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Abstract
We study a generic laser model based on a cold ensemble of clock atoms in an optical
resonator. The atoms are modelled as two-level point particles incoherently pumped
from the side. Collective effects arising from dipole-dipole interaction of the closely
spaced atoms are included and motion of the particles along the cavity axis is described
in a semi-classical treatment. The light field inside the resonator is described by a single
frequency mode and the atoms couple to it via the common Tavis-Cummings interaction.
The intracavity photons leak through the cavity mirrors with some loss rate, which is
much higher than the spontaneous emission rate of a clock atom.

Due to technical noise issues it seems to be very challenging to go below the striking
spectral linewidth limit of approximately the Hz-level reached nowadays by ordinarily
operating laser systems. Hence a concept, already invented more than two decades ago,
is receiving more attention in the last few years, the so-called superradiant laser. A
laser that has been predicted to go beyond the mHz-level with an extreme frequency
stability.

To analyze different properties of such a superradiant laser we use numerical methods
to directly simulate systems of a few atoms arranged along the cavity axis. By scanning
the experimentally most tunable system parameters we find regimes in which lasing,
cooling and trapping is possible by only pumping the atoms incoherently. For sufficiently
slow initial particles the light field scattered by the atoms into the cavity is strong
enough to keep them at the intensity maxima. The cooling mechanism leads to an
increasingly precise localization of the atoms until a certain final temperature is reached.
This features almost equivalent coupling of the atoms to the cavity field, which is needed
for the superradiant lasing process.

Investigating the laser properties shows that they do not exhibit a significant difference
to a model with fixed particle positions. The spectrum is less sensitive on cavity
fluctuations compared to a conventional operating laser and we observe average photon
numbers inside the cavity below one, as expected for a superradiant laser.
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Zusammenfassung
Wir untersuchen ein allgemeines Lasermodell basierend auf einem Ensemble von kalten
Uhren-Atomen in einem optischen Resonator. Die Atome sind als Zwei-Level Punkt-
teilchen modelliert, die inkohärent von der Seite gepumpt werden. Kollektive Effekte,
hervorgerufen durch Dipol-Dipol Wechselwirkung von dicht nebeneinander befindlichen
Atomen werden berücksichtigt und die Bewegung der Teilchen wird durch semiklassische
Gleichungen beschrieben. Das Lichtfeld im Resonator wird durch eine einzelene Frequenz-
mode beschrieben und die Atome koppeln zu dieser über die übliche Tavis-Cummings
Wechselwirkung. Die Photonen im Resonator verlassen diesen durch die Spiegel mit
einer bestimmten Verlustrate, welche viel höher ist als die spontane Emissionsrate eines
Uhren-Atoms.

Aufgrund von Problemen durch technisches Rauschen scheint es nur sehr schwer
möglich zu sein das bisherige Limit der spektralen Linienbreite von etwa einem Hertz zu
unterschreiten, welches derzeit von gewöhnlich funktionierenden Lasersystem erreicht
werden kann. Dadurch bekam ein Konzept, das schon vor mehr als zwei Jahrzehnten
entwickelt wurde, in den letzen Jahren mehr Aufmerksamkeit, der superradiante Laser.
Ein Laser dem vorhergesagt wird Linienbreiten bis unter das mHz-Level zu erreichen
mit extremer Frequenzstabilität.

Um verschiedene Eigenschaften eines solchen superradianten Lasers zu analysieren
verwenden wir numerische Methoden. Wir simulieren Systeme von wenigen Atomen,
die sich entlang der Spiegelachse bewegen. Durch scannen von den experimentell am
einfachsten zugänglichen Parametern haben wir Bereiche gefunden bei denen ein La-
serbetrieb mit gleichzeitigem Kühlen und Fangen der Atome möglich ist, wobei dafür
lediglich die Atome inkoherent gepumpt werden müssen. Für Teilchen die anfänglich
langsam genug sind reicht das entstandene Lichtfeld im Resonator aus um sie an den
Intensitätsmaxima zu lokalisieren. Das Kühlen führt zu einer immer besseren Lokalisie-
rung der Atome an den Intensitätsmaxima bis eine bestimmte Endtemperatur erreicht
wird. Dies ermöglicht nahezu gleiches Koppeln aller Atome an das Lichtfeld, welches für
den superradianten Laserprozess benötigt wird.

Das Untersuchen der Lasereigenschaften zeigt, dass diese keine signifikanten Un-
terschiede zu einem Model mit fixen Teilchenpositionen aufweisen. Das Spektrum ist
weniger von Resonatorfluktuationen abhängig als das eines herkömmlich funktionieren-
den Lasers und wir beobachten eine durchschnittliche Photonenanzahl unter Eins im
Resonator, wie erwartet von einem superradianten Laser.
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Chapter 1.

Introduction
The applications of lasers in science, industry and also the daily life are numerous.
Depending on their utilization they need to have different capabilities. Lasers are able
to emit coherent light with a stable intensity and a very small bandwidth. In this
thesis we focus on a laser operating in the regime of an extreme frequency stability but
also accuracy, far below the current technical limit of conventional laser systems. A
fundamental example for the usage of such a frequency-stable laser is the operation of
an atomic clock, which leads to a more precise time measurement and thus a manifold
of applications, such as testing of fundamental laws of Physics or much more accurate
GPS-navigation.

A common laser operates in the good cavity regime Γ � κ, with Γ the spontaneous
emission rate of the excited atom and κ the photon loss rate through the cavity mirrors.

The theoretical spectral linewidth limit ∆νST is given by the Schawlow-Townes
linewidth [1]. In the good cavity regime we find ∆νST ∼ κ/n, with n the average
intracavity photon number. For such a laser it is possible to reduce the linewidth by
increasing the number of photons in the cavity. A striking spectral linewidth below 1Hz
has been reached in this regime, but further improvements seem to be very difficult. The
main limitation for the further reduction of the linewidth of a conventional operating
laser is thermal noise in the cavity mirrors, which leads to fluctuations in the cavity
length and therefore also the frequency. To circumvent this problem it has been suggested
theoretically, approximately ten years ago, to use an ultranarrow optical clock transition
emitting into a high quality cavity [2], expected to exhibit a linewidth in the mHz range.
Such a laser operates in the bad cavity regime Γ � κ, and is called superradiant laser.
The name bad cavity regime can be somewhat misleading in this context, since the
mirrors used in experiments are actually the best available at the moment. Due to the
big difference between Γ and κ, the energy is dominantly stored in the atoms instead
of the photons. This means there are only a few photons inside the cavity, therefore
thermal cavity noise does not affect the light field much [3]. Extracting the emitted light
from the clock transition directly would be the best way to get rid of the thermal noise,
but unfortunately this spontaneously emitted light does not have enough power for
practical applications. Also, the dipole moment of the two-level transition is very small,
therefore only strong collective coupling of the atoms with the cavity mode can lead
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1. Introduction

to sufficiently high output power. Here superradiant emission from the atoms into the
cavity field mode is responsible for the needed gain. The Schawlow-Townes linewidth in
the bad cavity regime is proportional to ∆νST ∼ Γ2/(κn). As we want the intracavity
photon number to be small to minimize the influence of the cavity fluctuations on
the spectrum, we need to ensure that the Γ/κ < n to achieve a narrow and stable
linewidth. Some features of the superradiant laser, like intracavity photon numbers
below one and a better insensibility on cavity length fluctuation, have already been
shown experimentally to some extent [1].

The theory of a superradiant laser has already been described in 1993 [4], predicting
a laser with an intensity proportional to the square and a linewidth to the inverse
square of the atom number. The underlying mechanism is superradiant emission into the
cavity mode. Dicke introduced the phenomenon of superradiance as coherent radiation
arising from collective spontaneous emission of a gas of closely spaced two-level emitters,
even proposing a mirrorless laser [5]. A detailed essay on this topic was penned by
Haroche and Gross three decades later [6]. N two-level atoms confined in a volume small
compared to a cube with side length equal to the transition wavelength, act like a rigid
dipole, exhibiting collective spontaneous emission. While independent radiating atoms
exhibit a spontaneous emission intensity proportional to N , the collective process emits
a pulse which possesses an intensity maximum proportional to N2. Repumping the
atoms during emission in the laser setup leads to stationary instead of pulsed radiation.
As mentioned above, the superradiant laser is predicted to exhibit a narrow linewidth
proportional to 1/N2, in comparison the linewidth of collective spontaneous emission in
free space is proportional to N . While the derivation of Dicke superradiance assumes the
atoms to be confined in a small volume, for the superradiant laser this is not necessarily
required, if one can ensure almost equal coupling of the atoms to the cavity field.

Including atomic motion in contrast to fixed particle positions [7] leads to varying
atom-field coupling reducing the superradiance. A possible mechanism to resolve this
problem is cooling and self-trapping of the atoms at the intensity maxima of the cavity
mode [8]. For properly chosen parameters the result can be a cavity cooling process
accompanied by lasing [9].

This thesis is structured as follows. In chapter 2 we show the theoretical concepts
needed to describe the system, including atom-light interaction inside a cavity, collective
behaviour, dissipative processes, semi-classical treatment, cavity cooling and laser theory.
Chapter 3 combines all the concepts attained in the previous chapter and concludes
in a set of semi-classical coupled differential equations defining our model. Results
on the cooling and trapping process as well as the method used to obtain them are
shown in chapter 4, where we also compare our results with that for independent atoms.
Important lasing properties like the spectrum, second order correlation function, photon
number and excited state population of the system are analyzed in chapter 5 by scanning
over a set of stable parameters.
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Chapter 2.

Basic Concepts
In this chapter we provide the theoretical concepts and mathematical tools needed to
describe our laser model and calculate its dynamics.

2.1. Atom-Light Interaction Inside a Cavity
We describe the interaction of N particles with the light field inside an optical cavity
[10]. It is well known that in a cavity with length lc only modes with frequencies ωc
are allowed, where the corresponding wavelength λc = ωcc/(2π) satisfies the property
lc = nλc/2, with n ∈ N and c the speed of light. As commonly done in cavity quantum
electrodynamics we treat our atoms as two-level atoms and neglect all light modes
inside the cavity except the one resonant. These two approximations are valid if the
internal structure of the atom is such that the transition frequency of two levels of
the atom is close to resonance with the frequency of one mode of the cavity light field,
and all other energy levels of the atom which could be occupied with some probability
are off-resonant with all other cavity mode frequencies. We then call the lower energy
state of the two-level atom ground state |g〉 and the higher energy state excited state
|e〉. The transition frequency between these two states is ωa, implying an energy gap of
~ωa, with ~ the reduced Planck constant. We denote the frequency of the mode close to
resonance to the atom transition by ωc, then every photon inside the cavity possesses
an energy of ~ωc. The difference between ωc and ωa is called the detuning ∆ = ωc − ωa.

Now we will express the interaction between the atoms and the light field inside the
cavity mathematically. Since we do not consider dissipative processes in this section, we
only need to define the Hamiltonian operator for the system to describe it. This operator
consists of three parts, as shown below. We are not providing a rigorous derivation of
the Hamiltonian, but rather we shall illustrate the basic concepts.

The energy of a single-mode light field inside a cavity can be described very elegantly
with the bosonic ladder operators a† and a. The action of a† and a correspond to
creating and annihilating a photon with frequency ωc, respectively. We call |n〉 the state
of a cavity with n photons inside, then the operators have the following properties
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2. Basic Concepts

a† |n〉 =
√

n + 1 |n + 1〉 (2.1)
a |n〉 =

√
n |n − 1〉 . (2.2)

One can see that the operator product a†a counts the number of photons inside the
cavity, hence the Hamilton operator of the light field inside the cavity is

Hc = ~ωca
†a, (2.3)

with Hc |n〉 = ~ωcn |n〉. In a mathematically rigorous derivation we would end up with
an additional term ~ωc/2, often referred to as vacuum energy, but we can neglect this
by simply employing an energy shift.

The energy of a two-level atom can be written in a similar way. Mathematically, the
description of a two-level atom is the same as for a spin-1/2 particle. Hence we are
allowed to treat our atoms as spin-1/2 particles and use the Pauli-Matrices to describe
the internal dynamics. We choose the convention that |g〉 and |e〉 are eigenstates of σz,
this means

σz |g〉 = − |g〉 (2.4)
σz |e〉 = + |e〉 . (2.5)

Therefore the Hamilton operator of the two-level atom is

Ha = ~ωa

2 σz, (2.6)

with the energy eigenvalues −~ωa/2 and ~ωa/2. We introduce the fermionic operators σ+

and σ−. The action of them corresponds to exciting and deexciting the atom, respectively.
This means the operators have the following properties

σ+ |g〉 = |e〉 σ+ |e〉 = 0 (2.7)
σ− |e〉 = |g〉 σ− |g〉 = 0. (2.8)

For reasons of convention we want the energy of the ground state to be zero, therefore
we shift the energy of the Hamiltonian 2.6 using σ+ and σ− and obtain

Ha = ~ωaσ
+σ−. (2.9)

Using the formalism of bosonic and fermionic operators we can describe the interaction
between an atom and the light field inside a cavity in a very intuitive way. We assume
that an atom is placed at some position r along the cavity axis where the light field
couples to it with some position-dependent strength g(r), which we call coupling strength.
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2. Basic Concepts

We implicitly assume here the radius of the atom to be much smaller than the wavelength
of the intracavtiy light field, such that the entire atom feels the same light intensity.
The interaction between the light field and the atom can be described by two possible
processes, either the atom in the ground state absorbs a photon from the light field and
becomes excited which corresponds to the operator aσ+, or the atom in the excited state
emits a photon into the cavity and deexcites which corresponds to the operator a†σ−.
Since these two processes are equal probable, the resulting interaction Hamiltonian is

Hint = ~g(r)[aσ+ + a†σ−]. (2.10)
If we would rigorously derive the interaction Hamiltonian in the dipole approximation,
we would additionally get terms proportional to aσ− and a†σ+, but they can be neg-
lected within the rotating wave approximation. The one-dimensional position-dependent
expression for the coupling strength along the cavity axis is

g(r) = g cos(kcr), (2.11)
with kc = λc/(2π) the wave vector of the cavity mode and g the coupling constant.

Putting the above parts together we get the full Hamiltonian operator of the atom-field
system, for one atom at a fixed position, it is called the Jaynes-Cummings Hamiltonian
[10]

HJC = ~ωca
†a + ~ωaσ

+σ− + ~g(r)[aσ+ + a†σ−]. (2.12)
We can easily extend this system to N non-interacting atoms. The expression for N > 1
is called the Tavis-Cummings Hamiltonian [10]

HTC = ~ωca
†a + ~ωa

N∑
i=1

σ+
i σ−

i + ~
N∑

i=1

g(ri)[aσ+
i + a†σ−

i ]. (2.13)

2.1.1. Rotating Frame
Changing to a rotating frame in a smart way can be a very useful tool to simplify
the Hamiltonian of a system for numerical calculations. In this subsection we show a
general procedure to switch to an arbitrary rotating frame and apply the method on
our Hamiltonian 2.13.

We consider a time-dependent Hamiltonian H(t), the state |Ψ(t)〉 fulfils the time
dependent Schrödinger equation

i~∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 . (2.14)
Now we define some unitary operator R(t), we call it the rotation operator. We utilize

this rotation operator to define a new state

|Φ(t)〉 = R(t) |Ψ(t)〉 . (2.15)
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2. Basic Concepts

Since R(t) is assumed unitary, we can calculate |Ψ(t)〉 from |Φ(t)〉 using |Ψ(t)〉 =
R†(t) |Φ(t)〉, therefore we only need to calculate the time evolution for |Φ(t)〉 to obtain
then |Ψ(t)〉. The time evolution of |Φ(t)〉 is given by

i~∂t |Φ(t)〉 = i~(∂tR(t)) |Ψ(t)〉 + i~R(t)∂t |Ψ(t)〉
= i~Ṙ(t) |Ψ(t)〉 + R(t)H(t) |Ψ(t)〉
= i~Ṙ(t)R†(t) |Φ(t)〉 + R(t)H(t)R†(t) |Φ(t)〉 . (2.16)

As you can see, |Φ(t)〉 follows the time-dependent Schrödinger equation with a modified
Hamiltonian

H ′ = i~Ṙ(t)R†(t) + R(t)H(t)R†(t). (2.17)

Now we apply the above described method to our Hamiltonian. There are two possibilities
which make sense, either to change into the rotating frame of the atoms, or into the
rotating frame of the cavity. In our case it is not important in which frame we transform.
We choose for the rotating frame of the atoms. In this case the rotating operator is

R(t) = eiωat(a†a+
∑N

i=1 σ+
i σ−

i ), (2.18)

for the rotating frame of the cavity we only have to replace ωa by ωc. Now we calculate
the modified Hamiltonian according to equation 2.17. One can easily check that the
first term on the right-hand side in 2.17 is

i~Ṙ(t)R†(t) = −~ωa(a†a +
N∑

i=1

σ+
i σ−

i ).

From the Hamiltonian 2.13 we get three contributions in the term R(t)H(t)R†(t). Since
operators acting on different Hilbertspaces always commute and an operator always
commutes with itself, ~ωca

†a and ~ωa
∑N

i=1 σ+
i σ−

i do not change. In the last step we
need to calculate R(t)~

∑N
i=1 g(ri)[aσ+

i +a†σ−
i ]R†(t). By using the bosonic and fermionic

commutation relations [a†a, a] = −a and [σ+
i σ−

i , σ−
j ] = −δijσ

−
i , respectively, we see that

the exponent of R(t) commutes with g(ri)[aσ+
i + a†σ−

i ], hence also R(t) commutes with
it and we show that the interaction part also does not change.

Putting all parts from above together, we obtain the expression for the Tavis-
Cummings Hamiltonian in the rotating frame of the atoms

H ′
TC = ~∆a†a + ~

N∑
i=1

g(ri)[aσ+
i + a†σ−

i ]. (2.19)
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2. Basic Concepts

2.2. Open system dynamics - Master Equation
In the last section we only focused on closed systems satisfying energy conservation. It
is well known, that the unitary time evolution of the density matrix ρ of such a lossless
quantum system can be calculated with the von Neumann equation

ρ̇ = i

~
[ρ, H]. (2.20)

In reality it is almost always the case that one has to deal with open systems. This
means we have to include processes where energy leaks out or into the system. Taking
the trace over the reservoirs coupled to the system leads to a very powerful and proven
tool to describe dissipative processes in quantum optics, the Master equation [10, 11]

ρ̇ = i

~
[ρ, H] + L[ρ]. (2.21)

It features the same term as the von Neumann equation for the system plus an additional
term, the Liouvillian superoperator L[ρ], which accounts for the dissipative processes.
In this thesis, we do not derive the master equation or the Liovillian, but rather specify
the different parts of it and describe them qualitatively. A rigorous derivation of the
Master equation can be found in [12]. The master equation is said to be in Lindblad
form, if the Liouvillian has the structure

L[ρ] = 1
2
∑
i,j

γij(2JiρJ†
j − J†

i Jjρ − ρJ†
i Jj). (2.22)

We call γij rates and Ji are the jump operators which describe the dissipative process.
The matrix generated by the coefficients γij needs to be positive semidefinite to preserve
the trace of the of the density matrix. In this form the last two terms are responsible
for the dissipative process, while the first term preserves the trace, it is therefore called
”recycling term”. In the following we will only deal with Liouvillians in Lindblad form,
this implies that we merely focus on Markovian processes [11], this means there is no
back-action of the environment to the system.

In our model we include three different dissipative processes: cavity losses, incoherent
pump of the two-level atom and collective spontaneous emission. The total Liouvillian
is the sum of all of them [7]

L[ρ] = Lcav[ρ] + Lpump[ρ] + Lcd[ρ]. (2.23)

2.2.1. Cavity Losses
The cavity losses describe the leaking of photons through the mirrors. The process is
characterized by the loss rate κ, which denotes the rate of photons leaking out of the
system on average. The smaller the value of κ the better are the mirrors. As one might

7



2. Basic Concepts

Figure 2.1.: Exponential decay of photons through the cavity decay channel. Higher
values of the cavity loss rate κ correspond to faster photon decay. After the time 1/κ the
amplitude A of the photon number reduces to A/e. We chose arbitrary values for κ.

intuitively guess, these jumps are described with the photon annihilation operator a.
The expression for the Liouvillian is therefore [12]

Lcav[ρ] = 1
2κ(2aρa† − a†aρ − ρa†a). (2.24)

This superoperator causes an exponential decay of the photon number inside the cavity.
We demonstrate this in figure 2.1, by showing the time evolution of the photon number
in a lossy cavity with initially 10 photons inside. There are no atoms in the cavity.

2.2.2. Collective Spontaneous Emission
The spontaneous emission of a photon from an excited atom with the inherent deexcita-
tion of the atom is a well-known quantum jump phenomenon. Following the derivation
of Wigner and Weißkopf [13] in the dipole approximation we obtain

Γ = ω3
aµ2

3πε0c3 (2.25)

8



2. Basic Concepts

for the spontaneous emission rate, which denotes the frequency of spontaneous emission
events on average. The dipole moment of the atomic transition is denoted by ~µ, ε0 is
the dielectric constant and c the speed of light. The Liouvillian for the spontaneous
emission of a photon from a single two-level atom is given by

Lsp[ρ] = 1
2Γ(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (2.26)

described by the deexcitation operator σ−. The basic idea of the derivation by Wigner
and Weißkopf is to calculate the transition to the ground state in perturbation theory
by interaction of a single atom with the quantized free (electro-magnetic) vacuum field.
In section 2.3 we will show the result for an ensemble of N closely spaced emitters.
The resulting collective rates form an N × N matrix which depends on the positions
and dipole moments of the two-level atoms. The matrix elements are denoted by Γij,
specifying the influence of atom j on atom i. The decay of the i-th atom is described by
the i-th atom deexcitation operators σ−

i . Hence we get the expression for the Liouvillian
of the collective spontaneous emission [14]

Lcd[ρ] = 1
2
∑

ij

Γij(2σ−
i ρσ+

j − σ+
i σ−

j ρ − ρσ+
i σ−

j ). (2.27)

2.2.3. Incoherent Pump
co
he
re
nt
pu
m
p fa
st
d
ec
ay

sl
ow
de
ca
y

Figure 2.2.: Schematics of
an incoherent pump. The de-
cay from |a〉 to |e〉 needs to
be much faster then the decay
from |e〉 to |g〉.

Population inversion of the two-level atom means that
the excited state is occupied more than the ground state.
This is not possible in thermal equilibrium. In order to
obtain this we need to pump the atoms incoherently. In
practise this can be done e.g. by coherently exciting an
auxiliary state |a〉 which decays rapidly to the state |e〉,
see figure 2.2. If the decay from the auxiliary state to
the excited state is much faster than the decay from the
excited to the ground state, we can neglect the population
of the auxiliary state and describe the incoherent pump
simply as an inverse spontaneous emission. This process is
characterized by the pump rate R and as you might expect
it is described by the excitation operator of the atom σ+.
If one would consider a level scheme where the decay from
|a〉 to |e〉 is radiative, e.g. in a four-level model, we could
also get collective effects here [4]. The Liouvillian in this
case would look similar to the one in section 2.2.2, but
with the operator σ+

i instead of σ−
i . Since we do not focus

on this, we treat our incoherent pump as independent.
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2. Basic Concepts

The resulting Liouvillian for this is [2]

Lpump[ρ] = 1
2R

∑
i

(2σ+
i ρσ−

i − σ−
i σ+

i ρ − ρσ−
i σ+

i ). (2.28)

2.3. Collective Dynamics
In our model we have to deal with an ensemble of closely spaced atoms, therefore we
need to take interaction effects into account. We treat the particles again as identical
two-level atoms and assume fixed particle positions ~ri with equal atomic transition
dipole orientations and amplitudes for all particles, ~µi = ~µ for all i. Following the
derivation in [14, 15] we find two contributions of the collective effects to our system.
As mentioned in section 2.2.2 we need to take collective decay, instead of independent,
of the two-level atoms into account. The rates in 2.27 are given by

Γij = 3
2Γ

[
(1 − cos2 θ)sin(karij)

karij

+ (1 − 3 cos2 θ)
(

cos(karij)
(karij)2 − sin(karij)

(karij)3

)]
, (2.29)

with rij = |~ri − ~rj| the absolute value of the position vector of particle i and j and θ
the angel between the dipole moment and the distance vector.

The other contribution is the coherent dipole-dipole coupling, which is an additional
part to the Hamiltonian 2.13, it is given by the expression

Hdd = ~
∑
i 6=j

Ωijσ
+
i σ−

j , (2.30)

with

Ωij = −3
4Γ

[
(1 − cos2 θ)cos(karij)

karij

− (1 − 3 cos2 θ)
(

sin(karij)
(karij)2 + cos(karij)

(karij)3

)]
. (2.31)

The Hamiltonian Hdd describes the coherent energy exchange between the atoms via
dipole-dipole interaction.

In our model all dipoles are perpendicular to the distance vector between the particles,
this means θ = π/2. Figure 2.3 shows Γij and Ωij for this configuration as a function of
the distance rij . Notice, that as expected, for widely separated atoms we reach the case
of independent atoms. This means for rij → ∞, Ωij → 0 and Γij → δijΓ.
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2. Basic Concepts

Figure 2.3.: Collective decay rates Γij and coherent dipole-dipole coupling Ωij as a
function of rij . θ = π/2, Γij and Ωij are plotted in units of Γ and the distance of the
atoms is in units of λa. For rij/λa → 0: Ωij → ∞ and Γij → Γ.

2.4. Semi-Classical Time Evolution
In this section we want to take motion of our particles into account. As a first step to
do this we add classical degrees of freedom for the position and the momentum of the
particles and calculate the dynamics of these variables via the Ehrenfest-theorem [16]

d

dt
〈Ô〉 = i

~
〈[H, Ô]〉 + 〈∂Ô

∂t
〉 , (2.32)

with Ô an arbitrary operator in the same Hilbertspace as the Hamiltonian H. In our
case we get 2N coupled differential equations for the particles position and momentum
operator, r̂i and p̂i respectively. For a Hamiltonian of the form

H = H0 + V (r̂i) + p̂2
i

2m
(2.33)
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2. Basic Concepts

one obtains, by use of the notation ri = 〈r̂i〉 and pi = 〈p̂i〉,

d

dt
ri = i

~
〈[H, r̂i]〉 = pi

m
(2.34)

and

d

dt
pi = i

~
〈[H, p̂i]〉 ≈ − d

dri

V (ri). (2.35)

The operators r̂i and p̂i are not explicitly time-dependent therefore the partial time
derivative in 2.32 is zero. The expression on the right-hand side of (2.35) describes the
force on the i-th particle. We use here the approximation that the expectation value of
the position depending force is almost equal to the force depending on the expectation
value of the position

〈F (r̂i)〉 ≈ F (〈r̂i〉). (2.36)

To set up dimensionless equations for the numerical calculations the definition of the
recoil frequency

ωr = ~k2
a

2m
(2.37)

will later be useful.

2.5. Cavity Cooling
The principle of our cooling and trapping is cavity cooling. In this section we briefly
explain the idea behind cavity cooling and mention its key properties for a setup with
incoherently pumped atoms [8, 9, 17]. The task of a cooling process is always to reduce
the kinetic energy of the particles. For cavity cooling the principle mechanism is always
the same. Kinetic energy of the particles is shuffled to the cavity field and the cavity
field dissipates it in a controlled manner through the cavity loss channel. This can be
done in two different ways, either you pump the atoms or you pump the cavity mode, a
combined process using both processes is also possible.

We will focus on the method relevant to our case, which is the pumping of the atoms in
the bad cavity regime. The procedure can be as follows: We pump the atoms transversally
to the cavity axis almost on resonance, the resonance frequency of the cavity mode
is prepared to be higher than the atomic transition frequency ∆ = ωc − ωa > 0, this
means the cavity field mode is blue detuned with respect to the atomic transition.

If the coupling of the atoms to the cavity field is significant smaller than the cavity loss
rate, then it is probable that the atom scatters a photon into the cavity and the photon
is lost immediately through the cavity loss channel. Since atoms inside a cavity favour
to scatter photons near the cavity resonance frequency into the cavity, this provokes an

12
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energy upshift of the emitted photon. This energy difference can be provided by the
kinetic energy of the atoms, implying that every photon scattered from an atom into
the cavity reduces the kinetic energy of the atom. With the coupling g small compared
to the cavity loss rate κ the problem simplifies, since absorption of a cavity photon
leads to heating of the atom.

An example for the time evolution of the relative kinetic energy (4.2) and the
position of such a coherently pumped two-level atom inside a cavity is shown in
figure 2.4. We calculate numerically the time evolution for this problem in a semi-
classical approximation, the spacial coordinates are restricted to one dimension along
the cavity axis. The Hamiltonian of the system in the rotating frame of the pump laser
with frequency ωl is given by

H = −~∆ca
†a − ~∆aσ

+σ− + ~g(r)[aσ+ + a†σ−] + ~ΩR(σ+ + σ−), (2.38)

with ∆c = ωl − ωc and ∆a = ωl − ωa. The last part of the Hamiltonian describes the
coherent pump, with the Rabi-frequency ΩR. The Liouvillian consists out of the cavity
loss channel (2.24) and the spontaneous emission of the single two-level atom (2.26)

L = Lcav + Lsp. (2.39)

The coupled differential equations of motion for the atoms position and momentum can
be calculated with the Ehrenfest-theorem 2.4, we obtain

d

dt
r = p

m
(2.40)

and

d

dt
p = − d

dr
g(r)~ 〈aσ+ + a†σ−〉 . (2.41)

Since we are only looking at a system with one atom we do not get any collective effects.
In chapter 3 we show the procedure to gain the equations for the time evolution for a
similar model in more detail, therefore we disclaim to do this here. In our model we
do not pump the two-level atoms coherent but apply, as mentioned in section 2.2.3, an
incoherent pump to the atoms. Therefore, instead of performing Rabi-oscillations the
atoms just get inverted to the excited state. This means for a sufficiently high pump
rate R the scattering of a photon into the cavity happens more frequently compared to
the coherent pump and absorption of a cavity photon is less probable, since the atoms
have a higher probability of being in the excited state. Nevertheless the fundamental
mechanism of the cooling process in our model is the same as for the example described
above. Fortunately, inverted atoms in a blue-detuned cavity are high field seekers. This
is an essential feature for a simultaneously lasing and cooling process, since the atoms
locate at positions close to the maximal atom-cavity coupling.
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2. Basic Concepts

Figure 2.4.: Cavity cooling for a single two-level atom. You can see that the atom
gets trapped at approximately r = 60λc (top) and the relative kinetic energy decreases
(bottom) as supposed for a cooling process. The parameters used to produce these plots
are ωr = 0.1Γ, ∆c = −4Γ, ∆a = −0.5Γ, ξ = 1.5Γ, g = 4Γ and κ = 15Γ. The atom starts
at the position r = 0, with the momentum p = 5~ka and it is in the ground state. There
are no photons inside the cavity initially.
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2.6. Laser Theory
To describe the principle of a laser [18] we want to take the three fundamental processes
between the energy levels of the two-level atom into account, namely spontaneous
emission, absorption and stimulated emission. As the name laser (light amplification
by stimulated emission of radiation) quotes, stimulated emission is used to amplify
radiation. Unfortunately, considering only the three processes of a two-level atom from
above is not sufficient to construct a laser. In a simplified picture this can be explained
by the following: Absorption occurs when a photon hits an atom in the ground state,
stimulated emission is present when a photon hits an atom in the excited state and
spontaneous emission can only happen when the atom is in the excited state, see
figure 2.5. The only possibility to excite a two-level atom is with a coherent pump,
but applying a coherent pump on the atoms can populate the exited state on time
average maximally to 50%. Due to spontaneous emission this population reduces. As a
consequence absorption of photons happens more often as stimulated emission, since the
atoms are with higher probability in the ground state rather than in the excited state.
This leads to a reduction instead of an increase of the cavity photon number. Therefore
population inversion needs to be reached by some process, such as the incoherent pump
mechanism described in section 2.2.3. To achieve this we need to consider at least three
suitable energy levels instead of two. A mathematical description of this is given by the
Einstein rate equation.

Absorption Spontaneous emission

Stimulated emission

Figure 2.5.: Sketch of absorption, stimulated emission and spontaneous emission. Stim-
ulate emission produces a copy of the incoming photon. Spontaneous emission emits a
photon in some random direction.
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Incoherent pump

Figure 2.6.: Principle of the laser mech-
anism. You can see the laser setup (top)
including the mirrors, the incoherent pump,
the light field and the atoms between the
mirrors. As well as the fundamental pro-
cesses of the laser (bottom).

The operation of a laser can be described as
follows: Population inversion of the atoms is
gained with an incoherent pump, such that
most of the atoms are in the excited state. Now
one photon is needed for the ignition of the pro-
cess, for example from spontaneous emission
of an excited atom. This photon stimulates
then the decay of a second atom, producing
a second identical photon. This yields a chain
reaction of stimulated photon emissions from
the excited atoms. Putting the atoms between
two mirrors leads to several round trips of
the photons and thus to multiple interactions
with the atoms. The atoms which are in the
ground state after the stimulated emission get
again excited due to the incoherent pump. The
photons leak continuously through one of the
mirrors, providing the laser light. This schem-
atic laser process is depicted in figure 2.6. As
noted in section 2.2.3 we do not care about the
internal level structure of the atom, but rather
presume that a suitable atom exists which can
be described mathematically in a good approx-
imation with the incoherent pump Liouvillian
(2.28).

Now we provide the most important concepts needed to describe our laser properties.
We mentioned in the introduction that the task of a superradiant laser is to generate
laser light with a narrow linewidth. To analyze the spectrum for different parameters
we need to calculate it, this can be done with the Wiener-Khintchine theorem [11]

S(ω) = 2<
{∫ ∞

0
dτe−iωτ g(1)(τ)

}
. (2.42)

The theorem states that the spectrum of a light field is given by the Fourier transform
of the first order correlation function

g(1)(τ) = 〈a†(τ)a(0)〉 . (2.43)

Another important propertie of a laser is the second order intensity correlation function
with zero time delay [19]

g(2)(0) = 〈a†a†aa〉
〈a†a〉2 , (2.44)
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which gives knowledge of the degree of coherence of a light field. For g(2)(0) = 1 we have
coherent, for g(2)(0) > 1 bunched and for g(2)(0) < 1 antibunched light. The photon
number inside the cavity is given by

n = 〈a†a〉 (2.45)

and the total population of the exited states by

pe =
N∑

i=1

〈σ+
i σ−

i 〉 . (2.46)

Population inversion is present if pe > N/2.

17



Chapter 3.

Semi-Classical Model of Superradiant
Lasing
With the concepts provided in chapter 2 we set up a mathematical description of our
model. The model is composed of the following parts.

We consider N identical two-level atoms inside a cavity, moving along the cavity axis.
Each two-level atom has a transition frequency ωa and a transition dipole moment ~µ.
The directions of these dipole moments are the same for all particles, parallel to each
other and perpendicular to the cavity axis. The dipoles align in this way due to the light
field inside the cavity. We assume that only one longitudinal light mode in the cavity
is relevant, the frequency of this mode is denoted by ωc. The spatial mode function is
proportional to cos(kcr), with the wave vector kc and the position r along the cavity
axis. The atoms couple to the cavity field mode via the well-known Tavis-Cummings
interaction with an atomic position-dependent coupling g(ri). Given that the atoms
are closely spaced, we need to take coherent dipole-dipole energy exchange (Ωij) and
collective spontaneous emission (Γij) into account. Furthermore we create a population
inversion of the two-level atoms by an individual transverse incoherent pump with pump
rate R. The loss of photons through the cavity mirrors occurs at rate κ. The model
specified in this paragraph is depicted in figure 3.1.

Now we write down the above model mathematically, the energy conserving parts
are included in the Hamiltonian H and the dissipative processes in the Liouvillian L.
The resulting Hamiltonian without a semi-classical approximation is

H = ~ωca
†a + ~ωa

N∑
i=1

σ+
i σ−

i + ~
N∑

i=1

g(r̂i)[aσ+
i + a†σ−

i ]

+ ~
∑
i 6=j

Ω(r̂ij)σ+
i σ−

j +
N∑

i=1

p̂2
i

2m
. (3.1)

It consists of the Hamiltonian of the intra-cavity light field (2.3), the atomic excitation
(2.9), the interaction between the atoms and the cavity light field (2.10), the coherent
dipole-dipole interaction (2.30) and the total kinetic energy of the particles, summed
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3. Semi-Classical Model of Superradiant Lasing

R

Figure 3.1.: Schematic showing the system under consideration. We consider a linear
chain of two-level atoms coupled to the cavity mode with g(ri). Dipole-dipole coupling
between the atoms Ωij and collective decay with decay rate Γij is included as well as an
independent transversal incoherent pump with pump rate R and cavity losses with loss
rate κ.

up here in this order. The first three parts together are known as the Tavis-Cummings
Hamiltonian (2.13). We especially indicate here that Ωij depends on the position
operators r̂i and r̂j and not just their average values by using Ω(r̂ij) instead.

Changing into the rotating frame of the two-level atoms, using the rotating operator
as in equation 2.18, we end up with the Hamiltonian

H = ~∆a†a + ~
N∑

i=1

g(r̂i)[aσ+
i + a†σ−

i ] + ~
∑
i 6=j

Ω(r̂ij)σ+
i σ−

j +
N∑

i=1

p̂2
i

2m
. (3.2)

This can easily be checked by inserting the Hamiltonian 3.1 into the rotating frame
formula 2.17, as we have similarly done in section 2.1.1. There is one remaining part to
show, namely R(t)HddR†(t) = Hdd, but this is also straight forward to calculate.

As a first step to include particle motion in the model, we approximate it within a
semi-classical treatment. We apply the Ehrenfest-theorem (2.32) and the approximation
(2.36) on the Hamiltonian (3.2) to gain 2N coupled differential equations. For the
velocity of the i-th particle we obtain

d

dt
ri = i

~
〈[H, r̂i]〉 = pi

m
(3.3)
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and for the momentum change

d

dt
pi ≈ − d

dri

[
~g(ri) 〈aσ+

i + a†σ−
i 〉 + ~

∑
i 6=j

Ωij 〈σ+
i σ−

j 〉
]
. (3.4)

The semi-classical model is then completely described with these 2N coupled differential
equations, the Hamiltonian

H = ~∆a†a + ~
N∑

i=1

g(ri)[aσ+
i + a†σ−

i ] + ~
∑
i 6=j

Ωijσ
+
i σ−

j (3.5)

and the Liouvillian composed of the three summands

L = Lcav + Lcd + Lpump, (3.6)

the cavity loss channel (2.24), the collective atomic decay (2.27) and the transversal
incoherent pump (2.28). The Liouvillian does not change in the semi-classical approxim-
ation, only the atomic positions in the expression for the collective decay become real
values instead of operators. Since we do not take the recoil arising from spontaneous
emission into account, it is sufficient to use the Ehrenfest-theorem to calculate the
semi-classical equations of motion. Therefore we do not have any direct contributions
from the dissipative processes to the particles equations of motions.
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Chapter 4.

Lasing, Cooling and Trapping
In this chapter we investigate the stability of the laser system described above during
lasing operation. We find that for properly chosen parameters the atoms are cooled and
even trapped within the potential created by the laser light in the cavity mode. We
carry out a lot of parameter scans in different regimes to analyze the cooling properties
of the system.

4.1. Semi-Classical description of Cooling and Trapping
Due to the exponential scaling of the atomic Hilbert space dimension with the number
of atoms numerical methods are limited. We thus restrict ourselves to treating a system
of few atoms which nevertheless exhibits collective behaviour. The procedure is always
the same: We look at a system with three atoms inside the cavity. These atoms are
placed initially λc/2 apart at positions where the generated intracavity light forces are
zero, this means e.g. at 0, λc/2 and λc. The atoms start in the ground state and there
are no photons inside the cavity. The set of initial momenta p0 depends on the chosen
recoil frequency, which we specify later. To generate some comparable guiding values
of the cooling process we study the time evolution of the particles positions and their
kinetic energy

Ekin(t) =
N∑

i=1

p2
i (t)
2m

. (4.1)

As observable we choose the ratio between the current and initial kinetic energy

Erel
kin(t) = Ekin(t)

Ekin(t = 0) . (4.2)

Due to the fact that the kinetic energy is oscillating very rapidly on the time scale of the
cooling process, the information we seek is not simply given by Erel

kin(t = tend). Therefore
we introduce an average relative kinetic energy Ērel

kin over one oscillation period, which
is obtained by just taking the midpoints between two adjacent extrema of the relative
kinetic energy, see figure 4.1.
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Figure 4.1.: Method to obtain the average relative kinetic energy loss. As the oscillation
of the relative kinetic energy (blue) is too fast to give some reliable guiding value, we
average it over one period (orange). We show the time evolution from Γt = 0 to 1000. The
parameters are ωr = 0.1Γ, ∆ = 5Γ, g = 5Γ, κ = 20Γ, R = 8Γ and p0 = [1.7, −1.6, 1.5]~ka.

The parameter we use to characterize cooling or heating is then

Ērel
kin = Ērel

kin(tend)
Ērel

kin(t = 0)
. (4.3)

Simply put, it is just the last point of the orange line divided by the first point of the
orange line in figure 4.1

The method described above will be used to characterize the cooling process and
find regimes of stable operation. We define what we mean by stable. The light field
inside the cavity produces a potential which is felt by the atoms. For correctly chosen
parameters this potential can lead to trapping of the atoms. The periodicity of this
potential is λc/2, given by (2.10), which means that the n-th trapping potential has
a range from −1/4 + n/2 to 1/4 + n/2. We want the atoms stay in the range of their
initial position. If this is the case for the whole time evolution, we call the configuration
stable. In figure 4.2 you can see a typical stable configuration.

In comparison, a configuration is denoted as unstable if at least one atom leaves its
initial trap. We distinguish between two unstable cases, either Ērel

kin > 1 or Ērel
kin < 1.

The second case, Ērel
kin < 1, means that the system might cool the atoms, but the trap

is not strong enough to keep them localized at all times. Although the particles may
get trapped somewhere, we do not calculate the kinetic energy, because we want to
take collective effects into account and this is not provided for widely separated atoms.
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4. Lasing, Cooling and Trapping

Figure 4.2.: Stable configuration of atoms. You can see the trajectories of three atoms
inside the cavity from Γt = 0 to 1000. We call these trajectories stable, because the atoms
stay in their initial trap. The parameters are the same as in figure 4.1.

This case is denoted as metastable configuration, see figure 4.3. In the scan plots these
areas will have the color black. Moreover, every value of Erel

kin above 1.0 corresponds to
heating and is artificially fixed to 1.0 as these are points of little interest.
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Figure 4.3.: Metastable configuration of atoms. You can see the trajectories of three
atoms inside the cavity from Γt = 0 to 1000. We call these trajectories metastable, because
the atoms do not stay in their initial trap, but they get cooled and then trapped at other
positions. All parameters are the same as for the stable case, except g is changed from 5Γ
to 3Γ.

4.2. Results
Let us now scan over the parameters which are easiest to tune experimentally, using the
method described above. We perform this procedure for three different recoil frequencies
ωr. The values of the parameters not changed in the scan, are given in the figure caption.
For numerical calculations one needs to confine the Hilbertspace of the photons. We
set the maximal photon number to three, which is enough because we have average
photon numbers below one around 0.3. We also checked that the results do not change
for higher maximal photon numbers. The three initial sets of momenta for the different
ωr are:

• ωr = 0.1Γ: [1.7, −1.6, 1.5]~ka, [1.7, 1.5, 1.6]~ka and [1.6, 1.5, −1.7]~ka

• ωr = 1.0Γ: [0.55, −0.5, 0.45]~ka, [0.55, 0.45, 0.5]~ka and [0.5, 0.45, −0.55]~ka

• ωr = 10.0Γ: [0.14, −0.13, 0.12]~ka, [0.14, 0.12, 0.13]~ka and [0.13, 0.12, −0.14]~ka
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Figure 4.4.: Scans of the final kinetic energy Ērel
kin. You can see a scan over ∆ and R in

(a)-(c) for different ωr and the same for g and R in (d)-(f). The remaining parameters are
∆ = 5Γ, g = 5Γ, κ = 20Γ and tend = 1000/Γ. The black areas show unstable configurations
with Ērel

kin < 1 (metastable) and the dark red areas represent Ērel
kin ≥ 1.

To start always with the same initial energy, the absolute values of the initial momenta are
always chosen the same for a specific value of the recoil frequency, only the distribution
on the particles and signs are different. This provokes clear differences in the trajectories.
You can also see that we use smaller initial momenta for bigger ωr. This is due to the
fact that a bigger ωr corresponds to a smaller particle mass, which consequently leads
to higher initial kinetic energy, for equal initial momenta. For too high initial kinetic
energies the trap is not strong enough to keep the particles localized. We chose the
initial momenta such that most of the trapped particles have a maximal displacement
with respect to the middle of their trap of approximately 0.2λc. Figure 4.4 shows the
final kinetic energy Ērel

kin (4.3) for a scan over ∆ and R and over g and R for the three
different ωr.

Note, that we only consider ∆ > 0, which corresponds to the cavity mode being
blue-detuned from the atoms. Hence, when an atom emits into the cavity mode it emits
at a frequency higher than its transition frequency. Therefore, the atom has to exert
energy in order to lose a photon into the cavity, which it does by losing kinetic energy.
The atoms feel an effective friction force that is largest at the points where the cavity
field is maximal (high-field seeking). As can be seen from the scans, there is an optimum
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for the detuning where the cooling is maximal. This is similar to the maximal force in
the process of Doppler cooling. The force is also proportional to the inversion of the
atoms. The cooling is thus best when the atoms are pumped very strongly (large R).

Due to the fact that we have to reduce the initial momenta of particles with higher ωr
to trap them, we can say that lighter particles are harder to keep in place than heavier
ones, for the same initial momenta. But if they are cold enough they are easier to cool
down further (compare figure 4.4(a), (d) and (c), (f)).

Finally, as can be seen in figure 4.4(d)-(f), the coupling to the cavity mode should
not be too large in order for the system to be stable and cool reliably. This can be
explained by the growing probability of the atoms to absorb photons from the cavity,
which causes heating. Hence, the coupling should always be well below the cavity loss
rate, such that it is much more probable for a photon to leave the cavity than to be
reabsorbed.

At this point we want to mention again that we describe the system in a semi-classical
treatment and we neglect the recoil arising from spontaneous emission. Since the absolute
values of the particles’ momenta are around ~ka we need to have a critical point of view
on the cooling and trapping results, especially for the ωr = 1Γ and ωr = 10Γ cases.

4.2.1. Collective Cooling Effects
In this subsection we want to demonstrate the collective effects of the cooling process.
Therefore we switch them on and off and compare the independent cooling with the
collective cooling from before. For this purpose we set Ωij = 0 for all i and j and
Γij = δijΓ, with δij the Kronecker delta. This description would fit for widely separated
atoms. In figure 4.5 you can see the difference between the collective and independent
final kinetic energy defined by

Ēdiff
kin = Ērel

kin,coll − Ērel
kin,ind. (4.4)

Ērel
kin,coll is the same as before (4.3) and Ērel

kin,ind is determined in exactly the same way
just for the case of independent atoms. The black areas in these scans show parameters
were one case is stable and the other is not. If both are unstable or they have the same
kinetic energy, then it is displayed as white.

We can see, that for initially hotter atoms (ωr = 0.1Γ), the collective average relative
kinetic energy is lower (blue areas). This is because for atoms with higher initial kinetic
energy, the dipole-dipole coupling creates an additional interaction that leads to faster
cooling. However, the effective potential felt by the atoms is no longer minimal at the
cavity field antinodes. Hence, the overall potential minimum is shifted and raised for
collectively interacting atoms as compared to independent atoms. The result is that
while dipole-dipole interactions lead to faster cooling, the final temperatures reached
are not as low as for independent atoms. In figure 4.5(b),(c),(e) and (f) one can see this
behaviour. For ωr = 1.0Γ independent atoms surpass the collectively interacting atoms
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Figure 4.5.: Difference between collective and independent final kinetic energy. We did the
same scans with the same parameters as in figure 4.4 for independent atoms (Ωij = 0 ∀i, j
and Γij = δijΓ) and subtract these results from the collective ones. In the blue areas
the collective cooling reaches smaller temperatures and in the red areas the independent
cooling leads to smaller temperatures.

in terms of cooling, since they already cool down beyond the temperature possible for
interacting atoms. This effect is even more dominant for ωr = 10.0Γ where independent
atoms are always colder (red areas). Since the above explanation is only based on three
data points, we substantiate our statement by comparing the kinetic energy of collective
and independent cooling for a fixed set of parameters with different initial momenta.
Figure 4.6 shows Ērel

kin for collective and independent cooling, depending on the average
initial momentum which we define by

p̄0 = 1
N

N∑
i=1

|pi|. (4.5)

As expected the graph shows that collectively interacting atoms get cooled faster
for higher initial momenta. When the atoms are cooled down further and further
independent dynamics reaches lower kinetic energy, here for atoms with p̄0 . 1~ka.
Below p̄0 ≈ 0.75~ka the atoms are initially too slow to be cooled further, and are heated.
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Figure 4.6.: Comparison of collective and independent cooling for different initial
momenta. We can see a crossover of the collective and independent line at p̄0 ≈ 1~ka. The
parameters are the same as in figure 4.1.
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Laser properties
After we have established that the system shows stable lasing and trapping for a certain
range of parameters, we move to analyzing the lasing properties. To this end we study
the average photon number, the laser output spectrum, as well as the second order
intensity correlation function. Furthermore, we look at the atomic inversion.

5.1. Method to Analyze the Laser Properties
We pick a rectangular range of stable parameters from figure 4.4. In a fully quantum
mechanical model with fixed particle positions one would calculate the steady state of
the system and then use this to obtain the above properties. Since we include motion in
our model and it is simply not possible to cool the particles down to zero temperature
(fixed particles), we will never reach the ground state, because the ongoing motion of
the atoms will always lead to a change of the quantum field states. Hence we consider
the density matrix at the end of a fixed long period of cooling (tend = 1000/Γ) as
approximation to the stationary density matrix.

To calculate the spectrum of a semi-classical system numerically we need to calculate
the field correlation function g(1)(τ) for a sufficiently long time τ to insert it then into
the Wiener-Khinchin theorem (2.42). This can be done in the following way. We choose
ρ0 = ρ(t = 1000/Γ) to be our initial density matrix, the first order correlation function
can then be calculated by

g(1)(τ) = 〈a†(τ)a(0)〉 = tr[a†(τ)a(0)ρ0]. (5.1)

To evaluate this we define the new density matrix ρa = aρ0 and put the time-dependence
of the operator a† into the density matrix ρa, which corresponds to a change from the
Heisenberg picture to the Schrödinger picture [16]. We can then simply calculate the
semi-classical time evolution of ρa(τ ) as for ρ(t) and evaluate the first order correlation
function by

g(1)(τ) = tr[a†ρa(τ)]. (5.2)
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A sufficient choice for τmax in our case is 60/Γ with a time step of 0.005/Γ. τmax
determines the frequency resolution and the time step is responsible for the frequency
range of the spectrum. For other laser properties, n, g(2)(0) and pe, we simply average
from t = 1000/Γ to 1060/Γ. In contrast to a conventional laser, the spectrum is not a
Lorentzian, but to extract the spectrum in terms of its linewidth and frequency offset,
we use a standard least squares method to fit it with a Lorentzian distribution

L(ω) = A
γ2

(ω − δ0)2 + γ2 , (5.3)

with γ the half width at half maximum (HWHM), δ0 the offset to the real atomic
transition frequency ωa and A the amplitude. An example showing good agreement of
the fit and the spectrum is shown for a specific set of parameters in figure 5.1.

Figure 5.1.: Lorentzian fit of the normalized spectrum. The full width at half maximum
(FWHM) in this example is 2γ ≈ 7.5Γ and the offset δ0 ≈ 1.3Γ. The parameters are the
same as in figure 4.1.
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5.2. Results
In this section we finally show the scans of the different laser properties. Here we restrict
ourself to one choice of the recoil frequency, namely ωr = 1.0Γ, because the results
are qualitatively similar for the other two cases. The dependence of the FWHM 2γ
and the offset δ0 on our chosen scan parameters is depicted in figure 5.2. The second
order correlation function g(2)(0), the average number of intra-cavity photons n and
the population of the excited state pe is shown in figure 5.3. In figure 5.4 you can see
one specific time evolution of the intra-cavity photon number n and the excited state
population pe.

Figure 5.2.: Dependency of the spectrum on pump strength, detuning and coupling. You
can see a scan over stable areas for the FWHM 2γ in (a) and (c) and for the offset δ0 in
(b) and (d). The parameters are the same as in figure 4.4 for ωr = 1.0Γ. For comparison
only, the linewidth (FWHM) of the cavity without atoms is given by the cavity loss rate
κ = 20Γ.
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Figure 5.3.: Dependency of the second order correlation function, the average photon
number and the excited state population on pump strength, detuning and coupling. You
can see a scan over stable areas for g(2) in (a) and (d) for n in (b) and (e) and for pe in
(c) and (e). The parameters are the same as in figure 4.4 for ωr = 1.0Γ.

The central point we find in figure 5.2 is that the laser offset δ0 is much smaller than the
corresponding detuning ∆ for all scan parameters, mathematically this means that the
slope of the offset’s dependency on the detuning is smaller than one. For a conventional
laser in the good cavity regime this slope is approximately one. In our case it is roughly
between 0.4 and 0.5, depending on the pump rate R. The linewidth 2γ also does not
vary much with the detuning. The significance of these two features is that the spectrum
of the superradiant laser depends less on cavity fluctuations than the spectrum of a
normal laser, this is the expected behaviour. The values of the FWHM are relatively
high, this is due to the fact that the effective atomic linewidth is given by R + Γ and
the pump rate is much higher than the spontaneous emission rate. We can also see
that for all stable parameters shown in the graphs, the laser linewidth is well below the
cavity linewidth 2γ < κ. The linewidth and the offset grow with increasing pump, which
implies that the best laser spectrum is created for small pump rates just above the
laser threshold. The coupling does not affect the offset, but the linewidth grows with it.
Considering the fact that the above mentioned values are almost the same for the three
different ωr indicates that the laser properties do not change dramatically compared to
a laser with fixed particle positions as described in [7]. To confirm this statement we
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calculate the spectrum, in the same manner as we did to generate figure 5.1, for fixed
atom positions (r1 = 0, r2 = λc/2 and r3 = λc). Comparing these two spectra, we only
find slight differences, the plotted lines almost overlap.

The most significant feature of figure 5.3 is that we always have less than one photon
on average inside the cavity. The figure also shows that the most photons are created
and the field is most coherent (g(2)(0) = 1) for small detunings and large pump strengths.
The population of the excited state is of course higher for a larger pump strength and
smaller coupling. However, the important point is that the atoms are always inverted
(pe > N/2), which is needed for lasing. Hence we see that the parameters where cooling
is ideal do not coincide with optimal laser properties. For an efficient cooling process we
need e.g. a big enough detuning, whereas the laser properties are best for small detuning.
We therefore conclude that there is a certain trade-off between the ideal cooling and
lasing regimes.

In figure 5.4 we can see that the photon number and the excited state population
increase almost instantaneously. This is true for fixed and moving atoms. Due to this
feature it is possible to trap atoms which are in the ground state at the beginning in a
cavity with initially no photons inside. The maxima and minima population and photon
number are exactly opposite. As an atom gets excited by the absorption of a photon
or deexcited by the emission of a photon, we expect this behaviour. For fixed atom
positions both observables immediately reach their steady state, we can see that the
value for the photon number is a upper bound for the case of moving atoms, and the
value for the excited state population is a lower bound. This is due to the fact, that the
atoms are placed at positions where the coupling to the cavity field is maximal.
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Figure 5.4.: Time evolution of the photon number (top) and excited state population
(bottom). Both observables almost instanteneously jump to a certain value at the beginning
and then only fluctuate. On closer examination you can see that the curves behave in an
opposite fashion, if the photon number has a maximum the excited state population has
a minimum and vice versa. The dashed orange line corresponds to the time evolution for
fixed atoms with their positions at 0, λc/2 and λc, from Γt = 0 to 500. The parameters
are the same as in figure 4.1.
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Conclusion and Outlook
We included atomic motion as a first step in a semi-classical treatment to the numerical
description of a superradiant laser, showing the possibility to cool and trap particles
at the favoured positions of maximimal field intensity via a cavity cooling process
accompanied by lasing of the system. Specific parameter ranges where cooling is possible
have been found and the collective cooling process describing our system was compared
to the independent one by demonstrating that for the collective case hotter atoms might
cool down faster but do not reach a kinetic energy as low as for independent atoms in
the end. The laser properties have been investigated of stable operation parameters with
the most relevant result being that cavity length fluctuations affect the spectrum of
the laser less compared to conventional lasers. Also, the system operates with a narrow
spectrum at less than 0.5 photons inside the resonator. The light field properties do not
drastically depend on the motion of the atoms for stable configurations, therefore we
conclude that the properties of the laser light could be also calculated for fixed atom
positions in a good approximation. The fact that optimal cooling is not achieved with
the same set of parameters as the best lasing shows that one has to make a certain
compromise.

Due to numerical limitations we focused on a system with only a few atoms inside the
cavity arranged in a linear chain. A more realistic model would consider higher particle
numbers arranged in a rectangular block instead of a linear chain. For this purpose
enlarging the motional degree of freedom from one to three dimensions with magic
wavelength optical traps in the two additional dimensions to keep them localized would
also be interesting. Including a momentum kick arising from spontaneous emission
would definitely be worth examining, since then a more accurate prediction of the
final kinetic energy and temperature could be given. Also solving the master equation
for a fully quantum mechanical treatment of the system, for a few atoms could bring
some additional information. For more particles a mean field approximation would be a
possible method to handle the size of the problem. Finally one should think about a
more realistic model of the pump mechanism, for example with three/four-level atoms
instead of two-level atoms also possibly including collective effects on these additional
levels.
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Appendix A.

Dimensionless Equations for
Numerical Simulations
A computer doing a numerical simulation does not know anything about the dimensions
of the variables, at least in our case. A straight forward way to not care about the
dimension would be to use SI-Units, but calculations in SI-Units can be very unprac-
ticable and inefficient, if the computer has to deal with very small and big numbers
at the same time. An alternative way is to write down dimensionless equations with
dimensionless variables, optimally all of them being the same order of magnitudes. We
show here the dimensionless form of our system describing equations (3.5) - (3.6).

First we need to appoint the reference parameters to gain dimensionless variables, in
numerical simulations they will have the value 1. We will modify our equations such that
all variables are expressed in terms of these parameters. The dimensionless variables are
indicated by a tilde. We choose ka = 1, Γ = 1 and ~ = 1, therefore we get the following
dimensionless variables:

• spatial coordinate: r → r̃ = rka

• time: t → t̃ = tΓ

• frequency and rates: ω → ω̃ = ω/Γ e.g. κ̃ = κ/Γ

• momentum: p → p̃ = p/(~ka)

By replacing ~ with 1 and inserting the frequencies and rates in terms of Γ we obtain
the dimensionless Hamiltonian

H = ∆a†a +
N∑

i=1

g(ri)[aσ+
i + a†σ−

i ] +
∑
i 6=j

Ωijσ
+
i σ−

j . (A.1)

The Liouvillian stays the same and the coupled differential equations are modified
the following way. Equation (3.3) is multiplied by ka/Γ and on the right hand side the
factor ~ka/(~ka) is inserted
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drika

dtΓ = pi

~ka

~k2
a

mΓ .

With the definition of ωr (2.37) we obtain the dimensionless equation

dri

dt
= 2ωrpi. (A.2)

Equation (3.4) is divided by ~kaΓ to obtain the dimensionless expression

d

dt
pi = − d

dri

[
g(ri) 〈aσ+

i + a†σ−
i 〉 +

∑
i 6=j

Ωij 〈σ+
i σ−

j 〉
]
. (A.3)

We omit the tilde on all variables, hopefully this is not too confusing. This means the
ri is given in units of 1/ka, t in 1/Γ, pi in ~ka and all rates in Γ.
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Program Example
We show a Julia code example, using the quantum optics toolbox QuantumOptics.jl [20],
for a stable configuration. For all gained data in this thesis the description of the physical
model is always as in this example code. We us Julia 1.0.2 and QuantumOptics.jl 0.6.3.

#import needed libraries

using QuantumOptics #simulation

using LsqFit #fit spectrum

using DelimitedFiles #save data

#defining variables and parameters

n_p = 3 #photonen cutoff

N_a = 3 #number of atoms

#all variables and parameters are given in units of the following three

Γ = 1.0 #spontaneous emission rate

k = 1.0 #wavevector of the atom transition and the cavity field

ħ = 1.0 #Planck constant

ω_r = 0.1Γ #recoil frequency

Δ = 5.0Γ #cavity atom detuning Δ = ω_c - ω_a

g = 5.0Γ #coupling constant

κ = 20Γ #20 #cavity loss rate

R = 8.0Γ #pump rate

λ = 2π/k #wavelength

θ = π/2 #angel of the dipole vector

#defining the basis of the Hilbertspace

b_c = FockBasis(n_p) #Fockbasis (cavity field)

b_a = SpinBasis(1//2) #2-level basis (atom)

b_all = tensor([b_a for i=1:N_a]...)⊗b_c #complete joint quantum basis

#defining operators
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a = embed(b_all, N_a + 1, destroy(b_c)) #field annihilation operator

ad = dagger(a) #field creation operator

sm = [[embed(b_all, i, sigmam(b_a)) for i=1:N_a]...] #array of atom σ- operators

sp = dagger.(sm) #array of atom σ+ operators

#for faster computation we precalculate frequently used operator products

smad = [[sm[i]*ad for i=1:N_a]...]

spa = dagger.(smad)

spsm = sp.*sm

ada = ad*a

spsm_ar = [sp[i]*sm[j] for i=1:N_a, j=1:N_a]

spa_plus_smad = spa + smad

#initial state

d_atoms = 0.5 #initial atom spacing

#initial classical position and momentum of the atoms:

u = ComplexF64[[0.0, d_atoms, 2d_atoms]λ...,[1.7, -1.6, 1.5]ħ*k...]

#initial semi-classical state: all spins down and 0 photons + classical variables

ψ = semiclassical.State(tensor([spindown(b_a) for i=1:N_a]...,fockstate(b_c, 0)),u)

#defining mathematical functions

ϵ_pos = 0.01/k #smallest distance for correct values

function Ω_ij(r_i, r_j) #coherent dipole-dipole coupling

if abs(r_i-r_j) < ϵ_pos #includes Ω_ii = 0

Ω_ij = 0

else

ξ = k*abs(r_i-r_j)

Ω_ij = Γ*(-3/4)*( (1-(cos(θ))^2)*cos(ξ)/ξ

-(1-3*(cos(θ))^2)*(sin(ξ)/(ξ^2)+(cos(ξ)/(ξ^3))) )

end

return real(Ω_ij)

end

function dΩ_ij(r_i, r_j) #derivative of Ω_ij on r_i (same for r_j)

if abs(r_i-r_j) < ϵ_pos

dΩ_ij = 0

else

ξ = k*abs(r_i-r_j)

dΩ_ij = -(Γ*3/4)*(-(1-3*cos(θ)^2)*(-(3*sin(ξ))/((ξ)^2*(r_i-r_j))

+cos(ξ)/(ξ*(r_i-r_j))-(3*cos(ξ))/((ξ)^3*(r_i-r_j)))

-((1-cos(θ)^2)*sin(ξ))/(r_i-r_j)-((1-cos(θ)^2)*cos(ξ))/(ξ*(r_i-r_j)))
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end

return real(dΩ_ij)

end

function Γ_ij(r_i, r_j) #collective decay rate

if abs(r_i-r_j) < ϵ_pos

Γ_ij = Γ

else

ξ = k*abs(r_i-r_j)

Γ_ij = Γ*(3/2)*( (1-(cos(θ))^2)*sin(ξ)/ξ

+(1-3*(cos(θ))^2)*((cos(ξ)/(ξ^2))-(sin(ξ)/(ξ^3))) )

end

return real(Γ_ij)

end

#Hamilton operator

function H_dd(x) #coherent dipole-dipole interaction Hamiltonian

H_dd_ij = 0*spsm_ar[1,1]

for i=1:N_a

for j=1:N_a

H_dd_ij += Ω_ij(x[i], x[j])*spsm_ar[i,j]

end

end

return H_dd_ij

end

H0 = Δ*ad*a #field and two-level atom Hamiltonian in rotaing frame

#Jump-Operators for Liouvillian

J = [[sm[i] for i=1:N_a]..., [sp[i] for i=1:N_a]..., a]

Jd = dagger.(J)

#calculate rates of the dissipative processes

rates_calc = zeros(Float64, (2N_a+1), (2N_a+1))

#pump rates R (stay constant)

for i=(N_a+1):(2*N_a)

rates_calc[i,i] = R

end

#cavity decay rate κ (stays constant)

rates_calc[(2*N_a+1),(2*N_a+1)] = κ

#collective decay rate Γ_ij (particle position depending)

function fill_rates(r)

for i=1:N_a
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for j=i:N_a

rates_calc[i,j] = Γ_ij(r[i], r[j])

rates_calc[j,i] = rates_calc[i,j]

end

end

return rates_calc

end

#function to update the Hammiltonian and jump operators at every timestep

function f_q(t,ψ,u)

#update H

H_int = g*sum(cos.(u[1:N_a]*k).*spa_plus_smad)

H = H0 + H_int + H_dd(u)

#update rates

rates = fill_rates(u)

#J always the same

return H, J, Jd, rates

end

#function to update classical variables (Ehrenfest-theorem)

function f_cl(t,ψ,u,du)

#update position

for i = 1:N_a

du[i] = 2*ω_r*u[N_a + i]

end

#update momentum

for i = 1:N_a

du[N_a + i] = 1/k*2*g*sin(u[i]*k)*real(expect(spa[i],ψ))

-1/k^2*sum(dΩ_ij(u[i],u[j])*(2*real(expect(sp[i]*sm[j],ψ))) for j=1:N_a)

end

end

#semi-classical time evolution

timestep = 0.1

t_max = 1000

T=[0:timestep:t_max;]/Γ

t,ρt = semiclassical.master_dynamic(T,ψ,f_q,f_cl)

#analyzing data

r = [[Float64[] for i=1:N_a]...] #postions of the particles at every timestep

p = [[Float64[] for i=1:N_a]...] #momenta of the particles

E_kin = [[Float64[] for i=1:N_a]...] #kinetic energies of the particles
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n = Float64[] #number of photons in the cavity

popu = [[Float64[] for i=1:N_a]...] #excited state population of the particles

g2_0 = Float64[] #second order correlation function

for it=1:N_a

r[it] = [ρt[i].classical[it] for i=1:length(ρt)]

p[it] = [ρt[i].classical[N_a + it] for i=1:length(ρt)]

E_kin[it] = [(ρt[i].classical[N_a + it])^2 for i=1:length(ρt)]

popu[it] = [real(expect(spsm[it],ρt[i])) for i=1:length(ρt)]

end

n = [real(expect(ada,ρt[i])) for i=1:length(ρt)]

g2_0=[real(expect(ad*ad*a*a,ρt[i])/(expect(ada,ρt[i]))^2)

for i=[2,[2:1:length(ρt);]...]]

E_kin_all = sum(E_kin) #overall kinetic energy

#Method to obtain average kinetic energy

function findlocalmaxima(signal::Vector)

inds = Int[]

if length(signal)>1

if signal[1]>signal[2]

push!(inds,1)

end

for i=2:length(signal)-1

if signal[i-1]<signal[i]>signal[i+1]

push!(inds,i)

end

end

end

inds

end

function findlocalminima(signal::Vector)

inds = Int[]

if length(signal)>1

if signal[1]<signal[2]

push!(inds,1)

end

for i=2:length(signal)-1

if signal[i-1]>signal[i]<signal[i+1]

push!(inds,i)

end

end
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end

inds

end

#calulate indices, values and corresponding times of the extrema

ind_extr = sort([findlocalmaxima(E_kin_all)..., findlocalminima(E_kin_all)...])

t_kin_average = [(t[ind_extr[i]] + t[ind_extr[i+1]])/2 for i=1:length(ind_extr)-1]

E_kin_average = [(E_kin_all[ind_extr[i]]+E_kin_all[ind_extr[i+1]])/2

for i=1:length(ind_extr)-1]

#calculate semiclassical spectrum - might take some minutes

timestep2 = 0.005

τ = [0:timestep2:20;] #20 → 60 for higher accuracy

aρ0 = semiclassical.State(a*ρt[end].quantum, ρt[end].classical)

t2, ρt2 = semiclassical.master_dynamic(τ,aρ0,f_q,f_cl)

corr = expect(ad, ρt2)

ω, spec = timecorrelations.correlation2spectrum(t2, corr)

spec_norm = spec/maximum(spec)

#lorentz fit

@. lorentz(ω_lor, par) = par[3]*par[2]^2 ./((ω_lor-par[1]).^2 + par[2]^2) + par[4]

#p[1] = offset, p[2] = HWHM, p[3] = amplitude, p[4] = intensity offset

par0 = [0.1,0.1,0.1, 0.0001]

fit = curve_fit(lorentz, ω, spec_norm, par0)

lorentz_fit = lorentz(ω, fit.param)

#save the data

writedlm("time.txt", t, ", ")

writedlm("photon_number.txt", n, ", ")

writedlm("population.txt", popu, ", ")

writedlm("coherence.txt", g2_0, ", ")

writedlm("position_part_1.txt", r[1], ", ")

writedlm("position_part_2.txt", r[2], ", ")

writedlm("position_part_3.txt", r[3], ", ")

writedlm("E_kin_all.txt", E_kin_all, ", ")

writedlm("t_kin_average.txt", t_kin_average, ", ")

writedlm("E_kin_average.txt", E_kin_average, ", ")

writedlm("omega_arr_spec.txt", ω, ", ")

writedlm("spec_norm.txt", spec_norm, ", ")

writedlm("lorentz_fit.txt", lorentz_fit, ", ")
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