1 == j2, 0, j1 != j2,
334 2^(j1 + j2)*
335 Which[j1 + k != r1 != r3 != j2 + k, \[Chi]5[X1, X2, X3,
336 VOp[[1]][[3*(j1 + k − 1) + 2]],
337 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j1 + k, j2 + k],
338 j1 + k == r1 != r3 != j2 + k,
339 Which[k1 == 3, 0,
340 k1 == 2 || k1 == 1, \[Chi]4[X1, X2, X3,
341 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j2 + k]],
342 j1 + k != r1 == j2 + k != r3,
343 Which[k1 == 3, 0,
344 k1 == 2 || k1 == 1, \[Chi]4[X1, X2, X3,
345 VOp[[1]][[3*(j1 + k − 1) + 2]], r1, r2, r3, j1 + k]],
346 j1 + k != r1 == r3 != j2 + k,
347 Which[k1 == 3, 0,
348 k1 == 2 || k1 == 1, \[Chi]4[X1, X2,
349 VOp[[1]][[3*(j1 + k − 1) + 2]],
350 VOp[[1]][[3*(j2 + k − 1) + 2]], r1, r2, r3, j1 + k,
351 j2 + k]]]], {j1, 1, l}], {j2, 1, l}]
352 (∗k <= r2 <= k + l∗)
353 Mom3l2[X1_, X2_, r1_, r2_, k1_] := \[Chi]2[X1, X2, r1, r2] +
354 Sum[2^i*Which[
355 i != r1, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i],
356 i == r1,
357 Which[k1 == 3, 0, k1 == 2, \[Chi]2[X1, X2, r1, r2],
358 k1 == 1, \[Chi]2[X1, X2, r1, r2]]], {i, 1, k}]
359 Mom4l2[X1_, X2_, r1_, r2_, k1_] := \[Chi]2[X1, X2, r1, r2] +
360 Sum[2^(i + 1)*(1 + 2^(i − 1))*
361 Which[i != r1, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2,
362 i], i == r1,
363 Which[k1 == 3, 0, k1 == 2, \[Chi]2[X1, X2, r1, r2],
364 k1 == 1, \[Chi]2[X1, X2, r1, r2]]], {i, 1, k}] +
365 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
366 2^(i1 + i2)*
367 Which[i1 != r1 != i2, \[Chi]4[X1, X2,
368 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
369 r2, i1, i2], i1 == r1 != i2,
370 Which[k1 == 3, 0,
371 k1 == 2 || k1 == 1, \[Chi]3[X1, X2,
372 VOp[[1]][[3*(i2 − 1) + 2]], r1, r2, i2]], i1 != r1 == i2,
373 Which[k1 == 3, 0,
374 k1 == 2 || k1 == 1, \[Chi]3[X1, X2,
375 VOp[[1]][[3*(i1 − 1) + 2]], r1, r2, i1]]]], {i1, 1, k}], {i2,
376 1, k}]
377 Mom5l2[X1_, X2_, X3_, r1_, r2_, r3_,
378 k1_] := \[Chi]3[X1, X2, X3, r1, r2, r3] +
379 Sum[2^(i + 1)*(1 + 2^(i − 1))*
380 Which[i != r2 != r3, \[Chi]4[X1, X2, X3,
381 VOp[[1]][[3*(i − 1) + 2]], r1, r2, r3, i], i == r1 != r3,
382 Which[k1 == 3, 0, k1 == 2, \[Chi]3[X1, X2, X3, r1, r2, r3],
383 k1 == 1, \[Chi]3[X1, X2, X3, r1, r2, r3]], i != r1 == r3,
384 Which[k1 == 3, 0,
385 k1 == 2, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i],
386 k1 == 1, \[Chi]3[X1, X2, VOp[[1]][[3*(i − 1) + 2]], r1, r2,
387 i]]], {i, 1, k}] +



85

388 Sum[Sum[Which[i1 == i2, 0, i1 != i2,
389 2^(i1 + i2)*
390 Which[i1 != r1 != r3 != i2, \[Chi]5[X1, X2, X3,
391 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
392 r2, r3, i1, i2], i1 == r1 != r3 != i2,
393 Which[k1 == 3, 0,
394 k1 == 2 || k1 == 1, \[Chi]4[X1, X2, X3,
395 VOp[[1]][[3*(i2 − 1) + 2]], r1, r2, r3, i2]],
396 i1 != r1 == i2 != r3,
397 Which[k1 == 3, 0,
398 k1 == 2 || k1 == 1, \[Chi]4[X1, X2, X3,
399 VOp[[1]][[3*(i1 − 1) + 2]], r1, r2, r3, i1]],
400 i1 != r1 == r3 != i2,
401 Which[k1 == 3, 0,
402 k1 == 2 || k1 == 1, \[Chi]4[X1, X2,
403 VOp[[1]][[3*(i1 − 1) + 2]], VOp[[1]][[3*(i2 − 1) + 2]], r1,
404 r2, r3, i1, i2]]]], {i1, 1, k}], {i2, 1, k}]
405 (∗The differential equations can be expressed more thoroughly by
406 introducing the RHS of equation as functions∗)
407 (∗Equations with only one−operator averages∗)
408 f[x_, r_] :=
409 I/\[HBar]*\[Xi]*(1 − 2*VOp[[1]][[3*(r − 1) + 2]][t])*(1 − t/Time) +
410 I/\[HBar]*2^(r + 1)*(t/
411 Time)*(\[Omega]*Momone1[x, r] − (1 + 2^(r − 1))*Momone2[x, r] −
412 Sum[Which[i == r, 0, i != r,
413 2^i*Momone3[x, VOp[[1]][[3*(i − 1) + 2]], r, i]], {i, 1, k}])
414 g[x_, r_] :=
415 I/\[HBar]*\[Xi]*(1 − 2*VOp[[1]][[3*(r − 1) + 2]][t])*(1 − t/Time) +
416 I/\[HBar]*2^(r − k + 1)*(t/
417 Time)*(\[Omega]*Momone4[x, r] − (1 + 2^(r − k − 1))*
418 Momone5[x, r] −
419 Sum[Which[j == r − k, 0, j != r − k,
420 2^j*Momone6[x, VOp[[1]][[3*(j + k − 1) + 2]], r, j + k]], {j,
421 1, l}])
422 h[r_] := −I/\[HBar]*\[Xi]*(VOp[[1]][[3*(r − 1) + 1]][t] −
423 VOp[[1]][[3*(r − 1) + 3]][t])*(1 − t/Time)
424
425 (∗Equations with two−operator Averages∗)
426 (∗dO1/dt∗O2∗)
427 (∗r1 <= k ∗)
428 Fr[x1_, x2_, r1_, r2_, k2_] :=
429 I/\[HBar]*\[Xi]*(x2[t] −
430 2*\[Chi]2[VOp[[1]][[3*(r1 − 1) + 2]], x2, r1, r2])*(1 −
431 t/Time) +
432 I/\[HBar]*2^(r1 + 1)*(\[Omega]*
433 Mom3r1[x1, x2, r1, r2, k2] − (1 + 2^(r1 − 1))*
434 Mom4r1[x1, x2, r1, r2, k2] −
435 Sum[Which[i == r1, 0, i != r1,
436 2^i*Mom5r1[x1, x2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i,
437 k2]], {i, 1, k}])*(t/Time);
438 (∗O1∗dO2/dt∗)
439 (∗r2 <= k ∗)
440 Fl[x1_, x2_, r1_, r2_, k1_] :=
441 I/\[HBar]*\[Xi]*(x1[t] −
442 2*\[Chi]2[x1, VOp[[1]][[3*(r2 − 1) + 2]], r1, r2])*(1 −
443 t/Time) +
444 I/\[HBar]*2^(r2 + 1)*(\[Omega]*
445 Mom3l1[x1, x2, r1, r2, k1] − (1 + 2^(r2 − 1))*
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446 Mom4l1[x1, x2, r1, r2, k1] −
447 Sum[Which[i == r2, 0, i != r2,
448 2^i*Mom5l1[x1, x2, VOp[[1]][[3*(i − 1) + 2]], r1, r2, i,
449 k1]], {i, 1, k}])*(t/Time);
450 (∗dO1/dt∗O2∗)
451 (∗k <= r1 <= k + l∗)
452 Gr[x1_, x2_, r1_, r2_, k2_] :=
453 I/\[HBar]*\[Xi]*(x2[t] −
454 2*\[Chi]2[VOp[[1]][[3*(r1 − 1) + 2]], x2, r1, r2])*(1 −
455 t/Time) +
456 I/\[HBar]*2^(r1 + 1 − k)*(\[Omega]*
457 Mom3r2[x1, x2, r1, r2, k2] − (1 + 2^(r1 − k − 1))*
458 Mom4r2[x1, x2, r1, r2, k2] −
459 Sum[Which[j + k == r1, 0, j + k != r1,
460 2^j*Mom5r2[x1, x2, VOp[[1]][[3*(j + k − 1) + 2]], r1, r2,
461 j + k, k2]], {j, 1, l}])*(t/Time);
462 (∗O1∗dO2/dt∗)
463 (∗k <= r2 <= k + l∗)
464 Gl[x1_, x2_, r1_, r2_, k1_] :=
465 I/\[HBar]*\[Xi]*(x1[t] −
466 2*\[Chi]2[x1, VOp[[1]][[3*(r2 − 1) + 2]], r1, r2])*(1 −
467 t/Time) +
468 I/\[HBar]*2^(r2 + 1 − k)*(\[Omega]*
469 Mom3l2[x1, x2, r1, r2, k1] − (1 + 2^(r2 − k − 1))*
470 Mom4l2[x1, x2, r1, r2, k1] −
471 Sum[Which[j + k == r2, 0, j + k != r2,
472 2^j*Mom5l2[x1, x2, VOp[[1]][[3*(j + k − 1) + 2]], r1, r2,
473 j + k, k1]], {j, 1, l}])*(t/Time);
474 Hr[x2_, r1_,
475 r2_] := −I/\[HBar]*\[Xi]*(\[Chi]2[VOp[[1]][[3*(r1 − 1) + 1]], x2,
476 r1, r2] − \[Chi]2[VOp[[1]][[3*(r1 − 1) + 3]], x2, r1, r2])*(1 −
477 t/Time);
478 Hl[x1_, r1_,
479 r2_] := −I/\[HBar]*\[Xi]*(\[Chi]2[VOp[[1]][[3*(r2 − 1) + 1]], x1,
480 r2, r1] − \[Chi]2[VOp[[1]][[3*(r2 − 1) + 3]], x1, r2, r1])*(1 −
481 t/Time);
482
483 (∗Construction of Ehrenfest system∗)
484 R = Table[Numbers[[r]][[1]], {r, 1, Length[Numbers]}];
485 kind = Table[Numbers[[r]][[2]], {r, 1, Length[Numbers]}];
486 R1 = Flatten[Table[R[[2*r − 1]], {r, 1, Length[Numbers]/2}]];
487 R2 = Flatten[Table[R[[2*r]], {r, 1, Length[Numbers]/2}]];
488 kind1 = Flatten[Table[kind[[2*r − 1]], {r, 1, Length[kind]/2}]];
489 kind2 = Flatten[Table[kind[[2*r]], {r, 1, Length[kind]/2}]];
490 (∗O2 = identity and O1 = identity∗)
491 Eqn1 = Flatten[{Table[{VOpder[[1]][[3*(i − 1) + 1]] ==
492 f[VOp[[1]][[3*(i − 1) + 1]], i],
493 VOpder[[1]][[3*(i − 1) + 2]] == h[i],
494 VOpder[[1]][[
495 3*(i − 1) + 3]] == −f[VOp[[1]][[3*(i − 1) + 3]], i]}, {i, 1,
496 k}], Table[{VOpder[[1]][[3*(j + k − 1) + 1]] ==
497 g[VOp[[1]][[3*(j + k − 1) + 1]], j + k],
498 VOpder[[1]][[3*(j + k − 1) + 2]] == h[j + k],
499 VOpder[[1]][[
500 3*(j + k − 1) + 3]] == −g[VOp[[1]][[3*(j + k − 1) + 3]],
501 j + k]}, {j, 1, l}]}];
502
503 (∗O2 != identity and O1 != identity∗)
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504 Eqn2 = Table[
505 VOpder[[2]][[w]][[
506 1]] == (Which[kind1[[w]] == 1,
507 Which[R1[[w]] <= k,
508 Fr[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
509 kind2[[w]]], R1[[w]] > k,
510 Gr[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
511 kind2[[w]]]], kind1[[w]] == 2,
512 Which[R1[[w]] <= k, Hr[VOp[[2]][[w]][[2]], R1[[w]], R2[[w]]],
513 R1[[w]] > k, Hr[VOp[[2]][[w]][[2]], R1[[w]], R2[[w]]]],
514 kind1[[w]] ==
515 3, −Which[R1[[w]] <= k,
516 Fr[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
517 kind2[[w]]], R1[[w]] > k,
518 Gr[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
519 kind2[[w]]]]]) + (Which[kind2[[w]] == 1,
520 Which[R2[[w]] <= k,
521 Fl[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
522 kind1[[w]]], R2[[w]] > k,
523 Gl[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
524 kind1[[w]]]], kind2[[w]] == 2,
525 Which[R2[[w]] <= k, Hl[VOp[[2]][[w]][[1]], R1[[w]], R2[[w]]],
526 R2[[w]] > k, Hl[VOp[[2]][[w]][[1]], R1[[w]], R2[[w]]]],
527 kind2[[w]] ==
528 3, −Which[R2[[w]] <= k,
529 Fl[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
530 kind1[[w]]], R2[[w]] > k,
531 Gl[VOp[[2]][[w]][[1]], VOp[[2]][[w]][[2]], R1[[w]], R2[[w]],
532 kind1[[w]]]]]), {w, 1, Length[VOp[[2]]]}];
533 Eqn = Flatten[{Eqn1, Eqn2}];
534 VOpt = Flatten[VOpt];
535 EQN = {Eqn, v0begin};
536 (∗Define Butcher tableau for the Runge−Kutta−Fehlberg 4(5) method∗)
537 Fehlbergamat = {
538 {1 / 4}, {3 / 32, 9 / 32}, {1932 / 2197, −7200 / 2197,
539 7296 / 2197}, {439 / 216, −8, 3680 / 513, −845 / 4104}, {−8 / 27,
540 2, −3544 / 2565, 1859 / 4104, −11 / 40}};
541 Fehlbergbvec = {25 / 216, 0, 1408 / 2565, 2197 / 4104, −1 / 5, 0};
542 Fehlbergcvec = {81 / 4, 3 / 8, 12 / 13, 1, 1 / 2};
543 Fehlbergevec = {−1 /360, 0, 128 / 4275,
544 2197 / 75240, −1 / 50, −2 / 55};
545 FehlbergCoefficients[4, p_] :=
546 N[{Fehlbergamat, Fehlbergbvec, Fehlbergcvec, Fehlbergevec}, p];
547 (∗Solve system∗)
548 sol = NDSolve[EQN, VOpt, {t, 0, Time},
549 Method −> {"ExplicitRungeKutta",
550 "Coefficients" −> FehlbergCoefficients, "DifferenceOrder" −> 4,
551 "EmbeddedDifferenceOrder" −> 5, "StiffnessTest" −> False}];
552 (∗sol = NDSolve[EQN,VOpt,{t,0,Time},Method−>Automatic];∗)
553
554 (∗General Ehrenfest ODE system obtained by Mathematica (equations coincide with
555 the ones obtained by Julia)∗)
556 Eqn
557
558 (∗Plot of the bit−averages in second−order cumulant expansion for
559 number 15 depending on s(coincides with Julia as well)∗)
560
561 s = 1.2
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562 Show[Plot[Re[Evaluate[VOpt[[2]] /. sol]], {t, 0, Time},
563 PlotStyle −> Red, PlotRange −> {{0, Time}, {−0.1*s, s*1.1}}],
564 Plot[Re[Evaluate[VOpt[[5]] /. sol]], {t, 0, Time}, PlotStyle −> Blue,
565 PlotRange −> {{0, Time}, {−0.1*s, s*1.1}}],
566 Plot[Re[Evaluate[VOpt[[8]] /. sol]], {t, 0, Time},
567 PlotStyle −> Green, PlotRange −> {{0, Time}, {−0.1*s, s*1.1}}]]

Figure B.1: Bi-prime factorization problem for ω = 15 in second-order expansion obtained
via Mathematica.



Appendix C

Implementation of The Quantum
Dynamics and QuantumCumulants.jl

1 using QuantumCumulants
2 using QuantumOptics
3 using OrdinaryDiffEq, ModelingToolkit
4 using QuantumOpticsBase
5 using ForwardDiff
6
7 # Toy-model ω = 15
8
9 # Quantum Cumulants

10
11
12 # define parameters, variables as well as functions
13 @cnumbers ω n k l T ξ ℏ
14 @syms t::Real
15 @register r(t)
16
17 # traget number, time as well as parameter ξ = Ξ
18 value = 15
19 Time = 10.
20 ξ= 10
21
22 # order of cumulant expansion
23 od = 1
24
25 # dynamical bits of a/b
26 K = 2
27 L = 1
28 # total number of dynamical bits
29 N = K + L
30
31 # define Hilbert space
32 Hn = [NLevelSpace(Symbol(:atom,i),2) for i=1:N]
33 H = S1(Hn...)
34
35 # define transition operators
36 σ(i,j,w) = Transition(H,Symbol(:σ, w),i,j,w)

89
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37
38 # write primes in binary representation
39 a = 1 + sum(2^i*σ(2,2,i) for i=1:K)
40 b = 1 + sum(2^j*σ(2,2,j+K) for j=1:L)
41
42 # construct Hamiltonian H(t)
43 # initial Hamiltonian H0
44 H0 = −ξ*sum(σ(1,2,i) + σ(2,1,i) for i=1:N)
45
46 # define s variable as function
47 function S(t)
48 return t/Time
49 end
50
51 # target Hamiltonian Hp
52 Hp = (1*ω − a*b)^2
53
54 # full Hamiltonian H(t)
55 Ham = (1 − S(t))*H0 + S(t)*Hp
56
57 # operators for ODE system
58 ops1 = [σ(1,2,i) for i=1:N]
59 ops2 = [σ(2,2,i) for i=1:N]
60 ops = []
61
62 # 1st order
63 for i=1:N
64 push!(ops,ops1[i])
65 push!(ops,ops2[i])
66 end
67
68
69 me = meanfield(ops,Ham);
70 me_expanded = cumulant_expansion(me,od);
71 mean = complete(me_expanded);
72 mean
73
74 # initial value vector
75 if od == 1
76 u0 = zeros(ComplexF64, 2*N)
77 for i=1:2*N
78 u0[i] = 0.5
79 end
80 end
81
82 @named sys = ODESystem(me_expanded)
83
84 p0 = (ω=>value, n=>N,k=>K,l=>L,T=>Time,ξ=> Ξ,ℏ=>1.)
85 prob = ODEProblem(sys,u0,(0.0,Time),p0)
86 sol = solve(prob,RK4())
87
88 t = sol.t;
89
90
91 # Quantum Dynamics
92
93
94 # basis for spin-1/2
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95 onespin = SpinBasis(1//2);
96
97 # some parameters
98 L1 = Ξ
99 L2 = L1*1
100 W = length(t)
101 s = LinRange(0, 1, W );
102 Xi = 1.
103
104 # composite basis
105 allspin = onespin
106 for i=1:(N−1)
107 allspin = tensor(allspin, onespin)
108 end
109
110 # Pauli matrices acting on one qubit
111 sz = sigmaz(onespin);
112 sx = sigmax(onespin);
113 sy = sigmay(onespin);
114
115 # transition operators
116 sp = 1/2*(sx + 1im*sy);
117 sm = 1/2*(sx − 1im*sy);
118
119 # identity operator
120 id = identityoperator(allspin);
121
122 # projector onto ith Hilbert space and its identity
123 opz = 1. /2*(identityoperator(onespin)−sz);
124 id2 = identityoperator(onespin)
125
126 #defining some operator vectors
127 Sz = []
128 Sp = []
129
130 for i=1:N
131 push!(Sz,embed(allspin,i,opz))
132 end
133
134 for i=1:N
135 push!(Sp,embed(allspin,i,sp))
136
137 end
138
139 # a and b in binary representation
140 A = id
141 B = id
142
143 for i=1:K
144 A = A + (2^(i))*Sz[i]
145 end
146 for i=1:L
147 B = B + (2^(i))*Sz[i+K]
148 end
149
150 # Problem Hamiltonian Hp
151 HpQ = (value*id−A*B)^2
152
153 # some matrices
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154 sigx = zeros(N,length(s))
155 sigy = zeros(N,length(s))
156 sigz = zeros(N,length(s))
157 Opz = zeros(N,length(s))
158 Spl = zeros(N,length(s))
159
160 sigp = zeros(N)
161 sigm = zeros(N)
162
163 # construction of inital Hamiltonian H0
164 H0Q = −L1*(embed(allspin,1,sx))
165
166 for i=2:K−1
167 H0Q = H0Q − L1*(embed(allspin,i,sx))
168 end
169 for i=K:N
170 H0Q = H0Q − L2*Xi*(embed(allspin,i,sx))
171 end
172
173
174 # linear interpolation with s = t/T
175 # exact Energy spectrum of total Hamiltonian H = (1 -s)* H0+s*Hp
176 Eall = zeros(length(s), 2^N);
177 for i=1:length(s)
178 HQ = (1−s[i])*H0Q+s[i]*HpQ;
179 Eall[i,:] = eigenstates(DenseOperator(HQ))[1]
180 end
181
182 # exact ground state
183 psi_g = []
184 for i=1:length(s)
185 HQ = (1−s[i])*H0Q+s[i]*HpQ;
186 push!(psi_g,eigenstates(DenseOperator(HQ))[2][1])
187 end
188
189 # total evolution time
190 T = Time
191
192 # initial state , i.e. ground state of H0
193 psi0 = eigenstates(DenseOperator(H0Q))[2][1]
194
195 # time - dependent Hamiltonian as function
196 function Ht(t, psi)
197 return (1−t/T)*H0Q+t/T*HpQ
198 end
199
200 # time evolution using time-dependent SchrÃ¶dinger equation
201 tout1 , psi1 = timeevolution.schroedinger_dynamic(s*T, psi0 , Ht; maxiters=1e7);
202
203 # correct ground state solution of target Hamiltonian Hp
204 psiL = eigenstates(DenseOperator(HpQ))[2][1]
205
206 # overlaps, hence, fidelity and "remaining in ground state"
207 P_sol1 = [abs.((dagger(psi1[i])*psiL)).^2 for i = 1: length(s)]
208 P_sol2 = [abs.((dagger(psi1[i])*psi_g[i,1])).^2 for i = 1: length(s)]
209
210
211
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212 for i=1:N
213 for u=1:length(s)
214 sigx[i,u]=real.(expect(embed(allspin,i,sx),psi1[u]))
215 sigy[i,u]= real.(expect(embed(allspin,i,sy),psi1[u]))
216 sigz[i,u]= real.(expect(embed(allspin,i,sz),psi1[u]))
217 Opz[i,u]= real.(expect(Sz[i],psi1[u]))
218 Spl[i,u]= real.(expect(Sp[i],psi1[u]))
219 end
220 end
221
222
223 # Plots
224
225 using PyPlot
226
227 figure(figsize=[12, 8])
228 PyPlot.xticks(fontsize=25)
229 PyPlot.yticks(fontsize=25)
230 PyPlot.xlim(0,1.2)
231 PyPlot.ylim(0.,1.3)
232 PyPlot.xlabel("s",fontsize=25)
233 PyPlot.ylabel(L"⟨ a_i ⟩,⟨ b_j ⟩$",fontsize=25)
234 PyPlot.xticks(fontsize=25)
235 PyPlot.yticks(fontsize=25)
236
237 #Quantum Dynamics
238 for i=1:N
239 if i == 1
240 PyPlot.plot(s,Opz[i,:],linewidth=8,alpha=0.25,label = L"$⟨ a_1 ⟩_{QD}$",color = "C0"

)
241 elseif i ==2
242 PyPlot.plot(s,Opz[i,:],linewidth=8,alpha=0.25,label = L"$⟨ a_2 ⟩_{QD}$",color = "C1"

)
243 else
244 PyPlot.plot(s,Opz[i,:],linewidth=8,alpha=0.25,label = L"$⟨ b_i ⟩_{QD}$",color = "C2"

)
245 end
246 end
247
248 #Quantum Cumulants
249 for i=1:N
250 if i == 1
251 PyPlot.plot(t/T, real.(sol[σ(2,2,i)]),linewidth=3,alpha = 1,label = L"$⟨ a_1 ⟩_{QC}$

",color = "C0")
252 elseif i == 2
253 PyPlot.plot(t/T, real.(sol[σ(2,2,i)]),linewidth=3,alpha = 1,label = L"$⟨ a_2 ⟩_{QC}$

",color = "C1")
254 else
255 PyPlot.plot(t/T, real.(sol[σ(2,2,i)]),linewidth=3,alpha = 1,label = L"$⟨ b_1 ⟩_{QC}$

",color = "C2")
256 end
257 end
258
259
260
261 legend(fontsize=25,loc=4)
262 savefig("Cumulants_1st_order_15.png")
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