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Abstract

In this master thesis we study the radiative properties of an ensemble of quantum emitters.
In particular we are interested in the super- as well as the subradiant collective modes of
rings of dipole-coupled subwavelength-spaced atoms.
First we investigate the behavior of the collective decay rates depending on the distance as
well as the dipole orientations of the atoms to each other. The collective decay rate increases
for superradiant modes for smaller inter-atomic distances and decreases for subradiant
modes, respectively. For transverse dipole polarization we can find one very bright mode,
whereas tangential dipole polarization show two bright modes. By adding more atoms, the
system becomes linearly more superradiant for the explicit modes. Then we look up the
state population of the modes for a free evolving system, first without and finally for a
disordered geometry. We notice, that for certain parameters the decay rate in a disordered
system gets further suppressed. In a next step, we drive the system coherently with a
laser and develope a state preparation scheme, in which we can address the subradiant
state nearly perfectly. So far, we restricted ourselves to the single-excitation subspace.
Therefore we expand our model to study the two-excitations manifold in the same fashion
as before. The subradiant properties of the system show a significant downgrade. Finally,
we study the radiation field patterns of the collective modes, which exhibit a 3D confined
spatial radiation field forming a nano-scale high Q optical resonator.
We then focus on the excitation dynamics of two coupled rings. We can find a variable
complex coupling pattern by tailoring the geometry, orientation and distance between the
two rings. Superradiant and subradiant modes mostly couple effectively to its own kind
with opposite angular momentum. Using this, we also show that completely delocalized
subradiant excitations are effectively transported between the rings with high fidelity. We
also show the remarkable radiation patterns for two coupled rings.
Finally, we expand our model to a multi-ring configuration and recreate a structure like the
so called Light-Harvesting-Complexes (LHCs) in a very simplistic way. Here we have eight
outer rings commonly coupled to an inner ring. Here we once more analyze the radiation
patterns.
The methods used in this thesis are mainly numerical. For this we applied the Julia
programming language and the built-in framework QuantumOptics, developed in the group
of Helmut Ritsch [1].



Zusammenfassung

In der vorliegenden Masterarbeit untersuchen wir die superradianten und insbesondere
subradianten kollektiven Moden eines Ringes aus dipolgekoppelten zwei-level Atomen im
Subwellenlängen-Regime.
Zunächst untersuchen wir das Verhalten der kollektiven Zerfallsraten in Abhängigkeit von
dem Abstand, sowie der Dipolorientierungen der Atome zueinander. Die kollektive Abklin-
grate erhöht sich für Superradiant-Moden durch Verringern des Atomabstandes bzw. ver-
ringert sich für Subradiant-Moden. Für transversale Dipolpolarisationen können wir eine
helle Mode finden, während tangentiale Dipolpolarisationen zwei helle Moden zeigen. Durch
Hinzufügen von mehr Atomen wird das System für die expliziten Modi linear mehr superra-
diant. Des Weiteren untersuchen wir das Strahlungsfeldmuster der kollektiven Moden, die
ein räumlich begrenztes 3D-Strahlungsfeld aufweisen, das einen nanoskaligen optischen Res-
onator im high Q Regime bildet. In einem nächsten Schritt analysieren wir das Verhalten
des Systems, wenn wir eine Dephasierung in den Hamilton-Ausdruck aufnehmen. Bisher
haben wir uns auf den Einzelanregungs-Subraum beschränkt. Daher untersuchen wir im
letzten Teil dieses Abschnittes unser System in der Mehrfachanregungs-Mannigfaltigkeit.
Hier finden wir keine unerwarteten Eigenschaften divergent zum Einzelanregungsfall. Die
subradianten Eigenschaften des System verschelchtern sich.
Wir konzentrieren uns im nächsten Abschnitt auf die Untersuchung des Verhaltens von
zwei gekoppelten Ringen, wobei wir ein signifikantes Kopplungsmuster finden, indem wir
die Geometrie, Orientierung und den Abstand zwischen den beiden Ringen anpassen.
Superradiant- und Subradiant-Modi koppeln meist effektiv mit entgegengesetztem Drehim-
puls zu ihrer eigenen Art. Auf diese Weise zeigen wir auch, dass vollständig delokalisierte
subradiante Anregungen mit hoher Fidelity effektiv zwischen den Ringen transportiert wer-
den.
Schließlich erweitern wir unser Modell und versuchen den sogenannten Light-Harvesting-
Complex (LHC) in deutlich simplifizierter Form nachzubilden, bei der acht äußere Ringe
gemeinsam mit einem inneren Ring verbunden sind. Hier analysieren wir wiederum das
Strahlungsmuster.
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1 Introduction

One of the central goals in the field of quantum optics is to find efficient ways for control-
lable interactions between photons and atoms. Since a single quantum emitter in general
possesses a non-vanishing dipole coupling to the electromagnetic field and modifies that
field in turn, all nearby quantum emitters can feel each other in that sense. Thus by con-
gregating multiple emitters spatially close to one another, the individual behavior changes
dramatically culminating in collective correlated dynamics. This is an important factor,
that has to be considered when treating an ensemble of quantum emitters.
The most challenging part in controlling interactions between photons and an ensemble of
emitters lies in the ability of atoms to radiate spontaneously. In an intuitive picture this
decay can be considered as caused by vacuum fluctuations of the electromagnetic field. So,
even if the field is in the vacuum mode, spontaneous emission still occurs. In many appli-
cations this is not a desirable process, since one has not any control over it. For some time,
in quantum optics, one described those rescattering events as if they were occuring inde-
pendently with a rate given by a single isolated atom. But this assumption concurrently
determines the limits of the fidelity of photon-atom-interactions, like it would be important
in quantum memories for light or photonic quantum gates for quantum computing [2].
However, it turns out, that this assumption is not tenable at all, since collective interference
phenomena have to be taken into account. In fact, shown in the work of Dicke [3], an en-
hanced radiative behavior was already proposed decades ago, the so called ”superradiance”.
Here, constructive interference of fields emitted by different atoms leads to a significant
decrease in the lifetime of the collective mode. On the other hand, spontaneous emission
of collective atomic excitations can also be completely suppressed, a phenomenon called
”subradiance”, where destructive interference prevents the collective mode from decaying.
Although this concept of subradiance is not a new discovery, it has not well researched
so far. Therefore, for a good understanding of how to achieve efficient, controlled photon-
atom-interactions, it is crucial to study and understand the super- and especially subradiant
properties of the systems of concern. And since single photons and atoms do not interact
efficiently, it is rather helpful to use larger atomic ensembles, where the interaction proba-
bility with a given optical mode can be enhanced by increasing the number of atoms [4].
Dealing with atomic ensembles and their properties for developing error-restraining proto-
cols is a truly severe venture, in particular for the case of trying to take advantage of the
subradiant properties, since manipulating each atom seperatly in the ensemble of emitters
in order to address collective states of low symmetry is quite a challenge especially exper-
imentally. Nevertheless, there is a step-by-step progress noticeable in recent experiments
anyway [5] [6] [7]. Besides that, some demonstrations of succesful quantum protocols have
been performed as well, like coherent photon storage and quantum memories for light [4]
[8] [9], entanglement generation between light and atomic spins [10], nonlinear interactions
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CHAPTER 1. INTRODUCTION

between photons at the level of individual quanta [11], and quantum-enhanced metrology
[12].
For many applications like quantum communication as well as photosynthetic processes
it is highly relevant to minimize the energy loss by providing an efficient way to transfer
the systems’ energy. In the Förster mechanism for example, a virtual photon is exchanged
between closely lying donors and acceptors, whereby the resonant energy transfer efficiency
is inversely proportional to the sixth power of the distance among them. So, the energy
loss can be optimized by placing them close enough [13]. Further it has been proven, that
a system of two distant single layer arrays of subwavelength-spaced quantum emitters sup-
ports a long-lived Bell state, which can be seen as a non-local excitation of the two arrays
[14]. This resource of non-local entangelement provides a quantum state transfer with high
fidelity between the arrays, which can be used as a Quantum memory for Quantum network-
ing for example [14]. For subwavelength-spaced quantum emitters in a infinite 1D-chain,
excitations are transferred without any loss, since the guided modes are decoupled from
the optical modes propagating in free-space and the excitons become perfectly dark, when
their wave vector surpasses the free-space photon wave vector [2]. Contrary to the case of
the infinite chain, the lifetime of an exciton in a finite 1D-chain of subwavelength-spaced
quantum emitters is growing with the third power of the atom number and emission occurs
only at its ends [2]. This has been studied experimentally for chains of gold nano-particles
[15].
Now the question arises, what happens, if we close the chain forming a ring of quantum
emitters. Answering that is the task of this underlying work. Therefore we utilize the
dipole-dipole coupling of nearby identical emitters in a regular-spaced ring configuration
and study the emergence of the already mentioned phenomena of super- and subradiance as
well as the broadening of the collecive energy spectrum. As a central goal, we analyse the
excitation transfer between two separated rings. A ring of subwavelength-spaced dipole-
coupled quantum emitters implements a minimalistic form of an optical ring resonator,
which in principle can exchange energy with a second nearby ring. We want to examine
in which way the rings can be efficiently coupled via their mode overlap by keeping the
free-space radiation loss at its minimum. For distributed quantum computing for example
a efficient coherent coupling between two long-lived states is a key element and of particular
interest [16].
Interestingly, photsynthetic units built by light-harvesting complexes like LHC-I and LHC-
II in biological systems, depicted in Figure 1.1a, show, in a very simplistic model, a structure
of a large inner ring, that is surrounded by for example eigth outer rings, depicted in Figure
1.1b [17] [18] [19]. The coherent transfer of excitations in such systems could already be
shown [19].
In summary, in this underlying thesis, we study the collective behavior of an ensemble
of dipole-coupled quantum emitters arranged in a ring configuration. The upcoming first
chapter contains the theoretical concepts that are needed for this master thesis as well as
the description of the model we are using.
The next chapter provides an examination of the single ring, where we discuss the collective
decay rates as a function of diverse geometrical arrangements as well as the radiation fields
in the single-excitation manifold. We investigate the system also when it is driven with a
coherent laser and show a way of highly efficient state preparation.
Later we extend the model by implementing more than one possible excitation and show
some properties of the system in the many-excitations manifold.
In chapter 4 we study the system of two coupled rings. Here we examine the coupling
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(a)
(b)

Figure 1.1: Light harvesting complexes in biological systems. - Arrangement of LH1 and LH2
units in the photosynthetic complex. LH2 units consisting of 9 sites and LH1 units consisting of
16 sites. RC is the so-called reaction centre [18].

behavior and finally show a coherent excitation transfer between the rings as well as the
radiation patterns.
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2 Theoretical concepts

The main goal of this chapter is to provide a overview of the fundamental theoretical con-
cepts, that are applied in the subsequent studies. Since we are dealing with subwavelength-
spaced dipole-coupled two-level quantum emitters, we concentrate here on the description
of an ensemble of emitters that is spatially dense, so each emitter experiences the field
radiated by all others. In order to do so, we derive the electric field radiated by the entirety
of the emitters, where interference phenomena are included.

2.1 Collective atom-electric Field Coupling

Collective interactions of quantum emitters are basically interactions with a common radi-
ation field, where an emitter couples with its dipole transition operator to the electric field
modes. Therefore the Hamiltonian can be written as

H = H0 +Hint +Hem, (2.1)

where for the reduced Hilbert space considering only the two basis states |g〉 and |e〉 with
eigenvalues Eg and Ee, respectively, we can write

H0 := Ee |e〉 〈e|+ Eg |g〉 〈g| , (2.2)

which describes the kinetic as well as the potential energy of the emitter and

Hint = ~d · ~E(~0, t) = ~µ(σ† + σ) · ~E(~0, t) (2.3)

describes the interaction between the electric field and the dipole transition with dipole

moment, which we consider to be real, ~d := ~deg |e〉 〈g| + ~deg
∗ |g〉 〈e|, where ~µ = ~deg is the

non-zero dipole transition matrix element and σ := |g〉 〈e| corresponds to the transition
from the excited to the ground state. For the free electric field, which can be separated
into forward and backward propagating terms, we have

~E(~r, t) = ~E+(~r, t) + ~E−(~r, t), (2.4)

where for a arbitrary region in space of volume V = L3, shown in Figure 2.1a, the
E+-term can be written in a mode expansion as

~E+(~r, t) =
∑
~k,λ

√
~ωk
2ε0V

~e~k,λe
i~k·~ra~k,λ(t), (2.5)

4



2.1. COLLECTIVE ATOM-ELECTRIC FIELD COUPLING

(a) (b)

Figure 2.1: Two-level quantum emitters. - (a) Ensemble of nearby quantum emitters in a
volume V = L3 experiencing the collective interference fields of one another. (b) Schematic
picture for two two-level quantum emitters with dipole orientations ~µ1 and ~µ2, respectively, and
with resonance frequency ~ω0 coupled each to the corresponding electric field modes ~E0(~r). ~Ein(~r)
is the additional input field.

where λ = 1,2 gives the two possible polarization for each mode with wave vector ~k
and the polarization unit vectors ~e~k,λ spans a plane, that is orthogonal to the propagating
direction given by the wave vector. So, finally we get

Hem =
∑
~k,λ

~ωka†~k,λa~k,λ (2.6)

describing the energy of the electromagnetic field with a†~k,λ, a~k,λ the creation and annhil-

iation operators, respectively, which fulfill the canonical commutation relation [a~k,λ, a
†
~k′ ,λ′

]

= δ~k, ~k′δ~λ,~λ′ [20].

The Hamiltonian containing absorption and emission effects of a single quantum emitter
in free space can then be written in the rotating-wave-approximation (RWA) as

H = ~ω0σ
†σ +

∑
~k,λ

~ωka†~k,λa~k,λ +
∑
~k,λ

~g~k,λ(σ
†a~k,λ + a†~k,λσ), (2.7)

where ωk = c|k| is the frequency of each mode, ω0 = Ee/~ is the transition resonance

frequency with Eg = 0 and g~k,λ =
√

ωk
2~ε0V ~e~k,λ · ~µ is the dipole coupling with dipole orien-

tation ~µ [20].

Now, we extend the Hamiltonian for the case of N identical emitters located at the
positions ~ri with index i = 1,...,N interacting with the common radiation field. For the
example of two atoms as shown in Figure 2.1b, we get

H = ~ω0

∑
i

σ†iσi +
∑
~k,λ

~ωka†~k,λa~k,λ +
∑
~k,λ

∑
i

~g(i)
~k,λ

(σ†ia~k,λe
i~k·~ri + a†~k,λσie

−i~k·~ri), (2.8)
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CHAPTER 2. THEORETICAL CONCEPTS

where the dipole coupling strength of the i-th emitter now reads g
(i)
~k,λ

=
√

ωk
2~ε0V ~e~k,λ · µi

[20].
To obtain an expression of the collective electric field at all times, we start from the

Heisenberg equation for the annihilation operator

ȧ~k,λ(t) = −iωka~k,λ − i
∑
i

g
(i)
~k,λ
e−i

~k·~riσi. (2.9)

Integrating this equation leads us to

a~k,λ(t) = a~k,λ(0)e−iωkt − i
∑
i

g
(i)
~k,λ
e−i

~k·~ri
∫ t

0

dt
′
σi(t

′
)eiωk(t

′−t). (2.10)

This equation is problematic in the sense, that the field operators at a certain time t
depend on the transition operators at all previous times t

′
and the time integral can not

exactly be done. But, since we already used the fact in the RWA that the time-dependence
of the system is encoded primarily in the resonance frequency of the emitters, such that

σi(t) ∝ σi(0)e−iω0t, (2.11)

we can define an operator

si(t) := σi(t)e
iω0t ∝ σi(0) (2.12)

and therefore approximate the time integral∫ t

0

dt
′
σi(t

′
) ≈ si(t)

∫ t

0

dt
′
e−iω0t

′

= σi(t)

∫ t

0

dt
′
e−iω0(t

′−t), (2.13)

which is called the Markov approximation [20]. Now, inserting Eq. 2.9 and Eq. 2.13 in
the Eq. 2.5 of the free electric field gives the two terms

~E+(~r, t) = ~E+
in(~r, t) + ~E+

0 (~r, t), (2.14)

where

~E+
in(~r, t) =

∑
~k,λ

√
~ωk
2ε0V

~e~k,λe
i~k·~ra~k,λ(0)e−i(ωkt−

~k~r) (2.15)

describes the free evolution of the initial electric field, which we consider to be in a

vacuum state, so 〈 ~E+
in(~r, t)〉 = 0. Therefore we will neglect this term for the time being,

even though it gives rise to quantum noise [20]. The collective field of the emitters ~E+
0 (~r, t)

after simplifying then reads

~E+
0 (~r, t) = −i

∑
i

∑
~k,λ

√
~ωk
2ε0V

~e~k,λg
(i)
~k,λ
ei
~k·(~r−~ri)σi(t)

∫ t

0

dt
′
ei(ωk−ω0)(t

′−t). (2.16)

For a further integration of this term, we first solve the sum over polarization, where
the polarization unit vectors ~e~k,λ and the unit wave vectors ~k form an orthonormal basis.
Therefore∑

λ

~e~k,λg
(i)
~k,λ

=

√
ωk

2~ε0V
∑
λ

(~e~k,λ ◦ ~e~k,λ) · ~µi =

√
ωk

2~ε0V
(1− ~̂k ◦ ~̂k) · ~µi, (2.17)
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2.1. COLLECTIVE ATOM-ELECTRIC FIELD COUPLING

with the thee-dimensional identity matrix and the dyadic product denoted by ◦ [20].
Now, by taking the high density of modes into account, we rewrite the sum as an integral
and also insert Eq. 2.17, such that we get for the electric field

~E0

+
(~r, t) = − i

2ε0(2πc)3

∑
i

σi(t)

∫
dωkdω

3
k

∫ t

0

dt
′
ei(ωk−ω0)(t

′−t)×
∫
dΩk(1−~̂k◦~̂k)· ~µiei~k·(~r−~ri)

(2.18)
Now we proceed with solving the integral over the angle dΩk by rewriting the integrand

as

(~̂k ◦ ~̂k)ei
~k·(~r−~ri) = − 1

k2
(∇~r ◦ ∇~r)ei~k·(~r−~ri). (2.19)

and after exchanging the order of integration and derivation, the integral solution simply
reads ∫

dΩke
i~k(~r−~ri) = 4π

sin(k|~r − ~ri|)
k|~r − ~ri|

. (2.20)

In the last step, we solve the time integral, by making use of the Sokhotski-Plemelj
formula ∫

dωk

∫ t

0

dt
′
ei(ωk−ω0)(t

′−t) =

∫
dωk

(
− P i

ωkω0

+ πδ(ωk − ω0)
)

(2.21)

with P the Cauchy principal value. After applying standard complex contour integration,
we can finally write the collective electric field of the quantum emitters as

~E+
0 (~r, t) = −i3~Γ0

4µ

∑
i

σi(t)
[
~F (k0, ~r − ~ri)− i ~J(k0, ~r − ~ri)

]
· ~̂µi, (2.22)

where

~F :=
(sin(kr)

kr
+
cos(kr)

(kr)2
− sin(kr)

(kr)3

)
1− (~̂r ◦ ~̂r)

(sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

)
(2.23)

and

~J :=
(cos(kr)

kr
− sin(kr)

(kr)2
− cos(kr)

(kr)3
1− (~̂r ◦ ~̂r)

(cos(kr)
kr

− 3
sin(kr)

(kr)2
− 3

cos(kr)

(kr)3

)
. (2.24)

~̂r is the position unit vector, µ = |~µj| and the spontaneous emission rate of a single
quantum emitter Γ0 = ω3

0µ
2/(3πc3ε0~) [20].

If we transcribe the electric field in terms of the Green’s tensor for a oscillating dipole

~G(k, ~r) := eikr
[( 1

kr
+

i

(kr)2
− 1

(kr)3

)
1− (~̂r ◦ ~̂r)

( 1

kr
+

3i

(kr)2
− 3

(kr)3

)]
, (2.25)

the total electric field takes the form

~E+(~r, t) = ~E+
in(~r, t)− 3~Γ0

4µ

∑
i

σi(t)~G(k0, ~r − ~ri) · µ̂i. (2.26)

7



CHAPTER 2. THEORETICAL CONCEPTS

(a) |ψ〉 = |e〉 (b) |ψ〉 = |eg〉+|ge〉√
2

(c) |ψ〉 = |eg〉−|ge〉√
2

Figure 2.2: Radial radiation patterns. - Radiated intensity of a (a) single dipole and of two
coupled dipoles in a (b) superradiant and (c) subradiant state, respectively. The two quantum
emitters are subwavelength-spaced with a distance d=0.1λ0 along the axis of their dipole orien-
tations. The intensity is calculated as a function of θ in the same plane of the dipole moment(s)
around the emitter(s). The single emitter shows a weaker intensity field compared to the coupled
dipole field, how expected. The subradiant intensity pattern however is a factor 1e-7 smaller.

To determine the collective radiation intensity of the quantum emitters, we can define
the radiated intensity as

~I(~r, t) := 〈 ~E−(~r, t) · ~E+(~r, t)〉 , (2.27)

which is depicted in Figure 2.2 for the case of a single and two coupled quantum emitters,
respectively, in the single-excitation manifold. We can see here already the phenomena
of super- and subradiance, where for superradiance the intensity is significantly larger
compared to the almost zero field intensity of the subradiant mode.

2.2 Dipole-dipole Interaction

For a full description of the coherent dynamics in our system, we define the dipole Hamil-
tonian

Hdip =
∑
j 6=k

Ωjkσ
+
j σ
−
k , (2.28)

which provides coherent energy transfer between the quantum emitters. For this we
defined the coherent coupling

Ωij := −3Γ0

4
~̂µi · ~J(k0, ~ri − ~rj) · ~̂µj (2.29)

as well as the collective decay rates

Γij :=
3Γ0

2
~̂µi · ~F (k0, ~ri − ~rj) · ~̂µj. (2.30)

In Figure 2.3 the distance dependence of the couplings Ωij and Γij can be seen for two
different dipole orientations. For the dipole orientation perpendicular to the direction of
the emitters’ alignment the coherent interactions for 0.2 < rij < 1 are much stronger.
Further, we can see that for rij → 0, Ωij → ± ∞ and Γij → 1, so the energy shifts will
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(b) transverse, θ = π/2

Figure 2.3: Coherent and dissipative couplings. - Dependence of the couplings Ωij and Γij on
the distance rij in units of the single emitter spontaneous emission rate Γ0 with λ0 = 1 for two
different dipole orientations.

diverge and the collective decay rates become the single spontaneous emission rate Γij =
Γ0, respectively, which is called the Dicke Limit [3]. In this case one can reduce the Hilbert
space of N two-level systems to one effective spin. For the case rij →∞, both Ωij → 0 and
Γij → 0, which describes two-level emitters infinitely far apart from each other, so Γij =
δijΓ0 [21].

2.3 Master Equation

To get insights to the dynamics of the ensemble of dipole-coupled quantum emitters, which
includes both the collective dipole coupling as well as the collective decay of the atoms, we
can use the master equation. For this, we first need to find an equation for the reduced
density operator. By doing so, we start with writing down the density matrix ρ of a single
quantum emitter in an arbitrary state in the basis |e〉, |g〉.

ρ(t) = ρee(t) |e〉 〈e|+ ρeg(t) |e〉 〈g|+ ρge(t) |g〉 〈e|+ ρgg(t) |g〉 〈g| , (2.31)

where ρij are the time dependent complex matrix elements. The time evolution is given
by

∂ρ

∂t
= ρ̇ = i[ρ,H]. (2.32)

To calculate the expectation value of an arbitrary operator A(t), we use

〈A〉 (t) = tr(A(t)ρ) = tr(Aρ(t)). (2.33)

By taking the time derivative, we have

tr(Ȧρ) = tr(Aρ̇) (2.34)

9



CHAPTER 2. THEORETICAL CONCEPTS

If we insert the Quantum Langevin equation for the arbitrary operator A at this point
we get: [20]

Ȧ =
i

~
[H0 +Hdip, A] +

∑
j,k

[σ†j , A]
(
δjk
√

Γξj(t) +
Γjk
2
σk

)
−
∑
j,k

(
δjk
√

Γ0ξ
†
j (t) +

Γjk
2
σ†k

)
[σj, A]

(2.35)
with the quantum noise operator

ξj(t) :=
i

~
√

Γ0

(
~µj · ~E+

in(~rj, t)
)
. (2.36)

For Eq. 2.34 we then get

tr(Ȧρ) = tr

[
A
(
− i

~
[H0 +Hdip, ρ] +

∑
j,k

Γjk
2

(2σjρσ
†
k − σ†jσkρ− ρσ†jσk)

)]
. (2.37)

Comparison with Eq. 2.34 finally gives the master equation

ρ̇ = − i
~

[H0 +Hdip, ρ] + L[ρ], (2.38)

where

L[ρ] :=
∑
j,k

Γjk
2

(2σjρσ
†
k − σ†jσkρ− ρσ†jσk)

)
(2.39)

is the so-called Liouville operator written above in the standard Linblad form, which
accounts for the dissipation in the system [20].

2.4 The System

Now we use the previous findings to concretise our model in the following sections. For the
sake of clarity, we split this section up into two parts, the description of a single ring and
of coupled rings, respectively.

2.4.1 Single Ring

We consider N identical two-level quantum emitters with given dipole orientations, which
are uniformly located on a regular ring (polygon) with a distance d to each other, as
depicted in Figure 2.4.

After integrating out the photonic degrees of freedom, the internal dynamics in the
Born-Markov-Approximation are described by the master equation ρ̇ = −i[Hdip, ρ] + L[ρ],
where the Hamiltonian, written in a frame rotating at the atomic transition frequency ω0,
corresponds to Eq. 2.28 with the Lindblad operator Eq. 2.39. The collective energy shifts
can be written as

Ωij = −3πΓ0

k0

<{~̂µ∗i · ~G(~ri − ~rj, ω0) · ~̂µj} (2.40)

10



2.4. THE SYSTEM

Figure 2.4: Ring of subwavelength-spaced quantum emitters with inter-particle distance d, given
dipole orientation µ̂i and angle θj associated with the site j

and the collective decay rates read

Γij =
6πΓ0

k0

={~̂µ∗i · ~G(~ri − ~rj, ω0) · ~̂µj}. (2.41)

The Green’s tensor in free space acting on a oscillating unit dipole ~̂µ can be written as

~G(~r, ω0) · ~̂µ =
eik0r

4πr

[
(~̂r × ~̂µ)× ~̂r +

( 1

k2
0r

2
− i

k0r

)
(3~̂r(~̂r · ~̂µ− ~̂µ)

]
, (2.42)

with the unit position vector ~̂r and the atomic transition wavenumber k0 = ω0/c. The
electric field then reads [13]

~E+(~r) =
µk2

0

ε0

∑
i

~G(~r − ~ri, ω0) · ~̂µi · σ−i . (2.43)

Since describing an ensemble of two-level quantum emitters is mathematically equivalent
to describing spin-1/2-particles, the eigenbasis of the Hamiltonian can be divided into
subsets of different excitation numbers and the corresponding states form a basis in that
very subspace. So, for the purpose of simplicity we restrict our Hamiltonian to the single-
excitation manifold. Note, that the analytical form of the basis states in the mentioned
subspaces can only be approximated. But since we are only interested in the generated
fields and excited state populations, respectively, we are allowed to neglect the so-called
recycling term in the Linblad operator, which only is the book keeper of the ground state
population and does not modify the observables of interest. Therefore we can understand
our system by investigating the effective, but non-hermitian Hamiltonian [13]

Heff =
∑
i,j

(Ωij − i
Γij
2
σ+
i σ
−
j ). (2.44)

The eigenstates of Heff provide a set of collective modes and the associated complex
eigenvalues gives us the collective frequency shifts as well as the collective decay rates by
taking the real and imaginary part, respectively. If we further assume the dipole orientations
to be rotational invariant, the collective modes become perfect spin waves [13]

|ψm〉 =
1√
N

N∑
j=1

eimθj |ej〉 , (2.45)

11



CHAPTER 2. THEORETICAL CONCEPTS

(a) Site-site-configuration (b) Site-edge-configuration (c) Edge-edge-configuratiion

Figure 2.5: Coupled rings. - Schematics of two single rings of subwavelength-spaced quantum
emitters with inter-particle distance d separated by the distance x for different configurations.

where N is the number of quantum emitters, m = 0, ± 1, ± 2, ..., b ± (N-1)/2 c the
angular momentum of the mode and θj = 2π(j − 1)/N the angle to the site index j = 1,
..., N of the atom of concern. The state |ej〉 = σ+

j |g〉 means that only the atom at site j is
excited, so the excitation is completely delocalized over all sites. The eigenvalues of Heff

are

λm = −3πΓ0

Nk0

∑
j,k

eim(θl−θj)Gjl, (2.46)

where Gjl = ~̂µ∗j · ~G(~rj − ~rl, ω0) · ~̂µl. With this we can calculate the collective frequency
shifts and the collective decay rates, respectively,

• Jm = <{λm}

• Γm = −2={λm}

Note, that the spectrum is symmetric, so λm = λ−m, whereas the mode m = 0 is non-
degenerate, but the maximum valued modes are doubly-degenerate if the number of emitters
N is even and therefore we have just one effective mode.

2.4.2 Two coupled Rings

In this section, we describe two coupled rings in the same plane separated by a distance x
as depicted in Fig. 2.5. Note, that there are several possible generic configurations, shown
in Figure 2.5a - 2.5c.

The effective Hamiltonian can be split up in the sum of intra-ring as well as ring-ring
coupling terms

Heff =
∑
i,j∈R1

hi,j +
∑
i,j∈R2

hi,j +
∑

i∈R1,j∈R2

hi,j, (2.47)

where hi,j = −(3πΓ0/k0)Gij and R1 = {1, 2, ..., N} denotes the set of indexes of the first
ring and R2 = {N + 1, ..., 2N} denotes the set of indexes of the second ring, respectively
[13]. The last term expresses the coupling between the rings, which is important to us here.
We can write it in the angular momentum basis as [13]∑

i∈R1,j∈R2

hi,j =
∑
m1,m2

(Jm1,m2 − iΓm1,m2/2)σ+
m1,1

σ−m2,2
, (2.48)

12



2.4. THE SYSTEM

where Jm1,m2 = <{λm1m2} is again the dispersive coupling and Γm1,m2 = −2={λm1,m2}
the dissipative coupling, with the eigenvalues

λm1,m2 =
1

N

∑
i∈R1,j∈R2

hi,je
i(m1θi−m2θj). (2.49)

To get an expression for the coupling efficiency, we calculate the ratio

ηm1,m2 =
J2
m1,m2

(4∆2
m1,m2

+ max{Γ2
m1
,Γ2

m2
}) , (2.50)

where ∆2
m1,m2

= |Jm1 − Jm2 | [13].
With this we can evaluate how good two modes in the two rings are coupled and how

efficient an excitation transfer is. This leads to the question, how we can model a effi-
cient excitation transfer between two rings. First it is to mention, that a fully delocalized
excitation as we have considered so far does not reflect a typical case, since excitations
occur partially localized. To take this into account, we construct a multi-mode Gaussian
wave-packet centered at the site k in the i-th ring

|Ψm
i,k〉 =

1√
n

∑
j∈Ri

eiθjme−
|~rj−~rk|
2R2∆θ2 |ej〉 , (2.51)

where n accounts for the normalization, ∆θ denotes the angular spread of the wave-
packet with width R∆θ, and m is the central momentum [13]. By taking an infinitely
wide wave-packet ∆θ > 2π, we reduce Eq. 2.51 to an eigenstate of our system with the
corresponding angular momentum m. A schematic is shown in Figure 2.6.

Figure 2.6: Partially localized single excitation is transferred between two rings separated by a
distance x in site-site-configuration.

For a guided mode in the first ring with momentum m, we expect that, while the mode
is transported to the second ring, it will invert its momentum. So, for the finite width
wave-packet we can assume, that it is transferred nearly unaffected to the second ring,
whereby the central momentum inverts to -m. With this assumption we can analyze the
fidelity F of creating this wave-packet in the second ring as follows

F(t) = max
k

{
〈Ψ−m2,k |Ψ(t)〉

}
, (2.52)

where |Ψ(t)〉 is given by the unitary time evolution with the effective Hamiltonian and
the initial condition |Ψ(0)〉 = |Ψm

1,k〉 and the maximization over the site k is due to the fact
that we can not predict the position of the wave-packet created there at all times [13].
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3 Single Ring: Collective Excitations
and radiative Properties

In this chapter we provide a full examination of the collective properties of the single ring
excitons. In order to do so, we use the insights presented in section 2.4.1. We will first
discuss the collective decay rates and frequency shifts in dependence of different parameters
and will then analyze the radiative properties.

3.1 Collective Dynamics - Single-Excitation Manifold

In the following we study the collective dynamics for different modes and polarizations for
the single-excitation manifold first and second for the two-excitation manifold. We also
provide insights in the decay of such a system starting in a super- as well as subradiant
state. Finally, we add a driving laser into the systems’ Hamiltonian and investigate its
effects onto the decay.

3.1.1 Geometrical Properties

Starting with transverse polarization (Figure 3.1), we can see, that by decreasing the inter-
particle distance d, one bright mode emerges for m = 0, as well as N-1 dark modes as
depicted in Figure 3.1a. In this case the emitters are so close, that the range of interaction
is effectively infinite. This is called the ”Dicke limit” [3]. The maximal decay increases
linearly at a rate Γ = NΓ0 as we would expect and as already mentioned in section 2.2,
depicted in Figure 3.1c.

In the case of tangential polarizations for a ring of N = 8 emitters (Figure 3.1) we get
two bright modes for m = ±1, depicted in Figure 3.1b. The decay rate is close to Γ =
NΓ0

2
, depicted in Figure 3.1d. In both cases the collective decay rate Γm becomes the single

emitter spontaneous emission rate Γ0, if the inter-particle distance is big enough and the
collective effects are negligible.

Note that the range of the frequency shifts of the collective modes gets larger by increasing
the density of the ring of constant size. The dipole orientations determine, whether the
bright or the dark modes are higher in energy (Figure 3.2). If the polarization vectors are
oriented transversely (Figure 3.2a), the bright modes are higher in energy, contrary to the
tangential case (Figure 3.2b), where the bright modes are lower in energy.

Now we analyze the behavior of the collective decay rates depending on the dipole ori-
entation φ for a ring with N = 8 emitters again, like shown in Figure 3.3. For this we start
rotating the polarization initially tangentially oriented upwards to transverse polarizations.
Here the superradiant mode m = 0 first increases and the modes m = ± 1 then decrease

14
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2 4 6 8 10
λ/d

0

1

2

3

4

5

6

Γ
m

m = 0

m = 1

m = 2

m = 3

m = 4

(a) Γm of the different modes m in units of Γ0

as a function of λ/d with N = 8 emitters. A
single bright mode m = 0 occurs in the Dicke
Limit λ/d → ∞ as well as N-1 dark modes.
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(b) Γm of the different modes m in units of Γ0

as a function of λ/d with N = 8 emitters. Two
bright modes m = ± 1 occur in the Dicke Limit
λ/d → ∞, while m = 0 is dark by symmetry.
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(c) Γm of the different modes m in units of Γ0
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the ring with constant size). The bright mode
scales linearly with Γ ≈ NΓ0.
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Figure 3.1: Single ring collective decay rates in the single-excitation manifold. The left side
shows the simulations for transverse polarizations, the right side for tangential polarizations.
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(a) Energy log-log-plot for transverse polariza-
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Figure 3.2: Single ring energy in the single-excitation manifold with inter-particle distance d =
0.1 for different N for transverse and tangential polarizations, respectively.

exponentially in reverse order. The most subradiant states m = 3, 4 do not change their
behavior, while m = 2 becomes also subradiant. But, as we can see in the logplot Figure
3.3b for m = 3, 4 the collective decay rates decrease exponentially for transverse polariza-
tion. Starting with tangential polarizations the energy shifts Jm change their sign and the
amplitude shrinks significantly, shown in Figure 3.3c.

Finally, to get a better viewpoint, we plot the collective decay rates as function of the
dipole orientations for different modes and inter-particle-distances, which is shown in Figure
3.4. In summary, we observe, that for transverse polarization the lowest modes (in abso-
lute values) and smallest distances ensure the best superradiance, while the N/2-modes
and smallest distances provide the best subradiance behavior unattached by the dipole
orientation. Comparing tangential and transverse polarization we notice, that transverse
polarization offer the strongest collective effects in super- as well as subradiance conduct.
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(a) Γm of the different modes m in units of Γ0

as a function of the dipole orientation φ. Two
bright modes m = ± 1 occur for φ = 0, while
m = 0 is getting dominant with increasing φ
and is strongest for transverse polarization, as
expected.
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Figure 3.3: Single ring collective decay rates Γm and energy shifts Jm in the single-excitation
manifold as a function of the dipole polarization for N = 8 and d = 0.1.
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Figure 3.4: Γm of the different modes m in units of Γ0 as a function of the dipole orientations φ
with N = 8 emitters. The higher the mode m and smaller the inter-particle distance d, the more
subradiant the system is and vice versa for modes m = 0, ± 1.

3.1.2 Decay from a superradiant as well as subradiant State

In Figure 3.5 the population decay as function of time of the subradiant eigenstates of the
system for a ring and a chain of quantum emitters are plotted. For the ring configuration
we can confirm, that the modes m = 0 and m = 1 describe the most superradiant states
for transverse and tangential polarization, respectively. The mode m = N/2 is obviously
the most subradiant state in both cases (Figure 3.5a and 3.5b). Note, that the timescales
for the subradiant plots are a factor 40 longer than used for the superradiant plots. Even
in this huge time range, we observe, that the most subradiant state does barely decay at
all, especially for transverse polarization.

In Figure 3.5c and 3.5d the same simulations are shown for a chain of subwavelength-
spaced two-level quantum emitters in the single-excitation manifold. Out of this it is
apparent, that closing the chain by forming a ring goes along with dramatically enhancing
the lifetime of the most subradiant states. Contrary to that, the superradiant states for the
ring configuration show a slightly increased decay rate, especially once again for transverse
polarization (Figure 3.6).
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(a) Transverse polarization in a single ring.
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(b) Tangential polarization in a single ring.
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(c) Transverse polarization in a chain.
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(d) Tangential polarization in a chain.

Figure 3.5: Decay from subradiant states in a ring (a-b) and a chain (c-d) of quantum emitters.
- Population decay for a single ring with N = 8, inter-particle distance d = 0.1 and transverse
polarization (left) and tangential polarization (right), respectively. Γ is the single emitter spon-
taneous emission rate. The upper indexes describe the modes m for the ring configuration, the
most subradiant state for the chain configuration is denoted with index 1.
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(a) Transverse polarization in a single ring.
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(b) Tangential polarization in a single ring.
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(c) Transverse polarization in a chain.
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(d) Tangential polarization in a chain.

Figure 3.6: Decay from superradiant states in a ring (a-b) and a chain (c-d) of quantum emitters.
- Population decay for a ring and a chain of two-level atoms with N = 8, inter-particle distance d
= 0.1 and transverse polarization (left) and tangential polarization (right), respectively. Γ is the
single emitter spontaneous emission rate. The upper indexes describe the modes m for the ring
configuration, the most superradiant state is denoted with index 1 for the chain configuration.
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Disorder

As the ring positions in an experiment will not be perfect, we want to study the impact
of positioning disorder on the properties of the subradiant states. For this we include an
uncertainty in the position of each emitter, where we allow only for radial disorder, disorder
in z-direction perpendicular to the xy-plane and a overall disordering in all directions. We
again diagonalize the effective Hamiltonian and average over 100 random configurations in
order to find the mean minimum decay channel and the most subradiant state, respectively.
We then prepare the system in that very state and let it evolve freely. The results are
plotted in Figure 3.7. As we could see frequently before, the subradiant state for small
enough inter-particle distances is extremely stable in the given ring configuration. If we
disorder now the positions, we can observe, that this stability drops massively and the
considered state decays several orders of magnitude faster (Figure 3.7a, 3.7b). As opposed
to that, for larger inter-particle distances, where the subradiant state regarding the decay is
not that steady, we can attain a remarkable stabilization of the state if we strongly disorder
the atoms on the ring by concurrently maintaining the ring symmetry (Figure 3.7c). The
effect increases with increasing disorder in the system, such that we can even construct a
more stable subradiant state on the whole time scale if we radially disorder the positions
of the emitters (Figure 3.7d).

Finally, we analyze the stability of the subradiance, whereas we randomize the dipole
orientations, and every orientation between tangential and transverse is possible. Once
more, we average over 100 random configurations and plot the corresponding decay rate,
depicted in Figure 3.8. Due to the broken symmetry, we can observe, that for d = 0.1 the
state is forced again into a highly faster decaying channel (Figure 3.8a). For d = 0.4 the
state on short time scales also decays faster, but on larger time scales we notice again, that
we can reach a slower decaying channel by disordering the system (Figure 3.8b).
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Figure 3.7: Subradiance in a disordered system. - Subradiant state population in a ring of disor-
dered emitter positions with N = 8 for transverse polarization and different inter-particle distances.
The disorder parameter s denotes the range of disorder of the unperturbed emitter position in
percentage. The subindexes denotes the kind of disorder, whereas |ψsubr〉 is the undisordered
subradiant state.
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Figure 3.8: Subradiance in a disordered system. - Subradiant state population in a ring of
disordered emitter positions with N = 8 for randomized polarization and different inter-particle
distances. The subindex denotes the kind of disorder, whereas |ψsubr〉 is the undisordered subra-
diant state.

3.1.3 State preparation

As we could see before, the most subradiant states in a single ring of two-level quantum
emitters in the single-excitation manifold posses an extraordinary long lifetime. This can be
used for spectroscopy, precision measurements as well as information storage in a quantum
computer for example. But for any precise measurement the particle dynamics has to be
externally prepared and controlled, where we have to deal with particle-particle interactions,
which in our regime here are dominated by dipole-dipole couplings, therefore dipole-dipole
induced energy shifts as well as collective decays. Since the collective decay for subradiant
states is mostly suppressed, it is intriguing to know, how efficiently we can prepare such a
subradiant state in a single ring, starting in the ground state and driving it coherently with
a laser. We can achieve such a drive by making use of the induced energy shifts in order
to resonantly address the state and by imprinting an artificial, coordinated phase. Finally,
we let the system evolve freely by defining a pump strength η(t) as a function of time.

But first of all, we start with a setup, in which we drive the state with the lowest decay
rate with a artificial phase. The driving scheme reads

Hdrive(t) =
N∑
j=1

(ηjσ
+
j e
−iωLt

2 + η∗jσ
−
j e

i
ωLt

2 ), (3.1)

where ωL is the frequency of the laser and ηj := ηe−iφj defines the strength of the pump
with which the atom j is driven with an arbitrary phase φj at first [22]. Therefore our total
Hamiltonian reads

H(t) = H0 +Hdip +Hdrive(t). (3.2)

In order to get rid of the time dependence, we transform into the interaction picture and
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get

H =
∆

2

N∑
i=1

σiz +
∑
i 6=j

Ωi,jσ
+
i σ
−
j +

N∑
j=1

(ηjσ
+
j + η∗jσ

−
j ). (3.3)

Here ∆ = ω0 − ωL denotes the detuning of the laser to the transition frequency ω0 with
the laser frequency ωL. Now we finally want to address the most subradiant state of our
system, which is also the state with minimal symmetry. To do so, we need to adjust the
phases to achieve a high efficiency of the driving and address the current states. For this
purpose, we just consider the phases we already used so far in the spin-wave composition
to be the phases of our choice,

φj = i ·m · θj = i ·m · 2π(j − 1)/N, (3.4)

where for the angular momentum m we choose the most subradiant mode m = N/2, such
that

φj = iπ(j − 1). (3.5)

Hence, the driving Hamiltonian becomes

Hdrive = η
∑
j

(σ+
j e
−iπ(j−1) + σ−j e

iπ(j−1)). (3.6)

Note, that we are considering here transverse pumping only. This is, because longitudinal
pumping would require an additional phase shift. This in turn, in order to become resonant,
would require a certain inter-particle distance, that would not result in a sufficient energy
shift, since the states energetically would not be separated well enough because of the
dipole-dipole coupling. Despite that, the question arises how to choose the detuning right
in the case of transverse pumping.
Since the dipole-dipole interaction provokes energy shifts, embedded into Ω(i,j), the primary
strong degeneracy gets lifted exponentially when reducing the inter-particle distance (Figure
2.3). Therefore, we have to place the quantum emitters in close vicinity to each other in
order to achieve sufficient energy shifts and lifted degeneracies, such that we can address
the states of interest in a reliable way, whereby the energy shifts can be calculated as

∆ω = 〈ψ |Hdip |ψ〉 . (3.7)

In Figure 3.9 we show, that the most subradiant state carries also the most negative
dipole shift for sufficient small inter-particle distances. For an odd number of emitters,
the energy shifts are lifted up, so the coupling is slightly weaker then for an even number
of emitters and therefore the decay rate enhances (see Figure 3.16 in Section 3.3). An
explanation could be, that for an odd number of emitters, the symmetry of the system
is imperfect with respect to the nearest-neighbour coupling. If we increase the distance
between the emitters, we can see in Figure 3.9b that the order gets destroyed, in particular
for N = 5, 6, 7. The overall coupling is much weaker and therefore the decay rate much
bigger. As already mentioned, we can tune the magnitude of the coupling by varying the
inter-particle distance. Hence, for a bigger distance it is much less probable to address
the subradiant states in full, especially over a long term (saturation). In summary, the
detuning ∆ has to be equal to the transition frequency of the subradiant state, but with
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Figure 3.9: Dipole shifts. - Dipole-shifts for a single ring for different inter-particle distances
d. The shifts are shown for the most superradiant as well as most subradiant states as function
of the number of emitters N. The subradiant states are shifted maximal negatively, while the
superradiant states with the highest symmetry are maximally positively shifted. Increasing the
distance between the emitters destroys this order.

the addition that the dipole shift must be included, whereby the inter-particle distance has
to be small enough to get a sufficient coupling strength. For the frequency of the driving
laser we get ωL = ω0 + ∆ωsubr and hence for the detuning

∆ = ω0 − ωL = −∆ωsubr = 〈ψsubr |Hdip |ψsubr〉 . (3.8)

In Figure 3.10 we can observe, that the chosen artificial phase works very well. Here we
can see almost perfect Rabi oscillations between the ground state and the subradiant state.
Since we are dealing with a two-level system, we would expect that the driven system after
a long enough time reaches a steady state, where the ground state population as well as
the subradiant state population is 1/2. In Figure 3.10d we can observe such a process,
but interestingly, for the case of a small inter-particle distance d = 0.1 in Figure 3.10c,
the system performs Rabi oscillations without any population loss in the subradiant state
in favor of the ground state for a very long time. This is because for a sufficiently small
inter-particle distance the decay rates for the subradiant modes become, as we already
demonstrated, extremely small, and therefore the system reaches the steady state much
slower. We can reach a similar effect by increasing the number of emitters on the ring,
shown in Figure 3.11

Note, that increasing the number of emitters in an experiment makes the procedure far
more difficult due to more potential long-range interactions, which have to be taken into
account and addressed individually.

In a next step, we are interested in driving the system for a short time and let it evolve
freely then. Therefore we have to define a time dependent pump strength

η(t) = η0(θ(τ − t)− θ(t)), (3.9)

where θ(t) is the Heaviside function. This is illustrated in Figure 3.12. The results are
depicted in Figure 3.13. For a small enough distance between the emitters we reach a
almost perfect subradiant state after applying an effective π-pulse, such that there is not
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driving.

Figure 3.10: State preparation. - Preparing the system in the most subradiant state of a single
ring of two-level quantum emitters in the single-excitation manifold with inter-particle distance
d = 0.1 (left), d = 0.4 (right) and N = 8, initially prepared in the ground state for transverse
polarization. The pump strength is η = 0.8Γ0.
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(b) Dephasing process.

Figure 3.11: State preparation. - Same as in Figure 3.10, for d = 0.4, but N = 24. The system
saturates slower in time by increasing the number of emitters. This goes along with the state
preparation being almost perfect in that case.

any decay at all (Figure 3.13a). Contrary to that for d = 0.4 we can observe, that after
applying the effective π-pulse we do not reach the subradiant state perfectly and therefore
the prepared state decays very fast with a revival of the ground state (Figure 3.13b). If we
increase again the number of emitters, we achieve a good matching with the wanted state
and hence a comparably slow decay (Figure 3.13c).

Figure 3.12: Scheme of the time dependent pump strength η(t).
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Figure 3.13: State preparation with a square pulse profile η(t). - Driving the most subradiant
state of a single ring of two-level quantum emitters in the single-excitation manifold for different
inter-particle distances d = 0.1, 0.4 and number of emitters N = 8, 24, initially prepared in the
ground state. The pump strength is given in Eq. 3.9 with η0 = 0.8Γ0. The black line shows the
pulse length. For d = 0.1 the system does not decay at all, whereas for d = 0.2 the decay is rather
fast with a fast decay to the ground state. If we increase the number of emitters, we slow down
the decay essentially.
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3.2. COLLECTIVE DYNAMICS - TWO-EXCITATIONS MANIFOLD

3.2 Collective Dynamics - Two-Excitations Manifold

In this section we provide some simulations for the single ring of quantum emitters, but in
the two-excitations manifold, contrary to the sections before, where we restricted ourselves
to the single-excitation manifold. Additionally we will use two excitations only.

3.2.1 Some Characteristics of the Eigenvalues in the Two-excitations
Manifold
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Γ
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Γ
(1)
min/Γ0

Figure 3.14: Scaling of the most subradiant eigenmodes in the two-excitations manifold. -
Suppression in the two-excitations manifold, denoted with the index (2), compared with a single
exciton state, denoted with the index (1), for R = 0.33λ and d = 0.1λ.

In Figure 3.14 we can see, that the decay of the most subradiant state with two excitations
scales exponentially, such that the exponential suppression is conserved in comparison with
the most subradiant exciton state in the single-excitation manifold for a growing number
of quantum emitters on a ring with constant size. But there is a significant offset between
these two states, so the most subradiant excitons state in the two-excitations manifold
decays faster around that factor.
In Figure 3.15 the energy is defined by the polarization any longer. If the polarizations
are oriented transversely, the bright modes are higher in energy, contrary to the tangential
case, where the bright modes are lower in energy. But contrary to Figure 3.2, the ring in
the two-excitations manifold with the smallest number of emitters experiences the biggest
energy shifts for both polarizations.

29



CHAPTER 3. SINGLE RING: COLLECTIVE EXCITATIONS AND RADIATIVE PROPERTIES

10−2 10−1 100 101

log(Γm)

100

101

lo
g
(J
m

)

N = 8

N = 9

N = 16

(a) Energy log-log-plot for transverse polariza-
tions.

10−2 10−1 100

log(Γm)

100

101

lo
g
(J
m

)

N = 8

N = 9

N = 16

(b) Energy log-log-plot for tangential polariza-
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Figure 3.15: Single ring energy in the two-excitations manifold with inter-particle distance d =
0.1 for different N for transverse and tangential polarizations, respectively.
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3.3. RADIATIVE PROPERTIES

3.3 Radiative Properties

In this section we exhibit more of the extraordinary radiative properties of the eigenmodes
of the single ring. As we could already see in the previous section 3.1, for a large enough
number of emitters on the ring, we have found subradiant modes, whose emission is sup-
pressed significantly. The suppression of the decay rates scales exponentially with the
number of emitters, which is shown in Figure 3.16 for a fixed distance λ/d, in contrast to
a chain of closely lying emitters scaling with N−3 [2]. The corresponding dark modes are
characterized by a wave-vector, which is larger than the free-space wave-vector k0, such
that the eigenmodes exhibit an evanescent field transversely to the plane the ring is lying
in. Therefore the light is guided nearly perfectly along the ring.
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(b) Tangential polarizations.

Figure 3.16: Suppression. - Logplot of Γmin
m in units of Γ0 as a function of the number of emitters.

The suppression is exponential in N. For odd numbers of emitters, the decay rate is larger due to
lack of symmetry.

If we now look at the electromagnetic field that is generated by subradiant modes, we
can see a radiation pattern, where the field vanishes completely in the center of the ring
and is evanescent transversely. For superradiant eigenmodes the field has a interference
maximum at the center of the ring. Figure 3.17 shows the radiation patterns for transverse
polarization in the x-y- as well as in the x-z-plane for subradiant and superradiant modes,
respectively.

Figure 3.18 shows the radiation patterns for tangential polarization in the x-y- as well
as in the x-z-plane for subradiant and superradiant modes, respectively.

The radiation pattern in the far field is depicted in Figure 3.19 for transverse as well as
tangential polarizations, where we can see that in the case of subradiance for m = 5 the far
field is also evanescent transversally and in the case of superradiance for m = 0, 1 strongly
transverse, as expected.
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Figure 3.17: Radiation patterns of a single ring. - Transverse polarization with distance d =
0.4λ, N = 10 and y, z = 1.5R in units of λ.
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Figure 3.18: Radiation patterns of a single ring. - Tangential polarization with distance d =
0.4λ, N = 10 and y, z = 1.5R in units of λ.
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m = 1 m = 5

m = 0 m = 5

Figure 3.19: Far field radiation patterns. - Evaluation for r = 200R, N = 10 and d = 0.4 of a
single ring lying in the x-y-plane in units of λ with transverse (left) and tangential polarizations
(right).
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4 Two Coupled Rings - Coupling
Behavior, Excitation Transfer and
Radiative Properties

In this chapter we make use of the derivations in section 2.4.2. To investigate the excitation
transfer between the two rings. First we will examine the dispersive and dissipative coupling
strength, respectively. With that we can evaluate the coupling efficiency to see which modes
transfer the energy best. We expect that, since superradiant states carry the strongest
dipole moments and couple strongly to neighboring dipoles, the dissipation in the system
will be significantly higher in contrast to subradiant states. Finally, we analyze the field
intensity distribution of two coupled rings.

4.1 Coupling Behavior

Equal Ring Size

In Figure 4.1 the dispersive coupling strength Jm1,m2 as well as dissipative couplings Γm1,m2

are demonstrated as functions of the angular momentum of the eigenstates in the two rings
m1 and m2, separated by a fixed distance x = 0.15λ, for transverse and tangential polariza-
tion, respectively. In both cases, subradiant states mainly couple to subradiant states and
superradiant to superradiant states. In the superradiant regime the dissipation is rather
large as already mentioned before. In the case of transverse polarization, dispersive cou-
pling uniquely occurs for superradiant states, whereby the best coupling efficiency emerges
for m1 = ±m2, but is much weaker compared to the results of tangential polarization, since
the dispersive coupling appears in this case diagonally in m1 and m2. In each of the cases
the dissipative coupling shows the least dissipation for m1 = -m2.

In Figure 4.1g and 4.1h we can see, that the efficiency depends strongly on the geom-
etry of the two rings. In this case we plot the maximum value of the efficiency ηmaxm1,m2

= ηm1=N/2,m2=N/2 as a function of the ring-to-ring separation x and can observe, that the
efficiency decays exponentially oscillating down for increasing distances, whereas for trans-
verse polarization η decays much faster than for tangential polarization. Summarized, the
coupling efficiency, shown in Figure 4.1e and 4.1f, always is best for m1 = - m2 for small
ring-to-ring distances. This indicates, that we only need a two-mode model consisting
of two states m and -m, when we are working in the subradiant regime. Therefore, an
excitation should oscillate between the two rings for a very long time. This very result
will be used in the following section, when we study the excitation transfer of a gaussian
wave-packet.
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Figure 4.1: Two coupled rings. - Two rings with transverse (left) and tangential (right) polar-
ization separated by a distance x = 0.15λ with N = 10, d = 0.1λ. We show the absolute values on
a logarithmic scale. The white dashed line denotes the so-called light line, where the wave-vector
surpasses the free-space photon wave-vector. This is the transition line between the superradiant
and the subradiant regime. Figures (g) and (f) show the logplots of the maximum valued coupling
efficiency as function of the ring-to-ring distance x in units of λ.

36



4.1. COUPLING BEHAVIOR

Unequal Ring Size

In Figure 4.2 we show the same quantities as in Figure 4.1, but for different ring sizes. Here
we use N1 = 16 for the first ring and N2 = 9 for the second one.

The dispersive couplings for the transverse polarization in the superradiant regime are
rather large, but are nearly completely vanishing in the subradiant regime (Figure 4.2a).
Contrary to that, the dissipation in both regimes is significant (Figure 4.2a). Therefore
the coupling efficiency is only significant for −m1/N1 = −m2/N2, but several magnitudes
lower compared to the equal sized rings. For the tangential polarization the situation is
not that clear, but a closer look reveals the same behavior. The maximum value of the
efficiency ηmaxm1,m2

= ηm1=N/2,m2=N/2 as a function of the ring-to-ring separation x shows,
that the efficiency decays exponentially oscillating down for increasing distances, whereas
for transverse polarization η decays much faster than for tangential polarization. But,
compared to the results of the equal sized rings from before, we see again very clear the
weak coupling behavior.
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Figure 4.2: Two coupled rings. - Two rings with transverse (left) and tangential (right) polar-
ization separated by a distance x = 0.15λ with N1 = 16 and N2 = 9, d = 0.1λ. We evaluate
the absolute values on a logarithmic scale. We reach the best coupling for −m1 = −m2, which is
several magnitudes lower compared to the equal sized ring. Figures (g) and (f) show the logplots
of the maximum valued coupling efficiency as function of the ring-to-ring distance x in units of λ.

38



4.2. EXCITATION TRANSFER

4.2 Excitation Transfer

Now we evaluate the fidelity of energy transfer 2.52 for a wave-packet Eq. 2.51 centered at
the site k farthest from the second ring with momentum m = N/4, depicted in Figure 4.3,
where we have two rings with N = 20 separated by the distance x = 0.15λ. We observe,
that the fidelity is rather low for a small wave-packet width, when the excitation is located
almost perfectly at one site in real space. But even for a comparably small width in real
space we can already see, that the wave-packet is localized in momentum space to exhibit
good coherent excitation transport. We reach the best fidelity for a ring-to-ring distance x
that approximately matches the inter-particle distance, which is intuitively understandable.
Since the frequency shift of neighboring atoms is changing with their separation, they get
correspondingly detuned with increasing/decreasing distance x and the excitation can not
longer propagate at this point (Figure 4.3a and 4.3c). For two rings with the same size,
the fidelity is extraordinarily high and shows a small damping over time (Figure 4.3b). For
two rings with a different number of emitters, we observe that the fidelity is much smaller.
The transport shows first a significant damping at short time and then an oscillation of the
excitation between the rings for a long period without damping (Figure 4.3d). But even
for a finite width, when the initial state is not a perfect eigenstate of the system, we can
reach a high fidelity.

In the next step, we study the fidelity in dependence on the dipole orientation. The result
is plotted in Figure 4.4, where we can see, that the fidelity for a sufficient wave-packet width
θ is not limited to a narrow region of dipole polarization. Only a small area around π/3
shows a global minimum.

In Figure 4.5 we show the time evolution of the wave-packet 2.51 with a nearly infinite
width θ initially centered at the site k = 10 of a ring with N = 20 atoms and angular
momentum m = 5. Therefore we simulate a free evolving subradiant eigenstate of the
system. The second ring is placed nearby with a distance x = 0.15. Hence, like we saw
before, the excitation is hopping between the two coupled rings, while each time the sign
of the angular momentum changes.
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Figure 4.3: Fidelity of wave-packet transport. - Two rings with inter-particle distance d = 0.1λ
and tangential polarization.
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Figure 4.4: Maximal fidelity over time as a function of the dipole orientation, where φ = 0
denotes tangential polarization, φ = π/2 transverse polarization. The best fidelity can be equally
achieved for both cases with a global minimum around π/3.
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Figure 4.5: Radiation field patterns for a free evolving wave-packet initially prepared in the
first ring on the left. We can see a periodic excitation transfer.
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4.3 Radiative Properties

In this section we analyze the spatial field intensity distribution of coupled rings, as in
Figure 4.6. Also in this case the sub- and superradiant states show distinct radiation pat-
terns. In Figure 4.6a and 4.6b we see the field intensities for the most subradiant modes
compared to the superradiant modes in Figure 6.2c and 4.6d, where the field for the subra-
diant cases is focussed at the region between the two rings and vanishes completely in the
middle of the rings, contrary to the superradiant case, where again we have field intensity
maxima at the center of the rings. This confirms, that subradiant modes mainly couple
dispersively to subradiant modes, superradiant strongly couple to superradiant modes with
large dissipation.
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Figure 4.6: Field intensity of two coupled rings. - Two rings separated by a distance x =
0.5λ with inter-particle distance d = 0.25λ, N = 20 and transverse polarization (left), tangential
polarization (right).
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5 Conclusion

In this master thesis we have studied the properties of an ensemble of subwavelength-spaced
dipole-coupled quantum emitters, arranged in two different configurations - a single ring
and two coupled rings. At the beginning we gave a brief overview of the fundamental theo-
retical concepts we used for developing the subsequent examinations. Then we studied the
collective decay rates for the different collective excitation modes occurring in dependence
of the inter-particle distance and the dipole polarization, respectively. When the emitters
are close enough and transversely polarized the system shows a single bright mode with
a decay rate linearly growing with the number of emitters. For tangential polarization
we found two bright modes and a decay rate linearly scaling with the number of emitters
divided by two. We could also show, that the dipole orientations determine, whether the
bright or the dark modes are higher in energy. For a disordered, imperfect ring symmetry
we saw, that regarding the subradiant state lifetime disordering seems to be beneficial for
ring configurations with a primary higher inter-particle distance. We then added a driving
laser to the system and presented, that by imprinting a artificial, adjusted phase on the one
hand and choosing the right detuning on the other, nearly perfect Rabi oscillations between
ground and dark state can be reached as well as a specific state preparation, where an effec-
tive π-pulse was implemented. Further we discussed the generated field intensities by the
radiant as well as subradiant eigenmodes. In the case of subradiance the field is evanescent
transversely to the plane and vanishes completely in the center of the ring , contrary to the
superradiance case, where we found a strong transverse field and an interference maximum
in the center of the ring. Finally, we included a further excitation to our model, since we
restricted ourselves so far to the single-excitation manifold. Here we tried to find a similar
approach of a effective state preparation, but were not able to identify a better phase more
suitable to go beyond a state population of 1/2.
In section 3 we focused on the configuration of two coupled rings separated by a certain
distance. Here we first studied the coherent and dissipative coupling strength as well as the
coupling efficiency between the rings. By tailoring the geometrical parameters of this sys-
tem, we found a characteristic coupling pattern, where mainly superradiant states couple
to superradiant states and subradiant to subradiant states. The evaluation of the coupling
efficiency indicated, that only a two-mode model is necessary. Further we analyzed the ex-
citation transport between two coupled rings. For this we prepared a gaussian wave-packet
centered at a certain site in the first ring and let it evolve freely. Using the preceding
results, we were able to predict the excitation transport to the second ring. The calculated
fidelity then showed a remarkable lossless coherent excitation transport, even for a state
that is not a perfect eigenstate of the system.
In a nutshell, we were able to show that by tailoring the different geometrical aspects of the
ring configuration and taking advantage of it, the lifetime of the excitation of an ensemble
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of quantum emitters can be significantly extended, whereas a very efficient state prepara-
tion can be achieved as well as a nearly lossless excitation transport between coupled rings.
This work only shows the beginning of a promising approach towards an emulation of the
biological role model in form of the photosynthetic LH-I-LH-II-complex for example. In
future work we could plan to study more complex structures as they appear in LHC com-
plexes, where lossless energy transport plays a vital role. Some first results are highlighted
in the Appendix. Also imaginable is the exploitation of this basic model for applications
in quantum computing and quantum networking.
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6 Appendices

6.1 Appendix A - Program Examples

We show here a basic Julia code example written with the help of the Quantum optics
toolbox QuantumOptics.jl [1] showing the calculation of the fidelity regarding the excitation
transport between two coupled rings.

1 # Libraries

2 using QuantumOptics

3 using PyPlot

4 using LinearAlgebra

5

6 pygui(true)

7

8 # Parameter

9 λ = 1 #wavelength of an emitter

10 k0 = 2π #wave vector

11 Γ0 = 1.0 #single emitter spontaneous emission rate

12 d = 0.1 #inter-particle distance

13 φ = 0 #dipole orientation (here: tangential)

14 N = [20, 20] #number of emitters in each ring

15 N_tot = sum(N[i] for i=1:length(N)) #total number of emitters

16

17 # Geometry

18 θ(j) = [2π*(j-1)/N[1], 2π*(j-1)/N[2]]; #angle of an emitter at site j

19 R_ = [d/(2*sin(π/N[1])), d/(2*sin(π/N[2]))]; #radius of each ring

20 dips1 = [[-sin(θ(i)[1])*cos(φ),cos(θ(i)[1])*cos(φ), sin(φ)] for i=1:N[1]]

21 dips2 = [[-sin(θ(i)[2])*cos(φ),cos(θ(i)[2])*cos(φ), sin(φ)] for i=1:N[2]]

22 dips = [dips1; dips2]; #dipole orientations

23

24 # Variables

25 xmin = 0.05; xmax = 0.5; #ring-to-ring distance

26 θmin = 0.1; θmax = π; #wave-packet width

27 tmin = 0.; tmax = 50; #time scale

28 x_list = collect(range(xmin, stop=xmax, length=20))

29 θ_list = collect(range(θmin, stop=θmax, length=20))

30 t_list = collect(range(tmin, stop=tmax, length=100))

31

32 # GreenTensor
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33 function GreenTensor(r, r_, p, k)

34 R__ = r .- r_

35 Rn = normalize(R__)

36 n = norm(R__)

37 if n == 0

38 return 1.0im*k/6π .* p

39 else

40 Gp = exp(1.0im.*k.*n)./(4π.*n) .* ((Rn×p)×Rn .+ (1.0 ./ (k.*n).^2 .-

1.0im./(k.*n)).*(3Rn .* (Rn·p) .- p))↪→

41 return Gp

42 end

43 end

44

45 # Basis

46 basis = NLevelBasis(N_tot)

47 ground_state = basisstate(basis, N_tot)

48

49 # Transitions

50 sigma_down(i) = transition(basis, N_tot, i) #field annihilation operator

51 sigma_up(i) = transition(basis, i, N_tot); #field creating operator

52 σ_down = sigma_down.([1:N_tot;])

53 σ_up = sigma_up.([1:N_tot;]);

54

55

56 function fidelity_(x_, delta_θ)
57 ψt_max = []

58

59 r_pos1 = [[R_[1]*cos(θ(j)[1]) - R_[1] - x_/2, R_[1]*sin(θ(j)[1]), 0.0]

for j=1:N[1]]↪→

60 r_pos2 = [[R_[2]*cos(θ(i)[2]) + R_[2] + x_/2, R_[2]*sin(θ(i)[2]), 0.0]

for i=1:N[2]]↪→

61 r_pos = [r_pos1; r_pos2]

62

63 # Timeevolution

64 Ω(i,j) = -3*π*Γ0/k0 * real(dips[i]' * GreenTensor(r_pos[i], r_pos[j],

dips[j], k0));↪→

65 Γ(i,j) = 6*π*Γ0/k0 * imag(dips[i]' * GreenTensor(r_pos[i], r_pos[j],

dips[j], k0));↪→

66 H = sum((Ω(i,j) - im*Γ(i,j)/2) * sigma_up(i)*sigma_down(j) for

i=1:N_tot, j=1:N_tot);↪→

67

68 m1 = 5

69 m2 = 5

70 k1 = 10

71 ψ1(k1, delta_θ) = 1/sqrt(N[1])*sum(exp(im*m1*θ(i)[1])*exp(-norm(r_pos[i]
.- r_pos[k1])^2/(2*R_[1]^2*delta_θ^2))*sigma_up(i)*ground_state for

i=1:N[1]);

↪→

↪→

72 ψ0 = ψ1(k1, delta_θ)
73 tout, ψt = timeevolution.schroedinger(t_list, ψ0, H);

74 for t=1:length(t_list)

75 ψk_max = []
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76 # Scanning over the sites k in the second ring

77 for k2=N[1]+1:2N[2]

78 ψ2(k2, delta_θ) = 1/sqrt(N[2])*sum(exp(-

im*m2*θ(j)[2])*exp(-norm(r_pos[j] .-

r_pos[k2])^2/(2*R_[2]^2*delta_θ^2))*sigma_up(j)*ground_state
for j=N[1]+1:2N[2]);

↪→

↪→

↪→

79 ψ = norm(dagger(ψ2(k2, delta_θ))*ψt[t])
80 push!(ψk_max, ψ)
81 end

82 push!(ψt_max, maximum(ψk_max))
83 end

84 return maximum(ψt_max)
85 end

86

87 # Plotting

88 fidelity_final = [fidelity_(x_, delta_θ) for x_ in x_list, delta_θ in θ_list]
89 z = (fidelity_final)'
90 pcolor(x_list, θ_list, z, cmap=ColorMap("jet"))

91 xlabel("x/λ")
92 ylabel("∆θ")
93 title("max t {F(t)}")

94 colorbar()

The next example gives access to the animation of excitation transport between two
rings.

1 using QuantumOptics

2 using PyPlot

3 using LinearAlgebra

4

5 pygui(true)

6

7 # Parameter

8 λ = 1

9 d = 0.1

10 Γ0 = 1.0

11 k0 = 2π
12 x_ = 0.15 #ring-to-ring distance

13 φ = 0

14 N = [20, 20]

15 N_tot = sum(N[i] for i=1:length(N))

16 Ncum = cumsum(N)

17

18 # Geometry

19 θ(j) = [2π*(j-1)/N[1], 2π*(j-1/2)/N[2]]
20 R_ = [d/(2*sin(π/N[1])), d/(2*sin(π/N[2]))]
21

22 r_pos1 = [[R_[1]*cos(θ(j)[1]) - R_[1] - x_/2, R_[1]*sin(θ(j)[1]), 0.0] for

j=1:N[1]]↪→
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23 r_pos2 = [[R_[2]*cos(θ(i)[2]) + R_[2] + x_/2, R_[2]*sin(θ(i)[2]), 0.0] for

i=1:N[2]]↪→

24 r_pos = [r_pos1; r_pos2]

25

26 dips1 = [[-sin(θ(i)[1])*cos(φ),cos(θ(i)[1])*cos(φ), sin(φ)] for i=1:N[1]]

27 dips2 = [[-sin(θ(i)[2])*cos(φ),cos(θ(i)[2])*cos(φ), sin(φ)] for i=1:N[2]]

28 dips = [dips1; dips2]

29

30 #GreenTensor

31 function GreenTensor(r, r_, p, k)

32 R__ = r .- r_

33 Rn = normalize(R__)

34 n = norm(R__)

35 if n == 0

36 return 1.0im*k/6π .*p

37 else

38 Gp = exp(1.0im.*k.*n)./(4π.*n) .* ((Rn×p)×Rn .+ (1.0 ./ (k.*n).^2 .-

1.0im./(k.*n)).*(3Rn .* (Rn·p) .- p))↪→

39 return Gp

40 end

41 end

42

43 # Basis

44 basis = NLevelBasis(N_tot+1)

45 ground_state = basisstate(basis, N_tot+1)

46

47 # Transitions

48 sigma_down(i) = transition(basis, N_tot+1, i)

49 sigma_up(i) = transition(basis, i, N_tot+1);

50 σ_down = sigma_down.([1:N_tot;])

51 σ_up = sigma_up.([1:N_tot;]);

52

53

54 # Collective coupling, Decay rate

55 Ω(i,j) = -3*π*Γ0/k0 * real(dips[i]' * GreenTensor(r_pos[i], r_pos[j], dips[j],

k0))↪→

56 Γ(i,j) = 6*π*Γ0/k0 * imag(dips[i]' * GreenTensor(r_pos[i], r_pos[j], dips[j],

k0))↪→

57

58 #######Hamiltonians

59 H_dipole = sum(Ω(i,j)*sigma_up(i)*sigma_down(j) for i=1:N_tot, j=1:N_tot)

60 eigenvalues_dip, eigenvectors_dip = eigenstates(dense(H_dipole))

61

62 #Decay rates, position subradiant, superradiant state

63 decay_rates = [real(expect(projector(eigenvectors_dip[k]),

sum(Γ(i,j)*sigma_up(i)*sigma_down(j) for i=1:N_tot, j=1:N_tot))) for

k=1:length(eigenvalues_dip)]

↪→

↪→

64

65

66 # Initial state

67 delta_θ = 100 #wave-packet width
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68 m1 = 5 #angular momentum

69 k1 = 10 #site index

70 ψ1 = 1/sqrt(N[1])*sum(exp(im*m1*θ(i)[1])*exp(-norm(r_pos[i] .-

r_pos[k1])^2/(2*R_[1]^2*delta_θ^2))*sigma_up(i)*ground_state for i=1:N[1]);↪→

71

72 # Time scale

73 tmin = 0.; tmax = 30

74 t_list = collect(range(tmin, stop=tmax, length=80))

75

76

77 # Field

78 function e_field(r)

79 field = [0*σ_down[1] for i=1:3]

80 for i=1:N_tot

81 G_ = GreenTensor(r, r_pos[i], dips[i], k0)

82 for j=1:3

83 field[j].data .+= G_[j] .* σ_down[i].data
84 end

85 end

86 return field

87 end

88

89

90 #Intensity of the field

91 function Intensity(r)

92 E = e_field(r)

93 sum(dagger(e)*e for e=E)

94 end

95

96 # Timeevolution

97 H = sum((Ω(i,j) - im*Γ(i,j)/2) * sigma_up(i)*sigma_down(j) for i=1:N_tot,

j=1:N_tot);↪→

98 tout, ψt = timeevolution.schroedinger(t_list, ψ1, H)

99

100

101 # Points in space

102 xmin = -3; xmax = 3;

103 x = collect(range(xmin, stop=xmax, length=100))

104 y = collect(range(xmin, stop=xmax, length=100))

105 z = 2*d

106 r_space = [[r1, r2, r3] for r1=x, r2=y, r3=z]

107

108 # Expectation value, Intensity

109 Intensity_exp(r, ψ) = real(expect(Intensity(r), ψ));
110

111 Intensity_final = [[Intensity_exp(r_, ψt[t]) for r_=r_space] for

t=1:length(t_list)]↪→

112

113

114 # Plotting

115 figure(figsize=(15,12))
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116 for i=1:N_tot

117 plot(r_pos[i][1], r_pos[i][2], "wo")

118 end

119

120 fig1=figure(figsize=(15,12))

121 subplot(321)

122 contourf(x, y, (Intensity_final[1])', 100)

123 annotate(xy=[2, 2], s="t=(round(t_list[1];))", fontsize=20)

124 subplot(322)

125 contourf(x, y, (Intensity_final[10])', 100)

126 annotate(xy=[2, 2], s="t=(round(t_list[10];))", fontsize=20)

127 subplot(323)

128 contourf(x, y, (Intensity_final[20])', 100)

129 annotate(xy=[2, 2], s="t=(round(t_list[20];))", fontsize=20)

130 subplot(324)

131 contourf(x, y, (Intensity_final[30])', 100)

132 annotate(xy=[2, 2], s="t=(round(t_list[30];))", fontsize=20)

133 subplot(325)

134 contourf(x, y, (Intensity_final[40])', 100)

135 annotate(xy=[2, 2], s="t=(round(t_list[40];))", fontsize=20)

136 subplot(326)

137 contourf(x, y, (Intensity_final[50])', 100)

138 annotate(xy=[2, 2], s="t=(round(t_list[50];))", fontsize=20)

139 tight_layout()

140

141 using Printf

142 using PyCall

143 anim=pyimport("matplotlib.animation")

144 pygui(true)

145

146 fig=figure(1)

147 function animate(t)

148 t+=1

149 contourf(x, y, (Intensity_final[t])', 100)

150 annotate(xy=[2, 2], s="t=(round(t_list[t];))", fontsize=20)

151 title("t="*@sprintf("\%03.2f",t_list[t]))

152 xlabel(L"x")

153 ylabel(L"y")

154 end

155 movie=anim.FuncAnimation(fig, animate, frames=length(t_list),repeat=false,

interval=20)↪→
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6.2 Appendix B - Multi-ring: A simplistic Recreation of
LHCs

Here we provide field intensity simulations in the single-excitation manifold for a multi-
ring configuration inspired photosynthetic units of diverse biological systems. Those light
harvesting complexes are present in certain types of bacteria, for example Rs. molischianum
or Rps. acidophila. The photosynthetic apparatus of purple bacteria is constructed by
two different kinds of pigment-protein complexes, on the one hand the reaction centre,
on the other hand the light harvesting complexes [18]. The light harvesting complexes
capture light energy and transfer this energy to the reaction centre for photo-induced redox
processes. The photosynthetic membranes of the most purple bacteria consist of two types
of light harvesting complexes, the light harvesting complex I (LH-I) and the light harvesting
complex II (LH-II). The LH-I is tightly bound to the photosynthetic reaction centre built by
independent pigments in the center of the LH-I, whereas the LH-II, not directly connected
to the reaction centre, is needed to transfer the energy to the reaction centre via the LH-I,
like depicted in Figure 6.1c [18]. The LH complexes are composed by ring-shaped proteins,
whereas the optical active parts consist mostly of BChl molecules and Carotenoids. The
molecules crystallize regularly in a ring configuration. This is exemplary shown in Figure
6.1a, where each of the n molecules corresponds to a different site forming a ring.

If the antenna complex now harvests sunlight and makes the energy available to the
reaction centre through the series of energy transfer steps between the complexes mentioned
above, then the dynamics occurring here take place in the piko seconds regime and are
very efficient. The excitation transfer is strongly hierarchic, which is shown in Figure
6.1b, where the excitation is cascading into the reaction centre. The processes can be
distinguished between inter- and intra-complex processes, described as excitation transfer
within each pigment-protein complex, therefore LH-II, LH-I and RC, and between pigment-
protein complexes, hence LH-II→ LH-II, LH-II→ LH-I and LH-I→ RC, respectively [18].
A schematic drawing is depicted in Figure 6.1c, where a typical bacterial photosynthetic
unit is shown. The LH-II contains two types of BChl, B850 and B800, the LH-I contains
just on type of BChl, B875. The light gets harvested on the most outer ring and the
excitation then gets transported into the reaction centre. The excitation transfer here in
the photosynthetic unit between LH-II,LH-I and finally the reaction centre occurs in less
than 100 pico seconds and reaches an efficiency of around 95% [23]. The transition dipole
moments of the B850 and B875 BChls are all oriented in the two-dimensional plane spanned
by the BChl molecules, such that the electronic excitation flow is optimally tuned [18].
Besides other potential pathways for photons, one example could be the absorption of an
800nm photon by one of the B800 BChls in LH-II. This excitation then gets transferred via
the B850 BChl and the B875 BChl in the LH-I to the reaction centre, where femtosecond
spectroscopy reveals that the B800 → B850 process needs 700fs and the B850 → B875
process just 3 ≈ 5 ps. The final step of LH-I → RC needs more or less 35 ps, which is
the slowest process [18]. The energy transfer between both BChls B800 and B850 can be
explained by the Förster mechanism, where an exciton splitting takes place, which greatly
improves the resonance of the excitations of B800 and B850 [18] [24] [25]. The carotenoids
absorb light at 500nm and play a role of light harvesting, roughly spoken. By quenching
the BChl triplet states, they also protect the light-harvesting system from the damaging
effect of BChl triplet states, which can generate highly reactive singlet oxygen [18]. The
overall ring structure can be explained by the fact, that the resonance between donor and
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(a) Geometrical arrangement in LH-II com-
plexes of R. acidophila of the carotenoid (’Car’)
in blue and bchl molecules in orange (B800) and
red (B850), whereas the numbers stand for the
absorption wavelength in nm [19].)

(b) Energy levels of the electronic excitations
in the photosynthetic unit in purple bacteria.
The funneling of excitation toward the photo-
synthetic reaction centre is shown.

(c) Schematic figure of the excitation transfer
in a bacterial photosynthetic unit.

Figure 6.1: Properties of a photosynthetic unit in purple bacteria.
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(a) Outer rings: most subradiant mode - Inner
ring: most subradiant mode

(b) Outer rings: most superradiant mode - In-
ner ring: most subradiant mode

(c) Outer rings: most subradiant mode - Inner
ring: most superradiant mode

(d) Outer rings: most superradiant mode - In-
ner ring: most superradiant mode

Figure 6.2: Field intensity of a multi ring configuration with transverse polarization. - One inner
ring with Nin = 16 surrounded by eigth outer rings with each Nou = 9 emitters. The rings are
separated by a distance x, y = 0.25λ with inter-particle distance d = 0.25λ.

acceptor systems can be improved by that and therefore the exciton splitting leads to a
faster, more efficient transfer time [18].

In Figure 6.2 and 6.3 we show the field intensity in the single-excitation manifold for
a multi-ring configuration, where eight outer rings with each nine emitters are coupled
to a larger inner ring with 16 emitters. The outer rings can be understood as LH-II
complexes that are coupled to LH-I, in which center the reaction centre lies. We study this
configuration for transverse as well as tangential polarization and assume, that the outer
rings are uniformly in one state and the inner ring is in one specific state. We can observe
that the excitation is located perfectly in the middle of the multi-ring with a evanescent field
tangentially in the case of a collective subradiant state for the outer rings and superradiant
state for the inner ring.
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(a) Outer rings: most subradiant mode - Inner
ring: most subradiant mode

(b) Outer rings: most superradiant mode - In-
ner ring: most subradiant mode

(c) Outer rings: most subradiant mode - Inner
ring: most superradiant mode

(d) Outer rings: most superradiant mode - In-
ner ring: most superradiant mode

Figure 6.3: Field intensity of a multi ring configuration with tangential polarization. - One inner
ring with Nin = 16 surrounded by eigth outer rings with each Nou = 9 emitters. The rings are
separated by a distance x, y = 0.25λ with inter-particle distance d = 0.25λ.
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