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Abstract

Spontaneous emission in quantum emitters is modified by other atoms
nearby, leading to super- and subradiance. We investigate the subradiant
behaviour of V-type multilevel emitters in close vicinity to each other. In
particular we are interested in collective excited states with more than one ex-
citation. As specific geometric examples we study the equilateral triangle and
the linear chain at interatomic distances smaller than the transition wavelength
between the atomic states. For the equilateral triangle an analytical treatment
is possible for every symmetric configuration. In this setup the Hamiltonian
has a maximally entangled, antisymmetric doubly excited eigenstate involving
the superpositions of all three atoms, which shows subradiance as opposed to
superradiance. In the ideal case the dark state decouples completely from the
vacuum radiation field and therefore does not decay spontaneously. Numerical
simulations involving different dipole orientations and interatomic distances
are presented and their subradiant behaviour is investigated.



Zusammenfassung

In dieser Arbeit demonstrieren wir die subradianten Eigenschaften von V-
artigen mehrstufigen Emittern in geringem Abstand zueinander, mit dem gle-
ichseitigen Dreieck and der linearen Kette bei atomaren Absténden kleiner als
die Ubergangswellenléinge Ao, als spezifische Beispiele.

Fiir das gleichseitige Dreieck wird gezeigt, dass eine analytische Behandlung
bei einer symmetrischen Konfiguration moglich ist. In diesem Modell hat der
Hamiltonoperator einen maximal verschrankten, antisymmetrischen Eigenzu-
stand, welcher eine Superposition von allen involvierten Atomen mit jeweils
orthogonal ausgerichteten Dipoliibergédngen ist. Dieser Zustand besitzt maxi-
male Subradianz, im Gegensatz zu Superradianz. Dariiber hinaus entkoppelt
dieser Eigenzustand vollstandig vom Vakuum und zerfdllt damit nichtmehr
spontan in den Grundzustand aber dennoch induzieren ungleichférmige Zer-
fallskopplungskoeffizienten eine endliche Lebensdauer.

Numerische Simulationen mit verschiedenen Dipolorientungen und interatomaren
Abstdnden werden dargestellt und die jeweils auf ihre subradianten Eigen-
schaften untersucht.
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Chapter 1

Introduction

One of the processes in nature that is hard to control is the spontaneous
emission of photons from atoms. It can be attributed to fluctuations of the
electromagnetic vacuum. As the decay process occurs randomly in time, it
can be a problem for experiments that require prepared excited states, to be
stable over an extended period of time, for instance in the storage of quantum
information. A way to slow down the spontaneous emission rate of atoms in
a cloud, an array or optical lattice is to prepare the atoms in antisymmetric
superpositions in such a way, that the decay channels block each other. Such
subradiant states have already been observed in experiments [1]. In the present
thesis the special case of three or more V-type emitters will be investigated.

As was predicted by Robert Dicke in 1954 [2], the collective effects in a
collection of identical atoms can enhance (superradiance) or suppress (subra-
diance) spontaneous emission. On one hand superradiance occurs if all dipoles
in the system contribute constructively to the emission process. Dicke showed,
that this effect is strongest for symmetric states, such that there is constructive
interference between the radiation of different atoms.

On the other hand, subradiance occurs, when the dipoles are in antisym-
metric superposition states, which means their total dipole moment expecta-
tion value is minimized or even sums up to zero. In this case the collective
decay slows down considerably. Ultimately the dipoles could even completely
decouple from the vacuum fluctuations and external electromagnetic fields and
thereby stopping spontaneous emission altogether.

Superradiant states are short lived and emit an intense light pulse, which
is easy to observe, but subradiant states are long lived and very susceptable
to interference effects of various kinds such as Doppler shifts, Lamb shifts,
atomic motion and AC-Stark shifts|3] and these problems can for instance be
circumvented by using ultacold atoms with interatomic distances smaller than
the atomic transition wavelength )\, where subradiance is present and can
become dominant over longer time.

The antisymmetric states or so-called dark states that constitute the sub-
radiant system can store photons and the quantum information that is stored
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in them over long time periods. These subradiant states can therefore be used
for quantum storage devices [4] and there are even protocols that propose to
switch between the sub- and superradiant states, where the subradiant states
are used for information storage and superradiant states are used for fast read-
out of the quantum information [5]. Lastly an important application is optical
atomic clocks in which the accuracy depends on the coherence time of collective
atomic excitations.

In this thesis, however, we are considering the dissipative dynamics of three

level V-type emitters decaying collectively and investigate the conditions under
which atomic excitation energy is stored in the atomic system for as long as
possible.
We are interested here in V-type systems specifically, because in principle for
N atoms they can store up to N-1 excitations as we will show in chapter 2
under the condition that their transition dipoles are orthogonal and therefore
independent. The case for A-type systems is discussed in [6] but in this case
only 1 excitation can be stored in dark states per N atoms and ladder-type
systems will not be considered, since their transition dipole moments are not
independent. They alse deserve further investigation in furture work.



Chapter 2

Theoretical Concepts

2.1 Model description for atoms

In general a free atom has an infinite number of bound states. Often only a
few are important for the dynamics in a particular experiment. Here we are
dealing largly with three level quantum systems interacting with each other as
part of an open quantum system coupled to the same resevoir. In particlular
for three interacting 3-level emitters, the Hilbert space that is necessary for
describing such a system can be written as H = (C*)®3, therefore the Hilbert
space is 27 dimensional.

Important for the present analytical and numerical calculations are the non-
hermitian atomic transition operators between energy levels and in particular
for the three three level V-type systems there are 12 of them, which are given
by

Gt 6i 6y 6, i=1,2,3 (2.1)

In Fig.(2.1), the atomic raising operator for the first atom from the ground-

state to the excited state |ey) is shown:

o

0
Gyt =le) gl @@= [0 0 1| ®1;® 1 (2:2)

where the matrix representation is based on the standard euclidean basis.
With this the free atomic Hamiltonian can be written as

3
Hy=) hwioitey (2.3)
=1

where degenerate excited energy levels are assumed.
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FIGURE 2.1: Schematic drawing of an individual three level V-
System with the transition from the ground state
to the second excited state.

2.2 Time evolution in the interaction picture

In general the total system Hamiltonian consists of the free part H4 and the
interaction H;,;. In order to determine the time evolution of the atomic density
operator only due to the interaction part of the Hamiltonian, it is helpful to
transform the state vectors and operators into the interaction picture with no
explicit time dependence. This plays an integral part in deriving the master
equation for the atomic density operator. (In the following, the hats above
the operators are dropped, since the calculation involves only quantum me-
chanical quantities.) First the combined Hamilton-operator is split into a time
independent part and an interaction part H = Hj + H;,; where H, is the
non-interacting stationary part and then new state vectors are defined by

[r()) = e s (1)) = Uflws (1)), (2:4)
where |1g(t)) obeys the Schrédinger eqation

ihO|¥s(t)) = Hys(t)) (2.5)

In order for the expectation values to remain invariant the operators have
to be transformed via O;(t) = Ul (£)OsUy(2).

After using the definition and the Schrédinger eq. the equation of motion
for the state vector in the interaction picture is given by

ihO: Y1 (t)) = Hine|tb1 (1)), (2.6)

which upon formal integration leads to the following solution
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|91(2)) = Us(t)|41(0)), (2.7)

where U;(t) =T ea:p( — % (f dt' Hp (t )) with the time ordered expansion

of the exponential.
From this follows that iA0,U;(t) = H(t)Ur(t) and Ur(0) = 1.

For the density operator in the Schrédinger picture the time evolution is
given by
ihowps(t) = [H, ps(t)]

via ihody s (t)) = H|vs(t)).
Similarly in the interaction picture it is given by

ih@;p;(t) = [Hmta pl(t)]

via ihdy |1 (t)) = Hn|t1 (1))

Lastly the transformation back to the Schrédinger picture is done in the
following manner: Qg = Uy (t)O, (1)UL (t).

2.3 Open Quantum Systems

In open quantum systems we include the interaction of a system of interest
with the environment. Therefore the Hilbert space can be expressed as H =
Hs @ Hi with the combined density operator p = ps ® pg € H.

The dynamics of the combined system is given by p(t) = U(t)p(0)U ()" =
V(t)p(0) and by taking the partial trace over the environment takes the form

17l

ps(t) = Tre{U(t)p(0)U ()"} (2.8)

and by assuming that the initial state between the system and the envi-
ronment is a product state of the form p(0) = ps(0) ® pg(0). Then the right
hand side of Eq. 2.8 defines a dynamical map V(t) acting solely on system S.

On the other hand we have seen that the von Neumann equation for a
general density operator is given by

l
Now we can define the superoperator £ via L[ps] = —i/h[H, pg|, that

means it acts on operators and returns operators. [§|
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Therefore the equation of motion can formally be written as

Orps(t) = Llps(t)], (2.10)

where the superoperator can be quit complex containing decay rates de-
scribing incoherent dissipation processes in the system. These decay processes
lead to a stationary state of the system of the form 9,ps = 0, which is normally
the ground state pg of the system containing no excitation, since all of them
will dissipate their energy into the environment. But still their exist states,
although not purely stationary under £, that decay very slowly due to their
antisymmetry in the dipole moment orientations.

In summary, an open quantum system is described as a subsystem of a
combined system S + E, S being the Subsystem and E the environment. For
the equation of motion or master equation we consider only the dynamics of
the reduced system pg(t) = Tr¢(p(t)), with the Hamiltonian of the combined
system is given by H = Hg + Hy + H;,; and where Hg describes the atomic
system, H the field of radiation and H;,; the interaction between system and
field.

By transforming into the interaction picture H/ (t) = et H; =0t and
assuming that Hy = Hg + Hy is a closed system we use the von Neumann
euqation for the density operator to derive a equation of motion with the

following assumptions along the way:

e At t = 0 we assume no correlations between the system S and the field
E. Therefore the initial density operator is factorized into p(0) = pg(0) ®

ps(0).

e The Born approximation, meaning the density operator factorises at all
times as p(t) =~ ps(t) ® ps(0). This relies on the interaction via H;, to
be weak and that the environment is a large system, being in constant
thermal equillibrium and thus any dissipation coming from the enclosed
subsytem gets thermalized very fast in comparison to the atomic system’s
relaxation time. (Markov approximation) |7]

e ps(t) to be local in time, which means as a consequence of the Markov
approximation we can write ps(t +7) = ps(t) + ps(7) for ¢, 7 > 0, where
ps depends now only on the present state and not on memory effects
from previous times.
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2.4 Selection rules and angular momentum con-
servation

In V-type systems with degenerate magnetic sublevels as excited states, mean-
ing with the same angular momentum quantum number j, the dipole matrix
vectors are complex and in particular for radialsymmetric potentials the angu-
lar momentum is conserved and the z-component of the angular mommentum
operator obeys the following relations [9]:

[L.,2] =0, [L.,2+ij)=+(d+ij). (2.11)

If we take the matrix elements where the eigenstates are labled with their
quantum numbers n,l,m, we have

(m' —m){n',I',m'|ZIn,l,m) = 0, (2.12)
(m' —mF1)(n,l',m'|z £ig|n,l,m) = 0. '

where L.|m) = m|m).

This implies that the matrix elements of Z are only non-vanishing for m’ =
m, whereas the matrix elements of Z =+ g vanish only for m’ = m + 1.
If the magnetic quantum number m changes by one unit than the z-component
vanishes and the dipole moment rotates in the x-y plane, while emitting circular
polarized light in the z direction. |9

Similarly using [ﬁQ, [[32,%” = 2712{%, [:2} and L2|l,m) = h21(l + 1)|1,m)
and taking the matrix elements of the first equation, the selection rule I’ = [41

can be deduced. Here {A, B} is the anticommutator of the two operators A
and B.

Therefore the so called selection rules for dipole radiation show how a V-

type system with two independent transitions as shown in Fig.(2.2) can be
described.
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FIGURE 2.2: V-System with the upper levels [ = 1 and the
lower level [ =0

As another consequence, only transitions from different atoms between
m = —1 and m = 0 can directly interact amongst each other, as well as
transitions between m = 41 and m = 0, since in each case the light has a par-
ticular polarization and the transition are only receptible to those particular
polarizations. Although the transition cannot interact directly, they can still
interact via the electromagnetic vacuum field as will be shown below.

m=-1 m=0 m=1 m=-1 m=0 m=1

FIGURE 2.3: Transitions inside each atom are orthogonal and
only interact directly with those same transitions
in other identical atoms.

In Fig.(2.3) it is seen that only &% and 6} for i # k are directly coupled,
therefore o; L o9

The selection rules become clear, when considering the radiation of electro-
magnetic waves, where photons of angular momentum one are emitted. After
the emission the angular momentum number of the electron has to change by
one unit and the m quantum number by zero or +1, which corresponds to lin-
ear polarized or left /right circular polarized light. This process is illustrated
in Fig.(2.3).
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2.5 Dynamics of atomic excitations

We consider a collection of N identical atoms separated by a small distance,
which are coupled to the quantized electromagnetic field. Each atom is de-
scribed as a V-type system with N-1 nearly degenerate excited states and a
single ground state. Therefore we have the closely lying excited energy levels:
W1 # Wy F . F WN_1

With this the combined Hamiltonian of the System interacting with its elec-
tromagnetic environment reads

H=H,+ Hs+ Hyy, (2.13)
where
N N-1
H, =) hwettel (2.14)
i=1 j=1
Hp =) hwal ag (2.15)
kA

with A = 1 and the atomic transition operators are given by

o5" = lej)ail o5 = lai){e], (2.16)

where 63'» is the jth excited energy level in the ith atom and g; its ground state.
All dipole transitions in atom i are assumed to be at the same spatial
location 7; and the atoms are assumed to be fixed at their positions.

-3

i=1 j=1

N-1

. B(7) (2.17)

Q&@ >

The electric field operator E(7,t) in quantized form is given by [23]

1/2

5 , 2 hwy, o -

E('r’i,t):zZ( v ) i lag (e + Hee (2.18)
kX

Here ay ,, d% , Tepresent the bosonic ladder operators of a field mode with

propagation vector k and polarization A, whereas wy = ke (|k| = k) represents
the angular frequency of the k-mode and the corresponding unit polarization
vector is denoted by ez ,.
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The dipole matrix elements are written as

~
-

= pile) (g = piatt. (2.19)

We assume that the different transition dipole matrix elements in atom i
are orthogonal, therefore

di - dir =0, (2.20)

where we have taken the complex conjugate, since the matrix elements can
be complex in general.

By transforming into the interaction picture via the transformation

Oint(t) = U(t)OinsU' (1) (2.21)
with the unitary operator U(t) = e/"Ha+H)t the interaction Hamiltonian
becomes
N N-1
2wy \ 1/2 .
mt Z Z( ™ k) (N 1+ezw3 (—»E)\alg)\ez(k-nwkt)+Hc)+HC>
=1 j=1 5

(2.22)

Now to derive the equation of motion for the atomic part of the system we

start with the density matrix of the combined atom-field system p(¢), which
satisfies the Liouville equation of motion

8/) .
5 = /(0.4 (2:23)

Formal integration of Eq. (2.23) leads to

plt) = p0) = i/h [ s [Ha5). (o) (2.24)
and by inserting this result back into Eq. (2.23) we arrive at
% = 11 [ s Tt [Hn(5) H)]} = 1/ Trsf (8,50

J

v~

=0
(2.25)
where the second term vanishes because we assume initially no interaction

between the atoms and the field (5(0) = p,(0) ® ps(0)) and therefore no first-
order correlations.
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Furthermore we make the Born-Approximation, which in our case means
weak interaction between the atomic system and the field at later times and
therefore the field is approximately constant in time in the time frame of the
atomic dynamics:

51(6) ~ pr = 0(t) ~ pult) ® fy. (2:26)
With this, Eq. (2.25) takes on the following form

~ A~

85: _ _1/h2/0 ds T?“f{[Hmt(t), [(Hint(s), pa(t) @ ﬁf]]}a (2.27)

where under the weak interaction assumption we have replaced p,(s) by
Pa(t).

Next we make the substitution s — ¢t — s (ds = dt) and under the Markov-
Approximation [10], which states that memory effects over which correlations
in the field decay, are very short-lived and therefore the integrand vanishes
quickly for ¢t <t — s, we extend the integration limit to infinity.

Also since the relaxation time of the quantum optical system due to the
interaction with the field usually lie in the range of 107%[s|, but the timescale
over which correlations in the field decay are given by the inverse of the atomic
transition frequency and lie in the range of 107'4|s|, we see that the correlations
vanish rapidly compared to the timescale of the Master equation of the atomic
sytem.

From this we obtain a Markovian Master equation for the atomic system
0pq
ot

— 1/ / s Tr {0, ot — 5), a0 @ ]} (2:28)

The trace over the bosonic field operators inside the integral in Eq. (2.28)
corresponds to their vacuum expectation values and are given by [6]

Tri{pralsawn} =0, Tri{prarral v} = Gpwdan (1 + N(wp))

) (2.29)
T?“f{pfakﬁkak@,\/} = 07 TTf{prLL)\CLL)\/} = 5;9;@/5,\)\/N(wk/).
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In the case when the environment is in thermal equillibrium, and therefore
the environment density operator can be expressed as [13]

o—Hy/ksT

P = e T haTy (2.30)

where kp is the Boltzmann constant, and T is the environment temperature.
Then the Bose-Einstein occupation number is given by N(wy) = (ew+/k87)~1,
and in the case of T' — 0 we see that N(wy) ~ 0. [11]

We can neglect terms of the form 67767 and 6”67 since applying them

to the atomic density operator just glves O.

In calculating the time integral, integrands of the following form have to
be resolved

o0 g/ t g ! / 1 :
/ ¢’ dt' =lim lim [ "=t = lim lim - (eztw*ﬂf— 1) (2.31)
0

e—+0t—o0 0 e—0t—00 W — €

and by taking the limit ¢ — co and by either using the Dirac-Identity or taking
the appropriate complex contour we arrive at the following functional

lim -
e—0 w -+ 1€

- z’P(i) + o (w), (2.32)

where P denotes the principal value of the integral and d(w) is the Dirac delta
function.

We assume, that the excited energy levels are nearly degenerate and ap-
proximate w; ~ w; = wy, which is valid when considering real atomic systems
like Strontium for instance, to arrive at the following master equation of motion
for the atomic density operator after doing the algebra

N N-1

Opa _ ZZFk ( G5 pa — 267 Pall + pall G '3>

ik 3,5
N N-1

+ Z Z i sz O_z+o_k/—7 ﬁa]

i#k 5,5’

(2.33)

where we have introduced the dissipative and coherent coupling coefficients
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i 2mwy, =
Ui == Z ( v )7“5(000 — wi) | - @l (2.34)
kA
i 2mw G % o\ ik (7
Fj];' - Z ( Y )7?(5((,00 - Wk)(ﬂj : Ek,A)(M? Epa)e k(T =T (2.35)
)

4 2wy, 1 1 5 . o
Qz'k;/ = E = k-:/ = ik (7 —T%) 2.36
! ( g ) (wo — W " wo + wk:) (15 - Eer )y - € )e (2.36)

kA

In Fig. (2.4) the collective couplings between two atoms are shown.

E Atom k
[tk \
Atom i Qyj & \Af’ 5 ;“ &
~1 ik
) R
1 S ik =g
7.7 4! ij/

FIGURE 2.4: Illustration of the atomic system with an arbi-
trary arrangement, where the dissipative coupling
terms between two atoms are shown.

Now we go over to a continous vacuum mode spectrum ie. > P
V/(2n)? [ kY, , and look closely at the sum over the mode functions, where
kL epy L egy and ef o boints out of the page and p; along the z-Axis as shown
in Fig.(2.5)
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> X

FI1GURE 2.5: Orientation of dipoles and polarization vectors,
where €f points out of the page. Here 1; and iy,
are two transition dipole vectors either belonging
to the same atom or different atoms and different
transitions. (For two transitions of the same atom,
the transition dipole vectors would be orthogonal

to each other.)

From Figure 2.5 we deduce the resolution of the summation over the po-
larization components:

D (- @) (fh - @) = 17(eps - ena) (e, - era) = isin(6;)sin(6y)
A

= FLQCOS(Qi - 8’6) - /~52008<9i)008(0k‘> = :U’2 [em “Cup T (em ) eE)(euk ) 6,;)
(2.37)
where || = || =: p, eg = ji/p and e = k/k.

Now the coupling terms in Eq.(2.34-2.36) become |[6]

3
2/@ Wo
R i 2.

-

i L T i L= T
e = - (u} - Im{x} - ) 0, = - (uj - Re{x} - uf; )

where d’ - Im{x} - dRE = g Im{x%,(wo)} is the imaginary part of the
tensor component X}’;, (wp) which is given by
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| ok ke 1 . K2 3ike  3\|

z.k" _ Az‘.A]?/ 0 M0 2\ _(nis A]?/.A‘ Ko | Otho Zkomk'

X (wo) [uj fi; (mJFT?k r?k) (it - Fin) (125 m)(rikJr 2 —T?k> e
(2.39)

w I g — A = NG 7
Here ko = =2, ry, = |75 — k|, Pik = T/ T and G = :U’j/:uj-

It should be noted, that 2v; corresponds to the single atom spontaneous
emission rate from the state |e;) to the ground state |g). The dipole-dipole
interaction on the other hand is completely determined by the tensor y.

The tensor component X;’;, is a geometric quantity and relates the transiton
dipole unit vector fi; in atom i with ji;; of atom k.
The crucial steps for deriving Xé'];/ are presented in the Appendix [7].

It is interesting to note, that although the transition dipoles /TL; and ﬁf,
might be othogonal, (j} - 7i) and (ﬁf, - 73) might not be orthogonal, and lead
to a non-zero contribution in the dipole-dipole coupling. This contributions
manifest themselves in the so called dipole-dipole cross coupling coefficients
r ;’;, and Q;’;, for i # k, j # j' and couple pairs of orthogonal dipoles.

With the help of the following functions

cosr  sinr  cosr sinr cosr sinr
P.(r) = —— bl = ——— 3
T T T r T T
CcosT sinr CcosT sinr cosT sinr
QT(T> = r -3 r2 -3 3 >Qi (7’) = +3 r2 -3 r3 , = k‘OTilm

we can rewrite the radiative coupling terms for real dipole matrix elements
as follows

i i 3V (i - N N
D = gpy im0l (o)} = S (7 - il Paran) = G - ) (i - ) Qu(rn)

ik ik ~1  ~k ~f oA ~k oA
O = iy Re{ol o)y = = (i - 5P ran) = Gty - ) (i - ) Qu ) )
and vy = 2, is the spontaneous emission rate of a single transition given

4d;? [ w
by fg(42)°.

For a quick illustration of the coupling coefficient, let us consider three
V-type atoms in an equilateral triangle configuration, an example which will
be investigated later in much more detail. The scheme is shown in Fig.(3.1),
where the dipole orientations are such that F;’;, = 0;7I'; and Q;’;, = 0,8
reduce to two coefficients respectively.
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FIGURE 2.6: Equilateral triangle configuration on the lower
left, where the transition dipole vectors of the
second transition in each atom point towards the
center of the equilateral triangle. Also shown are

linear chains for three and four atoms.

The behaviour of the dipole-dipole coupling terms between two atoms is
shown in Fig.(2.7)

If we go back to Eq.(2.33) and put down the equation motion for the atomic
density operator in the Schrodinger picture, we arrive at

atpAa = 2[157 ﬁ] + E[ﬁa] (240)

where the Hamiltonian is given by

N-1 N N N-1
H= Z Z w; 6T el + Z Z QZ’“,&’JFJI‘“',_ (2.41)
J=1 i i#k g’

and describes the coherent energy-conserving part of the time evolution, and
the Liouvillian super-operator,

N N-1
ZZW (201 palt — a6k — poyt k) (2.42)
ik 7,5
stands for the dissipation of the atomic system into the surrounding elec-
tromagnetic field. The term 2&;-_ ﬁ&ff is called recycling term, which ensures
that the overall population stays constant, by transfering the population de-
caying from the higher energy states into the lower lying energy states, while
the last two terms account for the decay in the higher energy states.
In other words, our Liouvillian-Superoperator is a trace preserving map and
also completely-positive, since the coefficient matrix Fé.’;, is symmetric in the
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FIGURE 2.7: Left: Plots for the dipole-dipole coupling coeffi-
cients as a function of the interatomic distance
with 01 = w/4, 09 = 37/4 for the two transitions
and ¢ = 0. Right: Variation of the azimuthal

angle at interatomic distance /4.

linear geometries under consideration and can therefore be diagonalized with
positive-definite eigenvalues.

Tr(pa) =1=Tr(L[pa)) =0 and L[pg] >0 . (2.43)

Furthermore to derive eq.(2.40) we neglected all single-atom dipole shifts
QY since we are only interested in the collective behaviour. Furthermore it
would lead to divergences as the interatomic distance approaches zero, where
this model of interatomic interaction is not valid anymore.



2.5. Dynamics of atomic excitations 23

Geometric Parameters

The coupling matrices (I', 2) in (2.34-2.36) are responsible for the collective
dissipation and collective energy level shifts. They determine the collective
properties of our model of N identical interacting atoms. Identical means the
atomic energy levels are identical [12,13], although their individual transition
dipole orientation can be different.

Both Parameters F;@, and Q;’;, strongly depend an the interatomic distance
rix and the orientation of the transition dipole vectors as is seen in Fig.(2.8).

In detail we can see that the interactions between 0.5 < ¢ < 2 are consid-
erably larger when the dipoles are orthogonal to the the interatomic distance
vector and parallel to each other as is the case for Q% = Q, and I't =T’ in
the equilateral triangle.

For the distance dependence, if the dipoles are parallel to each other and
orthgonal to the interatomic distance vector, we get:

1, £€-0 (2.44)

[ie) = { 0, &—oo (2.45)
00, €50 (2.46)

h(e) = { 0, £ = 00 (2.47)

For & — 0 the diverging €2; is neglected and I'y — 1 leads to F;’;, = I', which
means the collective decay rates all beome identical. In the other limit of
& — o0, both functions become zero the atoms become independent emitters,
infinitely far apart with decay rates T, = 9,

In the case of €25 and I'y, when the dipoles are not parallel, the dissipative
coupling approaches one half, as the interatomic distance becomes zero.

The dependence on the angle # between the transition dipoles and the
interatomic distance vector is illustrated in Fig.(2.8).
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FIGURE 2.8: Angular dependence of the coupling for two par-
allel transition dipole vectors and mutually or-
thgonal ones, having an m/4 angle with the in-
teratomic distance vector. Here & = kor and

F(£),G(€) are plotted in units of /77
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2.6 Dark States

It is well known that two nearby atoms exhibit a modified decay behaviour.
In the simple case of two 2-level quantum emitters with states |g) and |e)
the maximal superradiant and subradiant states are given in Eq.(2.48) and
Fig.(2.9) (B) with a plus and a minus sign respectively.

02) = —=(leg) 1ge) (2.48)
‘e > g — — .
T ot ot i ot ot
l S e e
l9)

(a) (B)

FIGURE 2.9: In (A) the 2-Level-Scheme is shown and in (B)
the |¥,) states as superpositions of two 2-Level
atoms.

The superradiant and the dark state of 2 particles are maximally entangled
[14,15], which in this case are two of the Bell states. Similar properties hold
for N > 2 particles with several decay channels as is shown in [6] and discussed
in more detail below.

Let us list the important properties or conditions of these dark states [6,15]:
(i) They are maximally entangled (see [15])
(ii) Zero total dipole moment: p; = (>, &;')I\I’% =0
(iii) For N atoms, they need N-1 independent transitions.
)

(iv) Every dark state has a superradiant analogue |U%) where all signs are
positive.

|2 is the generalization to N emitters and is given as follows:

) = 7 0 @l (2:49

" wEeESN
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where for a system with N-1 upper states |i) = |s;) = |e;) and one lower
lying state |0) = |so) = |g), as in the case for a V-System as shown in
Fig.(2.10). The sum in Eq.(2.49) runs over all permutations 7 of N elements
and sgn(m) gives a factor of (+1) for cyclic permutations and (—1) otherwise,
e.g. sgn(m(123)) =1 or sgn(n(213)) = —1

To illustrate for the three level A-System with one upper state and 2 lower
states we have:

1
W) = = (legie) + 191926) + lgaeq)

(2.50)
~legag1) — lgagn¢) — lgnege) ).
and for the V-System with two upper states and one lower state:
W)y = %096162) + lere2g) + [e2ger)
3! (2.51)

—|geser) — |eserg) — |€1962>>

where in comparison to the A-System we just make the following interchange:
€< g, g1 £ €1, G2 £ €2

len—1)

aad
\\ //

FIGURE 2.10: Multi-Level scheme of an atom with non-
degenerate energy levels and dipole transitions
of different spatial orientation.
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Property (ii) is a consequence of the anti-symmetry of the dark state as is
easily seen for |¥2):
on = <O->|\IJ§> = 0. (252)

Another way to represent |¥3) is via the determinant of a 3 by 3 square
matrix with tensor instead of scalar multiplication and a Laplace-Expansion
along the first row:

le1) le2) |g)
le1) le2) [g)| = (2.53)
ler) le2) [g)

= le1) @ (lea) @ |g) — |g) © le2))
—lea) @ (le) @19) — [g) ® len))
+g) ® (ler) ® le) — |e2) ® len))

o W),

(2.54)

here the subdeterminants are also entangled states in their respectively
reduced Hilbert space and product states such as |g)® (|e1) ®]e2) —|e2) @]e1)) =
|g)(lerea) — |eser)) show subradiance, as will be shown in numerical simulations
below and was demonstrated for the three level A-System in [6] and [16].
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Chapter 3

Analytical treatment of collective
dynamics in a V-type System

3.1 Symmetrical Configuration

In general it is not possible to obtain analytical expressions for the eigenstates
and lifetimes of the dipole coupled Hamiltonian especially for larger system
sizes and more energy levels per atom. Furthermore the dimension of the
physical Hilbert space grows exponentially with the atom number, as for N
D-level atoms we have dim(H)=D?":

Two 2-level atoms — dim(H) = 4
Three 3-level atoms — dim(H) = 27

Four 4-level atoms — dim(H) = 256.

Hence this makes numerical simulations difficult as well, since for solving

the equations of motion via the master equation, the number of elements in
the atomic density matrix is the respective dimension squared. By resorting
to a Monte Carlo wavefunction simulation, one can get a quadratic reduction
in the dimensions but the exponential increase of the Hilbert space will easily
overshadow this performance improvement for say 8 atoms or more.
For our analytical treatment we are only considering three 3-level emitters,
with 27 dimensions in H and investigate a special configuration of three atoms
in an equilateral triangle, where the transition dipole unit vectors for each
atom point inwards along the symmetry axis of the equilateral triangle and
are orthogonal to the plane. The transition dipoles in each atom are mutually
orthogonal as was explained in the section "Angular momentum conservation"
and are shown in Fig.(3.1).

In Fig.(3.2) the V-type level scheme for identical atoms is shown with
energy difference ¢ (A = 1) between the excited levels.
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d

FIGURE 3.1: Equilateral triangle configuration for atoms
A B, C.

For the analytical as well as for the numerical treatment we assume identical
atoms with degenerate atomic energy levels wy (§ = 0) and identical magni-
tudes of the transition dipole moments: |fi%| = p, which amounts to a single
atom spontaneos emission rate for each atom and transition of v = 4wgu?/3hc>.
[22)

With this setup we arrive at geometric parameters depending only on the
relative coordinates between neighbouring atoms, and thus the combined inter-
action is composed of pairwise terms depending only on the distance between
them and the transition dipole index j.

The geometric arrangement is shown in Fig.(3.3) with F;’ = v the single
atom spontaneous emission rate, ko = wo/c = 2m/Ag and QY = 0.

3.2 Hamiltonian for an equilateral triangle
The Hamiltonian for this setup is given by

N=3 N=3
H = wy Z Z oitol + Z Z Qo ol (3.1)

j=1,2 i =12 ik

and the Liouvillian reads:

1 i i+ k- i+ k-
Llpa] = 3 E I';[20] ,oaa;“ — O‘j+0‘;-€ Pa — pa0‘j+0';-€ ], (3.2)
ikj
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—, e1 el
' 0 e2 0 ez [ ° e2
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[ ] [ [ ]

F1GURE 3.2: Illustration of three indentical V-type atoms
A, B, C with nearly degenerate excited levels with
)< 1.

where Qffy =T = 0forj # 7', 01 = §P(d). Tt = $P(), 0 = —{P(d)+
2Qr(d) and I'y = = P(d) + $Qi(d).

Here we have set:

cosr  sinr  cosT sinr cosr sinr
Fr(r) = roorz g3 Bilr) = r + 23
cosT sinr cosT sinr CcosT sinr
@r(r) = r -3 r2 -3 73 Qilr) = r +3 r2 -3 73

In this case the superradiant state |12 ) and the dark state [¢)3) are eigen-
states of the Hamiltonian with eigenenergies E, = 2wy + Q1 + s, By =
2wy — 1 — €y respectively. Explicitly we have:

1
03) = —= (lgerea) + lereag) + leagen)
vVl (3.3)
~lgeaer) — leaerg) — lerges))
and
9) = —=(lgerea) + lereag) + eagen)
3! (3.4)

+lgeser) + leaerg) + lerges))
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FIGURE 3.3: Equilateral triangle for three V-Systems.

By considering

(WIL[va) (Wallle)  and  (WIL[wE) (W ]1¥) (3.5)

where ) are all the lower lying eigenstates into which the superradiant
and subradiant state decays, we obtain the decay rates into the respective
states. For [¢) = |¢3) or [¢) = |13,) we obtain the total decay rate.

Whereas for

(WilLlleiejer)(eiejerl]lvg)  and (V2] L[|esejen) (eiejenl]|vd,)

where 7, j,k = 1,2 and e;e;ey, are the 8 possible inverted states which can feed
the Super- and Subradiant states, we obtain the feeding rates (here v refers
to the spontanous emission rate from a single indipendent atom and is set to
unity in numerical simulations):

TABLE 3.1: Feeding rates where the negative sign means that
it gives the decay rate for the energetically higher
lying state.



3Lhapter 3. Analytical treatment of collective dynamics in a V-type System

Feeding Rate from | |ejejeq) lereres) |ereaes) |eaeaes) lereser) |eaeser) leaerer) |eaeren)
for |13) 0 7%7 + %Fl féq/ + %FQ 0 7§7 + %Fl *%W + %Fg 7%7 + %Fl fiq/ + %FQ
oty | 0 |betnl b o || o] on o

TABLE 3.2: Decay rates, where the first column is the total
decay rate of the two states and the other columns
are the decay rates to the lower lying eigentstates.

The last column is the ground state.

[wa) | 2y =Ts =T 0 0 —5(y=Ts) | =5(y=T1) | =5(y=Ts) | =5(y = T1)

= ol

[W3) |29+ D14+ | =2y 30y | =29y — 3Ty | =iy 4+l | =3y + 20 | v+ il | —iv+ iy

From the decay rate of the Dark State we see that in the limiting case of
infinitely close atoms, the decay becomes even zero and the state is indeed
stationary under the Liouvillian superoperator.

The same symmetry holds for the A-System as is discussed in [6]. It should
be noted that for a three level ladder system the dark state does not exist
anymore since the two transitions inside an atom are not indipendent.

3.2.1 Decay from a totally inverted state

If we diagonalize the Hamiltonian (3.1), two of the eigenstates are the subradi-
ant and superradiant eigenstate, so called because there respective decay rates
are 2y — I'y — I's and 2v 4 I'y 4+ I'y are really the most sub- and superradiant
rates of all the eigenstates in the two excitation manifold. Of course the to-
tally inverted states each have a decay rate of 3y but as time progresses, the
superradiance of [¢2) dominates.

Unfortunately a perfectly dark state is not possible since the coupling terms
at finite distance always lead to a slow decay even of [¢3), so the term "grey
state" is coined. It still decays under the time evolution but of all intermediate
states in the two excitation manifold it decays the slowest.

If we again consider the equation of motion for the atomic density operator
0pq
ot

we see that if we look at the timeevolution of the eigenstates of the Hamilto-
nian, the commutator vanishes and we arrive at

= i/h[pa H] + L[pa), (3.6)

8:561‘9 o A
W = ﬁ[pezg]. (37)




3.2. Hamiltonian for an equilateral triangle 33

Upon projecting onto a target eigenstate we obtain the decay rate to this state.
Finally by integration we obtain the time evolution of the respective eigenstate.
[17]

(i) ox (1= ) e, (3.8)

v denotes the feeding rate responsible for increasing the population and 7 is
the total decay rate of the state.

The time evolutions of the Sub- and Superradiant state for the initial state
lereres) are given by

Paari(t) = (1 — e3CTHMWNe=Cl=m=m)t 5 (1) — (1 — gz(-T=7)t) o=@ +m+72)t

and time evolutions for the initial state |ejeqes)

Puaark(t) = (1 — €5 CTHNCTm=mt 5 () — (1 — (Tt Ol

and the decay rate for all 8 inverted states is:

ﬁinv (t) = 6_3Ft
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In Fig.(3.4) the result of the analytical calculation of the time evolution is plot-
ted [18] on a logarithmic scale. We see that the state |1)3) becomes dominant
at late times.

10°

Inverted State |y.)=el®el®el

Inverted State |y:)=e2®el®e2

--- |yd) (d=2Aod)
w3}

— el
GroundState

~<<d

FIGURE 3.4: Decay of three V-type atoms in an equilateral tri-
angle of size d = \o/4 starting at different totally
inverted states. For the initial states |ejeje;) and
|egeses) we see no excitations in the Super- and
Subradiant states at all. The excited Population
axis is scalled logarithmically (base 10) and the t
axis is scaled with the single atom spont. emis-

sion rate I'.

The decay channels starting from the totally inverted states via the Subradiant
and Superradiant states are shown in Fig.(3.5) with their respective feeding
and decay rates as well as their eigenenergies with the coherent energy shifts.
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FI1GURE 3.5: Level scheme for the Equilateral triangle of three
V-type atoms. Decay channels with feeding- and
decay-rates are only shown for the subradiant
state for the sake of clarity and the feeding paths

for the superradiant eigenstate are not shown.

In Fig. 3.5 we see, that as the atoms get closer together the decay rate of

the dark state approaches zero, but at the same time, the feeding rat

e from

energetically higher states also approach zero. Hence the dark state decouples

from the electromagnetic vacuum and with it from eigenstates from

excitation manifold.

the 3-
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3.2.2 Eigenstates and Eigenvalues

Now we calculate the Hamiltonian for the equilateral triangle configuration
and calculate the eigenstates and their respective eigenenergies. In particular
we show, that the super- and subradiant state are eigenstates of the system.
The Hamiltonian

N=3 N=3
H=wy Y Y o6 +Q> > oot (3.9)

j=12 1 j=1,2 i£k

lies in a 27 dimensional Hilbert space and has 8 totally inverted eigenstates
with energy 3wy

|€1€1€1>7 |€1€1€2>7 |€1€2€2>, |€2€2€2>, (3-10)
lereser), |eseser), |eseren), [eseres)

Then there are 12 possibilities of product states with energy 2wy

lere19), |erger), [geier), [eaeag), [eages), |geses), (3.11)

le1e29), [e1ges), [geiea), |eze1g), leager), |geser),

6 possibilities with energy wy

|€lgg>7 |g€1g>7 ’gg€1>, |€299>7 |g€2g>7 ’9962>7 (312>

and a single ground state

1999). (3.13)

Here each collection of states constitutes a subspace which is orthogonal to the
other subspaces, and therefore the eigenvalue equations can be solved for each
collection independently.

For instance the eigenvalue equation for the single-excitation manifold leads
to the following block-diagonal-matrix equation (The matrix is real and sym-
metric, therefore all eigenvectors can be choosen mutually orthogonal)

wo O aq aq
O wy & Qo Qo
Q U wo (6% —\ Qg
wo Qo (O o7} o7}
Dy wo 2 a5 a5

QQ QQ Wo Qg g
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where for each block we get the following pairs of solutions (e.g. (aq,aq, as)
— (0617 Qa, (g, 07 07 0))

(a1, g, aig) Eigenvalue
(1,1,1) (A)()‘i‘Ql—i‘Qg
(-1,1,0) wo — {4
(1,1,-2) wo —

(o, as, ag) Eigenvalue
(1,1,1) w0+Ql+QQ
(-1,1,0) Wy — Ql
(1,1,-2) Wy — QQ

where the a’s are the coefficients of the states in (3.12) and which give us
the 6 normalized eigenstates and there corresponding eigenenergies with one
excitation.

tear) = (lergg) + |geig) + [gger))

wo + 21 + s
2 lea) = J5(leagg) + |ge2g) + lggen))
gy ey = T5(—lergg) +1g9e19))
" [Less) = (lergg) — 2lgger) + [gerg))
|Leas) = 5(~leagg) + |ge29))
wo — § \1[

5 (le2g9) — 2[gges) + |ge2g))

A analytical solution for the double excitation manifold is still doable, but the
results are long and not claryfing, but still the super- and subradiant states
retain their simple symmetric and antisymmetric form:

2wy + 0 + Qs 0 |2e11) = \/Lg(|€1629> + |e1ges) + |gere2) + |eserg) + |eager) + |gezer))

2wp — Q1 — Oy 1| [2e20) = %(’6162@ — leiges) + |geiea) — |eze1g) + |eager) —

lgezer))

Although the dipole-dipole coupling coefficients are in general complicated
expressions, for the equilateral triangle an analytical treatment was presented.
In particular the energy level structure and the decay cascade for three three-
level V-type emitters with its 27 eigenstates was analytically calculated and
illustrated .
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Chapter 4

Numerical Results

4.1 Linear Chain

In this section we are investigating a second simple geometry, namely a linear
chain. Here due to more complex couplings we can only solve the master
equation for the atomic density operator numerically. A conceptual scheme
is shown in Fig.(4.1) where all transition dipole vectors are orthogonal to the
interatomic distance vector and the dipole matrix elements are all real. The
quantization axis is fixed along the interatomic distance vector connecting the
atoms.

o

d> d ds

FIGURE 4.1: Linear Chain with parallel transition dipole mo-
ments.

Due to the rotation symmetry around the axis the dipole-dipole coupling coef-
ficients become independent of the dipole index j and we obtain the following
form of the Hamiltonian

N=3 N=3
H=wy Y > oo+ > Y strsh- (4.1)

j=12 i =12 i#k
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Note that we still assume w; = wy = wp and | /Jé| = p. The dissipative coupling
coefficient in the Liouvillian becomes independent of the j index as well:

1 ik o Ai— A Nit ak— A AxidoAk—
Lp] :§Zrk[20j PU]?JF_UJ'JFO;? pP—p j+ Jk ] (4.2)
ikj
ik _ ik _ A ik _ ik
where Q7% = I'j7, = 0 for j # j" and I'j; = I'"".

The coefficient matrix for the coherent energy shifts and decay rates are as
follows

0 O Q

. , 3 A
QF=QF = | Q1 0 O |, =0Q(),Q =Q2r),Q%r) = P(r),r = =
2 12
Q 5 0
' 4 1 Iy Iy 3
M =T .= |0y 1 Iy|, 0y =0(0),ly=T(2r),0(r)==P(r)
2
s I 1
with ' = 1 and where P, and P; are given by
cosr  sinr  CosT sinr  cosr  sinr
Pr(r): r - r2 - r3 7R<T): r + r2 - 3

For this particular configuration the two most subradiant eigenstates are given
by

1
[Vsubr2) = 5(!61629> — |gerea — eae1g) + |geser)),  Er = 2wy +

1
[Vsubr1) = JT/-(—|€1629> +c-|erges) — |geiea) + |eze1g) — c - |eager) + |geser)),

Qy /034802
Ey=2wy— — —+—2—1

2 2 ’

2 2
where N' = V4 + 22, ¢ = 1 (302+/3+803)

T Q2420240,4/Q3+802

and ejesg means e; ® e, ® g with e; = (1,0,0)7,e5 = (0,1,0)7, g = (0,0,1)T
in the computational(standard) basis.
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Decay of the cigenstates of H of atoms in a linear chain
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FIGURE 4.2: Numerical Simulation: Upper state occupation
decay of the 27 eigenstates of H for three V-type
atoms in a linear chain of distance d = \g/12.
The two most subradiant states with two excita-
tions are highlighted and in the limit of Q; = Qs
the state |2, ) becomes |¢3).

subr,1

In the case when ; = Q5 := (), which is only atainable for the equilateral

triangle, it follows that ¢ = 1 and A" = /6, therefore: |Vsubr1) = |¥03) with
E = 2w, — 20

The decay of all 27 eigenstates are plotted in Fig.(4.2), where the two states
considered above are highlighted and indeed show the most subradiance. It
should be noted that there are also subradiant states in the one excitation
manifold which show the same behaviour at later times, but with a lower
atomic population.

Finally in Fig. 4.3 we plot the decay of different states in the linear chain.
Although the Dark State is not an eigenstate of the Hamiltonian in this con-

figuration, we show it to highlight its subradiant character, along with other
states.
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Decay of different states in a chain

1.0

le1, e, ¢€1)
w2

as

— V)

0.0

['t

FIGURE 4.3: The decay for various states is shown, where

(W2,) = 1/v2(lerez) — |eaer))|g)

4.1.1 Overlap with the Dark State

As we have seen in the previous section, for arbitrary geometric configurations,
the most dark and superradiant (symmetric) state are not eigenstates of the
Hamiltonian, but it is still the case that the eigenstates which have the largest
overlap with |¥3) also show the most subradiance. Therefore we investigate
this property for different transition dipole orientations in the linear chain,
since this value somewhat indicates the subradiant behaviour of the whole
geometric configuration, the appropriate one could be chosen quickly.

So for instance in Fig. 4.4 (C) the following dipole orientations in spherical
coordinates are chosen

i = (0,0,1)7, = (1,0,0)" (4.3)

ﬂ% - (COS SplaSin @170)T7 ﬂ% = (COS 9027Sin 90270)T‘

In Fig.4.4(A) the ¥ angles vary for the outside dipoles in z direction, whereas
in (B) all three dipoles are held parallel and rotate in all spherical directions
simultaneously.
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The color gradient indicates the degree of overlap with the perfect dark state
|43} and brightest areas having the most overlap of close to unity.

In order to create the plots, the angles are varied in discrete steps over the
whole intervall of either 0 to 27 for ¢ or 0 to 7 for 6 and for each orientation
the eigenstates are caclulated and the value of Max{(¥3|tbe;,)} is plotted.
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FIGURE 4.4: Plots of the overlap with the dark state for differ-
ent configurations at distance d = A\p/4. In the
first plot on the left only 6 angles for atom 1 and
2 are rotated. In the middle figure all dipoles are
kept parallel by simultaneous rotation and it can
be seen that for each ¢-angle the overlap is con-
stant along 6. Although the maximal overlap of
one is only reached for the equilateral triangle, it

is almost one.

Finally in Fig. 4.5 the interatomic distances are varied for the linear chain
and the decay rates for the most subradiant and superradiant state in the
two-excitation manifold are plotted, since |¥3) and |¥3.) also reside in this
manifold. In the special case of the symmetric triangle configuration, these can
be identified with |¥3) and |¥3 ). Here ry and 7y correspond to the seperation
between atom 1 and 2 and atom 2 and 3 respectively.
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Subradiance in a chain

Superradiance in a chain
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FIGURE 4.5: Contour plot of the decay rates of the most
superradiant and subradiant states in the two-
excitation manifold for different interatomic
seperations. Note that the theoretic mazimum and

minimum decay rate is 4y and 0 respectively.

4.2 Triangular atomic array

For a numerical simulation of the equilateral triangle [19] we assume the geom-
etry as shown in Fig.(3.1), where again the dipole-dipole coupling coefficients
assume the form I';;(d) and Q;;(d). That means, the coefficients are indepen-
dent of the atomic indices since the transition dipole orientations are along the
symmetry axes of the equilateral triangle. Additionally one transtion in each
atom is orthogonal to the plane spanned by the triangle, therefore the cross
coupling terms vanish i.e. I';;; = Q,; = 0 for j # j'.

The decay of the Sub- and Superradiant eigenstate are plotted in Fig.(4.6) as
well as the independent decay, that is for the limiting case where the inter-
atomic distance goes to infinity i.e. F;’; = d;x, where v = 1 for simplicity.



44 Chapter 4. Numerical Results
Decay of two excitations in triangular array (d = A«/20) Decay of two excitations in triangular array (d = A«/12)
2.00 1 — Decay of |l 2.00 —— Decay of |y
3 3
175 4 Decay of |wi) L75 —— Decay of |u3)
~~- Indep. decay Indep. decay
150 1 L50
5 5
E 1.25 1 5 125
2 FA
£ 100 £ Loo
u o
£ o7s Eorns
< B
os0 0.50
0.25 0.25
0,00 0.00
o 2 4 [ B 10 o 2 4 [ 8 10
n 14
Decay of two excitations in triangular array (d = Ao/4) Decay of two excitations in triangular array (d = Ao)
2.004 — Decay of |uj} 2.00 Decay of |y3)
1751 —— Decay of |y} 175 — Decay of |y3)
| Indep. decay ~=- Indep. decay
150 150
c e
-] <]
E 125 B 125
2 F
£ 100 & 100
2 g
E €
£os g 078
=< <
0.50 0.50
025 0.25
0,00 4 0.00
o 2 4 6 -] 10 o 2 4 & a 10
n n

FI1GURE 4.6: Upper state population decay of three interacting
V-type atoms in an equilateral triangle of differ-
ent sizes. As the size increases all decay rates be-
come identical. The black line corresponds to the
dark state decay, whereas the blue line to the su-
perradiant decay. Here the interatomic distance

is denoted by d.

As was mentioned in chapter 2 the dark state can be seen as the Laplace-
Expansion along the first row of the determinant of the following matrix, with

tensor instead of scalar multiplication:

€1 € g
€1 € g
€1 e g

where the subdeterminants are given by

1
|7vbunp,1> = Em

) @ (|er) @ le2) — |e2) @ |er))
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Punp2) = %r@ ® (lea) ® |g) — |9} ® [e))

Wunps) = %ren ® (le2) ® [g) — |9} ® Je2))

and are unpolarized product states involving all three atomic states, meaing
the first atom is uncorrelated with the superposition of the other two atoms.

Here the dark state can also be written as follows:
1
V3
In Fig.(4.7) the three unpolarized product states as well as the Sub- and Su-
perradiant states are plotted at a finite distance of d = \g/12. It can be seen
that the unpolarized states clearly show subradiance as well, with the Dark
State decaying the slowest as it is the sum of all three unpolarized product

states and results in a maximally entangled state involving all three atoms
simultaneously.

|¢2> = <|¢unp,1> + |¢unp,2> + |¢unp,3>>

Decay of different states (d = Ao/12)

2.00 1 —— Decay of |y3)
1.75 — Decay of |unp1)
Decay of |Wunpz)
1.50 —— Decay of |Wunp3)
5 Decay w2
= 1.25
m
=
[=}
&£ 1.00 T
E
S 0.751
=
0.50 +
0.25
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T T T T T T
0 2 4 6 8 10
e

FI1GURE 4.7: Population decay for three closely spaced V-type
atoms for different doubly excited initial states in
an equilateral triangle configuration of size d =
Ao/12. Here I refers to the spontanous emission

rate of a single atom.

Now we allow for non-degeneracy between the excited energy levels and plot
the decay of different scenarious in Fig. 4.8.
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Decay of two excitations in a triangle
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FIGURE 4.8: Decay of the Superadiant- and Dark-State, as well
as the independent case where all three atoms
decay individually. Here w; — wo = § with w; =
1 for the numerics and the atomic seperation is

Ao/12.

4.2.1 Dark state overlap

Now we look at different dipole orientations and again use the overlap with
the dark state [¢)3) to look for geometries that favor subradiant behaviour.

In Fig.(??) two dipoles rotated by discrete steps via ¢ in the intervall [0, 27],
and the configuration that represents the symmetric case, which is treated in
chapter 3 analytically is highlighted in the plot.

In Fig.(?7?) we see poor subradiant behaviour, as the the dipole ortientations
don’t align with the symmetry axes of the triangle and except for § = 0,7/2, 7
the dipole-dipole cross coupling terms are non-zero and induce additional col-
lective decay between the atoms.
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Chapter 5

Dissipative Preparation of Dark
States

5.1 Decay from higher excited states for larger
atom numbers N > 3

As is shown and discussed in [3] for A-type systems, a simple method to prepare
the dark state probabilistically, is to use the singlet Bell state of two atoms
together with the third atom in the ground state as the initial state. Let us first
study this idea here too for the equilateral triangle. In Fig. (5.1) the numerical
simulation of the decay for 3 atoms in a equilateral triangle is shown, with the
inital state |Upey) ® |g), where |Upey) = \%(]61, ey) — |ea, e1)). It can be seen,
that the inital probability for the Dark State |¥3) is ~ 1/3.

Decay from |@gen)®|g) in a Equilateral Triangle

10-1 _\

10-2 4

1073 5 |wen)®|g)
— v
== Probability: 0.36

1074 ; f T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 5.1: Logarithmic plot of the probabilities during decay
of 3 atoms in a equilateral triangle at distance
d = X\o/4. The probabilities for |¥pge;) ® |g) and

|¥3) are shown.
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It can be seen, that [¥p.;) ® |g) has a large overlap with |U3). This leads to
a favorable dissipative preperation probability for the dark state and we will
now investigate this behaviour for larger atom numbers.

Let us now look at 4 atoms and choose a tetrahedral configuration as shown
in Fig. (5.2). Atom 1 and 2 are initially in the singlet state and Atom 3 and 4
prepared in the ground state. There are 4 possible dark states of the equilteral
triangle type, which are connected to the 4 faces of the tetrahedron, but for
the probability we only consider the two dark states for which Atom 1 and 2
are involved namely |¥3) ® |g) and the dark state where Atom 3 is in |g), as
these configurations are the most favorable ones as is discussed above and is
shown numerically in Fig.(5.3). A time adapted Monte Carlo wave function
method is used for the numerical simulations. The discrete time steps are set
such that most of them are taken in the beginning of the dissipative process,
where the dynamics of the system are maximal, assuming no external driving
field such as a laser is involved.

FIGURE 5.2: 4 Atoms in a Tetrahedra (Pyramid) with side-
length a and h = @
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. Decay from |e1)®|ez)®|e1)®|ez) in a Tetrahedra , Decay from |@gei)®|g)®|g) in a Tetrahedra
10

—— Dark States
GroundState

1073 1 -3 4
\ 10 [

—— Dark State Proj.
= = Probability: 0.55

0 1 2 3 4 5 6 0.0 0.5 1.0 15 2.0 25 3.0

FIGURE 5.3: On the left the probability for the four possi-
ble dark states decay of a totally inverted state
le1, e, e1, ea) is shown with the probability for the
four possible dark states. On the right the decay
with initially atoms 1 and 2 entangled and atoms
3 and 4 in the ground state, as well as the prob-
ability for the ending up in the dark state with

atoms 1,2,3 or atoms 1,2,4 involved.

In Fig.(5.4) the situation is depicted when a fifth atom is added. With the
initial probability for being in one of the 3 dark states as shown in the picture
is initially ~ 60% due to its large overlap with the three possible dark states.
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Decay from |ygen) ®]|g)®|g)®|g) for 5 Atoms

10°

1072 §
10—3 <
Ground State
—— Dark State Projector
== Probability: 0.6
1074 T T T ; T
0.0 0.5 1.0 15 2.0 2.5 3.0

I

FIGURE 5.4: 5 Atoms with the inital state |Vpey) ® |g,9,9).
A circle of radius h is shown (the height of the
equilateral triangle) on which the atoms initially
in the ground state are positioned. Error bars
in the Monte Carlo simulation are excluded as
we only want to illustrate the trend of increasing

subradiance with atom number.
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5.2 Larger atom numbers

The idea is to increase the number of atoms on the circle of radius h, which are
initially in the ground state, with Atoms 1 and 2 in the entangled singlet state.
As a final simulation in Fig.(5.5) a configuration with 6 Atoms and 10 Atoms
is shown, where the initial ground state atoms are equally spaced around the
circle. For 10 atoms it can be seen, that the inital probability for the atoms
to be in one of the 8 dark states is &~ 0.8.

As the dimension of the Hilbert space for 10 3-level atoms is 31°, the numerical
simulation was carried out via a Monte Carlo wave function method to first
order with sparse matrices and adapted time intervals, which is discussed in
more detail in the appendix.

Decay from |ygen)®|g)®|g)®|g)®|g) for 6 Atoms

10°

1073
Ground State

—— Dark State Projector
== Probability: 0.7

0.0 0.5 1.0 15 2.0 25 3.0

Decay from |¢ge;}®]5|g) for 10 Atoms

Ground State
—— Dark State Projector
== Probability: 0.8

0.0 0.5 10 15 2.0 25 3.0
n

FIGURE 5.5: On the left the configuration with 10 atoms is
shown, where Atom 1 and 2 are in the entangled
singlet state and on the right the two Monte Carlo
simulations of the decay with 6 and 10 atoms re-
spectively. The error bars in the Monte Carlo cal-
culations are neglected, as these plots should only

illustrate the trend of increasing subradiance.
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5.3 Preparation by optical pumping

Now let us add a driving laser by adding H;, = D n(o; + 57?) to the Hamilto-
nian, to look for other methods of dark state preparation. Hence the atoms are
continously excited and decay. One can hope, that atomic population accumu-
lates in those states which have the slowest decay. In Fig. 5.6 we plot look at
the linear chain with four 4-level atoms and compare the survival probabilities
for a driving laser versus no driving laser.

FIGURE 5.6: Survival probability in a linear chain of four 4-
level atoms with d = Xo/12 seperation and with
the initial state |eq,e1,ea,e3).

Finally in Fig. 5.7 we look at the probabilities to prepare |¥3) and |03 ) by
optical pumping starting from the ground state |ggg). In the contour plot of
Fig. 5.7 we see that for interatomic distances &~ \g/100 the dark state starts to
decouple from the driving laser as the feeding rates approach zero. Note that
for optimal parameters the preparation probability approaches a maximum
value of around 2.5%.
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Pump strength: 1 =6.0

-1
10 e
1072}
103 — V)
————— W)
4 . . .
107 50 100 150 200

0.020

0.015

0.010

0.005

0.000

FIGURE 5.7: (Left) Preparation probability for the Dark- and
Symmetric-State at r = Xo/50 in a linear
chain. (Right) Preparation probabilities for dif-
ferent atomic separations and pumping strengths

mn a linear chain after I't = 200.
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Chapter 6

Conclusions

We have analyzed the collective decay of closely spaced identical V-type atoms
with orthgonal transitions and the atoms having closely lying excited energy
levels. We derive a corresponding Hamiltonian using the dipole approximation.
Eliminating the EM vacuum modes, the equations of motion were derived for
the atomic density operator within the Markov-Born approximation.

The obtained master equation was than applied to three identical V-type sys-
tems in a equilateral triangle configuration and in a linear chain model, where
the interatomic seperations are only a fraction of the resonant wavelength ).
After having introduced the concept of subradiance, we found that only for
the equilateral triangle with one of the two transition dipole vectors orientied
along the reflection-symmetric axis of the triangle and the other orthogonal
to the plane spanned by the triangle, the dark state is an eigenstate of the
Hamiltonian. For all other orientations and geometries considered this is not
the case, but still many subradiant states exist in the N-1 down to 1 excitation
manifolds for N atoms with N-1 indepedent transitions. For N = 3 we have
shown that these subradiant states show a large overlap with the dark state
|¥)3) and in the limiting case of infinitely close atoms, become perfectly dark.
By choosing orthogonal dipole matrix elements and orienting one transition
dipole vector per atom orthogonal to the interatomic distance vector, it is
possible to eliminate the dipole-dipole cross coupling coefficients and maximize
the subradiance, which becomes particularly apparent when the decay of |13 )
and |¢3) is compared. It is shown, that the super- and subradiance become
much more pronounced when d < Ag and approach each other for d ~ Ay in
terms of decay behaviour.

For future consierations, a generalization to V-type system with more atoms
could be considered with more interesting geometries, eventhough the dis-
sipative preparation probability of the dark state will be very small under
this conditions, the sub- and superradiance of the whole system could still be
analyzed especially by considering atoms with degrees of freedom in spacial
coordinates, since even cold clouds of atoms are accompanied by vibrations
around the atomic center of mass.
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In summary, it can be concluded that the theoretical and numerical investi-
gation of collective subradiance of generic atomic arrays plays an important
part in real world applications like the storage of quantum information, the
improvement of coherence times in optical atomic clocks or the preparation of
entanglement resources for quantum cryptography.
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Chapter 7

Appendix A: Derivation of X;-];-/(WO)

The following presents the essential steps for deriving X;’;, (wo), where we follow
closely [17] and [20]. We saw in Chapter 2, that the polarization sum has the
following resolution:

D (- )ik @) = 1€, e — (e ep)enep)]  (T)
A

where e, denotes the unit vector in direction x.

The next step was to replace the summation with an integration over the
continuum of modes by

3 3 o

in the expressions for Qé’;, and F;’;,.

This results in integrals of the form

—
—

= 1 1 .
/0 dk/ﬂko(wé(ko—k)Jrko e k) (em«e#k—(em-eg)(e“k.e];)>e Fr

(7.3)
where we substituted wy = cky and wy, = ck.
We calculate the solid angle part first by
= 4 in k 4
/koezkm _ ZTSU ATk (7.4)
Q kra,

with & - Ti = kripcos Ok, dQdx, = dfpsin Ordyy and the substitution x = cos 6y.
Then we proceed with the polarization part in the integrand:

(em “Cuy T (em ’ eE) (e#k ’ 612)) (7.5)
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where

(Gm '€E) (euk ’ 612) = (em : VT]){(;MC : VT) = (7-6>

(eﬂz‘ ) VT)(e/Jk 'eTaT) _ (euz‘ ) VT)(COS euk&’)

k? k2

(ep - (€:0r + €920y)(cos 0,,0;) sin 0, sin 0

_ 2 B
12 = cos 0,,cos 0, 0. 0, =
r
e, e cos 0,.cos 0
cos 0, cos 0, 0%+ P try T HTTT TRk g
Hi Kk ~r r r )

with cos (8, — 0,,) = ey, - eu, and cos 0, = e, - e, as can be deduced from
Fig.(2.5).

Now if we apply this to the solid angle part and carry out the calculation we
arrive at

sin &

[(eui e — (eus + ery) (€ em)) ; (7.7)

(&) =

[\CR GV

cos & B sin&)]

oS e ) (225

with & = kry.

The integral in Eq.(7.3) is now of the form

> B s 7 e F(E)
/0 drsteo - Q) - | a5 (7.8)
where we used the fact that
< P [0 s F(©
/o Cevre /_oo R (79)

Now we use a result from complex analysis which states that the closed loop
integral of a holomorphic function F'(z) can be expressed as

lim ¢ dz F(z) = —imF(z) + P/OO Mdz, (7.10)

n—0 z—zZp+1in o0 2 — 20
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and by comparing this with the expressions for Fé’;, and Qé’;,, we deduce that
the imaginary part of the loop integral corresponds to F;’;?, and the real part to
Q;’;, Therefore we proceed to calculate the loop integral by taking the contour
as show in Fig.(7.1) and expression the cosine and sine as complex exponentials
and adding i€_,o in the denominator to displace the singularity &g:

Q= llimRe{jq{dg&}, (7.11)

£ 0 2rE — & — ic
w _ Lo g F(¢§)
I = & lg%]m{f%r—ﬁ—fo —Z’e}’ (7.12)
where
i _ 1 g F(¢)
X (wo) = 5_315% ]{%m, (7.13)

with the 7, k, j, j dependence absorbed in ¢ and F'(§).
After taking the contour and applying the residuum theorem to the loop which

encloses the singularity we arrive at X;’;, (wo).

-------
.......
- ~

-
- -
““““““

-------

FIGURE 7.1: Contour integral, where the integration on the
real line is taken once, and for the upper semi-
circle the residuum theorem is applied.
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Chapter 8

Appendix B: Monte Carlo
wave-function method

In order to obtain the quantum jump operators for our dissipative system,
we first diagonalize the coefficient matrix F;’;, in the master equation and
consequently write

1

) 1 1
p=-3 [H,p] + ; (Sip ! - §J¢T<]m0 - §PJJJ1) (8.1)

where the J; = ), ¢;0 is a linear combination of the transition dipole opera-
tors and ¢; is the ith eigenvalue of Féﬁ,.

The coherent time evolution is calculated according to a Schroedinger equation
with a non-hermitian Hamiltonian H,g = H — % > J; J;

d
ih=—|W()) = Hu| (1)), (8.2)

Now we Taylor expand the solution only up to first order in time, which is a
farly good approximation as long as the time steps are kept small.

1H,,pgdt

D ( + dt)) = (1 - )|\If(t)>. (8.3)

The matrix representations of all the operators and state vectors turn out to
be very sparse, so for instance for 4 atoms the matrix of a dipole transition
operator of a particular atom and transition has only 27 non-zero entries but
6534 zero entries, therefore sparse vectors/matrices are used throughout the
calculations.

As was mentioned, the Hamiltonian is non-hermitian and so the norm of the
state is not conserved, and decreases over time. This is easy to see, since
for longer time intervals the total Jump rate in this time interval grows and
consequently decreases H,, .
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The jump rates in a particular time step are given by

0pm = dt{T ()] I}, T V(1)) (8.4)

and the total jump rate by dp = ) 0py,. This follows from the deviation of
the norm of |¥(¢ + dt)):

(Tt + dt)||T(t + dt)) = 1 — 6p (8.5)

We require that dp < 1 in order that the probability for two or more jumps
occuring in the same timestep is negligible, since the time evolution is only to
first order where single quantum jumps are considered.

For a quantum jump to occur in a given time step we choose a random number
T between 0 and 1 and look for a M such that

= | M
— m < T < — m 8.6
5 mz::() p 5 g::op (8.6)
If such a M exists a quantum jump occurs according to

I V(1))
Vopm

and otherwise no jump occurs and the state follows the linearized non-
hermitian evolution derived from the Schroedinger equation above.

(W (t + dt)) =Vt (8.7)

For choosing the time steps, it turns out that equal time steps are not the most
efficient way, and with adapted time steps the dynamics of the system can be
simulated much more accurately. In general there are adaptive methods as
in [21], but for the dissipative system considered here the dynamics are much
more predictable and it suffices to set the time intervals a priori, according to
the criterion that dp < 1 at any given time step. Or in other words, if the
jump rates are changing fast and therefore the system is changing fast, smaller
time steps are necessary to capture the dynamics, and if the jump rates are
small the system’s change is small and larger time steps are sufficient.

In Fig(8.1) a plot is shown for the dissipation of three atoms in a equilateral
triangle, where with equidistant time steps we see that the greatest rate of
change occurs in the first 1/5 of the time evolution, so it is sensible to allocate
most of the timesteps into this time interval, as is shown on the right side
of Fig.(8.1). This leads to further improvement in the numerical simulation,
since less time steps are needed to achieve a good approximation.
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F1GURE 8.1: Plot of the total jump rate times the time step:
dpdt over the time evolution, where on the right
side most time steps are taken at the very begin-

ning of the dissipative process.
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