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Abstract

Quantum cryptography provides an unique way of communication by making use of
quantum physical effects with the aim to enhance security. It can be implemented
with the use of entangled photons. This work contains a theoretical model and simu-
lations for an experiment that focuses on the creation of time-bin entangled photons.
Within the experimental setup, light from a pulsed laser is directed on a quantum
dot which subsequently emits photons. This quantum dot is a semiconductor nano
structure that can be used as a quantum emitter. A statistic of coincidence counts
can be extracted from the detection of the emitted photons. In post selection, the
photons should preferably pairwise exhibit the time-bin encoded generalized Bell
state. An effective quantum optical model is used to simulate the dynamics of the
system. It is possible to estimate the coincidence counts of the detectors based on
the theoretical model. The estimated values of the photon counts are the input of
a tomographic method which gives the reconstructed density matrix of the photons
as an output. In this way the results of the experiment can be proposed for various
values of parameters that can be related to the configuration of the laser. If the
theoretical model is successfully adjusted to the experimental results, it is possible
to propose laser configurations for the experiment in order to enhance the quality
of the photons. The fidelity between a bell state and the simulated density matrix
are discussed within this work. Choices of parameters can be extracted for which
the fidelity is suggested to be very large, such that this might lead to a noticeable
enhancement compared to the fidelities achieved so far. The number of simulated
coincidence counts, which is correlated to the potential number of created photons,
and the fidelity, however, show a weak accordance when system parameters are var-
ied. Therefore, the potential user of the system has to find a compromise between
the number of photons and their proximity to the desired state.



Zusammenfassung !

Quantenkryptographie bietet eine einzigartige Art der Kommunikation indem quan-
tenphysikalische Effekte ausgenutzt werden mit dem Ziel die Sicherheit zu erhéhen.
Diese Verschliisslung kann mit verschrankten Photonen implementiert werden. Diese
Arbeit beinhaltet ein theoretisches Modell und Simulationen fiir ein Experiment,
welches sich um die Erzeugung time-bin verschrankter Photonen dreht. Im ex-
perimentellen Aufbau wird Licht eines gepulsten Lasers auf einen Quantenpunkt
gerichtet, welcher anschliefsend Photonen emittiert. Dieser Quantenpunkt ist eine
Halbleiter-Nanostruktur welcher als Quantenemitter betrieben werden kann. Eine
Statistik von Koinzidenzmessungen kann aus der Detektion der emittierten Pho-
tonen gewonnen werden. In nachtraglicher Selektion sollten die Photonen paar-
weise moglichst den time-bin kodierten verallgemeinerten Bellzustand aufweisen.
Ein effektives quantenoptisches Modell wird benutzt um die Dynamik des Sys-
tems zu simulieren. Basierend auf dem theoretischen Modell ist es moglich die
Koinzidenzmessungen der Detektoren abzuschétzen. Die abgeschéatzten Werte der
Photonen-Messungen dienen als Eingabe einer tomographischen Methode, welche
die rekonstruierte Dichtematrix der Photonen als Ausgabe hat. Somit konnen die
Ergebnisse des Experiments fiir verschiedene Werte von Parametern, welche mit
Lasereinstellungen in Verbindung gebracht werden koénnen, vorgeschlagen werden.
Falls das theoretische Modell erfolgreich an die experimentellen Ergebnisse angepasst
ist, ist es moglich Lasereinstellungen fiir das Experiment vorzuschlagen um die Qual-
itdt der Photonen zu erhéhen. Die Fidelity zwischen einem Bellzustand und der
simulierten Dichtematrix werden in dieser Arbeit diskutiert. Wahlmoglichkeiten fiir
Parameter, fiir welche die Fidelity als sehr hoch vorgeschlagen wird, konnen ent-
nommen werden. Dies konnte zu einer merkbaren Verbesserung im Vergleich zu
bisher erreichten Fidelitys fiihren. Die Anzahl der simulierten Koinzidenzmessun-
gen, welche in Verbindung mit der potentiellen Anzahl von erzeugten Photonen
steht, und die Fidelity weisen allerdings eine geringe Ubereinstimmung auf wenn
Systemparameter variiert werden. Somit muss der mogliche Nutzer des Systems
einen Kompromiss zwischen der Anzahl von Photonen und deren Néhe zum gewiin-
schten Zustand finden.

IThis is the German version of the abstract. Apart from the acknowledgements (“Danksagun-
gen”), the rest of the content is given in English.
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Chapter 1

Introduction

The experiment [1, 2, 3] that is addressed in this master thesis explores the possi-
bility to prepare photons in an entangled state in terms of time-bin encoding using
a quantum dot. Quantum dots can be used to realize quantum confinement in all
three spatial dimensions by exploiting properties of semiconductor materials. In
our context, the exhibition of discrete energy levels is an important property of the
quantum dot. We denote two of them by “exciton" and “biexciton" and describe the
quantum dot system as a three level system together with the ground state. In the
experiment, these levels are probed by light from a pulsed laser in order to create
photons in time-bin entangled states. The time-bin encoding can be used to realize
qubits and is a promising foundation for the implementation of quantum commu-
nication. This kind of communication uses the properties of quantum physics to
ensure unique security standards. However, quantum communication also faces spe-
cific difficulties due to potentially strongly limited stabilities of quantum channels.
The time-bin encoding exhibits high stability within optical fibres [4]. Quantum
dots and time-bin encoding are treated in chapter 2 of this work.

The experiment has been complemented with theoretical support. Theoretical stud-
ies have been presented in the latest publication [1| together with experimental
results. This master thesis extends the theoretical studies with the simulation of
the outcome of the experiment and a subsequent discussion.

Chapter 3 covers the model that is used to describe the experiment from a the-
oretical viewpoint. It contains the derivation of a Hamiltonian that is similar to
the one in the project’s last publication [1]. Beyond that, an overview over several
decoherence mechanisms is given.

A density matrix can be reconstructed from the detection of the photon’s which are
emitted by the quantum dot. The goal of this work is to provide a possibility to
propose the reconstructed density matrix from a theoretical viewpoint by simulating
the system’s dynamics with the use of the already existing quantum optical model.
The tomographic method [5, 6] that is used for this purpose is presented in chapter 4.
This chapter also contains a calculation that is done in order to estimate the photon
counts at the detector. These estimated values are the input of the tomographic
reconstruction method.

The results of this work are presented in chapter 5. The fidelity between the sim-
ulated density matrix and a bell state is given. The theoretical studies propose
choices of parameters that will lead to high fidelities.



Chapter 2

Experiment

The fundamental components of the experiment that is discussed within this work
are a pulsed laser that addresses a self-assembled InAs quantum dot, a bulk inter-
ferometer and detectors. A more detailed discussion about the experiment can be
found in the project’s publications [1, 2, 3]. This chapter covers a short introduction
to quantum dots and time-bin entanglement, which are underlying concepts that are
used within this work, followed by a description of the experimental setup.

2.1 Quantum Dots

A crucial property of quantum dots is their exhibition of discrete energy levels.
The following discussion gives a short introduction to the concept of discrete energy
levels in semiconductors. This is followed by an introduction to the idea of quantum
confinement as a further characteristic of a quantum dot.

2.1.1 Excitons

The electron energy spectrum of a semiconductor contains the lower valence and
the higher conduction band which are separated by an energy gap. This can be
discussed in the context of non-interacting electrons (or an averaged interaction
between electrons). Adding a basic discussion of excitations and interaction within
this framework can lead to a first notion of the so called “Exciton” which plays
an important role in our investigation of a quantum dot. Within this subsection
we will follow lecture notes of Manfred Sigrist [7] very closely up to most of the
notation. The Hamiltonian for a semiconductor with Coulomb interaction between
the electrons can be written in second quantization as

2

N R R R . N ~ N e ~ N
H = Z eU,EC;r),E,SCU,E,S + Z EC,EC:E7SCC,E,S + Z / dgrdsrlqji(f‘)\pz’ (T/) = \IIS/OA )\Ijs(
E,s E,s 8,8

=7

~~ ~~ - D .
valence band conduction band electron - electron interaction
(2.1)
where ¢ . (¢, 1 ,) creates (annihilates) an electron in the valence band with energy
v,K,S8 sfvy

€, r» wWith spin s and wave vector k. ¢ (¢ ) creates (annihilates) an electron in
v, C,k,S C,k’,S

the conduction band with energy €, , with spin s and wave vector k.
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2.1. QUANTUM DOTS CHAPTER 2. EXPERIMENT

W,(r) denotes the field operator with

V() = U, 1 (e, (2:2)

n=uv,c
=
k

where the wave function ¥, 7(7) is given by

L i
U, () = 75 u,, ¢ (F). (2.3)
Q) denotes the volume of the system and w,, () is the Bloch function.
The state of a filled valence and empty conduction band is the ground state of the
basic two-band model

H v k s <24)

The most basic excitation is exciting an electron to the conduction band which leaves
a “hole” in the valence band:

k+q sk, s)=¢ g Cuislg): (2.5)

In a more general form this excitation with fixed spin and fixed momentum transfer
¢ can be written as

) = ZA B)k+q sk, s). (2.6)

—

Applying the bra (k + ¢, ¢'; k;, s| to the stationary Schrodinger equation,

ﬁ’wq> = (EO + Eq)|wq>a

leads to the following equation:

S (k4G s kys| HAR)E + G831, s) = (Eo + Ey)A(k). (2.7)

k'

In the following, the discussion focuses on the k and k' around 0 (the center of the
Brillouin zone) and the case of small |g]. This is legitimate for a material with a
direct band gap at k = 0 and small excitation energies. The approximation can
be formulated as k' ~ k ~ k + ¢. In this sense, the underlying literature (see
reference [7| for more details) sketches a derivation so that equation 2.7 becomes

4me?

€z .—e -— E)AK) — ?AE’ZO, 2.8
(c,k+q v,k q) () §Q<€|k—k’|2 ( ) ( )

where ¢ is the dielectric constant of the semiconductor. This expression is limited
to the regime where the above approximations about k; k' and q are valid. With
setting

h2k?
Ec,E = Eg + 5 (2.9)
and -
hk?
o= — 2.10
v,k va ( )



CHAPTER 2. EXPERIMENT 2.1. QUANTUM DOTS

(E, denotes the energy of the band gap, a direct energy gap is assumed at k=0
and the k - p~approximation is used) one can find the following equation:
—-n*v? € R

2wm 5|_7:1) F(r) = (Eg — By — —557) FI(7) (2.11)

(

with the definition

F(7) = L > A(k)e™. (2.12)

= % is the reduced mass with m := m, = m, and M = 2m the total mass.
Equation 2.11 has the form of the Schrédinger equation of the hydrogen atom in

relative coordinates. The latter equation can be written as [§]

~I’V?  Ke?
( — == )W, (7) = B, W (1), (2.13)
2p 7]
where 7 is the relative coordinate between the electron and proton of the hydrogen
atom and K = —— with ¢, being the dielectric constant of the vacuum. By solving

4meq
this Schrodinger equation, the discrete energy spectrum of hydrogen can be found

to be [8]

E,=-"—"" (2.14)

The fact that equation 2.11 coincides with the form of the hydrogen atom’s Schrodinger
equation allows for formulating an analogy between an excited semiconductor and
the hydrogen atom. The electron in the conduction band and the hole in the valence
band play the role of electron and proton of the hydrogen atom, respectively. Just as
we can find bound states with discrete energy levels forming the hydrogen atom, we
can talk about the electron and hole forming a particle-like bound or quasiparticle
called “exciton”.

Comparing equation 2.11 and 2.13 and setting K — % leads to

R pet

E-=F — .
? gt 2M  2e2h%n2

(2.15)

These discrete energy levels can be associated with bound states and can be called ex-
citons. A Quantum Dot consists of semiconductor material and provides us with the
possibility to observe excitons. The states that are not considered within the above
approximations (the ones for larger k and ¢) contribute to an energy-continuum.
This continuum can be interpreted as ionized excitons. Within the experiment that
is described throughout this work another state plays a crucial role. This state lies
energetically higher then the exciton that is being addressed. We call it a “biexciton”
and interpret it as the bound state of two electrons and two holes.

2.1.2 Quantum Confinement

Excitons and biexcitons are not the only important features of a quantum dot. For
the previous discussion of excitons, the material properties of a semiconductor has
been considered and not the special properties of a quantum dot. Another crucial
property of a quantum dot is that the energy gap can be engineered as energy levels

9



2.1. QUANTUM DOTS CHAPTER 2. EXPERIMENT
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Figure 2.1: (a): Configuration of layers of two different semiconductors to implement
a square well potential that leads to quantum confinement. A similar figure can be
found in reference [9].

(b): Depiction of a square well potential that shows two discrete energy levels. A
similar figure can be found in reference [§].

are discretized while the electrons are spatially confined. The degrees of freedom
of the electrons and holes can be reduced by spatially confining them in all three
dimensions. This is the procedure of “Quantum Confinement”. This subsection
should be understood as a more general elaboration on quantum dots and not as
a specific discussion regarding the experiment discussed in this thesis. Throughout
this subsection we follow the presentation of quantum confinement in reference [9].
To reduce one spatial degree of freedom one might implement a quantum well po-
tential along one direction. To realize this, layers of two different semiconductors
can be aligned such that the energy bands are ordered along one direction as shown
in figure 2.1a. The semiconductor under consideration is put in between two layers
of an auxiliary semiconductor with a larger band gap. This results in an effective
square well potential for the electrons in the conduction band. As depicted in fig-
ure 2.1b, such a potential exhibits discrete energy levels. The wave function for the
ground state of a particle inside a square well potential can be written as

U(z) = Acos(qx) (2.16)

for the area of the potential [—/,[] [§]. A is a constant, ¢ = 4/ w with V' being

the depth of the potential, m being the mass of the electron and E the energy of
the state. This wave function has two important properties:

1. Tt is static, i.e. |¥|* does not vary in time.

2. The expectation value of the momentum operator (p,) vanishes:

l ’LFLA2 l
(Pr) = —AQ/ dx cos(qz) ih 0, cos(qx) = 5 / dz sin(2gx) = 0.
-l -l

Therefore it is legitimate to say that the electron exhibits no dynamics along the
direction where it is effected by the potential and is confined in this respect. This

10
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Figure 2.2: Scheme of the procedure to generate time-bin entangled photons. Similar
schemes are contained in references [1, 2, 3|

however does not mean that the electron has no kinetic energy along this direction
since (p2) # 0. Yet, if kept in the ground state, it exhibits no degree of freedom
along the direction of the potential since it will stay in the static state ¥(x). This
can be compared to a classical frictionless pendulum, which exhibits kinetic energy
along the direction of oscillation, however the total momentum, which is averaged
over one cycle, will be zero and the pendulum will simply remain in it’s initial state.
To achieve the discussed properties it is important that the full population stays in
a single eigenstate of the system. While the previous discussion might be true for
any eigenstate, practically the simplest approach is to cool down the whole system
until only the ground state is occupied.

The energy of the ground state can be altered by varying the length of the layers.
In this respect it is possible to engineer the band gap of the semiconductor.

If an effective potential is realized in all three dimensions, the electrons movement
in any direction is restricted. In the case that all directions are blocked one can
speak of a quantum dot.

2.2 Time-Bin Entanglement

There are various ways to implement qubits via photons. In our project we choose
the time-bin encoding which we want to discuss in the following. The basic idea
of time-bin encoding is to consider two different time slots (or time-bins) within a
set-up and assign the logical |0) and |1) to this two time slots. These time windows
could be seen as two distinct emission times of a quantum emitter, two different
detection times at a photon detector or simply two timeframes of a photon propa-
gating through a fiber. In our project all these different notions are applicable.
Compared to polarization encoding, the creation and encoding of time-bin qubits is
more complex and technically more challenging. However they show great stability
when propagating through a fiber [4].

To generate entanglement between two photons, they have to be prepared such that
their time-bins are quantum correlated. Figure 2.2 schematically shows the proce-
dure to generate time-bin entangled photons that has been chosen for our project.

11
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Figure 2.3: Level scheme of the quantum dot. |b), |x) and |g) refer to the biexciton,
exciton and ground state. A, and A, are the detunings. A, is the difference be-
tween the exciton energy level and the single photon energy and Ay is the difference
between the biexciton energy level and the double photon energy. h is set to 1.
Similar schemes can be found in references [1, 2, 3].

A laser pulse is send through an interferometer. This interferometer is unbalanced,
which means the optical length of one arm is different from the other. The initial
pulse is therefore split into two pulses, one that propagates through the long arm
and the other one that propagates through the short arm. We label the pulses with
“late” and “early”. They correspond to the two time-bins. It is important to note
that within a quantum mechanical description, the photons that correspond to the
first pulse are now in a superposition of being in the late and in the early pulse. In
a descriptive way, one could say the single photons propagate through both arms
simultaneously. Subsequently, the pulses excite a three level quantum emitter which
decays by emitting photons of different frequencies. In general, the emission of the
photons can take place at two different time slots, corresponding to the two pulses.
The superposition of the early and late pulse is carried over to the emission times of
the quantum emitter. This leads to a superposition of the photons being emitted in
the early or late time bin. The aim of the experiment is to create emitted photons
in the generalized Bell state: |®,) (lee) + €*?[11)). Where |ee) ([11)) means that
a photon of the first and a photon off he second frequency is emitted in the early
(late) time bin and ¢ denotes the phase. More precisely, the generalized Bell state is
the desired outcome of the used tomographic method which involves post-selection.

2.3 Experimental Setup

This subsection gives a schematic overview of the setup of the experiment which is
discussed throughout this thesis. More details can be found in the projects pub-
lications [1], [2], [3]. The first part of the experiment is schematically structured
as depicted in figure 2.2 which shows the chosen procedure to generate time-bin
entangled photon pairs. The quantum emitter in our case is a III/V self-assembled
quantum dot [2]. We treat the quantum dot as a three level system that consists of a
ground state (or vacuum in the quasi-particle language), an exciton and a biexciton
state. This is an approximation since the system involves more states that could be
addressed. However when filtering out one photon polarization the emission spec-
trum of a quantum dot which is discussed in reference [3] and [2| shows distinct
peaks within a certain frequency range. These peaks correspond to the biexciton,
the exciton, a trion and laser scattering. If the peak generated by the trion is small

12
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enough it is a good approximation to describe the quantum dot as a three level
system. The direct single photon excitation from the ground state to the biexciton
state is forbidden by selection rules. However it can be driven by a two-photon
excitation, which is an excitation involving two photons at the same time. The sum
of their energy is the energy of the desired transition (up to a detuning). A virtual
intermediate level can be assigned to this process. The level scheme is depicted in
figure 2.3.

The laser pulse is generated by a pulsed laser with subsequent pulse shaping. The
shape of the laser will later be approximated to be Gaussian within our theoretical
model. The length of the pulse can be varied.

As shown in figure 2.3, the quantum dot will emit a photon when the biexciton de-
cays to the exciton state and another photon when the exciton decays to the ground
state. These two photons show a difference in wavelength. They are analysed sep-
arately in distinct channels with analysis interferometers and subsequent detectors.
Chapter 4 contains a closer look at this analysis. Altogether there are three interfer-
ometers: One analysis interferometer for each of the two photon channels and one
interferometer that is used to generate the correlated early and late pulses (which
is illustrated schematically in figure 2.2). These interferometers are implemented in
one combined, so-called bulk interferometer [2].

13



Chapter 3
Theoretical Model

The aim of this work is to simulate the creation of entangled photons by using a
quantum dot as a three level system. The corresponding experiment is described
in chapter 2. From the numbers of simulated photon counts, we obtain the re-
constructed density matrix of the photon pairs which are emitted by the quantum
dot. The post-selective reconstruction process uses the tomographic method that
is described in chapter 4. To be able to simulate the outcome, we make use of
a simplified theoretical model that describes the system of the quantum dot and
the laser embedded in an environment. This model was introduced in reference [1].
Within this chapter we want to give a short introduction to the theoretical toolkit
used to describe open systems. This will be followed by a derivation of the system’s
Hamiltonian and a discussion of dissipative effects that are involved.

3.1 Open System Dynamics

Open System

Environment

Figure 3.1: Conceptual separation between the quantum dot and laser as the “sys-
tem” and the environment as “bath”. This graphic was inspired by a figure in refer-
ence [10].

The Schrédinger equation, the Heisenberg equation and the von Neumann equation
are used to describe the time evolution of a system in fundamental quantum physics.

14



CHAPTER 3. THEORETICAL MODEL 3.2. SYSTEM HAMILTONIAN

This reaches its limit if relativistic effects come into play. For most systems these
equations cannot be solved analytically. The description of a closed system, i.e. a
system that is completely isolated from its environment, is always an approximation
since it’s not possible to realise this condition in an experiment. To rigorously
describe the dynamics of a real system therefore all particles from the environment
and interactions with the surroundings have to be taken into account. Solving these
equations even numerically can be very challenging. The idea of open systems is to
simplify the description by conceptionally separating a system from it’s environment.
This idea is depicted in figure 3.1. Unlike closed systems these systems interact with
their environment. In our case the system consists of the quantum dot as a three
level system interacting with a laser. The environment induces dissipative effects to
the system.

Instead of pure states, the more general formalism of density matrices is used to
describe the state of a system within this context. The dynamics of open systems
is given by solving the master equation which corresponds to the von Neumann
equation for closed systems. The following lines of discussion and notation are
strongly influenced by reference [10]. We use the master equation in Lindblad form:

)
P=—%

LH g+ Y (RipR) — SRIRyp— SpRIR,) (3.1)
j
where H and p are the Hamiltonian and the density matrix of the system. R;s are
called jump operators and correspond to the dissipation induced by the environment
(see section 3.3 for the discussion of dissipative effects). The first part of the equation
corresponds to the unitary time evolution of the system. The second part accounts
for the effect of the bath. Equation 3.1 describes a Markovian time evolution. That
means that the time evolution of p only depends on its present state and can be
written as p = Lp with the linear operator L which is sometimes called “Liouvillian”.

3.2 System Hamiltonian

This section offers a derivation of the Hamiltonian for the quantum dot which is in-
teracting with a laser. The starting point is the Hamiltonian for a three level system
interacting with monochromatic classical light within the dipole representation:

H = E,|g)(g| + Ex|x)(x| + Ey|b)(b| —dEa(t). (3.2)
h ~~ N~
Hp int

The classical electrical field can be written as [11]

—

Ecl(t) = EL<t) (?ei“”“t + C.C.1 (33)

with amplitude Fi(t), laser frequency wy, and polarisation vector €. The energy
levels of the quantum dot can be expressed in terms of the laser frequency and the
detuning for the exciton A, and biexciton A, level:

Eg = 0, Ex = WL + A:): and Eb = 2wL - Ab' (34)

!The expression of the field does not show any spatial dependence. The long-wavelength ap-
proximation is assumed. The laser pulse will later be approximated by a Gaussian, which can be
written in Fy,(t).
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3.2. SYSTEM HAMILTONIAN CHAPTER 3. THEORETICAL MODEL

The ground state energy is set to 0 and A is set to 1 here. H, can be simplified
using the following:

~
— — — —

1. The diagonal matrix elements of d vanish, i.c. (g|d|g) =: dgg = 0 = dyy = dp,.

2. Assume that the Rabi frequencies
Qij(t) = —dy; € EL(t) (3.5)

are real, i.e. Q;; = QF, for all i, j € {g,x,b}.

ij
3. Qij = jS for all Z,j S {g,ﬂ?, b}
4. The ground and biexciton state do not couple directly, i.e. {2y, = 0 = (.

5. Assume that the ground state-exciton coupling has the same strength as the
exciton-biexciton coupling, i.e.

Q= Q= Uy (3.6)

Therefore

Hi = —dBa(t) = (g el + 1 (x] + [b){b]) d (jg)el + 1) x| + [b){b]) Ea(t)

1

= Q(t) ("' + e (|g) (x| + [x)(b| + h.c.).

(3.7)
A unitary transformation helps to perform the rotating wave approximation and thus
to get an easier expression. Here the transformation U := e/« 20)tx) (x| gi(2wr+24)¢[b) (bl
will be used:

H:=UHaU +i(0,0)0f
= (A — D)) (x| = 28 |b)(b] + Q)[(1 + 1) (e |g) (x| + [x) (b]) + h.c.].
(3.8)
Performing the rotating wave approximation here means dropping the terms that
contain the double laser frequency, i.e. the term with the factor e=?*tt and its
complex conjugate. With this, the Hamiltonian (omitting the tilde) reads

H(t) = (Ay = Ap)x) (x| = 24 b) {b] + () (e~ |g) (x| + x) (b)) + D] (3.9)

Compared to the Hamiltonian in the project’s latest publication [1|, we find an
additional oscillating factor e~*** in the interaction part. However, the Hamilto-
nians coincide for a resonant excitation, i.e. A, = 0. It is also possible to fur-
ther transform the Hamiltonian to a form without the oscillating factor using the
unitary U := e|g)(g| + [x)(x| + [b)(b|. This leads to the additional diagonal
term —A[g) (gl:

H=0UA0+i(0,0)0"
= — Myl (gl + (A — Ap)[x)(x| — 2 b)(b| + Q1) [(|g) (x| + [x) (b]) + h'ého)

16
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3.3 Dissipation

Within our model we consider four different dissipative effects: the decay of the
biexciton to the exciton and the decay of the exciton to the ground state. Addition-
ally, we include dephasing between the biexciton state and the exciton state, as well
as between the exciton state and the ground state. We assign a Lindblad operator
to all of these processes [1]:

Decay:

Ry = /% |x)(b| with ~, = 1/771 THz,

Ry = /7, |g) (x| with ~, = 1/405 THz.
Dephasing;:

Ry = /e (Ib)(b] = [x) (x]) with 7, = 757 (%52)",
Ri= /g (1¥)(x| = [8) () with 7y = 77 (52)".

(3.11)

~ &

The values of 7, and ~, are determined by experimental data [1, Supplemental
Materiall.

The dephasing rates nonlinearly depend on the laser’s intensity, while per definition
these rates depend on powers of the Rabi frequency €(¢). The Rabi frequency
however can be related to the laser intensity. This can be reasoned as follows:

We approximate the pulsed laser to have a Gaussian profile. The form of the Rabi
frequency is modeled by [1]

Q(t) = Q exp (—m(z)i—Q_W) . (3.12)

The intensity of a Gaussian beam is proportional to the square of the absolute value
of the electric field [12]:
I x |E)?. (3.13)

The expression for the electric field which is generated by the laser is given in
equation 3.3. Note that the spatial profile of this field is not discussed within this
work since the quantum dot is approximated to have no spatial extension which is
important for the long-wavelength approximation. Therefore we only consider the
field’s time dependency here. The Rabi frequency was defined as

If the dipole operator and the polarisation vector are constant, this leads to

Q(t) x Ep(t). (3.14)

If Ey, is real and if the polarisation vector is real and normalised, the absolute value
of the electric field is given by

|Ea(t)] = Er(t)(2 4 2 cos(2wrt)). (3.15)
By using equation 3.13 we find

VT o Q(1)(2 + 2 cos(2wit)). (3.16)

17
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This relates the intensity to the Rabi frequency.

)4, which appears in the expression of the dephasing rates, is necessary to obtain
the correct units and it’s value is 1 THz. The dephasing amplitudes are determined
by processing experimental data: ~§* = 0.0219 THz and ~;Y = 0.0349 THz [1].
The exponent n indicates to which power the dephasing rate depends on the laser
intensity. The values n = 2 (linear dependency) and n = 4 (quadratic dependency)
were both in accordance with results from the measurement [1].

18



Chapter 4
Tomography

The aim of the experiment that is discussed throughout this thesis is to create time-
bin entangled photons. The post-selected, reconstructed state of these photons is
then compared to a maximally entangled state by calculating the fidelity. It is there-
fore necessary to be able to reconstruct a quantum state for the created photons.
Within this chapter we want to describe the tomographic method that is used to
reconstruct the state. This will be followed by a discussion on the experimental real-
ization of the tomographic scheme. We will conclude this chapter by a presentation
of how the state of the photons could be reconstructed theoretically from simulating
the photon counts.

The basic tomographic method that has been adopted for the experiment was de-
scribed by James et al. [5]. Takesue and Noguchi [6] have proposed the imple-
mentation of this method for time-bin entangled photons. For the discussion of
tomography we will follow ideas and calculations presented in these publications.

4.1 Tomographic Method

The tomographic method is based on projective (post selective) measurements of
the photons that are emitted by the quantum dot. For this purpose we define a set
of 16 states {|1;)}¢, with the two-photon states

‘¢Z> = ’¢12>

¢2,) where [1,), [d2;) € {le), [I), |+), [R)}. (4.1)

Here the one-photon states |e) (|1)) correspond to an early (late) emission of the
photon. They form a basis in the two-dimensional Hilbert space to describe time-
bin encoding for a single photon. The other two states are a superposition of those:
+) = Z(le) +11)) and [R) = Z5(le) — i[l)).
The two-photon density matrix p is projected onto the states {|¢;)}1¢,. Portions
of photonic states with less or more then two photons are not captured by this
method. In this sense we perform a post-selection by truncating the states of less
or more then two photons and projecting the photons solely on two-photon states.
With the use of photon detectors we focus on how many counts n, we obtain by
multiple projections onto the state |¢,) for all v. Since both photons are measured
individually, this is realized via coincidence-counts. The number of counts is given
by

n, = c(1,|pl,) for all v, (4.2)
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where c is a constant efficiency factor that depends on the experimental realization.
A relation to determine ¢ can be found below.

The set {n,}1%, are the measurement outcomes of our experiment. To reconstruct
the density matrix p from these values one needs a mathematical relation between
p and {n,}% . Let’s begin the derivation for this expression by decomposing the

density matrix:

II’11

(4.3)

-3 -

9, where 1;,2; € {0,1,2,3}. The matrices oy,, 09, are defined by

0y := 0y and 03 = o, with 0,,0,,0. being the three Pauli

Ilb

Wlth 2 = 0'11. X

oo := 1y, o

T

matrices.
For this calculation matrices are underlined twice such that it is more convenient to
distinguish them from numbers. The definition of I'; := 01, ® 0y, for all i € [1,16]

should be chosen such that all possible combinations of the_aj matrices are contained

within the sum of equation 4.3. The chosen order of combinations however is not
important as long as it is kept consistent throughout the calculation. The vector 7
contains the coefficients for this decomposition. To reconstruct the density matrix,
these coefficients will be related to the vector

ni

n
n = '2 (4.4)

Nie

which contains the measurement outcomes. Inserting equation 4.3 into 4.2 gives

16

n, = CZ (W |Tilib,) 7. (4.5)

Here the c-numbers B, ; are defined. They can be written as a matrix:

Bip -+ Bias

[is¥
Il
.
>
o
S~—

Big1 -+ Biee
With this definition equation 4.5 can be written as
i = cBr. (4.7)

Note that {I';};%,, {|¢s)}i%, and B are static mathematical objects that are inde-

pendent from the measurement outcome and furthermore do not depend on any
variable. Equation 4.7 relates the measurement outcomes 7i to the decomposition
coefficients 7. This can be written as

= ~B ' (4.8)

er—‘
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N8 /\_/\_/L ) Biexciton

channel

coincidence
counts

) Exciton
channel

o O

late early

Qg i

Figure 4.1: Scheme of the experimental realization of the tomographic method.
Parts of this figure can be found in similar form in reference |6]. This figure is an
extension of the right hand side of figure 2.2.

with é_l being the inverse matrix of B. Inserting this relation into the decomposi-
tion 4.3 gives

=41 By (4.9)
1
==Y LiBin
¢ i,k -

With the definition M}, := Zil 1B,  this equation reads

16
1
p="- > Myny | (4.10)
k=1

To obtain an expression for ¢ one may take the trace on both sides:

k=1
6 (4.11)
=c= Ztr(%)nk
k=1

If the measurement outcomes, i.e. the number of counts, are known, the right
hand side of equation 4.10 is known. Therefore, by using this equation, p can be
reconstructed from the two-photon-counts.

4.2 Experimental Realization

Equation 4.10 relates the density matrix to the number of counts of 16 projective
measurements. Within this subsection we present how the projective measurements
were realized in the experiment.

As it was explained in chapter 2, two correlated pulses hit the quantum dot. This
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eventually leads to the emission of photons that are correlated in their time-bins
(see figure 2.2). In general, a single laser pulse may lead to no, one or multiple
emitted photon pairs, depending on how many times the biexciton and exciton level
are excited and decay. The excitation probability of the quantum dot can be varied
by tuning the laser’s intensity and the pulse length. Consequently, this changes the
energy per pulse. In reference [1], the excitation possibility is given to be 6% for the
late pulse, as well as for the early pulse. In figure 4.1, the output of the quantum
dot is depicted as pulses and the photon number is not considered. The theoretical
discussion of the measurements deals with the electric field emitted by the quantum
dot (see section 4.3). The number of emitted photons isn’t explicitly considered
here either. However, values that are proportional to the number of simulated coin-
cidence counts are discussed in this work. These values are correlated to the number
of emitted photons.

Figure 4.1 gives an overview of the measurement procedure: The quantum dot emits
light at two distinct emission time spans. Pulses can be assigned to this emission
which again are denoted by “early" and “late". This light originates from the biexci-
ton, exciton decay cascade. The biexciton and exciton photons can be distinguished
by their wavelength (with a difference of AX = 1.8 nm in reference [1]) and are
analysed in different channels. Both channels contain an analysis interferometer
(which is realized in one bulk interferometer as it is mentioned in subsection 2.3).
The output of the interferometers can be split into three peaks:

1. The first peak can be assigned to the early pulse propagating through the
short arm of the interferometer. Detecting photons at a time corresponding
to this peak can be interpreted as a projective measurement on the state |e),
since this signal can be attributed to the early pulse.

2. The middle peak is a superposition of the early pulse passing through the long
arm and the late pulse taking the short arm of the interferometer. By con-
trolling the relative phase between these constituents a corresponding photon
detection can be related to a projective measurement on |+) (for ¢ = 0) and
IR) (for ¢ = 7). The phase ¢ is introduced in subsection 4.3.1.

3. The last peak can be assigned to the late pulse passing through the long arm
of the interferometer. A corresponding photon detection can be interpreted as
a projective measurement on |l).

In this way it is possible to realize the projective measurements on the states
{le), |1y, |+),|R)} for the biexciton and exciton photons separately. To conduct pro-
jective measurements on the two-photon product states {|¢;)}15, from section 4.1,
the individual detections have to be performed as coincidence measurements.

In this way, the counts {n;};%, can be determined experimentally and the density
matrix can be reconstructed using equation 4.10.

4.3 Theoretical Realization

The major aim of this master thesis is to establish a simulation that allows to es-
timate the reconstructed density matrices of the photons emitted by the quantum
dot. This gives a theoretical prediction of experimental results. The simulation is
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5
Master —s pgot ‘ » photons
Equation ) \» /4
Edot Coincidence Reconstruction
Counts

Figure 4.2: Strategy to simulate the photons’ density matrix.

based on the quantum optical model introduced in reference [1|. Figure 4.2 gives an
overview of the chosen procedure for obtaining the photons’ density matrix start-
ing from the master equation given in equation 3.1. Solving the master equation
numerically gives the quantum dot’s density matrix

Pgg  Pgz  Pgb
Pdot (t) - Pzg Pzx Pxb (412)
Pbg  Pbx  Pbb

for a chosen time interval at discrete time steps. The time arguments of the entries
of the quantum dot’s density matrix are not written down throughout this work.
Nevertheless, they depend on time.

The task is to relate the dot’s density matrix to the one of the photon pairs

Pee,ce  Peeel Peele Pee,ll
Pelee  Pel,el  Pelle Pelll ) (413)
Pleee  Pleel  Plede  Ple,ll
Pllee Pilel  Pllle Pl

Pphotons =

Pdot(t) is written in the {|g), |x), |b)} basis while ppnotons is Written in the two-photon
basis {|ee), |el), |le), [11)}.

To relate those density matrices paot(f) — Pphotons We undergo a procedure that
simulates the experimental measurements. This strategy can be divided into three
steps:

1. Find expressions for the electric field operators that correspond to the peaks
which make up the output of the analysis interferometer to simulate the ex-
perimental measurement setup. This setup is described in section 4.2 and is
sketched in figure 4.1.

2. Calculate the number of coincidence counts, given the expressions for the elec-
tric field at the detectors.

3. Use the calculated number of coincidence counts to reconstruct the photons’
density matrix by utilizing the method introduced in section 4.1.

The first two steps are described in more detail within the following subsections.

4.3.1 Electric field emitted by the quantum dot

The emitted field of a two-level quantum emitter is proportional to the atomic opera-
tors 6,07 at retarded time and geometrical factors €(7) and €(7)* [1, Supplemental
Materiall:

~
—

B(Ft) = B*(7.t) + B~ (Ft) o &(F)6(t — ) + &) 6+ (t — ). (4.14)
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The emitted signal has to travel for a time of . to reach the position 7. This is
indicated by the additional term in the argument of the operators. In the end we
are interested in the field emitted by the quantum dot at the position 7 of the
detectors. We assume 7 to be constant which leads to a simplified expression:

E(t)x o (t—L)+6"(t—1). (4.15)
The quantum dot can be interpreted as a set of two cascaded two-level quantum
emitters that correspond to the biexciton-exciton and to the exciton-ground state
transition.

The expression for the electric field emitted by the quantum dot is structured with
respect to the three peaks that can be observed as the output of the analysis inter-
ferometers (see figure 4.1):

1. First peak (early pulse transmitted through the short arm):

A

VBT (1) oc o (1), (4.16)

)

2. Middle peak (a superposition of early and late pulse):

) 1 .
27, (1) o« —= (67, (t+7) + €000 67, (1)), (4.17)

V2

3. Third peak (late pulse transmitted through the long arm):

A

sET (1) o< 6, (t + 7). (4.18)

The subscript x and b correspond to the exciton and biexciton channel. 7 accounts
for the time between the early and late pulse. ¢,; corresponds to the phase shift
induced by the analysis interferometer. The term  has been dropped in the argu-
ment of the 6, operator.

The factor \/Li in the expression for QEA’;:b(t) is introduced here for the calculation of
the expressions that are proportional to f,(¢) in subsection 4.3.2. These expressions

are used to estimate the number of coincidence counts.
In the Schrodinger picture, the operators ¢, and 6;17 are defined by

6, = [x)(bl, 6, = lg)(x], 6, = [b)(x| and 6 = [x)(g]. (4.19)

Within this work, these operators however will be given in a time-dependent form.
There is some freedom in defining the time argument of the operators. The crucial
point is that the quantum dot should be evaluated at times when population and
coherences build up and decay after the early and late pulse hit the dot. In the
equations 4.16 to 4.18, the time argument ¢ corresponds to the early pulse and ¢ + 7
evaluates the dot for the late pulse. Here, ¢ is restricted to an interval: ¢ € [0, 7].
The above expressions of the electric field can be used to simulate the number of
coincidence counts at the detectors.
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4.3.2 Simulated number of coincidence counts

Within the following, an expression that relates the number of coincidence counts to
the electric field at the position of the detectors is derived. The number of counts is
proportional to the count probability. To derive an expression for the count proba-
bility of a single detector exposed to a general quantized electric field E , consider the
probability for a single photon being “lost" due to it’s absorption by the detector.
This investigation can be extended to the case of a coincidence measurement of two
photons. The derivation is based on Daniel Steck’s presentation |13, chapter 16.1]
of a publication by Roy Glauber [14].

The quantized electric field can be written as

BE(Ft) = BX (7 ) + E-(Ft) = Y Eje™  ay(t) + Y Eje ™7 al(t).  (4.20)
J J

E; is a factor for which the index j indicates the dependency on the field mode
frequency w;. &; (a;) creates (annihilates) a photon in a mode to which k; can be
assigned to. The polarization is not considered here. If a photon is detected, the
field’s state changes from an initial state |i) to a final state |f). Compared to the
initial state, the final state describes the field with a missing photon in a present
mode. A probability can be assigned to the detection of a photon at time ¢:

p(t) &lig%ZI(fIU(tﬂLe,t—E)liﬂz- (4.21)
/

Strictly speaking, p(t) is not a probability but a probability distribution since ¢ is
a continuous variable. U (t + €,t — €) is the time evolution operator evaluated for a
infinitesimal time interval around ¢. The sum contains all possible final states. Every
summand corresponds to a potential annihilation of the photon that is detected:

p(t) ochmZ] FlU(t+ €.t — €)] o<Z| flag, (#)]i)]". (4.22)

With j; being an index of the sum in equation 4.20 that corresponds to the mode
of the detected photon. Since we deal with proportionalities only, we can insert the
annihilation part £ (t) of the field. All annihilation operators except one (the one
corresponding to the mode of the detected photon) will lead to a vanishing term.

t) o Y IFIET @I =Y GIE-OLNFIET @) = (B () ET(#)]i)
f f (4.23)

= (E~()E*(t))

For the discussion of a two photon coincidence measurement, consider a detector to
be at position 7} and another one at 7. A field’s final state | f) can now be defined
in the same fashion as before with two photons being absorbed from the initial state.

p1a(t) o<hmZ| (flU(t+ et —e) OCZ\ (FIE* (P, ) EH (7, 1))

A

—Z i\ B (7, 0 B (7, 1) F)(f |E+(r2, HOE*T (7, t)]i) (4.24)
<E (71, ) B (7, 1) B (Fay ) EF (1)),
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With p; »(t) being the detection probability distribution for a coincidence measure-
ment which is triggered by an absorption at 7;. The probability distribution is
denoted by po1(t) if the triggering happened at 7.

The probability for a coincidence count within the time interval [0, ¢] is given by the
integral over the probability distribution for a measurement triggered at 7, and at 75:

P(t) = /(;t (p1’2<t/) +p2,1(2€’)) dt’. (4.25)

With this it is possible to simulate the number of coincidence counts {n, }1% |, which
correspond to 16 projective measurements onto the states {|1,) }.¢ ;. The number of
coincidence counts within the time interval [0, t] is proportional to the corresponding
probability:

wl0) % PO = [ Cpaslt) +mnalt) . (4.26)

v refers to the states |¢,) = |¢1,)|¢p2,) which the photons are projected onto. The
subscripts of the probability distribution refer to the detection at the biexciton (b)
and exciton (x) channel. Using equation (4.24) we obtain

n,(t)
t
/ (1, B, (1) 20, By () 0, EF () L, EF(8)) + (o, By () 1, EL (t) 1, EF (1) o, B (¢)) dt’
0N -~ /
::fr/(t/)

_ /t £,(8) dt’
’ (4.27)

The expressions for the electric field have to be chosen according to the state de-
composition |¢;) = |¢1,)|¢e,). That means, depending onto which states |¢;,) and
|#9,) the photons get projected, one has to choose the corresponding expressions for
the electric field (equations 4.16 to 4.18) which correspond to the peaks discussed
in subsection 4.3.1. f,(t) was introduced to abbreviate the expression.

To simulate the number of coincidence measurements we calculated f,(¢) for all
of the 16 projective measurements. The results are summarized in table 4.1. An
exemplary calculation for some f,(t) is given in the following.

Exemplary calculation of f,(t) for v € {1,2,5,6}

The definition of f,(t) is given in equation 4.27. Depending on the value of v, i.e.
depending on which state is discussed for the projective measurement, one has to
choose the expressions of the electric field accordingly. The three possibilities for
E;“ »(t) are given in equations 4.16 to 4.18. The following illustration covers the
relations

B (1) o — (67 (t+7) + ¢ 6-(8)) (4.28)

V2

and

B (t) o« %(é;(t +7) + i 5 (1)), (4.29)

These expressions correspond to the middle peak of the interferometer’s output.
Projective measurements onto a product of single particle states which show a su-
perposition of the late and early pulse can be assigned to detections at this peak.
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Biex- Ex.
v . citon [1) f(t) (proportional)

citon

1 5 (06 (1 + Paz) + 2062Pab + PogPgb +

Lo+ [+ | 5(lee) + [el) + [le) + [11)) ;xprb) gFg
2 | [4) | IR) | 5(lee) —ilel) +[le) —4[l)) | 5(poo(1 + puz) + 2000Pu + Puapin)
314 |le) | J5(lee) + |le)) 5 (060(1+ Paw) + 2000Pab + P o)
4 1+ | \/L§(|e1> + 1)) 5 (poo(1 + Paz) + 260 Pab + Pacpob)
5 | IR) | 1+) | 5(lee) +el) —ille) —i[ll)) | 5(pos(1+ puz) + puwpen)
6 | IR) | IR) | g(lee) —ilel) —ifle) — 1)) | 5(pes(L + puz) — PogPyb + Pazpin)
T R) | le) | 5(lee) —ille)) 5 (o (1 + pra) + Pazpos)
8 | [R) | ) | Z5(lel) —ill)) 5 (06 (1 4 pra) + Pazprn)
9 |le) ||+ \/L§<|ee> + leD)) 5(poo(1 + Paz) + Pazprs)
10 | |e) | [R) | 5(lee) —ilel)) 5 (oo (L 4 paa) + Pacpos)
11 | fe) | le) | ee) Db
12 ey | [I) | le]) 2P Pbb
13 1 1) +) \/%(He) + (1)) 5(poo(1 + Paz) + Pazpos)
14 [ ) | [R) | J5([le) —[l)) 5 (oo (L 4 paa) + Pacpes)
15 (D) | le) | [le) 2P Pbb
6 || m P

Table 4.1: The tomographic method in the form it was introduced in section 4.1
requires a set of 16 projective measurements. To simulate these measurements we
calculated f,(t) in order to mimic the number of coincidence counts theoretically.
The second and third column indicate to which state the light is projected to in each
channel and the subsequent column gives the resulting combined state. The last col-
umn summarizes the corresponding expressions of f,(¢). These expressions are not
equal but proportional to f,(t). The time arguments have not been displayed here
even though the elements of the quantum dot’s density matrix are time dependent.

In our case, these single particle states are |[4) and |R) and their products are listed
in table 4.1 for the rows with ¥ = 1,2,5,6. In general f,(t) can be written as

fo(t) =" Dap(t) + " Poa(), (4.30)

with
Pen(t) = (B, (1) o, By () 2, B (1) 1, B (1)) (4.31)

and
YPoa(t) = (o, By () 1, By (1) 1, EF (1) 2, B (1)), (4.32)

The tilde indicates that these expressions are proportional but not identical to
the probability distributions: Yp,,(t) o< YPup(t) and “py.(t) o Pp.(t) (see equa-
tion 4.24).

The calculation for “py . (t) and “p,s(t) is presented successively in the following
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with the expressions for the electric field given in equation 4.28 and 4.29.

Poa(t) =(Ey (VE, (DE (DB (1)
' -<( F(t+T) e G ()0t +7) e 61 (1))
t+7)+e% 6, ()6, (t+7)+ e 6, ()
<(!b><X\(t +7) + e b)(x|(1)) (4.33)
[x)(g|(t +7) + 6fz¢“:\X><g|( ))} _ =: (1)
&) (x| (t + 7) + "= ]g) (x| (1))
Y(b|(t +7) + e [x)(b](1)))

=

v is left out within this calculation. Depending on the choice of ¢, and ¢,, this
calculation can correspond to the case v = 1,2,5,6. The operators have been
expressed by their equivalents of the Schrédinger picture though they still depend
on time which is indicated by the time argument. However, when combining two of
these time dependent operators with the same time argument, they behave exactly
like in the Schrodinger picture:

[n) (] (2) k) (1(t) = U (#)|n) w|T () T@)k) UTT () = U)8,un) T (2)
= Gmie|1) (1 (2)-

To continue with the calculation, an important assumption is made: The quantum
dot is initially in the ground state and at the time the second pulse hits the quantum
dot, we assume that all of it’s excitations by the first pulse have decayed and that
all the population is again in the ground state. The quantum dot has completely
“forgotten" the first pulse, when the second one arrives. This assumption leads to
three simplifications we will make use of:

(4.34)

1. For the quantum dot’s density matrix, we assume
p(t+7) = p(t) = p. (4.35)

2. Operators at time ¢ and t + 7 commute, i.e. [O;(t), Ox(t +7)] = 0.

3. The expectation value of the concatenation of operators at time ¢ and t + 7
factorizes, i.e.

(O1(t)0s(t + 7)) = (O1(t))(Oa(t + 7)) (4.36)
Here, OALQ denote the operators that appear within this calculation, i.e.
05 € {of,0; ,0F,0,}.

Within this approach, the variable ¢ should not have values greater then 7, i.e.
t € [0, 7], since the symmetry in time would be broken otherwise.
Equation 4.33 has been split into parts which will be calculated separately:

(D) = [x) (x| (1) +e[x) (gl (t47) |g) (x| (1) +|x) (x| (£) +e 7 |g) (x| (t+7) |x) (| (t—7),
(4.37)
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(IT) =(|b) (x[(t + 7) + e~ [b) (x| (t))(T)
=[b)(x[(t +7) + e b) (gl (t +7) [g)(x[(£) + [b) (x|(t + 7)) (x[ (1)
+ e ) (x| (¢ +7) [b)(x|(t) + e [b) (x| (1) + e CF M g) (x| (¢ + 7) [b) (gl (1)
(4.38)
and thereby

Po(t) ocg{ (I (Jx)(b(t +7) + e [x)(b|(t)) )
= LCBY(D|(t+ 1) + DYt + 7)) (x| (£) + e~ [x) (b (t + 7) [b)(x](t)
+e P [x)(b|(t + 7) [b)(x|(t) + e @) g)(b](t + ) |b)(g|(¢)
+ ) (x| (¢ +7) [x) (] (1) + e CFb) (g (¢ + 7) |g) (bl(1)
+ e b){(x](t +7) [x) (bl (t) + [x) (x|(t + 7) [b)(b](t) + [b)(b](¢) >-(4 39)

To evaluate the expectation value, consider

CIDGI) ) = (i) {le() = Dl 1] pr(@)N m) = ps(t). (4.40)

m,k,l

Here, the transition into the Schrédinger picture has been done and pj;(t) represents
the coefficients of the density matrix in the Schrédinger picture. Note that the
expectation values is evaluated by using the quantum dot’s density matrix. Initially
however, the expectation value is associated to the field’s initial state |¢). The
transition from the state of the field to the state of the quantum dot is done due
to the fact that the electric field is expressed by operators that act on the Hilbert
space of the quantum dot (see equations 4.16 to 4.18).

Now, the final expression for py.(t) can be derived from equation 4.39 by using
equation 4.35, 4.36 and 4.40:

Db,z (t) OC%(Pbb + PobPrz + 2e 0 Pz Pzb + 26 PabPbz

+ e @) oo+ @B b o+ Db + O (4.41)
= %(pbb(l + Paz) + 2€05(P) Poapap + cO5(e + 1) PogPgs)

As before, the time arguments haven been left out here even though the quantum
dot’s density matrix is time dependent.
In the same fashion p, ,(t) can be calculated:

Boa(t) =(E; (D E; () B (DEF(t)

eq. 4.28, 4.29

S el + )+ e ) el(0)
(Ib)(x|(t+7) + e b)(x|(t) | am [ (IV) (4.42)
() bl(t+7) + e x)bl(e) |
(1K1 -+ 7) + €% g) (<1 (9),
(1) = )+ ) ROI-e )0l ) 0 1 0l
(V) = (et + 7) + e 3) el (6) () a

= [x)(g|(t + 7)[b) (bl (t) + e~ [b)(b|(t + 7)[x) (gl (2),
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Pap(t) oz (V) (Ig) (x| (t + 7) + € [g) (x[(t)))

— L(x)(x|(t + 7)[b)(b](£) + [b)(bI(t + 7)|x) (x| (1)), (4.45)

and finally

Pap(t) X 5 Paapob | (4.46)

This exemplary calculation can now be concluded with the final expression for f,(¢):

fo(t) = "Dap(t) + " Doa(t)

. (447
< 5 (puo(1 + paz) + 2 c08(dp) prapab + c0S(dx + Ob) PogPgb + PawpPrb) (447)

This concludes the derivation of the expression for f,(t) with v € {1,2,5,6}.
Expressions for other values of v are summarized in table 4.1. The derivations for
these cases are not explicitly given here, however they follow the same procedure
as shown in the exemplary calculation. All expressions for f,(¢) depend on the
density matrix of the quantum dot. The master equation (see equation 3.1) is
solved numerically in order to obtain values for the density matrix elements. These
values can be plugged into the expressions for f,(t) and numerically integrated over
some time interval. This finally leads to the simulated number of coincidence counts
{n,}?%, (see equation 4.27).

Pphotons can finally be calculated by plugging the numerical values for {n,,}iil in the
reconstruction scheme described in section 4.1.
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Chapter 5

Results

This thesis focuses on the theoretical prediction and analysis of the density matrix
of (post selected) photons emitted by the quantum dot. As stated before, this
simulation involves numerically solving the master equation (see equation 3.1) on
the basis of the quantum optical model discussed in chapter 3. The Hamiltonian
given in reference [1] is used here, which lacks an oscillating factor compared to the
one given in equation 3.9. This procedure leads to numerical values for pge (), which
can be used to reconstruct pphotons by applying the tomographic method described in
chapter 4. A set of the system parameters is given in table 5.1. They play a crucial
role in the simulation and analysis. Numerical solutions of pge(t) are presented
in section 5.1. Section 5.2 consists of a presentation of the reconstructed density
matrix of the photons ppnotons- In the subsequent section, pphotons and the number
of counts are analysed.

| Parameter | Symbol | Value [1] \
Detuning between the exciton A, 970335 THyz
level and the laser
Detuning between the biexciton 0 THy

level and the energy correspond- | Ay
ing to the double laser frequency
Measure for the width of the Rabi

(resonant excitation is assumed)

frequency (see equation 3.12) g variable

Amplitude of the Rabi frequency | €2 variable

Biexciton decay rate Yo 1/771 THz

Exciton decay rate Va 1/405 THz

Biexciton-exciton dephasing rate | .

amplitude gl 0.0219 THz

EXClton-gFound state dephasing v 0.0349 THyz

rate amplitude 0

Exponent in expression of de- 2 (“linear dephasing"),
. n “ . .

phasing rate 4 (“quadratic dephasing")

Table 5.1: Summary of system parameters that are used within the simulation.
We associate o, a measure for the width of the Rabi frequency, to the laser pulse

length and €y, the amplitude of the Rabi frequency, to the amplitude of the laser
intensity. The parameters o and )y are varied within the following discussion. In
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this way, the influence of the laser’s settings on the result of the simulation can be
studied.

The value of A, in table 5.1 is taken from the supplementary material of the project’s
latest publication [1|. However, it is possible to derive a different value for A, based
on parameters that are given in that publication. The laser frequency is said to be
Ar = 918.7 nm. The spectral difference between the biexciton and exciton photon
is given to be 1.8 nm. We assume a resonant excitation of the biexciton level via
the two-photon absorption. That leads to the laser frequency corresponding to
the half of the biexciton-groundstate energy difference. Therefore, the difference
between the exciton and laser wavelength A\, — A, can be understood to be 1.8 nm
as well. Following these lines of argumentation leads to a different value of A, which
approximately differs by the factor of 2 from the value given in table 5.1:

c c AL — Ay 1.8 nm
Af= S _ AT h ~ 0.638 TH
= w9 o187 om - (0187 £ 1.8) om )  (5.1)

= A, =27Af ~ 27 -0.638 THz.

The difference in the fidelity of the photons’ density matrix due to the different value
of A, will be discussed in section 5.3. If not noted otherwise, A, is set to the value
given in table 5.1.

For the calculation of the system’s dynamics, for the creation of the matrix his-
tograms in this chapter and for parallelization we use QuTiP, a Python toolbox for
the numerics in a quantum physical context [15]. The plots presented in this chapter
have been created with Matplotlib [16]. Symbolic calculations in the context of the
tomographic reconstruction have been done with SymPy [17].
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Rabi frequency

T T T T
0 125 250 375 500
t in ps

Figure 5.1: Exemplary plot of the Rabi frequency €2(¢) corresponding to a single
pulse. For this plot, 2y was set to 1 THz and ¢ to 20 ps. The graph is centered
around ty = 125 ps.
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1.0
— Pbb — Pbb
Pz Pz
0.5 — Pgg — Pgg
0.0 T T T T T 0.0 T —— T T
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Coherences Coherences
0.4 1 — lpgbls [Pyl 0.4 4 — lpgbls [Pyl
‘thlv‘Pm” ‘Pbm|v|pmb‘
0.2 - — \pmglvlpgi\ 0.2 1 — |pagls lpgal
00 L T T T T T 00 B T T T T T
0 125 250 375 500 0 1250 2500 3750 5000
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(a) (b)

Figure 5.2: Dynamics of the quantum dot density matrix referring to the choice of
Q(t) as shown in figure 5.1. The diagonal elements are denoted by “Population”
and the off-diagonal elements are indicated by “Coherences". n, the exponent of the
dephasing rate, was set to 2 for this plot (linear dephasing). Subfigure (b) is the
extension of subfigure (a) for a larger time interval.

5.1 Dynamics of the quantum dot

The numerical solution of pqu(t) for an exemplary choice of parameter values is
presented in figure 5.2. The quantum dot is initially in the ground state. Rabi
oscillations can be observed during the time of the pulse. The biexciton level is
populated and decays after the pulse. Exciton population can be observed as well.
The off-diagonal elements py, and pg, show a significant magnitude.

Figure 5.2b depicts the dynamics of the quantum dot which is shown in figure 5.2a
for a larger time interval. The population returns to the ground state after that
time span. The coherences show a slower decay compared to the population. For
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the theoretical realization of the tomographic method we assume that the quantum
dot has returned to the ground state at the arrival of the second or late pulse (see
subsection 4.3.2). Jayakumar et al. [2| state that the delay between the early and
late pulse is 3.2 ns for their experiment. Taking this time as a reference and looking
at the quantum dot’s density matrix in figure 5.2b at the time of around 3200 ps
however yields that the coherences would not have been completely decayed at the
arrival of the second pulse. This suggests that our approximation is limited to a
certain regime of time delays, pulse lengths and laser intensities. Figure 5.3 depicts
the remaining population and the largest absolute value of the remaining coherences
at around 3200 ps for varying {2y and o. The figure shows alternating regions with
fewer and more remaining population and coherences. These regions do not coincide
between subfigure (a) and (b). For low values of {2y and o these areas seem to follow
the lines of constant energy per pulse better than for high values. The intensity
dependent dephasing might be a reason for that. Both, the values for the remaining
population and the largest absolute value of the remaining coherences do not reach
the order of 1071
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Remaining Population (1 — p,g) S 10-2

N
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G
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=
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12 14 16 18 20 22 24 26 28
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Figure 5.3: (a): The population calculated as 1 — p,, remaining at a time
around 3200 ps. (b): The value of the largest remaining coherence (maximum
of |pgsl, |Pbzl,s |pugl) at this time. The energy per pulse is constant along the dashed
white lines. € and o are varried, Q(t) is centered at 125 ps and n = 2 (linear
dephasing). The labels of the colorbar are displayed in the decimal power of —2.
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The dynamics of the population and coherences for different values of 2y and o
are depicted in figure 5.4. Strongly weakened coherences after the pulse can be
observed in subfigure 5.4a. Compared to figure 5.2, )y is increased by the factor of
2 for this subfigure. For subfigure 5.4b and 5.4c, €}y was reduced to 0.5 THz. The
Rabi oscillations are slowed down and the coherences are increased in comparison to
subfigure 5.4a. ¢ is reduced to 12 ps for subfigure 5.4c. Compared to subfigure 5.4b,
this has the effect of an increase in the biexciton population and coherences. ()
is reduced to 0.2 THz in subfigure 5.4d. Here, the coherences are relatively large
compared to the population. This leads to a reconstructed density matrix similar
to the one of a Bell state as it will be depicted in the next section.

The energy per pulse is proportional to Q20 [1]. This quantity is decreased along the
subfigures (from subfigure 5.4a to 5.4d). In this work, exemplary lines of constant
energy per pulse are plotted as dashed lines in the colorplots with a €2y and ¢ axis.
These lines exhibit a square root behaviour since if F o« Q20 with E being the

energy per pulse, a relation for (o) can be given as Qq(0) o \/g

A discussion of the system always has to include both, 0y and o. For instance, as
one can see by going from subfigure 5.4a to subfigure 5.4b and 5.4c¢ reducing €2
could either lead to an increase or decrease of the population, depending on the
value of o. There is no trivial relationship that determines whether certain values of
Qo and o will lead to good results. There is a non trivial relationship between these
parameters and the fidelity of the photons’ density matrix to a Bell state, which will
be discussed in section 5.3.
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Figure 5.4: Elements of the quantum dot’s density matrix for different values of €2
and 0. Q(t) is centered around 125 ps and n = 2 (linear dephasing) for every subfig-
ure. (a): Q9 =2 THz, 0 = 20 ps. (b): Qy = 0.5 THz, 0 = 20 ps. (c¢): Qp = 0.5 THz,

o=12ps. (d): Q9 =0.2 THz, 0 = 12 ps.
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5.2 Density matrix of the photons

0.0

Figure 5.5: The real part of the reconstructed density matrix pphotons- Lhe imagi-
nary part is negligibly small. The numerical integral for simulating the number of
coincidence counts is taken from 0 to 10000 ps. The center of Q(t), the value of
n for all subfigures and the value of 2y and o for every individual subfigure was
chosen as in figure 5.4: (a): Qo = 2 THz, 0 = 20 ps. (b): Qy = 0.5 THz, 0 = 20 ps.
(c): Qo =0.5 THz, 0 = 12 ps. (d): Q9 = 0.2 THz, 0 = 12 ps.

The goal of the underlying experiment is the preparation of photons such that
their reconstructed state is close to a generalized Bell state. Figure 5.5 depicts
the theoretically reconstructed density matrix ppnotons for various combinations of
)y and o. Subfigure 5.5d shows a density matrix similar to the one of the Bell state
Do) = \%(\ee) + [1I)). The configuration of parameters chosen for 5.5a leads to a
density matrix with vanishing coherences. While the density matrix in subfigure
5.50b and 5.5¢ show coherences, the matrix elements pece. and ppy are dominant.

The remaining very small imaginary part of the density matrix could either be a
consequence of the physical system or a result of numerical inaccuracies. A density
matrix that was reconstructed based on experimental results contains an imagi-
nary part, which however is smaller than the real part [1]. The integral to emulate
the number of coincidence counts was performed over the time interval from 0 to
10000 ps, which is larger then the time between the early and late pulse chosen by
Jayakumar et al. [2], who specify a time span of 3200 ps between the pulses. The
time interval of the simulation has been chosen relatively large in order to include
potential dynamics on a large time scale. If the theoretical simulation is compared
to experimental results this discrepancy has to be taken into account. Due to poten-
tial decoherence mechanisms that have not been considered within the theoretical
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model yet, the experimental coherence time might be shorter and allow for a smaller
delay time between the pulses.

5.3 Fidelity

The fidelity of two states or density matrices is a measure that expresses how similar
these states are or, in other words, how well their mathematical representations
coincide. For two density matrices p; and p, the fidelity is given by [18|

1/2 1/2
F(p1,p2) = tr ( ' 2 py ) : (5.2)
If one of the states can be expressed as a pure state |®), the fidelity can be written

as [18]
F(18), p) = v/ (@]o[D). (53)

In this work, expression 5.3 is used to calculate the fidelity between the Bell state
|Dg) = \%(]e@ + [1I)) and the density matrix pphotons, Which is the output of the
simulation and tomography. In the following, the fidelity F always refers to this
choice of states. F can have values in between 0 and 1, where F = 1 would mean
that pphotons = |Po) (Po| and F = 0 if all vectors of ppnotons’s spectral decomposition
are orthogonal to |®g).

The fidelity is a crucial parameter for the analysis of the system under consideration.
A discussion of F for different values of system parameters leads to a notion on how
these parameters affect ppnotons: As a result we are able to propose certain ranges
of Qy and o that will lead to high fidelities which indicate a reconstructed state
that is similar to the bell state |®). The density matrix depicted in subfigure 5.5d
is a candidate for a high fidelity. In order to discuss the relation between system
parameters and the fidelity, colorplots of the fidelity over €}y and o are shown in
figure 5.6. Areas of high fidelity can be observed. This implies that values for 2
and o exist for which the simulation proposes good measurement results. In other
words, the theoretical analysis suggests choices for the laser’s parameters that will
eventually lead to photons with a reconstructed density matrix that is close to the
one of the Bell state |®g) = \%(]ee) + [10)).

The colorplot of the fidelity shows an alternating pattern that follows the dashed
white lines in regions of low energy. The accordance between the pattern and white
lines seems to be broken for regions of higher pulse energy. A similar structure could
already be observed in figure 5.3. This suggests that the energy per pulse might be
the crucial parameter that dictates the physics for low energies. This dependency
might be broken for higher energies due to the intensity dependent dephasing. By
comparing figure 5.6a and 5.6b, it can be observed that the fidelity is slightly more
suppressed in regions of higher energy for quadratic dephasing compared to the
case of linear dephasing. In order to calculate the fidelity, only the real part of
the expression (®g|p|Py) was taken into account here. The imaginary part however
is of negligible magnitude and might be the result of numerical inaccuracies. A
discussion of the fidelity for other choices of the phase ¢ of the generalized bell state
|D,) = \/Li(|ee> + ¢“|l1)) could be added in the future. The density matrix depicted

in reference |1] suggests a different choice for ¢.

39



5.3. FIDELITY CHAPTER 5. RESULTS
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Figure 5.6: Colorplot of the fidelity F for various values of 2y and ¢. The dashed
white lines correspond to lines of constant energy per pulse. () is centered around
125 ps, the integral for the simulation of the number of coincidence counts is eval-
uated from 0 to 10000 ps. (a): n = 2 (linear dephasing). (b): n = 4 (quadratic
dephasing).
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Figure 5.7: Colorplot of the fidelity F for various values of €}y and ¢ with the value
of A, that is derived in equation 5.1. The values for the other parameters were
chosen as in figure 5.6a.

As it was illustrated in equation 5.1, it is possible to derive a different value for A,
with respect to the value given in table 5.1. Figure 5.7 depicts the fidelity for this
alternative choice of A,. This alternative value is approximately the double of the
one used for the other figures in this chapter. To allow a comparison, the values for
the other parameters have been chosen as in figure 5.6a. Figure 5.7 shows a stretched
pattern of the fidelity colorplot, the fundamental behaviour, however, is not changed.
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Figure 5.6 and 5.7 depict very high fidelities for regions of low energy. However,
only few photons might be created in this region. How many photons are generated
might be crucial for a potential application of the system. A discussion of the number
of simulated coincidence counts for various values of {2y and ¢ is presented in the
following. Values for the number of simulated coincidence counts are obtained by
using relation 4.27. f, appears on the right hand side of this relation. Expressions
that are proportional to f, are given in table 4.1 for all v. They are a function of the
quantum dot’s density matrix elements. The values for the matrix elements are the
output of the numerical solution of the system’s master equation. The integral that
is indicated in relation 4.24 is performed numerically from 0 to 10000 ps by using
the trapezoidal rule. The results for all 16 configurations of states (see table 4.1)
are added up and the resulting numbers are presented in figure 5.8a. Bright areas
correspond to a high number of simulated counts and dark regions correspond to
few proposed counts. Within this discussion, the real part of the sum is depicted, as
the imaginary part is small and a result of numerical inaccuracies, since the values
for f,(t) are real from their definition.

The depicted values are proportional to the number of simulated coincidence counts.
The values that are indicated by the colorbar are not the exact number of counts,
but a reference for the magnitude of the number of counts due to the proportionality.
Few coincidence counts are proposed for low energy and an alternating behaviour
can be observed when the energy is increased. The system’s dominating pattern as
in previous plots can be seen. To compare the fidelity and values proportional to the
number of coincidence counts, these quantities are scaled to the interval [0, 1] and
are subsequently multiplied. The result of this product is depicted in figure 5.8b for
various values of €}y and o. The scaling of the fidelity and values proportional to
the number of coincidence counts is done by subtracting all entries of the respective
numerical array by the smallest entry and dividing the consequent values by the
largest entry of the resulting array. The plot proposes a small overall accordance.
Depending on the potential application of the system, different number of counts
might be required which eventually leads to the reduction of the fidelity that has to
be taken into account in order to assure a necessary number of counts.
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Figure 5.8: (a): The sum of the values proportional to the number of coincidence
counts n,, for all 16 configurations of projective measurements. (b): Both, the fidelity
which is depicted in figure 5.6a and the number of counts is scaled to the interval
[0,1] and multiplied. Qg and o are varied. The integral limits and parameters for
the computation of the number of coincidence counts are chosen as in figure 5.6a.
The dashed lines depict lines of constant energy per pulse. 43



Chapter 6

Conclusion

This work displays the possibility to run a tomographic method with simulated co-
incidence counts as an input and thereby reconstruct density matrices of photons in
a simulation. With this procedure it is possible to propose the output (the recon-
structed density matrix) of the photonic experiment under consideration. Choices
for values of €2y and o, that lead to high fidelities between a bell state and the
reconstructed density matrix, can be suggested. Thereby it might be possible to op-
timize the fidelity by making use of the theoretical analysis in this thesis. However,
this requires that the values for €y, o and the phase ¢ of the generalized bell state
are determined such that the simulation corresponds to the actual dynamics of the
experiment.

The theoretical reconstruction of a density matrix by means of the tomographic
model is a powerful analysis tool that can be used for other experiments as well.
The analysis of the system proposed a sparse accordance between the fidelity of
the reconstructed density matrix and the number of coincidence counts. The latter
quantity is related to the number of created photons. This forces the potential user
of the system to find a compromise between the quality and the quantity of created
photons.

It might be important to scrutinize, whether the entanglement of the photons goes
back to the correlation of the pulses hitting the quantum dot or if the entanglement
is actually created by the tomographic measurement scheme. This issue can be
examined by running the experiment without the schematically first interferometer
and analysing the results.

To discuss the fidelity for different phases of the generalized Bell state could be
an interesting extension of the analysis. As a next step, the theoretical results of
this work have to be thoroughly compared to experimental results. This determines
the validity of the theoretical study and might lead to necessary adjustments of
the theoretical model, like considering additional decoherence mechanisms. For this
purpose, the theoretical results of this work should be extended to regions of lower
pulse lengths.

44



Bibliography

[1] Tobias Huber et al. “Coherence and degree of time-bin entanglement from
quantum dots”. In: Phys. Rev. B 93 (20 2016), p. 201301. DOI: 10. 1103/
PhysRevB . 93 . 201301. URL: http://link . aps . org/doi/ 10 . 1103/
PhysRevB.93.201301

[2] Harishankar Jayakumar et al. “Time-bin entangled photons from a quantum
dot”. In: Nature Communications 5 (4251 2014). DOI: 10.1038/ncomms5251.
URL: http://dx.doi.org/10.1038/ncomms5251.

[3] Harishankar Jayakumar et al. “Deterministic Photon Pairs and Coherent Op-
tical Control of a Single Quantum Dot”. In: Phys. Rev. Lett. 110 (13 2013),
p. 135505. DOIL: 10.1103/PhysRevLett.110.135505. URL: http://link.
aps.org/doi/10.1103/PhysRevLett.110.135505.

[4] J. F. Dynes et al. “Efficient entanglement distribution over 200 kilometers”. In:
Opt. Express 17.14 (2009), pp. 11440-11449. po1: 10.1364/0E. 17 .011440.
URL: http://www.opticsexpress.org/abstract.cfm?URI=0e-17-14-
11440.

[5] Daniel F. V. James et al. “Measurement of qubits”. In: Phys. Rev. A 64 (5
2001), p. 052312. DOL: 10.1103/PhysRevA.64.052312. URL: http://link.
aps.org/doi/10.1103/PhysRevA.64.052312.

[6] Hiroki Takesue and Yuita Noguchi. “Implementation of quantum state tomog-
raphy for time-bin entangled photon pairs”. In: Opt. Ezpress 17.13 (2009),
pp- 10976-10989. DOT: 10.1364/0E.17.010976. URL: http://www.opticsexpress.
org/abstract.cfm?URI=oe-17-13-10976.

[7] Manfred Sigrist. Lecture Notes: Solid State Theory. http://edu.itp.phys.
ethz.ch/fs14/sst/Lecture-Notes.pdf. Institute for Theoretical Physics,
ETH Ziirich, Spring Semester 2014. Accessed: 24 January 2017.

[8] Richard W. Robinett. Quantum Mechanics: Classical Results, Modern Sys-
tems, and Visualized Examples. Second Edition. Oxford University Press, 2006.

[9] David W. Snoke. Solid state physics: essential concepts. Addison-Wesley, 2009.

[10] Florian Marquardt and Annett Plittmann. Introduction to dissipation and de-
coherence in quantum systems. arXiv:0809.4403v1, https://arxiv.org/pdf/
0809.4403.pdf. 2008.

[11]  Oriol Romero-Isart. Lecture Notes: Quantum Optics. Lecture Title: “Theoretische
Quantenoptik und Quanteninformation”, University of Innsbruck, Summer
Semester 2015.

[12] Wolfgang Demtroder. Laser Spectroscopy, Vol. 1: Basic Principles. Fourth
Edition. Springer-Verlag Berlin Heidelberg, 2008.

45


http://dx.doi.org/10.1103/PhysRevB.93.201301
http://dx.doi.org/10.1103/PhysRevB.93.201301
http://link.aps.org/doi/10.1103/PhysRevB.93.201301
http://link.aps.org/doi/10.1103/PhysRevB.93.201301
http://dx.doi.org/10.1038/ncomms5251
http://dx.doi.org/10.1038/ncomms5251
http://dx.doi.org/10.1103/PhysRevLett.110.135505
http://link.aps.org/doi/10.1103/PhysRevLett.110.135505
http://link.aps.org/doi/10.1103/PhysRevLett.110.135505
http://dx.doi.org/10.1364/OE.17.011440
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11440
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11440
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://link.aps.org/doi/10.1103/PhysRevA.64.052312
http://link.aps.org/doi/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1364/OE.17.010976
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-13-10976
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-13-10976
http://edu.itp.phys.ethz.ch/fs14/sst/Lecture-Notes.pdf
http://edu.itp.phys.ethz.ch/fs14/sst/Lecture-Notes.pdf
https://arxiv.org/pdf/0809.4403.pdf
https://arxiv.org/pdf/0809.4403.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

18]

46

Daniel A. Steck. Quantum and Atom Optics. available online at http://
steck.us/teaching. (revision 0.11.6, 24 February 2017).

Roy J. Glauber. “The Quantum Theory of Optical Coherence”. In: Phys. Rev.
130 (6 1963), pp. 2529-2539. DOI: 10.1103/PhysRev.130.2529. URL: https:
//link.aps.org/doi/10.1103/PhysRev.130.2529.

J.R. Johansson, P.D. Nation, and Franco Nori. “QuTiP: An open-source Python
framework for the dynamics of open quantum systems”. In: Computer Physics
Communications 183.8 (2012), pp. 1760-1772. DOIL: http://dx.doi.org/
10.1016/j.cpc.2012.02.021. URL: http://www.sciencedirect . com/
science/article/pii/S0010465512000835.

J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing In
Science & Engineering 9.3 (2007), pp. 90-95. DOI: 10.1109/MCSE. 2007 . 55.

Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Com-
puter Science 3 (Jan. 2017), e103. DOI: 10.7717/peerj-cs.103. URL: https:
//doi.org/10.7717/peerj-cs.103.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th Anniversary Edition. Cambridge University Press, 2010.


http://steck.us/teaching
http://steck.us/teaching
http://dx.doi.org/10.1103/PhysRev.130.2529
https://link.aps.org/doi/10.1103/PhysRev.130.2529
https://link.aps.org/doi/10.1103/PhysRev.130.2529
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://www.sciencedirect.com/science/article/pii/S0010465512000835
http://www.sciencedirect.com/science/article/pii/S0010465512000835
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

	Introduction
	Experiment
	Quantum Dots
	Excitons
	Quantum Confinement

	Time-Bin Entanglement
	Experimental Setup

	Theoretical Model
	Open System Dynamics
	System Hamiltonian
	Dissipation

	Tomography
	Tomographic Method
	Experimental Realization
	Theoretical Realization
	Electric field emitted by the quantum dot
	Simulated number of coincidence counts


	Results
	Dynamics of the quantum dot
	Density matrix of the photons
	Fidelity

	Conclusion

