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The intellect has little to do on the road to discovery. There comes a leap in
consciousness, call it intuition or what you will, and the solution comes to you and you
don’t know how or why.

Albert Einstein (1879-1955)






Abstract

We study the interaction and dynamics of a set of N particles along a 1D-nano-fibre
coupled to the evanescent field of this fibre and additionally illuminated by a transversely
coherent light. We use the transfer-matrix-method to calculate the field distribution and
the optical forces acting on this system and look for equilibrium configurations. We solve
the problem analytically for smaller particle numbers, concentrating on some special
cases and derive conditions for self-consistent stable ordering. Afterwards we enlarge the
system and examine the problem numerically, investigating the dynamics of the system.
We discover that the particles form an equidistant lattice in the weak-scattering-limit
with negligible back-scattering. For larger particle systems, the outermost particles tend
to assemble near intensity maxima and trap light between them. At the end of this
thesis we generalize the system to a geometry with directional asymmetric scattering.
This introduces symmetry breaking and extra instabilities arise.






Zusammenfassung

Wir untersuchen die Wechselwirkung und Dynamik von N Teilchen, die mit einer
1D-Nanofaser gekoppelt sind. Diese Teilchen werden vom Evaneszenzfeld der Faser
und zuséitzlich von einem transversalen, kohéarenten Licht bestrahlt. Mit Hilfe der
Transfermatrix-Methode berechnen wir die Feldverteilung und die optischen Kréfte
in einem solchen System und suchen nach Gleichgewichtskonfigurationen. Wir lésen
das Problem fiir eine kleine Anzahl an Teilchen analytisch. Dabei konzentrieren wir
uns auf einige Spezialfalle und erhalten Bedingungen fiir selbstkonsistente stabile
Losungen. Anschlieflend gehen wir fiir grofiere Systeme zu numerischen Losungen iiber
und untersuchen die Dynamik der Teilchen. Im Grenzfall fiir sehr schwache Streuung
und vernachlassigbarer Riickstreuung ordnen sich die Teilchen zu einem aquidistanten
Gitter an. Fiir eine groflere Teilchenanzahl erhalten wir, dass die &uflersten Teilchen sich
neben einem Intensitdtsmaxima anordnen und Licht dazwischen einfangen. Zum Schluss
beziehen wir in unserem System gerichtete asymmetrische Streuung ein. Dadurch kommt
es zu einer Symmetriebrechung und neue Instabilitdten tauchen auf.
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Chapter 1

Introduction
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Figure 1.1: Particles confined in a 1D trap within the evanescent field of an optical
nano-fibre are illuminated by two counter-propagating beams and a transverse pump. We
treat the particles as beam-splitters interacting with a propagating wave in 1D. Hence
we have two incoming fields from the left with amplitude By and from the right Cy, the
transverse pump 7, and the outgoing fields to the left with amplitude A; and to the right
Dy of the system. a and 3 correspond to the part of ) scattered to the left and to the
right.

Polarizable particles like atoms, nano-spheres, molecules, etc. that couple to confined
light fields have been of rapidly growing interest for the past few years. One reason
behind this rising interest is that such systems offer the possibility to control and
manipulate single particles with high spatial precision.

In optical lattices particles are trapped by a standing wave composed of several laser
beams forming a perfectly periodic lattice. The potentials created by optical lattices
show periodic wells separated by half a wavelength of the incident laser light in the



1 Introduction

direction of incidence. Laser intensities and wavelengths may vary for different directions
of incidence and therefore optical lattices are apt to study a huge variety of solid state
lattice models [I].

They allow for investigation of eg. Bose-Hubbard Hamiltonian and its corresponding
phase diagram [I], photonic band gaps [2] and quantum information science [3]. Laser-
trapped atoms can be easily manipulated. They can be used in many ways, for example
to probe atoms, molecules, quantum dots, and for mechanical manipulations [4]. For
implementing quantum logic gates, neutral atoms are trapped in an optical lattice [3].
Optical lattice clocks use atoms trapped in an optical lattice as quantum time refer-
ences [5].

In a common setup the lasers are far detuned from any resonance frequency, so that
the dipole force dominates the scattering force, and the back-action from the particles
on the laser light is small. Light scattering at particles shifts the laser wavelength and
redistributes field energy among the incident laser beams. This generates interactions
among the particles and may cause single and multi particle excitations as well as
collective motion [2] [6-9].

The evanescent light field of optical nano-fibres allow for an optical lattice like field
pattern along the surface of the fibre. In 2009/2010 Rauschenbeutel and coworkers [4]
managed to trap laser-cooled neutral caesium atoms, interacting with the red- and
blue-detuned evanescent field surrounding an optical nano-fibre (section . Optical
nano-fibres permit trapping and optically interfacing neutral atoms. Rauschenbeutel’s
setup was improved with higher control of parameters and stronger particle-field coup-
ling by other groups recently [I0, [I1]. In such highly confined fields back-scattering
plays a dominant role in the system dynamics.

It is well established by now, that cold particles in optical resonators transversely illu-
minated by lasers undergo a phase transition from a homogeneous to regularly ordered
phase at a sufficiently strong pump intensity and suitable detunings between laser and
cavity field [I2, 13]. The interactions in a 1D configuration for particles trapped along an
optical nano-fibre illuminated by a Gaussian laser beam are examined in [I4]. Chang [15]
has investigated atoms coupled to a one-dimensional nano-photonic waveguide and
driven identically by an external pump field, in the weak-scattering-limit.

The purpose of this work is to find self-consistent equilibrium solutions for N particle
clouds along a 1D nano-fibre illuminated by a transverse pump field 1. A scheme of our
system is illustrated in Fig. The particles can be trapped within the evanescent
field of the fibre. Via coupling to the evanescent field of the fibre mode, the particles
can scatter photons into and out of the two propagating light modes. The perturbation
induced by the particles induces scattering between the incoming fields B, and C,
and outgoing fields A,, and C,,. The transverse pump 7 illuminates all particles equally,
which scatter the light into the fibre. By changing o and (3, we can specify the part of n
scattered to the left and to the right.

We start with an overview of the basic physics in chapter 2 Then we give a short
introduction into the most important experimental setups (chapter . At the beginning



we consider symmetric transverse scattering and examine the optical forces acting on
a single particle (section . We concentrate on some special cases, and then slowly
add more particles (section . In the multiparticle case we generally consider only
transverse pump. Fist we solve the system analytically for smaller particle numbers and
then pass over to larger systems and numerical solutions (section . As a special
case we treat the weak-coupling-limit (section , where all the light is transmitted
through the particles and no light is reflected. At the end of this work we take a short
look at asymmetric scattering (chapter [5)).






Chapter 2

Concepts and equations

To understand the basic methods used in this thesis, we first want to introduce the
transfer-matrix-method. The transfer-matrix-method is used to describe the propagation
of far detuned light through a lattice of single atom clouds. Light is considered as
a plane wave with multiple scattering the particles represented by a set of beam-
splitters |2} 6] [7, [T6HIS].

To understand this method, we first would like to introduce the basic equations of
classical electrodynamics, the Maxwell’s equations:

V-D =p, (2.1a)
V-B=0, (2.1b)
0B
E=—- 2.1
V X ETR (2.1c)
oD
H= —_—. 2.1
V x J+ 5 (2.1d)

Maxwell’s equations relate electric and magnetic fields, E and B, to the charge density
p, the current density J and to induction, where the change of the magnetic field can
induce an electric field and vice versa. The electric displacement D = ¢ E + P, with
the electric polarization P and the vacuum permittivity ¢y, and the magnetic field H
defined via B = pH, with p being the magnetic permeability, are needed for material
media.

There we assume, that we have neutral particles with no electric charges p = 0 and no
electric current J = 0. [19} 20]

In the next sections we explain polarizability and introduce the inhomogeneous Helmholtz
equation. With these we can understand the transfer-matrix-method and calculate the
optical forces, which dominate the system.



2 Concepts and equations

2.1 Polarizabilities

An electrical field in dielectric media induces dipoles. The induced dipole moment per
volume unit is called electrical polarization P(x). In a linear, homogeneous and isotropic
media the polarization reads:

P(x) = eoxE(x) = €6, — 1) E(x), (2.2)

with the electrical susceptibility x = ¢, — 1.

The electrical field, that induces the polarization is the local field E;,. in the neighbour-
hood of the dipoles.

The whole dipole moment can be calculated by summing up the elementary dipole
moments d,,0(x — x,,):

P(x) = i d,0(x —x,) ~ Nd, (2.3)

n=1
with the number of elementary dipoles per volume unit N. The average elementary
dipole moment d is proportional to the local electrical field at the position of the dipole:

dn - éZEZOC(XTL)) (24)
with the polarizability &. The origins of the polarizability are:

e The deformation of the electron shell because of the electrical field in non-polar
material causes the polarizability d.;.

e The shift of the ions in polar material leads to &;oy,.

® (,rient arises due to the orientation of the permanent dipoles in the outer field.

So the polarizability is: & = G + Qion + Qorient-
The local field E;,. is composed of the macroscopic, outer field E and an additional
field, which arises due to the polarization of the neighbouring dipoles. [21]

Also atoms can be polarized. Following [22] we get the linear polarizability tensor 8 of
a two-level quantum system in the dipole approximation, assuming that the size of an
atom is much smaller than the wavelength of the radiation field and that the interaction
between atom and radiation field is weak:

< d12d21 1 1
a (w) = — + —
h Wo—w—1%y  wo+w+iy
with the dipole matrix elements between the states |m) and |n) d, = (m|pa|n),

the electric dipole moment operator of the atom p, = er, the transition frequency
wo = (Ey — F1)/h, where E,, are the energy eigenvalues of the stationary states |n) and

(2.5)



2.2 Inhomogeneous Helmholtz equation in 1D

the spontaneous decay rate v = 1/7, with the average lifetime 7.
Assuming small values of v, we can write Eq. (2.5]) as follows:

2d12d21 WQ(W(Z) — w2) ) 2’)/(4}(4)0 .
- = C(2
(w) | i T e p | @) TiS(e). (26)

o2

As we will see later in this work, the real part of the polarizability is proportional to
the dipole force and describes dispersive atom-light interactions, while the imaginary
part is proportional to the radiation pressure and stands for dissipation. [6], 22]

2.2 Inhomogeneous Helmholtz equation in 1D

To derive the transfer-matrix-method we first have to understand the inhomogeneous
Helmholtz equation in 1D.
At the beginning we calculate the curl of Eq. (2.1¢):

VX(VXE)—I—;(VXB):VX(VXE)—i—uo;(VXH):O. (2.7)
Inserting Eq. (2.1d) and using V x (VX E) = V(V-E) — V2E = —AE, with V-E =0

as long as we have no free charges, we get:

82 2 82
—AE —D =-AE —E —P =0. 2.8
T Hogs Fthofog st fog s (2.8)
Assuming the time-harmonic form E(x, t) = E(x) exp(—iwt), D(x,t) = D(x) exp(—iwt) =
(eoE(x) + P(x)) exp(—iwt) for all fields and defining eypo = 1/¢?, we obtain:

w2
AE + —E = —pw’P. (2.9)
C

This is the inhomogeneous Helmholtz equation in 1D and describes the propagation of
the electric field in dielectric media. [19)

2.3 Transfer-matrix-method

We use the inhomogeneous Helmholtz equation in 1D to calculate the propagation
of the electric field in dielectric media. To understand the transfer-matrix-method,
we first consider only two counter-propagating laser beams of equal polarization and
frequency, and afterwards we introduce an additional transverse light field (section. .
We assume, that the transverse profile of the electric fields is Gaussian, with beam
diameter much larger than the wavelength w > A, so that the intensity maxima and
minima are thin disks and we can substitute the laser light by plane waves. The



2 Concepts and equations

incident light from the left is F(z,t) = Egexp(ikx — iwt) and the one from the right
E(x,t) = Ey exp(—ikz — iwt) (Fig. [L.1). We drop the trivial phase factor exp(—iwt).
The intensities can be calculated by I,,(x) = 1/2¢qc|E,(z)|?, for n € 1,2. Additionally
we assume linear polarizability for simplicity.

The particles can be ,high-field seekers* or ,low-field seekers”. | High-field seekers* are
atoms with frequency w4 larger than the laser light frequency wy, thus the trapping
light is red detuned. This can also be submicron silica beads in a medium with lower
index of refraction than that of the particles. These particles are pushed to the higher
intensity. ,,Low-field seekers®“ are cold particles, with blue detuned trapping light and
they behave inversely to ,high-field seekers*.

We average over transverse motion of particles in a cloud and assume, that this cloud
is infinitely thin and of linear polarizable material. With Eq. , Eq. and the
density of the atom clouds p = 730, §(x — z,,), we obtain for the polarization density
P(z) = aijE(x) XN, 6(x — z,) and the Helmholtz equation in 1D for such N
clouds looks as follows:

N
(02 + k) E(z) = —4nk*P = —4nk*ia Y 6(z — 2,) E(x), (2.10)
n=1
with surface density

N, (number of particles in a cloud)

j=-—2= = 2.11
= (cloud cross section) ’ (211)

linear polarizability &, k = w/c and the position of the n-th particle x,,. The strength
of interaction between clouds and laser depends on the surface density and the linear
polarizability. We define a coupling constant

¢ = k"QTO (2.12)

the areal density of the polarizability of a cloud. This coupling constant is proportional
to the forces acting on the particles. ({) is proportional to the dipole force, which
describes dispersive atom-light interactions and is positive for red detuning and negative
for blue detuning. () is always positive and describes dissipation like spontaneous
emission. It is proportional to the radiation pressure force. Dipole and radiation pressure
force are later described in detail.

With (, we can rewrite the Helmholtz equation (2.10)):

(2 + k) E(x) = —2kE(x Z CS(z — ). (2.13)



2.3 Transfer-matrix-method

The electric field between two clouds can be written as a superposition of two plane
waves (see Fig. [1.1)):

E($n_1 << xn) — Ane—ik(:c—a:n) + Bneikz(x—zn) _ C«n_le—z’k(z—:cnfl) + Dn_leik(zr—:vn,ﬂ'

(2.14)
The electric field has to fulfil some boundary conditions. First it has to be continuous
at the infinitely thin cloud:

E(z, — 0) = E(z, + 0). (2.15)

From Eq. (2.13) we can find boundary conditions for the derivative of the fields. We
integrate Eq. (2.13) from z,, — € to x,, + ¢, with € — 0, and we get:

/ (024 2 B) = / T okE(a ivj Co(z — ),
T z j=1

n—€ n—€

(2.16)
0pE(y = 0) = 0 E(y +0) + k*(E(zy — 0) — B2, +0)) = —2kCE(2y),

where we used Eq. (2.15)) in the last line. The boundary conditions ({2.15)) and (2.16]

connect the amplitudes to the right of each atom cloud with those to the left. Inserting
Eq. (2.14) in Eq. (2.15), we get the following boundary condition for our system:

A,+B,=C,+ D,. (2.17)

Using this equation, we get from Eq. (2.16]):

—iA, +1iB, = —iC,, +iD,, + 2((A, + B,),
—iA, = —iC, + (A, + B,),

, (2.18)
A= p i+ L ¢
R I T T T
and
—iA, + 1B, = —iC, +iD,, + 2¢(C, + D,,),
iB, =1iD, + ((C,, + D,), (2.19)

1 i¢
B, )
Tk e
An electric field propagating in the z-direction, Ej,. = FEyexp(ikz) is split into a
reflected E,.; = rEyexp(—ikz) and a transmitted field Eyq,s = tEexp(ikz), when

D, =
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() (b)

A C
A, A [ Cn o 3
(Bn) = (M) ( Dn) (B,l) = (M) (D,,)
1l 1
Figure 2.1: The transfer-matrix-method with two longitudinal fields (a) and additional
transverse pump (b). B, and C,, are the incoming amplitudes, while 4,, and D,, are the

outgoing ones. The transfer-matrix-method relates the modes to the left of an optical
element to the modes to the right of it.

colliding on a beam-splitter, with reflection r and transmission coefficient ¢. So the

boundary conditions ([2.18]) and (2.19) change into:

A, = 1B, + tCh, (2.20)
D, = tB, + rC,. (2.21)

Comparing Eq. (2.20) with Eq. (2.18) and Eq. (2.19), we can rewrite the reflection
and transmission coefficient in the following way:

1

~ 1o (2.23)

t

10



2.3 Transfer-matrix-method

with ¢ = —ir/t. Reflection and transmission coefficient are related to each other in the
following way: |r|> + [t|> =1 = 2|t|*S(¢) and 7 + 1 = ¢.

With these relations for a single beam-splitter, we are now able to describe a set of
N particle clouds as a set of N beam-splitters. To do this we use the transfer-matrix-
method. Up to now, we have related the outgoing modes to the incoming modes. The
transfer-matrix-method relates the modes to the left of an optical element to the modes
to the right of it, as we can see in Fig. 2.1h):

(gﬁ = (M) (g:fL) (2.24)

We define the incoming field amplitudes Ey = By and E; = Cy and the outgoing field
amplitudes are A; and Dy. Reordering Eq. (2.20) and Eq. (2.21]), we can write the

amplitudes to the left of one optical element as:

(2 = r*)Ch +71Dy) = (1 +i¢)Cyy +iC Dy, (2.25)

SRR R

Ay,
By =~ (—1Cy + D) = —iCCp + (1 —iC)D,,. (2.26)

So the matrix for one beam-splitter looks as follows:

L=t o\ (1+4i¢C i
oo (7 ) (1K) o

For a set of more beam-splitters we have to consider the propagation of light, between
two beam-splitters. Although the intensity does not change, the amplitudes can acquire
phases. The following matrix P(d) includes the propagation of light:

P = (7 ). 2.28)

with d the distance between the two beam-splitters.

Now we can easily calculate the transfer-matrix of the whole system. This matrix can be
calculated by multiplying the matrices of the single beam-splitters and the propagation
matrix:

M = Mpg - P(dy) - Mps - P(ds) - Mps -+ Mps - P(dn-1) - Mps

_ 1 (TiT, - RR. R (2.29)
T —R, 1/

with R and T being the reflection and transmission coefficient to the left [ or to
the right r side of the whole system and defined via A; = R;B; + T,Cy and Dy =
R, Cy + T;B;. While for one beam-splitter R, = R,., the reflection coefficient for left

11



2 Concepts and equations

and right incoming light usually do not coincide for more particles. The transmission
amplitude is independent of the direction of propagation and so T; = T, [7].
As we can see in [7] the group of transfer matrices (7, -) can be defined as:

2%2 Lt —rry o) _

T={TeC ]Elrl,rg,tE(C:T:t< o 1) =T(r,79, 1)}, (2.30)
with T}y - Ty € T for all Ty, Ty € T and [T(ry,70,t)] ' € T.
So we found the transfer-matrix of a set of N beam-splitters with two incoming counter-
propagating laser fields. [2, 6] [7), 16}, 17]
In the next section, we want to apply this formalism on our system with two counter-
propagating longitudinal laser fields and one transverse pump, and find a transfer-matrix
for this system.

2.3.1 Transfer-matrix-method with transverse laser

As shown in Fig. ), for this system we have to add the scattered fields to the
propagation and hence the outgoing amplitudes look as follows:

A, =rB, +tC, + an, (2.31)
D, =tB, +rC, + [n, (2.32)

with « the part of n reflected to the left and /3 the one reflected to the right. o and 8
fulfil the condition |a|* + |3]*> = 1, so that we later write o = sin(f) and 8 = cos().
Using Fermi’s golden rule [4, 23, 24], we get that the decay rate v into the fibre is
proportional to |d - Ej,.|*, with the dipole moment d. As d = aE,. (Eq. (2.4)) and
v o< I, = cen/2|n)?, it follows n < GEZ,.

While the fibre and the laser pump are translation and mirror symmetric and one
expects a = 3, this is not true due to polarization of the pump. This was shown recently
by [25].

We can rewrite Eq. and Eq. , so that we relate the amplitudes to the left
of the optical element to the ones to the right of it:

1
Ay = (2 = r)Co ot rDy o+ (at = Brin) = (L+iQ)Co + iCDn + (@ = i), (2.33)
1
Bn = ; (_rCn + Dn - 677) = _ZCCTL + (1 - Zg)Dn + B(ZC - 1)”' (234)
The transfer-matrix M in this case is a 3 x 3-matrix, and defined via:
A, Ch
B, |=(M)|D,], (2.35)
n Ui

12



2.4 Optical forces

and looks as follows:

1 t2—1r2 r ot —pr 1+i¢ i a—iB¢
Mps=-| —r 1 - |=| —ic 1-ic Blc-1]. (2.36)
Vo 0t 0 0 1

As for the transfer-matrix without the transverse pump, we define the set of transfer
matrices as:

1 t2—r* r at—pPr
T ={T € C*¥*?|3ry,7p,t € C: T = o 1 =8 | =Tt} (2.37)
0 0 t

Since Mps, - Mps, € T and [Mps]™t € T, (T,) is a group with the standard matrix
multiplication (-).

So we found the transfer-matrix for a system with two counter-propagating longitudinal
and one transverse laser field.

For this case the propagation matrix looks as follows:

eikd 0 0
Pd=]0 e* 0]. (2.38)
0o 0 1

As already seen in Eq. (2.29) the approach of this method is to find a matrix, which
consists of matrix products of the beam-splitter and the propagation matrix, and
connects the amplitudes to the left of the system with those to the right of it:

M = Mps - P(dy) - Mps - P(dy) - Mps - Mps - P(dy_1) - Mps. (2.39)

2.4 Optical forces

As the particles redistribute the light, they change its momentum and thus experience
a light force. To find the equilibrium positions of the particles in our system, we have
to calculate these forces acting on the system. Usually in free space the radiative force
on atoms at rest can be separated into two parts [26]:

e Radiation pressure: connected to the phase gradient of the laser
e Dipole force: connected to the intensity gradient of the laser

The force on a dipole in an electrical field E(z) reads [27]:

1B 0) PR() — 5] B) P 0(0)3(a), (2.40)

1

F=-
4

13



2 Concepts and equations

with zo the position of the dipole, & the polarizability of the dipole and F(z) =
|E(x)|exp(—i¢p(z)). The term proportional to the real part of the polarizability & is
called dipole or gradient force and the term proportional to &(a) radiation pressure or
scattering force.

For our system, we require far detuned lasers, so that the dipole force dominates
the scattering force, the light does not heat the particles very much and the optical
back-action of the particles on the light is very small. [6]

2.4.1 Dipole force

The electric field induces an oscillating dipole in an atom, which again interacts with
the field. The spatial gradient of the strength of this interaction leads to the dipole
force, sometimes also called gradient force. As we can see in Eq. (2.40), for a stationary
particle it is proportional to the gradient of the intensity [28]. Because of the dipole
force, particles with $(¢) > 0 are pushed toward high intensities, and particles with
R(¢) < 0 toward lower intensities. [6]

There are different possibilities to understand the basic physics of the dipole force [29]:

e The dipole force can be associated to a driven oscillator. The charge, driven by the
electric field, is in phase with the field, when the light is red detuned (wy, < wa),
and 180° out of phase, when the light is blue detuned. The interaction energy
between the induced dipole p = GE and the field is Uy, = —pE = a|E[>. We can
see that the interaction energy is negative for red detuned light and the oscillator
is pushed toward higher intensities to minimize the energy. For blue detuned
light the interaction energy is positive and the oscillator pushed toward lower
intensities.

e The second possibility to describe the dipole force is as a consequence of absorption
and stimulated emission. It arises due to photon absorption from one wave followed
by stimulated emission into another one. The energy of the field does not change,
because all waves have the same frequency. However, as the single waves have
different k-vectors, the photon impulses are redistributed and thus also the
momentum of the atoms changes. [20]

2.4.2 Radiation Pressure

In contrast to the dipole force, the radiation pressure is a consequence of absorption
and spontaneous emission. It arises from the momentum transmitted to the atom, when
spontaneously scattering a photon into a random direction. A photon with momentum
hk totally absorbed by an atom with initial antiparallel v;, final velocity vy and mass M
transmits the following recoil velocity: vg = v; — vy = hk/M. Then the atom emits the
photon in a random direction as we can see in Fig.[2.2] So the atom absorbs photons only
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2.4 Optical forces

Figure 2.2: An atom, scattering a photon, that transmits a momentum to the atom.
First, the atom absorbs the photon, propagating antiparallel to it, which transmits its
momentum to it and slow down the atom. Then the atom emits the photon in a random
direction.

from one direction, but emits them in every possible direction. So only the part from
absorption contributes to the average. For two incoming fields the radiation pressure
force is proportional to the difference of the intensity between the two longitudinal
incoming laser fields and points toward the weaker source. The force fluctuates in time,
due to the fact, that direction and time of emission are statistically distributed, which
leads to diffusion of the atomic motion in the momentum space. [6], 29]

2.4.3 Maxwell stress tensor

The theory of the electromagnetic forces is based on the conservation of momentum.
Recalling Maxwell’s equations, we calculate the Maxwell stress tensor. Operating on

Eq. (2.1d) by xeE and on Eq. (2.1d)) by xuoH, and adding this two equations, we get:

1 (OH 1 (OE
eo(VxE)xEJruo(VxH)xH_—CQ(at><E>+02<(%><H>, (2.41)

with eopg = 1/c*. Using Eq. (2.1a]), we can write the first two expressions in the following
way:

€0 €o

eo(VXE)xE = V (eOE E- 2E2]l) —EVE =V <60E E— 2E2]1) _JE, (2.42)
and using Eq. (2.1b)):

w(VxH)xH=V <,u0H -H — MQOHQII) : (2.43)
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2 Concepts and equations

With
1d 1 (OE 1 (OH
—— (ExH)==|—xH|—-—=|—=—xE 2.44
C2dt( < H) c2<8tx ) 02<8t % )’ (2.44)
we get:
V(eE-EJruH-H—l(eE2+uH2)]l)—dl(ExH) (2.45)
0 0 5 \€0 0 7t 2 - -

e
In this way we arrived at Maxwell’s stress tensor in vacuum T, which is defined as:

1
T=¢E-E+ puoH - H — 5 (0 + poH?) 1. (2.46)

From Poynting’s theorem follows that the total force onto an object in an electromagnetic
field is the sum of the mechanical and the field force:

1 1 d
F:Fmech+Ffield:/ (pE+JXB)dV+2/(EXH)dV
1% c c? Jv dt

—e / L B xB)av 240
v at '
So we first have to integrate Eq. over an arbitrary volume V:
/Vt‘ﬁdvzdl/(ExH)dV (2.48)
1% dtc? Jv

<~ <~
Using Gauss’ integration law [, T dV = [;,, T ‘n da, with OV the surface of V', n the
unit vector perpendicular to the surface and da an infinitesimal surface element, we can
transform the volume integral into a surface integral, and obtain:

F=/ Tmnda (2.49)
ov

Now we can calculate the mechanical force acting on an arbitrary body within the closed
surface V. It is interesting to see that the force only depends on the electromagnetic
fields E and B. For our one-dimensional problem, we are only interested in the x-
component of the Maxwell stress tensor. Assuming vacuum, we get [19] 22]:

€0 2 2 2 2/ 12 2 2
TMZE(EE—EZJ—EZ—FC (B2 - B - B)). (2.50)

Considering the facts, that the electric and magnetic fields are always orthogonal to
the propagation direction z, thus E, = B, = 0, and that electromagnetic waves are
transversal [cB| = |E|, the Maxwell stress tensor changes into [16]:

e
T= —¢E>. (2.51)
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2.4 Optical forces

Figure 2.3: We integrate over the momentum flux on the boundaries of the fictitious box
(grey rectangular). For our infinitely thin beam-splitters, the length of this box parallel to
the z-axis is infinitesimally small and does not influence our integral. So we only have to
integrate over the two planes orthogonal to the z-axis.

To calculate the force on our system, we now can enclose the body in a fictitious box and
integrate over the boundary of it as we can see in Fig. 2.3] For our system the planes
parallel to the z-axis are infinitesimally small, so we only have to take into account the
planes orthogonal to the x-axis. Inserting this in Eq. and integrating over the
surface, we get the force on the n-th-beam-splitter:

€
E, = 50 (1A* + [Bal* = [Cl* = 1 Da?) (2.52)

It is easy to see, that the force corresponds to the missing momentum, which leads to a
force on the inner volume. The part |A|? — |C|? are the missing photons coming from the
right, which leads to a force toward the right direction, while the part —(|D|* — | B|?)
shows the missing photons coming from the left, which leads to a force toward the left
direction.

For only longitudinal incoming laser light with amplitudes B(x) = +/21,/(eoc) exp(ik(x—

z0) +i¢p) and C(z) = /21, /(egc) exp(—ik(z — zy) +i¢c), the force, Eq. (2.52)), on one

beam-splitter reads:

€
F=2 (|4 + B[ = | = |DP?).
=3 (11 +Q)C +iCDP +| = icC + (1= i¢)D* = | = D).

) (2.53)
AL —-1)G AT sin(2kx)) 2T — 1) ||
TR dl-XP  di-icpR
A B C

where we have chosen z¢ = (¢p — ¢¢)/2k. Term A is proportional to the imaginary part
of ( and a part of the radiation pressure, arising due to absorption of photons. It is also
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2 Concepts and equations

proportional to the difference of the intensity of the two incoming laser fields and points
toward the weaker force. It vanishes for I; = I,.. The interference term B corresponds to
the dipole force and is proportional to the real part of ¢. For ({) > 0 it points toward
high intensities and for R({) < 0 vice versa. It arises due to redistribution of photons
between the light waves. The last term C is proportional to |¢|* and thus very small for
one particle. It corresponds to reflection without considering effects of interference. The
factor |1 — ¢]? reduces the force because of the presence of the beam-splitter. [6]
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Chapter 3

Implementation examples

Before we start with the main part of this work, we want to give a short overview of
the possible realization methods for the system. The main requirements are to couple
emitters to guided field modes to trap dipoles in 1D. Two types of optical fibres have
been developed to couple small particles with light. While in hollow-core fibres the
atoms are injected with a capillary into the centre of the fibre, in optical nano-fibres
with the diameter smaller than the wavelength of the guided light, the particles are
positioned along the fibre and interact with the evanescent field of the fibre.

Optical waveguides in the form of glass fibres have a higher refractive index core and a
lower index cladding, which causes total reflection at the boundary. Nevertheless an
evanescent field rises in the cladding [25]. The fibre or V-Parameter V' = 2wa/AN A

shows the number of modes of the fibre. NA = (/n} — n3 stands for the numerical
aperture of the fibre, with n; and ns the refractive indices of the core and the cladding,
a the radius of the core, and A the wavelength of the light in the fibre. The number M
of modes in the fibre is approximately M ~ 4V?/x% for V >> 1. For a single mode fibre
is V' < 2.405. [30]

A subwavelength-diameter fibre can be prepared by using taper fibre technology. A
single-mode optical fibre is heated and pulled to a very thin thickness. Due to this, the
fibre core is almost vanishing and the significant refractive indices are the one of the
clad and the one of the surrounding vacuum. The fibre core can be neglected and the
light is guided along the interface between the cladding and the surrounding media,
instead of along the interface between the core and the cladding. In such waveguides
the penetration length of the evanescent field is much larger than the diameter of the
fibre. [31, 32]
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3 Implementation examples
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Figure 3.1: Fig. a) demonstrates the experimental setup to trap atoms in the evanescent
field surrounding an optical nano-fibre. Two counter-propagating waves, one blue and the
other red detuned, create the trapping potential. An additional resonant laser probes the
atoms via the evanescent field.

Fig. b) shows the fluorescence image of this ensemble. [4]

3.1 Optical interface created by laser-cooled atoms
trapped in the evanescent field surrounding an
optical nano-fibre

Rauschenbeutel and coworkers [4] managed to trap and optically interface laser-cooled
neutral caesium-atoms in a one-dimensional optical lattice about 200 nm above the
nano-fibre surface. They positioned the atoms along a nano-fibre with diameter much
smaller than the wavelength of the guided light. The guided light in this nano-fibre can
penetrate into the surrounding media, so that particles along the fibre can interact with
this evanescent field, by absorbing light from the fibre or emitting light into the fibre.
The intensity of the evanescent field as a function of the distance x from the surface is
given by I(x) = Iyexp(—2z/A), with the decay length A, where I(x) o< 1/e* and I the
intensity at the surface [33], 34].

The experimental setup is sketched in Fig. A 500 nm diameter nano-fibre with red-
and blue-detuned evanescent light field around this fibre is inserted into a magneto-
optical trap. Such a fibre only guides the fundamental HE;; mode, which can be pumped
simultaneously with different lasers. While the red-detuned light and the Van-der-Waals-
force attract the atoms toward the nano-fibre, the blue-detuned light pushes them away.
A potential minimum is then created, because of the faster radial decay lengths of
the blue-detuned evanescent fields in comparison to red light. To fix the atoms in the
axial direction, a backward-propagating red-detuned standing wave is additionally sent
through the fibre. [35]
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3.2 High-cooperativity nano-fibre laser

Higher order modes of a nano-fibre leads to a higher evanescent field and thus to
a stronger interaction with the atoms [36]. Such fibres are called few-mode optical
nano-fibres. The interaction of 8"Rb with such nano-fibres are investigated in [37].

3.2 High-cooperativity nano-fibre laser

Pump
beam
LS
e s
Imaging
spectrograph

Figure 3.2: In this setup the capillaries are pumped from the side with a low-NA lens. [3§]

Another experimental setup is shown in Fig. [3.2] where was tried to couple gold nano-
particles to a highly confined mode of a nano-fibre without use of any cavity geometry.
First they filled gold nano-particles into a capillary and then phenol, and pumped it
from the side with a cigar-shaped beam. A grating and a camera was used to measure
the emission spectrum along the fibre. This system was even operated as a laser. [3§]

3.3 Exploiting the local polarization of strongly
confined light for sub-micron-resolution internal
state preparation and manipulation of cold atoms

An experimental setup to manipulate atomic ensembles by a single optical mode,
that exhibits a local polarization, is shown in [39]. With the same experimental setup
introduced by Rauschenbeutel [4], they managed to manipulate two distinct atomic
ensembles with a single laser field. They prepared the two ensembles in two opposite
Zeeman states, thus, the ensembles interact differently with a single mode light field.
The experimental setup is shown in Fig. 3.3} Caesium atoms are trapped along the
evanescent field of a nano-fibre. Two diametric arrays of individual trapping sites are
created by a red-detuned standing and a blue-detuned running wave. The only guided
mode by the nano-fibre is the fundamental HE;;-mode. First the atoms are in a mixture
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3 Implementation examples
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Figure 3.3: Fig. a) The experimental setup consists of the tapered optical fibre, the laser
fields, and the single-photon counting module (SPCM). The green curved arrows show
the circular polarization of the manipulation light fields.

Fig. b) Cross-section of the nano-fibre: The blue and red double arrows show the orientation
of the linear polarizations of the blue- and red-detuned trapping fields. [39]

of the F' = 4 hyperfine manifold. A magnetic field is applied to distinguish between
the states and prevent spin flips. A manipulation light pulse is sent through the fibre.
The light pulse is o"-polarized above the nano-fibre and o~ -polarized below it. The
transmission spectrum of a subsequent probe pulse, that is resonant with the AC-Stark
shifted FF = 4 — F’ = 5 transition, is measured and confirms that the manipulation
field pumped the atoms above the fibre toward |F' = 4, mp = +4) and the atoms below
the fibre toward |F' = 4, mp = —4). With this method the particles on each side of the
nano-fibre can be addressed independently.

In [25], this experimental setup is used to direct the spontaneous emission of photons
by an atom into a specific propagation direction.

Detector 2

optical fiber mimors

Figure 3.4: Experimental setup: Fig. a) shows atoms trapped on one side of the nano-fibre
and excited by a o~ -polarized laser beam. A detector at the ends of the fibre detects the
fluorescence light emitted by the atoms.

Fig. b) additionally shows the tapered optical fibre, the dipole trap lasers (blue and
red lines), the resonant light beam paths (green dotted lines), and the atoms along the
nano-fibre. B,y ¢ demonstrates the direction of the homogeneous offset magnetic fields. [25]

Fig.[3.4/shows the experimental setup, where spontaneous emission of light by quantum
emitters into nano-fibres, using caesium atoms along a vacuum-clad silica nano-fibre, are
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3.4 Trapping of ultracold atoms in a hollow-core photonic crystal fibre

investigated. Here, only atoms on one side of the fibre are prepared. The polarization
properties of the guided modes lead to directional spontaneous emission into the nano-
fibre. The scattering rate of an atom at position r is proportional to |[d* - u(r)|?, with
the atomic dipole operator d and local unit polarization vector u. As the local spin
changes sign when reversing the propagation direction of the guided field, the coupling
between the light’s spin and orbital angular momentum allows to control the direction
of spontaneous emission.

They prepared the atoms in the outermost Zeeman substate |F' = 4, mp = —4). A
magnetic offset field is used to avoid spin flips and to distinguish between the states. By
an external o~ -polarized laser field the atomic transition |F' =4, mp = —4) — |F' =
5, mp = —5) is driven. For this transition the atoms only emit o~ -polarized light and
most of the light is detected by one detector. [25]

3.4 Trapping of ultracold atoms in a hollow-core
photonic crystal fibre

In hollow-core fibres, the atoms are directly positioned into a capillary in the centre
of the fibre and thus coupled to the fibre mode. The problem here is, that this system
can not directly be connected to the fibre network, because at least one end of the
hollow-core fibre has to be positioned in the vacuum chamber [4].

The experimental setup of such a trap, can be seen in Fig. 3.5 To trap atoms in a
hollow-core fibre, one uses a red detuned optical dipole trap positioned at the end of a
hollow-core photonic crystal fibre, which is hold by a vacuum chamber. This fibre has to
be large enough, so that atoms can enter. The atoms can move between these two traps,
by changing the intensities of the two traps. The laser beam is focused onto the fibre
tip from outside the vacuum chamber. At the other side of the fibre is a retractable
mirror to detect the outgoing light. The laser is far detuned, so that radiation pressure,

I_flb:-*r DDT_I—
—
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| vawumthmni,—
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Figure 3.5: The beams used to trap are first order diffracted beams from acousto-optic
modulators. [40]
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3 Implementation examples

heating and trap loss can be neglected. [40]
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Chapter 4

Optical forces and dynamics for
symmetric pumping o = f3

In this chapter we calculate the force for a set of particles with one transverse laser field
and two incoming longitudinal fields. First we start with analytical results with only
one particle, then we enlarge the system to two, three and four particles. Afterwards
we concentrate on numerical results for larger systems. For all of these first results we
assume symmetric scattering with o = 3 = 1/4/2 and thus § = 7/4. In the next chapter
we will concentrate on the case with asymmetric scattering, thus a # S.

4.1 Optical forces on a single particle

For one beam-splitter, as we see in Fig. 4.1, we have the incoming longitudinal beams
By = /21 /(ceo) exp(ik(x — x0) + ¢p) and Cy = y/21;/(ceo) exp(—ik(z — xo) + ¢¢), and

the transverse pump n = /21,/(cep) exp(¢y). Defining xy = (¢ — ¢c)/(2k), there

only remains the phase difference between longitudinal and transverse pump fields

¢ = (¢5+ ¢c)/2 — ¢y, First we calculate the intensities, using Eq. (2.31)) and Eq. (2.32):

2

VT 4 iy T 4 (i Q) e

lu = Al 41
=R 1+ |CP : (4.1)
2
ce ‘C\/I_re‘““ + i/ e* 4 (i + g)\/ge—w
Iy = 5 Dif* = 3 (4.2)
2 1+ C]

For some examples of the outgoing intensities, see Fig. [4.2]
In the next step, we calculate the force on one beam-splitter. We use Eq. (2.52) and
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4 Optical forces and dynamics for symmetric pumping o = 3

Figure 4.1: One beam-splitter with incoming longitudinal fields B; and Cj, transverse
pump 71, and outgoing fields A; and D;.

obtain:

B :%0 (IALP + [Bi]? = |C1* — | Dyf?)
(L= L) (I¢* + &) — 2V, sin(2kx)
= e (4.3)

3l

+ \/27177 (\/Zcos(kx —¢) — \/?lcos(kx + ¢)> .

c

The second line of Eq. represents the force, emerging from the counter-propagating
fields in the fibre as in Eq. . The last line arises from interference between the
longitudinal fields and the transverse pump. Our matter of concern is to find the
stable configurations of our system, which means on one side, that the force is zero,
and on the other side that the derivative of the force with respect to the position of the
beam-splitter is negative. Different cases for various parameters are shown in Fig. [£.3]
It is interesting that introducing the transverse pump 7 changes the periodicity from
A/2 to .

As seen in Fig. ), for special ¢ and large difference between I; and I, there do not
exist zero-points any more. We want to examine this behaviour in more detail, after
calculating the potential of such a system.
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4.1 Optical forces on a single particle

T
O U= T LT

5 3
“ 2.5
p 2
R= 1.5
2 1
B 0.5
5 0
~
14 !
12 |
10 1
& 3
6 .
4 ; ;
ok S
0 L L L
A A 3\
O 3 37 T A
Position x

Figure 4.2: Intensities I, (blue) and I,, (red) for

a) I} =1, =1,, ¢ =0and ( = 1/9,

b) [ =1, =1,,¢=0and ( =1/9+1i/2,

c) 1 =21, I, =1,, ¢ =0and {( =1/9,

d) [} =0,1,=1,,¢=0and ( =1/9,

e) I} =1, =8I, ¢ =n/4 and ( =1/9, and

f) =1, =81,, g =n/2 and ( = 1/9.

For I} = I, = I,;, we have I(x) = I,;(A—x). The imaginary part of ¢ reduces the outgoing
intensity, because of absorption. Looking at Fig. ¢) and d), we can see that for different
incoming intensities and small ¢, which means that most of the light is transmitted, the
outgoing intensity is mostly larger at the opposite side of the higher incoming intensity.
Fig. e) and f) show the outgoing intensities for ¢ # 0, which rather changes the intensities.
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4 Optical forces and dynamics for symmetric pumping o = 3
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Figure 4.3: Forces F' on one beam-splitter for

a) I} =1, =1,, ¢ =0, =1/9 (blue), ( =1/9+i/9 (red) and { = 1/9 +i/2 (green),

b) ¢ =0, I, = I, I, = 51, ( = 1/9 (blue), I; = 2I,,, ( =1/9 (red), [; =0, ¢ = 1/9
(green), I; = 31, and ¢ = 1/9+ /2 (violet).

c) ; =1, =81, (=1/9, = /2 (blue), $ = 7/3 (red) and ¢ = 7/4 (green),

d) I} =21I,, ¢ =0,¢=1/9, I, = 0 (blue), I, = 31, (red) and I,, = 101, (green).

Red points correspond to stable points, while green points are unstable.

Fig. a) is the same case as I, = 0. We see that this case is A/2-periodic and we have four
zero-points per wavelength, two of them are stable (green points). Because of absorption,
an imaginary part of ¢ reduces the absolute value of the force.

Fig. b) shows the force for I, = I,, and different I;, which changes the number of zero-points.
For large difference between I; and I, we have only two zero-points per wavelength, while
we have four zero-points for smaller differences. An imaginary part of { pushes the force
toward the weaker source. For a large imaginary part of ( and a large difference between
I; and I, there are no zero-points any more (green line).

Changing ¢ can also influence the number of zero-points. Looking at Fig. ¢), we see that
the zero-point at = 0 or x = X is not stable for the blue line, but gets stable, when new
zero-points appear, as for the red and green line.

This phenomenon inversely appears for different I,, (Fig. d)). For a larger I,), we have only
two zero-points per wavelength, but the zero-point at x = 3\/4 is stable.

It is also interesting that I, changes the periodicity to A.
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ot
e}

N W
o O O

—_
[a)

DO
e}

I, [in units of I,]
aw]

[
(O3

I, [in units of Ij]
—
(@)

ST S 5 b -

0 & I 0 i— jooo—]
A A 3\ A A 3\

0 2 5 5 A 0 2 5 5 A

Position z

Figure 4.4: zero-points of the force on a single beam-splitter for

a) I} =1,,$=0,(=1/9 (blue), ( =1/9+1/9 (red) and ¢ = 1/9+ ¢/2 (green),

b) ¢ =0, I; = 5I,, ¢ =1/9 (blue), [; = 21, and ( = 1/9 (red), [; =0, ¢ = 1/9 (green),
I} =3I, and ¢ = 1/9+ i/2 (violet).

c) I, =81,,(=1/9, ¢ = /2 (blue), $ = 7/3 (red) and ¢ = 7/4 (green),

d) ¢=0,(=1/9, I, = 0 (blue), I,, = 3I; (red) and I,, = 10I; (green).

Solid lines correspond to stable points.

Fig. a) shows that we can get more zero-points for small difference between I, and I;
and real ¢ (red). For large ¢; and large difference between the intensities of the counter-
propagating fields, we can not even get one zero-point (blue and green). This phenomenon
is also confirmed in Fig. b). Changing ¢ also leads to interesting effects. For special ¢
exists a threshold above which four zero-points can be found (Fig. c)). For different I, we
can obtain four zero-points at I; ~ I,..
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4 Optical forces and dynamics for symmetric pumping o = 3

4.1.1 Potential for a single beam-splitter

For a single beam-splitter we can easily calculate a potential by integrating the force:

Vie) = — /0 " F () dar. (4.4)

Here we are lucky that the radiative pressure force proportional to (; is just a constant,
not preventing to obtain a potential. The potential helps to understand, whether a zero
force point is stable or not. For a detailed discussion see [6].

Inserting Eq. (4.3) into Eq. (4.4), we obtain:

21, — 1) (I + G) ko + 23/ TG, (1 — cos(2kx))
k|l — iC|?

21,
+ \/k: <ﬁ(sm(k‘x + ¢) —sin(¢)) — \/Z(sin(kx — o)+ sin(gb))) :

In Fig. we can see some examples for different parameters of the potential. As a
potential minimum corresponds to a stable point, we can find a condition for the points
to be stable. A minimum of the potential means that the derivative of the force in this
point is negative.

V(z) =

(4.5)

4.1.2 Large asymmetries of [; and I,

Examining Eq. (4.3)), we can already see that for large difference between I; and I, no
x that fulfils the condition F'(z) = 0 exists, thus we can not find any zero-point and
the particle is unstable. To investigate this behaviour, we set F'(z) = 0 and rewrite the
equation:

W (\/ECOS(QZS + kz)|1 — i + 4\/EC,. sin(2kx)+

V~8VIF(G + [CP) (/2L cos(6 — ka) 1 — ic? — 2VIr (G + CP)

+(\/27n cos(¢ + ka)|1 — iC[2 + 4/1,¢ sin(2kx))2)2 (4.6)
16C+|§| (ﬁu z(|2+4\fg+\/8\/_§,+|§| (V21,1 — i+
2Ir(G+ [C2) + (y2L)1 —icl + 4@@)2) .

Eq. (4.6 shows that there must exist a maximum of I; for every I,., so that no zero-point
can be found after exceeding this threshold.

I =(
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4.1 Optical forces on a single particle
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Figure 4.5: Potential for a single beam-splitter as function of the position of the beam-
splitter x for

a) I} =1, =1, ¢ =0and ( =1/9 (blue), ( =1/9+i/9 (red) and ¢ =1/9+i/2 (green),
b) ¢ =0, I, = I,y and I; = 5I,) and ¢ = 1/9 (blue), [; = 21, and ( = 1/9 (red), I; = 0 and
¢ =1/9 (green), and I; = 3I,, and ( = 1/9 4 ¢/2 (violet).

c) } =1, =8I, (=1/9 and ¢ = 7/2 (blue), ¢ = 7/3 (red) and ¢ = 7/4 (green),

d) I} =21I,, =0,(=1/9 and I,, = 0 (blue), I,, = 31, (red) and I,, = 10I, (green).
Potential minima corresponds to stable points.

This figure again confirms the results of Fig.

We see that for asymmetric longitudinal beams I; # I, the potential is increasing or
decreasing as shown in Fig. ¢) and d). While I; = I, = I, and ¢ = 0 produce four
stable positions per wavelength in Fig. a), we do not even get one stable point for large
asymmetry between I; and I, and including absorption (Fig. b) violet line). By changing
¢, we can obtain additional stable points as shown in Fig. c¢). Fig. d) demonstrates how
an unstable point can get stable by changing I;,.
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4 Optical forces and dynamics for symmetric pumping o = 3
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Figure 4.6: Maximum left incoming intensity I;, . on one beam-splitter for

a) I, =1I,, $ =0 and ( =1/9 (blue), I, = I, $ =0 and ( =2/9 (red), I, =2I,, $ =0
and ( =1/9 (green), and I, = I, ¢ = /3 and ¢ = 1/9 (violet).

b) I, =1,, ¢ =0and ( =1/9+ j/9 (blue), I, = 2I,, ¢ =0 and ( = 1/9+ j/9 (red),
I, =1,, ¢ =0and ( =1/9+5/2 (green), and I, = 2I,,, ¢ =0 and ( = 1/9 + j/2 (violet).
Even a small imaginary part of ( decreases I, . by several orders of magnitude and
destabilizes the system. The same effect is shown for (., which pushes the system toward

an intensity maximum or minimum. It is intuitive that a larger I, increases the maximum
of Il-

Fig. demonstrates some examples for the maximum of /;, below which we can find
zero-points of the force It is intuitively clear that a larger I, increases the maximum
of I;. The force stemming from the imaginary part of { pushes the particles toward
the weaker source. The strength of this push is proportional to the difference of the
incoming intensities as we can see in Eq. . So a larger (; encourages the influences
on the force of the difference between I; and I,.

The same counts for the real part of (. (, increases the force toward the intensity
maximum or minimum, which forces instabilities as shown in Fig.[4.7h). Such a maximum
for ¢ and the asymmetry of the incoming light are also found for only counter-propagating
light [6]. For the imaginary part of ¢ this effect already appears for small values, if
we have high asymmetries between [; and I, (Fig. [4.7b)). It is also interesting that ¢
affects the height of this maximum more than I,.. As long as enough light is transmitted,
meaning ¢ small, the imbalance in the incoming amplitudes can be counteracted by the
outgoing imbalance. For some special (., new zero-points can appear as for the green

line in Fig. [1.7h).
4.1.3 Special cases

To simplify and examine the system with one beam-splitter in more detail, we concentrate
on some special cases, which allow us to find stable configurations analytically.
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4.1 Optical forces on a single particle
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Figure 4.7: zero-points of the force on a single beam-splitter as function of the position
of the beam-splitter z and R(¢) (Fig. a)) or ¥(¢) (Fig. b)) for I; = I, and ¢ = 0. The
blue line corresponds to I, = 0, the red line to I, = I;, and the green line to I, = 101,,.
The solid lines show the stable zero-points, while the dashed lines show the unstable ones.
Fig. a) Looking at the green line, we find for a small region of ¢ additional zero-points.
Fig. b) We set £(¢) = 1/9.

For large asymmetries between left and right counter-propagating incoming light and
large ¢, we can not find any stable positions as we have already seen in Fig. For (;
this effect already appears for small values.
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4 Optical forces and dynamics for symmetric pumping o = 3

Stability for small { < 1

As in general ( is small and most of the light is transmitted through the particles, we
will study this case separately in more details. We choose ( € R, and drop terms of
O(¢?) and higher. With these assumptions, the force is given by:

21
F= \/7 (\/Zcos(kx —¢) — ﬁcos(lm + ¢)) _ AV sin(2kzx). (4.7)

C Cc

Assuming ,in phase® transverse pump ¢ = 0, Eq. (4.7) changes to:

F = \/21,(\/I. = \/T,) cos(kz) — 4¢\/ 11, sin(2kz), (4.8)

and we can easily find the stable points of this equation:

arcsin (W) + 2mn if I;,1.#0,( > 0,

Ly — ™ —arcsin (W} +2mn it I, I, #0,( > 0, (4.9)
dntl if ¢ < /2 ) o [y 1, = 0,
—4”;37T it ¢ > ,/%7(\/ﬁgﬁ) or I, I, =0,

with n € N. Obviously, the first two zero-points only exist for \\/E (VIL.—VT)/(8¢VTI)| <
1.

It is interesting to see that, in contrast to Eq. , the difference between [; and I, is
not limited for this case and we are able to find zero-points of the force for every I;-1,
combination. As we have already seen in Eq. and Fig. for small values of ¢, we
have a larger threshold. As for ¢ — 0 all the light is transmitted through the particles,
the outgoing intensities can compensate the incoming ones and this threshold vanishes.

Fig. compare the exactly solved Eq. (4.3) and the approximate force Eq. (4.7]).

Stability of the particles in a standing wave [; = I, and additional transverse
pump

If we choose small intensity differences of the dipole force, the first term of Eq. (4.3])
can be neglected and the force for [, = I, = I reads:

_ 2sin(kx) [ —41¢, cos(kx) .
F = . ( = ic|? + \/21',7[51n(¢)> . (4.10)

Eq. (4.10)) clearly separates longitudinal beams I and transverse pump I,. Without
transverse pump I, = 0 we get a simple standing wave with period A\/2. We have
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Figure 4.8: Comparison between the exactly solved force Eq. (solid lines) and the
approximated force Eq. (dashed lines) for small ¢ = 1/9. The blue line corresponds
to I} = I, = I, the red line to I; = 0 and I, = I;, and the green line to I; = 2I,, and
I, = I,,. The approximate force does not differ much from the exactly solved one.

the same phenomenon for real transverse pump, meaning ¢ = 0. Switching on the
transverse pump or changing to [; # I, modify this periodicity to A. For this system the
zero-points of Eq. can easily be found. The following are the stable ones, which
means 0F/0x < 0:

2nm, if sin(¢) < 2v2UG;

VInl1—i¢|?’

e — 4 (2n+ D, if sin(g) > 220 (4.11)

VInlt=ic?’
+ arccos ( ;—}% sin(qb)) + 2nm, if ¢, <0,
The stable positions in the last line only exist for |sin(¢)| < 2v21¢,/(1/I,|1 — iC|?).
Fig. 4.9 shows some typical examples for the force and its stable points. Choosing ¢, > 0
the first stationary position at = 0 (or z = \) is only stable as long as extra unstable

zeros at kx = 4 arccos (,/I,,/(2I)% sin(¢)) + 2nm (Eq. 4.11} condition 3) exist.

Stability of the outermost particle

In this section we examine the case of one particle with a longitudinal beam only
impinging from the left. This particle corresponds to the outermost particle of a
multiparticle configuration with only transverse pump. For this example the incoming
light on the particles arises through reflection and transmission of the transverse pump
by all the other particles in the system. This case is important, in the sense that in a
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4 Optical forces and dynamics for symmetric pumping o = 3
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Figure 4.9: Fig. a) shows the force on a single beam-splitter for I; = I, = 81, and
¢ =1/9. The blue line corresponds to ¢ = 0, the red line to ¢ = 7/4 and the green line to
¢ = /2. We see that the particle trap positions at integer multiples of A get unstable for
¢ = 7/2, cf. equation (4.11)).

Fig. b) shows the zero-points of the force on one beam-splitter as function of the position
of the beam-splitter = and ¢ for ( = 1/9 and I; = I, = I. The blue line corresponds to
I = I, the red line to I = 81, and the green line to I = 201,,.

In Fig. ¢) we plot the dependence of the zero force position x for varying pump right field
power I, for ( =1/9 and I; = 81I,. The blue line corresponds to ¢ = 0, the red line to
¢ = 7/4 and the green line to ¢ = 7/2.

For Fig. b) and c), the solid lines show the stable zero-points, while the dashed lines show
the unstable ones.

Comparing Fig. ¢) with Fig. a) we see that the figures correspond to each other at I, = 81,,.
It is interesting that for some ¢’s new zero-points appear after exceeding a special threshold.
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4.1 Optical forces on a single particle
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Figure 4.10: Fig. a) shows the force on a single beam-splitter for I, = 0 and ¢ = 0. The
blue line corresponds to I; = I, and ¢ = 1/9, the red line to I; = 10/,, and { = 1/9 and
the green line to I; = 101, and ¢ = 1/9 +i/2.

Fig. b) demonstrates the zero-points of the force on one beam-splitter as function of the
position of the beam-splitter x and I; for ¢ = 0 and I, = 0. The blue line corresponds to
¢ =1/9, the red line to ¢ = 1/9 + i/9 and the green line to ( = 1/9 + /2. The solid lines
show the stable zero-points, while the dashed lines show the unstable ones.

As we can already see in Eq. for I; exists a limit, where the system gets unstable.
For imaginary ¢ this limit is lower as shown in Fig. b). The green line in Fig. a) shows an
example for a system without stable points.
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4 Optical forces and dynamics for symmetric pumping o = 3

system of many particles, the configuration can only be stable, if at least the outermost
particle is stable. Inserting I, = 0 into Eq. (4.3)) we get:

c

1 (2L (X + G
F = (é_ch) — /21,1 cos(kx + qb)) . (4.12)

For this case the stable zero-points read:

V2(G + ISPV
1 —i¢l\/T,

kx = — arccos ( ) — ¢+ 2nm,n €N, (4.13)

These zero-points only exist for:

%><ﬁ@+mmf’ (414

L — 11 —i¢?

hence, I,,/I; has to exceed a special threshold. As I; is proportional to I,,, this means
that [; has an upper threshold that limits the possibility to find stable points as we
have already seen earlier for I; # I, # 0. The threshold of [, is also limited by (;. This
is also confirmed by Fig. [4.10, where we plotted some examples for the force and its
zero-points.

4.2 Multiparticle systems

In this section we examine configurations with more than one particle. Here, the motion
is split into centre of mass and relative motion. So we can find configurations, where
the particles move together, but keep a fixed distance. To get fully stable configurations
we also need the condition of a vanishing centre of mass motion, which can be obtained
from the outermost field amplitudes:

€
Fior = 50(|A1|2+|Bl|2— [Cn[* = [Dn*) = 0, (4.15)

with particle number N.

Although the equation of the force Eq. looks quite easy, the squares of the
absolute values generate very large expressions for larger systems. So we only take a
short look at systems with [;, I, # 0 and then in general set I, = I, = 0.
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Figure 4.11: A system with two particles at distance d, counter-propagating incoming
fields By and Cs, transverse pump 7 and outgoing fields Ay and Ds.
4.2.1 Optical forces on two particles

Fig. shows the system for two particles. As shown in Eq. (2.39)), we can calculate
the amplitudes as follows:

A1 02
By | = Mgs-P(d)- Mgs | Do |, (4.16)
Ui U

with Mpg being the beam-splitter matrix Eq. (2.36) and P(d) the propagation matrix
from Eq. (2.38)).

So we can easily calculate the outgoing intensities, which are connected to the amplitudes

Aj and Dy via Ay = /21, /(ceo) exp(ikzy) and Dy = /21, /(ceo) exp(i(k(x1+d))), with
x1 the position of the first beam-splitter. Some examples of the intensities for I;, I, # 0,

are shown in Fig. 4.12h).

Next we calculate the force I} on the first and F» on the second particle, using the
following formula:

€
F = EO(|A1|2 + B> = |Ch)* — | D1 %), (4.17)

€
Fy = 50(|A2|2 + | Baf? = [Caf? = | Daof?). (4.18)

Choosing ¢ small and neglecting terms of O(¢?) or higher, we obtain:
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4 Optical forces and dynamics for symmetric pumping o = 3

F=- 4(\@sin(2k‘x1) + 1, (cos(kd) — (sin(2kd)) + \/_\f ([ cos(kxz1) + (sin(kx))
/I (€ (2sin (k(d — 7)) — sin (k(2d + 21))) — cos(kxl))> , (4.19)
=— 4C\/Ts1n 2k(d + x1)) + I1,,(¢ sin(2kd) — cos(kd)) + \/_\/> <ﬁ ¢sin(k(d + x1))

—cos(k(d+ 1)) + \/> (sin(k(d — x1)) — 2sin(k(2d + x1))) —|—Cos(k(d+a:1)))> ,
(4.20)

with z; the position of the left beam-splitter and real amplitudes By, C'; and 7. Here
the first terms stem from the prescribed lattice (o< v/I.1;).

Some examples of the force on two beam-splitters are shown in Fig. ) We have
chosen the position of the first particle x; so, that F; = 0 and F5 = 0 at the stable
equilibrium position. For two particles, configurations are stable, if the derivative of the
force with respect to distance on the first beam-splitter is positive and negative on the
right beam-splitter.

Because of the back-action of the particles on the light, larger systems are not conser-
vative and we can not find a potential for them.

When we assume no incoming fields I;, I, it is possible to calculate the stable points
and to see the influence of . With this assumption the light scattered into the fibre by
one particle only interferes with the scattered light of the second particle. This leads to
strongly distance depending forces, where particles with low distance attract each other
and start to repel at about half wavelength distance.

Calculating the intensities for this case, we get

(1 —14Q) cos(kd)

(1 — 2i¢) cos(E) — isin(%4)

2

Iy =1, = 2177

(4.21)

with I, = ceo|A1|%/2 and I, = ceo|D2|?/2. As we can see in Fig. [4.13h), because of
symmetry, I, = I,,.
For the forces, this symmetry implies Fy = —F5, so that the centre of mass is force free.
The force on the first particle reads:
P 1|1 —i¢]? cos(kd) ' (4.22)
¢ (4(1¢12 + G) cos? (&) + 2, sin(kd) + 1)

Obviously the stable points are at:

d= (i + n) A, (4.23)

for n € N. It is really surprising that the stable distances for this case do not depend on
¢, not even on the imaginary part of ¢, which in general causes instabilities. Fig. [4.13p)
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Figure 4.12: Fig. a) shows the outgoing intensities I,; (solid line) and I,, (dashed line)
as function of distance d for ¢ = 0 and ¢ = 1/9.

Fig. b) shows the forces on two beam-splitters as function of distance d for ¢ = 0 and
¢ =1/9. The solid line shows the force on the first beam-splitter and the dashed line the
force on the second one. The red points are stable equilibria and the green ones not.
The blue lines correspond to I} = 31I,, and I, = I, the red lines to I; = 0 and I, = I,,.
Here the parameters are chosen to get zero centre of mass force at the stationary distance.
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Figure 4.13: Fig. a) shows the outgoing intensities I,; (solid line) and I,, (dashed line)
as function of distance d for only transverse pump, thus I; = I, = 0.

Fig. b) shows the forces on two beam-splitters as function of distance d for only transverse
pump. The solid lines demonstrate the forces on the first beam-splitter and the dashed
lines the forces on the second one. The red points are stable equilibria and the green ones
not.

The blue lines correspond to ¢ = 1/9, the red lines to { =1/9 + /2.

An imaginary part of ¢ leads to a decrease in the intensity, as a consequence of absorption.
It is interesting to see that an imaginary part of ¢ enlarge the force on the particles. The
force is stable at d = 3\/4, independently of .
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Figure 4.14: Two particles evolving over time with only transverse pump, ( = 1/9
(Fig. a)) and ¢ =1/9+14/2 (Fig. b)). They start at an unstable zero-point d = A\/4 and
assemble at d = 3\/4 after being numerically evolved. The intensity maxima is in the
middle between the two particles.

shows some examples for the force on two particles. For the case with no longitudinal
beams, because of symmetry, we do not have centre of mass motions. At d = 3\/4 the
scattered fields of the particles are 90 degrees out of phase and thus do not interfere. This
is totally different to cavity induced self-ordering, where maximal collective scattering
at exactly wavelength distance leads to the most stable configurations [12].Comparing
Fig. [1.12b) with Fig. [1.13p), we see that the longitudinal beams change the stable
distances and they depend stronger on ¢ and on absorption.

Next we want to solve the motional dynamics of the two particle system subject to

these forces numerically and take a look at how the particle positions evolve over time by
solving the coupled equations of fields and particle motion. We introduce the procedure
for these simulations in more detail later in the multiparticle case in section [£.3.2] This
allows us to see, how the system finds equilibrium points as in Fig. [£.14] where we start
from an unstable zero-point d = \/4 and let the system evolve, which adjust a stable
configuration at the equilibria point calculated in Eq. d=3\/4.
Here the forces change the particle positions, which induces a change of the intensity
over time. For the numerical simulations, we choose I,,,, = NI, here N = 2, so that the
intensity is comparable for different numbers of particles. Fig. also shows that the
two particles trap light between them. Although they in general should be attracted by
high intensities, they do not assemble at the intensity maxima, but trap light between
them. A similar behaviour is found for self-ordered solutions for the continuous Vlasov
model for an ultracold gas in such a field [14].
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Figure 4.15: Intensity (Fig. a)) and force (Fig. b)) for a two particle system in the
weak-coupling-limit, meaning ¢ = 0, for I,, = I;. The blue line corresponds to I} = 31,
and the red line to I; = 0. In Fig. a) the solid line corresponds to the outgoing light to
the left of the system and the dashed line to the one to the right of the system. Because
of the high right incoming intensity, the blue dashed line is very high.

In Fig. b) the solid line shows the force on the first particle, and the dashed line on the
second one. Red points are stable points.

Comparing this figure with Fig. [4.12] we see that the force for this case is lower, as a
consequence of the fact, that ¢ is proportional to the optical forces.
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4.2 Multiparticle systems

Two particles in the vanishing coupling limit ( =0

As a special case, we introduce the very weak-coupling-limit. In this section we only
treat this case for two particles. Later in this work we examine this limit for larger
systems of particles (section . In this limit we neglect ¢ = 0, but still keep finite
scattering into the fibre. Remembering ( = —ir/t, we see that this means that no light
is reflected, but all transmitted through each of the particles acting as a beam-splitter.
Reminding the definition of the coupling constant { Eq. and that n oc & - E3
we see that coupling constant and transverse pump 7 are both proportional to the
polarizability [39]. In principle we have to compensate a small n with a stronger

transverse pump. For this case the intensities look as follows:

(1+ cos(kd)) + I, + /21,1, (cos(kxy) + cos(k(z1 + d))), (4.24)

Iy =1,
Iy = 1) (1 4 cos(kd)) + I + /21, 1; (cos(kxy) + cos(k(z1 + d))) . (4.25)

As a consequence of the fact that no light is reflected, the outgoing light on the left side
only depends on the incoming light from right and the scattered light. This phenomenon

is also shown in Fig. [4.15R).

Next we calculate the forces:

Fy = I, cos(kd) + /21, <\/Z - \/]7) cos(kxy), (4.26)
Fy = —1I, cos(kd) + /21, (\/17 — ﬁ) cos(k(d + z1)). (4.27)

Fig. [4.15b) shows some example for the force in the weak-coupling-limit.
To enable finding the equilibrium points, we choose the position of the first particle at
z1 = 0 and do not care about centre of mass motions. So the stable distances read:

V1. — /1 I
kd = — arccos Vi + 27n, if \/17 — \/Z <[ (4.28)
—\/2L,+ VI, - VI, 2

By setting x; = 0, we find that there do only exist solutions for higher left than right
incoming intensity or for small differences between I; and I,.

4.2.2 Three Particles

In this section we add a third particle but still have no injected fields I, = I, = 0. As
mentioned above, the analytic results can be calculated here, but are very complicated,
thus we only show some special cases and only write the intensity for ¢ € R and the
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Figure 4.16: Intensity (Fig. a)) and forces (Fig. b)) of three beam-splitters without
longitudinal beams, thus I; = I, = 0 and equal distances di = do = d. The blue line
corresponds to ¢ = 1/9, the red line to ¢ = (1 +¢)/9 and the green one to ( = 1/9 +1i/2.
Fig. a) The imaginary part of ¢ reduces the outgoing intensities as we have already seen
for the single and two particle problem.

Fig. b) Solid lines correspond to the first beam-splitter and dashed lines to the third one.
At the red points the configurations are stable and at the green ones not. Because of
symmetry the force on the second particle F5 is zero and the other two fulfil £} = —F3.
While the blue line has three zero-points per wavelength, the other ones have only two.
So the imaginary part of ( reduces the number of zero-points. It is also interesting that
the stable point at d ~ 4\/5 does not depend much on (.
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4.2 Multiparticle systems

forces for small (. With equal distances d; = dy = d, where d; is the distance between
the first two particles and dy between the second and the third one, we get for the
outgoing intensities:

Iy =1, =
L(1+¢2) 1 + 2 cos(kd) — 2 sin(kd) ? (4.29)
2 (i +3¢) cos(kd) + (1 — C(i + 2¢)) sin(kd) |

which again includes I, = I, for reasons of symmetry. For ( — 0 the intensities
converge to I ~ I,/2|1 + 2 cos(kd)|” which can lead up to nine times stronger collective
scattering than for a single particle. Some examples for the outgoing intensities and the
forces are shown in Fig. [4.16]

Assuming small ¢ and neglecting terms of O((?) or higher, we get:

I

}711’l“f77
C

(cos(kd) + cos(2kd) — ¢(2sin(2kd) + sin(3kd) + sin(4kd))) + O[¢]>.  (4.30)
Symmetry implies F} = —F5 and F, = 0. For this symmetric case, we get stable
configurations at about d ~ 4\/5, which does not depend much on (, as shown in
Fig. [4.16]

Although we also allow for solutions with d; # ds in Fig. [£.17] the only stable solutions
are given on the line, where d; = dy and for the chosen parameters there do not exist
points, where all forces are equal for the asymmetric case. The stability of such points
can easily be checked by calculating the derivation.

Fig. shows the time evolution of the particle positions for three particles. Again the
particles tend to trap light. The beam-splitter in the middle arranges at an intensity
maximum.

4.2.3 Four Particles

As analytical results are getting more and more complicated for larger systems, we
just take a short look at the system with four particles. So we just plot the intensity
in Fig. and the forces in Fig. [£.20] The transfer-matrix for this system can be
calculated by:

M = Mpg - P(dy) - Mps - P(d3) - Mps - P(d5) - Mgs. (4.31)

Fig. shows the forces on four particles for different (. It is interesting that a
larger imaginary part of ( reduces the number of zero-points for the force. It is more
difficult to find zero-points for this case. Hence, in Fig. [£.20] do not exist stable cases
with d; = dy = d3. Investigating the case for different distances between the particles in
Fig. [£.21] the particles form symmetric configurations with d; = dz # da.
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Figure 4.17: Contour lines of zero force F; (blue), F5 (red) and F3 (green) as function
of the distance between the beam-splitters one and two d; and the beam-splitters two and
three dg for Iy = I, =0, ( = 1/9 (Fig. a)) and ( = 1/9+ /2 (Fig. b)). The red points
show stable points and the green ones unstable equilibria. It is interesting that one of the
unstable zero-points vanishes when we add an imaginary part to { as we have already

seen in Fig. [£.16p).
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4.2 Multiparticle systems
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Figure 4.18: Three particles evolving over time with only transverse pump, ¢ = 1/9
(Fig. a)) and ¢ = 1/9+1i/2 (Fig. b)). They start at an unstable point d = A\/2 and arrange
at about d ~ 4\/5 after being numerically evolved. There is an intensity maximum in
the middle of both particle neighbour pairs. In this case the beam-splitter in the middle
assembles at an intensity maximum. Without imaginary part of ¢ this intensity maxima
is even higher. With imaginary part of  the particles reorder faster than without ¢;. The
reason is that for only real (, exists an unstable zero-point at d ~ \/2.
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Figure 4.19: Outgoing intensity for a system with four beam-splitters as function of the
distance d; = do = d3 = d with I; = I, = 0. The blue line corresponds to ¢ = 1/9, the red
line to ¢ = (14 14)/9 and the green line to ( = 1/9 + /2. As expected for the symmetric
case is again I, = I,.. The intensity maxima decrease for higher imaginary part of (.
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Figure 4.20: Forces on four particles as function of the distance d; = do = d3 = d with
I; = I, = 0. Fig. a) shows the forces for ( = 1/9, Fig. b) for ¢ = (1 +4)/9 and Fig. ¢) for
¢(=1/9+1i/2. As expected F} = —F, and Fy = —F3.

An imaginary part of ¢ reduces the number of zero-points for the single forces. For these
cases we can not find any equilibrium points with d; = ds = ds = d.
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4.3 Dynamics of larger particle ensembles
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Figure 4.21: Four particles evolving over time with only transverse pump, ¢ = 1/9
(Fig. a)) and ¢ = 1/9 +¢/2 (Fig. b)). They start at an unstable point d = 0.6\ and
assemble at a stable position after being numerically evolved. There are intensity maxima
in the middle of all particle neighbour pairs. The two particles in the middle propagate on
an intensity maximum. In this case without imaginary part of { these intensity maxima
are even higher. The distances between the first two and the last two particles are equal,
while the two particles in the middle have different distances.

4.3 Dynamics of larger particle ensembles

4.3.1 Weak-scattering-limit ( =0

In their pioneering work Chang and coworkers [15] predicted regular spaced solutions
for two-level atoms in the negligible coupling limit, meaning ¢ = 0. In this limit the field
rescattered by the atoms is negligible. When we solve this system for a larger ensemble
of particles, for equidistant ordering d; = dy = -+ = dy_1 = d, we can calculate the
transfer-matrix of the whole system easily in the form:

M = (Mpg - P(d))" ™" Mgg. (4.32)
For the scattered intensities we then get the rather simple expression:
I, [sin(2kd)\?
Iy=1,=>2—2-]. 4.33
: 2 ( sin(£2) (4.33)

2
This reminds of scattering from a regular grating. Some examples for the intensity are
shown in Fig. [4.22]

Also the force on the m-th particle of N beam-splitters can be obtained in closed form
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Figure 4.22: Outgoing intensities for two (blue), three (red) and four (green) particles
for vanishing ¢ = 0. Again is true I,; = I,.. The outgoing intensities come from the
transverse pump transmitted through the particles without reflection.

Distance d

Figure 4.23: Force on the first of two (blue), three (red) and four (green) particles for
vanishing ¢ = 0. Red dots denote stable equilibrium points. The more particles we add,
the more zero-points per wavelength we get. The system can only be stable, when the
outermost particle is at a stable position. In this figure the outermost particles are stable
at the equilibrium point d = (2N — 1)/(2N).

The zero-points of four particles, which we did not mark, are not representing stationary
states, because they do not exist for all four beam-splitters.
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4.3 Dynamics of larger particle ensembles
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Figure 4.24: Stable distance as function of number of beam-splitters /N, numerically
solved with initial condition dy = A for ( = 0 and I; = I, = 0. The particles adjust a
stable configuration with d = (2N —1)/(2N)A.

to give
o _ I, cos (Nkd/2) 81‘11((2m—N— 1)k‘d/2). (4.30)
csin (kd/2)
The zero-points of this force look:
2n —1
d="""") withn € N. (4.35)

2N

With this we get a regular, equally spaced distribution of scatterers. Adding a particle
also means, getting a new zero-point as shown in Fig. [£.23] Since it is not easy to check
for stability, we try to find the stable zero-points numerically as shown in Fig. [4.24]
Although we have a large number of zero-points, the only stable points are at n = N

and at equal distance between all particles d; =dy = --- =dy_1 = d:
2N —1
d= A 4.36
5N (4.36)

Within this limit every particle interacts equally strong with all the other particles via
the fibre field. This nicely reproduces the results found by Chang by a very different
approach [15].

In the next section we examine this case with finite (, including absorption and see,
how the behaviour of the system changes.

4.3.2 Numerical simulations for large ensembles

In this section we treat systems with a larger number of particles. As such systems can
hardly be solved analytically, we concentrate on numerical solutions.
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Figure 4.25: Trajectories of ten beam-splitters for I; = I, = 0 with initial condition
di =dy=---=dg=0.8\and ( = (1+1)/9. Note that the outermost particles are not
trapped at intensity nodes or antinodes as would be expected from a conventional lattice.

We add a mass m to the beam-splitter and a friction coefficient p to the environment
to stabilize the system. Then we evolve the system over time by integrating Newton’s
equation m@; = —pud; + Fj(xq,- - ,xy) until an equilibrium state is reached. Assuming
the over-damped limit, where the second term dominates the first one, for example
plastic beads in water, the velocity is determined by:

g, = D@0, TN), (4.37)
1

So we start from a special position and calculate the electric fields to the left and to the
right of the system using the transfer-matrix-method. With this we can compute the
force on the particles and find the new positions, after every step. Without damping
the trapped clouds experience a harmonic restoring force, when being small displaced.
From this we get the characteristic time, the oscillation period of a single trapped cloud
Tose- In the overdamped limit the particles reach the velocity F'/u during the short time
Toel = M/, With T,e < T,se, s0 that the system does not perform many oscillations
before forming a final configuration. [6]

Fig. shows the coupled atom-field dynamics for an example for ten particles,
starting at a regular distance d = 0.8 \. The particles move and reorder at new distances,
which are not equidistant, but mirror symmetric, meaning d; = dg, ds = d; and so
on. The inner particles order close to intensity maxima, while the outer particles are
shifted from local intensity maxima. The outer particles in this case behave like mirrors,
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4.3 Dynamics of larger particle ensembles
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Figure 4.26: Stable distances d; (Fig. a)) and dy/, for a even number, respectively
d(n+1)/2 for a odd number of particles (Fig. b)) as function of number of beam-splitters
N, numerically solved with initial condition dyg = A. The red lines correspond to ¢ = 1/9,
the blue lines to ¢ = i/2 and the green lines to ( = 1/9 +1i/2. It seems as if the imaginary
part of ¢ reduces the distance of the particles in the middle, while a real part enlarges it.
The particles in the middle arrange at a larger distance than the outermost particles.
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Figure 4.27: Trajectories of ten beam-splitters for I; = I, = I,,,,, ¢ =1/9 and ¢ =0
with initial condition di = dy = --- = dg = 0.8 . For the first three time-steps I7,7tot =0,
then I, # 0. It can be observed that the particles reorder in a new stable configuration

when we switch on the transverse pump at t = 3.

forming a resonator, which capture high field intensities between them. Choosing a
higher number of particles, the distances are only slightly modified as we can see in
Fig. [4.26] While the stable position of two particles with no longitudinal beams does not
depend on (, it does for higher number of particles. We plot the distances of the first
two particles and of two particles in the middle of the configuration in Fig. First
the distances grow until they reach a stationary value below A\. We can also find stable
configurations for high particle numbers and high absorption rates. In a qualitative way
this agrees with the corresponding result obtained via the Vlasov approach in ref. [14].
It seems that the particles behave like a self-forming optical resonator trapping the
scattered light in its centre. Such configurations tend to minimize the combined total
potential energy of all the particles [41].

In the next step we examine the change of a stable configuration with and without a
transverse pump. We first let the system settle to an equilibrium point in a prescribed
standing wave. When the system reaches a stable position we switch on a transverse pump
71 instantaneously and watch how the system evolves. This behaviour is demonstrated
in Fig. [£.27 and [£.28] The system in Fig. [£.27 first forms a self-consistent configuration
in the standing wave. After switching on the transverse pump, the particles start to
interact differently and reorder into a new equilibrium. This changes strongly when one
introduces small absorptions as shown in Fig. 4.28, Then we get a configuration, which
first is stable without transverse pump, but gets unstable after the switch on of the
pump. Such a behaviour can also be found for very large conventional optical lattices
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Figure 4.28: Trajectories of ten beam-splitters for ; = I, =1 =1I,,,, ( =1/9+ /18
and ¢ = 0 with initial condition di = dy = --- = dg = 0.8\. For the first five time-steps
Il =0, then I, # 0. As the particle trajectories begin to cross we see that the

MNtot
configuration gets unstable one the transverse pump is switched on.

and clearly demonstrates that we do not have conservative dynamics here.

We see that in the standing wave trap the particles order at the intensity maxima, but
with transverse pump the outer particles again leave the intensity maxima and trap
light between them.
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Chapter 5

Self-ordering with asymmetric
directional scattering amplitudes o #

Up to now, we have chosen @ = 3, which means that the light from the transverse
pump-laser is symmetrically scattered to the left and to the right. Now we want to
examine cases, where this is no longer so. Using a transverse pump with a polarization,
which is not aligned perpendicular to the fibre, we break the mirror symmetry of the
set-up [39]. We model this behaviour by parametrizing the part of n reflected to the left
as o = sin(f) and the part reflected to the right as § = cos(#), fulfilling the condition
a? + 3?2 = 1. Although «, 3 could be imaginary, we choose them here as real numbers.
We again start with few particles, which allows analytical results and then enlarge our
system, proceeding to numerical results.

5.1 One particle

First we again discuss this case for a single particle. Here, the outgoing field intensities
are:

‘ 2

‘<\/[_T_|_ \/Tle’(d’*%m)ZC) +€zkm\/7n(1 _ZC) sm(H)

" L+ [P 7 -
L (VR \/Trzi):’ ;;m (1 — i) cos( 6)\2

Typical behaviour for the scattered light with different 6 can be seen in Fig. [5.1]
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5 Self-ordering with asymmetric directional scattering amplitudes o # (3

I, [in units of I,

Position x

Figure 5.1: Outgoing intensities as a function of the position of the particle x for
Iy=1, =1, (=1/9 and ¢ = 0. The blue line shows the outgoing intensities to the left
and the red line to the right of the beam-splitter.

Fig. a) corresponds to # = 0, which means &« = 0 and = 1, so all the light of the
transverse pump is scattered to the right.

Fig. b) corresponds to # = 7/3, which means « ~ 0.866 and 5 = 0.5, so more light of the
transverse pump is scattered to the left.

Hence in Fig. a) the outgoing intensity to the right reaches higher maxima, while in Fig. b)
the outgoing intensity to the left does.

The zero-points at © = A/4 and = = 3)\/4 also occur for symmetric pumping.
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5.1 One particle

The force on the mirror then is non-zero even for I; = I, = 0 and reads:

(= 1) (IS + G) — 2V, sin(2kx)
51 —cl?

+ ];7(0‘2 —5)

. 2 [nfz% <ia§ — ﬁei(kx+¢)>

c 1—1C
+ 2 [njr% o — Z"Bce—i(ka:—q” )
c 1—1C

(5.2)

For a = 3 we recover Eq. and see that we get an additional term. The second
term represents the radiation pressure force induced by asymmetric scattering of the
transverse pump light into the fibre. Also the interference terms between scattered and
longitudinal fields, the third and the fourth term, are influenced by choosing asymmetric
pump. Obviously we can only get stable positions for asymmetric scattering, if I, I,. # 0.
By choosing I, I, # 0, we can even get zero-points for high asymmetries as in Fig. [5.2

and 5.3
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5 Self-ordering with asymmetric directional scattering amplitudes o # (3

Position x

Figure 5.2: Force F' on one beam-splitter for ¢ = 0. The blue line corresponds to
Iy =1, = I, and ( = 1/9, the red line to I; = I, = I, and ( = 1/9 +4/2 and the green
line to [} = 21, I, = I, and ( =1/9, for

(a) 8 =0, and

(b) 6 =7/3.

Although we even get zero-points for high asymmetries, the number of zero-points per
wavelength is higher, when choosing small asymmetries as in Fig. b). Comparing this
figure with Fig. we see, that for special 6, we can find a higher number of zero-points.
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5.1 One particle
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Figure 5.3: Zero-points of the force I’ on one beam-splitter for ¢ = 0. The blue line

corresponds to [; = I, = I, and ¢ = 1/9, the red line to I; = I, = I,y and ( =1/9+i/2

and the green line to I; = 21, I, = I, and ( = 1/9.

Solid lines correspond to stable points. As we have already seen in Fig. [5.2] high asym-

metries reduce the number of zero-points per wavelength. In the region around 6 = /4

there are four zero-points per wavelength, and outside of this region only two.

For I} = I, (blue and red lines) we get zero-points at z = A/4 and x = 3\ /4, independently

of ¢ and 6. For small ¢ the position at z = 3\/4 is stable, until new zero-points around
~ 7 /4 appear. For larger 6, when this additional zero-points vanish, x = A/4 is stable.
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5 Self-ordering with asymmetric directional scattering amplitudes o # (3

5.2 Multiparticle dynamics with asymmetric scattering

For the multiparticle case, we again set I; = I, = 0. Introducing asymmetric transverse
pump, changes the interaction properties of the particles in the system. For two particles
we do not get forces of equal magnitude any more, which leads to a final centre of
mass motion. Nevertheless, we look for configurations, where the forces on the particles
are equal. This generates thus a propulsion of a pair of particles while keeping equal
distance. Very similar behaviour was seen in experiments with silicon beads [42].
Some examples of this behaviour are demonstrated in Fig. 5.4l Comparing this figure
with Fig. £.13] we see that for the asymmetric case, the stability of the particles is
not as strong as for the symmetric case. This behaviour can be determined by looking
at the derivative of the forces. Especially for the 6§ = 0-case the derivative of the first
beam-splitter is approximately zero, but we can even find equilibrium points for such a
strong asymmetry. Although the forces are equal on both particles for all three cases,
we have a remaining centre of mass motion. That behaviour is also shown in Fig. [5.6]
where we plotted the time dependent positions of two particles with asymmetric pump.
The particles are moving toward a particular direction, determined by the asymmetric
scattering. Again, the particles tend to confine much of the scattered light between
them. The same effect is seen for three and four particles in Fig. [5.7 Although the
forces change, the zero-points does not depend much on 6 for low absorption as shown
in Fig. 5.5

As a last part we want to examine the time evolution of a larger system with
asymmetric scattering. Fig. demonstrates an unstable system with ten particles.
First the particles start to oscillate around a stable point, and then the system gets
unstable after a while. This behaviour is a consequence of the small derivative of the
force as we have already seen for two beam-splitters.
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Figure 5.4: Force on two beam-splitters as function of the distance d for I; = I, =0
and ¢ = 1/9 with scattering asymmetries. The blue line corresponds to 6§ = 0, the red
line to 6 = /3 and the green line to § = /4. The solid line shows the force on the first
beam-splitter and the dashed line the force on the second beam-splitter. Crossings of the
lines with equal force on the two particles here also occur non-zero force values. The red
points are stable distances, while the green ones are not.

The absolute value of the derivative of the forces for § # /4 is not as large as for the
symmetric case, thus the stability is not as strong as for the § = 7 /4-case.
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Figure 5.5: Equilibrium points of the force on two beam-splitters as function of the
distance d and 6 for I; = I, = 0. The blue line corresponds to ¢ = 1/9, the red line to
¢ = (1474)/9 and the green line to ¢ = 1/94 /2. Solid lines show stable points. In contrast
to the one particle case in Fig. for a two particle system the number of equilibrium
points for low absorption does not change with 8. Also the positions of the zero-points do
not depend much on €. The high absorption case (green line) is only stable for some 6’s.
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Figure 5.6: Trajectories of two beam-splitters for I; = I, =0, ( = 1/9 and 6 = 7/3 with
initial condition d = 0.3\. We see that the particles are pushed to the right because of the
scattering asymmetry, but they keep a stable final distance. Again the intensity maximum
is between them.
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Figure 5.7: Trajectories of three (Fig. a)) and four beam-splitters (Fig. b)) for I; = I,, = 0,
¢ =1/9 and 0 = 7/3 with initial condition d = 0.7\. Also these particles are pushed
to the right, but keep a fixed distance. Independent of the particle number, the outer
particles tend to trap light between them and some inner particles assemble at intensity
maxima.
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Figure 5.8: Trajectories of ten beam-splitters for I; = I, =0, { = % and 0 = 7/5 with

initial condition d; = do = --- = dg = 0.8\. First the particles start to oscillate and then
the system gets unstable.



Chapter 6

Conclusions

Using a conceptionally simple and intuitive classical scattering model, we studied the
coupled atom-field-dynamic. Starting with symmetric scattering and a single particle, we
observed that the configurations could only be stable, when the difference between left
and right incoming intensities is not too large. Afterwards we examined the one particle
case for small ¢ and discovered that this threshold vanishes, as a consequence that ¢
is proportional to the optical forces acting on the system. Investigating the particle
in a standing wave with additional transverse pump shows that the transverse pump
changes the periodicity of the force from A/2 to A. Then we chose only left incoming
light with transverse pump and saw that [,/I; has to exceed a special threshold to
guarantee stability.

For the two particle case we discovered that the particles are stable at distance d = 3\ /4,
when setting I, = I, = 0. At this distance the scattered fields from the two particles do
not interfere. Solving the weak coupling limit for NV particles confirms the results found
by Chang [I5], namely d = (2N — 1)/(2N).

By adding more and more particles, finding zero points got more and more difficult,
so we passed over to numerical solutions. Assuming the over-damped limit, which
in an experiment could be provided by Doppler cooling or similar mechanisms, we
let the system evolve over time. As the system is not conservative, the particles do
not order at field maxima, corresponding to local potential minima, but at force zero
points. So independently of the particle number, the outer particles tended to form a
self-organized resonator confining high intensities of the scattered light between them,
which was also found by [14] for a cold gas mean-field approach. So we have a sort of
particle-based resonator without the need to artificially fix the particles [43]. In contrast
to the longitudinal case such a configuration is not intrinsically unstable [41] as the
destructive interference of scattered and propagating fields can stabilize the outermost
particles.

It was also shown that larger particle numbers could lead to instabilities, as a consequence
of the interference between the light scattered from the particles, which is the main
contribution to the force.
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6 Conclusions

We also observed that the distances between the particles grow for higher particle
numbers until they reach a stable point.

At the end we chose asymmetric pump, where we saw that the particles can form
configurations with fix distances, but still have a remaining centre of mass motion.

So we were able to include back-action and absorption, and to give an intuitive picture
for the underlying microscopic dynamics.
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