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Zusammenfassung

Auf Atome in Lichtfeldern wirken Kräfte, die ihren Ursprung im Impulsübertrag der
gestreuten Photonen haben. Von Lasern verursachte Lichtkräfte sind besonders stark
und werden in vielen Experimenten zum Fangen und Kühlen von Atomen verwendet. In
einem Gas mit niedriger Dichte ist es normalerweise unwahrscheinlich, dass ein gestreutes
Photon auf ein weiteres Atom trifft. Daher erfolgt die Wechselwirkung zwischen Atomen
und dem Lichtfeld auf individueller Basis. Das ändert sich drastisch, wenn sich die Atome
in einem optischen Resonator hoher Güte bewegen. Durch die Reflexion an den Spiegeln
durchläuft ein Photon die Atomwolke mehrere Male, sodass die Rückwirkung der Atome
auf das Lichtfeld nicht mehr vernachlässigbar ist. In der daraus resultierenden Atom-
Licht-Dynamik dominiert der kollektive den individuellen Anteil.

Das dynamische Wechselspiel von Atomen und Lichtfeldern resultiert oft in kollek-
tivem Kühlen der Atome. Doch auch wenn die Resonatorfelder der Atombewegung
adiabatisch folgen, gibt es langreichweitige Atom-Atom-Wechselwirkungen, welche sich
oft durch ein kollektives, von der Position aller Atome abhängiges Potential beschreiben
lassen. Interessanterweise führt die Beleuchtung der Atomwolke mit einem ausreichend
starken Laserstrahl orthogonal zur Resonatorachse dadurch zu einem Phasenübergang
von einer homogenen zu einer periodisch geordneten Atomverteilung.

In dieser Arbeit betrachten wir theoretische Modelle zur Beschreibung von kalten
Atomen in Viel-Moden-Resonatoren. Die Atome werden transversal zur Resonatorachse
von mehreren Laserstrahlen mit verschiedenen Frequenzen, welche quasi-resonant in eine
jeweilige Resonatormode gestreut werden, beleuchtet. Aufgrund der im Ort variierenden
Struktur der Resonator- und Lasermoden entsteht eine Vielzahl von meta-stabilen Atom-
Mustern. Diese entsprechen einem Minimum in der potentiellen Energie der Atome.
Im Gegensatz zum Fall von nur einer Mode ist wegen den lokalen Energieminima die
Minimierung der Energie nicht mehr trivial. Durch numerische Simulationen der semi-
klassischen Atom-Lichtfeld-Dynamik von Zwei- und Viel-Moden-Modellen mit äquidis-
tanten Moden untersuchen wir, welche quasi-stationären Zustände erreicht werden. Das
hängt sehr stark von der Geschwindigkeit mit der die Laserintensität erhöht wird und
von der Anfangstemperatur ab. Wenn die Laser abrupt angeschaltet werden, bleiben die
Atome leicht in einem lokalen Energieminimum stecken.

Darauf folgend diskutieren wir die mögliche Anwendung von ultra-kalten Bosonen
in optischen Gittern in solchen Viel-Moden-Resonatoren als analoger Quantensimula-
tor, der schwierige Optimierungsprobleme lösen soll. Die Lösung eines solchen Problems
kann als globale Minimierung einer von vielen Variablen abhängigen Kostenfunktion for-
muliert werden. Dazu assoziieren wir die Kostenfunktion mit dem vom Licht kreierten
Potential. Die Freiheit bei der Wahl von verschiedenen Moden und dazugehörigen Laser-
Intensitäten ermöglicht die Realisierung eines dem Optimierungsproblem angepassten
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Potentials. Der Grundzustand des Systems entspricht der Lösung des Problems und
wird dynamisch dadurch erreicht, dass die Laserintensität langsam erhöht wird. Diese
Methode ähnelt dem bekannten Quantum-Annealing-Protokoll. Wir zeigen, dass man
mit N(N + 1)/2 Moden mit sich genügend voneinander unterscheidender räumlicher
Struktur beliebige Atom-Atom Wechselwirkungen erzeugen kann. Als Beispiel bestim-
men wir die zu einem Hopfield-Modell passende Modenkonfiguration.

Weiters wenden wir uns einem spezifischen Optimierungsproblem zu und diskutieren
eine mögliche Implementierung des sogenannten Damenproblems, einer schachmathe-
matischen Aufgabe, im Detail. Das Damenproblem kann folgendermaßen formuliert
werden: Platziere N Schachdamen auf einem N mal N Schachbrett so, dass sich keine
dieser Damen schlagen kann, wenn sie sich nach den Schachregeln bewegen dürfen. Wenn
auf ausgesuchten Diagonalen keine Damen platziert werden dürfen, entspricht die Frage,
ob dann immer noch ein Lösungsmuster existiert, einem Problem der Komplexitätsklasse
NP-complete. Weiters gibt es praktisch schwierige Instanzen des Problems für relativ
kleine Schachbretter. Die experimentelle Realisierung eines solchen Quantensimulators
würde es ermöglichen, den potentiellen Geschwindigkeitsvorteil gegenüber einem klassis-
chen Computer zu testen. Die Implementierung basiert auf ultra-kalten Atomen in einem
zwei-dimensionalen optischen Gitter, welche die Damen auf einem Miniatur-Schachbrett
repräsentieren. Diese Wahl vermeidet den sonst üblichen Qubit-Overhead. Die Bedin-
gung, dass sich zwei Damen nicht schlagen dürfen, wird durch transversale Beleuch-
tung mit Frequenzkämmen oder gepulsten Lasern aus drei Richtungen geltend gemacht.
Durch Ausnützen der charakteristischen Geometrie des Problems ist die Kopplung an
eine nur relativ kleine Anzahl von Moden nötig, welche linear mit N skaliert. Zusätzlich
induziert die Beleuchtung kollektive, nicht-lokale Quantenfluktuationen während des
Annealing-Protokolls, was darauf hindeutet, dass das System nicht effizient mit Quanten-
Monte-Carlo Methoden auf einem klassischen Computer simuliert werden kann.
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Abstract

Atoms in light fields experience forces due to the momentum transfer from scattered
photons. These light forces are especially strong in laser fields and are routinely used
to trap and cool atoms in experiments. Since in a dilute gas it is typically unlikely that
a photon which has been scattered by one atom hits another atom, several atoms in a
cloud interact with the light field individually. This behavior drastically changes when
the atoms are placed in a high finesse optical resonator. Here, photons complete multiple
round-trips before leaving the resonator, which renders the back-action of the atoms on
the field substantial. Hence in the arising coupled atom-field dynamics the collective
dominates the individual part.

The dynamical interplay between atoms and fields can give rise to collective cooling
effects. Infinite-range atom-atom interactions emerge even when the resonator fields adi-
abatically follow the atomic motion and often simplify to a collective potential depending
on all atom positions. Prominently, these features bring about a phase transition from
homogeneous to ordered atomic patterns, which is driven by the intensity of a laser beam
illuminating the atomic cloud within the transversal plane of the resonator.

In this thesis we study theoretical models for the dynamics of cold atoms in a multi-
mode resonator. The atoms are transversally pumped by several laser beams with dis-
tinctive frequencies, which are quasi-resonantly scattered into different resonator modes.
Due to the non-uniform spatial structure of different resonator and pump modes, a mul-
titude of meta-stable patterns emerges. These correspond to a minimum of the atomic
potential energy. As opposed to the single-mode case, the energy minimization is not
trivial anymore due to the existence of local energy minima. We investigate which
quasi-stationary states are attained by numerically simulating the semi-classical atom-
field dynamics for a simple two-mode and a multi-mode model with equidistant modes.
We find a strong dependence on the pump intensity ramp speed and the initial tempera-
ture. Particularly, for fast intensity quenches the atoms are likely to get stuck in a local
minimum.

Subsequently, we consider the potential application of ultra-cold lattice bosons in a
multi-mode resonator as an analog quantum simulator aiming to solve hard optimization
problems. Solving such a problem amounts to the global minimization of a multi-variate
cost function. We associate the cost function with the collective light-mediated poten-
tial. In this vein the freedom to use different mode shapes and relative laser intensities
for each resonator-pump mode pair allows for tailoring the collective potential to fit a
desired optimization problem. The ground state representing the solution is dynami-
cally attained by slowly ramping up the pump intensity, which implements a quantum
annealing protocol. We demonstrate that by driving N(N + 1)/2 modes with a suffi-
ciently diverse spatial structure, arbitrary atom-atom interactions can be created. As an
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example we numerically find a mode configuration to simulate the annealing dynamics
for a Hopfield model.

Shifting to a specific optimization problem, we propose a detailed implementation of
the N -queens problem, where the task is to place N queens on an N by N chess board
such that no queens attack each other according to the chess rules. When the queens are
forbidden to occupy some chosen diagonals, answering the question whether there still
exists such a solution is proven to be NP-complete and practically hard instances occur
for relatively small problem sizes. Thus the experimental realization of such a quantum
simulator would allow for probing for a potential quantum advantage. The implemen-
tation is based on ultra-cold atoms in a 2D optical lattice representing the queens on
a miniaturized chess board, avoiding any qubit overhead. The non-attacking condition
is enforced by transverse illumination with frequency combs from three directions. Ex-
ploiting the characteristic geometry of the problem enables to pump only a moderate
amount of modes scaling linearly with N . In addition, the illumination induces collective
non-local quantum fluctuations during the annealing protocol, which suggests that the
system cannot be straightforwardly simulated with quantum Monte Carlo methods on
a conventional computer.
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1. Introduction

Understanding the fundamentals of the interaction of matter with a radiation field has
been a longstanding endeavor in physics. Many aspects can be very well described by
classical statistical mechanics combined with electrodynamics based on Maxwell’s equa-
tions. This theoretical edifice started to collapse after Planck had to discretize the energy
of oscillating particles in order to derive the black-body radiation law in 1900 [1.1] and
thereby unwillingly introduced quantum mechanics. In the following decades the im-
plications on physics were taken seriously by Einstein and Bohr among others. While
Bohr is mainly known for his atom model with which he was able to explain the spectral
emission lines, Einstein developed the revolutionary concept of quanta of the radiation
field, which are nowadays known as photons. In this picture Maxwell’s equations de-
scribe wave-like probability functions guiding the photons, but when interacting with
matter the energy can be transferred in discrete quanta only – a particle-like behavior.
Using these light particles Einstein could explain the photo-electric effect [1.2] and derive
Planck’s radiation law in various ways, both of which were known from experiments at
this time. Moreover, photon statistics paved the way to the theory of the ideal quantum
gas [1.3]. The particle-wave duality was also found to exist for matter as initially con-
ceptualized in de Broglie’s PhD thesis in 1925 and finally put into a thorough framework
by Schrödinger’s wave equation [1.4] in 1926. Later, the fully-fledged theory of quantum
electrodynamics was formulated by Dirac, Fermi and Feynman [1.5–1.7] among others.
Quantum mechanics and electrodynamics proved as outstandingly successful to predict
phenomena on the microscopic scale up to the present. The experiments at this time
were based on relatively hot gases and solid bodies interacting with thermal radiation,
and did not allow for direct observation of the new concepts appearing so abstruse from
the macroscopic viewpoint. And people did not think that this was possible. This should
change with the development of the laser.

The invention of the maser [1.8] in 1955 and the laser [1.9, 1.10] in 1960 provided a
monochromatic optical radiation source with a long phase coherence allowing for tight
focusing and high accuracy. On the one hand, this lead to many practical applications of
the laser as an indispensable tool for research, medicine, industry and everyday life. On
the other hand, it permitted the direct observation of quantum mechanical systems as
experimentalists gained control over single or few atoms by making use of laser cooling
and trapping of atoms [1.11]. Moreover, the quantum nature of the laser light itself
became a subject of experimental and theoretical research known as quantum optics
[1.12]. Finally, the fully quantized interaction of both light and atoms was realized in
optical and microwave cavities, entering the so-called strong coupling regime of cavity
quantum electrodynamics (CQED) [1.13, 1.14].

A striking demonstration of the control of atomic gases was the realization of a Bose-
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1. Introduction

Einstein condensate [1.15, 1.16] – the degenerate quantum gas predicted by Einstein [1.3]
– in 1995. The creation of this ultra-cold atomic cloud relies heavily (but not only)
on the use of laser trapping and cooling. Moreover, placing these ultra-cold atoms in
an optical lattice created by interfering laser beams [1.17, 1.18] allows for emulating
condensed matter models such as the Bose-Hubbard model. So finally Feynman’s idea
to simulate quantum physical systems with a simpler quantum physical system [1.19]
became experimental truth.

Several Nobel prices were awarded for related research. Recently, these were in 1997
for cooling and trapping (Chu, Cohen-Tannoudji, Phillips), in 2001 for Bose-Einstein
condensates (Cornell, Ketterle, Wieman), in 2005 for optical coherence and frequency
combs (Glauber, Hall, Hänsch), in 2012 for methods to manipulate quantum systems
(Haroche, Wineland) and in 2018 for optical tweezers (Ashkin among others).

1.1. Light forces and optical resonators

The fundamental processes of the quantum interaction of radiation and matter were hy-
pothesized by Einstein as early as 1917 [1.20]. The first process consists of the transition
of the internal state of an atom to a higher level accompanied by the absorption of a
photon from the radiation field, and its inverse, i.e. the transition to a lower internal
state and emission of a photon into the radiation field. Since for this purpose the atom
has to be driven by radiation it is called stimulated emission and absorption. In the
second process photons are uniformly emitted in all directions, even when no field is
present. This so-called spontaneous emission is a visible consequence of the quantum
nature of the electric field.

Since photons carry momentum the recoil kick upon emission or absorption induces
mechanical forces onto the atom. Let us now consider an atom in one dimension which
is illuminated by a laser beam. Photons are absorbed from the beam giving rise to a
kick in the beam’s propagation direction. As explained above, the emission process can
be twofold: Firstly, if the photon is emitted spontaneously, the atom feels a kick in a
random uniform direction such that no net force arises. The atom will thus be pushed
away by the radiation due the kick upon absorption, so this dissipative force is aptly
called radiation pressure. Secondly, the photon can be emitted by stimulated emission
back into the laser beam. Since its propagation direction is the same as that of the
absorbed photon one would expect that there is no net force. This is true for a beam
with a uniform intensity distribution. An inhomogeneous intensity such as in the focus
of a beam, however, leads to the dipole force proportional to the intensity gradient. It
pushes the atoms towards the intensity maxima or minima, depending on whether the
laser frequency is lower or higher than the atomic resonance frequency, respectively.

Further effects can be identified by considering an atom in two counter-propagating
laser beams. The interference in counter-propagating beams leads to an intensity pattern
creating a conservative potential for the atoms due to the dipole force. Because of their
regular structure these potentials are called optical lattices [1.21]. Obviously, the net
radiation pressure forces cancel for an atom at rest. For moving atoms, however, the
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1.1. Light forces and optical resonators

Doppler effect leads to different absorption rates from the co- and counter-propagating
beams, respectively. Applying red-detuned laser light results in a velocity-dependent
friction force, which is called Doppler cooling [1.22].

With increasing atom-field coupling strengths, single photon scattering events become
more relevant and this granularity leads to quantum noise in addition to the description
based on averaged net forces. Finally, the so-called strong-coupling regime is attained
when the coherent interaction dominates over dissipative processes. Atom and field can
not be seen as single entities anymore, but are rather described by the dressed states
of the Jaynes-Cummings model [1.23]. Strong coupling can be realized by placing the
atom in an optical resonator, where a photon travels several round-trips increasing the
chance of hitting the atom. Strikingly, in such a set-up an atom can be trapped in the
field of a single photon [1.24].

Even when scattering itself can be considered classical, the back-action of the atoms
on the resonator field is not negligible, which leads to a non-linear coupled atom-field dy-
namics [1.25]. The reason for this is that the presence of atoms in a resonator dispersively
shifts the cavity resonance closer to or further away from the pump laser frequency, which
affects the intra-cavity intensity. For moving atoms the optical lattice in the cavity thus
dynamically depends on all the atom positions, resulting in a collective cavity-mediated
atom-atom interaction. When the pump laser frequency is lower than the cavity fre-
quency, photons leaking out through the mirrors dissipate energy, which gives rise to
cavity cooling [1.26, 1.27]. The collective velocity-dependent friction force arises due
to the finite time the cavity field needs to adapt to a changed atomic distribution. As
opposed to Doppler cooling and most other cooling schemes, cavity cooling does not
rely on spontaneous emission and the internal level structure of the particles, and can
thus be as well applied to molecules and nano-particles. Moreover, measuring the cavity
output fields gives insight into the atomic state in the cavity [1.28, 1.29]. Pumping a
ring cavity from one side results in a collective instability coined collective atomic recoil
lasing (CARL) [1.30, 1.31].

The collective effects are further enhanced, when the driving field illuminates the atoms
directly from a transversal direction. Then the atoms collectively scatter light into the
cavity and the intra-cavity intensity crucially depends on their spatial distribution. In
turn, the interference between pump field and self-created cavity field induces trapping
forces for red cavity detuning. Prominently, this interplay between atoms and fields
results in a phase transition from a homogeneous to a self-ordered configuration of the
atoms, depending on the pump laser power [1.32, 1.33]. For ordered distributions the
scattering into the cavity is super-radiantly enhanced and scales quadratically with the
number of particles [1.34]. When several resonator modes are quasi-resonantly pumped,
the atoms aim for finding the atomic configuration which is optimally adapted to all
modes [1.35].

A Bose-Einstein condensate in such a transversally pumped resonator set-up can be
used to realize the Dicke Hamiltonian [1.36]. Moreover, with the help of an external
optical lattice, a generalized Bose-Hubbard model with infinite-range interactions [1.37]
has been experimentally implemented [1.38]. These extended models exhibit rich phase
diagrams [1.39–1.41] and are suitable to simulate exotic states of matter [1.42]. Quantum
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1. Introduction

properties of the atomic state can be non-destructively read off from the cavity output
[1.43].

Let us finally note that when the density of the gas and the pump power are high
enough, the back-action of the atoms on the field can be significant also in free space.
This results for instance in super-radiant Rayleigh scattering [1.44] and spontaneous
crystallization [1.45, 1.46]. Atoms moving along optical fibers (nano-fibers, hollow core
fibers, etc.) pose an alternative where the tight radial confinement of the light enhances
the coupling, while the dimension along the fiber is open as in free space. Also in
such a set-up collective ordering phenomena for monochromatic [1.47] and broadband
radiation [1.48] occur.

1.2. Solving optimization problems with a physical system

Optimization is to find the best configuration according to some rules and constraints.
This is often difficult when the number of configurations is large and the constraints
are conflicting. Optimization problems are abundant in economy and engineering, as
well as in computer science, social sciences and biology among other research fields. A
classic example is the traveling salesman problem, where the task is to visit specified
cities with the shortest possible total travel distance. There are also mathematical
riddles and games which can be formulated as an optimization problem, for instance
the N -queens problem [1.49]. Moreover, chemical or physical problems like the folding
of proteins, finding the structure of atomic and molecular clusters, or the behavior of
glasses correspond to a continuous optimization problem [1.50].

Optimization problems can be recast into the task of minimizing a cost function which
typically depends on many variables. The cost function quantifies how well a configu-
ration is adapted to the constraints given by the problem and assigns a real value to
each configuration of the variables, which can be discrete or continuous. If there is a
finite amount of configurations (implying a discrete configuration space), we talk about
combinatorial optimization problems.

For difficult problems with conflicting constraints the cost function is usually rugged
and contains many local minima, thus a local search by following the steepest gradient
gets easily stuck in one of those minima. So the demanding task is to find the global
minimum of the cost function. Since the configuration space is typically large, trying
out all configurations is not a viable option. Having detailed knowledge of the cost
function sometimes allows for finding problem specific deterministic algorithms, but
such algorithms are not available in general and often demand formidable resources. An
alternative are stochastic methods, where for instance the initial states are sampled from
a uniform distribution (global phase) and then local minima are found by a local search
(local phase) [1.51]. Note that with these methods there is no absolute guarantee of
success and each algorithm is a trade-off between efficiency and reliability.

Interestingly, the inspiration for many stochastic algorithms comes from physics, where
the cost function typically corresponds to a fictitious potential energy landscape. A well-
known example is the simulated annealing algorithm introduced in 1983 [1.52]. In this
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algorithm, the distribution of a thermal ensemble of atoms is numerically sampled using
a Metropolis algorithm [1.53]. Large thermal fluctuations at the initial stage allow the
fictitious particle to explore the space and jump out of local minima. Reducing the
fictitious temperature and hence the fluctuations yields distributions which are closer
and closer to the global minimum. If this temperature decrease is slow enough, the
global minimum is found with an arbitrarily high probability [1.54]. The algorithm thus
smoothly transits from a global phase with large fluctuations to a local phase with small
fluctuations.

A more recent idea is to exchange the thermal fluctuations with quantum fluctuations
close to zero temperature, a method called quantum annealing [1.55, 1.56]. Intuitively
speaking, a quantum particle can tunnel through potential barriers while a thermal
particle has to jump over them. For spiky barriers one thus naively expects that a
quantum particle could be less likely to get stuck in potential minima. The annealing
procedure is the same as in the classical case: Initially large quantum fluctuations are
slowly decreased such that the system can adiabatically follow [1.57].

Unfortunately, large quantum systems cannot be straightforwardly simulated on a
classical computer, since the wave function alone contains as many coefficients as state
configurations of the problem – a number growing exponentially with the system size.
The precise control of quantum systems in the framework of superconducting qubits,
trapped ions, Rydberg atoms or ultra-cold atoms in optical lattices opens a different
route: One can envisage to set up a (different) quantum system and let nature do the
calculation as proposed by Feynman already in 1981 [1.19]. While there are efforts to
realize universal quantum computers [1.58], the task of optimization is thought to be
easier using analog special-purpose quantum annealers. Commercial devices implement-
ing quantum annealing are already available since 2011: The D-Wave device [1.59] shows
evidence for quantum dynamics [1.60].

Note that it is not clear if these have any advantage on fundamental grounds, because
simulating quantum systems on a conventional computer is not always hard. Quantum
Monte Carlo algorithms were shown to have the same scaling with system size as real
quantum tunneling [1.61]. Thus when Monte Carlo algorithms are applicable, there is
no quantum speed-up. For this reason recent effort goes into classifying Hamiltonians
into those which can be sampled with Monte Carlo methods, so-called stoquastic Hamil-
tonians, and those which can not [1.57]. Consequently, quantum speed-up can only exist
in the latter class of non-stoquastic Hamiltonians.

1.3. Outline

This thesis deals with the coupled atom-field dynamics in transversally pumped multi-
mode optical resonators and their potential application as a system implementing quan-
tum annealing with the goal to solve optimization problems.

In Chapter 2, we introduce the physical background used in the later chapters. After
the introduction of light quantization, we consider the shape and spectral properties of
light fields in standing wave optical resonators. The theory of the interaction of these

5



1. Introduction

light fields with atoms is reviewed subsequently. Thereby, we focus on the dispersive
limit, where the light fields create potentials for the atoms. Finally, these concepts are
used for describing the physics of ultra-cold atoms in optical lattices.

Chapter 3 deals with atoms in a transversally pumped optical resonator. The purpose
of this chapter is to introduce the basic physics and different approximations for the set-
up we consider in the following publications. We motivate the arising coupled atom-field
dynamics for the open quantum system from the viewpoint of dynamical optical poten-
tials, and connect to an insightful semi-classical approximation. Moreover, departing
from the coupled atom-field dynamics we adiabatically eliminate the cavity fields from
the dynamics, shedding light on the effective interactions between atoms themselves.
Finally, the last section deals with the description of ultra-cold atoms in lattices placed
in the optical resonator.

The next chapter, Chapter 4, introduces the annealing procedure as a method for
solving optimization problems. By means of formulating thermal annealing within a
Langevin particle model we motivate the basic features and point out the similarities to
classical atoms in cavities. Going to the quantum realm, cavities can be used to create a
platform for quantum annealing with ultra-cold atoms. In both cases we motivate how
to generically create tailored interactions to encode an optimization problem.

In the publication in Chapter 5 we treat the semi-classical physics of particles in a
two-mode cavity, which can be understood as a minimal example where a local min-
imum exists. We investigate the dynamics induced by sudden intensity quenches and
slow sweeps, where slower ramp speeds tend to favor a quasi-stationary state globally
minimizing the energy predicted by a phase diagram from Ref. [1.62]. This chapter was
published in Ref. [1.63].

Chapter 6 introduces quantum annealing with ultra-cold lattice atoms in a multi-mode
cavity. Specifically, it is discussed how an arbitrary interaction matrix can be created
using a number of modes on the order of N2, where N is the problem size. As an example
a Hopfield neural network is treated. It was published in Ref. [1.64].

A specific problem for quantum annealing in multi-mode cavities is introduced in
Chapter 7, where a special set-up for solving the N -queens problem is introduced. The
number of mode resources scales only linearly with the problem size here. Variation of the
N -queens are proven to be NP-complete and hard instances exist even for small problem
sizes. Thus, the problem poses a viable candidate for testing quantum advantage. This
chapter was published in Ref. [1.65].

In Chapter 8 we present the ordering and cooling of thermal atoms in an optical
resonator which is pumped by a frequency comb. These preliminary results will be
published in near future. We conclude the main part of the thesis in Chapter 9.

The appendix includes some more calculations for reference in the main text in Ap-
pendix A: Hermite-Gaussian mode shapes, an alternative classical derivation of the
steady state field amplitude for transversally pumped atoms in a resonator, details on
the quantum Brownian motion master equation and an analysis of collective cooling
effects for two particles. A further publication in Appendix B describes an experiment
implementing an ion-based quantum sensor of optical cavity photon numbers published
in Ref. [1.66], where the author contributed as theoretical support.
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2. Physical background

In this chapter we review the physical background for the later chapters in this thesis.
After introducing quantized light fields, we investigate the spectral and spatial properties
of light in optical resonators. Subsequently, we describe light interacting with atoms in
the dispersive limit of large laser-atom detuning, where light creates an optical potential
and atoms act as refractive index. Finally, ultra-cold atoms trapped in such an optical
potential are introduced.

2.1. Classical and quantum light

From Maxwell’s equations without sources it follows that the electric field obeys the
wave equation [2.1]

∆E − 1

c2

∂2

∂t2
E = 0, (2.1)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian. For simplicity we choose one
specific polarization which makes the electric field a scalar.

The field can be written as a Fourier decomposition in terms of positive and negative
frequency parts∗

E(t,x) = i
∑
k

[
EkGk(x)e−iωkt − E∗kG∗k(x)eiωkt

]
(2.2)

with the Fourier coefficients Ek and the normalized mode functions Gk. The wave vectors
k are connected to the frequencies ωk = ck = c|k| via the speed of light c. Note that by
writing a discrete sum instead of an integral, we implicitly assumed that the light field
is confined to a finite box. The general case is recovered in the limit where the edges go
to infinity.

In order to facilitate the formal connection to quantum electrodynamics, we rewrite
the Fourier coefficients as dimensionless fields αk normalized to the field of one photon

E0,k =
√
~ωk/(2ε0Vk), (2.3)

with the mode volume Vk, the vacuum permittivity ε0 and the Planck constant ~. Note
that here the finite box is important since otherwise the mode volume would be infinite

∗With a separation ansatz E(t,x) = T (t)G(x) the wave equation yields a harmonic oscillator equation
for the time part T̈ (t) + c2k2T (t) = 0 with positive and negative frequency solutions T (t) = e±iωkt and
ωk = ck. The spatial part obeys the Helmholtz equation in Eq. (2.7). The square of the wave vector
enters mathematically as a separation constant [2.1].
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2. Physical background

and the single-photon field zero. The resulting expression equivalent to Eq. (2.2)

E(t,x) = i
∑
k

E0,k

[
αkGk(x)e−iωkt − α∗kG∗k(x)eiωkt

]
(2.4)

allows for canonical quantization by replacing the dimensionless coefficients αk and α∗k
with the bosonic creation and annihilation operators ak and a†k fulfilling the commutation

relations [ak, a
†
k′

] = δkk′ . This substitution yields the quantized electromagnetic field
operator in the Heisenberg picture

Ê(t,x) = i
∑
k

E0,k

[
akGk(x)e−iωkt − a†kG∗k(x)eiωkt

]
. (2.5)

For later correspondence, we define the negative frequency part of the field as

Ê−k (x) = E0,kakGk(x) (2.6)

and the positive frequency part as Ê+
k (x) = [Ê−k (x)]†, and analogously so for the classical

case E−k (x) = E0,kαkGk(x) and E+
k = (E−k )∗.

In quantum as well as classical case, the spatial shape of the modes is obtained by
plugging Eq. (2.2) or (2.5) into the wave equation. This yields the Helmholtz equation
for the mode functions

∆Gk(x) + k2Gk(x) = 0. (2.7)

A free space solution are running plane waves Gk(x) = eikx. Mirrors, instead, add
boundary conditions to the Helmholtz equations, so the mode functions depend on their
shape. This leads to the mode shapes in optical resonators treated in the next section.

2.2. Fabry-Pérot resonators

Optical resonators are a versatile tool for controlling light fields. They function as a
filter allowing for the oscillation of certain frequencies only. Moreover, the shape of the
oscillating modes depends on the geometry of the resonator. Finally, the intensity per
photon in the resonator can be strongly enhanced such that the interaction between an
atom and the light field becomes substantially strong. In the following we will use the
expressions optical resonator and cavity interchangeably.

A Fabry-Pérot resonator consists of two mirrors at a distance of L, where light is
bouncing back and forth building up a standing wave. The properties of the mirrors
are modeled with their amplitude reflection and transmission coefficient r and iq, re-
spectively, where r2 + q2 = 1. We assume that the mirrors are highly reflective, thus
q2 � 1.

2.2.1. Spectral properties of the field

Let us now go to the one-dimensional case. The cavity is probed through the mirror
with a mono-chromatic laser beam with amplitude Ein, frequency ω and wave number k.
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2.2. Fabry-Pérot resonators

Figure 2.1.: One round trip of the electric field in a Fabry-Pérot resonator with reflec-
tion and transmission coefficients r and t, respectively. Starting with a
field E , the field after one round trip is given by r2e2ikLE + iqEin, where
the first part is the twice reflected circulated field and the second part is
the probe field.

We are interested in the steady state amplitude of the field in the cavity as a function
of k, that is the spectrum of the optical resonator.

The steady state spectrum can be easily derived by considering the fields circulating
in the cavity. Since at steady state the field does not change, it has to be unchanged
after one round trip [2.2]. With the help of Fig. 2.1, we see that the field after one round
trip is given by the reflected part with phase shift 2kL and the input field. This yields
the steady state condition

E !
= r2e2ikLE + iqEin (2.8)

and the steady state cavity field

Est(k) =
iq

1− r2e2ikL
Ein (2.9)

is obtained by solving for E .
The intra-cavity intensity at steady state is the input intensity multiplied by the factor

I(k) =

∣∣∣∣Est(k)

Ein

∣∣∣∣2 =
q2

(1− r)2 + 4r2 sin2(kL)
, (2.10)

which is depicted in Fig. 2.2. One observes resonances at a distance of the free spectral
range ωFSR = πc/L. In a high-Q cavity, r approaches unity and the peaks become
narrow and finally converge to delta peaks for perfectly reflecting mirrors. In this limit
the cavity acts as a filter singling out very narrow frequency lines, where the intensity
is strongly enhanced.

Close to a specific resonance at ωc, the steady state cavity field can be rewritten
in terms of the cavity detuning ∆c = ω − ωc and the cavity line width or amplitude
decay rate κ = q2c/(2L). For |∆c| � ωFSR we can do the approximation r2e2ikl ≈
1− q2 + iq2∆c/κ [2.2] and the steady state field becomes

Est =
iqEin

q2

1

1− i∆c/κ
= −

√
κc/(2L)

∆c + iκ
Ein. (2.11)
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2. Physical background

Figure 2.2.: Enhancement of the intensity in an empty Fabry-Pérot resonator for differ-
ent reflection coefficients r = 0.5 (green), r = 0.8 (orange) and r = 0.999
(blue) from Eq. (2.10). The resonances are peaked at kn = nπ/L and for
highly reflective mirrors we have |Est(kn)/Ein|2 � 1.

On resonance (∆c = 0) the steady state amplitude is the ratio of input and output field,
while off resonance it decreases according to the function (1− i∆c/κ)−1.

2.2.2. Electric field modes in high-Q cavities

We have seen that in high-Q cavities the intra-cavity intensity at steady state is signifi-
cantly enhanced only close to a resonance and suppressed otherwise. To obtain the mode
functions of the resonator it is thus a good approximation to assume a closed cavity with
perfectly reflecting mirrors r = 1. Since then the field on the perfectly conducting mirror
surfaces has to be zero, the presence of the cavity simply adds boundary conditions to
the Helmholtz equation in Eq. (2.7). This way the form of the mirrors influences the
shape of the mode functions.

In the one-dimensional case, a general real solution of the Helmholtz equation can be
written as a linear combination of sines and cosines. Placing the origin x = 0 into the
center of the cavity, the boundary conditions impose that Gn(±L/2) = 0 for all modes
indexed by n (in the 1D case a single index is sufficient). This yields the resonance
condition for the wave number k

kn = n
π

L
, (2.12)

which exactly correspond to the peaks in Fig. 2.2. The mode functions can be written
as

Gn(x) = cos(knx+ φn), (2.13)
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2.3. Atom-light interaction

where φn = 0 for odd n and φn = π/2 for even n.

An important special case in three dimensions are optical resonators with spherical
mirrors of curvature R. In the limit of weak focusing, the resonant modes can be
expanded in the set of Hermite-Gaussian mode functions. The resonator geometry is
summarized by the so-called stability parameter g = 1 − L/R, where special cases are
the confocal (g = 0), planar (g = 1) and concentric (g = −1) configuration [2.3]. The
resonant wave numbers

knlm = n
π

L
+ (l +m+ 1)

arccos(g)

L
(2.14)

are derived in Sec. A.1 by imposing the boundary conditions due to the mirrors [2.4].
Thereby the transversal indices l and m denote different Hermite-Gaussian shapes, so-
called TEMlm modes. The index n distinguishes different longitudinal modes as in the
1D case. Correspondingly, the shift with respect to the 1D resonant wave numbers
vanishes for the (quasi-1D) planar geometry since arccos(1) = 0.

2.3. Atom-light interaction

The interaction of atoms with light is at the heart of this theses. We are in the following
particularly interested in the trapping of the atoms due to the dipole force. In the
dispersive limit, where the light frequency is far from any atomic resonance frequency
and internal degrees of freedom can be eliminated, the dissipative part can often be
neglected and light fields with a fixed amplitude create a conservative optical potential.

2.3.1. Jaynes-Cummings model - the dipole approximation and fundamental
aspects

Let us start by modeling an atom as a system with only two electronic energy eigenstates,
the ground state |g〉 and the excited state |e〉. Their energy difference is given by ~ωa with
the atomic resonance frequency ωa. Atoms are usually small (a few Angstoms) compared
to optical wave lengths (400-800 nm), and thus the electric field can be approximated
as spatially uniform within the atom’s extension. If this is valid, the atom behaves like
a dipole [2.5] leading to the interaction energy

Hint = −d̂Ê, (2.15)

which is well-known from electrostatics [2.6]. The dipole is aligned parallel to the electric
field’s polarization. The dipole operator is given by d̂ = µ(σ + σ†) with the transition
operator σ = |g〉〈e| and the dipole moment µ of the transition.

Inserting a single-mode field with frequency ωp in the Schrödinger picture Ê(x) =
i(Ê−(x)− Ê+(x)) (dropping the index) we obtain

Hint = −iµ[Ê−(x)− Ê+(x)][σ + σ†]
RWA≈ −iµ[σ†Ê−(x)− Ê+(x)σ]. (2.16)
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2. Physical background

In the second step we made the rotating wave approximation (RWA) neglecting non-
resonant terms oscillating rapidly with ωa + ωp over resonant terms oscillating with
ωa−ωp [2.5]. Inserting the expression for the fields from Eq. (2.6) the Hamiltonian takes
the form of the well-known Jaynes-Cummings model [2.7]

HJC = −i~g(σ†aG(x)− a†σG∗(x)), (2.17)

with the single-photon Rabi frequency g = µE0/~. Note that usually this Hamiltonian
is expressed for a fixed position G(x0) = 1.

Physically, the atom-light interaction within the dipole approximation can be de-
scribed by stimulated emission (a†σ) and absorption (σ†a) of photons. Moreover, atoms
can always spontaneously emit photons into any of the other modes in a random di-
rection. This is an incoherent process, since all other modes are traced out from the
dynamics and considered as a bath [2.8]. Because photons carry the momentum ~k,
both processes induce forces onto the particles. The coherent part is called dipole force,
while the incoherent contribution is called radiation pressure [2.9].

2.3.2. Optical potentials - a moving atom in the dispersive limit

A mobile atom with position and momentum operators x̂ and p̂ and a mass ma in a
single-mode quantum field has the Hamiltonian

H =
p̂2

2ma
− ~∆aσ

†σ − iµ[σ†Ê−(x̂)− Ê+(x̂)σ] +Hfield, (2.18)

with the Hamiltonian of the free field Hfield and the atomic detuning ∆a = ωp − ωa.
Here it is written in a frame of reference rotating with ωp. Spontaneous emission with
the rate γ must in principle be taken into account via a master equation, but in the far
detuned limit |∆a| � γ it can often be neglected. The Heisenberg equation for the σ
operator is given by

σ̇ = i∆aσ −
µ

~
σzÊ−. (2.19)

If the dynamics of the dipole is much faster than the time scale of the atomic motion,
we can assume that the dipole follows the field instantaneously and set σ̇ = 0. The
atomic dipole is thus slaved to the electric field, and can be approximated by [2.9]

σ
σ̇=0≈ −i µ

~∆a
σzÊ−

σz=−1≈ i
µ

~∆a
Ê−. (2.20)

In the first expression, the polarizability is non-linear since it depends on the energy
level occupation via σz. For a low saturation of the atom, i.e. not too strong light fields,
the polarizability becomes linear and is given by P = −µ2/(~∆a). The dipole operator
can then be effectively expressed as d̂ = PÊ.

Using the result for σ yields the effective Hamiltonian in the far-detuned and low-
saturation limit

H =
p̂2

2ma
+ V̂ (x̂) +Hfield (2.21)
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where the quantum potential is given by

V̂ (x̂) =
µ2

~∆a
(Ê+Ê−)(x̂) =

~Ω̂†(x̂)Ω̂(x̂)

∆a
, (2.22)

with the operator Ω̂ = µÊ−/~. Note that for quantum fields V̂ is an operator on
the joint Hilbert space of field and external atomic degrees of freedom and is just called
potential here due the correspondence to the classical case. For classical fields it becomes
a real potential and Ω becomes the Rabi frequency (within the RWA). The emergence
of a potential arises from a position-dependent AC-Stark shift of the lower atomic level,
which can also be obtained within the Jaynes-Cummings model in the low saturation
limit. Note that the conservative force due to the potential is the aforementioned dipole
force, while radiation pressure was neglected by not considering spontaneous emission.

This result can also be motivated from classical electrostatics [2.6]. The energy of an
induced dipole d = PE in a field is given by V (x) = −d(x)E(x) ≈ −PE−(x)E+(x)
within the RWA. The polarizability of a classical dipole oscillator in the far-detuned
limit is given by P = −6πε0γ/(c

3ω3
a∆a) [2.2]. In classical physics the decay rate γ is

a phenomenological quantity. In order to connect to the result above, we insert the
analytical expression from the (quantum) Wigner-Weisskopf theory γ = c3ω3

aµ
2/(6πε0~)

[2.10], and see that the polarizability corresponds to the one derived in the quantum
case. Thus the ~ as quantum signature enters only via the expression of γ. For a more
detailed discussion see Sec. A.2.

Let us consider two simple examples. Two counter-propagating laser beams create
a classical standing wave E+ = E− ∝ cos(kx), which effects in a periodic potential
V (x) ∝ cos2(kx) with a lattice constant a = λ/2 = π/k. We will discuss these so-called
optical lattices in Sec. 2.4 coming up next. For a running wave E− ∝ eikx the potential
is uniform and induces no dipole force. Remember that radiation pressure was neglected
by going to the dispersive limit.

2.4. Ultracold atoms in optical lattices

We have seen in Eq. (2.22) that classical light fields create a potential for the atoms
due to the ground state AC-Stark shift. Since strong counter-propagating laser beams
give rise to a (classical) standing wave, they constitute a periodic potential often coined
optical lattice. Trapped ultracold atoms at zero temperature in a deep optical lattice
are well described by the Bose-Hubbard model. This relatively simple model yields a
toolbox for theory and experiment allowing for the investigation and explanation of a
plethora of quantum many-body phenoma [2.11, 2.12]. We now derive the Bose-Hubbard
model following Ref. [2.13].
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2. Physical background

2.4.1. Band structure

We now aim to derive an approximate wave function of a quantum particle in a (classical)
periodic potential with period (or lattice constant) a obeying the Hamiltonian

H1 =
p̂2

2ma
+ V (x̂). (2.23)

Due to the Bloch theorem the eigenfunctions of this Hamiltonian are Bloch waves

φnq (x) = eiqxunq (x) (2.24)

where the functions unq (x) = unq (x+ a) have the same period as the lattice.
Inserting into the Hamiltonian H1 yields the eigenvalue equation Hqu

n
q = Enq u

n
q with

Hq = (p + ~q)2/(2ma) + V (x). One can now diagonalize Hq for q ∈ [−1/a, 1/a] to
obtain the energy bands Enq and the corresponding wave functions φnq for different quasi-
momenta q and bands n. Numerically, it is easiest to rewrite the equation for the Fourier
coefficients of the Bloch waves [2.13].

The Bloch waves are delocalized over the whole lattice, which is a meaningful basis for
nearly free particles in shallow lattices. As the lattice depth increases, however, particles
become localized close to potential minima. A more suitable basis is then provided by
Wannier functions [2.14], which are given by a localized linear superposition of Bloch
waves

wn(x− xj) =

√
a

2π

∫ π/a

−π/a
φnq (x)e−iqxjdq. (2.25)

Note that instead of the quasi-momentum index, they are now distinguished by the
lattice site location of their maximum. This definition is not unique since the phases of
the Bloch functions are arbitrary. But for each band there exists only one maximally
localized Wannier function per lattice site, which has the properties that it is real,
symmetric or anti-symmetric around xj and exponentially decaying. These maximally
localized Wannier functions can be obtained by fixing the phase of the Bloch waves at
the origin: For even n the φnq (xj) need to be real, while for odd n they need to be purely
imaginary [2.14].

2.4.2. Bose-Hubbard model

So far we treated a single particle. To describe many indistinguishable quantum particles
at zero temperature we introduce bosonic field operators Ψ̂(x) fulfilling the bosonic
commutation relations [Ψ̂(x), Ψ̂†(x′)] = δ(x − x′). The many-body Hamiltonian then
takes the form [2.11]

H =

∫
dxΨ̂†(x)H1Ψ̂(x) +

g1D

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (2.26)

where the second term introduces the contact interaction quantified with g1D. It is now
useful to expand the bosonic field operators in the Wannier basis introduced above as
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2.4. Ultracold atoms in optical lattices

Ψ̂(x) =
∑

i

∑
n b

n
i wn(x − xi) with the bosonic annihilation operator bni of the ith site

and nth band. If the energy bands are well separated and the atoms are cold enough,
only the lowest band is populated and the expansion can be truncated. This yields the
tight-binding Hamiltonian

H = −
∑
ij

Jijb
†
ibj +

1

2

∑
ijkl

Uijklb
†
ib
†
jbkbl (2.27)

with the overlaps

Jij =−
∫

d3xw(x− xi)
(
− ~2

2ma
∇2 + V (x)

)
w(x− xj) (2.28a)

Uijkl =g1D

∫
d3xw(x− xi)w(x− xj)w(x− xk)w(x− xl), (2.28b)

where bi = b1i and w = w1. These describe the motion in the lattice (tunneling) and the
contact interactions, respectively.

Already for moderately deep lattices VL ≥ 5ER all overlaps are small compared to the
on-site interactions U = U0000 and the nearest-neighbor tunneling amplitudes J = Ji,i+1

[2.15]. Neglecting all but these two matrix elements, we obtain the standard Bose-
Hubbard Hamiltonian

H = −J
∑
〈i,j〉

b†ibj +
U

2

∑
i

n̂i(n̂i + 1) (2.29)

with the site occupation operator n̂i = b†ibi and the sum over nearest neighbors denoted
by 〈i, j〉.

Note that for strong trapping the potential wells can be approximated by harmonic
traps with some characteristic length aT and trapping frequency ωT

†. The band structure
converges to the harmonic oscillator energies in this limit and the bandwidth goes to
zero (“flat bands”). Hence also J goes to zero, since it is given the bandwidth of the
lowest band divided by 4 in the case of an ideal gas U = 0 [2.15]. The lowest-band
Wannier function converges to the ground state wave function of a harmonic oscillator

whar(x) = π−1/4a
−1/2
T exp

(
− x2

2a2
T

)
. (2.30)

Within this approximation, we can roughly estimate that the lowest-band approximation
is valid when the energy gap ~ωT is much larger than the thermal energy kBT and the
interaction energy U .

The Bose-Hubbard Hamiltonian has two important limits: In the ideal gas limit U � J
the ground state is the so-called super-fluid state |SF〉 ∝ (

∑
i b
†
i )
N |0〉 with the (many-

body) vacuum state |0〉 and the atom number N . This state contains all superpositions

†For a typical standing wave potential V (x) = VL cos2(kLx) created by counter-propagating lasers
with wave number kL, they are given by ωT =

√
4VLER/~ and aT = (ER/VL)1/4/kL, with the recoil

energy ER = ~2k2
L/(2ma).
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of occupation number states and the atoms are thus delocalized over the whole lattice.
For U � J the ground state becomes a Mott insulator, which is given by |MI〉 =

∏
i b
†
i |0〉,

in this case of commensurate filling N/K = 1 with the number of lattice sites K. This
state is local and has no number fluctuations. The phase diagram of the Bose-Hubbard
Hamiltonian was first calculated by Fisher et al. [2.16], while the first experimental
realization of the superfluid to Mott insulator transition was published in Ref. [2.17].

As mentioned before, the periodic potential is created by (classical) standing wave
laser light via the Stark potential in Eq. (2.22). Using standing waves from different
directions allows for realizing many different lattice types, rendering atoms in optical
lattices a versatile platform for testing many-body physics and quantum simulation.
The standard setup consists of three perpendicular standing waves, leading to a regular
three dimensional cubic lattice. If tunneling in one direction is frozen out by increasing
the light intensity, one obtains several slaps (or pan cakes) of two dimensional optical
lattices [2.12]. Finally, freezing out the motion in all but one direction creates 1D
tubes [2.18].
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3. Atoms in a tranversally pumped
multi-mode cavity

In this chapter we consider the dynamics of laser-illuminated atoms in optical resonators.
Most of the work so far dealt with optical resonators driven by a single laser pump [3.1].
Here we consider the case of a non-degenerate multi-mode cavity consisting of M pump-
cavity mode pairs with pump and cavity mode functions Hm(x) and Gm(x), respectively.
One pair is detuned from each other with the cavity detunings ∆c,m = ωp,m−ωc,m and the
pump mode field is denoted by Ein,m = E0,mαin,m. A schematic illustration of the system
is depicted in Fig. 3.1. We assume that the modes are far enough apart in frequency, such
that light is only redistributed within a pump-cavity mode pair, while there is no cross-
scattering between adjacent modes. All of these modes, however, interact with the same
atomic cloud. When the mode shapes differ for each m this can introduce frustration
and metastable states for the atoms, since it might not be clear for the atoms according
to which shape they should order. This introduces a wealth of new physics beyond
the single-mode case. Particularly, there is a deep connection between systems of this
kind and optimization problems, which will be treated in the next chapter. For now we
derive the central formulas describing the dynamics of atoms and fields for dispersive
atom-light coupling in multi-mode cavities.

3.1. Coupled atom-field dynamics

The dynamics of the coupled atom-field system can be split into a coherent part described
by a Hamiltonian and an incoherent part including cavity losses. For simplicity, we
consider only one-dimensional motion along some axis x of the atoms in this section,
since the models can be straightforwardly generalized to the 3D case.

3.1.1. Coherent part - dynamical quantum potentials

In order to derive a Hamiltonian describing the above mentioned coupled atom-field
dynamics, we first write down the electric field at the position of the atoms. The negative
frequency part of the mth mode pair in the Heisenberg picture is given by

Ê−m(t, x) = E0,m

(
αin,mHm(x)e−iωp,mt + amGm(x)e−iωc,mt

)
, (3.1)

and the total field Ê−(t, x) =
∑

m Ê
−
m(t, x) is a simple sum over all modes.

The (quantum) optical potential in Eq. (2.22) was derived for a single mode. Since
here several frequencies are involved, the atomic detuning ∆a will also depend on m (and
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3. Atoms in a tranversally pumped multi-mode cavity

Figure 3.1.: Schematic illustration of the mth pump-cavity mode pair. Atoms (black
cloud) in an optical Fabry-Perót resonator are directly illuminated from
the side with the pump strength ηm and the mode function Hm. The
atomic cloud collectively scatters light from the pump mode into the cavity
mode with the shape Gm and decay rates κm (and vice versa).

in principle also slightly on the pump-cavity detuning for a given m). We now assume
that the spread of the mode frequencies is small compared to the atomic detuning, in
which case the atomic detuning does not vary much and can be taken independent of
m. An alternative would be to assume that each mode couples to a different atomic
transition with the same ∆a. In this case we can use Eq. (2.22) and obtain

V̂ (x) =
µ2

~∆a

∑
mn

E0,mE0,n

(
G∗mGna†manei(ωc,m−ωc,n)t +H∗mHnα∗in,mαin,ne

i(ωp,m−ωp,n)t +

+ G∗mHna†mαin,ne
i(ωc,m−ωp,n)t +H∗mGnα∗in,manei(ωp,m−ωc,n)t

)
.

(3.2)
Since in high-Q cavities the mode spacing (i.e. the free spectral range) is typically much
larger than |∆c| and the coupling, the fast rotating terms with n 6= m can be neglected
over the slowly rotating terms with n = m. This rotating wave approximation for
adjacent modes physically means that different modes do not interfere. The result is
a simple total potential V̂ (x) =

∑
m V̂m(x) where the mth pump-cavity mode pair

contributes

V̂m(x) = ~
(
U0,m|Gm|2a†mam + Up,m|Hm|2 + ηmG∗mHma†m + η∗mH∗mGmam

)
. (3.3)

The new quantities are the depth of the cavity potential U0,m = g2
m/∆a, the effective

pump-cavity mode coupling strength via the atoms ηm = Ωmgm/∆a and the pump
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3.1. Coupled atom-field dynamics

lattice depth Up,m = |Ωm|2/∆a for the mth mode pair. They are written in terms of the
single cavity photon Rabi frequency gm = µE0,m/~ and the pump laser Rabi frequency
Ωm = gmαin,m.

Knowing this we can generalize Eq. (2.21) in order to obtain the Hamiltonian for N
particles

H =
N∑
j=1

p̂2
j

2ma
− ~

M∑
m=1

∆c,ma
†
mam

+ ~N
M∑
m=1

[
U0,mB̂ma†mam + ηm(Θ̂†mam + a†mΘ̂m) + Up,mK̂m

]
,

(3.4)

where we introduced the collective atomic operators

Θ̂m =
1

N

∑
j

Hm(x̂j)G∗m(x̂j) (3.5)

B̂m =
1

N

∑
j

|Gm(x̂j)|2 (3.6)

K̂m =
1

N

∑
j

|Hm(x̂j)|2. (3.7)

In most parts of the thesis we will do one further approximation: Often one can
neglect the back-scattering within the cavity mode, only keeping scattering from the
pump mode to the cavity mode. As a more classical argument, it means that the optical
potential created by the cavity field is neglected with respect to the terms containing the
pump field. It is valid when |∆c,m| � N |U0,m|, when we can neglect the term containing
B̂m. Moreover, due to geometry, in the rest of this thesis we encounter the case where
|Hm(x)|2 = 1 for all possible atomic positions x. The cavity Hamiltonian then simplifies
to

H =
∑
j

p̂2
j

2ma
− ~

∑
m

∆c,ma
†
mam + ~N

∑
m

ηm(Θ̂†mam + a†mΘ̂m), (3.8)

which is given here for future reference. The operator coupling the atomic position to
the fields is hence the order operator Θ̂m, whose form comes from the interference of
each pump-cavity field pair.

3.1.2. Incoherent part - decay of the fields

Now we turn to the incoherent part of the dynamics due to light leaking out of the
cavity with the field amplitude damping rate κm. As detailed in text books [3.2, 3.3],
this damping can be described by a master equation obtained from coupling the cavity
modes to the modes outside the cavity, which form a zero temperature bath, and tracing
them out. In quantum optics it typically takes the form

ρ̇ = − i
~

[H, ρ] +
∑
m

κm(2amρa
†
m − a†mamρ− ρa†mam), (3.9)
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3. Atoms in a tranversally pumped multi-mode cavity

with the density matrix ρ and the Hamiltonian H [Eq. (3.8)] describing the coherent
part from the previous section.

As an alternative representation, from this master equation we can derive Heisenberg-
Langevin equations [3.3] for the operators x̂j , p̂j and am

˙̂xj =
p̂j
ma

(3.10a)

˙̂pj =− iN
∑
m

ηm([p̂j , Θ̂
†
m]am + a†m[p̂j , Θ̂m]) (3.10b)

ȧm =(i∆c,m − κm)am − iηmNΘ̂m +
√

2κmξ̂m, (3.10c)

where we used [x̂, p̂2] = 2i~p̂ and introduced the quantum noise operator fulfilling

[ξ̂m(t), ξ̂†n(t′)] = δ(t − t′)δmn [3.3]. Interpreting these equations, we see that the fields
decay with κm, get pumped with ηmNΘ̂m and are subject to input noise ξ̂m, which
makes sure that the commutation relations of am are preserved.

3.1.3. Semi-classical limit

The master equation [Eq. (3.9) with the Hamiltonian Eq. (3.8)] can be rewritten as
a partial differential equation using a joint Wigner function for atoms and fields [3.4].
This partial differential equation can be approximated by a Fokker-Planck equation for
a cloud of atoms with a temperature much larger than the recoil energy kBT � ER with
ER = ~2k2/(2ma) for all k’s involved. Finally, the Fokker-Planck equation corresponds
to a set of coupled stochastic differential equations. For a uniform pump field intensity
|Hm(x)|2 = 1 the equations take the form [3.5]

ẋj =
pj
ma

(3.11a)

ṗj = −~N
∑
m

ηm([∂xjΘ
∗
m]αm + α∗m[∂xjΘm]) (3.11b)

α̇m = (i∆c,m − κm)αm − iηmNΘm +
√
κmξm (3.11c)

with the order parameters

Θm =
1

N

∑
j

Hm(xj)G∗m(xj) (3.12)

as the classical pendant of the order operator in Eq. (3.5). The complex white noise
processes with the only non-vanishing moments 〈ξm(t)ξ∗n(t′)〉 = δ(t−t′)δmn are the sum of

two real white noise processes ξm = (ζ1
m+iζ2

m)/
√

2 with 〈ζ{1,2}m (t)ζ
{1,2}
n (t′)〉 = δ(t−t′)δmn.

We used the shorthand notation ∂xj = ∂/∂xj .

Note that the commutators in the quantum version Eqs. (3.10) can be written as
[p̂j , Θ̂m] = −i~∂xj Θ̂m. Then the equations have a similar form as the semi-classical
equations introduced here, containing quantum operators of course.
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3.2. Adiabatic elimination of the cavity fields

3.2. Adiabatic elimination of the cavity fields

We now shift to the regime of a bad or far detuned cavity, where the cavity fields follow
(almost) instantaneously the atomic movement and can thus be eliminated from the
dynamics. This has several advantages: First, it leads to a simplified description allowing
for more analytical insight. For instance, the effect of the light fields can be described by
infinite-range atom-atom interactions leading to a collective potential. Moreover, in the
quantum case the full system often becomes intractable for numerical simulations since
the size of the Hilbert space increases exponentially with the number of modes by the
factor (ncutoff + 1)M , where ncutoff is the numerical cutoff of the Fock space of the field
oscillators. In the eliminated regime one can thus treat larger ensembles of particles.
The bad cavity regime is realized in the experiment from Ref. [3.6] for instance.

3.2.1. Semi-classical elimination of the fields

Let us start in the semi-classical regime using Eqs. (3.11). For simplicity we treat here
the case of real mode functions leading to real order parameters. While this is not the
most general case, it conveys the basic idea of a systematic adiabatic elimination based
on the separation of time scales including first (and possibly higher) order corrections in
the particle momenta.

Coarse grained time grid

The field can be eliminated when it reaches a steady state before the atoms move sig-
nificantly. Formally this means that there exists an intermediate time scale ∆t, which
fulfills (i) ∆t � κ−1

m and (ii) ∆t � Γ, where Γ = ma/(kmp) is the typical time scale of
the atomic motion. This has to be fulfilled for all m of course.

Formally integrating Eq. (3.11c) from t0 to t with ∆t = t− t0 yields

αm(t) = e(i∆c,m−κm)∆tα(t0) + iNηm

∫ ∆t

0
ds e(i∆c,m−κm)sΘm(t− s) + Σm(t). (3.13)

The averaged noise

Σm(t) =
√
κm

∫ ∆t

0
ds e(i∆c,m−κm)sξm(t− s) (3.14)

is colored and has the two-time correlation function [3.7]

〈Σm(t)Σ∗n(t′)〉 =
1

2
exp

(
−κm|t− t′| − i∆c,m(t− t′)

)
δmn. (3.15)

Due to assumption (i) all correlations decay to zero within the time ∆t and the noise
can be approximated by white noise

〈Σm(t)Σ∗n(t′)〉 ≈ κm
∆2
c,m + κ2

m

δ(t− t′)δmn =
κm

∆2
c,m + κ2

m

〈ξm(t)ξ∗n(t′)〉. (3.16)
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3. Atoms in a tranversally pumped multi-mode cavity

The deterministic integral can be expanded into a sum by integrating by parts several
times ∫ ∆t

0
ds e(i∆c,m−κm)sΘm(t− s) =

∞∑
n=0

Θ
(n)
m (t)− e(i∆c,m−κm)∆tΘ

(n)
m (t0)

(i∆c,m − κm)n+1
(3.17)

with

Θ(n)
m (t) =

dn

dsn
Θm(s)

∣∣∣
s=t
. (3.18)

Note that we do not care about convergence here since we will limit ourselves to the first
terms only. The cavity field is then given by

αm(t) ≈ Nηm
∆c,m + iκm

∞∑
n=0

Θ(n)(t)

(i∆c,m − κm)n
+

√
κm

∆2
c,m + κ2

m

ξm. (3.19)

The atomic motion is now assumed slow compared to the time scale ∆t due to as-
sumption (ii). Then we can take into account the parameter ε = (kmp/ma)/|i∆c,m−κm|
only up to first order, yielding

αm ≈
Nηm

∆c,m + iκm
Θm +

iNηm
(i∆c,m − κm)2

Θ̇m +

√
κm

∆2
c,m + κ2

m

ξm. (3.20)

Effective Langevin equations

Plugging the first order approximation of the field into the momentum equation in the
SDEs we obtain Langevin equations for the atoms only [3.8]

ẋj =
pj
ma

(3.21a)

ṗj =− ∂U(x1, ..., xN )

∂xj
+

N∑
i=1

βijpi +

M∑
m=1

Bjmζm. (3.21b)

with the real white noise process ζm = (ξm + ξ∗m)/
√

2. The adiabatic (zeroth order)
contribution of the force can be derived from a collective potential

U(x1, ..., xN ) =~
∑
m

η2
m∆c,m

∆2
c,m + κ2

m

N2Θ2
m. (3.22)

Linear collective friction stems from the first order contribution of the force and is given
by the matrix

βij =
~
ma

∑
m

4
η2
m∆c,mκm

(∆2
c,m + κ2

m)2
[∂xiNΘm][∂xjNΘm]. (3.23)

Finally the N ×M noise matrix is given by

Bjm = −~ηm
√

2κm
∆2
c,m + κ2

m

[∂xjNΘm]. (3.24)

22



3.2. Adiabatic elimination of the cavity fields

Both friction and noise affect the particles in a collective manner. That is for instance,
the position of atom i influences the friction on atom j. Physically, this behavior emerges
since the atoms collectively couple to the same mode m.

Similar equations were derived in Ref. [3.9] without a semi-classical approximation
of the light fields, which were consequently used in Refs. [3.10, 3.11] and Chapter 5.
They obtain an additional noise term in the position equation which is correlated with
the momentum noise (a position-momentum cross-derivative term in the Fokker-Planck
equation).

Stationary solution from Fokker-Planck equation

In order to find the stationary state we rewrite the Langevin equations Eqs. (3.21) into a
Fokker-Planck equation for the probability distribution P (t, x1, ..., xN , p1, ..., pN ) [3.12]

∂P

∂t
=−

∑
j

∂

∂xj

(
pj
ma

P

)
−
∑
j

∂

∂pj

(
− ∂U
∂xj

P

)

−
∑
j

∂

∂pj

(∑
i

βijpiP

)
+

1

2

∑
ij

∂2

∂pi∂pj

(
[BBT ]ijP

)
.

(3.25)

The stationary distribution is given by

Pst ∝ exp[−E/(kBT )] (3.26)

with the energy

E(x1, ..., xN , p1, ..., pN ) = U(x1, ..., xN ) +
∑
j

p2
j

2ma
(3.27)

and the self-consistent stationary temperature

kBT = ~
∆2
c,m + κ2

m

−4∆c,m
. (3.28)

This can be verified by checking that the stationary equation ∂Pst/∂t = 0 is satisfied.
In detail, the first term cancels with the second term (adiabatic force), while the friction
term cancels with the noise term in Eq. (3.25). Note that the stationary state only exists
when there is only one temperature in the system, i.e. Eq. (3.28) does not depend on
m [3.13]. Moreover, for the existence of a steady state the pump lasers need to be red
detuned ∆c,m < 0 with respect to the cavity resonances, such that the field retardation
leads to friction.

3.2.2. Quantum elimination of the fields

In principle, a very similar derivation via the Heisenberg-Langevin equations from Eqs.
(3.10) can be done in the quantum case, but one has to additionally take care of the
ordering of the operators and mind an extra factor 2. Unfortunately, we are not aware
of a direct way for obtaining a Lindblad master equation from the effective Heisenberg-
Langevin equations for x̂j and p̂j .
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3. Atoms in a tranversally pumped multi-mode cavity

Master equation neglecting retardation

A simple result can be obtained by totally neglecting retardation effects, i.e. the terms
containing the time derivative of Θ̂m, and keeping only the adiabatic contribution and
the noise. The field operators are then expressed by atomic operators and input noise

ast
m =

Nηm
∆c,m + iκm

Θ̂m +

√
2κm

∆2
c,m + κ2

m

ξ̂m, (3.29)

where we note the additional factor
√

2 compared to the classical case. Inserting this ex-
pression into the momentum equation in Eq. (3.10b) yields effective Heisenberg-Langevin
equations. They correspond to the effective atomic master equation [3.14]

ρ̇ = − i
~

[Hatom +Heff
cav, ρ] +N2

∑
m

η2
m

κm
∆2
c,m + κ2

m

(
2Θ̂mρΘ̂†m − Θ̂†mΘ̂mρ− ρΘ̂†mΘ̂m

)
(3.30)

with

Heff
cav = ~

∑
m

η2
m

∆c,m

∆2
c,m + κ2

m

N2Θ̂†mΘ̂m. (3.31)

and Hatom =
∑

j p̂
2
j/(2ma). This equation is also valid for complex interference fields.

Note that this master equation always converges to the infinite temperature steady
state and is thus only suitable for the dynamics long before the steady state is reached.
This is expected since we omitted the retardation term and thus friction, which is the only
process to counteract the heating from the noise. It is not trivial to include retardation
effects, but a high temperature correction can be obtained by a quantum Brownian
motion master equation [3.3] for the special case of Hermitian order operators (or real
interference fields)

ρ̇ =− i

~
[Hatom +Heff

cav, ρ] +N2
∑
m

η2
m

κm
∆2
c,m + κ2

m

(
2Θ̂mρΘ̂m − Θ̂2

mρ− ρΘ̂2
m

)
+ iN2

∑
m

η2
m

2∆c,mκm
(∆2

c,m + κ2
m)2

(Θ̂mρ
˙̂
Θm − ˙̂

ΘmρΘ̂m + Θ̂m
˙̂
Θmρ− ρ ˙̂

ΘmΘ̂m).

(3.32)

Note that due to the additional friction terms the master equation does not have
Lindblad-form anymore and thus the positivity of the density operator is not neces-
sarily preserved. More details are discussed in Appendix A.3.

Effective states

By using the method of elimination via operators in the Heisenberg picture, it is not
totally clear which atom-field state corresponds to an effective atomic state. The con-
nection is established only by the relation in Eq. (3.29), and not by any assumptions on
the states. We now aim to answer the question, which full atom-field state

ρtot =
∑
µν

ρµν |µtot〉〈νtot| (3.33)
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3.3. Transversally pumped ultracold atoms in an optical lattice

corresponds to the effective atomic state

ρ =
∑
µν

ρµν |µ〉〈ν|, (3.34)

when both states have the same coefficients ρµν in the eigenbasis {|ν〉}ν of the order
operator defined via Θ̂m|ν〉 = θνm|ν〉.

From the Heisenberg-Langevin equation of the fields in Eq. (3.10c) we know that after
a time on the order of κ−1

m the expectation values of the fields scattered by |ν〉 reach a
steady state ανm = 〈ν|ast

m|ν〉 = Nηm/(∆c,m + iκm)θνm. Since the master equation is only
valid on the coarse grained time grid ∆t� κ−1

m , the fields are always assumed to be in
this steady state in our effective description.

We now impose that the expectation values of the actual field operators am have to
be the same as the ones of the steady state operators ast

m from the correspondence Eq.
(3.29)

〈am〉tot
!

= 〈ast
m〉 ⇔ 〈νtot|am|µtot〉 !

= 〈ν|ast
m|µ〉, (3.35)

where we used the properties of the trace for the equivalence. Moreover, also normally
ordered products of field operators as e.g. a†mam should give rise to the same expectation
value when we neglect the noise in Eq. (3.29). One can check that this is fulfilled for
coherent field states, leading to the atom-field state

|νtot〉 = |ν〉 ⊗ |αν1〉 ⊗ ...⊗ |ανM 〉. (3.36)

For both we have 〈µtot|νtot〉 = 〈µ|ν〉 = δµν . Note however that the expectation values
do not necessarily agree for an atomic operator Ô: the matrix element 〈ν|Ô|µ〉 should
be equal to 〈νtot|Ô|µtot〉 = 〈ν|Ô|µ〉∏m〈ανm|α

µ
m〉, but the overlaps of coherent states are

only close to one when the fields are similar. This can lead to non-physical behavior like
tunneling between potential wells created by two fields α and −α. It becomes resonant
because the potential depth depends only on the intensity |α|2 and not on the field
phases. Physically however, the tunneling should be suppressed for larger |α|, because
the overlap of the two field states goes to zero due to the opposite phase of α [3.15].

3.3. Transversally pumped ultracold atoms in an optical lattice

In this section we introduce a model describing ultracold atoms in an optical lattice in
a cavity. We consider an optical lattice, which is created by external laser beams which
are not resonant with the cavity. Since in general the cavity fields are dynamical and
even operator-valued, also the Wannier functions have to be determined self-consistently
from the dynamical field and are in principle also operator-valued [3.1]. Here we assume
however, that the cavity-created potentials are much weaker than the external lattice,
and can thus be treated as a perturbation of the Bose-Hubbard model introduced in
Sec. 2.4. In this vein we make the approximation that the Wannier functions are solely
determined by the external lattice and the mode functions of the cavity enter only via
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3. Atoms in a tranversally pumped multi-mode cavity

the on-site and off-site nearest-neighbor overlaps

vim =

∫
dxw2(x− xi)Hm(x)G∗m(x) (3.37a)

uijm =

∫
dxw(x− xi)Hm(x)G∗m(x)w(x− xj). (3.37b)

The lattice order operators then take the form

Θ̂L,m =
1

N

∑
i

vimn̂i +
∑
〈i,j〉

uijmb
†
ibj

 (3.38)

where the first diagonal term is dominant since off-site nearest-neighbor overlaps uijm are
exponentially smaller than vim. This quantity obviously depends on the mode functions,
but also on the position and depth of the lattice wells via the Wannier functions.

The lattice Hamiltonian is then formally very similar to Eq. (3.8) where the kinetic
term is substituted by the tunneling term

HL = −J
∑
〈i,j〉

b†ibj +
U

2

∑
i

n̂i(n̂i+ 1)−~
∑
m

∆c,ma
†
mam+~N

∑
m

ηm(Θ̂†L,mam+a†mΘ̂L,m).

(3.39)
It poses a generalized Bose-Hubbard model, which has been extensively studied theoret-
ically [3.16–3.19] and experimentally tested [3.6].

The atom-atom coupling mediated via the cavity becomes visible by adiabatically elim-
inating the field, which can be done analogously to Sec. 3.2.2. Instead of the Heisenberg-
Langevin equation for the momentum operator of the jth atom we have to consider the
annihilation operator of the ith site bi. The result is an effective Hamiltonian as in Eq.
(3.31), but with the lattice order operator from Eq. (3.38). Different types of infinite

range interactions can be seen: the term Θ̂†L,mΘ̂L,m gives rise to density-density interac-

tions n̂in̂j , a modified tunneling amplitude due to occupation of a site elsewhere n̂ib
†
jbj+1

and tunneling-tunneling interactions b†ibi+1b
†
jbj+1. The implications of these non-local

fluctuations are discussed in more detail in Chapter 7.

3.4. Geometries

Here we briefly mention some special cases which are well-known from literature to give
some concrete form of the order parameters. The standard set-up for self-organization
is a cavity which is pumped orthogonally to its axis [3.20], applying one standing wave
pump laser scattering into a single cavity mode. Defining the cavity direction as x and
the pump direction as z, the mode functions are given byH(x, z) = cos(kz) and G(x, z) =
cos(kx). This yields the order parameter Θ =

∑
i cos(kzi) cos(kxi)/N . It is maximized

(minimized) when the atoms form a checkerboard pattern, where the occupation of even
(odd) sites correspond to the value 1 (−1). Most of the physics can be understood from
a simple 1D model restricted to z = 0 and thus H(x) = 1 and Θ =

∑
i cos(kxi)/N .
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3.4. Geometries

Using this mode configuration in a lattice with wave length kL = k and lattice constant
a = π/k, the order parameter is Θ̂ = v

∑
i(−1)in̂i = v(N̂even − N̂odd), where 0 < v < 1

is the overlap of the Wannier function and the mode function depending on the lattice
depth. Note that the off-diagonal overlaps Eq. (3.37b) are exactly zero in this case
because the mode function changes the sign and the integral cancels to zero. The order
parameter thus measures the imbalance between even and odd sites [3.6].
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4. Simulated annealing with atoms in
optical resonators

The physical properties of many materials like metals or glass can be altered by a heat
treatment. An example is the so-called annealing procedure, where the material is
heated above its recrystallization temperature and then slowly cooled in air or liquid.
Thereby, it is crucial that a long time is spent close to the transition point. The result
is that the materials have less defects, which removes stress and increases the durability
and ductility. In the language of thermodynamics the system’s configuration moves
from some meta-stable state closer to the thermodynamic equilibrium, i.e. the energetic
minimum. Note that this approach to equilibrium would also happen spontaneously
without annealing, but usually very slow compared to human time scales.

Solving an optimization problem corresponds to finding the global minimum in an
extensive and rugged potential landscape, and can thus be conceptually connected with
thermodynamics. Transferring the methods from material science, one can simulate the
annealing procedure on a computer in order to find the global minimum [4.1] by reducing
a fictitious temperature. Moreover, one can envisage to build a simple well-controllable
model system consisting of cold atoms, where the information is stored in the position
of the atoms. The configuration of atoms with the minimal energy then corresponds to
the solution of the optimization problem. Hence the minimization or solving is done by
a real physical dynamics.

In this chapter we investigate the physical Langevin dynamics of the annealing sched-
ule for thermal annealing and connect it to cold particles in transversally pumped optical
resonators. Moreover, we discuss to what extend one can tailor the cost function (or
physically: the collective potential) in order to encode optimization problems. Quantum
annealing is proposed to be implemented using ultra-cold atoms in optical lattices, where
the site-to-site interactions are mediated by cavity fields.

4.1. Thermal annealing

4.1.1. Standard Langevin dynamics

We consider a one-dimensional system of N classical point particles moving in a collective
potential energy landscape U(x1, ..., xN ), where xi are the particle positions. The jth
particle is hence subject to the force −∂U(x1, ..., xN )/∂xj . For now we assume the limit
of large friction µ, where the motion is overdamped. Lacking inertia the particles will
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4. Simulated annealing with atoms in optical resonators

always fall into the closest local minimum along the steepest gradient

ẋj = − 1

maµ

∂

∂xj
U(x1, ..., xN ). (4.1)

In order to find the global minimum the particles have to be able to leave a local minimum
and climb up the walls again (see Fig. 4.1). This happens for instance when they have
a non-zero temperature T , which introduces random noise. The overdamped dynamics
is then described by the Langevin equations∗

ẋj = − 1

maµ

∂

∂xj
U(x1, ..., xN ) +

√
2kBT

maµ
ζj (4.2)

with 〈ζj(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 = δ(t − t′)δij . The stationary state (t → ∞) is given
by the Boltzmann distribution [4.2]

ΠT (x1, ..., x2) ∝ exp

(
−U(x1, ..., xN )

kBT

)
. (4.3)

For T → 0 the particles should thus be distributed arbitrarily close to the global
minimum. Unfortunately, the time to reach the steady state from an arbitrary initial
state increases exponentially for T → 0 (∝ exp(T−1)) [4.3] and thus getting closer to
the global minimum soon takes prohibitively long. A way out is to use an annealing
schedule: The temperature T (t) is slowly decreased from a high value to zero. In the
early high temperature stage the stationary distribution is nearly uniform and the whole
configuration space can be explored. During the slow temperature decrease finer and
finer features of the energy landscape are resolved until for T → 0 the distribution
becomes localized at the global minimum. If the temperature curve fulfills T (t) ≥
l/(ln(t+ 2)) for large enough l, it can be shown that the system’s state gets arbitrarily
close to the thermodynamic ground state (i.e. the global minimum) for any initial state
[4.3, 4.4].

The simulated annealing algorithm [4.1] was inspired by this physics. Instead of
simulating the physical dynamics leading to a Boltzmann distribution, however, the final
distribution is numerically sampled with a Metropolis algorithm [4.5]. The annealing
is done by decreasing a now fictitious temperature T (t). A very similar condition on
the temperature curve for convergence is known [4.6]. There are several variations to
the standard Metropolis algorithm aiming for faster convergence, some of which use a
pseudo-dynamics inspired by overdamped particle motion [4.7].

Let us go back to physical particles. Leaving the overdamped limit, the dynamics
more generally follows†

ẋj =
pj
ma

(4.4a)

ṗj =− ∂

∂xj
U(x1, ..., xN )− µpj +

√
2µmakBT ζj . (4.4b)

∗Note that the Langevin equations correspond to a Smoluchowski FPE for one particle in RN .
†The corresponding FPE is a Kramers equation [4.8] for one particle in RN .
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4.1. Thermal annealing

Figure 4.1.: A one-dimensional potential with one global minimum x2 and two local
minima x1 and x3. Gradient descent dynamics of a particle in this poten-
tial [Eq. (4.1)] would lead to the final position x2 only when starting in
the blue region. An annealing schedule helps to find the global minimum
from any initial position. Starting with a high temperature T1 the parti-
cle can move nearly freely over the three minima. Slowly decreasing the
temperature leads to a distribution which is localized around x2 and x3

for T2. Finally, if the temperature decrease was slow enough the particle
probably ends up in the global minimum x2 for T = T3 → 0.
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4. Simulated annealing with atoms in optical resonators

In the stationary limit t→∞ position and momentum factorize and one obtains [4.2]

Pst(x1, ..., xN ; p1, ..., pN ) ∝ exp

(
−U(x1, ..., xN )

kBT

) N∏
j=1

exp

(
−

p2
j

2makBT

)
. (4.5)

So the particles’ positions are again distributed according to Boltzmann as before.

For a reasonably large friction, the arguments from the overdamped case are thus still
expected to apply and the annealing schedule can still lead to a distribution close to the
thermodynamic ground state. Of course, the way how this equilibrium is approached
is more complicated compared to the overdamped dynamics (and also compared to
simulated annealing pseudo-dynamics), for instance limit cycles can occur. The particles
oscillate around minima or even leave the minimum again solely due to their inertia
instead of diffusion.

4.1.2. Classical dynamics in a transversally pumped cavity

The dynamics of classical point particles in a cavity have a similar, yet more complicated
form compared to Brownian particles in potentials as described by Eqs. (4.4) [4.9]. In
order to identify similarities and differences we consider the Langevin equations obtained
in Eqs. (3.21) in Sec. 3.2.1 describing the particles’ positions and momenta after adiabatic
elimination of the fields.

A crucial similarity is that the light-mediated atom-atom interactions give rise to a
collective potential depending on all atom positions, corresponding to the cost function.
Moreover, within the adiabatic approximation of the fields the stationary state for red
detuning ∆c < 0 is again a Boltzmann distribution with a stationary temperature given
by kBT = ~(∆2

c + κ2)/(−4∆c) [see Eq. (3.26)]. The collective character of friction and
noise instead is more complicated – they do not only act individually on each atom but
depend on all other atom positions. A further difference is that the temperature is not
an external parameter and not fixed but determined self-consistently by the dynamics.

To obtain the minimum of the collective potential U , we can still apply an annealing
schedule. A possible parameter sweep can be an increase of all pump strengths ηm,
which ramps up the collective potential. The stationary temperature instead remains
unchanged within the first order approximation in the momentum. Only for larger pump
strengths there is a correction proportional to the square of the trap frequency [4.10].
Since the Boltzmann distribution depends only on the ratio U/(kBT ), ramping up the
potential is equivalent to decreasing the temperature for the stationary state. Note that
this is not necessarily true for the dynamical evolution leading to the stationary state.

How likely the atoms get stuck in local minima then depends on the intensity ramp
speed. This is discussed in Chapter 5, which treats a simple two mode model already
containing local minima. A detailed numerical discussion of the influence of ramp speed
and initial temperature on the final state reveals that slower ramp speeds yield states
closer to the minimum.

In such a system for ∆c,m < 0, a minimization of the collective potential goes hand in
hand with a maximization of the scattered intensity. The device can thus be interpreted
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4.2. Quantum annealing

as an adaptive light harvesting system [4.11], which always adapts in order to maximize
the total scattering into all modes.

Encoding a problem. In order to solve the desired optimization problem the potential
landscape needs to be tailored, such that the global minimum corresponds to a solution
of the problem. The form of the cost function depends on the order parameters and thus
on the form of the interference fields Hm(x)G∗m(x).

The collective potential in Eq. (3.22) can be re-written by exchanging the sum over
the fields with the sum over the atoms

U(x1, ..., xN ) =
N∑

i,j=1

M∑
m=1

~η2
m∆c,m

∆2
c,m + κ2

m

Re [H∗m(xi)Hm(xj)Gm(xi)G∗m(xj)] . (4.6)

We made use of fact that an index exchange i↔ j corresponds to a complex conjugation.
This expression reveals the atom-atom interaction energy between ith and jth atom

Uint(xi, xj) =
∑
m

~η2
m∆c,m

∆2
c,m + κ2

m

Re [H∗m(xi)Hm(xj)Gm(xi)G∗m(xj)] =
∑
m

cmVm(xi, xj).

(4.7)
The second expression forms a series expansion with the real functions Vm(xi, xj) =
Re [H∗m(xi)Hm(xj)Gm(xi)G∗m(xj)] and the coefficients cm = ~η2

m∆c,m/(∆
2
c,m +κ2

m). One
can mathematically create any shape of the interaction energy by adjusting the coef-
ficients cm, when the Vm’s form a basis of the functions of two real variables (and m
ranging to infinity). Of course in practice, there is no infinite number of modes available
and thus the shape of Uint(xi, xj) is always limited for continuous interactions. However,
with a finite number of modes a potential can be approximated with reasonable accuracy.
How well this works is of course dependent on the problem.

Since the interference field Hm(x)G∗m(x) typically has a periodic shape, the series
expansion often takes the form of a Fourier series, and well-known results from Fourier
analysis can be applied. For instance, for running wave pump modesHm(x) = exp(ikmx)
and Gm(x) = 1 one obtains Vm(xi, xj) = cos(km(xi−xj)), an interaction which depends
only on distance in this case. The interaction energy is then an even Fourier series for
the distance (see Chapters 7 and 8).

Note that in general the sign of the coefficients is determined by the cavity detunings
∆c,m. So when intrinsic cavity cooling is desired one is less flexible due to the restriction
∆c,m < 0. This can in principle be circumvented by employing extra cooling (e.g.
Doppler cooling) not relying on dissipation through the cavity mirrors.

4.2. Quantum annealing

4.2.1. Quantum annealing in a tight-binding model

In the previous section we reduced the temperature to values close to zero, but we still
remained in the classical regime kBT � ER. Using temperatures lower than the recoil
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4. Simulated annealing with atoms in optical resonators

energy ER results in quantum dynamics. While in this limit the thermal fluctuations
disappear, a particle’s spatial wave function is so large that quantum fluctuations on the
order of the length scale of the potential (i.e. the laser wave length) arise‡. The fluctu-
ations allow the atom to tunnel through the potential barriers. This zero-temperature
tunneling might allow the particles to more efficiently leave local minima than with clas-
sical thermal hopping. Moreover, a quantum particle can be in a superposition state
and thus see the whole potential landscape at once, while classically the multitude of
states has to be run through sequentially [4.12].

In the framework of a tight-binding model for ultra-cold atoms as introduced in Sec.
2.4, a quantum annealing Hamiltonian can have the form

H(t) = −J(t)
∑
〈i,j〉

b†ibj + UI(t)
∑
i,j

Aijn̂in̂j . (4.8)

The first term describes quantum tunneling with the amplitude J and gives rise to
quantum fluctuations. The second term creates site-to-site interactions specified by the
interaction matrix A and is diagonal in the computational basis, which here corresponds
to the occupation basis (eigenbasis of n̂i). This latter term corresponds to the collective
potential with the interaction matrix encoding the (classical) optimization problem.
Note that in the tight-binding model the space was rendered discrete and the degrees of
freedom were significantly reduced by using the lowest band approximation [4.13]. This
also leads to a simpler configuration space and makes it more straightforward to encode
problems in the Hamiltonian.

In contrast to the classical case, annealing is done by reducing the quantum fluctua-
tions via reducing J(t) from J(0) > 0 to J(τ) ≈ 0 while increasing the interaction Hamil-

tonian by ramping up the site-to-site interactions UI(t) from UI(0) ≈ 0 to UI(τ) = UfI .
If the system is prepared in the ground state of the Hamiltonian at t = 0, the adiabatic
theorems for Schrödinger time evolutions [4.14] guarantee that the system stays in its
ground state as long as the sweep is slow enough. Thus the system ends up in the ground
state of the interaction Hamiltonian, which is the solution of the problem.

The decisive question whether quantum annealing has an advantage in speed over
classical annealing is not easy to answer in general since it depends crucially on the
specific problem and thus on the potential landscape. As an intuitive rule of thumb,
quantum tunneling tends to work better when the potential barriers are high and narrow
[4.12], as it is often the case for infinite-range interacting systems such as the Sherrington-
Kirkpatrick model. Figure 4.2 shows a toy model potential, the parabolic washboard,
where quantum tunneling performs better [4.15]. When quantum annealing outperforms
thermal annealing, we talk about a “limited speed-up” [4.14].

The more relevant question for real life applications is if quantum annealing has a
speed-up over any known classical device or algorithms for some problem [4.16]. Since
a (pure) quantum state is specified by as many coefficients as configuration states (the

‡For free particles the size of the wave function corresponds to the thermal de Broglie wave length
λth = ~

√
2π/(makBT ). The condition for the classical regime kBT � ER translates to λth � λ/

√
π.
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4.2. Quantum annealing

Figure 4.2.: A one dimensional potential, where quantum annealing is advantageous
over thermal annealing [4.15]. Thermal hopping would require tempera-
tures on the order of the barrier height Uh, while quantum particles can
tunnel through the barriers.

size of the Hilbert space), it cannot be directly implemented in a computer with polyno-
mial overhead. However, for many Hamiltonians the ground state (or a thermal mixed
state with very small temperature) can be sampled using quantum Monte Carlo meth-
ods [4.12]. Just as in the classical simulated annealing algorithm, simulated quantum
annealing consists in reducing quantum fluctuations in course of such a sampling proce-
dure. With these quantum physics inspired algorithms tunneling can be simulated effi-
ciently on a classical computer for so-called stoquastic Hamiltonians [4.17, 4.18], whose
off-diagonal elements are all negative in the computational basis [such as the one in
Eq. (4.8)]. For non-stoquastic Hamiltonians instead, the question of the existence of
quantum speed-up is still open [4.14, 4.16].

Note that in literature typically Ising spin models are considered instead of the tight-
binding model coming from ultra-cold atoms in Eq. (4.8). However, the tight-binding
model can be mapped on such models when only single excitations occur, for example
when large contact interactions make doubly occupied sites energetically unfavorable (as
in Chapter 6) or by single atom filling (as in Chapter 7).

4.2.2. Ultra-cold atoms in a cavity

Ultra-cold atoms in an optical lattice placed in a transversally pumped cavity as de-
scribed in Sec. 3.3 obey a similar Hamiltonian as in Eq. (4.8). The atom-atom interac-
tion becomes revealed when considering again the case of adiabatically eliminated cavity
fields. As in the classical case, the crucial effect of the cavity beyond standard optical
lattice physics are the infinite-range all-to-all interactions stemming from collective scat-
tering. The annealing is then simply done via increasing the pump strength, as in the
classical case. Note that since the light fields also change the tunneling, the resulting
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Hamiltonian is not stoquastic, and thus can in principle support quantum speed-up.
Since the realistic open system is described by a master equation [Eq. (3.9)], we have

to take into account more effects than those coming from the coherent Schrödinger
dynamics. On the one hand, cavity cooling (or heating) can arise, which comes from the
time lag between atomic motion and fields as in the classical case. This effect could in
principle be used to amend quantum annealing and cool excitations due to unwanted non-
adiabatic transfers back to the ground state. On the other hand, quantum superpositions
get destroyed by dephasing due to photon loss, which reduces the coherence time and
creates an upper bound to the annealing time. This is briefly treated in Chapter 7 by
using a master equation of the form Eq. (3.30).

Tailor the interaction matrix. In the tight-binding lattice model the effective Hamil-
tonian can be written as (see Sec. 3.3)

Heff =
K∑

i,j=1

M∑
m=1

~η2
m∆c,m

∆2
c,m + κ2

m

Re[(vim)∗vjm]n̂in̂j + cavity-induced tunneling. (4.9)

with the on-site Wannier-mode overlaps vim from Eq. (3.37a). In order to simplify this
discussion we do not consider the off-diagonal cavity-induced tunneling terms. The
indices i, j run over lattice sites now. Due to the lattice the single-mode site-to-site
interaction is discrete and given by the real and symmetric matrices V ij

m = Re[(vim)∗vjm].
This yields the total site-to-site interaction

U ijint =
∑
m

cmV
ij
m . (4.10)

As in the classical case, it can be interpreted as a series expansion with coefficients cm.
With a proper choice of mode and lattice geometry, K(K + 1)/2 matrices Vm can span
a basis and an arbitrary interaction matrix can be obtained (see Chapter 6).

To gain more insight to the interaction matrices, we note that in the limit of deep
lattice depths VL → ∞ we obtain V ij

m → Vm(x̃i, x̃j) and U ijint → Uint(x̃i, x̃j) with the
lattice site positions x̃i. Thus in this limit the additional lattice simply discretizes the
interaction energy Uint. For (realistic) finite lattice depths, they are not evaluated at the
point but rather blurred by the finite width Wannier functions to yield vim. It is this
finite width which also leads to cavity-induced tunneling.

There are interesting problems where the interaction matrix can be created with much
less modes. As shown in Chapter 7, the N -queens problem can be implemented using
O(K) modes. The series expansion also allows for systematically approximating the
interaction up to some target accuracy by omitting summands (or physically modes),
reducing the complexity of the implementation.
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to crystalline order. We characterize the dynamics of this self-ordering pro-
cess in the semi-classical regime when distinct cavity modes with commensu-
rate wavelengths are quasi-resonantly driven by laser fields via scattering by
the atoms. The lasers are simultaneously applied and uniformly illuminate
the atoms, their frequencies are chosen so that the atoms are cooled by the ra-
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5.1. Introduction

Laser light creates an attractive optical potential for cold atoms when far detuned below
an optical transition. Such potential can be significantly enhanced if the light is confined
by an optical resonator [5.2–5.5]. In addition, if the laser illuminates the atoms, trapping
is induced by a dynamical optical potential emerging from the interference between
the scattered light and the laser, which tends to order the particles at the maxima of
the intensity [5.5, 5.6]. The interference contrast, and thus the trapping depends on
the relative positions of the scattering atoms. Therefore, this phenomenon can be also
understood in terms of an effective long-range force, which is mediated by the collectively
scattered photons [5.6–5.10]. This force has also a dissipative component, which is due to
the dissipative nature of the resonator and which cools the atoms when the pump is tuned
below the cavity resonance [5.4, 5.11]. Theoretical studies with single-mode resonators
predicted that this dissipation can establish long-range correlations and support the
onset of metastable ordered structures [5.12, 5.13].

In a multimode cavity and for several illumination frequencies, competing ordering
processes are present and lead to a richer phase dynamics. In a two-mode cavity, like the
one depicted in Fig. 5.1(a), the transition to self-organization can be a phase-transition of
first or second order depending on the laser intensities and on their relative strength [5.1].
The corresponding self-ordered phases can exhibit superradiant scattering either in one
or in both cavity modes, as illustrated in Fig. 5.1(b), while the asymptotic distribution of
the atoms can be thermal provided that the lasers’ frequencies are suitably chosen [5.1].
In our example the particles can order in a lattice at a given length scale λ and/or
on a lattice with half the period λ/2. For these settings we numerically analyze the
semi-classical dynamics following sudden quenches or slow ramps of the laser intensities
across the thresholds separating the homogeneous from one of the self-organized phases.
We describe the evolution by stochastic differential equations, which correspond to the
Fokker-Planck equation derived in Ref. [5.14] for a similar system. We find that even at
very long times the atoms’ spatial distribution strongly depends on the initial temper-
ature, ramp speeds, and on the quench protocol, such that the system gets trapped in
long-lived metastable states. In particular, for quenches starting with ensembles at low
temperatures, the buildup of long-range order requires longer times when compared to
higher initial temperatures.

Our work is organized as follows: In Section 5.2 we introduce the system and the
semi-classical equations describing the dynamics. The atoms’ stationary properties are
then summarized in a phase diagram, which was derived in Ref. [5.1]. In Sec. 5.3
we numerically study the real time dynamics when the parameters are varied within
the phase diagram according to different quench protocols. In Sec. 5.4 we analyze the
crystallization dynamics starting from spatially homogeneous distributions with different
momentum widths. In Sec. 5.5 we compare the predictions of the stochastic differential
equations we employ with an extended approach including the dynamical evolution of
the field modes introduced in Refs. [5.15, 5.16]. The conclusions are drawn and future
perspectives are discussed in Sec. 5.6.
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Figure 5.1.: (a) Cold atoms are confined within an optical cavity and move along the
cavity axis (x axis). They coherently scatter photons from transverse
lasers with rescaled amplitudes α1 and α2 into the (correspondingly) reso-
nant cavity modes with spatial mode functions cos(kx) (red) and cos(2kx)
(green) and loss rates κ1 and κ2, respectively. (b) Sketch of the atomic
density distribution n(x) along the cavity axis (in units of 1/k) for the
four possible stationary self-organized orders. On the right we report the
corresponding values of the quantities Θ1 and Θ2, signaling Bragg order
in the mode 1 and 2, respectively. See text and Ref. [5.1] for details.

5.2. Semiclassical dynamics

The system we consider consists of a gas of N cold atoms with mass m, which are
trapped inside a high-finesse optical resonator and coherently scatter laser light into the
cavity modes. The atomic motion is confined along the cavity axis (here the x axis) by
a tight external dipole trap [5.17, 5.18] and is here described in the semi-classical limit.

The geometry of the setup is illustrated in Fig. 5.1. Lasers with (rescaled) intensities
αn propagate in a direction orthogonal to the cavity axis and are quasi resonant with
the standing wave cavity modes cos(nkx) with frequency ωc,n and wave number nk
(n = 1, 2) [5.19] †. The lasers have frequency ωp,n and linear polarization which is
parallel to the one of the corresponding cavity mode. Each pair of laser and cavity mode
couples to an atomic dipolar transition at frequency ωa,n, where Ωp,n and gn are the
laser and the vacuum Rabi frequency, respectively. Spontaneous scattering processes
are suppressed when the absolute value of the detuning ∆a,n = ωp,n − ωa,n exceeds the
coupling strengths and the detuning ∆n = ωp,n−ωc,n between laser and cavity mode by

†This can be realised by assuming ωc,2 = 2ωc,1 ≡ 2ωc, giving k2 = 2k1 ≡ 2k. Another possible
realisation, where ωc,1 ≈ ωc,2, has been discussed in Ref. [5.1], and uses two optical single-mode cavities
crossing at an angle of 60◦. For a similar experimental setup see also Ref. [5.19]
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orders of magnitude: |∆a,n| � Ωpn,, gn, |∆n|. The relevant dissipative process are given
by cavity decay, and we denote by κn the loss rate of cavity mode n = 1, 2.

In the so-called bad cavity limit, assuming that the cavity field loss rates are faster
than the rate of the dynamics of the atomic motion, one can eliminate the cavity field
variables from the equations of motion of the atoms by means of a coarse graining in
time. This gives rise to an effective model, where the atoms experience a long-range
interaction mediated by the cavity photons, while retardation effects and fluctuations
of the cavity field are responsible for friction forces and diffusion. In the semi-classical
limit one can derive a Fokker-Planck equation for the atoms’ position and momentum
distribution, assuming that the single-atom momentum distribution has a width ∆p
which, at all instants of time, is orders of magnitude larger than the photon recoil ~k:
∆p� ~k [5.1, 5.14, 5.20]. The corresponding stochastic differential equations read

dxj =
pj
m
dt , (5.1a)

dpj = (Fj,ad + Fj,ret)dt+ dW
(1)
j + dW

(2)
j , (5.1b)

where

Fj,ad =−
∑
n=1,2

2~nk
αn
~βn

sin(nkxj)Θn , (5.2)

Fj,ret =−
∑
n=1,2

~(nk)2

m
αn

κn
−∆n

sin(nkxj)
1

N

N∑
l=1

pl sin(nkxl) , (5.3)

and

αn =
4NS2

n∆2
n

(∆2
n + κ2

n)2
, (5.4)

βn =
−4∆n

~(∆2
n + κ2

n)
. (5.5)

Here, Sn = gnΩn/∆an is the amplitude of coherent scattering by a single atom and

has the dimension of a frequency, while dW
(1)
j and dW

(2)
j in Eq. (5.1b) describe Wiener

processes, which fulfill 〈dW (n)
i 〉 = 0 and 〈dW (n)

i dW
(m)
j 〉 = 2Dn

ijδnmdt (n,m = 1, 2 and
i, j = 1, ..., N). Here,

Dn
ij = (~nk)2 αn

~βn
κn
−∆n

sin(nkxi) sin(nkxj) . (5.6)

Finally, the parameter

Θn =
1

N

N∑
i=1

cos(nkxi) (5.7)

quantifies Bragg ordering of the atoms in the cavity mode with wave number nk. In
particular, |Θn| = 1 when the atoms are localized either at the maxima or at the minima
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of cos(nkx), which is the configuration which maximizes the intracavity field intensity.
We identify Θn with the order parameter for self-organization in the corresponding
cavity mode [5.1]. Below, we will denote by ”long-wavelength order” a configuration
with non-vanishing value of Θ1, corresponding to a Bragg grating with period λ = 2π/k.
Similarly, ”short-wavelength order” refers to a configuration with Θ2 6= 0, corresponding
to a Bragg grating with λ/2. Note that here and in the rest of the paper we discard the
dynamical Stark shift of the cavity frequency assuming that this is much smaller than
the cavity mode linewidth Ng2

n/|∆a,n| � κn. For details we refer to Ref. [5.1].

5.2.1. Stationary states

An analysis of the Fokker-Planck equation at the basis of Eq. (5.1) allows to identify
the conditions for the existence of a stationary state. The latter exists provided that
∆n < 0 and β1 = β2 ≡ β, see Eq. (5.5). In this case the atoms’ distribution at steady
state reads [5.1]

fst(x1, p1, . . . , xN , pN ) =
exp(−βHeff)

Z(β)
(5.8)

where Heff is the effective Hamiltonian derived after eliminating the cavity field variables,

Heff =

N∑
j=1

p2
j

2m
−
∑
n=1,2

N
αn
βn

Θ2
n , (5.9)

while Z(β) denotes the partition function:

Z(β) =
1

∆N

∫ ∞
−∞

dp1 ...

∫ ∞
−∞

dpN

∫ λ

0
dx1 ...

∫ λ

0
dxN e

−βHeff , (5.10)

with λ = 2π/k and with ∆ = 2π~ the single particle unit phase space volume. In the
following we will assume that the cavity decay rates are equal,

κ1 = κ2 =: κ , (5.11)

so that the condition for the existence of the stationary state in Eq. (5.8) becomes

∆1 = ∆2 =: ∆c < 0 . (5.12)

The phase diagram of the system can be determined by using that the steady state, Eq.
(5.8), has the form of a thermal state. On the basis of this observation we introduce the
temperature T of the stationary state, which is defined as

kBT = β−1 =
~(∆2

c + κ2)

−4∆c
, (5.13)

with the Boltzman constant kB. The steady-state temperature T has the same functional
dependence on ∆c and κ as for a single-mode cavity [5.8, 5.14]. We can further define
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5. Publication: Quenches across the self-organization transition in multimode cavities

the free energy per particle F using the formal equivalence with the canonical ensemble
of equilibrium statistical mechanics [5.8]:

F = − 1

Nβ
ln(Z(β)) . (5.14)

Following the procedure detailed in Refs. [5.1, 5.8, 5.13] we determine the global minima
of F in an appropriately defined thermodynamic limit, which consists in keeping αn
constant for N → ∞. The global minima are the resulting stationary phases. The
corresponding order parameters Θ1 and Θ2, in particular, are determined by α1 and α2.
When the fields are sufficiently weak, then Θ1 = Θ2 = 0 the density is homogeneous
and there is no structural order. We denote this phase by paramagnetic, borrowing the
notation of the generalized Hamiltonian mean-field model (GHMF) [5.21–5.23] to which
this model can be mapped. The possible ordered phases at steady state are illustrated
in Fig. 5.1(b) and take one of four set of values. In particular, the ferromagnetic phase is
characterized by (i) Θ1 > 0, Θ2 > 0 and (ii) Θ1 < 0, Θ2 > 0, exhibiting Bragg order in
both cavity modes. The nematic phases (iii) and (iv), instead, are characterized by no
order in the long-wavelength mode, Θ1 = 0 while Θ2 can be either negative or positive.

The resulting phase diagram in the α1−α2 plane is shown in Fig. 5.2 and reproduces
the one of Ref. [5.1]. The phases are separated by either first- or second-order transitions,
which have been determined using Ehrenfest’s criterion [5.23]. The shaded areas show
stability regions in which the free energy has a local minimum that corresponds to the
paramagnetic (dark gray region) and nematic (light gray region) phase. Examples of the
free-energy landscape in the Θ1−Θ2 plane are shown in subplots (b) and (c). Subplot (b)
corresponds to the parameters of the red bullet labeled by (b) in subplot (a): Here, the
free energy exhibits two symmetric global minima which correspond to the ferromagnetic
phase. In subplot (c), corresponding to the parameters of the red bullet labeled by (c),
there is an additional local minimum corresponding to a nematic phase. In the latter
there is only ordering in the short-wavelength lattice, while Θ1 = 0. We denote this
region by bistable referring to the existence of a second, metastable state in which the
system can be dynamically trapped.

5.3. Dynamics of self-organization

We now examine the dynamics of the system when the values of α1 and α2 are varied as
a function of time. Experimentally, this corresponds to vary the pump laser intensities
or their detuning with respect to the cavity mode frequencies. At time t = 0 we assume
that the system is prepared in the stationary state of a paramagnetic phase, described by
the distribution in Eq. (5.8) by setting αn = αni � 1 in Eq. (5.9) (n = 1, 2). The values
αn appearing in the equations of motion (5.1) are then varied in time, by performing
either (i) a sudden quench, i.e. suddenly switching the two values of α1f and α2f , or (ii) a
slow quench, consisting in varying αn(t) monotonously and continuously in time towards
the final values α1f and α2f . We choose the final values αnf in the ferromagnetic phase.
The quench protocols we consider are illustrated by the green lines in Fig. 5.2(a): for

42



5.3. Dynamics of self-organization

(a)

(b) (c)

Figure 5.2.: (a) Phase diagram of the stationary phases, corresponding to the global
minima of Eq. (5.14), in the plane α1 − α2. Blue (yellow) lines mark
second (first) order phase transitions. The light gray area (dark gray
area) within the ferromagnetic phase indicate the parameter region where
the nematic (paramagnetic) phase are local minima of the free energy.
The red circles labeled by (b) and (c) indicate the parameters to which
the contour plots of free energy in subplots (b) and (c) are shown in the
Θ1 − Θ2 landscape. The free energy in subplot (b) exhibits two global
minima at Θ1 = ±0.92 and Θ2 = 0.73; in (c) the two global minima of the
ferromagnetic phase are at Θ1 = ±0.97 and Θ2 = 0.88, the local minimum
in the nematic phase is at Θ1 = 0 and Θ2 = −0.83 (the contour of F is
reported below a convenient threshold). The green dash-dotted lines in
subplot (a) illustrate the paths of the quench protocols discussed in Sec.
5.3. Circle (d) indicates the parameters of the quench discussed in Sec.
5.3.3.
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5. Publication: Quenches across the self-organization transition in multimode cavities

sudden quenches, the initial and final values are two points connected by the green line.
A slow quench sweeps across the intermediate points along the line. We are interested
in determining the dynamics leading to the steady state.

In what follows we perform numerical simulations of Eq. (5.1) using the parameters of
a gas of 85Rb atoms. In particular, we take k = 2π/λ with λ = 780nm the wavelength
of the D2 line. The corresponding recoil frequency is ωr = 2π × 3.86kHz. The cavity
linewidth is taken to be κ = 2π × 1.5MHz, so that κ ≈ 388.6ωr. A possible realization
of the two-mode setup here considered has been discussed in Refs. [5.1, 5.19].

5.3.1. Sudden quench into the ferromagnetic phase

We first consider sudden quenches from α1i, α2i in the paramagnetic phase to α1f , α2f

in the ferromagnetic phase, keeping α1i/α2i = α1f/α2f = 5. The initial values are
vanishingly small and the atoms are at the corresponding stationary distribution, which
is a thermal distribution at the temperature determined by the corresponding detuning,
Eq. (5.13), with homogeneous density. The detuning before and after the quench is
taken to be equal, thus it is expected that the atoms reach a thermal distribution with
the same temperature as the initial state.

Figure 5.3 displays the distribution Pt(Θ) for the order parameters Θ1 and Θ2 as a
function of time for (α1f , α2f ) = (2.5, 0.5). It is defined as a time sequence of normalized
histograms

Pt(Θ) =
# trajectories with Θ(t) ∈ [Θ−∆Θ/2,Θ + ∆Θ/2]

# trajectories×∆Θ
, (5.15)

where Θ is calculated on each trajectory of the simulations with the stochastic different
equations and its value is determined according to the precision ∆Θ of the grid in Θ. We
observe that at a given time scale of the order of 102/κ, Pt(Θ1) splits into two branches
corresponding to two possible orders in the long-wavelength lattice. This symmetry
breaking is well known from the single mode case [5.6]. The order parameter of the
short-wavelength mode Θ2, which is weakly pumped, substantially grows to a positive
value long after the symmetry breaking. The fact that Pt(Θ2) vanishes for negative Θ2

values comes from the ordering of the atoms close to the anti-nodes of the dominant
long-wavelength mode field cos(kx) (see Fig. 5.1).

The distributions P(Θn) at the asymptotics are reported in the right panels of Fig.
5.3. They are obtained by averaging Pt(Θn) over times t ≥ 106/κ, where a stable
configuration has been reached. Formally

P(Θ) =

Nt∑
i=1

Pti(Θ)/Nt , (5.16)

where Nt is the number of instants of times at which the distribution is sampled in
the interval [t1, tf ], with t1 = 106/κ and tf = tNt > t1. Comparing the widths of the
distributions in the right panel of Fig. 5.3 one observes that after sufficiently long times
the long-wavelength order parameter fluctuates less than the short-wavelength order
parameter.
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5.3. Dynamics of self-organization

Figure 5.3.: Dynamics following a sudden quench from α1i, α2i � 1 to α1f = 2.5,
α2f = 0.5 keeping constant the detuning ∆c = −κ. The left panel displays
the contour plot of distribution Pt(Θ) (Eq. (5.15)) for Θ = Θ1 and Θ = Θ2

as a function of time (in units of 1/κ). The distribution has been extracted
from the numerical simulations using Eq. (5.1) for N = 100 atoms and
1000 trajectories. The grid in Θ for the left panel has minimum step ∆Θ =
2/111, the grey scale gives the relative weight. The right panels display the
distributions P(Θ1) and P(Θ2) as a function of Θ1 and Θ2, respectively,
see Eq. (5.16). Here, the time average has been performed for Nt = 113
instants of time chosen between t1 = 106/κ and tf = 3.77 × 106/κ. The
vertical dashed line in the left panels marks the instant of time t1 = 106/κ.

Figures 5.4(a)-(b) display the dynamics of the mean absolute value of the order param-
eters for different values of N . Figure 5.4 (c) shows the time evolution of the fluctuations
of the order parameters δΘn =

√
〈Θ2

n〉 − 〈|Θn|〉2 for N = 100 particles. The order pa-
rameters asymptotically tend to the values predicted by the free energy, indicated by the
horizontal dashed line, for a time scale of the order of 106/κ. Meanwhile the fluctuation
δΘ1 relaxes to a much smaller value than the asymptotic value of δΘ2 reproducing the
widths of the distributions in the right panel in Fig. 5.3. The time evolution of 〈|Θ1|〉,
in particular, is reminiscent of the one observed for quenches into the ferromagnetic
phase in a single-mode resonator [5.12]. It can be separated into three stages which
we denote by (in order of their temporal appearance) (i) violent relaxation, correspond-
ing to an exponential increase of the absolute value of the order parameter 〈|Θ1|〉; (ii)
transient dynamics, corresponding to power-law scaling with time, and (iii) relaxation
phase, where the mean values tend exponentially towards the asymptotic value. The
violent relaxation can be described by a mean-field model [5.13], in the transient stage
the coherent dynamics is prevailing, while the relaxation stage is dominated by dissipa-
tion [5.12]. The transient and relaxation stages are characterized by time scales which
increase with N but with different functional dependence [5.13]. The time scale 106/κ
can here be identified as the one at which the asymptotic state is reached for N . 200,
while for larger numbers of particles longer time scales shall be considered.

Interestingly, in the transient phase there is ordering only in the long-wavelength mode
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Figure 5.4.: Dynamics of (a) 〈|Θ1|〉, (b) 〈|Θ2|〉, and (c) their fluctuations δΘn =√
〈Θ2

n〉 − 〈|Θn|〉2 as a function of time (in units of 1/κ). The parameters
and quench protocol are the same as in Fig. 5.3, the curves are however
evaluated for different numbers of atoms and of trajectories. In (a) and
(b) the data correspond to N = 25, 50, 100, 200 particles (see legenda for
color code) and respectively 1000, 500, 250, 125 trajectories. The horizon-
tal dashed lines indicate the value predicted by the global minimum of the
free energy in Eq.(5.14). The finite values of the order parameters at t = 0
are due to finite size effects, 〈|Θn(0)|〉 = 1/

√
πN . The curves in (c) are

calculated for N = 100 and 250 trajectories.
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(a)

(b)

Figure 5.5.: Dynamics of (a) the single-particle kinetic energy 〈p2/2m〉 (in units of
~ωr) and (b) the Kurtosis K = 〈p4〉/〈p2〉2, for N = 25, 50, 100, 200 parti-
cles (see legenda) and correspondingly 1000, 500, 250, 125 trajectories. The
other parameters and quench protocol are the same as in Fig. 5.4. The
horizontal dashed line in (a) indicates the asymptotic value predicted by
Eq. (5.13).

Figure 5.6.: Asymptotic values of 〈|Θ1(tf)|〉, 〈|Θ2(tf)|〉, and Ptf (Θ2 < 0), Eq. (5.17),
as a function of α1f . The quenches start all from the same initial values
in the paramagnetic phase (α1i, α2i � 1 and ∆c = −κ) and end up in
different values α1f , α2f with α1f = 5α2f (lying along the left green line
in Fig. 5.2(a)) and ∆c = −κ. The circles correspond to the results of the
numerical simulations at tf = 3.77 × 106/κ with N = 100 particles and
250 trajectories. The dashed lines indicate the predictions of the global
minima of Eq. (5.14).
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of the cavity, while ferromagnetic order is finally established by dissipation on a longer
timescale. The metastable phase of the transient dynamics can be therefore denoted by
”nematic”, its lifetime increases with N and for N ∼ 200 it is of the order of t ∼ 104/κ.
However, this metastable ”nematic” state cannot be understood in terms of the landscape
of the free energy, but rather seems to exhibit the features of the quasi-stationary state
due to the long-range coherent dynamics analogous to the ones reported in Ref. [5.22].
This conjecture is also supported by the behaviour of the single-particle kinetic energy
and of the kurtosis K = 〈p4〉/〈p2〉2, which are shown in Fig. 5.5. The latter quantifies
the deviation of the momentum distribution from a Gaussian, for which it takes the
value KGauss = 3. For these quantities we observe that in the metastable nematic phase
the kinetic energy grows, while the distribution is non-thermal. Ordering in the second,
short-wavelength lattice is accompanied by cooling into a thermal distribution.

We now compare the numerical results with the analytic theory for different quenches
starting from the same initial values of α1i, α2i � 1 but with different endpoints α1f , α2f .
We take different endpoints ranging from the paramagnetic to the ferromagnetic phase,
under the constrain α1f/α2f = 5. The circles in Fig. 5.6 correspond to the numerical
results for 100 particles at time tf > 106/κ, where we expect that the system has reached
the steady state. These are in good agreement with the analytical results (dashed lines)
based on evaluating the corresponding observables at the global minimum of the free
energy. The interval where 〈|Θn|〉 grows monotonically from ∼ 1/

√
N to the value of

the ferromagnetic phase is expected to shrink as N is increased, in agreement with a
second order phase transition at the thermodynamic limit. Further information on the
onset of this ferromagnetic order can be gained by the probability Pt(Θ2 < 0) that Θ2

is negative at t:

Pt(Θ2 < 0) =

∫ 0

−1
dΘ2Pt(Θ2) . (5.17)

We note that in the paramagnetic phase (homogeneous spatial distribution) we expect
Pt(Θ2 < 0) ' 0.5. In contrast, due to the given mode structure we expect that Pt(Θ2 <
0) ' 0 for long-wavelength ordering in the ferromagnetic phase. Indeed, as α1f increases
across the critical value, Pt(Θ2 < 0), quickly drops down to zero.

5.3.2. Sudden quenches into the bistable phase

We now turn to the dynamics following sudden quenches from the paramagnetic to the
ferromagnetic phase but following the right path of Fig. 5.2(a), which consists in equal
effective pumping α1i/α2i = α1f/α2f = 1. In this parameter region (bistable phase)
the free energy exhibits a local minimum, which is nematic. As in the previous case,
the initial values α1i, α2i are vanishingly small and the atoms are at the corresponding
stationary distribution, whose temperature is determined by the detuning ∆c and whose
spatial density is homogeneous. The quench is performed by switching the laser power
keeping the detuning constant, thus the atoms should reach a thermal distribution with
the same temperature as the initial state.

Figure 5.7 displays the time evolution of the trajectories’ Θ-distribution for α1f =
α2f = 2 and ∆c = −κ. As opposed to the previous section, here a finite fraction of
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Figure 5.7.: Dynamics following a sudden quench from α1i, α2i � 1 to α1f = α2f = 2
keeping constant the detuning ∆c = −κ (red circle (c) in Fig. 5.2(a)).
The left panel displays the contour plot of the distribution Pt(Θ) (Eq.
(5.15)) for Θ = Θ1 and Θ = Θ2 as a function of time (in units of 1/κ).
The distribution has been extracted from the numerical simulations using
Eq. (5.1) for N = 100 atoms and 1000 trajectories. The right panels
display the distributions P(Θ1) and P(Θ2) as a function of Θ1 and Θ2,
respectively, see Eq. (5.16). See Fig. 5.3 for further details.

trajectories gets trapped in the nematic phase with vanishing value of Θ1 and finite
probability that Θ2 takes negative values. This is visible in the small extra peaks in
P(Θ1) and P(Θ2) (right panels). The trapping occurs at the time scale of the violent
relaxation, and it seems stable over times of the order of 106/κ. We conjecture that it
persists also at asymptotic times. In Fig. 5.8 the time evolution of the mean absolute
value of the order parameters is shown for different numbers of particles. While 〈|Θ2|〉
reaches the same stationary value (in reality its value decreases slightly with N), instead
the asymptotic value of 〈|Θ1|〉 decreases as N grows. This suggests that the probability
that the dynamics gets trapped in the local minimum increases with the number of
particles. The asymptotic value of δΘ1 =

√
〈Θ2

1〉 − 〈|Θ1|〉2 in subplot (c) reflects the
contribution of these trajectories.

Mean single-particle kinetic energy and kurtosis are shown in Fig. 5.9. From their
behaviour we infer that the metastable nematic state does not significantly deviate from
a thermal distribution with the expected asymptotic temperature (Eq. (5.13)).

Peculiar features of these dynamics become visible when inspecting the probability
Pt(Θ2 < 0) at the asymptotics and as a function of α1f in Fig. 5.10. As in Fig. 5.6, it
vanishes identically upon leaving the paramagnetic phase, but increases again as α1f , α2f

are chosen deeper in the bistable phase of Fig. 5.2(a). Correspondingly, 〈|Θ1|〉 starts to
decrease as α1f increases, which suggests that from this point on the depth of the local
minimum grows. The value of the order parameter 〈|Θ2|〉 at which Pt(Θ2 < 0) starts to
grow again identifies a threshold, above which the local minimum is sufficiently deep to
stably trap particles.
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Figure 5.8.: Dynamics of (a) 〈|Θ1|〉, (b) 〈|Θ2|〉, and (c) their fluctuations δΘn =√
〈Θ2

n〉 − 〈|Θn|〉2 as a function of time (in units of 1/κ). The param-
eters and quench protocol are the same as in Fig. 5.7, the curves are
evaluated for different numbers of atoms and of trajectories. In (a) and
(b) the data correspond to N = 25, 50, 100, 200 particles (see legenda for
color code) and respectively 1000, 500, 250, 125 trajectories. The horizon-
tal dashed lines indicate the value predicted by the global minimum of the
free energy in Eq. (5.14). The finite values of the order parameters at
t = 0 are due to finite size effects, 〈|Θn(0)|〉 = 1/

√
πN . The curves in (c)

are calculated for N = 100 and 250 trajectories.
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(a)

(b)

Figure 5.9.: Dynamics of (a) the single-particle kinetic energy 〈p2/2m〉 (in units of
~ωr) and (b) the Kurtosis K = 〈p4〉/〈p2〉2, for N = 25, 50, 100, 200 parti-
cles (see legenda) and correspondingly 1000, 500, 250, 125 trajectories. The
other parameters and initial conditions are the same as in Fig. 5.8. The
horizontal dashed line in (a) indicates the asymptotic value predicted by
Eq. (5.13).

Figure 5.10.: Asymptotic values of 〈|Θ1(tf)|〉, 〈|Θ2(tf)|〉, and Ptf (Θ2 < 0), Eq. (5.17),
as a function of α1f . The quenches start all from the same initial values
in the paramagnetic phase (α1i, α2i � 1 and ∆c = −κ) and end up in
different values α1f , α2f with α1f = α2f (lying along the right green line
in Fig. 5.2(a)) and ∆c = −κ. The circles correspond to the results of the
numerical simulations at tf = 3.77 × 106/κ with N = 100 particles and
250 trajectories. The dashed lines indicate the predictions of the global
minima of Eq. (5.14).
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(a)

(b)

Figure 5.11.: Mean value of the order parameters, (a) 〈|Θ1|〉 and (b) 〈|Θ2|〉 as a function
of time (in units of 1/κ) for N = 100 and ∆c = −κ, evaluated numerically
with 250 trajectories. The curves are the time evolution during and
after linear ramps of duration τ = 0 (blue); τ = 5.5 × 102/κ (red),
τ = 6.8 × 103/κ (yellow), τ = 8.5 × 104/κ (purple), τ = 2 × 106/κ
(green). The ramps are from the paramagnetic to the bistable phase,
specifically, from α1i = α2i = ε � 1 to α1f = α2f = 2. As before, at
t = 0 the initial state of the atoms is the steady state, Eq. (5.8), for
αn = αni and ∆c = −κ. The dashed horizontal lines show the steady
state values of the global minima of the free energy, Eq. (5.14).

Figure 5.12.: Mean value of the single-particle kinetic energy, 〈p2/(2m)〉 (in units of
Ekin,0 = ~κ/4) as a function of time (in units of 1/κ) for the same
parameters and color codes as in Fig. 5.11.
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5.3.3. Slow ramp into the bistable phase

We now consider linear ramps of αn(t) across the transition region separating the para-
magnetic from the bistable region. The ramps protocols have duration τ and sweep
between the values [ε, αnf ], with ε � 1. In particular, αn(t) = ε + αnf

t
τ if t ∈ [0, τ ],

while for t > τ then αn(t) is constant and equal to αnf . Note that a sudden quench
is the limit τ → 0 of a linear quench. We choose to vary the values of αn(t) along the
rightmost green line in Fig. 5.2(a), so that α1(t) = α2(t) at all instants of time, with αnf
in the bistable phase. We further keep ∆c constant, and solely vary the pump intensity.
This means that the asymptotic temperatures at each value of αn are equal.

Figure 5.11 displays the dynamics of the mean absolute value of the order parameters
for α1f = α2f = 2 for linear ramps with different durations τ . The dynamics following
the sudden quench (cif. Fig. 5.8 (a) and (b)) is shown for comparison (blue curve). We
observe that the dynamics of the order parameters exhibits an exponential increase which
occurs almost simultaneously for both 〈|Θ1|〉 and 〈|Θ2|〉. This behaviour seems to be
initiated at the instant of time when the parameters αn(t) cross the critical point of the
phase diagram. Moreover, for sufficiently slow ramps 〈|Θ1|〉 approaches the asymptotic
value of the free energy’s global minimum, signaling stationary long-wavelength order.

We further note that for τ . 103/κ the orders parameters undergo a three-stage
dynamics, as for the sudden quench (we attribute the fluctuations to the statistics of
trajectories). For slower ramps, instead, the mean value of the order parameter tends
exponentially towards the steady state, which approaches the free energy’s global mini-
mum of Eq. (5.14) for τ > 104/κ. We believe that this behaviour is determined by the
ramp duration τ with respect to the time scale of the transient dynamics, and thus by
the time the parameters αn(t) spend close to the transition point. This conjecture is sup-
ported by the analysis of the time evolution of the single-particle kinetic energy shown
in Fig. 5.12, corresponding to the curves in Fig. 5.11. For faster ramps it is similar to the
sudden quench, exhibiting first a violent relaxation followed by a time interval where the
dynamics is prevailingly coherent, and finally an exponential decay to the steady state

Figure 5.13.: Values of 〈|Θ1(tf)|〉 (blue) and 〈|Θ2(tf)|〉 (red) at tf = 3.77 × 106/κ and
as a function of the ramp duration τ (in units of 1/κ), for the same
parameters as in Fig. 5.11. The dashed horizontal lines show the steady
state value predicted by the free energy, Eq. (5.14).
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(a)

(b)

Figure 5.14.: Dynamics of (a) 〈|Θ1|〉 and (b) 〈|Θ2|〉 as a function of time (in units
of 1/κ) for the two-step quench protocol. Here, the parameters αn are
suddenly ramped at t = 0 from the initial values α1i, α2i � 1 to α1int =
α2int = 1.1; After a time interval τ , there is a second quench from α1int =
α2int = 1.1 to α1f = α2f = 2. The parameters are ∆c = −κ, N = 100
with 250 trajectories, and τ = 1/κ (blue), 10/κ (red), 102/κ (yellow),
103/κ (purple), 104/κ (green), 105/κ (light blue) and 106/κ (dark red).
The dashed horizontal lines show the value predicted by global minimum
of the free energy, Eq. (5.14), at α1 = α2 = 2 and ∆c = −κ.

Figure 5.15.: Mean kinetic energy per particle, 〈p2/2m〉 (in units of the asymptotic
value Ekin,0 = ~κ/4) as a function of time (in units of 1/κ) for the same
parameters and colour codes as in Fig. 5.14.
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5.3. Dynamics of self-organization

Figure 5.16.: The symbols correspond to 〈|Θ1(tf)|〉 (blue) and 〈|Θ2(tf)|〉 (red) at
tf = 3.77 × 106/κ as a function of the time elapsed between the two
quenches, τ (in units of 1/κ), for the same parameters as in Fig. 5.14.
The dashed horizontal lines show the steady state value predicted by
the global minimum of the free energy, Eq. (5.14) at α1 = α2 = 2 and
∆c = −κ.

value due to cavity cooling. In contrast, upon increasing the ramp duration towards
slower ramps this transient regime disappears. Particularly, for the slowest ramp con-
sidered here, dissipation leads to quasi-adiabatic dynamics. Figure 5.13 shows the order
parameters 〈|Θ1(t)|〉 and 〈|Θ2(t)|〉 at t = 3.77 × 106/κ, where the curves of Fig. 5.11
have reached an asymptotic behaviour. Self-organization in the long-wavelength grating
depends on the ramp duration τ and is found for τ > 104/κ. Note that short-wavelength
order quantified by 〈|Θ2(t)|〉, in contrast, only slightly depends on the ramp duration.

On a microscopic scale, it seems that the reason for better long-wavelength ordering
after slower ramps is that more time is spent close to the transition line (α1 = α2 ∼ 1),
where the local minimum of the free energy is not deep enough to stably trap the
system. In order to test this conjecture, we consider a two-step quench protocol which
splits the sudden quench of Sec. 5.3.2 into two subsequent quenches: one at t = 0
from a paramagnetic to a ferromagnetic bistable phase, but close to the transition line:
α1int = α2int = 1.1. This quench shows a vanishing value of Pt(Θ2 < 0) for sufficiently
long times as in Fig. 5.10. The second sudden quench occurs after an elapsed time τ and
goes from this intermediate point into α1f = α2f = 2. The detuning ∆c is kept constant
during the evolution.

Figure 5.14 displays the time evolution of the mean absolute values of the order pa-
rameters for different time intervals τ elapsed between the two quenches. The order
parameters undergo a first violent relaxation at t = 0, when the first sudden quench oc-
curs, and a second one immediately after the second quench (which looks like a jump in
logarithmic scale). As expected, the larger the time elapsed between the two quenches,
the closer the asymptotic value is to the one of the global minimum. Inspecting the
dynamics of the kinetic energy in Fig. 5.15 we observe that for large τ the atoms are
cooled into the stationary state at αn ∼ 1. At this point of the phase diagram the free
energy has two ferromagnetic global minima, while the nematic local minimum is very
shallow. The system thus gets cooled close to the global minima of the free energy at
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αn = 2, and remains trapped there after the second quench.
Figure 5.16 displays the mean absolute value of the order parameters, as extracted

from the numerical data at t = 3.77× 106/κ, as a function of the time elapsed between
the two quenches. Their value is compared to the predictions of the global minimum
of the free energy at α1 = α2 = 2 and ∆c = −κ. The behaviour is quite similar to
the one observed when performing a linear ramp of corresponding duration, Fig. 5.13.
Dynamical ordering in the long-wavelength mode seems thus to require that the atoms
are initially cooled close to the global minima. This is realised by means of the sufficiently
large time τ spent close to the transition point.

5.4. Cooling into crystalline order

We now analyse sudden quenches of the parameter αn starting with different initial
single-particle momentum widths. A possible realization is a quench in the detuning
since ∆c controls the steady state temperature, see Eq. (5.13). By these means we
consider quenches which could either lead to heating or cooling of the system to the
stationary temperature T0,

kBT0 =
~κ
2
, (5.18)

namely, the minimal temperature achieved by cavity cooling, corresponding to setting
∆c = −κ. Thereby we also consider initial thermal distributions which are spatially
uniform and with temperature Tini < T0. The initial momentum distribution we consider
are Gaussian and their width is ∆p2 = mkBTini.

Figure 5.17 shows the time evolution of the mean absolute values of the order param-
eters for different values of Tini ranging from 0.1T0 up to 5T0. The asymptotic value
of 〈|Θ1|〉 increases with the initial temperature: The hotter is initially the system, the
smaller is the fraction of trajectories which remain trapped in the metastable, nematic
state. The corresponding time evolution of mean kinetic energy per particle is displayed
in Fig. 5.18 and shows that for Tini = 2T0 (and even more for Tini = 5T0) the system
stays relatively hot over time scales of the order of 104/κ. For lower initial tempera-
tures, instead, the system is heated by the energy released by the sudden quench before
relaxation cools the atoms.

As visible in Fig. 5.17, for samples initially cold a long-wavelength Bragg grating is
formed faster than for hotter samples. In this case we recognize a three-stage dynamics
like the one observed for the sudden quenches of the laser intensity, when a transient long-
range order is established for times t > 10/κ and t < 103/κ. For t > 103/κ dissipation
becomes important and 〈|Θ1|〉 increases to a stationary value. This relaxation stage is
also present for samples with initial temperatures larger than T0, however, in this hotter
case it is significant faster. Taking a threshold value 〈|Θ1|〉|thres = 0.5, we observe that
buildup of long-wavelength order can take up to a hundred times shorter than for a cold
initial state. This is reminiscent of the Mpemba effect in supercooled water [5.24–5.28].
Its origin could be traced to a suppression of long-wavelength order if short-wavelength
order is already established on a much faster time scale, visible in Fig. 5.17(b).

56



5.4. Cooling into crystalline order

(a)

(b)

Figure 5.17.: Dynamics of (a) 〈|Θ1|〉 and (b) 〈|Θ2|〉 as a function of time (in units of
1/κ) after a sudden quench at t = 0 from α1i = α2i = 0 and temperature
Tini to α1f = α2f = 2 and ∆c = −κ (corresponding to the asymptotic
temperature T0), for N = 100 and 250 trajectories. The different curves
correspond to Tini = 5T0 (blue), 2T0 (red), T0 (yellow), 0.5T0 (purple)
and 0.1T0 (green). The dashed horizontal lines show the steady state
value predicted by the global minimum of the free energy, Eq. (5.14).

Figure 5.18.: Mean kinetic energy per particle, 〈p2/2m〉 (in units of Ekin,0 = ~κ/4) as
a function of time (in units of 1/κ), for the same parameters and colour
codes as in Fig. 5.17. The horizontal dashed line corresponds to the
asymptotic value 〈p2/2m〉 = Ekin,0.
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Figure 5.19.: The symbols correspond to the values of 〈|Θ1(tf)|〉 (blue) and 〈|Θ2(tf)|〉
(red) at tf = 3.77 × 106/κ as a function of Tini (in units of T0), for
the same parameters as in Fig. 5.14, but for N = 200 particles (125
trajectories). See box for the color code. The dashed horizontal lines
show the steady state value predicted by the global minimum of the free
energy, Eq. (5.14).

In Fig. 5.17 (a) we observe that the final value of 〈|Θ1|〉 does not coincide with its
predicted stationary value even after very long cooling times. This can also be seen in Fig.
5.19, which shows the mean absolute value of the order parameters at t = 3.77× 106/κ
as a function of the initial temperature for N = 100, 200. One would expect that 〈|Θ1|〉
should have reached a constant value corresponding to the stationary state. Apparently
this is not the case and even for finite N a significant fraction of trajectories converges
to and remains in the local minimum. This behavior gets much less pronounced, if
the initial temperature lies above a certain threshold set by the energy released by the
quench itself.

5.5. Comparison between different numerical approaches

The discussion of this paper has been based on results obtained by numerical inte-
gration of the stochastic differential equations (5.1) and on their comparison with the
corresponding analytical model. Both rely on the validity of the so-called bad cavity
limit, where cavity damping is the fastest time scale, and in particular on treating retar-
dation as a small parameter in the dynamics. This regime allows one to systematically
describe the quantum fluctuations of the cavity degrees of freedom by eliminating the
cavity variables from the equations of motion of the external degrees of freedom. We
now compare these predictions with the ones of stochastic differential equations derived
in Ref. [5.15] where the cavity degrees of freedom are treated in the semi-classical limit
but included at all orders of the retardation expansion. These stochastic differential
equations are here extended to our setup composed of two cavity modes [5.16] and read:
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dxj =
pj
m
dt , (5.19a)

dpj =
∑
n=1,2

2~nkSnEn,r sin(nkxj)dt , (5.19b)

dEn,r = (−∆nEn,i − κnEn,r)dt+ dξn,r , (5.19c)

dEn,i = (∆nEn,r − κnEn,i −NSnΘn)dt+ dξn,i , (5.19d)

where En,r = Re{En} and En,i = Im{En} are the real and imaginary part of the positive-
frequency component of the cavity field mode n = 1, 2. The Wiener processes dξn,i, dξn,r
have vanishing first moment, 〈dξn,i〉 = 0 = 〈dξn,r〉, while the second moments fulfill
〈dξn,idξm,i〉 = δnmκ/2dt, 〈dξn,rdξm,r〉 = δnmκ/2dt, and 〈dξn,rdξm,i〉 = 0.

The results of the simulations based on the two approaches for a single-mode cavity
show good agreement. For the two-mode cavity we generally find qualitative agreement.
Quantitative discrepancies are found in general for the momentum distribution: The
simulations based on Eq. (5.19) predict for certain parameters samples whose temper-
ature is 10% hotter than the one obtained with Eq. (5.1). Small differences are found
also for the order parameters after the quenches into the bistable phase.

Figure 5.20 shows a representative result of the discrepancies found after the quench
protocol discussed in Sec. 5.3.2. The two simulations predict different stationary values
for both kinetic energy and the order parameters. We believe that this discrepancy is
due to retardation effects, which are neglected in the approach of Eq. (5.1) and become
relevant when the atoms are trapped at tight minima.

In order to test our conjecture we use the prediction of the kinetic theory of Refs.
[5.29, 5.30], where the temperature of the stationary thermal distribution was corrected
by the contribution due to the atoms’ localization at the minima of the self-organized
lattice,

kBT̃ = ~
∆2
c + κ2

4|∆c|
+ ~

ω2
0

|∆c|
. (5.20)

Here, ω0 is the frequency of oscillation about the lattice minima in the harmonic ap-
proximation. It can be estimated using Eq. (5.19b) and imposing the equality

dpj ≈
∑
n=1,2

2~(nk)2SnEn,rxjdt ≡ −mω2
0xjdt .

This delivers an analytic estimate of the frequency

ω2
0 = ωr

∆2
c + κ2

−∆c
(α1Θ1 + 4α2Θ2) ,

where we used Eq. (5.4). For the parameters of the quench in Fig. 5.20, with ∆c = −κ
and α1 = α2 = 2, we obtain kBT̃ ≈ 1.1kBT0, where T0 is the temperature given in Eq.
(5.18). Indeed, this corrected value of the final temperature is in good agreement with
the discrepancy observed in Fig. 5.20 (a).
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Figure 5.20.: Dynamics of (a) single-particle kinetic energy (in units of Ekin,0), (b)
〈|Θ1|〉, and (c) 〈|Θ2|〉 as a function of time (in units of 1/κ) following
a quench at t = 0 from α1i = α2i � 1 to α1 = α2 = 2, for ∆c = −κ
and N = 100. The blue (red) lines correspond to the simulations using
Eq. (5.1)(Eq. (5.19)). The black dashed lines mark the values of the
order parameters obtained by the free energy, Eq. (5.14). In (a) the blue
(red) line corresponds to 250 (500) trajectories. In (b) and (c) the blue
and red lines correspond to 1000 (500) trajectories. Note, that a quench
from α1, α2 as performed in Sec. 5.3.2 for fixed ∆c = −κ corresponds
for the simulation of Eq. (5.19) to a quench in the pumping strengths
Sn such that NS2

n = αnκ
2. At time tf = 3.77 × 106/κ we observe that

16.9% (15.4%) of the trajectories are in nematic phase using Eq. (5.1)
(Eq. (5.19)).
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This hypothesis is also consistent with the discrepancy observed in the asymptotic
values of the order parameters. In fact, stationary temperature and the final values
of the order parameters are related: the stationary values of the order parameters are
determined by the parameters α1, α2 (cif. [5.1]) and thus depend on both field intensities
as well as detunings, see Eq. (5.4). According to this hypothesis, the asymptotic values of
the order parameters for the simulation using Eq. (5.19) should be the ones corresponding
to the system’s parameters with the corrected temperature T̃ , hence we shall minimize
the free energy of Eq. (5.14) using β̃ = 1/(kBT̃ ), Eq. (5.20), instead of 1/(kBT0).
This is equivalent to rescale the phase diagram in Fig. 5.2(a) using the prescription
α̃n = αnT0/T̃ < αn, and results in a smaller stationary value of the order parameter
which is consistent with the discrepancies visible in Fig. 5.20 (b) and (c).

5.6. Conclusions

In this work we have studied the semi-classical dynamics of atoms interacting with two
cavity modes after quenches of the intensity and/or frequency of the pumping lasers. In
the quench protocols the laser parameters were varied across transition lines separating
a disordered from an ordered self-organized phase. We could verify numerically that
the states reached at the asymptotics of the dynamics correspond to the minima of the
free energy of a corresponding thermodynamic description developed in Ref. [5.1]. This
picture is further confirmed by the comparison with numerical simulations based on
different initial assumptions. This analysis shows, in particular, that trapping of the
system in local minima of the free energy crucially depends on the initial temperature
and on the cooling rate.

We observe, in addition, that the system can be trapped in metastable configurations
for transient times which cannot be understood in terms of the effective thermodynamic
description. For hundreds of particles the lifetime of these states is about four orders
of magnitude longer than the cavity lifetime, and is expected to increase with N . They
share analogies with metastable configurations found in the GHMF when performing
quenches in the microcanonical ensemble [5.22]. Since the phase diagrams of GHMF
and the model here considered can be formally mapped into one another [5.1], we con-
jecture that these metastable configurations could be due to the coherent dynamics.
This conjecture can be tested by means of a mean-field analysis as the one performed in
Ref. [5.13] for a single mode cavity.

Interestingly, when the initial temperature of the atomic ensemble is different from
the stationary temperature of cavity cooling, we observe that the final magnitude of
asymptotic order changes. In particular when the initial temperature is even lower
than the predicted cavity cooling temperature, the probability that the systems remains
trapped in metastable configurations is further increased. This reminds of the behavior
of supercooled water [5.24–5.28].

Here we have considered the very special case of two commensurate modes. While
this already highlights many generic properties of the dynamics, future considerations
certainly should include the case in which the wavelength of the cavity modes are incom-
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mensurate [5.31], so that the ordering mechanisms are much more strongly competing
and a multitude of meta-stable states can form. A further interesting direction is oper-
ation with much colder temperatures or in the side-band resolved cooling regime [5.32].
Here it is intriguing to consider in which form meta-stable states survive deep in the
quantum regime. Besides diffusion they could be depleted via tunneling and atom-field
entanglement plays an important role in this dynamics [5.33], a process which should
also be relevant in closely related schemes of simulated quantum annealing [5.34].
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A dilutely filled N -site optical lattice near zero temperature within a high-Q
multimode cavity can be mapped to a spin ensemble with tailorable inter-
actions at all length scales. The effective full site to site interaction matrix
can be dynamically controlled by the application of up to N(N + 1)/2 laser
beams of suitable geometry, frequency and power, which allows for the imple-
mentation of quantum annealing dynamics relying on the all-to-all effective
spin coupling controllable in real time. Via an adiabatic sweep starting from
a superfluid initial state one can find the lowest energy stationary state of
this system. As the cavity modes are lossy, errors can be amended and the
ground state can still be reached even from a finite temperature state via
ground state cavity cooling. The physical properties of the final atomic state
can be directly and almost non-destructively read off from the cavity out-
put fields. As example we simulate a quantum Hopfield associative memory
scheme.
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6.1. Introduction

The realization of strong collective coupling between ultracold atoms and the electromag-
netic field in a Fabry-Pérot cavity [6.1] opens a unique test ground to study the real time
dynamics of quantum phase transitions in open systems of mesoscopic size [6.2–6.9]. Cav-
ity field mediated interactions induce a variety of self-ordered phases where the particles
break the translational symmetry by forming complex spatial patterns [6.1, 6.10–6.13].
In a seminal experiment at ETH the first controllable quantum simulation of the super-
radiant Dicke phase transition was demonstrated as predicted for the Tavis-Cummings
model several decades ago [6.6, 6.14]. By adding an extra optical lattice in the cavity,
the complex phase diagram of a Bose-Hubbard Hamiltonian with tailorable short and
infinite range interactions was then experimentally studied in great detail, exhibiting
superfluid, insulator and supersolid regions [6.15]. The experiment shows very good
agreement with theoretical models using various approximate numerical methods like
dynamical mean field approaches, predicting a supersolid phase region [6.16, 6.17].

In recent work we exhibited that versatility and complexity of the lattice cavity system
strongly increase by adding extra pump laser frequencies close to resonance with different
cavity modes [6.18]. For classical point particles one finds that the coupled atom-cavity
dynamics can be designed as a self-optimizing light collection system with learning and
memory capacity [6.19]. Similarly, generalizing the system to fixed multilevel atoms and
using degenerate modes, Gopalakrishnan and coworkers previously proposed to simulate
a quantum version of the Hopfield model [6.20–6.22]. Applications to study the physics
of a Bose glass were also suggested [6.23].

As the scattered light contains information on the atoms’ quantum statistical proper-
ties, one can perform minimally perturbing observations in real time and use quantum
measurement back action and feedback to further control the system [6.24, 6.25]. First
experimental studies of multimode systems were also reported recently [6.26].

For a single laser frequency the interaction between the atoms induced by a single
cavity mode is spatially periodic and infinite range [6.1]. In contrast, we show that by
help of several pump laser frequencies and tailored illumination geometries, the coupling
strengths and light shifts at different sites can be individually modified in such a form as
to implement a full connectivity matrix between all lattice sites. In the limit of strong
on-site repulsion and low density one gets only zero or one atom per site mimicking
a pseudo spin lattice. At least in principle any coupling matrix can be realized using
order N2 cavity modes [6.27]. In contrast to current implementations [6.28], which use
minor embedding [6.29], and alternative architectures [6.30], our approach does not need
auxiliary qubits to realize long-range coupling.

As power and frequency of the pump lasers can be externally controlled in real time,
we have a natural and straightforward way to implement quantum annealing [6.31, 6.32].
One simply slowly increases the strength of the pump lasers in the system to adiabatically
reach the ground state of the coupled spin Hamiltonian. As we have a genuine open
system, our implementation also suggests a new route towards quantum simulation in a
driven-dissipative system as small errors during the sweep process can be amended via
cavity ground state cooling [6.33] when we operate the lasers red detuned. This is the
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Figure 6.1.: A partially filled optical lattice with N sites inside a multimode optical
resonator is pumped from the side by several lasers with frequencies close
to cavity resonances.

more effective the more laser modes we have available for coupling and cooling.
This work is organized as follows: after introducing the general multimode atom-field

Hamiltonian and its truncated Bose-Hubbard form, we map it to a coupled spin model in
the strong on-site interaction limit in Section 6.2. Spin-spin coupling arises from cavity
enhanced light scattering and we exhibit how any desired coupling matrix can be found
by proper choice of laser parameters in Section 6.3. By employing an adiabatic passage
described in 6.4 we finally simulate a Hopfield associative memory model via quantum
annealing [6.34] as generic nontrivial example in Section 6.5.

6.2. Model

We study a 1D optical lattice with NA atoms trapped in N sites (N > NA), which is
placed inside an optical resonator supporting several non-degenerate modes (see Figure
6.1). The atoms are directly illuminated by M lasers with frequencies close to the
resonance of the corresponding cavity modes. For sufficient mode spacing, light from
each laser is scattered into one specific mode only and scattering between different modes
is suppressed. Thus the number of relevant modes equals the number of pump lasers.
Furthermore, the laser frequencies are far away from any internal atomic resonance
which allows for the elimination of the inner atomic degrees of freedom, resulting in
an effective Hamiltonian, coupling modes and atomic motion [6.1]. In addition to the
coherent processes described so far, photons leak out through the mirrors. Note that
lattice and cavity orientation can be chosen independently.

The single particle Hamiltonian for an atom with mass mA then reads [6.35]

H0 =
p̂2

2mA
+ VL cos2(kLx̂)− ~

M∑
m=1

∆c,ma
†
mam + ~

M∑
m=1

ηm(u∗p,m(x̂)uc,m(x̂)am + h.c.),

(6.1)
where h.c. denotes the Hermitian conjugate. The operators x̂ and p̂ are position and
momentum operators along the lattice axis x, while am (a†m) denotes the annihilation
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(creation) operator of a photon in the m-th cavity mode. The normalized mode functions
of pump and cavity modes are up,m(x) and uc,m(x), respectively, which are evaluated
on the lattice axis. The cavity parameters consist of the effective pump strengths ηm
and the detuning between pump laser and cavity mode frequency ∆c,m of the m-th
mode. The optical lattice of depth VL is created by an extra standing wave with wave
number kL. Here we neglect the atomic state dependent dispersive shifts of the cavity
modes [6.1], which is valid if they are much smaller than the detunings |∆c,m|.

The many-particle Hamiltonian including contact interactions between atoms can be
deduced in the framework of second quantization. In the tight binding limit and ne-
glecting cavity modifications of the tunneling we obtain a generalized intra-cavity Bose-
Hubbard Hamiltonian [6.35–6.37]

H =HBH − ~
∑
m

∆c,ma
†
mam + ~

∑
m

ηm
∑
i

((vim)∗am + vima
†
m)n̂i (6.2)

with the standard Bose-Hubbard Hamiltonian

HBH = −J
∑
i

(b†i+1bi + b†ibi+1) +
U

2

∑
i

n̂i(n̂i − 1). (6.3)

Here bi and b†i are bosonic annihilation and creation operators, whereas n̂i = b†ibi gives
the number of atoms at site i. The matrix elements J and U are the nearest neighbor
tunneling rate and the on-site repulsion energy [6.38], respectively, which depend on
the optical lattice only. The geometry of the modes (i.e. the mode functions and laser
illumination directions) only enters via the N -dimensional coupling amplitude vectors
vm given by

vim =

∫
dxw2(x− xi)up,m(x)u∗c,m(x), (6.4)

where w(x−xi) is the Wannier function for an atom at site i. Thereby we assume that the
external optical lattice is much deeper than the potential created by the dynamical cavity
field intensity and the pump intensity. In this limit the Wannier functions exclusively
depend on the external lattice and are obtained from its Bloch waves in the standard
way [6.39].

Additionally to the coherent dynamics treated so far, the cavity fields decay to a
steady state with the rates 2κm. If these rates are much larger than the rate of change
of the atomic motion J/~, the state of the cavity fields instantaneously reacts on an
altered atomic state and is thus totally determined by the latter. This can be formally
expressed by substituting the field operators by atomic operators

am ≡ ηm
∑
i

vimn̂i/(∆c,m + iκm), (6.5)

which amounts to an adiabatic elimination of the cavity field operators [6.23, 6.35, 6.40]
(see Appendix 6.C for details). Note that this a realistic regime: Already for moderately
deep lattices VL ∼ 10ER the matrix elements J ∼ 10−2ER are much smaller than realistic
cavity decay rates ~κm & ER [6.6, 6.41], where ER = (~kL)2/(2mA) is the recoil energy.
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6.3. Constructing an interaction matrix

In this so-called bad cavity limit the coherent dynamics is described by an effective
atomic Hamiltonian

Had = HBH − ζ
∑
i,j

Aijn̂in̂j . (6.6)

The interesting part of the physics is encoded in the real and symmetric interaction
matrix

A =
∑
m

(fm/ζ)Vm (6.7)

with an effective interaction strength ζ = ‖∑m fmVm‖ and the trace norm ‖M‖ =

Tr(
√
M †M) for some matrix M . Thereby each single mode contributes to A with the

single mode interaction matrix

Vm = Re(vm ⊗ v∗m), (6.8)

where ⊗ denotes the outer product. The strength and sign are controlled by the input
parameters fm = −~∆c,mη

2
m/(∆

2
c,m + κ2

m). Since these parameters depend on detuning
and amplitude of the pump lasers, one can externally manipulate A without any change
of the setup.

So far we have a quite general coupled quantum oscillator implementation in which the
state of each oscillator is given by the occupation number at a lattice site. By increasing
the on-site repulsion the oscillators get nonlinear and the extra energy required for
multiple occupation of a site becomes large. Consequently, for low enough densities only
zero or single occupations occur and the bosonic creation and annihilation operators
can be mapped to spin-1/2 operators, identifying an occupied site with spin-up and
an empty site with spin-down. In this so-called Tonks-Girardeau limit (U � J, ζ) the
system reduces to a coupled spin model

Hsp =− J
∑
i

(σ†i+1σi + σ†iσi+1)− ζ

4

∑
i,j

Aijσ
z
i σ

z
j +

∑
i

2
∑
j

Aij

σzi
 , (6.9)

which amounts to the substitutions bi ≡ σi and consequently n̂i ≡ 1
2(σzi + 1), where σαi

are Pauli matrices and σi = 1
2(σxi − iσyi ). Formally it is a projection of Had onto the zero

and single occupation subspace, which is valid within first order perturbation theory in
the small parameters J/U and ζ/U [6.42]. Note that this limit is already reached for
moderate lattice depths VL ≈ 10ER [6.43]. An equivalent model appears for polarized
fermions in the lattice.

Since Hsp commutes with
∑

i σ
z
i the accessible Hilbert space reduces to the

(
N
NA

)
-

dimensional subspace with fixed number of spin-up particles. However, for NA = N/2
the subspace still grows exponentially with N .

6.3. Constructing an interaction matrix

Let us now investigate how to realize a general interaction matrix A. While its off-
diagonal elements determine the interaction between two pseudo-spins, the diagonal
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elements specify the local field strengths in the second line of Equation (6.9). Specifically,
a local field strength on the i-th spin hi = 2

∑
j Aij corresponds to the diagonal element

Aii = hi/2−
∑

j 6=iAij in the matrix. Hence, in order to have full control over interactions
and local fields we have to specify up to N(N + 1)/2 elements, which in the worst case
requires as many lasers. Fortunately, these are classical fields with fixed amplitude and
frequency.

Formally, the interaction matrix (6.7) appears as linear combination of matrices Vm
with coefficients fm/ζ. Thus if we manage to choose mode functions uc,m, pump fields
up,m and lattice location such that {Vm}m=1,...,N(N+1)/2 forms a basis of the real sym-
metric matrices, Equation (6.7) can be inverted to fix the required input parameters

fm(A) = ζ
∑
n

(G−1)mn〈Vn, A〉. (6.10)

Here G is the Gram matrix Gmn = 〈Vm, Vn〉 with inner product 〈A,B〉 = Tr(AB†). In
other words, once a set of modes forming a basis is found, we can directly determine the
pump laser properties to realize an arbitrary interaction matrix A. While N(N + 1)/2
lasers are needed to get a complete basis set, many interesting interaction matrices can
be constructed with a lot less modes.

6.4. Quantum annealing

In principle our setup realizes an effective spin Hamiltonian with general time dependent
all-to-all spin interactions and local fields. This allows for quantum simulation and
encoding classical optimization problems in its ground state. The numerically non-trivial
task of finding the ground state of a Hamiltonian Hpr is tackled by quantum annealing
[6.31, 6.32, 6.44], which might promise a speedup over classical methods [6.45–6.47]. To
this end one adiabatically evolves the system with a time-dependent Hamiltonian

HQA(t) = a(t)Hkin + b(t)Hpr. (6.11)

The kinetic term Hkin is chosen simple enough to posses a known gapped ground state.
Initially at t = 0, the first term is dominant, i.e. a(0)� b(0) and the system is prepared
in this ground state of Hkin. By slowly decreasing a(t) and increasing b(t) the second
term becomes dominant after an annealing time τ , i.e. a(τ)� b(τ). Due to the adiabatic
theorem [6.48] the system approximately stays in its instantaneous eigenstate and thus
finally ends up in the ground state of Hpr, provided τ is large enough, i.e. the adiabatic
passage is slow.

The Hamiltonian Hsp given in Equation (6.9) with time-dependent coefficients ζ(t)
and J(t) already has the genuine form of a quantum annealing Hamiltonian HQA, where
the first line corresponds to Hkin and the second line to Hpr. For an adiabatic transfer we
ramp up ζ(t) from ζ(0) = 0 until the kinetic term becomes negligible ζ(τ)� J . This can
be achieved by uniformly increasing all |fm|’s, which physically amounts to increasing
the strengths ηm of all pump lasers or, alternatively, tuning them from |∆c,m| � κm to
|∆c,m| ∼ κm at some fixed pump strength. The uniformity guarantees that A and thus

68



6.5. Associative memory

the structure of Hpr is not changed during the sweep. A simultaneous increase of the
lattice depth to reduce tunneling J helps further.

Note that instead of adiabatic transfer one could implement cavity cooling for the full
interacting Hamiltonian to cool towards the ground state starting from a thermal state.
This has proven successful for the single mode case [6.33, 6.41] and cooling profits from
more modes [6.1].

Readout

The final state readout can be done by analyzing the light leaking out from the cavity
[6.24, 6.37], where the quantities of interest are the (classical) spins 〈σzi 〉 ≡ 2〈n̂i〉 − 1,
which can be calculated from the occupations 〈n̂i〉.

Measuring the output fields ∝ 〈am〉 (e.g. by homodyne detection) one has to ap-
proximately solve the expectation value version of Equations (6.5) for 〈n̂i〉, which is an
overdetermined M × N linear system of equations, e.g. by using a least mean square
method. Alternatively, by measuring the output intensities ∝ 〈a†mam〉 one has to invert

〈a†mam〉 =
η2
m

∆2
c,m + κ2

m

∑
i,j

V ij
m 〈n̂in̂j〉 (6.12)

to obtain the N(N + 1)/2 correlations 〈n̂in̂j〉. Since in the large-U limit it holds that
n̂2
i ≡ n̂i ≡ (σzi + 1)/2, the occupations correspond to the diagonal elements 〈n̂2

i 〉.

6.5. Associative memory

As a generic example we consider a Hopfield associative memory network with a quantum
annealing recall [6.34, 6.49, 6.50]. A Hopfield net consists of N binary state units (so-
called neurons), which can be represented by (classical) Ising spins si interconnected by
real symmetric weights Wij . For their dynamics Hopfield proposed an iterative update
rule, which locally minimizes an energy function E(s) = −∑i<jWijsisj of the system
state vector s = (s1, ..., sN ). In combination with a learning rule determining the weights
Wij the network works as an associative memory, which can memorize a set of P states
M = {wp}p=1,...,P . That is, the system converges to the stored state in P having
maximal overlap with an initial (input) state. A proven standard choice of weights is
provided by the Hebbian learning rule [6.51]

Wij =
1

P

P∑
p=1

wipw
j
p. (6.13)

Each associative memory of size N has a limited capacity, i.e. a maximal number of
stored states which can be reliably recalled. This capacity grows proportional to N using
the aforementioned update rule [6.52]. Thus convergence to a particular memory state
is not guaranteed to succeed for an input state with too strong deviations or if too many
states are stored.
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This capacity is suggested to scale much more favorable in a quantum simulator version
of the model [6.34]. In such a setup one replaces Hopfield’s classical spin update dynamics
by quantum annealing to find the ground state of the Hamiltonian

HAM = −
∑
i<j

Wijσ
z
i σ

z
j − ν

∑
i

χiσ
z
i . (6.14)

A state of the network s now corresponds to eigenstates |s〉 of the σzi -operators.
Obviously, the first term is the pendant to the energy function E(s), which lowers the
energy of memory states |wp〉. The input state χ is encoded in the local fields (as
opposed to the classical case, where it is the initial state), such that the energy of a
state |s〉 is lowered proportionally to its similarity to |χ〉 quantified by the inner product
χ·s =

∑
i χisi. The ground state then corresponds to the memorized state with maximal

overlap with χ for a not too large ν as discussed in [6.34] (see also Appendix 6.D).
In our system HAM can be realized with the interaction matrix

Aij = Wij + νχiδij (6.15)

in the coupled spin Hamiltonian of Equation (6.9), where δij denotes the Kronecker
delta. Physically each lattice site corresponds to a neuron with the two states ‘occupied’
and ‘not occupied’ and weights are determined by the pump lasers and cavity modes.

Example

Let us now consider a specific problem with 8 sites (N = 8) filled with 4 particles
resulting in

(
8
4

)
= 70 possible states. We want to store two memory states

w1 = (1, 1,−1,−1, 1,−1, 1,−1)

w2 = (1, 1,−1, 1, 1,−1,−1,−1).

Recalling the input patterns

χ1 = (1, 1, 1,−1,−1,−1, 1,−1)

χ2 = (1, 1,−1, 1,−1,−1,−1, 1)

and choosing ν = 0.7 amounts to specifying the interaction matrices Aχ1 and Aχ2 (see
Appendix 6.A). The similarities between the states are summarized by χi · wj = 4δij .
Thus we can already anticipate the expected results: Upon recalling χ1 (χ2) the ground
state of the system should converge to w1 (w2) for large ζ/J .

In the following we go through the steps for implementing such a problem in our
system: Firstly, we search for a ‘good’ choice of modes and geometry for this system
size. Secondly, we implement the stated problem, i.e. the interaction matrices for χ1

and χ2. Finally, we simulate the coherent annealing dynamics which should yield the
solution to the problem.

A specific set-up.—We consider a cavity supporting several Hermite-Gaussian modes
denoted by the longitudinal mode index n and the transverse mode indices l and m,
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which define the transverse cavity axes rl and rm. The external 1D optical lattice has a
depth of VL = 10ER and a spacing d = 1.2λn=100/2 and is located in the z-rl-plane of
the cavity (see Figure 6.1). The standing wave pump lasers are approximated by plane
waves and are applied orthogonally to the lattice axis such that each has an anti-node
at the lattice location and consequently up,m(x) = 1. Thus the form of the couplings
between lattice and modes only depends on which cavity modes (indexed by n, l,m) are
addressed and where the lattice is positioned, i.e. where the cavity mode functions are
evaluated. The ratio of radius of curvature of the mirrors and cavity length is chosen as
R/L = 2/3.

Finding the best suitable modes.—In order to invert Equation (6.7) one has to choose
N(N + 1)/2 = 36 linearly independent single-mode coupling matrices Vm forming a
basis B of the matrix space. Due to the different spatial shape of the mode functions
this is generally fulfilled for most mode choices in principle. However, if the Vm’s are too
similar, in practice an unrealistically high precision for the input laser parameters fm is
needed to reliably implement the most general interaction matrix. Therefore, to reduce
the experimental restrictions on laser control, one should find a set of modes, which gives
rise to a distinct set of single-mode coupling matrices. As a figure of merit one can use
the determinant of the Gram matrix of the normalized Vm’s (i.e. the squared volume
spanned by those vectors), which should be maximized (orthogonal vectors would lead to
the maximal value of 1). Additionally, we optimize over different lattice orientations (for
more details see Appendix 6.B). Here we restrict ourselves to modes from the candidate
set n ∈ {100, 199}, l ∈ {0, 1, 2} and m = 0.

Let us emphasize that this step is only needed due to the finite precision available and
crucially depends on the specific implementation. The modes do not have to be optimal,
but only sufficiently ‘good’ for the given precision of the input parameters.

Input parameters.—Choosing the modes (and thus fixing B) has to be done only
once for a certain system size N . Afterwards any specific interaction matrix can be
realized by changing the input parameters fm(A). We calculate these parameters from
Equation (6.10) for Aχ1 and Aχ2 and subsequently round to one decimal place yielding
f̃χim , mimicking some finite maximally possible experimental accuracy. The recovered
interaction matrix Ãχi = A(f̃χi1 , ..., f̃χiM ) will then approximate Aχi depending on how
well we select the modes and how accurately we impose the input parameters. The upper
plot in Figure 6.2 shows the input parameters for Ãχ1 and Ãχ2 , which can be realized
by the pump strengths ηm shown in the lower plot, assuming the same |∆c,m| for each
mode.

Adiabatic passage.—Let us now have a look at the adiabatic passage realized by a slow
increase of ζ. The eigenvalue spectrum of the spin Hamiltonian Hsp for the interaction
matrix Ãχ1 is shown in Figure 6.3. With increasing ζ/J the ground state converges
to |w1〉 since the inner product χ1 · w1 = 4 is larger than χ1 · w2 = 0. This can be
already seen at ζ/J = 2, where the overlap between ground state and target state is
|〈φ0(ζ = 2J)|w1〉|2 = 0.976. We observe that the minimum gap between ground and
first excited state is δmin = 0.56J at ζ = 0.28J . During a time evolution with increasing
ζ this is the most likely region for Landau-Zener tunneling from ground state to excited
states.
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Figure 6.2.: Top: Input parameters for the two input states χ1 (dark/orange) and χ2

(light/green) given in the main text for a chosen set of modes B, where the
second transverse mode index m = 0. Bottom: These input parameters

can be realized by the pump strengths ηm =
√
−fm(∆2

c,m + κ2
m)/(~∆c,m),

where κm = 1000J/~ and ∆c,m = sgn(−fm)κm. Due to weak coupling e.g.
the first mode needs to be pumped strong in both cases.

The typical behavior of the time-dependent solution of the Schrödinger equation for a
linear sweep and different annealing times τ is shown in Figure 6.4, where we see that for
Jτ & 50 the system stays close to the ground state in this specific example. Especially,
the final overlap with the target state w1 for Jτ = 50 is |〈ψ(τ)|w1〉|2 = 0.959. This can
also be seen from the time evolution of the individual spins 〈σzi 〉 as depicted in Figure
6.5: From an initially unpolarized configuration, they evolve to a value close to 1 or −1
corresponding to w1. The annealing time Jτ = 50 translates to τ = 100 ms for 87Rb
with ER/~ ≈ 24 kHz and J ≈ 0.02ER, which is a realistic ramp time [6.15].

At the end of the ramp when we have prepared the final state, it can be directly
determined in a non-destructive way by measuring the output intensities shown in Figure
6.6. This is a crucial advantage of our open system architecture compared close atomic
lattice implementation, where site resolved atomic detection is required at the end.
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Figure 6.3.: Spectrum of the lowest few eigenvalues εn of Hsp, Equation (6.9), as func-
tion of ζ for a recall of the input pattern χ1, leading to the recovered
interaction matrix Ãχ1 . The dotted line at ζ/J = 0.28 shows the po-
sition of the smallest gap between ground state and first excited state,
while the brightness of the lines encodes the overlap of the target memory
state with the eigenstates |〈φn(ζ)|w1〉|2 from light (= 0) to dark (= 1).
Already at ζ/J = 2, the ground state is very close to the target state:
|〈φ0(ζ = 2J)|w1〉|2 = 0.976.
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Figure 6.4.: Time evolution of the overlap between the instantaneous ground state
|φ0(ζ)〉 and the solution of the time-dependent Schrödinger equation |ψ(t)〉
for the linear ramp ζ(t) = 2Jt/τ and different annealing times τ . The
vertical dotted line shows the location of the smallest gap, as in Figure
6.3.
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Figure 6.5.: Time evolution of the expectation values 〈σzi 〉 for each lattice site i for an
annealing time of Jτ = 50 and a linear ramp ζ ∝ t (see Figure 6.4). The
overlap with the target state in the end is |〈ψ(τ)|w1〉|2 = 0.959. Due to
the finite annealing time there is a fraction in the excited states and thus
the curves do not converge to 1 and -1 exactly.
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be measured. Here they are shown for the states w1 (dark/orange) and
w2 (light/green) at ζ/J = 2. The parameters are as given in Figure 6.2.
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6.6. Conclusions

We demonstrated how to obtain a coupled Ising spin model from a dilutely filled optical
lattice within a multimode cavity with the help of transverse pump lasers. The inter-
actions and local fields of the spins can be tuned by changing the power and detuning
of the lasers allowing for real time control. This can be used to slowly ramp up the
spin-spin interactions, implementing a quantum annealing dynamics. The final atomic
state can be nearly non-destructively read out by measuring the cavity output fields.

Let us point out that the system studied here is technologically not far from current
available experimental configurations as used at ETH [6.15] and Hamburg [6.8]. These
need to be extended by adding extra laser frequencies, as provided by existing frequency
comb and amplifier technology. As cavity and comb modes are equidistant, a single lock
would be sufficient to bring all modes to resonance. While the general quadratic scaling
of the number of lasers with the lattice sites number seems to be rather restrictive at
first, the lasers are just a classical resource here. It also turns out that the required
number of laser frequencies for a specific problem can be strongly reduced by applying
the same laser from different angles.

In our example we found the desired state via adiabatic transfer. As said, for our
open system, adiabatic transfer is not the only possibility as the ground state can also
be reached via cavity side band cooling [6.33, 6.41] generalized to the multimode case.
In this case the scan time can be reduced as errors are corrected by cooling at a later
stage.
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Appendix

6.A. Interaction matrices

Recalling the pattern χ1 = (1, 1, 1,−1,−1,−1, 1,−1) and choosing ν = 0.7 results in an
interaction matrix Aχ1 given by

Aχ1 =



1.7 1.0 −1.0 0.0 1.0 −1.0 0.0 −1.0
1.0 1.7 −1.0 0.0 1.0 −1.0 0.0 −1.0
−1.0 −1.0 1.7 0.0 −1.0 1.0 0.0 1.0
0.0 0.0 0.0 0.3 0.0 0.0 −1.0 0.0
1.0 1.0 −1.0 0.0 0.3 −1.0 0.0 −1.0
−1.0 −1.0 1.0 0.0 −1.0 0.3 0.0 1.0
0.0 0.0 0.0 −1.0 0.0 0.0 1.7 0.0
−1.0 −1.0 1.0 0.0 −1.0 1.0 0.0 0.3


.

Using the above modes this matrix can be realized by the following laser input pa-
rameters

f̃
χ1
/ζ = (− 23., 1.5, 1.2, 0.3, 0.6,−0.2,−5.3, 1.,−0.1,

− 0.9,−0.4,−1.3, 2., 1.6,−0.4,−0.6,−0.6,

− 0.2, 0.1, 2.2,−0.9, 2.4,−0.5, 0.,−0.6, 2., 1.,

− 0.1,−0.5, 2.1,−0.8,−1.7, 1.2, 6.8, 4.5,−0.6),

which are already rounded to one position after the decimal point. We see that all
parameters have similar magnitude, which is due to the proper choice of the modes. The
recovered interaction matrix from the rounded input parameters Ãχ1 is (rounded up to
2 positions after decimal point)

Ãχ1 =



1.72 1.01 −1.01 0.02 0.99 −1.00 0.00 −0.97
1.01 1.67 −0.91 −0.02 0.99 −0.99 0.00 −1.01
−1.01 −0.91 1.66 0.03 −1.00 0.98 0.01 1.01
0.02 −0.02 0.03 0.27 0.05 0.03 −1.00 −0.00
0.99 0.99 −1.00 0.05 0.33 −0.97 −0.03 −1.00
−1.00 −0.99 0.98 0.03 −0.97 0.29 0.01 0.96
0.00 0.00 0.01 −1.00 −0.03 0.01 1.70 0.02
−0.97 −1.01 1.01 −0.00 −1.00 0.96 0.02 0.30


which is similar to Aχ1 .

Recalling another pattern χ2 = (1, 1,−1, 1,−1,−1,−1, 1) results in an interaction
matrix which differs from Aχ1 only in the diagonal (since the memory is the same), i.e.
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Aχ2 =



1.7 1.0 −1.0 0.0 1.0 −1.0 0.0 −1.0
1.0 1.7 −1.0 0.0 1.0 −1.0 0.0 −1.0
−1.0 −1.0 0.3 0.0 −1.0 1.0 0.0 1.0
0.0 0.0 0.0 1.7 0.0 0.0 −1.0 0.0
1.0 1.0 −1.0 0.0 0.3 −1.0 0.0 −1.0
−1.0 −1.0 1.0 0.0 −1.0 0.3 0.0 1.0
0.0 0.0 0.0 −1.0 0.0 0.0 0.3 0.0
−1.0 −1.0 1.0 0.0 −1.0 1.0 0.0 1.7


.

Analogously, it can be implemented by the rounded input parameters

f̃
χ2
/ζ = (9., 1.5, 2.8,−0.1, 2.,−2.1, 3.4,−7.7,−1.7,−1.9,

0.6,−2.7,−1.9, 2.5,−1.4, 2.2,−1.7,−3.6, 6.5,

5.5,−1.3, 4.9,−1.,−0.7,−0.2,−3.5,−0.1,

− 1.6, 1.3, 0.1, 0.2,−2.4,−0.5, 12.2, 3.9,−0.2).

6.B. Selecting the modes

Here we explain how we select the modes for the set-up with 8 sites (N = 8) and
4 particles (NA = 4) discussed in Section 6.5. As mentioned in the main text, in this
specific example the single-mode coupling matrices Vm depend on the cavity modes only.
Thus in order to find good modes we choose a candidate set of K = 300 Hermite-Gauss
cavity modes with longitudinal mode indices n ∈ {100, 199} and transverse mode indices
l ∈ {0, 1, 2} and m = 0. Now we aim to find a subset of M = N(N + 1)/2 = 36 modes
which results in a large determinant of the Gram matrix created by the normalized Vm’s
for one specific lattice location (it does not have to be the optimum). Since the number
of M -combinations out of the candidate set of size K is huge,

(
K
M

)
∼ 1046, we cannot

try out all, but have to use some algorithm which still scales polynomially. We use one
possible choice which is given by:

(i) Compare all pairs of modes and choose the best (K(K − 1) steps).

(ii) Subsequently add the best mode until ending up with M modes (< MK steps).

(iii) Tentatively replace each selected mode by one mode of the remaining candidate
set and take the best replacement, but only if the new Gram matrix determinant
is larger. Repeat this for all selected modes (M(K −M) steps).

In each step, the Gram matrix determinant has to be calculated. We repeat this proce-
dure for different lattice locations and angles to the cavity axes. In addition to that, we
post-select sets of modes where the norms

√
〈Vm, Vm〉 are relatively uniform in order to

guarantee uniform input parameters.
A resulting ‘good’ lattice location is given by the coordinates of the first lattice site

z0 = −5d, r0
l = −2d and r0

m = 0 in a coordinate system with origin at the cavity center
and has an angle φ = 47◦ with respect to the cavity z-axis (see Figure 6.7). The set
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Figure 6.7.: The lattice location within the cavity used in the example in Section 6.5.
The (blue) dots indicate positions of individual lattice sites. The depicted
cavity mode is (n, l) = (100, 2). The (black) arcs depict the cavity mirrors.

of selected modes for this lattice location, defining the basis B, is given as mode index
tuples (n, l)

B = {(100, 2), (105, 2), (107, 1), (114, 0), (117, 1), (120, 1),

(122, 2), (127, 1), (130, 0), (135, 0), (135, 1), (138, 1),

(139, 2), (140, 0), (140, 2), (145, 1), (149, 2), (152, 1),

(152, 2), (154, 0), (159, 0), (159, 1), (161, 2), (164, 0),

(166, 1), (168, 2), (173, 2), (178, 0), (178, 2), (180, 1),

(191, 1), (193, 2), (196, 1), (198, 0), (198, 2), (199, 0)}.

This configuration results in a Gram matrix determinant of 3.21× 10−11.

6.C. Adiabatic elimination of the cavity modes

The adiabatic elimination of the cavity modes has already been discussed in similar
set-ups, see e.g. [6.23, 6.35, 6.40]. The Heisenberg-Langevin equation of the cavity field
operators is

ȧm =
1

i~
[am, H] = (iδc,m − κm)am − iηm

∑
i

vimn̂i + ξ̂m. (6.16)

Including the coupling of the cavity modes with the vacuum field gives rise to field decay
and an input noise operator ξ̂m with 〈ξ̂(t)〉 = 0 and 〈ξ̂(t), ξ̂(t′)〉 = 2κmδ(t− t′). Formal
integration from t0 to t leads to

am(t) =e(iδc,m−κm)∆tam(t0)− iηm
∑
i

vim

∫ ∆t

0
ds e(iδc,m−κm)sn̂i(t− s) + Σ̂m(t) (6.17)
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with the new noise operator

Σ̂m(t) =

∫ ∆t

0
ds e(iδc,m−κm)sξ̂m(t− s). (6.18)

The time step ∆t = t − t0 defines an intermediate time scale: One the one hand it is
(i) much larger than the cavity time scale κ−1

m � ∆t, and on the other hand (ii) much
smaller than the time scale of the atomic motion ∆t� (J/~)−1.

Due to (i) we can neglect the first term in (6.17). Moreover, because of (ii) the atomic
operator n̂i does not vary much in the time ∆t and can hence be approximated by n̂i(t),
which allows us to evaluate the integral. This approximation amounts to truncating an
expansion in the small parameter ˙̂ni/|δc,m + iκm| ∝ J/(~|δc,m + iκm|) at zeroth order.
It yields

am(t) =
ηm

δc,m + iκm

∑
i

vimn̂i(t) + Σ̂m(t). (6.19)

Within the limit (i), the noise operator has the properties 〈Σ̂m(t)〉 = 0 and 〈Σ̂m(t)Σ̂†m(t′)〉 =
2κm

δ2
c,m+κ2

m
δ(t− t′) [6.40].

The interaction part of the Heisenberg equation of a the bosonic annihilation operator
is

ḃi = −i
∑
m

ηm(vima
†
mbi + (vim)∗biam) + ..., (6.20)

where a specific order of atomic and cavity operators was chosen and the dots stand for
terms containing atomic operators only. The ordering freedom leads to ambiguities [6.35].
Plugging in (6.19) without the noise term yields

ḃi =− i
∑
m

δc,mη
2
m

δ2
c,m + κ2

m

(vim(vjm)∗n̂jbi + (vim)∗vjmbin̂j)

+
∑
m

κmη
2
m

δ2
c,m + κ2

m

(vim(vjm)∗n̂jbi − (vim)∗vjmbin̂j) + ....

(6.21)

Using the identity [bi,
∑

j,kMjkn̂jn̂k] =
∑

j(Mijn̂jbi +Mjibin̂j) we realize that the first

term can be obtained from ḃi = 1/(i~)[bi, H
int
ad ] with a purely atomic Hamiltonian

H int
ad = ~

∑
i,j

∑
m

δc,mη
2
m

δ2
c,m + κ2

m

vim(vjm)∗n̂in̂j = ~
∑
i,j

∑
m

δc,mη
2
m

δ2
c,m + κ2

m

Re(vim(vjm)∗)n̂in̂j ,

(6.22)
where we used [n̂i, n̂j ] = 0 in the second expression.

The incoherent dynamics coming from Lindblad terms Lρ =
∑

m(2CmρCm − C2
mρ −

ρC2
m) with the Hermitian operators

Cm =
√

2κm
ηm√

δ2
c,m + κ2

m

∑
i

vimn̂i (6.23)

gives rise to the second term in (6.21) and the noise (which we did not explicitly consider).
In the main text we neglect this incoherent contribution, which well describes the physics
in current experiments [6.6, 6.15].
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6.D. Detailed analysis of the associative memory Hamiltonian

We discuss the structure of the Hamiltonian HAM , which is described in [6.34]. Since this
Hamiltonian is diagonal in the occupation number basis (it only contains σz-operators),
the analysis can be reduced to a classical energy function. The energy of an arbitrary
state s evaluates to

EAM(s) = 〈s|HAM |s〉 = − 1

2P

P∑
q=1

〈s,wq〉2 − ν〈s,χ〉. (6.24)

The goal is that the lowest energy state

(i) is a memory state and

(ii) has maximum similarity to the input pattern χ,

i.e. wk = maxp〈wp,χ〉 with wp ∈M. Formally we require

EAM(wk) < EAM(s) for s 6= wk := max
p
〈wp,χ〉. (6.25)

While the first term in EAM is responsible for requirement (i), the second term should
come up for (ii).

6.D.1. Memory term

Let us now consider the first term (ν = 0), which lowers the energy of memory states to

EAM(wp) = − 1

2P

P∑
q=1

〈wp,wq〉2 = −N
2
− 1

2P

∑
q 6=p
〈wp,wq〉2. (6.26)

We observe that all memory states are degenerate, i.e. EAM(wp) is independent of p, if
the dot product of all memory pattern pairs is the same: 〈wp,wq〉 = a for all p 6= q and
a ∈ Z. This is guaranteed e.g. for pairwise orthogonal memory states 〈wp,wq〉 = Nδpq
(i.e. a = 0) and for P = 2 due to the commutativity of the dot product (〈w1,w2〉 =
〈w2,w1〉).

6.D.2. Recall term

The second term in (6.24) lowers the energy of states close to an input pattern χ. Now
we clarify the bounds on the size of this term ν.

Lower bound.—If the memory states are degenerate an arbitrarily small ν > 0 is
sufficient to bias the memory state with maximum overlap to χ. In other words, the
lower bound on the local field strength is zero, νmin = 0, in case of degenerate memory
states.

For non-degenerate memories in general we need a lower bound νmin > 0 in order to
get the right solution, since certain memory patterns will be preferred over others.
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Upper bound.—Moreover, we have to make sure that the input pattern is not over-
biased, i.e. that the input pattern itself does not become the ground state in order to
meet requirement (i). That is

min
p
EAM(wp) < EAM(χ), (6.27)

which leads to an upper bound for ν:

ν < max
p

1

2P (N − 〈χ,wp〉)
P∑
q=1

(
〈wp,wq〉2 − 〈χ,wq〉2

)
. (6.28)

However, there is a caveat: Calculating this bound amounts to evaluating all inner
products 〈χ,wq〉, which solves the problem of finding the most similar memory state to
χ and thus renders the whole annealing procedure superfluous.

For the special case of degenerate memories however, one can simply choose the small-
est possible ν > 0 (depending on the available precision). This situation is depicted in
Figure 6.8. Having non-degenerate memories, one could repeat for different values of ν.
For large values of ν, the resulting ground state should be χ. Upon lowering ν we should
arrive at a point where the ground state changes to some other state, which is the right
memory state, assuming χ 6∈ M and enough precision.
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Figure 6.8.: The energies depending on the choice of ν when recalling χ1. The recall
bias EAM(χ1) (solid blue) has to be smaller than EAM(w1) (dashed green),
hence we need to choose 0 < ν < 4. EAM(w2) (dotted red) is not affected
by ν due to 〈χ1,w2〉 = 0. Here P = 2 such that the memory patterns are
degenerate.
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7.1. Introduction

Quantum technology with its current rapid advances in number, quality and controlla-
bility of quantum bits (qubits) is approaching a new era with computational quantum
advantage for numerical tasks in reach [7.1–7.11]. While building a universal gate-based
quantum computer with error-correction is a long-term goal, the requirements on control
and fidelity to perform algorithms with such a universal device that outperform their
classical counterparts are still elusive. Building special purpose quantum computers
with near-term technology and proving computational advantage compared to classical
algorithms is thus a goal of the physics community world wide [7.12]. Quantum simula-
tion with the aim to solve Hamiltonian systems may serve as a building block of such a
special purpose quantum computer [7.13–7.15]. In particular, adiabatic quantum com-
puting [7.16–7.18] has been proposed to solve computationally hard problems by finding
the ground state of Ising spin glasses [7.19]. Despite considerable theoretical [7.18] and
experimental [7.20] efforts, quantum speedup in adiabatic quantum computing has not
been demonstrated in an experiment yet [7.21]. Thus, demonstrating quantum advan-
tage by solving optimization problems using quantum simulation tools is a crucial step
towards the development of general programmable quantum optimizers [7.22, 7.23].

Here we present a scheme that aims at solving the N -queens problem, and variations
of it, using atoms with cavity-mediated long-range interactions [7.24–7.28]. We note that
the N -queens problem is not just of mathematical interest but also has some applications
in computer science [7.29]. In this work, variations of the problem are used as a testbed
[7.30] to study a possible quantum advantage in solving classical combinatorial problems
in near term quantum experiments.

Our proposed setup consists of N ultracold atoms in an optical lattice that represent
the queens on the chess board [7.31]. The non-attacking conditions are enforced by a
combination of restricted hopping [7.32] and interactions between the atoms stemming
from collective scattering of pump laser light into a multi-mode cavity [7.33–7.40] (see
Fig. 7.1). For the excluded diagonals variation of the N -queens problem, additional
repulsive optical potentials are introduced. The solution of the problem (or the ground
state of the many-body quantum system) is attained via a superfluid-to-solid transition.
From the measurement of photons that leave the cavity [7.41] it can be determined if a
state is a solution to the N -queens problem. The position of the atoms can in addition
be read out with single site resolved measurement. The final solution is a classical
configuration and thus easy to verify. We show that a full quantum description of the
dynamics is required to find this solution.

Following Ref. [7.1], we identify a combination of several unique features of the pro-
posed model that makes it a viable candidate to test quantum advantage in near term
devices. (a) The completion and excluded diagonals problem is proven to be NP-complete
and hard instances for the excluded diagonals variant are known from computer science
literature [7.30], (b) the problem maps naturally to the available toolbox of atoms in
cavities and thus can be implemented without intermediate embedding and no qubit
overhead, (c) the verification is computationally simple and (d) the number of qubits
required to solve problems which are hard for classical computers (N > 21 for the solvers
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Figure 7.1.: Sketch of the setup. (a) The N -queens problem is to place N non-attacking
queens on an N by N board. A variation thereof is the N -queens com-
pletion problem where some of the queens are already placed (yellow).
In addition, some excluded diagonals are introduced (dashed blue lines)
on which no queen can be placed. (b) Each queen is represented by an
atom which is trapped in an anisotropic optical potential (blue) allowing
for tunneling in x-direction only. Collective scattering of pump laser light
(green arrows) into an optical resonator induces atom-atom interactions,
preventing atoms from aligning along the y-axis and along the diagonals.
After initial preparation in superposition states delocalized in x-direction
(red tubes), increasing the interactions transfers the system into its solid
phase, which is the solution of the queens problem (black balls).

used in Ref. [7.30]) is available in the lab.

Methods such as minor embedding [7.23, 7.42], LHZ [7.22, 7.43, 7.44] or nested embed-
ding [7.45] always cause a qubit overhead. Here the intermediate step of embedding the
optimization problem in an Ising model is removed by implementing the infinite-range
interactions with cavity-mediated forces tailored to the problem’s geometry in combina-
tion with constrained tunneling [7.32]. Hence there is no qubit overhead and the mode
resources scale linearly with N . The required number of qubits is reduced from sev-
eral hundreds to below 50, which is available in current experiments. By implementing
our scheme with less than 50 atoms the problem is already hard to tackle with current
classical algorithms [7.30].

Light-mediated coupled tunneling gives rise to non-local quantum fluctuations across
the whole lattice in the intermediate stage of the transition [7.46, 7.47]. Their non-
uniform signs stemming from the relative phases of the cavity fields from site to site
indicate that the system’s Hamiltonian is non-stoquastic and can thus not be efficiently
simulated with path integral Monte Carlo methods on a classical computer [7.48]. The
question of a quantum speed-up is thus open unless a local transformation to a stoquastic
Hamiltonian is found [7.49, 7.50].
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In our model implementation the non-local qubit interactions are mediated via the field
modes of an optical resonator, which will attain non-classical atom-field superposition
states during the parameter sweep. This appears to be an essential asset of the system
as we find that the ground-state is reached only with a very low probability, when the
full quantum dynamics of the fields is replaced by a classical mean-field approximation.

As a final feature let us point out here that the verification of a solution is computa-
tionally trivial as the final state is classical and no quantum tomography is needed. In
principle the convergence to a solution can be simply deduced from the cavity outputs
at the end of the sweep. With this, the proposed setup may serve as a platform to
demonstrate combinatorial quantum advantage in near-term experiments.

This work is organized as follows: In Sec. 7.2 we introduce a quantum model based
on coupled quantum harmonic oscillators simulating the N queens problem. A proposed
physical implementation using ultracold atoms in optical lattices and light-mediated
atom-atom interaction is described in Sec. 7.3. In Sec. 7.4 we present a numerical
comparison between model and implementation including photon loss. Finally we discuss
in Sec. 7.5 how light leaking out of the cavity can be used for read-out and we conclude
in Sec. 7.6.

7.2. Quantum simulation of the N-queens problem

Following the idea of adiabatic quantum computation [7.16–7.18], we construct a classical
problem Hamiltonian Hpr such that its ground state corresponds to the solutions of the
N -queens problem. In order to find this ground state, the system is evolved with the
time-dependent Hamiltonian

H(t) = Hkin +
t

τ
Hpr (7.1)

from t = 0 to t = τ . Initially at t = 0, the system is prepared in the ground state of
H(0) = Hkin. During the time evolution, the second term is slowly switched on. If this
parameter sweep is slow enough, the system stays in the instantaneous ground state and
finally assumes the ground state of H(τ) at t = τ . If the lowest energy gap of Hpr is
much larger than the one of Hkin, this state is close to the ground state of Hpr and thus
the solution of the optimization problem.

In the following we construct the problem Hamiltonian Hpr and the driver Hamiltonian
Hkin. The system is modeled as a 2D Bose-Hubbard model with annihilation (creation)

operators bij (b†ij) on the sites (i, j). A position of a queen is represented by the position
of an atom in an optical lattice with the total number of atoms being fixed to N . The
non-attacking condition between queens, which amounts to interactions between two
sites (i, j) and (k, l), is implemented with four constraints: There can not be two queens
on the same line along (i) the x-direction j = l, (ii) the y-direction i = k, the diagonals
(iii) i+ j = k + l and (iv) i− j = k − l.

Condition (i) is implemented by using an initial state with one atom in each horizontal
line at yj and restricting the atomic movement to the x-direction [see Fig. 7.1(b)].
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Thereby we use the a priori knowledge that a solution has one queen in a row, which

reduces the accessible configuration space size from
(
N2

N

)
to NN configurations. In this

vein the restricted tunneling Hamiltonian [7.32] is given by

Hkin = −J
N∑

i,j=1

B̂ij , (7.2)

where J is the tunneling amplitude and B̂ij = b†i,jbi+1,j + b†i+1,jbi,j with B̂Nj = 0 are the
tunneling operators.

Constraints (ii), (iii) and (iv) are enforced by infinite range interactions between the
atoms with

HQ = UQ

N∑
ijkl=1

Aijkl n̂ijn̂kl, (7.3)

where n̂i,j = b†i,jbi,j and UQ > 0. The interaction matrix is

Aijkl =


3 if (i, j) = (k, l)

1 if i = k ∨ i+ j = k + l ∨ i− j = k − l
0 otherwise,

(7.4)

where in the first case all three constraints are broken.

In order to implement variations of the N -queens problem, we need to exclude diag-
onals (for the excluded diagonals problem) and pin certain queens (for the completion
problem). These additional conditions are implemented by local energy offsets of the
desired lattice sites

Hpot = UD

N∑
i,j=1

Dij n̂ij − UT

N∑
i,j=1

Tij n̂ij . (7.5)

For UD > 0 the first term renders occupations of sites on chosen diagonals energetically
unfavorable. Each diagonal (in + and − direction) has an index summarized in the sets
D+ and D−, respectively, and the coefficients are

Dij =


2 if i+ j − 1 ∈ D+ ∧ i− j +N ∈ D−
1 if i+ j − 1 ∈ D+ ∨ i− j +N ∈ D−
0 otherwise.

(7.6)

For UT > 0, the second term favors occupations of certain sites. The sites where queens
should be pinned to are pooled in the set T and therefore the coefficients are given by

Tij =

{
1 if (i, j) ∈ T
0 otherwise.

(7.7)
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Figure 7.2.: Time evolution of site occupations. Each subplot shows a snapshot of the
site occupations 〈n̂ij〉 for the parameter sweep in Eq. (7.1) and a sweep
time Jτ/~ = 49. This is the instance shown in Fig. 7.1a, where the
excluded diagonals are indexed by D+ = {2, 3, 6, 9} and D− = {1, 2, 8, 9}
and one queen is pinned at site (3, 5), i.e. T = {(3, 5)} (see text). The
final values of the sweep are UQ = J , UD = 5J , UT = 2J while J is kept
constant. Since the sweep time is large enough, the state of the system
adiabatically converges to the unique solution of the problem, which can
be easily verified.

The problem Hamiltonian of the N -queens problem with excluded diagonals is then

Hpr = HQ +Hpot. (7.8)

Note that due to the initial condition atoms never meet and sites are occupied by zero
or one atom only. Hence the system can be effectively described by spin operators
[7.31, 7.40], also without large contact interactions.

Let us illustrate the parameter sweep in Eq. (7.1) for a specific example instance with
N = 5 queens (see Fig. 7.1). The excluded diagonals chosen here restrict the ground
state manifold to two solutions, and by biasing site (3, 5) one of these solutions is singled
out. The time evolution of the site occupations 〈n̂ij〉 from numerically solving the time-
dependent Schrödinger equation is shown in Fig. 7.2. Initially, the atoms are spread out
in x-direction since the ground state of H(0) = Hkin is a superposition of excitations
along each tube. After evolving for a sufficiently large time Jτ/~ = 49, the system is in
the ground state of Hpr and thus assumed the solution of the optimization problem.

The energy spectrum of the given instance is shown in Fig. 7.3(a). The minimal gap
between ground state (orange) and first excited state (green) determines the minimum
sweep time τ to remain in the ground state according to the Landau-Zener formula. At
the end of the sweep, the ground state closely resembles the solution to the excluded
diagonals problem shown in Fig. 7.1.

The Hilbert space for the atomic state corresponding to the configuration space men-
tioned above grows exponentially as NN and thus, as usual for quantum systems, the
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Figure 7.3.: Energy spectrum. Eigenvalue spectrum of H(t) for (a) the model Hamil-
tonian [Eq. (7.1)] and (b) the Hamiltonian created by the field-atom inter-
actions [Eq. (7.10)] for the instance described in Fig. 7.2. The orange and
green lines show ground state and first excited state, respectively. The
blue lines depict higher energy eigenstates. The low energy sector, and
especially the minimal gap, are qualitatively similar.

computational costs get large for rather small systems. Simulations with significantly
larger systems are hence not easily tractable.

7.3. Implementation

Here we propose a specific and at least conceptionally simple and straightforward phys-
ical implementation of Eq. (7.1), where the N queens are directly represented by N
ultracold atoms in an NxN two-dimensional optical lattice. Assuming tight binding
conditions the atoms are confined to the lowest band of the lattice. They can coherently
tunnel between sites [7.51] and interact via collective light scattering within an optical
resonator. To implement the required queens interactions via light scattering we make
use of a set of optical field modes in a multi-mode standing-wave resonator [see Fig.
7.1(b)]. It was shown before that this configuration in principle allows to implement
arbitrary site to site interactions [7.40] if a sufficient number of modes is used.

To reduce the necessary Hilbert space without loss of generality, it is sufficient to
enable tunneling only along one dimension (x), e.g. the rows of the lattice and increase
the lattice depth in the column (y) direction. This confines the atoms (queens) to move
only along tubes in the x-direction forming a parallel array of N 1D optical lattices as
routinely used to study 1D physics with cold atoms [7.52].

Luckily, for the special case of the infinite range queens interactions, one can find
a strikingly simple and intuitive example configuration requiring only few field modes
for each of the three remaining queens interaction directions. For this we consider the
optical lattice to be placed in the center symmetry plane of the optical resonator, where
one has a common anti-node of all symmetric eigenmodes. The trapped atoms are then
illuminated by running plane wave laser beams from three different directions within the
lattice plane with frequencies matched to different longitudinal cavity modes.

89



7. Publication: A Quantum N-Queens Solver

Depending on the size of the problem we need to add more laser frequencies in each
direction to avoid a periodic recurrence of the interaction within the lattice. Note that
all frequencies can be easily derived and simultaneously stabilized from a single fre-
quency comb with a spacing matched to the cavity length. Since all light frequencies are
well separated compared to the cavity line width, each is scattered into a distinct cav-
ity mode and as the cavity modes are not directly coupled no relative phase stability is
needed [7.40]. The resulting position-dependent collective scattering into the cavity then
introduces the desired infinite-range interactions between the atoms. Choosing certain
frequencies and varying their relative pump strengths allows for tailoring these inter-
actions to simulate the three non-attacking conditions in the queens problem discussed
in the previous section. Additional light sheets and local optical tweezers can be used
to make certain diagonals energetically unfavorable (for the excluded diagonal problem)
or pin certain queens. Alternatively pinning can be achieved by selective cavity mode
injection.

In the first part (Sec. 7.3.1) we will now introduce a Bose-Hubbard-type Hamiltonian
for the trapped atoms interacting via collective scattering for general illumination fields
in more detail. For this we first consider the full system of coupled atoms and cavity
modes and later adiabatically eliminate the cavity fields to obtain effective light-mediated
atom-atom interactions.

In the second part (Sec. 7.3.2) we discuss how to implement the non-attacking condi-
tions of the N -queens problem with such light-mediated atom-atom interactions. Specif-
ically, we consider the limit of a deep optical lattice leading to simple analytical expres-
sions. These formulas allow us to find a specific pump configuration of wave numbers
and pump strengths leading to the ideal queens interaction Hamiltonian in Eq. (7.3).
As a deep lattice depth slows down atomic tunneling it requires long annealing times.
Luckily, it turns out that the pump configuration derived for a deep lattice still gives
the same ground state for moderate lattice depth with faster tunneling. We show this
by numerical simulations in Sec. 7.4. While the details of the interaction are altered it
still sufficiently well approximates the N -queens interaction.

7.3.1. Tight-binding model for atoms interacting via light

Driving far from any atomic resonance the internal degrees of freedom of the atoms
can be eliminated. In this so-called dispersive limit the resulting effective Hamiltonian
couples the atomic motion to the light fields [7.53].

Single-particle Hamiltonian. For a single particle of mass mA, the motion of the atoms
in the x-y-plane is described by [7.25, 7.54]

H1 =
p̂2
x + p̂2

y

2mA
+ V x

L cos2(kLx̂) + V y
L cos2(kLŷ) + Vbias|F(x̂, ŷ)|2

− ~
Mtot∑
m=1

∆̃c,ma
†
mam + ~

Mtot∑
m=1

ηm

(
h∗m(x̂, ŷ)am + a†mhm(x̂, ŷ)

)
.

(7.9)

The first line contains the kinetic term with the momentum operators p̂x and p̂y. Clas-
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sical electric fields create optical potentials with depths V x
L , V y

L and Vbias. The first two
create the optical lattice with wave number kL and lattice spacing a = π/kL, while Vbias

is much smaller and only responsible for a bias field on certain sites, for instance for
excluding diagonals. Thereby F(x, y) is an electric field distribution whose maximum is
normalized to one.

The last two terms describe the free evolution of the cavity fields and atom-state-
dependent scattering of the pump fields into the cavity, the atom-light interaction. The
quantized electric cavity fields are described by am (a†m), the annihilation (creation) oper-
ators of a photon in the m-th mode. These fields are coupled to the classical pump fields
with mode functions hm(x, y) via the effective scattering amplitudes ηm = gmΩm/∆a,m,
with the pump laser Rabi frequencies Ωm, the atom-cavity couplings gm and the detun-
ings between pump lasers and atomic resonance frequency ∆a,m. The effective cavity
detunings ∆̃c,m = ∆c,m − NU0,m are given by the detunings between pump laser and
cavity mode frequencies ∆c,m and the dispersive shifts of the cavity resonance due to
the presence of the atoms in the cavity NU0,m [7.24].

Note that, for example by placing the optical lattice (x-y-plane) in a common anti-
node of the standing wave cavity modes and exciting only TEM00 modes, the atom-cavity
coupling is uniform in space in our model. Thus the only spatial dependence in the cavity
term is due to the pump fields.

Generalized Bose-Hubbard Hamiltonian. The atom-atom interactions are taken into
account by introducing bosonic field operators Ψ̂(x) with H̃ =

∫
d2xΨ̂†(x)H1Ψ(x) [7.25,

7.55]. Note that we do not include contact interactions since atoms never meet due to
the initial condition we will use. We assume that the optical lattice with depths V x

L

and V y
L is so deep, that the atoms are tightly bound at the potential minima and only

the lowest vibrational state (Bloch band) is occupied. Moreover, the optical potential
created by bias and cavity fields is comparably small, such that the form of the Bloch
wave functions only depends on the optical lattice [7.54]. In this limit we can expand
the bosonic field operators in a localized Wannier basis Ψ̂(x) =

∑
i,j w2D(x − xij)bij

with the lowest-band Wannier functions w2D(x) coming from Bloch wave functions of
the lattice [7.56]. We split the resulting Hamiltonian in three terms

H̃ = Hkin +Hcav +Hpot, (7.10)

which will be explained in the following.
As in the standard Bose-Hubbard model, one obtains a tunneling term Hkin as in Eq.

(7.2). Tunneling in y-direction is frozen out by ensuring V y
L � V x

L . The other terms
Hcav and Hpot originate from the weak cavity-pump interference fields and the bias fields
introduced above and should resemble Hpr [Eq. (7.8)]. In order to realize the sweep Eq.
(7.1), the relative strength of these terms and the kinetic term has to be tuned, e.g. by
ramping up the pump laser and bias field intensity (make Hcav and Hpot larger) or the
lattice depth (make Hkin smaller).

The cavity-related terms in Eq. (7.9) give rise to

Hcav =− ~
∑
m

∆̃c,ma
†
mam + ~

∑
m

Nηm

(
Θ̂†mam + a†mΘ̂m

)
(7.11)
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with the order operator of cavity mode m

Θ̂m =
1

N

N∑
i,j=1

(
vijmn̂ij + uijmB̂ij

)
. (7.12)

The structure of the fields enters in the on-site and nearest neighbor atom-mode overlaps

vijm =

∫
dxw2(x− xi)hm(x, yj) (7.13)

uijm =

∫
dxw(x− xi)hm(x, yj)w(x− xi+1) (7.14)

where yj = ja with j = 0, ..., N − 1 are the tube positions and w(x) the one-dimensional
Wannier functions in x-direction. This is because for V y

L � V x
L we can approximate the

y-dependence of the Wannier functions by a Dirac delta: w2D(x) = w(x)δ(y).
The last term Hpot describes all extra fields responsible for local energy off-sets at

certain sites that stem from the weak classical fields with the distribution F(x, y)
(Vbias � V x

L ). The off-sets ought to be calculated from the overlaps of fields and Wannier

functions, analogously to vijm. Thus the fields have to be chosen such that the resulting
Hamiltonian resembles Eq. (7.5). We do not detail the derivation further here and use
Hpot for numerical simulations.

Atom-atom interaction Hamiltonian. The main focus of this work is to show how to
create the tailored all-to-all particle interactions via collective scattering. We derive this
interaction by eliminating the cavity fields introduced in the previous section [7.54, 7.57,
7.58]. This can be done because the cavity fields decay through the mirrors with the rates
κm and thus end up in a particular steady-state for each atomic configuration. Assuming
that the atomic motion is much slower than the cavity field dynamics, i.e. J/~� |∆̃c,m+
iκm|, this steady-state is a good approximation at all times. The stationary cavity field
amplitudes are given by

ast
m ≡

ηm

∆̃c,m + iκm
NΘ̂m (7.15)

and thus replaced by atomic operators (see Appendix 7.B).
In the coherent regime |∆̃c,m| � κm, the atom-light interaction is then described by

an effective interaction Hamiltonian for the atoms [7.28]

Heff
cav = ~

∑
m

∆̃c,mη
2
m

∆̃2
c,m + κ2

m

N2Θ̂†mΘ̂m. (7.16)

The collective, state-dependent scattering induces interactions between each pair of sites
(i, j) and (k, l): Density-density interactions due to the terms containing n̂ijn̂kl and a
modified tunneling amplitude due an occupation or a tunneling event somewhere else
in the lattice due to n̂ijB̂kl, B̂ijn̂kl and B̂ijB̂kl. While the density-density interactions
constitute the problem Hamiltonian [see Eq. (7.3)], the latter cavity-induced tunneling
terms lead to non-local fluctuations which might help to speed up the annealing process
[7.46].
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Since the Wannier functions are localized at the lattice sites, the on-site overlaps vijm
tend to be much larger than the nearest-neighbor overlaps uijm. Thus density-density
interactions are expected to be the dominant contribution to Heff

cav. As intuitively ex-
pected, the atoms localize stronger for deeper lattices, where analytical expressions for
the overlaps can be obtained within a harmonic approximation of the potential wells
leading to Gaussian Wannier functions with a width ∝ (V x

L )−1/4. Apart from a correc-
tion factor due to this width, the on-site overlaps are given by the pump fields at the
lattice sites. The nearest-neighbor overlaps correspond to the pump fields in between
the lattice sites, but are exponentially suppressed (see Appendix 7.C). Consequently, in
the deep lattice limit (large V x

L ) when the width tends to zero we get vijm = hm(xi, yj)

and uijm = 0 [7.28], and an interaction Hamiltonian [from Eq. (7.16)]

Hdl
cav = ~

∑
m

∆̃c,mη
2
m

∆̃2
c,m + κ2

m

∑
ijkl

h∗m(xi, yj)hm(xk, yl)n̂ijn̂kl, (7.17)

which only depends on density operators, and hence does not include cavity induced-
tunneling.

7.3.2. N-queens interaction

In this section we aim to find pump fields hm(x, y) such that the interaction Hamiltonian
in the deep lattice limit Eq. (7.17) corresponds to the desired queens Hamiltonian HQ

[Eq. (7.3)] containing the non-attacking conditions. Using these pump fields we later
show numerically in Sec. 7.4, that the atom-atom interaction for realistic lattice depths
[Eq. (7.16)], although slightly altered, still well resembles the queens interaction.

We consider three sets of M parallel running wave laser beams with different prop-
agation directions, each of which could be created by a frequency comb. The three
directions are perpendicular to the lines along which queens should not align, that is
along the x-direction and along the diagonals. We denote the corresponding wave vec-
tors with kxm = (k0

m, 0)T , k+
m = (k0

m, k
0
m)T and k−m = (k0

m,−k0
m)T , respectively, with the

wave numbers k0
m. Therefore the pump fields are given by

hm(x, y) = eikmx, (7.18)

where x = (x, y)T is the position vector and km is a wave vector in any of the three
directions.

With running wave pump fields, Eq. (7.17) can be written as

Hdl
cav = UQ

∑
ijkl

Ãijkln̂ijn̂kl. (7.19)

This formally corresponds to HQ [Eq. (7.3)], where the quantities now have a physical
meaning: The interaction matrix is given by

Ãijkl =
∑
m

fm cos(km(xij − xkl)) (7.20)
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with lattice site connection vectors xij − xkl and

fmUQ = ~
∆̃c,mη

2
m

∆̃2
c,m + κ2

m

(7.21)

with
∑M−1

m=0 fm = 1. The dimensionless parameters fm capture the relative strengths of
the modes, determining the shape of the interaction. They have to be chosen such that
Ã approximates A [Eq. (7.4)]. The overall strength of the interaction term is captured by
the energy UQ, which can be easily tuned by the cavity detunings or the pump intensities
to implement the parameter sweep in Eq. (7.1). For the following discussion we define
an interaction function

Ã(r) =
∑
m

fm cos(kmr) (7.22)

which returns the interaction matrix when evaluated at lattice site connection vectors
Ãijkl = Ã(xij − xkl).

We note that one set of parallel kµm (µ ∈ {x,+,−}) creates an interaction Ã which
is constant and infinite range (only limited by the laser beam waist) in the direction
perpendicular to the propagation direction r ⊥ kµm. Along the propagation direction
r ‖ kµm instead, the interaction is shaped according to the sum of cosines, and can be
modified by the choice of wave numbers kµm = |kµm| and their relative strengths fm.

In the following we will use the example wave numbers

k0
m = kL

(
1 +

2m+ 1

2M

)
(7.23)

with m = 0, ...,M − 1 and uniform fm = 1/M . Taking into account kxm only, the
interaction along the x-direction r ‖ kxm at lattice site distances rj = jπ/kL = ja has
the values

Ã(rj) =

{
(−1)l for j = 2Ml, l ∈ Z

0 otherwise,
(7.24)

as shown in Appendix 7.D. If we guarantee that −2M < j < 2M this results in an
interaction which is zero everywhere apart from j = 0, i.e. at zero distance. So for
repulsive interactions (UQ > 0 and thus ∆̃c,m > 0), the wave vectors kxm create the non-
attacking interaction along the y-direction (Ãijkl = 1 if i = k and 0 otherwise) as long
as N ≤ 2M . This is illustrated in Fig. 7.4(a) for M = N = 5. Analogously, k±m cause
the non-attacking interactions along the diagonals. In a square lattice the diagonals
have the distance rj/

√
2, which is compensated by k±m = |k±m| =

√
2k0

m. Since there are
2N − 1 diagonals, one has to make sure that 2N − 1 ≤ 2M . Upon combining all wave
vectors from three directions we finally obtain the full queens interaction, as shown in
Fig. 7.4(b), which is realized with Mtot = 3M = 3N frequencies in our example.

Note that there are several combinations of wave numbers and mode strengths which,
at least approximately, create the desired line-shaped interactions perpendicular to the
light propagation direction. For this it is insightful to reformulate the interaction as a
Fourier transform. To deal with continuous functions, we define an envelope f(k) with
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Figure 7.4.: Energy penalty created by one atom. These density plots show the en-
ergy penalty Ã(x − xa) for an atom at position x = (x, y)T created by
an atom at position xa = (a, a)T (red dot) for N = M = 5 [see Eq.
(7.22)]. The dots indicate lattice site positions and the solid (dashed)
contour lines indicate where Ã(x − xa) = 0 (Ã(x − xa) = 1) is fulfilled.
(a) Pumping along the x-axis with the wave vectors kxm = (k0

m, 0)T with
k0
m/kL = 1.1, 1.3, 1.5, 1.7, 1.9 [according to Eq. (7.23)] creates interactions

along y. (b) Additionally including diagonal pump lasers k+
m = (k0

m, k
0
m)T

and k−m = (k0
m,−k0

m)T implements the full queens interaction along diag-
onals and vertical lines [Eq. (7.3)].

f(km) = fm, which is sampled at the wave numbers n∆k with n ∈ Z containing all kµm.
Considering one illumination direction for simplicity, the interaction [Eq. (7.22)] along
r ‖ kµm with r = |r| can be written as

Ã(r) = Re

[
√

2πF
{
f(k)

∞∑
n=−∞

δ(k − n∆k)

}
(r)

]

=

∞∑
l=−∞

Re

[√
2πF{f}

(
r − l 2π

∆k

)]
,

(7.25)

where F{f}(r) =
∫∞
−∞ dkf(k)eikr/

√
2π is the Fourier transform of f(k) and δ(x) is a

Dirac delta at x = 0. See Appendix 7.D for a detailed derivation.
The last line allows for a simple interpretation: The interaction consists of peaks

repeating with a spatial period R = 2π/∆k. Each of these peaks has the shape of the real
part of the Fourier transform of the envelope function f(k) with a width corresponding
to the inverse of the mode bandwidth σ ∼ 2π/∆kBW.

For the (approximate) non-attacking condition (Ã(ja) ≈ 1 for j = 0 and |Ã(ja)| � 1
otherwise) there are two conditions. Firstly, at most one peak should be within the
region of the atoms. Thus the period has to be larger than the (diagonal) size of the
optical lattice R ≥ Na (R ≥

√
2Na). Secondly, the width of one peak has to be smaller
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than the lattice spacing σ . a. Combining these conditions to R & Nσ, we see that the
minimum number of modes per direction M scales linearly with N

M ≈ ∆kBW/∆k & N. (7.26)

Therefore, with only ∼ N modes this quite generically allows for creating an interaction
along lines perpendicular to the light propagation. Note however, that the second con-
dition also implies that the spatial frequency spread has to be at least on the order of
the lattice wave number ∆kBW & kL.

7.4. Numerical justification of assumptions

We compare the ideal model Hamiltonian described in Sec. 7.2 [Eq. (7.1)] to the physi-
cally motivated tight-binding Hamiltonian for finite lattice depths introduced in Sec. 7.3
[Eq. (7.10)]. As for the ideal model in Fig. 7.2, we consider the time evolution during
a slow linear sweep of UQ, UT and UD by numerically integrating the time-dependent
Schrödinger equation. Physically, this sweep can be realized by ramping up the pump
and the bias field intensities. Moreover, we show that evolving the system using a
classical approximation for the cavity mode fields does not result in a solution to the
N -queens problem, and address the effect of dephasing by photon loss with open system
simulations.

In the following we use a realistic lattice depth of V x
L = 10ER with the recoil energy

ER = ~2k2
L/(2mA). For example, for rubidium 87Rb and λL = 785.3 nm it is ER/~ =

23.4 kHz [7.26]. The chosen lattice depth leads to a tunneling amplitude J ≈ 0.02ER,
which can be obtained from the band structure of the lattice. We consider our cavity
model in Eq. (7.10) for N = 5. The pump modes are as in Sec. 7.3.2 and Fig. 7.4. While
in the limit of a deep lattice this would result in the ideal model interactions, here they
depend on the overlaps between Wannier functions and pump modes [Eq. (7.13)] and
are thus altered. In the following the overlaps are calculated with Wannier functions
which where numerically obtained from the band structure of the lattice. It turns out,
that the deviation from the ideal overlaps does not qualitatively change the interaction
for the realistic parameters used.

7.4.1. Coherent dynamics

The energy spectrum of the Hamiltonian for finite lattice depths in Eq. (7.16) is shown
in Fig. 7.3(b) and is qualitatively of the same form as for the ideal model in Fig. 7.3(a).
In comparison the eigenvalue gaps tend to be smaller at the end of the sweep. This is
because the on-site atom-mode overlaps decrease for shallower lattices and less localized
atoms due to a smoothing of the mode functions by the finite width Wannier functions
(see Appendix 7.C). Moreover, we consider the time evolution during the nearly adia-
batic sweep for Jτ/~ = 49 for the same parameters by integrating the time-dependent
Schrödinger equation. Snapshots of the site occupations 〈n̂ij〉 for several times are shown
in Fig. 7.5(a), where we observe a similar behavior as for the model in Fig. 7.2. This
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Figure 7.5.: Comparison of the time evolution with quantum and classical fields. Lat-
tice site occupations for a time evolution during a nearly adiabatic sweep
using the cavity Hamiltonian including cavity-assisted tunneling for the
same parameters as in Fig. 7.2. Subplot (a) shows the dynamics using the
full quantum interaction Hamiltonian [Eq. (7.16)]. It closely resembles
the results from the model Hamiltonian in Fig. 7.2. Subplot (b) shows the
time evolution with the classical approximation of the cavity fields [Eq.
(7.27)]. The state does not converge to the solution, also not for much
larger sweep times. The modes for both cases where chosen as in Fig.
7.4(b).
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suggests that the system is robust against the errors introduced by the moderate lattice
depth. Note that the physical Hamiltonian used here is non-stoquastic in the occupation
basis due to cavity-induced tunneling.

7.4.2. Classical cavity fields

In the following we show that quantum correlations are crucial for the efficiency of the
sweep. In particular, if we substitute the field operators ast

m by its expectation values
representing classical cavity fields the solution is not found. We consider the semi-
classical Hamiltonian

Hclass
cav =~

∑
m

N2∆̃c,mη
2
m

∆̃2
c,m + κ2

m

(
Θ̂†m〈Θ̂m〉+ 〈Θ̂†m〉Θ̂m − |〈Θ̂m〉|2

)
, (7.27)

where the expectation values have to be calculated self-consistently with the current
atom state vector. This substitution amounts to considering only first order fluctuations
around the mean of Θ̂m in Eq. (7.16).

Consequently, the dynamics are described by a differential equation which is non-linear
in the state vector |ψ〉. We numerically solve this equation by self-consistently updating
the expectation value in each time step. It turns out that even for very long sweep
times, using classical fields does not lead to a solution of the queens problem. The time
evolution for Jτ/~ = 49 is depicted in Fig. 7.5(b). The discrepancy shows the necessity
of entangled light-matter states in our procedure.

7.4.3. Dephasing due to cavity field loss

Finally, motivated by experimental considerations, we consider the open system includ-
ing photon decay through the cavity mirrors. This system can be described by a master
equation for the atoms [7.54]

ρ̇ =− i

~
[Hkin +Heff

cav, ρ] +
∑
m

N2η2
mκm

∆2
c,m + κ2

m

(
2Θ̂mρΘ̂†m − {Θ̂†mΘ̂m, ρ}

)
, (7.28)

where curly brackets denote the anti-commutator (see Appendix 7.B). The model is
suitable for analyzing the dephasing close to the coherent regime before any steady state
is reached.

More insight can be gained by rewriting it in the basis of scattering eigenstates |ν〉
with Θ̂m|ν〉 = θνm|ν〉, which scatter a field ανm = Nηm

∆̃c,m+iκm
θνm. These states converge

to the occupation states in the deep lattice limit. The time evolution for the matrix
elements ρµν = 〈µ|ρ|ν〉 reads

ρ̇µν =(−Γµν − iΩµν)ρµν − i
J

~
∑
k

(
〈µ|B̂|k〉ρkν − 〈k|B̂|ν〉ρµk

)
(7.29)
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Figure 7.6.: Comparison to open system dynamics. (a) The figure shows the fidelity
Fsol between the solution and the instantaneous eigenstate (black dotted),
and between solution and dynamical state from the time evolution using
the Schrödinger equation (blue), classical fields (green) and the open sys-
tem (red). The open system fidelity depends on ∆̃c/κ, where we present
results for the values 5, 50, 100, 200, 500, 1000 (from light red to dark red).
(b) The fidelity between solution and the final state after the sweep as a
function of ∆̃c/κ for the curves of (a), where the colors are the same as in
(a). The parameters used here are as in Fig. 7.5.

with the rates

Ωµν =
∑
m

∆̃c,m(|αµm|2 − |ανm|2) (7.30)

Γµν =
∑
m

κm|αµm − ανm|2. (7.31)

While the energy gaps ~Ωµν describe the coherent dynamics we considered up to now,
the dephasing rates Γµν stem from photon loss. Hence a superposition of two scattering
eigenstates |µ〉 and |ν〉 looses its coherence depending on the difference of the scattered
fields, or how distinguishable the states are by field measurement.

We now return to the example we had before, using uniform mode strengths fm =
1/M , decay rates κ and detunings ∆̃c. Figure 7.6 compares the coherent Schrödinger
time evolution from Sec. 7.4.1, the mean-field approximation with classical cavity fields
from Sec. 7.4.2 and the open system dynamics with dephasing. For the latter the master
equation is approximated by using Monte-Carlo wave function simulations. As a measure
of similarity between states we use the fidelity. For two mixed states it is defined as
F (ρ, σ) = Tr(

√√
ρσ
√
ρ) and reduces to the overlap |〈ψ|φ〉| for pure states.

The open system dynamics is depicted for different detunings ∆̃c/κ while keeping UQ

fixed. This can be achieved by adjusting the pump strength η correspondingly. In this
case the dephasing rates

~Γµν
UQ

=
κ

∆̃c

N2
∑
m

|θµm − θνm|2 (7.32)
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go to zero for ∆̃c/κ� 1. Thus, as expected, the open system converges to the coherent
Schrödinger dynamics in this limit (see Fig. 7.6(b)).

Note that the coherence between states creating similar fields is preserved much longer
than for other states, which is expected to be important at the late stage of the sweep.
For states with fixed similarity (e.g. one atom moved), |θµm−θνm|2 is on the order of N−2,
and thus the dephasing rates do not scale with N for such states.

7.5. Read-out

After the parameter sweep we need to determine if the obtained state is a solution or
not. This can in principle be done by reading out the final atomic state with single
site resolution using a quantum gas microscope [7.59, 7.60]. However, as we consider an
open system with the cavity output fields readily available, we will show that by proper
measurements on the output light we can directly answer this question without further
additions. Note that after the sweep at the stage of the read-out, quantum coherences
do not have to be preserved since the solution is a classical state. This gives the freedom
to increase the lattice depth to some high value in the deep lattice regime to suppress
further tunneling, and to increase the pump power or decrease the detunings in order to
get a stronger signal at the detector.

7.5.1. Intensity measurement

For uniform cavity detunings, a state corresponding to the solution of the N -queens
problem scatters less photons than all other states. Thus the measurement of the total
intensity in principle allows one to distinguish a solution from other states. To illustrate
this we consider the total rate of photons impinging on a detector scattered by an atomic
state |ψ〉

P (|ψ〉) =
∑
m

2κm〈(ast
m)†ast

m〉 =
∑
m

2κm

∆̃c,m

∆̃c,mη
2
mN

2

∆̃2
c,m + κ2

m

〈Θ̂†mΘ̂m〉

≈UQ
ζ

~
∑
ijkl

Ãijkl〈n̂ijn̂kl〉 =
ζ

~
〈Hdl

cav〉.
(7.33)

In the last line we assumed that ζ = 2κm/∆̃c,m does not depend on m and a deep lattice.
Since P is proportional to the energy expectation value, the ground state, i.e. the

solution of the queens problem, causes a minimal photon flux at the detector P0 =
3NUQζ. It stems from the on-site terms (i, j) = (k, l), where the factor 3 comes from
the three pump directions. In contrast, each pair of queens violating the non-attacking
condition in Ã leads to an increase of the photon flux by ∆P = 2UQζ. The two atoms
create an energy penalty for one another, explaining the factor 2. The relative difference
of the photon flux due to a state with L attacking pairs and a solution is given by

L∆P

P0
=

2L

3N
. (7.34)
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As this scales with 1/N it is difficult to distinguish solutions from other states via
measurement of the intensity for large N . Note that for non-uniform κm/∆̃c,m, photons
from different modes have to be distinguished.

7.5.2. Field measurement

Measurement of the output field quadratures, for example by homodyne detection, gives
insight about the absolute position of the atoms projected onto the pump laser propa-
gation direction. For the three directions used in our setup, this yields the occupations
of each column 〈N̂x

i 〉 and each diagonal 〈N̂+
i 〉 and 〈N̂−i 〉. Since a solution of the queens

problem has maximally one atom on each diagonal and exactly one atom on each column,
it must fulfill

〈N̂x
i 〉 = 1 ∧ 〈N̂+

i 〉 ≤ 1 ∧ 〈N̂−i 〉 ≤ 1. (7.35)

The output field quadratures can thus be used to determine if a classical final state is a
solution or not, which is the answer to the blocked diagonals decision problem we aim
to solve. The signatures of two example states in the cavity fields are depicted in Fig.
7.7.

Let us illustrate the measurement by considering only light scattered from the x-
direction with incident wave vectors kxm. Since these plane waves are constant in y-
direction, the atom-field overlaps do not depend on j. Neglecting cavity-induced tun-
neling, the field quadratures for a phase difference φ are

Re(〈ast
m〉e−iφ) =

∑
i

Re

(
ηme

−iφ

∆̃c,m + iκm
vi1m

)
〈N̂x

i 〉, (7.36)

revealing that cavity fields are determined by the total occupations of the columns
N̂x
i =

∑
j n̂ij .

For at least N modes (M ≥ N) this system of equations can be inverted yielding the
column occupations 〈N̂x

i 〉. By measuring the cavity output field quadratures scattered
from the diagonal pump light we obtain the occupations of each diagonal 〈N̂+

i 〉 and

〈N̂−i 〉. Inverting the system of equations for diagonals demands at least as many pump
modes as diagonals, that is 2N −1. Inversion can also be done efficiently and intuitively
by using a discrete Fourier transform and its inverse. To reveal the Fourier relation,
one has to express the vijm’s in Eq. (7.36) within the harmonic (or in the deep lattice)
approximation (see Appendix 7.C). The so obtained approximate inversion formula also
works well for realistic lattice depths.

Strictly speaking the condition in Eq. (7.35) is sufficient only for classical configura-
tions, like occupation number basis states |φν〉. Some superpositions |ψ〉 =

∑
ν cν |φν〉

which are no solutions might also fulfill the above criterion, because summands in the
field expectation values 〈ast

m〉 =
∑

ν |cν |2〈φν |ast
m|φν〉 can cancel each other. For in-

stance, for UT = 0 the solution from our example in Fig. 7.2 |ψsol〉 = |1, 4, 2, 5, 3〉
scatters the same fields 〈ast

m〉 as the superposition |ψnosol〉 = (|ψ1
nosol〉+ |ψ2

nosol〉)/
√

2 with
|ψ1

nosol〉 = |1, 3, 2, 5, 4〉 and |ψ2
nosol〉 = |1, 4, 5, 2, 3〉, both of which are no solution. In

this notation the state |i1, i2, ..., iN 〉 has one atom on each site (ij , j). However, these
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Figure 7.7.: Signature of an atomic state in the cavity output. In left and right column
the signature of two different atomic (pure) states are compared, whose
occupations are shown on the top (a). On the left there is a solution to the
N -queens problem, while on the right one atom was moved. (b) The polar
plot shows the cavity field expectation value 〈ast

m〉 in the complex plane.
Measuring the fields by homodyne detection yields a certain quadrature
of the field depending on the phase angle φ. An example is illustrated by
the black line. (c) The measurable quadratures are shown for the example
angle. The sequences can be Fourier transformed to obtain the occupations
of columns and of the diagonals. The parameters used here are UQ = 5
and ∆̃c/κ = 10. We used M = 2N − 1 = 9 modes per direction with wave
numbers as in Eq. (7.23). Different colors encode the different directions
of the pump modes: kxm (blue), k+

m (green) and k−m (red). The lighter the
color the larger the wave number |kx,±m |.
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macroscopic superpositions are highly unstable. Even theoretically the measurement
back-action [7.41, 7.61] projects superpositions of states scattering different fields (such
as |ψnosol〉) to one of its constituents. The inclusion of measurement back-action due
to continuous measurement might thus lead to intriguing phenomena beyond those pre-
sented here and is subject to future work.

We emphasize again that the measurements described above answer the question if
we found a solution or not, which is the answer to the combinatorial decision problem.
The exact configuration of the final state can be measured with single site resolution as
demonstrated in several experiments [7.59, 7.60].

7.6. Conclusions

We present a special purpose quantum simulator with the aim to solve variations of the
N -queens problem based on atoms in a cavity. This combinatorial problem may serve
as a benchmark to study a possible quantum advantage in intermediate size near term
quantum experiments. From the algorithmic point of view, the problem is interesting
for quantum advantage as it is proven NP-hard and instances can be found that are
not solvable with current state-of-the-art algorithms. From the implementation point of
view, the proposed quantum simulator implements the queens problem without overhead
and thus a few tens of atoms are sufficient to enter the classically intractable regime. The
proposed setup of atoms in a cavity fits the queens problem naturally as the required
infinite range interactions arise there inherently. We find that by treating the light field
classically the simulation does not find the solutions suggesting that quantum effects like
atom-field entanglement cannot be neglected. Moreover, we investigate the influence of
photon loss on the coherence time.

The queens problem is formulated as a decision problem, asking whether there is
a valid configuration of queens or not given the excluded diagonals and fixed queens.
Remarkably, to answer the decision problem, a read-out of the atom positions is not
required as the necessary information is encoded in the light that leaves the cavity. To
determine the position of the queens requires single site resolved read-out, which is also
available in several current experimental setups [7.59].

In this work we concentrated on the coherent regime. The driven-dissipative nature
of the system provides additional features which can be exploited for obtaining the
ground state. For certain regimes, cavity cooling [7.24, 7.62] can help to further reduce
sweep times and implement error correction. Moreover, the back action of the field
measurement onto the atomic state can be used for preparing states [7.41].

Note that an implementation of the N -queens problem for a gate-based quantum
computer was proposed in Ref. [7.63] aiming to find a solution of the unconstrained
N -queens problem. Our work in contrast employs an adiabatic protocol and intends to
answer the question if a solution exists given constraints of blocked diagonals or already
placed queens, which was shown to be NP-complete and numerically hard [7.30].

Acknowledgments. We thank I. Gent, C. Jefferson and P. Nightingale for fruitful dis-
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Appendix

7.A. Instance parameters

Table 7.1 provides an overview of the chosen parameters for the exemplary linear pa-
rameter sweep in the main text (Figs. 7.2, 7.3 and 7.5).

Parameter Symbol Value

System size N 5

Final queens interaction energy UQ J

Final excluded diagonals penalty UD 5J

Final trapping energy UT 2J

Sweep time τ 49~/J
Excluded sum-diagonals {2, 3, 6, 9}

Excluded difference-diagonals {1, 2, 8, 9}
Trapping sites {(3, 5)}

Number of modes per direction M 5

Table 7.1.: Parameters of the exemplary instance used in the figures in the main text.

We now describe how we choose the parameters used in our example. For this we
calculate the minimal gap and the overlap with the final solution for several parameters
to find a region with large minimal gap and large overlap. Note that this is only done to
find good parameters for our small example, where we already know the solution. For
large systems such a calculation would beyond classical numerical capabilities, which is
why the problem poses a potential application for a quantum simulator.

The minimal gap in the spectrum (e.g. the one shown in Fig. 7.3) depends on the final
queens interaction energy UQ, the final trapping energy UT, the tunneling amplitude J
and the final excluded diagonals penalty UD. To find proper values for these parameters
we determine the minimal gap in a wide parameter range. In order to get the minimal
gap, some of the Hamiltonian’s lowest eigenenergies are calculated for discrete time steps
during the sweep. Subsequently, the minimum of the difference between the groundstate
and the first exited state at all time steps is taken to be the minimal gap. The values
of the minimal gap have to be scrutinized carefully since its accuracy depends on the
resolution of the discrete time steps. Therefore a more detailed analysis of the minimal
gap might require a more careful analysis, especially for high interaction strengths.

To analyze how well the quantum system reproduces the solution of the N -queens
problem we study the overlap

F = | 〈φ|ψ〉 | (7.37)

between the state |φ〉 that corresponds to the solution of the chosen instance of the
queens problem introduced in Fig. 7.1 and the state at the end of an adiabatic sweep
|ψ〉 (i.e. the ground state of our spectrum on the right side). This is necessary because
we do not switch off the kinetic Hamiltonian in our example, and thus the ”perfect”
solution is only obtained in the limit of large energy penalties UQ, UD and UT.
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Figure 7.8.: Discussion of the impact of parameter values. (a) The minimal gap of the
energy spectrum for the sweep as a function of the final parameters. UD

is fixed to 5J and UQ is varied. For the discussion on fidelity [subplot (b)]
we choose UT = 2J which is indicated by the black line. The values of UT

are non-zero to avoid degenerate ground states. We choose an instance
with parameter values denoted by the red dot. (b) The overlap defined in
Eq. (7.37). The black line indicates the fixed value of UD for subplot (a)
and the red dot indicates the chosen set of parameters as before.

Figure 7.8(a) suggests that in order to increase the minimal gap the ratio UQ/UD

has to be chosen as small as possible. We vary the ratio by fixing UD and varying UQ.
Therewith, Fig. 7.8(a) indicates that UQ should be as small as possible. However, as
it can be seen in Fig. 7.8(b), a small UQ also decreases the overlap with the solution
and the physical system does not resemble the desired solution of the queens problem
anymore. We therefore have to make a compromise between a reasonably large overlap
and an optimized minimal gap.

If we set UD to 5J and UT to 2J we find that for UQ = 1J the overlap is F ≈ 0.93
and the minimal gap is around 0.44J . These values were used for Figs. 7.2 and 7.3.

7.B. Derivation of the effective Hamiltonian

The derivation essentially follows App. C in Ref. [7.40], generalized to two dimensions
and additionally including cavity-induced tunneling (see also e.g. Ref. [7.54]). Including
the decay of the cavity fields through the mirrors with the rates κm, the full open-system
dynamics in the tight binding limit is given by the Lindblad equation

ρ̇ = − i
~

[H̃, ρ] +
∑
m

κm(2amρa
†
m − a†mamρ− ρa†mam), (7.38)

where H̃ is specified in Eq. (7.10). The important term for the following discussion
discussion is the atom-light interaction Hcav given in Eq. (7.11).

From this master equation we obtain the Heisenberg-Langevin equations of the cavity
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fields
ȧm = (i∆̃c,m − κm)am − iNηmΘ̂m +

√
2κmξ̂m (7.39)

with the quantum noise operator ξ̂m obeying [ξ̂m(t), ξ̂†m(t′)] = δ(t− t′).
Assuming that the cavity mode fields evolve on a much faster time scale than the

atomic motion (J/(~|∆̃c,m+ iκm|)� 1), they can be approximated by their steady state
on a course grained time scale [7.40, 7.54, 7.57, 7.58]. From the Heisenberg-Langevin
equation, to zeroth order in J/(~|∆̃c,m + iκm|), we get

ast
m ≡

ηm

∆̃c,m + iκm
NΘ̂m +

√
2κm

∆̃2
c,m + κ2

m

ξ̂m (7.40)

with Θ̂m = 1
N

∑N
i,j=1

(
vijmn̂ij + uijmB̂ij

)
. That is, at steady state the effect of the field

can be expressed by atomic operators only.
We now substitute the cavity field operators by their corresponding steady-state ap-

proximations in the Heisenberg equation of the atomic annihilation operators

ḃij =
1

i~
[bij , Hcav] + ... =− i

∑
m

(Nηm)2

∆̃2
c,m + κ2

m

[
∆̃c,m

(
[bij , Θ̂

†
m]Θ̂m + Θ̂†m[bij , Θ̂m]

)
−iκm

(
[bij , Θ̂

†
m]Θ̂m − Θ̂†m[bij , Θ̂m]

)]
− i
∑
m

Nηm
√

2κm√
∆̃2
c,m + κ2

m

(
[bij , Θ̂

†
m]ξ̂m + ξ̂†m[bij , Θ̂m]

)
(7.41)

where we only report terms including the cavity. At this point, ordering of atomic and
field operators becomes important, since ast

m ∝ Θ̂m as opposed to am does not necessarily
commute with atomic operators. Here we choose normal ordering, as already done in
Eq. (7.11). The expression contains coherent terms proportional to ∆̃c,m and incoherent
terms proportional to κm.

For |∆̃c,m| � κm we can neglect the incoherent part and the Heisenberg equation can
be obtained from

ḃij =
1

i~
[bij , H

eff
cav] + .... (7.42)

Thus the dynamics in the coherent regime is described by the effective Hamiltonian
Heff

cav given in Eq. (7.16). Otherwise the Heisenberg equation is equivalent to the master
equation (7.28).

The results can also be obtained by naively substituting am with ast
m directly in the

Hamiltonian Eq. (7.11) or the master equation (7.38) with the given ordering.
Note that the effective Hamiltonian can also be written in the form

Heff
cav = ~

∑
m

∆̃c,m(ast
m)†ast

m, (7.43)

which allows for a simple interpretation: For ∆̃c,m > 0 the lowest energy states tend to
minimize the intensity of the cavity fields 〈(ast

m)†ast
m〉.
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7.C. Harmonic approximation of potential wells

In this section we investigate the limit of a deep lattice in more detail. In Section 7.3.1
we presented results in the ”infinitely” deep lattice limit, where the Wannier functions
become delta functions. To gain more insight to deep but finite lattice depths, we use a
harmonic approximation for the potential wells. The ground state wave function is then
an approximation to the lowest-band Wannier function

whar(x) = π−
1
4a
− 1

2
0 e

− x2

2a2
0 (7.44)

with the size a0 = (ER/VL)1/4/kL [7.55].
With this the atom-mode overlap integrals [Eq. (7.13)] can be calculated analytically

using running wave mode functions [Eq. (7.18)]. For the on-site term we obtain

vijm = hm(xi, yj)e
−
(
kxm
2kL

)2
√
ER
VL . (7.45)

It consists of the mode function at the lattice site and an exponential which reduces the
overlap due to Gaussian smoothing of the mode function. As intuitively expected, the
smoothing has a stronger effect for large mode wave numbers kxm. For VL/ER � 1, we
obtain vi,jm = hm(xi, yj), as in the main text.

For the off-site overlaps we obtain

uijm =hm((xi + xi+1)/2, yj)e
−
(
kxm
2kL

)2
√
ER
VL e

−π
2

4

√
VL
ER .

(7.46)

The overlap consists of three terms: First, it is the mode function evaluated in between
the lattice sites. Second, there is again the Gaussian smoothing term as for the on-site
overlap. Lastly, there is an exponential independent of the modes, which comes from
the overlap of the two Gaussians. It goes to zero for VL/ER � 1, leading to uijm = 0.

The order operator is then

Θ̂har
m =

1

N
e
−
(
kxm
2kL

)2
√
ER
VL

N∑
i,j=1

(
hm(xi, yj)n̂ij + hm((xi + xi+1)/2, yj)B̂ije

−π
2

4

√
VL
ER

)
(7.47)

leading to an interaction Hamiltonian [Eq. (7.16)] given by

Hhar
cav =UQ

∑
m

fme
−2
(
kxm
2kL

)2
√
ER
VL
∑
ijkl

(
h∗m(xi, yj)n̂ij + h∗m((xi + xi+1)/2, yj)B̂ije

−π
2

4

√
VL
ER

)

×
(
hm(xk, yl)n̂kl + hm((xk + xk+1)/2, yl)B̂kle

−π
2

4

√
VL
ER

)
,

(7.48)
which in the ”infinitely” deep lattice limit simplifies to Eq. (7.17). All cavity-induced
tunneling terms are suppressed by the exponential and tend to be smaller than density-
density terms. Also, since UQ is maximally on the order of J (at the end of the sweep),
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cavity-induced tunneling terms are smaller than Hkin. However, also the density-density
terms can be small for example when hm(xi, yj) = 0, which is why we still include
cavity-induced tunneling in the simulations.

In the main text we chose uniform fm = 1/M . To compensate for Gaussian smoothing
one might want to include the exponential as correction

f̃m = fme
2
(
kxm
2kL

)2
√
ER
VL , (7.49)

which leads to even better results (Ã is closer to A for finite lattice depths). Note that
this correction does only depend on VL and not on the problem size or number of modes
in our implementation, since the range of kxm is fixed.

7.D. Shape of the interaction

Here we reformulate the interaction in the infinitely deep lattice limit from Eq. 7.22 with
Fourier transforms by defining a real envelope function f(k) such that f(km) = fm. To
get back the discrete wave numbers, this function is sampled with a Dirac comb at the
lines m∆k+ ks with m ∈ Z, where ks is a constant shift and ∆k is the spacing between
the pumped modes. In the main text we only consider the case ks = 0 for simplicity.
We define the Fourier transform as F{f}(r) =

∫∞
−∞ dkf(k)eikr/

√
2π and denote the

convolution as (f ∗ g)(t) =
∫∞
−∞ f(τ)g(t− τ)dτ .

For simplicity, we take parallel wave vectors km. Along this direction r ‖ km we write

Ã(r) =
∑
m

fm cos(kmr) =

∫ ∞
−∞

dk f(k)
∞∑

m=−∞
δ(k −m∆k − ks) cos(kr)

= Re

[
√

2πF
{
f(k)

∞∑
m=−∞

δ(k −m∆k − ks)
}

(r)

]

= Re

[
√

2πF{f}(r) ∗
∞∑

l=−∞
δ

(
r − l 2π

∆k

)
eiksr

]

=
∞∑

l=−∞
Re

[√
2πF{f}

(
r − l 2π

∆k

)
ei2πl

ks
∆k

]
,

(7.50)

where r = |r|. We used the convolution and shift theorem from Fourier analysis in the
second to last line and evaluated the convolution integrals by pulling out the sum in the
last line.

For symmetric envelopes centered around kc we can further simplify using the shift
theorem

Ã(r) =

∞∑
l=−∞

√
2πF{f̃}

(
r − l 2π

∆k

)
cos

(
kc

(
r − l 2π

∆k

)
+ 2πl

ks
∆k

)
, (7.51)
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where f̃(k) = f(k + kc) is the shifted envelope centered around k = 0, whose Fourier
transform is real.

Let us apply this to our example described in Section 7.3.2 and find out why the
interaction has the desired property given in equation Eq. (7.24). There we had uniform
fm = 1/M and wave numbers

k0
m = kL

(
1 +

2m+ 1

2M

)
(7.52)

with m = 0, ...,M − 1. These have a mode spacing of ∆k = kL/M and are centered
around kc = 3kL/2. One can see that only the odd modes of the cavity (wave numbers
kn = n∆kFSR with n odd and free spectral range ∆kFSR) are used. Therefore, ∆k =
2∆kFSR and ks = ∆k/2, because the comb has to be shifted to fit the odd modes. Due
to the uniform fm the envelope is a rectangular function with width kL and height 1/M
centered at kc

f(k) = rect((k − kc)/kL)/M =

{
1/M for k ∈ [kc − kL/2, kc + kL/2]

0 otherwise.
(7.53)

The Fourier transform of a rectangular function centered around zero with unit width
and height is a sinc function sinc(x) = sin(x)/x. Using the addition theorem for the
cosine and noting that cos(πl) = (−1)l and sin(πl) = 0 we obtain an analytical expression
for the interaction

Ã(r) =
∞∑

l=−∞
(−1)lsinc

(
kL

2

(
r − l 2π

∆k

))
cos

(
kc

(
r − l 2π

∆k

))
. (7.54)

For l = 0 and at lattice site spacings rj = jπ/kL it takes the values

sinc(πj/2) cos(3πj/2) =

{
1 for j = 0

0 otherwise,
(7.55)

as desired. This comes from well known properties of sinc and cosine

sinc(πj/2) =


1 for j = 0

0 for j even

(−1)
j−1

2
2
πj for j odd

cos(3πj/2) =

{
(−1)

j
2 for j even

0 for j odd.

The other summands have the same form, but are shifted by R = 2π/∆k = 2πM/kL =
r2M (2M lattice sites) and have alternating signs. Since R is an integer multiple of the
lattice spacing this adds up to the desired interaction given in Eq. (7.24) in the main
text.
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Thus for rectangle envelopes the bandwidth ∆kBW determines the zeros of the inter-
action. Taking ∆kBW = 2kL would lead to zeros at all lattice sites. For the smaller
bandwidth ∆kBW = kL used here, only even sites become zero. This can be compen-
sated by choosing a central wave number kc = nkL/2 with n odd, which is responsible
for the zeros at odd sites. The mode spacing ∆k determines the peak distance. Finally,
using odd cavity modes (specifying ks) leads to alternating peaks, which does not have
an effect in our implementation, since −2M < j < 2M .
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8. Self-ordering and cavity cooling using a
femtosecond pulse train

In this chapter we present an analysis of a multi-mode optical resonator filled with a
cloud of thermal atoms which is transversally pumped by a pulsed laser. While the
dynamics is well described by the already known Eqs. (3.11), which were also employed
in Chapter 5, the existence of a large number of modes which are dense in frequency space
adds a wealth of new physical effects. First, the dynamics becomes nearly translationally
invariant along the cavity axis. Moreover, the bandwidth of the frequency comb adds
a new length scale, which renders clustering of atoms on this length scale energetically
favorable. We numerically determine the self-organization thresholds. We find that the
cooling time can be reduced by using a large number of modes, as we show by numerical
integration of Eqs. (3.11).

8.1. Frequency comb and cavity setup

For our purposes, a frequency comb is a laser beam whose frequency spectrum contains
many equidistant narrow lines, as for instance a regular pulse train with narrow pulses.
Specifically, we say that the lines are at the spatial frequencies ks + nδkFC, where ks is
a shift and δkFC is the distance between the comb lines. The spectrum can be written
as a Dirac comb

S(k) =
∞∑

n=−∞
f(k)δ(k − ks − kFC), (8.1)

where the envelope function f(k) has the characteristic width ∆k. We define the central
wave number as kc.

As discussed in Sec. 2.2.2, a Fabry-Pérot cavity with the length L supports only
frequencies close to the resonances at kn = nk0 with k0 = π/L. The comb lines match
the cavity lines when the ratio of the respective line distances is rational, i.e. can be
written as

δkFC

k0
=
p

r
(8.2)

with the integers p and r. In words this means that every rth frequency comb line pumps
the cavity and every pth cavity resonance is pumped. The mode distance of pumped
cavity modes is given by δk = pk0.

If the frequency comb is phase locked, the laser beam consists of a regular pulse train.
The pulse shape is given by the Fourier transform of the comb envelope and has thus a
width ∼ 2π/∆k. The distance between two pulses is dFC = 2π/δkFC = 2Lr/p, where we
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used the definition Eq. (8.2). Assuming scattering at a single point (or atom), the pulse
distance in the cavity, instead, is d = 2π/δk = 2L/p ≤ 2L. That means that p pulses
fit into one round trip length 2L of the cavity. Since d ≤ dFC, the repetition rate in the
cavity is always larger than the one of the frequency comb. This intuitively makes sense
since in the cavity the pulse comes back after one round trip. A scattering atomic cloud
with finite size La (instead of a single atom) leads to dephasing and thus widening of
the pulse when La > 2π/∆k. Qualitatively, the minimum pulse width in the cavity is
given by the cloud size La.

In the following we assume that a set of adjacent cavity modes is pumped, i.e. p = 1
in the above notation, and thus the mode distance is simply the free spectral range
δk = k0. By choosing the origin in the center of the cavity, the modes are described by
alternating cosines and sines as in Eq. (2.13). The order parameters can thus be written
as

Θm =
1

N

∑
i

cos(kmxi + φm), (8.3)

where φm = 0 for odd m and φm = π/2 for even m. We denote the set of pumped modes
by M, i.e. m ∈M.

For simplicity, we restrict ourselves to rectangular comb envelopes with the single-
mode pump strength η. Moreover, we assume that the cavity detuning ∆c and the
decay rate κ do not depend on the mode index.

8.2. Semi-classical equations

The atomic and electric field motion can be well approximated by the semi-classical
equations formulated in Eqs. (3.11). After the adiabatic elimination of the fields up to
first order in momentum, we obtain analytical expressions for the effective forces from
Eqs. (3.21)

Fad,j =~
η2∆c

∆2
c + κ2

∑
m

2km
∑
i

cos(kmxi + φm) sin(kmxj + φm) (8.4a)

Fret,j =~
η2∆cκ

(∆2
c + κ2)2

∑
m

4
k2
m

ma

∑
i

pi sin(kmxi + φm) sin(kmxj + φm). (8.4b)

The adiabatic contribution Fad,j can be derived from a suitable potential energy [see Eq.
(3.22)]

U(x1, ..., xN ) = u1

∑
i,j

∑
m

cos(kmxi + φm) cos(kmxj + φm) (8.5)

with u1 = ~η2∆c/(∆
2
c + κ2). In the following we assume high-field seeking atoms, i.e.

∆c < 0 and thus u1 < 0.
For a single cosine mode the potential energy is given by

U1m = u1

∑
i,j

cos(kxi) cos(kxj), (8.6)
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8.2. Semi-classical equations

which is minimized when all cosines are +1 or−1 leading to the well-known self-organized
λ-periodic pattern. Note that there are two minimal energy (or “optimal”) patterns,
where the absolute position of the particles is fixed by the mode structure.

As a second mode configuration we consider a combination of a cosine and a sine
mode (φ1 = 0 and φ2 = π/2) which have the equal wave number k. Using the identity
cos(α) cos(β) + sin(α) sin(β) = cos(α − β), the potential energy then depends only on
the distances of the particles

U2m = u1

∑
i,j

cos(k(xi − xj)). (8.7)

We thus expect periodic ordering on a length scale of λ = 2π/k, such that the cosine gets
close to 1. As opposed to the single-mode case, this system is translationally invariant
here. Note that the terms i = j are included and add a constant shift. Further note
that at the cavity center two neighboring longitudinal modes very closely resemble this
cosine-sine configuration.

In the multi-mode case, the form of the potential energy depends on the mode distance
δk and the bandwidth ∆k in relation to the extension of the atomic cloud La. Since
the extension of the atomic cloud has to be much smaller than the cavity length, it is
fulfilled that La/L = Laδk/π � 1∗. In this typical case, adjacent sine and cosine modes
do not dephase on the length La, and thus we can approximate their spatial frequencies
to be equal. The system thus consists of M/2 sine-cosine pairs and the potential energy
resembles the two mode case with an additional sum over the modes

Umm = u1
1

2

∑
i,j

∑
m

cos(km(xi − xj)). (8.8)

The factor 1/2 emerges since we still sum all individual modes, and not pairs of cosines
and sines.

The form of the potential depends now on the bandwidth ∆k of the km’s and the
spatial interval La we consider, leading to different mode regimes (see Figs. 8.1 and
8.2). For La∆k/(2π) � 1 all modes stay in phase within the interval and the scenario
can be approximated by the two-mode case, Umm ≈ (M/2)U2m. Here we expect again a
periodic pattern with a period around λc anywhere in space (we choose the central wave-
length λc = 2π/kc as representative frequency comb wave length). For La∆k/(2π) & 1
the bandwidth introduces its own length scale 2π/∆k. In addition to the λc-periodic
modulation, it is energetically favorable for the atoms to cluster. We thus expect an
additional envelope with a width ∼ 2π/∆k in the density distribution.

Cooling and heating effects come from the retardation force Eq. (8.4b), which is dis-
cussed in more detail in Appendix A.4.

∗In general, we have Laδk/π = pLa/L. When not all adjacent cavity modes are pumped and p is
large, we can also enter the opposite regime Laδk/π � 1 [see Fig. 8.1]. This is for instance the case in
the two-mode model in Chapter 5.
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8. Self-ordering and cavity cooling using a femtosecond pulse train

Figure 8.1.: Qualitative depiction of the different regimes. In the two-mode regime all
the modes can be approximated to have the same frequency, which effec-
tively leads to one sine and one cosine mode. In the dephasing regime,
adjacent modes have approximately the same frequencies, while in general
the modes dephase over the interval. In the individual mode regime even
adjacent modes dephase and thus have to be taken into account individu-
ally. The gray region is forbidden due to M ≥ 2 and δk = ∆k/(M − 1).
The red arrow shows the parameter sweep used in Fig. 8.3, where upon
increasing M we go from the effective two mode regime to the dephasing
regime. The green arrow shows the case of Fig. 8.6, from the region where
we have to take into account individual modes to the dephasing regime.

Figure 8.2.: The relevant length scales in the dephasing regime. The central wavelength
of the frequency comb λc = 2π/kc is the length scale of periodic ordering
as in the single-mode case. In order to stay in the in-phase region of the
modes, it is energetically favorable when atoms cluster on a length scale
2π/∆k. This is only relevant when it is smaller than the atomic cloud
size La, i.e. the light red region exists. When approaching the two-mode
regime, this region becomes smaller and finally vanishes. The cavity length
L is much larger than all other involved length scales.
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8.3. Self-ordering threshold from mean-field theory

8.3. Self-ordering threshold from mean-field theory

In addition to the qualitative theoretical analysis, we will use numerical simulations to
obtain the pump power threshold of the phase transition from homogeneous to ordered
configurations for ∆c < 0 for different mode configurations. We employ the mean-field
self-consistent iteration used in the single-mode case in Ref. [8.1]. After starting with
some initial particle distribution, one calculates all order parameters of the different
modes for this distribution. From these one can further obtain the single-particle poten-
tial

U1(x) = 2~
η2∆c

∆2
c + κ2

N
∑
m

Θm cos(kmx+ φm), (8.9)

which is the potential one atom feels due to all other atoms†. The new atomic distri-
bution is then set to the thermal equilibrium Boltzmann distribution at some chosen
temperature T , i.e. Pnew(x) ∝ exp(−U1(x)/(kBT )). Now we again calculate the corre-
sponding order parameters and the procedure is iterated until the distribution does not
change anymore.

As a figure of merit of the ordering with respect to all pumped modes we introduce
the root-mean-square (or total) order parameter

Θ̄ =

√
1

M

∑
m

Θ2
m. (8.10)

Moreover, we introduce the maximum photon number per particle n̄ = Nη2/(∆2
c + κ2)

in a single mode. It was shown in Refs. [8.2, 8.3], that the critical photon number per
particle above which self-organization takes place is given by n̄c = (∆2

c + κ2)/(4∆2
c),

when the atoms have the steady-state temperature kBT = ~(∆2
c + κ2)/(−4∆c). We use

these quantities to define the pump intensity normalized to the critical intensity

ζ =
n̄

n̄c
=

4Nη2∆2
c

(∆2
c + κ2)2

(8.11)

and thus expect single-mode self-organization for ζ > 1.

In view of the experimental set-up in Zagreb‡, we define kc = 93750k0 as the central
wave number and consider the mode interval between kstart/k0 = 92750 and kend/k0 =
94750. The bandwidth of this interval is

∆kr
kc

=
kend − kstart

kc
=

94750− 92750

93750
≈ 0.0213 = 2.13%, (8.12)

so about two percent of the central wave number. Physically, this interval fits 2001
cavity modes, and a smaller number can be chosen as long as δk is an integer multiple of
k0 (δk = pk0, see Sec. 8.1). But theoretically we may take an arbitrary number of modes

†It is related to the adiabatic contribution of the force by Fad,j = − d
dx
U1(x)|x=xj .

‡In the group of T. Ban at the Institut za Fiziku.

117



8. Self-ordering and cavity cooling using a femtosecond pulse train

Mr equidistantly distributed in the interval. The mode spacing can then be calculated
by

δk

kc
=

1

Mr − 1

∆kr
kc
≈ 0.0213

Mr − 1
. (8.13)

This defines a ruler for the wave numbers, which we specify by the number of ruler
ticks Mr and which has the fixed length ∆kr. In the following we are going to consider
different scenarios pumping subsets of the modes with wave numbers taken from the
ruler.

The atoms are distributed on the interval La = 300λc, physically corresponding to the
size of the atomic cloud. The cavity parameters are κ = 400ωkcR and ∆c = −κ with the

recoil frequency ωkcR = ~k2
c/(2ma). The temperature is chosen as kBT = ~κ/2, which is

the self-consistent stationary temperature.

8.3.1. Thresholds for homogeneous initial distributions

In order to enter the regime of high mode density we need to choose a large ruler
tick number Mr. Here we take Mr = 2000, which yields the mode spacing δk/kc =
1.067× 10−5 for which adjacent modes do not dephase (since δkLa/(2π) = 300δk/kc ≈
3.2 × 10−3 � 1). For subsets containing a number M of equidistant δk-spaced modes,
the bandwidth varies with M and is given by ∆k = δk(M − 1). There is thus a linear
relation between M and ∆k with this choice. Consistently, for M = 2000 we get the
bandwidth ∆k = ∆kr. Note that this variation of parameters corresponds to the red
arrow in Fig. 8.1.

In order to find the thresholds we conduct a self-consistent iteration for different pump
strengths starting with a homogeneous initial distribution with small fluctuations. In Fig.
8.3(a) the root-mean-square order parameter of the stationary distribution is plotted.
Up to a certain threshold ζc, the stationary distribution is nearly homogeneous and
the total order parameter is close to zero. Above ζc the atomic distribution has the
characteristic λc-periodic density modulation [see Fig. 8.3(c)]. As opposed to the single-
mode case, where the order parameter tends to one, the impossibility of simultaneous
ordering to cosine and sine modes leads to an asymptotic value of

√
2/2 for all other

mode configurations. For M = 2 this can be seen from

Θ̄ ≈
√

1

2

√
1

N2

∑
i,j

cos(k(xi − xj) ≤
√

2

2
. (8.14)

Interestingly, the thresholds ζc depend on the bandwidth ∆k (or here M) in a non-
trivial way. We discuss this with the help of Fig. 8.3(b), where the extracted thresholds
are depicted. Apart from the special case M = 1, we again identify two different mode
regimes (see red arrow in Fig. 8.1): In the effective two-mode regime La∆k/(2π)� 1 the
total critical pump strength Mζc remains at the constant value 2. Since the modes do
not dephase, adding more modes and keeping the total pump strength constant does not
qualitatively alter anything. This changes as La∆k/(2π) becomes larger than 1. Then
the single-mode critical pump strength ζc stays constant, suggesting that adding more
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8.3. Self-ordering threshold from mean-field theory
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Figure 8.3.: Subfigure (a) depicts the total order parameter of the stationary distribu-
tion from the self-consistent iteration with temperature kBT = ~κ/2 for
different total pump strengths Mζ after 1000 iterations. The black dashed
line indicates the upper bound Θ̄ =

√
2/2 for the multi-mode case. Subfig-

ure (b) shows the thresholds where the order parameter becomes non-zero
as extracted from (a). The mode distance δk is constant, thus the band-
width ∆k = (M−1)δk increases with M , corresponding to the red path in
Fig. 8.1. In the effective two-mode regime Mζc stays constant at a value
of 2 (horizontal dashed line), while in the dephasing regime adding more
modes leads to a linear increase ≈M/158.7 (tilted dashed line). Subfigure
(c) depicts examples of stationary distributions for M = 2 (upper two
plots) and M = 2000 (lower two plots), in each case one slightly and one
far above threshold. Note that only a cutout of the distributions defined
on −150λc to 150λc is shown (the cutout interval for the latter case is the
dephasing length 2π/∆kr = 46.95λc).
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Figure 8.4.: Comparison of the self-consistent stationary order parameters for different
initial distributions after 200 iterations for kBT = ~κ/2. The curves in
(a) compare the results obtained using the model initial distribution with
Gaussian envelope [Eqs. (8.15) and (8.16)] for a = 15 and σ = 10λc with
the homogeneous initial distribution from Fig. 8.3 for different bandwidths
(or M). Subfigure (b) depicts the phase diagram of the order parameter
for M = 2000 for different initial distributions shown in the inset. These
have Gaussian envelopes in the upper row and rectangular envelopes in
the lower row. The standard deviation σ and the width w both have the
value 10λc for the example in the inset.
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8.3. Self-ordering threshold from mean-field theory

modes and thereby increasing the total input power does not help reducing the threshold
anymore. This is because due to dephasing, the atoms cannot perfectly order to all
modes, but only to an effective number of modes Meff = 1/ζc. This quantity grows like
M/2 in the two-mode regime and stagnates at a certain value in the dephasing regime,
which can be extracted from the numerical simulations as Meff ≈ 158.7 [see Fig. 8.3(b)].
In our case the transition takes place between M = 200 (where La∆k/(2π) ≈ 0.637) and
M = 400 (where La∆k/(2π) ≈ 1.277).

Another qualitative difference between the two regimes is the form of the order param-
eter curves: In the two-mode regime the curves are continuous above threshold. In the
dephasing regime there is a jump in the total order parameter, as in a first order phase
transition. The difference is also manifest in the transition of the stationary distributions
from the homogeneous to the ordered phase: The uppermost subplot for M = 2 in Fig.
8.3(c) slightly above threshold Mζ ≈ 2.17 suggests that here the stationary distribution
continuously transforms from homogeneous to ordered for increasing ζ. This stands in
contrast to the dephasing regime (see subplot for M = 2000 and Mζ ≈ 12.86, which is
also slightly above the threshold).

8.3.2. Dependence on the initial distribution

For the non-continuous cases, we note that the stationary distribution found after a larger
number of iterations depends on the initial distribution when using our self-consistent
iteration algorithm. We now aim to qualitatively examine in which way. In order to re-
duce the analysis to few parameters, we choose model initial distributions which contain
the main features of a stationary distribution above threshold: A periodic modulation
with (approximately) λc and an envelope function fν(x). Specifically, we write

Pini(x) ∝ fν(x) cos2a

(
kcx

2

)
= fν(x)

(
1 + cos(kcx)

2

)a
(8.15)

and for the envelope fν(x) we choose either a Gaussian with standard deviation (or
Gaussian rms width) σ

fG(x) = exp

(
− x2

2σ2

)
, (8.16)

or a rectangle function with the width w

fR(x) = rect
( x
w

)
=

{
1 for − w/2 < x < w/2

0 otherwise.
(8.17)

While the Gaussian closer resembles an actual stationary state, the rectangle function
is practical due to its simplicity.

For a = 1 the modulation has a sine-form, while for larger a ∈ N it consists in recurring
narrow peaks. For instance, the stationary solution in the uppermost subplot in Fig.
8.3(c) would be emulated by a small a, while the others have a larger a. Note that in
the dense mode regime it does not matter if we take a sine or a cosine in the model
distribution, since there are anyways always both in the vicinity kc.
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Figure 8.5.: The total multi-mode threshold Mζc for M = 2000 and different widths
w of the rectangular initial distribution and a = 15 [extracted from Fig.

8.4(b)]. For w < 2π/∆k it converges to Mζ↓c = 8.24 and for w > La to
Mζc ↑= 12.77.

The results of the self-consistent iteration are shown in Fig. 8.4. In subplot (a) we see
that for a fairly narrow Gaussian initial distribution with a standard deviation of σ =
10λc, the threshold for large mode numbers (bandwidths) is shifted to much lower pump
strengths, while for small mode numbers (i.e. small bandwidth close to the effective two-
mode regime) nothing changes. The transition from a localized distribution with small
σ and a nearly flat cosine-like modulation for large σ is depicted in subplot (b) for M =
2000. As expected from the considerations above, we observe that the threshold goes to
smaller values for smaller σ and approaches a value similar to that for the homogeneous
initial distribution for large σ. A similar behavior can be seen for rectangular initial
distributions with the width w, which suggests that qualitatively the results do not
depend on details of the distribution other than the width of the envelope.

More insight can be gained by comparing the width of the initial distribution with
the typical length scales of the system already mentioned in Fig. 8.2. Considering Fig.
8.5 we note that the threshold is constant when the width is within the in-phase region
w < 2π/∆k and has a lower value Mζ↓c ≈ 8.24. For w > La the initial distribution does
not change anymore, so trivially also here the threshold is constant at a higher value
Mζ↑c ≈ 12.77. In between, for 2π/∆k < w < La, the threshold increases with w. Note
that this region only exists for La > 2π/∆k, i.e. in the dephasing regime, and not in the
effective two-mode regime, where no jumps in the phase diagram occur. Finally, note
that for the other model initial distributions these features are more washed out and the
lower and upper value slightly differ from those given here.

8.3.3. Beyond the regime of high mode density

In this section we make a detour beyond the regime of high mode density, where modes
have to be considered individually since even adjacent modes dephase. Technically,
we take a subsection of modes where the bandwidth ∆kr/kc ≈ 0.0213 is fixed. The
so-created interval is evenly filled up with M modes. Thus the mode distance goes
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8.4. Simulation of the dynamics

inversely with the number of modes δk = ∆kr/(M − 1), i.e. Mr = M . Increasing M
leads to the path through the mode regimes depicted by the green arrow in Fig. 8.1.
Note that physically this is only possible when not pumping adjacent modes, i.e. for the
case p > 1 (but still odd).

The results are plotted in Fig. 8.6. For small M we are in a regime where the modes
have to be considered individually, since Laδk/π > 1. Hence different mode configura-
tions can lead to distinct behavior. For M = 4, M = 6 and M = 10, the random initial
fluctuations on top of the homogeneous distribution drive the iteration into different
meta-stable states having distinct potential energies, which explains the jumps of the
order parameter between different values. The situation drastically changes for M & 15
when leaving the individual mode regime and Laδk/π < 1. The threshold then does
not change much anymore by adding more modes, suggesting that it depends predomi-
nantly on the bandwidth ∆k, which is constant. Reading off the figures, the transition
takes place approximately between M = 13 (where Laδk/π ≈ 1.07) and M = 15 (where
Laδk/π ≈ 0.91).

We also note that the upper bound of the rms order parameter
√

2/2 is not valid in
the individual mode regime since the cosine-sine pair approximation in Eq. (8.14) cannot
be made.

8.4. Simulation of the dynamics

In addition to the analytical and stationary considerations above, we now simulate the
dynamics of the frequency comb set-up by numerical integration of the stochastic differ-
ential equations of motion given in Eqs. (3.11) with the order parameters Eq. (8.3).

Let us first define the quantities, which we depict in the following. As a measure of the
order to all modes we again employ the total order parameter Θ̄ for each trajectory and
calculate the trajectory average 〈Θ̄〉. Moreover, the total intra-cavity photon number
n =

∑
m |αm|2 is again approximated by its trajectory average 〈n〉. We define the

kinetic energy as Ekin = 〈p2〉/(2ma). Due to the equipartition theorem, it is related to
the temperature by Ekin = kBT/2.

Moreover, we aim to define a quantity which contains information about the atomic
distribution. From a simple plot of the distribution one sees where the atoms are, but
it is hard to tell where in space they are ordered, which would require to track the fast
λc-oscillations. It is thus insightful to consider the averaged field distribution

F (x) =
1

M

∑
m

Θm cos(kmx+ φm), (8.18)

with the normalized spatial form of the mth cavity mode field Θm cos(kmx + φm). Al-
ternatively, this function can be interpreted as a projected particle density distribution
by reading the order parameters as Fourier coefficients of the normalized particle distri-
bution P (x). They can be written as

Θm =

{∫ L
−L dxP (x) cos (kmx) m odd

−
∫ L
−L dxP (x) sin (kmx) m even,

(8.19)
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Figure 8.6.: (a) Steady-state order parameter from the self-consistent iteration for dif-
ferent mode numbers M for the temperature kBT = ~κ/2 and 1000 iter-
ations. Here the bandwidth ∆k is constant, thus the mode distance goes
like (M − 1)−1. The black dashed line is at Θ̄ =

√
2/2 indicates the upper

bound for Laδk/π � 1. (b) Thresholds as a function of the mode number.
There are two different regimes depending on the parameter Laδk/π.
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8.4. Simulation of the dynamics

noting that cos(x+π/2) = − sin(x). Since the order parameters are defined for pumped
modes (m ∈ M) only, F (x) is the truncated Fourier series of the particle distribution
P (x). F (x) thus contains only those features of P (x), which are relevant for scattering
into the cavity or, in non-technical words, those features the apparatus “sees”. Obviously,
for a larger bandwidth more details can be resolved. Note that F (x) is also proportional
to the single-particle potential [Eq. (8.9)], when η2∆c/(∆

2
c + κ2) does not depend on

m. Thus for ∆c < 0 the system favors placing an additional particle there, where it
“assumes” that there are already atoms. Since this increases the photon number by
super-radiant scattering, the apparatus can be interpreted as a light harvesting system.

The envelope of the fast λc-oscillations of the averaged field distribution F (x) tells us
where in space the atomic cloud is ordered. To extract it we use the root-mean-square
envelope, which can be calculated by a convolution of F 2 and rectangle function with a
width chosen as λc acting as a sliding window. The smoothed field distribution is then
given by

F(x) =

√
F 2(x) ∗ rect

(
x

λc

)
. (8.20)

From our simulations we obtain the time evolution of the trajectory averaged order
parameters 〈Θm〉(t), and thus one can consider the time evolution of the function F(x).
Also experimentally, the order parameters can be indirectly measured via a homodyne
measurement of the cavity output fields. When the dynamics of the cavity fields αm
is much faster than the one of the atoms, we can use the adiabatic approximation of
the fields αm ≈ Nη/(∆c + iκ)Θm to obtain an approximate expression for the order
parameters

Θm ≈
√

∆2
c + κ2

N |η| α̃m (8.21)

in terms of the measurable field quadratures

α̃m = Re
[
αm exp

(
−iarg[(∆c + iκ)−1]

)]
. (8.22)

Figure 8.7 depicts an example time evolution of F(x), where the order parameters are ap-
proximated by trajectory averages either of the order parameters 〈Θm〉 or the fields 〈αm〉
via Eq. (8.21). This demonstrates that the function F(x) is in principle constructable
from measurements of the cavity fields.

8.4.1. Simulations of the self-ordering dynamics

We now compare the dynamics of N = 100 atoms and M = 50 modes for different pump
strengths above and below the above obtained thresholds for the initial temperature
kBT = ~κ/2. The initial spatial distribution is uniform on an interval of the width
w, which we choose as either 20λc or 300λc. The example parameters we consider are
summarized by red crosses in Fig. 8.8, which are depicted within the phase diagram
from the self-consistent iteration used in the previous section. Note that this is only
for orientation: The situation in the dynamical case here is different since the particles
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Figure 8.7.: The smoothed field distribution F(x) for the parameters in Fig. 8.14.
(a) The order parameters come from averaged order parameters Θm ≈
〈Θm〉. (b) The order parameters are calculated from the measurable field
quadratures via Eq. (8.21).
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Figure 8.8.: Thresholds from the self-consistent iteration for kBT = ~κ/2 for the band-
width ∆kr/kc = 2.13%, M = 50 and a rectangular initial distribution with
width w and a = 15. The phase diagram resembles the case for M = 2000
in Figs. 8.4 and 8.5, since the bandwidth is the same. The red crosses
indicate the choice of initial width and pump strength for the dynam-
ical simulations for orientation. The simulations with the initial width
w = 10λc are depicted in Figs. 8.10 (A), 8.11 (B) and 8.12 (C). The re-
sults for the initial width w = 300λc are shown in Figs. 8.13 (D), 8.14 (E)
and 8.15 (F).
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can move out of the interval, which is not possible for the distribution used in the
self-consistent iteration, and due to the relatively small particle number.

Again we choose the cavity parameters as κ = 400ωkcR and ∆c = −κ. As opposed to
Sec. 8.3.1 we choose Mr = 50, i.e. 50 modes span the bandwidth ∆kr/kc = 2.13%. The
mode spacing δk/kc = (94750− 92750)/(93750(50− 1)) = 4.35× 10−4 is larger, but still
leads to the high mode density regime where adjacent modes do not dephase significantly,
since δkLa/π ≈ 0.26 � 1 for La = 300λc [see e.g. Fig. 8.6(b), where M = 50 is already
in the flat part of the Mζc plot].

Figure 8.9 depicts the case of two modes for comparison. F(x) is uniform here, since
the light fields do not contain any information about the absolute position. The total
pump strength is Mζ = 15 and the single-mode pump strength ζ = 7.5. The latter is
much larger than one and thus far above threshold. We see trapping in a translationally
invariant potential and slow collective motion of the ordered atoms.

Figure 8.10 shows the multi-mode case (M = 50) for a pump below the lower threshold

ζ↓c and small initial width w = 20λc. Initially, the atoms order, which can be seen by
the increase of the order parameter 〈Θ̄〉 and the photon number 〈n〉. Interestingly, the
ordering is not sustained and falls apart. As usual in such systems, the kinetic energy
rises initially since the atoms fall into their self-created potential, and gets slowly reduced
on a longer time scale by cavity cooling. F(x) is not uniform anymore, but shows the
localization on the dephasing length scale.

The pump strength Mζ = 15 in Fig. 8.11 is above ζ↓c but still below ζ↑c . This case
strongly resembles the two-mode case: The ordering is stable and the values of 〈Θ̄〉 are
similar. When an atom leaves the in-phase region, though, it is not trapped anymore, in
contrast to the two-mode case. This is a consequence of the dephasing and the resulting
decay of the interactions with distance. A very similar behavior can be seen for a pump
strength slightly above ζ↑c in Fig. 8.12.

When starting from a uniform distribution on a larger interval L = 300λc, the same
pump strength above ζ↑c as in Fig. 8.12 leads to strikingly different results as depicted
in Fig. 8.13. The increase of the total order parameter is much lower compared to the
small initial width. Ordering is stable in the early stage of the dynamics, but not in the
late stage. From F(x) we see that the particles do not create one cluster, but rather
order in several regions. Since the self-created potential is not as deep as before due
to bad ordering, the initial increase of the kinetic energy is smaller, leading to faster
cooling. We will examine this feature in more detail in the next section. Increasing the
pump strength to Mζ = 20 (see Fig. 8.14) leads to qualitatively similar results, but a
higher fraction of ordered atoms. Also here it seems that the ordering becomes unstable
on longer time scales than κt = 106.

Finally, Fig. 8.15 shows results for high pump strengths of Mζ = 60 and ζ = 1.2
above the single-mode threshold. Since even a single-mode can sustain ordering here,
the cloud organizes in some stable pattern. The particles still do not gather in an interval
smaller than the dephasing length, but rather freeze close to their initial positions. While
this leads to a low total order parameter, the total intensity is comparable to the well-
ordered scenarios for small initial width of the distribution, e.g. Fig. 8.11, where the
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8. Self-ordering and cavity cooling using a femtosecond pulse train

pump strength is much lower.

Summarizing, we find that the initial width of the distribution is the main factor
deciding whether strong ordering to many modes occurs. Initial widths smaller than the
dephasing length often result in ordering which can be stable on large time scales even
below the multi-mode threshold ζ↓c obtained using the self-consistent iteration. For initial
widths larger than the dephasing length instead, the atoms do not find the multi-mode
stationary state in the cases we considered and order only to few modes simultaneously.
Even for pump strengths slightly above the multi-mode threshold ζ↑c obtained before,
the ordering is not large enough to be stable. By increasing the pump strength, the
fraction of ordered atoms and thus the time of stable ordering increases. Finally, above
the single-mode threshold, where one mode is sufficient to sustain ordering, the atoms
freeze close to their current position and the state is definitely stable. A better ordering
also in the case of wide initial distributions might be obtained by slowly ramping up the
pump strength to its final value or by using higher initial temperatures as in Chapter 5.

8.4.2. Simulations from the cooling viewpoint

We now focus on the cooling capabilities for different mode configurations, i.e. the reduc-
tion of the kinetic energy. Here we add a harmonic trap, i.e. a restoring force −Doscx,
such that the particles do not run away too far from the in-phase region when they
are not trapped by the cavity potential. The constant is chosen as Dosc/(~kcωkcR ) =
1/(150λc), while the width of the initial uniform atomic distribution is 300λc. We take
the same mode spacing as in the previous section, and by varying M the bandwidth
∆k = δk(M − 1) grows linearly.

The results for 100 particles and different mode numbers are plotted in Fig. 8.16 on
a linear and a logarithmic time scale. Analogously, the cases of 500 particles and 1000
particles are shown in Figs. 8.17 and 8.18, respectively.

All multi-mode simulations were done with Mζ = 4, i.e. fixed total pump strength.
Note that in course of varying M , the multi-mode threshold obtained in the previous sec-
tion is traversed. Thus we observe self-organization for small M and no self-organization
for large M by looking at the increase of the order parameter Θ̄. The same total pump
strength ζ = 4 in the single-mode case corresponds to a strong pump far above the
single-mode threshold. Cooling is slower as compared to the multi-mode case. Interest-
ingly, for the lower pump strength ζ = 2, the cooling time decreases, but is still larger
than in the multi-mode case§.

Within the multi-mode case, we see that for a higher mode number M (or larger
bandwidth ∆k) the reduction of the kinetic energy is faster, while the increase of the
order parameter is smaller, i.e. worse ordering is correlated with faster cooling. This is
because for low mode numbers the system cools itself over the self-organization threshold,
leading to substantial order parameters, while for higher mode numbers (M = 20, 50)
this is not the case anymore, and the intra-cavity photon number stays nearly constant.

§Note that Mζ = 2 for M = 1 leads to the same maximal (total) intra-cavity intensity as Mζ = 4
(and ζ = 2) for M = 2 since particles can only perfectly order to one of the two modes.
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Figure 8.9.: Numerical simulation of the time evolution for N = 100 particles for two
modes (M = 2) with equal wave number. The pump power is Mζ = 15
and the initial distribution width La = 20λc. In (a) averages over 50
trajectories are depicted: The total order parameter 〈Θ̄〉, the total intra-
cavity photon number 〈n〉, the kinetic energy Ekin and the individual order
parameters 〈|Θm|〉. An example trajectory of the particles’ positions is
shown in (b) on a linear time axis. Finally, subfigure (c) shows the function
F(x) defined in Eq. (8.20) for the same example trajectory.
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Figure 8.10.: Time evolution for ζ < ζ↓c
and w = 20λc. The param-
eters are M = 50, Mζ = 6
and ζ = 0.12. See Fig. 8.9
for details.
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Figure 8.11.: Time evolution for ζ↓c <
ζ < ζ↑c and w = 20λc. The
parameters are M = 50,
Mζ = 12 and ζ = 0.24.
See Fig. 8.9 for details.
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Figure 8.12.: Time evolution for ζ↑c <
ζ < 1 and w = 20λc. The
parameters are M = 50,
Mζ = 15 and ζ = 0.3. See
Fig. 8.9 for details.
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Figure 8.13.: Time evolution for ζ↑c <
ζ < 1 and w = 300λc. The
parameters are M = 50,
Mζ = 15 and ζ = 0.3. See
Fig. 8.9 for details.
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Figure 8.14.: Time evolution for ζ↑c <
ζ < 1 and w = 300λc. The
parameters are M = 50,
Mζ = 20 and ζ = 0.4. See
Fig. 8.9 for details.
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Figure 8.15.: Time evolution for ζ >
1 and w = 300λc. The
parameters are M = 50,
Mζ = 60 and ζ = 1.2. See
Fig. 8.9 for details.
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8.4. Simulation of the dynamics

The kinetic energy follows a damped oscillation. When the cloud does not organize
fast enough, it expands freely and bounces back from the fixed harmonic trap, leading
to the oscillations in the beginning. Since the atoms are less strongly trapped by the
cavity field for larger M , the effect is more pronounced here. The oscillation frequency
is independent of N .

Comparing different atom numbers we observe that cooling takes longer for a larger
atom number N , which is consistent with previous results [8.4]. One has to note that
this is due to the specific scaling we choose ζ ∝ N , which keeps the maximum potential
depth constant.

Summarizing, from the point of view of cooling one benefits from more modes - it
leads to faster cooling. The reason might be that for a similar total pump power the
ordering is smaller for the many mode case (because it is difficult to adapt to many
modes and each individual mode gets less power). This means that the initial increase
in kinetic energy coming from the atoms falling into the potential well is much smaller.

Acknowledgments: This work was partly done in collaboration with Ivor Krešić and
Ticijana Ban from the Institut za Fiziku in Zagreb, Croatia.
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Figure 8.16.: Cooling dynamics of the averages over 50 trajectories of the total order
parameter Θ̄, the total intra-cavity intensity

∑
m |αm|2 and the kinetic

energy Ekin for N = 100. The dashed blue curve was obtained for M = 1
and Mζ = 2. All other curves have the same absolute pump strength
Mζ = 4 and different mode numbers M = 1 (dashed orange), M = 2
(green), M = 6 (red), M = 20 (purple) and M = 50 (brown). The data
is depicted for (a) a linear and (b) a logarithmic time axis.

134



8.4. Simulation of the dynamics

(a)

0.0

0.5〈Θ̄
〉

0

500

〈n
〉

0 2 · 105 4 · 105 6 · 105 8 · 105 106

κt

100

101

E
k
in
/(
h̄
κ
/4

)

(b)

0.0

0.5〈Θ̄
〉

0

500

〈n
〉

101 102 103 104 105 106

κt

100

101

E
k
in
/(
h̄
κ
/4

)

Figure 8.17.: Cooling dynamics for N = 500 with the same parameters as in Fig. 8.16.
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Figure 8.18.: Cooling dynamics for N = 1000 with the same parameters as in Fig.
8.16.
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9. Conclusions

In this thesis we considered cold atoms in transversally pumped multi-mode optical
resonators and their potential applications for solving real world optimization problems.
Collective scattering of pump light into the resonator results in a complex coupled atom-
field dynamics. For red cavity detuning, the time lag between atom and field dynamics
results in cooling of the atomic motion. Above a pump intensity threshold, the atoms
order according to their self-created trapping potential stemming from the interference
of pump and cavity fields. An ordered configuration maximizes the light field in the
resonator while minimizing the energy, for red detuning. Simultaneously pumping with
several frequencies leads to a multitude of different optimal patterns and it is at first not
clear which pattern or combination thereof the atoms attain [9.1]. When the dynamics
of the light fields is much faster than the atomic motion, the self-trapping potentials can
be seen as collective interaction potentials depending on all atom positions.

In order to simulate an optimization problem we first have to shape such an interaction
potential (or cost function) such that the lowest energy state corresponds to the solution
of the problem. In addition to that the system must dynamically attain this state to
find the solution. Multi-mode resonators provide several unique features for realizing
these requirements. Since all atoms interact with the same light fields, the interactions
are infinite-range and couple all atoms. Multi-mode pumping allows for implementing
conflicting constraints, which are always present in hard optimization problems. The
manipulation of light is becoming more versatile every year [9.2], allowing for much
flexibility in creating interference fields with different pump-cavity geometries. Finally,
the light leaking out of the resonator gives insight about the atomic state and hence the
measurement thereof yields information about the solution.

For classical atoms, a Langevin-type dynamics in the interaction potential emerges,
where cavity cooling provides friction and photon loss leads to diffusion. We showed
with extensive numerical simulations of a simple two mode model, that slowly increas-
ing the pump strength lets the particles more probably find the global minimum of a
potential landscape, a behavior analogous to thermal annealing. Starting with a higher
temperature and cooling into the ordered phase results in a similar effect: higher initial
temperatures lead to faster ordering according to the more stable phase, reminding of
the Mpemba effect in water [9.3, 9.4]. Moreover, illuminating the atoms with a frequency
comb can result in self-ordered clusters and faster cooling rates.

At nearly zero temperature the thermal fluctuations are superseded by emerging quan-
tum fluctuations. Analogously, a slow increase of the pump strength implements a form
of quantum annealing. The closed system performs coherent Hamiltonian dynamics in-
stead of classical diffusion. In the framework of ultra-cold atoms in an optical lattice, we
showed how to formally map the resulting cavity Hamiltonian to an Ising spin Hamilto-
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nian with infinite-range interactions – the standard model of quantum annealing. With
at least N(N + 1)/2 pump-cavity mode pairs giving rise to sufficiently different interfer-
ence fields, an arbitrary interaction matrix for an arbitrary problem can be created. We
demonstrated how to obtain such a matrix for the example of a Hopfield network.

Special problems can be tackled with less resources, avoiding the N2 overhead. In this
vein we proposed a detailed implementation of a quantum simulator for the N -queens
problem, where the task is to place N queens on an N×N chess board such they cannot
attack each other according to chess rules. Variations of this problem were shown to
be NP-complete and there exist hard instances for conventional classical algorithms for
relatively small problem sizes. The problem is thus a promising candidate for testing if
a quantum machine can do better than a classical one.

The implementation is based on a miniaturized chess board made from N ultra-cold
atoms in an N × N optical lattice, where the tunneling of the atoms is frozen out in
one direction. The chess rules are implemented by pumping from three directions with
a frequency comb with only about N equidistant frequencies. One such beam invokes a
repulsive interaction on lines, i.e. localized and translationally invariant in propagation
direction and infinite-range perpendicular to the propagation direction. When the propa-
gation directions are chosen accordingly, this energetically penalizes multiple occupation
of diagonals and rows, as desired in the N -queens problem.

The solution state is again found via an adiabatic sweep by increasing the pump
strength. During this sweep intermediate terms due to cavity-induced tunneling emerge,
which cause highly non-local fluctuations. These typically cause problems for quantum
Monte Carlo simulations of the quantum system, rendering our physical implementation
hard to simulate on a classical device. Thus it is even more interesting to build the
experiment and test for quantum advantage.

For future research it would be interesting to investigate the effect of cavity cooling
in quantum annealing. For low enough steady state temperatures this could be used
for ground state cooling and amend non-adiabatic errors during the sweep. Since cavity
cooling only works for red cavity detuning, in our set-up we can only create attractive
interactions. Thus it might be worthwhile to investigate the non-linearity due to the
collective dispersive shift in the cavity as source of collective atom-atom interaction.
Cooling in the open system is always accompanied by dephasing due to diffusion, which
destroys coherent superpositions needed during the adiabatic sweep, which was already
taken into account in Chapter 7. A better understanding of this interplay in the context
of quantum simulation could lead to intriguing insights.

From the quantum simulation side a next step would be to check the effect of non-
stoquasticity created by cavity-induced tunneling in the N -queens problem and other
problems. For reliable theoretical predictions of quantum advantage one has to ask how
the gap closes for larger system sizes and if this scales more favorably for large non-local
fluctuations.
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A. Additional material

A.1. Hermite-Gaussian modes

We consider a special case of a Fabry-Pérot resonator in three dimensions, namely two
spherical mirrors with the same radius of curvature R at a distance L. The geometry of
the resonator can be summarized by the so-called stability parameter

g = 1− L

R
. (A.1)

There are stable modes for −1 < g < 0 and 0 < g < 1 [A.1]. Special cases are therefore
the confocal resonator (g = 0, R = L), the planar resonator (g = 1, R → ∞) and the
concentric resonator (g = −1, R = L/2). They are on the edge of the stability region,
meaning that small deviations would lead to instabilities.

Assuming that the light travels into the z-direction, the field takes the form G =
G̃(x, y, z)e−ikz. The Helmholtz equation from Eq. (2.7) is then approximately given by

∂2G̃
∂x2

+
∂2G̃
∂y2
− 2ik

∂G̃
∂z

= 0 (A.2)

where we neglected the term ∂2G̃/∂z2. This so-called paraxial approximation is valid
when |∂2G̃/∂z2| � |k∂G̃/∂z|.

A complete set of solutions for this equation are the Hermite-Gaussian beams, which
are given by [A.1]

Glm(x, y, z) = Alm(x, y, z)e−iΦlm(x,y,z) (A.3)

with the amplitude and phase

Alm(x, y, z) =
Nlm
w(z)

Hl

(√
2

x

w(z)

)
Hm

(√
2

y

w(z)

)
exp

(
−x

2 + y2

w2(z)

)
(A.4a)

Φlm(x, y, z) =kz + k
x2 + y2

2R(z)
− φlm(z), (A.4b)

where the Hl denote the Hermite polynomials. The beam waist w of the l = m = 0
beams, the radius of curvature R of the phase fronts and the Gouy phase shift φlm are

139



A. Additional material

given by

w(z) =w0

√
1 +

(
z

zR

)
(A.5)

R(z) =z

(
1 +

(zR
z

)2
)

(A.6)

φlm(z) =(l +m+ 1) arctan

(
z

zR

)
(A.7)

with w0 =
√

2zR/k. The Rayleigh length zR and the wave number k are the charac-

teristic length scales. We choose Nlm = (2l+mn!m!)−
1
2w0 such that the maximum is

normalized to 1. The integers l and m parametrize the transversal modes, which are
often denoted by TEMlm.

Just as for the one-dimensional case in Sec. 2.2.2, we have to impose the boundary
condition, which guarantees that the field is zero at the mirrors. Thereby we assume
that the mirrors are placed at a distance L� zR, where the phase fronts are spherical.
Given a certain combination of length and mirror curvature, the boundary conditions
fix the values of the Rayleigh length zR and the resonant wave numbers knlm.

For the transversal shape, we impose that the curvature of mirrors and phase fronts
coincide, thus R(L/2) = R, which fixes the Rayleigh length zR = (L/2)

√
2R/L− 1.

Longitudinally, on the z-axis we know from the 1D considerations above, that the phase
shift from one mirror to the other has to be a multiple of π for resonance [A.2]. The
Gouy phase at the mirror positions takes the simple form

φlm

(
L

2

)
= (l +m+ 1) arctan

√
L

2R− L

= (l +m+ 1) arctan

√
1− 1 + L

R

1 + 1− L
R

=
1

2
(l +m+ 1) arccos(g),

(A.8)

where we used the identity

arccos(x) = 2 arctan

√
1− x
1 + x

. (A.9)

Noting that φlm(z) = −φlm(−z) we get

Φnlm(0, 0, L/2)− Φnlm(0, 0,−L/2) = nπ

k
L

2
− φlm

(
L

2

)
−
{
−kL

2
− φlm

(
−L

2

)}
= nπ

kL− 2φlm

(
L

2

)
= nπ

kL− (l +m+ 1) arccos(g) = nπ.

(A.10)
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This condition results in the resonant wave numbers

knlm = (nπ + (l +m+ 1) arccos(g))/L. (A.11)

In units of the free spectral range ν0 = c/(2L), i.e. the frequency spacing between
longitudinal modes, we get the resonant frequencies

νnlm
ν0

=
cknlm
2πν0

= n+
1

π
(l +m+ 1) arccos(g). (A.12)

In a standing wave resonator where z = 0 is located at its center, even and odd modes
then take the form of the real and imaginary part of Glm with k = knlm, respectively,
leading to

Gnlm =

{
Anlm

2 cos(Φnlm) for n odd
Anlm

2 sin(Φnlm) for n even.
(A.13)

A.2. Steady state cavity fields in transversally pumped cavities

The aim of this section is a purely classical derivation of the steady state cavity field
amplitudes for transversal pumping of a single atom or several atoms in a cavity. By
using the value of the spontaneous emission rate obtained from quantum optics, we
formally obtain the same expressions as in Chapter 3. This section follows Ref. [A.3],
adapted to the notation in this thesis.

Classically in the limit of low saturation, an atom in an electromagnetic field E can
be considered an oscillating dipole d = PE with the linear polarizability

P = 6πε0c
3 2γ/ω2

a

ω2
a − ω2 − 2i(ω3/ω2

a)γ
. (A.14)

It can be derived from a Lorentz oscillator model with a frequency dependent decay
rate [A.3, A.4]. The imaginary part contributes to absorptive and the real part to
dispersive effects.

Thereby ωa is the atomic resonance frequency and γ the (amplitude) damping rate.
Within the rotating wave approximation ∆a = ω−ωa � ωa we can use ω2−ω2

a ≈ 2ω∆a

to simplify the expression. It can be even further simplified by going to the dispersive
regime |∆a| � γ. We obtain

P RWA≈ 6πε0
k3
a

−∆a + iγ

∆2
a + γ2

γ
γ�|∆a|≈ −6πε0

k3
a

γ

∆a
. (A.15)

Note that the absorptive imaginary part, and thus dissipation due to the atom, vanishes
in the second approximation. Plugging in the result from quantum mechanics [A.5] for
the damping rate γ = k3

aµ
2/(6πε0~) yields P = −µ2/(~∆a), which is consistent with

Sec. 2.3.2.
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A.2.1. Scattering into a Gaussian mode

We are now interested in a dipole scattering from an incident field αin into a Gaussian
beam mode. The radiated mode amplitude in the far-field can be written in the simple
form

αM = iβαin (A.16)

with the parameter β = kP/(πw2
0ε0). It is obtained by calculating the overlap between

a Gaussian beam with waist w0 and the dipole radiation pattern in the far-field known
from classical electrodynamics [A.6]

Erad =
k2 sin θ

4πε0

eikR

R
PE , (A.17)

where θ is the angle between polarization and observation direction and R is the distance.
Inserting the polarizability we get

β
RWA≈ 6

k2w2
0

−∆a + iγ

∆2
a + γ2

γ
γ�|∆a|≈ − 6

k2w2
0

γ

∆a
. (A.18)

In order to compare to quantum mechanical results, we plug in the value of γ from
Wigner-Weisskopf theory and obtain

β = − µ2k

πw2
0ε0~∆a

. (A.19)

A.2.2. Scattering via atoms into an optical resonators

Now we consider the scattering of an atom sitting at an anti-node of a cavity mode,
which is pumped with a field αin. In order to obtain the resulting steady state cavity
field, we consider the condition analogous to the one in Sec. 2.2.1

α
!

= r2e2ikLα+ 2iβαin (A.20)

with the pump term 2iβαin. The factor 2 comes from the two scattering directions [A.3].

Solving for the cavity field yields analogously

αst =
2iβαin

1− r2e2ikl
≈ 2iβαin

q2

1

1− i∆c/κ
= −β c

L
αin

1

∆c + iκ
, (A.21)

where in the second step we performed the same approximation as in Sec. 2.2.1, which is
valid close to a resonance [A.3]. Plugging in the value of β with the quantum mechanical
expression for γ from Eq. (A.19) reveals the identity

−β c
L

=
µ2

~2

~ω
2V ε0

1

∆a
=
µ2

~2
E2

0

1

∆a
=

g2

∆a
= U0, (A.22)
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with the mode volume V = Lπw2
0/2. The effective mode area is thereby A = πw2

0/2.
Using η = U0αin as introduced in Sec. 3.1.1, Eq. (A.21) becomes

αst =
U0αin

∆c + iκ
=

η

∆c + iκ
. (A.23)

This corresponds the single-atom single-mode case of Eq. (3.20), when retardation effects
and noise are neglected.

More realistically, the dipole is also driven by the cavity field itself. This can be taken
into account by adding the corresponding terms in the steady state condition [A.3]

α
!

= r2e2ikLα+ 2iβ(αin + α). (A.24)

In a derivation analogous to the one above this leads to an effective shift in the detuning
by U0

αst =
η

∆c − U0 + iκ
. (A.25)

Finally, when the cavity is filled with N atoms, it is the order parameter from Eq.
(3.12) which quantifies how much light is scattered into the resonator. For a single mode
it takes the form

Θ =
1

N

∑
j

H(xj)G∗(xj). (A.26)

Then the steady state condition analogous to Eq. (A.20) valid for N |U0| � |∆c| becomes

α
!

= r2e2ikLα+ 2iβNΘαin (A.27)

and consequently

αst =
η

∆c + iκ
NΘ. (A.28)

Compare again to Eq. (3.20) and Eq. (3.29).

A.3. Quantum Brownian motion of atoms in a cavity

In this section we present a quantum Brownian motion master equation for quantum
particles in a transversally pumped optical resonator. Our motivation is to obtain a
master equation without dynamical fields which still includes friction.

A.3.1. Motivation

We follow here a route analogous to the classical derivation in Sec. 3.2.1. In this vein,
the master equation can be seen as the quantum analog to the Fokker-Planck equation
in Eq. (3.25). It turns out, however, that it is not as straightforward as in the classical
case.
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To avoid unnecessary indices, we consider the single-mode case here (the extension to
the non-cross-scattering multi-mode case is trivial). For N |U0| � |∆c| and |H(x)|2 = 1,
the corresponding Hamiltonian is given by

H =
∑
j

p̂2
j

2ma
+ ~NηΘ̂(a+ a†)− ~∆ca

†a, (A.29)

which is the single-mode case of Eq. (3.8) with the single-mode order operator

Θ̂ =
1

N

∑
j

H(x̂j)G∗(x̂j). (A.30)

Importantly, we consider the case for real interference fields H(x)G∗(x) ∈ R, such that
the order operator is Hermitian∗. The full open-system dynamics is correspondingly
given by the master equation

ρ̇ = − i
~

[H, ρ] + κ(2aρa† − a†aρ− ρa†a). (A.31)

As described in Sec. 3.1.2, the open system can be described by the Langevin equations
in Eqs. (3.10) for position x̂, momentum p̂ and field a. We now conduct the same
elimination procedure as in the classical case in Sec. 3.2.1. Again taking into account
linear friction only, we obtain the effective momentum equation

˙̂pj =− iN2η2 ∆c

∆2
c + κ2

(
[p̂j , Θ̂]Θ̂ + Θ̂[p̂j , Θ̂]

)
− iN2η2 2∆cκ

(∆2
c + κ2)2

(
[p̂j , Θ̂]

˙̂
Θ +

˙̂
Θ[p̂j , Θ̂]

)
− iNη

√
2κ

∆2
c + κ2

(
[p̂j , Θ̂]ζ̂ + ζ̂[p̂j , Θ̂]

) (A.32)

with the Hermitian noise operator ζ̂ = (ξ̂ + ξ̂†)/2. This is the quantum analog to the
momentum equation in Eq. (3.21).

While in the classical case the transformation to a Fokker-Planck equation is unique
and straightforward, the transformation to a master equation in the quantum case is
more involved and ambiguous, and further approximations have to be made. The prob-

lem thereby is the friction term containing
˙̂
Θ. Ignoring this term, the corresponding

master equation is of Lindblad form and was already presented in Eq. (3.30) and in
several previous works such as Ref. [A.7]. In the single-mode case and for Hermitian
order operators it is given by

ρ̇ = − i
~

[H̃, ρ] +N2η2 κ

∆2
c + κ2

(
2Θ̂ρΘ̂− Θ̂2ρ− ρΘ̂2

)
(A.33)

∗Note that a global x-independent phase would not change anything.
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with

H̃ =
∑
j

p̂2
j

2ma
+ ~N2η2 ∆c

∆2
c + κ2

Θ̂2. (A.34)

This master equation, however, always converges to an infinite temperature steady state,
as we will show later. From classical intuition this is clear, since the friction was totally
neglected and thus cannot counteract the noise. The aim is now to include a linear
friction term.

A.3.2. Quantum Brownian motion master equation

Reference [A.8] shows a detailed derivation of a quantum Langevin equation for a system
operator Y of a system linearly coupling to a harmonic oscillator bath via the coupling
operator X. Its general form after the first Markov approximation

Ẏ =
i

~
[Hsys, Y ]− i

2~
{[X,Y ], ζ(t)− γẊ} (A.35)

is exactly the same as Eq. (A.32). The curly brackets denote the anti-commutator.

Introducing a thermal bath with temperature T , a quantum master equation can be
derived. The quantum Brownian motion master equation is given by [A.8]

ρ̇ = − i
~

[Hsys, ρ]− iγ

2~

[
X,
{
Ẋ, ρ

}]
− γkBT

~2
[X, [X, ρ]] (A.36)

with the temperature T and the damping rate µ = γ/ma. It is valid when the correlation
time of the noise is much shorter than the time scale of the system dynamics and the
damping, leading to the validity condition ~µ � kBT . Thus it is capable of describing
only the case of relatively high temperatures†. For a Brownian particle without any
potential we have the coupling operator X = x̂, and thus Ẋ = p̂/ma. Note that this
master equation does not have Lindblad form and is thus not guaranteed to preserve the
positivity of the density operator.

For our system the quantum Brownian motion master equation takes the form [see
Eq. (3.32)]

ρ̇ =− i

~
[H̃, ρ]

+ iN2η2 2∆cκ

(∆2
c + κ2)2

(Θ̂ρ
˙̂
Θ− ˙̂

ΘρΘ̂ + Θ̂
˙̂
Θρ− ρ ˙̂

ΘΘ̂)

+N2η2 κ

∆2
c + κ2

(2Θ̂ρΘ̂− Θ̂2ρ− ρΘ̂2).

(A.37)

†Note that this is not the well-known quantum optical master equation, which describes for instance
the case of a cavity field coupled to the radiation modes outside the cavity, such as Eq. (A.31). In this
case the system’s motion is not assumed to be slow, while damping still is. Then the rotating wave
approximation can be done, which simplifies the equations [A.8].
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The temperature and the damping rate correspond to the classical values (see Sec. 3.2.1)

kBT = ~
∆2
c + κ2

−4∆c
(A.38)

µ = −N2η2 8∆cκ

(∆2
c + κ2)2

ωR. (A.39)

As in the classical case, we need to assume ∆c < 0. Respecting the correct units, the
coupling operator is X = Θ̂/k, where k−1 is a characteristic length scale of H(x)G∗(x)
(for instance we could have H(x)G∗(x) = cos(kx)). Consistently, ignoring the central
term containing the time derivative we get the master equation in Eq. (A.33). It is this
term which gives rise to the desired friction.

Translating the validity of the master equation ~µ � kBT to our system parameters
we obtain the condition

Nn̄� ∆2
c + κ2

4∆2
c

∆2
c + κ2

8ωRκ
= n̄c

(∆c/ωR)2 + (κ/ωR)2

8κ/ωR
= n̄c

C2 + 1

8

κ

ωR
(A.40)

with the maximum number of photons per particle n̄ = Nη2/(∆2
c +κ2) and the classical

threshold n̄c = (∆2
c + κ2)/(4∆2

c) [A.9]. We used the definition ∆c = Cκ. That is, the
description tends to be valid for weak pumping. Asking the question whether this still
permits the self-ordered regime n̄ > n̄c we get the condition

C2 + 1

8

κ

ωR
� N. (A.41)

We see that entering the self-ordered regime while the master equation is valid is easier
when |C| � 1 and thus |∆c| � κ. It gets harder for large particle numbers N .

A.3.3. Ultra-cold atoms in optical lattices

Here we present a more detailed analysis of the Brownian motion master equation for
the case of ultra-cold bosons in an optical lattice placed in a cavity, as introduced in
Sec. 3.3. The Hamiltonian is given by [see Eq. (3.39)]

HL = −JB̂ + ~NηΘ̂L(a+ a†)− ~∆ca
†a (A.42)

with B̂ = b†i+1bi + b†ibi+1 and Θ̂L =
∑

i(v
i
mn̂i + uimB̂)/N . The corresponding quantum

Brownian motion master equation has the same form as Eq. (A.37), with the new defi-
nition of the order operator and the tunneling Hamiltonian as kinetic Hamiltonian, i.e.

H̃L = −JB̂ + ~(Nη)2 ∆c

∆2
c + κ2

Θ̂2
L. (A.43)

We formulate the quantum Brownian motion master equation in the eigenbasis of the
order operator defined by Θ̂L|ν〉 = θν |ν〉. Since Θ̂L is assumed to be Hermitian here, the
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eigenvalues θν are real. The time evolution of the density matrix elements ρµν = 〈µ|ρ|ν〉
is given by

ρ̇µν =−
(

(Nη)2 κ

∆2
c + κ2

(θµ − θν)2 + i(Nη)2 ∆c

∆2
c + κ2

(θ2
µ − θ2

ν)

)
ρµν

− iJ
~
∑
k

[(
1− i(Nη)2 2∆cκ

(∆2
c + κ2)2

(θµ − θν)(θµ − θk)
)〈

µ
∣∣∣B̂∣∣∣ k〉 ρkν

−
(

1 + i(Nη)2 2∆cκ

(∆2
c + κ2)2

(θµ − θν)(θk − θν)

)〈
k
∣∣∣B̂∣∣∣ ν〉 ρµk]

=(−Γµν − iΩµν)ρµν − i
J

~
∑
k

(
(1− iKµν

µk )
〈
µ
∣∣∣B̂∣∣∣ k〉 ρkν − (1 + iKµν

kν )
〈
k
∣∣∣B̂∣∣∣ ν〉 ρµk)

(A.44)
with the quantities

Ωµν = (Nη)2 ∆c

∆2
c + κ2

(θ2
µ − θ2

ν) (A.45)

Γµν = (Nη)2 κ

∆2
c + κ2

(θµ − θν)2 (A.46)

Kµν
kl = (Nη)2 2∆cκ

(∆2
c + κ2)2

(θµ − θν)(θk − θl). (A.47)

They describe the energy gaps, the dephasing rates and the friction, respectively. We
will use later that

kBT = ~
∆2
c + κ2

−4∆c
= −~

2

Γµν
Kµν
µν
. (A.48)

Note that in course of the derivation we applied the order operator to the left, which
might be a problem when generalizing to non-Hermitian order operators.

Short times

For times much smaller than ~J−1 we can assume that the J-term is constant and we
obtain

ρµν(t) =ρµν(0) exp (−Γµνt− iΩµνt) (A.49)

by integrating the first expression. The populations ρνν do not get changed, but the
coherences decay with a rate

Γµν = κ|αµ − αν |2 = (Nη)2 κ

∆2
c + κ2

(θµ − θν)2 = κnmax(θµ − θν)2. (A.50)

Here nmax is the maximal photon number in the cavity. That is, the decay rate is
given by the distance of the fields in phase space times the decay rate κ: The easier the
fields can be distinguished, the faster the coherences vanish. This can be understood by
thinking of the master equation as the average over many different quantum trajectories,
where each trajectory corresponds to a different outcome of a continuous measurement
of the field [A.10]. Thus if two states couple equally to the cavity, they do not dephase.

147



A. Additional material

How does this affect the lifetime of quantum coherence of a lattice super-solid as
observed in Ref. [A.11]? We consider the set-up in this experiment, where the pump laser
has the same wave length as the lattice and is applied orthogonally, i.e. Θ̂L =

∑
i(−1)in̂i

(we fix the Wannier overlap to 1 here for simplicity). We consider one state where all
N atoms scatter in phase and occupy every second site, and another state which has
Nd defect atoms, i.e. atoms in the wrong well. This yields (θ1 − θ2)2 = (N/N − (N −
2Nd)/N)2 = 4(Nd/N)2 and thus we get a dephasing rate

Γ = 4κ

(
Nd

N

)2

nmax.

In experiments N is typically quite large, and if there are only few defect atoms the
squared term can well compete with κ. Thus a small number of defect atoms does not
lead to immediate dephasing. This was also observed in experiment, where the lattice
super-solid was stable for typical experimental times [A.11].

Special case: 2 particles in double well

To gain more understanding let us solve the problem for one boson in a double well where
Θ̂L = n̂1− n̂2. The basis states are given by the occupation basis states {|1, 0〉, |0, 1〉} ≡
{|1〉, |2〉}, and the only non-zero matrix elements are 〈1|B̂|2〉 = 〈2|B̂|1〉 = 1. The density
matrix elements follow the equations

ρ̇11 =− iJ
~

(ρ∗12 − ρ12) = −2
J

~
Im(ρ12) (A.51a)

ρ̇22 =i
J

~
(ρ∗12 − ρ12) = 2

J

~
Im(ρ12) (A.51b)

ρ̇12 =− (Γ12 + iΩ12)ρ12 − i
J

~
(ρ22 − ρ11)− J

~
K12(ρ11 + ρ22), (A.51c)

where we note that ρ11 +ρ22 = 1, and the friction term forms an inhomogeneity. We use
the short notation K12 ≡ K12

12 . It is useful to rewrite these equations with the variables
w = ρ22 − ρ11, u = Re(ρ12) and v = Im(ρ12) to obtain modified Bloch equations

ẇ = 4
J

~
v (A.52a)

u̇ = Ω12v − Γ12u−
J

~
K12 (A.52b)

v̇ = −Ω12u− Γ12v −
J

~
w. (A.52c)

By setting all the time-derivatives to zero, we can calculate the steady state values

wst =
Ω12K12

Γ12
(A.53a)

ust = −J
~
K12

Γ12
(A.53b)

vst = 0. (A.53c)
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We rewrite the result using K12/Γ12 = −~/(2kBT ) to obtain the steady state populations

ρ11 =
1

2
+

1

4

~Ω12

kBT

ρ22 =
1

2
− 1

4

~Ω12

kBT
.

(A.54)

While without friction the steady state would be an equal population of both states,
here we get a shift proportional to the ratio of the energy difference Ω12 over the self-
consistent temperature. Their ratio corresponds to the Boltzmann factor up to first
order in ~|Ωij |/(kBT ), i.e.

ρ11

ρ22
=

1 + ~Ω12
2kBT

1− ~Ω12
2kBT

≈
exp

(
~Ω12
2kBT

)
exp

(
− ~Ω12

2kBT

) = exp

(
~Ω12

kBT

)
. (A.55)

The steady state is thus the linear correction from the infinite temperature state and the
master equation is confirmed to be valid only in the high-temperature limit. Note that
for large ~|Ωij |/(kBT ), the positivity of the density matrix is not preserved since ρ11 can
become negative. This non-physical behavior comes from the non-Lindblad term.

We examine how this steady state is approached by assuming that u an v reach the
steady state much faster than w. So by setting u̇ = v̇ = 0 we get the rate equation for
the inversion

ẇ = 4

(
J

~

)2 Γ12

Γ2
12 + Ω2

12

(
−w +

Ω12K12

Γ12

)
(A.56)

with the solution

w(t) =

(
w(0)− Ω12K12

Γ12

)
exp

(
−4

(
J

~

)2 Γ12

Γ2
12 + Ω2

12

t

)
+

Ω12K12

Γ12
. (A.57)

Steady state

Let us now proceed to the general case. In the previous two sections we have seen that
the matrix elements decay with the rate Γµν , and since Γµµ = 0 only coherences decay.
However, the friction term sustains some small coherence even in the steady state, as can
be seen from Eqs. (A.53), which causes the linear thermal correction. Γ−1

µν is typically
much smaller than the time needed to reach the steady state. Thus it makes sense to
derive a rate equation for the populations only, which is valid on a coarse grained time
scale where the coherences have already decayed. In principle one has to check in detail,
however, if this is really valid for each case since the rates depend on the mode structure
and can even become zero.

The master equation for the populations is given by [from Eq. (A.44)]

ρ̇µ = −iJ
~
∑
k 6=µ
〈µ|B̂|k〉(ρkµ − ρµk), (A.58)
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where we use the notation ρµ ≡ ρµµ. The sum does not contain k = µ since 〈µ|B̂|µ〉 = 0.
Thus populations are only coupled to coherences, and not directly among each other,
which allows for separating populations and coherences.

We now consider the equations for ρ̇µν in Eq. (A.44) for which µ 6= ν and 〈µ|B̂|ν〉 6= 0.
These couple to populations ρkk on the one hand, but also to coherences ρkl (k 6= l)
with 〈k|B̂|l〉 = 0 on the other hand. We now make an approximation by ignoring these
latter coherences with a tunneling matrix element equal to zero (this corresponds to an
expansion in J). Then the remaining coherences couple to populations only:

ρ̇µν = (−Γµν − iΩµν)ρµν − i
J

~
〈µ|B̂|ν〉 [(ρν − ρµ)− iKµν(ρν + ρµ)] . (A.59)

Again we use Kµν ≡ Kµν
µν since only those occur due to the approximation. In the case

of two particles in a double well the approximation is exact since the only coherence ρ12

has 〈1|B̂|2〉 = 1 6= 0.
We now assume that they obtain a steady state before the populations change con-

siderably and by setting ρ̇µν = 0 we obtain the steady state coherences

ρµν = −iJ
~

1

Γµν + iΩµν
〈µ|B̂|ν〉 [(ρν − ρµ)− iKµν(ρν + ρµ)] . (A.60)

Plugging this into the equation for the populations Eq. (A.58) yields the desired rate
equation for the populations

ρ̇ = Mρ (A.61)

where ρ is the vector containing the ρµ and where the matrix M is given by its compo-
nents

Mij =

−2
(
J
~
)2∑

k 6=i〈i|B̂|k〉2 Γik
Γ2
ik+Ω2

ik

(
1 + ΩikKik

Γik

)
for i = j

−2
(
J
~
)2 〈i|B̂|j〉2 Γij

Γ2
ij+Ω2

ij

(
−1 +

ΩijKij
Γij

)
for i 6= j.

(A.62)

We note that Γij = Γji, Kij = Kji and Ωij = −Ωji.
The steady state must fulfill

Mρ =
∑
k

Mikρk = −2

(
J

~

)2∑
k 6=i
〈i|B̂|k〉2 Γik

Γ2
ik + Ω2

ik

(
ρi − ρk +

ΩikKik

Γik
(ρi + ρk)

)
= 0

(A.63)
and thus

ρi − ρj +
ΩijKij

Γij
(ρi + ρj) = 0

⇒ ρi
ρj

=
1− ΩijKij

Γij

1 +
ΩijKij

Γij

=
1 +

~Ωij
2kBT

1− ~Ωij
2kBT

≈ exp

(
~Ωij

kBT

)
.

(A.64)

The steady state corresponds again to a thermal state up to first order for high temper-
atures. As in the special case before, putting friction to zero (Kij = 0) yields a steady
state with equal populations, which corresponds to the T → ∞ limit. If two states
couple equally to the modes, i.e. are degenerate eigenstates of Θ̂L, we get Γij = 0, and
the ratio of their populations is not determined at the steady state.
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A.4. Non-adiabatic effects in a frequency-comb-pumped cavity

We consider the retardation part of the force from Eq. (8.4b) in Sec. 8.2, which contains
only linear friction. This also captures cross-friction, i.e. friction felt by one atom caused
by another. As before we consider the friction force for different mode configurations.

For convenience, we define the single-particle damping rate µk = −8ωkR
η2∆cκ

(∆2
c+κ

2)2 , which

is positive for ∆c < 0. The recoil frequency ωkR = ~k2/(2ma) is given for a certain wave
number k.

Cosine mode

The retardation force on the jth particle is given by

Fj,ret = −µk sin(kxj)
∑
i

pi sin(kxi). (A.65)

For one atom it simplifies to

Fret = −µkp sin2(kx). (A.66)

Since sin2(kx) > 0 this always results in friction for µk > 0. Averaged over a uniform
distribution, we get a reduction by a factor 1/2. Trapped particles spend much more
time close to the zeros of the sine, and thus the reduction of friction due to the space
dependence can become much larger.

We now switch to the case of two atoms. The force on atom 1 is given by

F1,ret = −µk[p1 sin2(kx1) + p2 sin(kx1) sin(kx2)]. (A.67)

The first term is again the self-friction described above. The second term describes
cross-friction, i.e. friction (or heating) of atom 1 due to atom 2.

The cross-friction term can be analyzed as follows (assuming µk > 0): If both particles
move into the same direction (p1p2 > 0), we get friction if sin(kx1) sin(kx2) > 0 and heat-
ing otherwise. For opposite directions (p1p2 < 0), there is friction for sin(kx1) sin(kx2) <
0. This cross-friction term is plotted in Figure A.1.

When the atoms are already trapped close to the potential minima, their motion can
be described by two-particle oscillations with an oscillation frequency ω and the relative
phase ∆Φ. They can be written as

x1(t) =A cos(ωt−∆Φ/2) (A.68a)

x2(t) =A cos(ωt+ ∆Φ/2) (A.68b)

or

xcm(t) =
1

2
(x1(t) + x2(t)) = A cos(ωt) cos(∆Φ/2) (A.69a)

xrel(t) =
1

2
(x1(t)− x2(t)) = A cos(ωt) sin(∆Φ/2). (A.69b)
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(a1) (a2)

(b1) (b2)

Figure A.1.: Collective potential and cross-friction in arbitrary units for two atoms at
positions x1 and x2. Top: A single cosine mode yields (a1) the potential
energy − cos(kx1) cos(kx2) and (a2) the cross-friction sin(kx1) sin(kx2).
Bottom: A pair of cosine and sine modes gives rise to (b1) the potential
energy − cos(k(x1− x2)) and (b2) the cross-friction cos(k(x1− x2)). The
black lines and dots denote the minimum of the potential energy, while
the blue lines denote the zeros of the potential energy.
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A.4. Non-adiabatic effects in a frequency-comb-pumped cavity

The distinct oscillation modes are the center-of-mass (c-o-m) mode ∆Φ = 0, the relative
mode ∆Φ = π and the “plus” radial mode ∆Φ = π/2 and the “minus” radial mode
∆Φ = −π/2.

In the vicinity of the potential minima, the center-of-mass oscillations (p1p2 > 0,
∆Φ = 0) through the minimum are in the area where sin(kx1) sin(kx2) ≥ 0, and thus they
are damped. In Fig. A.1 depicting the configuration space, the c-o-m mode corresponds
to movement along the diagonal. Relative oscillations (p1p2 < 0, ∆Φ = π) through the
minimum are also damped, since sin(kx1) sin(kx2) ≤ 0 along the anti-diagonal. The
radial oscillation modes are heated by cross-friction, and at the vicinity of the minima
they totally compensate self-friction, leaving the radial modes undamped. In Fig. A.1,
they correspond to circular orbits around the trapping point. The heating due to cross-
friction can be understood by the fact that atoms in radial modes move in the same
direction (p1p2 > 0) in the sin(kx1) sin(kx2) < 0 regions, while they move in opposite
directions (p1p2 < 0) in the sin(kx1) sin(kx2) > 0 regions. These undamped radial modes
have also been observed in Ref. [A.12] for longitudinal pumping.

Cosine and sine mode

For a cosine and a sine mode with the same frequency, as described in Sec. 8.2, we get
a retardation force depending on the distance only

Fj,ret = −µk
∑
i

pi cos(k(xi − xj)). (A.70)

For one atom this yields

Fret = −µkp. (A.71)

Compared to the single-mode case, the force on one atom is uniform in space. The
averaged friction force is twice as strong as in the single-mode case. Note however, that
we also pump two modes and thus we use twice as much pump power. The intra-cavity
intensity, though, is the same as in the single-mode case.

For two atoms we obtain for the force on atom 1

F1,ret = −µk[p1 + p2 cos(k(x1 − x2))]. (A.72)

Again, the cross-friction part cos(k(x1 − x2)) is shown in Fig. A.1. Interestingly, it has
the same form as the potential, in contrast to the single mode case. In the vicinity
of the trapping region it is always 1. Going through the same arguments as for the
single-mode case, we conclude that the center-of-mass motion is damped, while the
relative oscillations are not damped. A similar result was obtained for a longitudinally
pumped ring cavity [A.13]. The radial oscillations have no cross-friction contribution
when averaged over one period, since atoms move as much together as against each
other in one cycle. Thus only self-friction is left in this case.
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Frequency comb

In the dense mode regime Laδk/(2π) � 1 (see Sec. 8.2), the retardation force again
resembles the two-mode case

Fj,ret = −µk0

1

2

∑
i

pi
∑
m

m2 cos(km(xi − xj)) (A.73)

with an additional sum. The summation again goes from 1 to M , thus the factor 1/2.
The mode index m = km/k0 does not vary much for ∆k/kc � 1, which is typically the
case.

For one particle we obtain

Fret = −µk0

1

2
p
∑
m

m2 ≈ −µkc
M

2
p, (A.74)

neglecting corrections of the order O((∆k/kc)
2). The self-friction is thus the same as in

the two mode case for equal total pump strength.
For two particles, the force on particle 1 is

F1,ret = −µk0

2
[p1

∑
m

m2 + p2

∑
m

m2 cos(km(x1 − x2))]. (A.75)

Compared to the case of two modes, we see that the cross-friction coefficient decreases
with the inter-atomic distance at a length scale 2π/∆k given by the bandwidth, compa-
rable to the trapping potential.
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B.1. Letter

Cavity quantum electrodynamics (cavity QED) provides a conceptually simple and pow-
erful platform for probing the quantized interaction between light and matter [B.1]. Early
experiments opened a window into the dynamics of coherent atom–photon interactions,
first through observations of collective Rabi oscillations and vacuum Rabi splittings [B.2,
B.3, B.4, B.5] and later at the single-atom level [B.6, B.7, B.8, B.9, B.10, B.11]. More
recently, building on measurements of the cavity field via the atomic phase [B.12, B.13],
cavity photon statistics have been analyzed in experiments with Rydberg atoms or su-
perconducting qubits in microwave resonators [B.14, B.15, B.16, B.17], culminating in
the generation and stabilization of nonclassical cavity field states [B.18, B.19, B.20, B.21,
B.22, B.23, B.24]. These experiments operate in a dispersive regime, in which informa-
tion about the cavity field can be extracted via the qubits with minimal disturbance to
the field [B.1].

Dispersive experiments often operate in a regime in which one photon induces a sig-
nificant atomic phase shift, the so-called strong pull regime [B.25]. However, interesting
physical phenomena have also been explored with microwave cavities in the weak-pull
regime, in which the small phase shift allows partial information about the atomic state
to be acquired without collapse onto an eigenstate. Examples include the observation
of quantum trajectories [B.26], the stabilization of Rabi oscillations via quantum feed-
back [B.27], and the entanglement of remote qubits [B.28].

In parallel, it was pointed out that the Jaynes-Cummings Hamiltonian that describes
cavity QED also describes the interaction of light and ions in a harmonic trapping
potential [B.29]. This interaction underpins the generation of nonclassical states of mo-
tion [B.30, B.31, B.32, B.33] and the implementation of gates between trapped ions [B.34].
In analogy to the phase shifts experienced by qubits due to the cavity field, ions experi-
ence quantized ac Stark shifts due to their coupling to the harmonic trap potential [B.35].
These shifts have been characterized using techniques similar to those introduced in
Ref. [B.12]. Here, we have transferred the principle of dispersive measurement to an
ion qubit coupled to a cavity. In contrast to experiments with flying Rydberg atoms,
the ion is strongly confined; in contrast to both Rydberg and superconducting-qubit
experiments, our cavity operates in the optical regime.

We employ a single trapped 40Ca+ ion as a quantum sensor [B.36] to extract infor-
mation about cavity photons without destroying them. Via Ramsey spectroscopy of the
ion, we measure the phase shift and dephasing of the ion’s state, both of which result
from the interaction of the ion with the cavity field. The mean phase shift is proportional
to the mean cavity photon occupation number, due to the ac Stark effect, and the de-
phasing is due to the cavity photon state not being a pure number state. Reconstructing
the cavity photon-number distribution from these measurements allows us to determine
the mean and the width of the distribution and thus to distinguish between states with
coherent photon statistics and mixed thermal-coherent statistics.

The ion is modelled as a three-level system in which two states, |S〉 ≡ |42S1/2,mJ = +1/2〉
and |D〉 ≡ |32D5/2,mJ = +1/2〉, comprise a qubit (Fig. 1). The cavity is dispersively
coupled to the transition between |D〉 and the third state, |P 〉 ≡ |42P3/2,mJ = +1/2〉,
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Figure B.1.: (a) Experimental set-up. A single ion is coupled to the cavity, which is
driven by a weak laser field (cavity drive). The cavity drive laser (along ŷ)
is polarized parallel to the quantization axis, in the direction x̂+ ẑ. The
Ramsey spectroscopy laser propagates along −(ŷ + ẑ). Cavity output
photons are detected by a single-photon-counting module (SPCM). (b)
Energy level diagram of 40Ca+ with the relevant levels |S〉, |D〉, |P 〉,
|D′〉 ≡ |32D5/2,mJ = +3/2〉 and |P ′〉 ≡ |42P3/2,mJ = +3/2〉 of the ion.
The 42P1/2 and 32D3/2 manifolds are used for ion cooling and detection.
(c) Levels |D〉, |P 〉, |D′〉, and |P ′〉 experience photon-number-dependent
ac Stark shifts due to the cavity field, indicated in grey. The frequencies
of the bare cavity and the drive laser are ωC and ωL, respectively, and
∆ is the difference between ωC and the transition frequency from |D〉 to
|P 〉.

with a detuning ∆ = 2π × 125 MHz. The quantization axis is defined by a magnetic
field of 4.06 G in the plane perpendicular to the cavity axis. The relevant ion-cavity
parameters are given by (g, κ, γ) = 2π×(0.968, 0.068, 11.5) MHz, where g is the ion-
cavity coupling strength calculated from the cavity properties and the atomic transition,
κ is the cavity field decay rate, and γ is the atomic decay rate of state |P 〉. Here, we
assume that the ion is positioned at the waist and in an antinode of a TEM00 mode of
the cavity [B.37, B.38]. The expected frequency shift of the cavity resonance induced by
the dispersively coupled ion is g2/∆ = 2π×7.50 kHz, which is much smaller than κ, such
that we operate in the weak-pull regime [B.25, B.26]; see Supplemental Material B.2 for
further discussion of the choice of ∆. In this regime, the drive laser can be considered
to be resonant with the cavity, irrespective of the state of the qubit.

In order to probe the cavity field, the ion is first Doppler-cooled and optically pumped
to |S〉. As the first part of a Ramsey measurement, the qubit is then initialized in
a superposition of |S〉 and |D〉 by a π/2-pulse of the Ramsey spectroscopy laser at
729 nm. Next, we drive the cavity with a weak laser field with wavelength λL = 854 nm
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Figure B.2.: (a) Ramsey fringes for mean photon numbers 〈n〉 = 0 (black squares),
0.8(2) (purple circles), and 1.6(3) (blue triangles). The solid lines are si-
nusoidal fits (see Supplemental Material B.2) and error bars denote quan-
tum projection noise. (b) The phase shift of the Ramsey fringes as a
function of 〈n〉 for the transition |D〉 − |P 〉. Squares are experimental
data, while the solid line shows the theoretical model using the calculated
coupling strength g. The dashed line is a linear fit to the data, from which
gexp is extracted (see main text). (c) Ramsey fringe phase shift as a func-
tion of 〈n〉 for the transition |D′〉 − |P ′〉 with g′ = 0.82 g. (d) Contrast
of the Ramsey fringes as a function of 〈n〉 for the transition |D〉 − |P 〉.
The shaded area shows the contrast expected from the theoretical model
with gexp as input, including its uncertainty. (e) Contrast vs. 〈n〉 for the
transition |D′〉−|P ′〉. For (b)-(e), the plotted uncertainties in 〈n〉 are sta-
tistical and systematic uncertainties from the calibration of the photon
number. Systematic uncertainties in 〈n〉 are 20%. Error bars of fringe
shift and contrast are uncertainties of the fits to the Ramsey fringes.

for T = 50 µs. Note that the interaction time T is much larger than the cavity photon
lifetime of τC = 1/(2κ) = 1.2 µs, such that for a mean intracavity photon number of
〈n〉, 〈n〉T/τC photons on average successively interact with the ion. Note also that T
is much shorter than the coherence time of 950 µs on the |S〉–|D〉 transition [B.39].
The independently calibrated mean photon number 〈n〉 of the cavity field is set to a
value between 0 and 1.6(3), and the drive laser frequency ωL = 2πc/λL is resonant with
the cavity frequency ωC + 〈σD〉g2/∆, where ωC is the cavity resonance frequency when
no ion is coupled to the cavity, and σD is the operator for the ion population in |D〉.
Finally, a second π/2-pulse with variable phase φ completes the Ramsey measurement,
after which the qubit state is detected using laser fields at 397 nm and 866 nm [B.39].
The measurement is repeated 250 times for each phase to obtain the ion population in
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|D〉.
The mean population in |D〉 as a function of the phase φ is plotted in Fig. B.2(a)

for three values of 〈n〉. As 〈n〉 is increased, two features emerge: the Ramsey fringe is
shifted, and its contrast is reduced. The phase shift is directly proportional to 〈n〉, as
shown in Fig. B.2(b), with proportionality factor Tg2/∆. For 〈n〉 = 0.8(2) and 1.6(3),
the phase of the qubit is shifted by 0.57(3)π and 1.12(7)π, respectively. A single photon
only interacts with the ion during its time in the cavity, which has a mean value τC,
corresponding to a phase shift of the ion by τC g

2/∆ = 0.018π. The accumulated effect
of all successive photons injected into the cavity accounts for the total phase shift of the
qubit.

The measured phase shift as a function of 〈n〉 can be used to determine the ion-
cavity coupling strength. This method is independent of the single-atom cooperativity
and thus is valid also for systems in intermediate and even weak coupling regimes. In
such regimes, observing the vacuum Rabi splitting is not possible, making it difficult
to measure the coupling strength directly. As we have independently determined all
ion-cavity parameters and calibrated the photo-detection efficiency, we fit a theoretical
model to the data with the coupling strength as the only free parameter. In this way,
we extract the experimental value of gexp = 2π × 0.96(4) MHz from the data displayed
in Fig. B.2(b), in agreement with the theoretical value of g = 2π × 0.968 MHz. We
performed the same set of measurements on another 40Ca+ transition, using the states
|S〉, |D′〉 ≡ |32D5/2,mJ = +3/2〉, and |P ′〉 ≡ |42P3/2,mJ = +3/2〉 (Fig. B.2(c)); the
coherence time for the transition |S〉 − |D′〉 is 510 µs. For the transition |D′〉 − |P ′〉,
we expect g′ = 2π × 0.790 MHz and extract g′exp = 2π × 0.77(4) MHz. From the
two independent measurements on two transitions, we thus see that this new method
determines the atom-cavity coupling strength in agreement with theory.

In Fig. B.2(d), the fringe contrast, defined as the peak-to-peak value of the fringe di-
vided by twice the fringe offset, is plotted as a function of 〈n〉 for the transition |D〉−|P 〉
and in Fig. B.2(e) for the transition |D′〉 − |P ′〉. This definition of the contrast takes
into account that the midpoint of the fringe is not necessarily 0.5, due to spontaneous
emission (see Supplemental Material B.2). For |D〉 − |P 〉, the contrast decreases from
0.99(2) to 0.46(3) as 〈n〉 increases from 0 to 1.6. This reduction reflects the fact that the
intracavity photon number is inherently probabilistic, and in this case, for a coherent
drive, follows a Poissonian distribution. The corresponding photon-number fluctuations
in the cavity field lead to fluctuations of the qubit transition frequency through the
photon-number-dependent ac Stark shift. Note that the observed reduction of contrast
can, equivalently, be interpreted as a consequence of the qubit state being measured by
the cavity field [B.14, B.25]: Intracavity photons interact dispersively with the qubit
before leaking to the environment. The phase of the output photons thus carries infor-
mation about the qubit state that could be accessed, e.g., with homodyne or heterodyne
detection. All such quantum measurements imply some amount of backaction [B.25],
which in our case takes the form of qubit decoherence. Note that in the absence of a
cavity, photons would also induce an ac Stark shift of the ion’s states, but due to the
weakness of the free-space interaction, the effect would be too small to be measured at
the single-photon level.
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Spontaneous emission contributes to decoherence for both the cavity-drive measure-
ment of Fig. B.2 and free-space measurements. We quantify this effect in a reference
measurement using an “ion-drive” configuration: The cavity is translated by a few mm
along x̂ in order to decouple it from the ion. The ion is driven with a laser beam with
frequency ωL = ωC. We perform Ramsey measurements with the cavity interaction re-
placed by the interaction of the ion with this ion-drive laser. The Ramsey fringe contrast
is reduced due to off-resonant excitation of the population from |D〉 to |P 〉, followed by
spontaneous emission. Fig. B.3 compares the Ramsey fringe contrast as a function of the
phase shift for both the ion-drive and cavity-drive measurements. A given phase shift
corresponds to the same ac Stark shift at the ion in both measurements. The contrast
of the cavity-drive data is smaller than that of the ion-drive data because in the former
case, both spontaneous emission and decoherence induced by the cavity photons play
a role. We therefore conclude from this reference measurement that decoherence is not
just caused by spontaneous emission; rather, a significant contribution to decoherence
of the ion qubit stems from interaction with the cavity field via the backaction of the
cavity photons on the ion.

Next, we reconstruct the cavity photon number distribution with a maximum like-
lihood algorithm (see Supplemental Material B.2). This algorithm finds the photon
number distribution that is most likely to have interacted with the ion. It is based
on a model, in which the coherent cavity drive with mean photon number ncoh is de-
scribed by an amplitude η = κ

√
ncoh, and additional number fluctuations are described

by a thermal bath with mean photon number nth corresponding to an incoherent con-
tribution to the driving [B.40]. The photon number distribution of the intracavity field
is then determined by the two parameters η and nth. The result of the reconstruc-
tion is shown in Fig. B.4. For the three Ramsey fringes measured on the |D〉 − |P 〉
transition, displayed in Fig. B.2(a), the reconstruction yields a squared statistical over-

lap (SSO)
(∑

n

√
prec(n)pcal(n)

)2
between the reconstructed distribution prec(n) and

the independently calibrated input state distribution pcal(n) above 99% (Figs. B.4(a)-
(c)). The reconstructed state shown in Fig. B.4(a) corresponds to the vacuum state,
and the states in Fig. B.4(b) and (c) are coherent states, with Mandel Q parameters

Q =
(〈
n2
〉
− 〈n〉2

)
/ 〈n〉−1 of 0.00+0.02

−0.01, −0.03(7), and 0.04(5), respectively [B.41]. The

uncertainty of the reconstructed distribution is dominated by quantum projection noise
in the Ramsey measurement (see Supplemental Material B.2).

This reconstruction method is also applied to a fourth state which is generated by
applying amplitude noise to the cavity drive laser via an acousto-optic modulator. The
noise has a bandwidth of 10 MHz� 2κ and can therefore be considered as white noise.
The reconstructed state, shown in Fig. B.4(d), can be described by mixed coherent and
thermal statistics: From the calibration of the added noise (see Supplemental Material
B.2), a value of Q = 0.64(6) is expected, while the reconstruction yields Q = 0.70+0.07

−0.10.
The result thus shows super-Poissonian intracavity photon statistics caused by the added
thermal noise and is clearly distinct from the statistics of a coherent state. Note that
our sensing technique is nondestructive because the dispersive interaction with the ion
does not annihilate the measured intracavity photons.
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Figure B.3.: Ramsey fringe contrast as a function of phase shift for ion-drive (orange
circles) and cavity-drive (black squares; same data as in Fig. B.2(b) and
(d)) measurements on the |D〉–|P 〉 transition. The lines are theory curves,
using gexp for the cavity-drive data. The inset shows the ion-drive beam,
which propagates along x̂− ẑ and is polarized along x̂+ ẑ, along with the
Ramsey spectroscopy beam. The ion is decoupled from the cavity for the
ion-drive measurement.

An extension of this work would be to reconstruct the full density matrix of arbitrary
states of the cavity field. For this purpose, we require a displacement operation of the
cavity field, as has been demonstrated in microwave cavities [B.18]. With the target field
to be measured populating the cavity, a second field as a local oscillator would be sent to
the cavity. The total field interacting with the ion would be the sum of the known (local
oscillator) and unknown (target) fields, and by varying the known field and measuring
the state of the ion, one would be able to extract the full target field density matrix.

We have focused here on measuring the ion’s state to extract information about the
cavity field. However, the scenario can be reversed: quantum nondemolition measure-
ments of the ion’s state become possible in our setup via heterodyne measurement of
the cavity output field, allowing single quantum trajectories of the ion’s electronic state
to be monitored and the qubit state to be stabilized, as demonstrated with supercon-
ducting qubits [B.27, B.26]. Furthermore, the strong-pull regime (g2/∆ > κ) would be
accessible with a higher finesse cavity [B.25, B.26] (see Supplemental Material B.2). In
this regime, the qubit spectrum splits into several lines, each corresponding to a differ-
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Figure B.4.: Photon number distributions reconstructed from the measured Ramsey
fringes for intracavity mean photon numbers of (a) 0, (b) 0.8(2), and (c)
1.6(3) (blue bars), and the expected distributions (pink bars). The recon-
structed distributions yield mean photon numbers of 0.01+0.05

−0.02, 0.84(8),

and 1.49+0.05
−0.06. (d) Reconstructed distribution when the cavity is driven

with light of mixed coherent-thermal statistics with mean photon num-
ber 〈n〉 = 1.05+0.07

−0.11, yielding a reconstructed mean photon number of

〈n〉 = 1.12+0.14
−0.15. The squared statistical overlap between the reconstructed

distributions and the expected distributions is higher than 0.99 for (a)-(d).

ent photon-number component [B.15, B.42], providing a route to engineer nonclassical
cavity-field states in the optical domain. Other possible extensions include increasing
the sensitivity of the measurement by using several ions via their collective coupling to
the cavity [B.43] or via their entanglement [B.44].

In summary, we have implemented an ion-based analyzer for the statistics of optical
photons that does not destroy the photons. Information about the intracavity photon
number is imprinted onto the state of an ion qubit via a dispersive interaction. Ramsey
spectroscopy and the maximum likelihood method are used to reconstruct the intracavity
photon statistics, yielding results in excellent agreement with the expected distributions.
Our work represents the first such nondestructive probing of cavity photon distributions
in the optical domain, providing tools for the generation of nonclassical optical states.

This work has been financially supported by the Austrian Science Fund (FWF) through
Projects F4019, V252, M1964, W1259-N27, and F4013-N23; by the Army Research Lab-
oratory’s Center for Distributed Quantum Information via the project SciNet: Scalable
Ion-Trap Quantum Network, Cooperative Agreement No. W911NF15-2-0060; and by the
European Union’s Horizon 2020 research program through the Marie Sk lodowska-Curie
Actions, Grant No. 656195.
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B.2. Supplemental material

B.2.1. Modelling the system

Atomic levels

In order to calculate the theory lines in Fig. 2(b)-(e) in the main text, we consider the
following atomic basis states: |S〉 = |42S1/2,mJ = +1/2〉, |D〉 = |32D5/2,mJ = +1/2〉,
|P 〉 = |42P3/2,mJ = +1/2〉, and |S′〉 (see Fig. B.5), where |S′〉 is a dark state, which
collects spontaneous emission from |P 〉 to the second ground state |42S1/2,mJ = −1/2〉,
as well as to the states |32D5/2,mJ = −1/2〉, |32D5/2,mJ = +3/2〉, and the states in the
32D3/2 manifold. |S′〉 does not participate in the ion-cavity interaction and is not coupled
to the Ramsey spectroscopy laser. The manifolds involved in the process are displayed in
Fig. B.5(a). The total decay rate of state |P 〉 is ΓP = ΓPS+ΓPD+ΓPD3/2

= 2π×23 MHz,

with values ΓPS = 2π×21.4 MHz for decay from 42P3/2 to 42S1/2, ΓPD = 2π×1.34 MHz
for decay from 42P3/2 to 32D3/2, and ΓPD3/2

= 2π × 0.152 MHz for decay from 42P3/2

to 32D3/2. Taking into account the Clebsch-Gordan coefficients, the decay rates are
Γ|S〉 = 2/3 ΓPS = 2π× 14.3 MHz from |P 〉 to |S〉, Γ|S′〉 = 1/3 ΓPS + 3/5 ΓPD + ΓPD3/2

=
2π × 8.1 MHz from |P 〉 to |S′〉, and Γ|D〉 = 2/5 ΓPD = 2π × 0.54 MHz from |P 〉 to |D〉.

Hamiltonian

The Hamiltonian of the system is given by

HS/~ =ωDσD + (ωD + ωP )σP + ωCa
†a+ g (σPDa+ h.c.)

+
(
ηa†e−iωLt + h.c.

)
+
(
ΩσSDe

−iωRt + h.c.
)
.

Here, ωD corresponds to the energy of the level |D〉, ωP to that of |P 〉, σD(P ) is the
projection operator onto the state |D〉 (|P 〉), ωC is the cavity frequency, a is the annihi-

lation operator of the cavity mode, g is the ion-cavity coupling strength, σPD = σ†DP is
the transition operator between states |P 〉 and |D〉, η is the amplitude of the drive laser
in the cavity drive term, ωL is the frequency of the cavity drive laser, Ω is the Rabi fre-
quency of the laser on the |S〉–|D〉 qubit transition, σSD = σ†DS is the transition operator
between states |S〉 and |D〉, and ωR is the frequency of the Ramsey spectroscopy laser.
The energy of the ground state |S〉 is chosen as the energy reference. Fig. B.5(b) shows
the relevant states, frequencies and decay channels. This Hamiltonian is transformed
into a rotating frame via

HI = i~U̇U † + UHSU
†,

with a unitary operator

U = exp
[
i
(
ωRσD + (ωs + ωP )σP + ωPa

†a
)
t
]
.
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(a) (b)

Figure B.5.: Definition of the involved levels and transitions. (a) Levels and decay
channels considered in the model. Note that decay to 42S1/2 from 32D5/2

is not included, since the lifetime of the latter level of 1 s is much longer
than the duration of one experimental cycle. (b) Definition of the levels,
energies, detunings and decay constants in the model. Note that the decay
from |P 〉 to |S′〉 combines decay channels ending in 42S1/2, 32D5/2, and
32D3/2.

We thus obtain the Hamiltonian in the interaction picture as

HI/~ =∆DRσD + (∆PL + ∆CL + ∆DR)σP + ∆SS′σS′

+ ∆CL a
†a (B.1)

+ g
(
σPD a+ σDP a

†
)

+ η(a+ a†)

+ Ω (σSD + σDS) .

Here, ∆DR = ωD − ωR is the detuning between the Ramsey spectroscopy laser and the
|D〉–|S〉 transition, ∆PL = ωP−ωL is the detuning between the cavity drive laser and the
|P 〉–|D〉 transition, ∆CL = ωC − ωL is the detuning between the cavity drive laser and
the cavity mode, and ∆SS′ is the detuning between state |S〉 and the dark state |S′〉. In
the cavity drive term, the drive amplitude η for coherent driving on resonance, i.e., for
∆CL = 0, is given by η = κ

√
ncoh with ncoh the mean photon number and 2κ the decay

rate of the cavity photons. This relation can be derived from the Heisenberg-Langevin
equation for the cavity field a in steady state (cf. section I.C). The value of η used in
the simulation stems from the calibration of the mean photon number.
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In the dispersive regime ∆PL � g, the Hamiltonian can be approximated: Using the
transformation

U = e
g

∆PL
(σPDa−a†σDP )

and the Baker-Campbell-Hausdorff formula, and truncating the series at first order in
g/∆PL, one finds the transformed Hamiltonian

UHU †/~ ≈
(

∆DR − 2
g2

∆PL
a†a

)
σD

+

(
∆PL + ∆CL + ∆DR + 2

g2

∆PL

(
a†a+ 1

))
σP

+ ∆CLa
†a+ η

(
a+ a†

)
+ Ω (σSD + σDS)

+
ηg

∆PL
(σDP + σPD)

+
Ωg

∆PL

(
a†σSP + σPSa

)
.

The first two lines of this equation describe the ac Stark shift of the states |D〉 and |P 〉,
with the magnitude of the shift dependent on the dispersive shift per photon g2/∆PL

and the photon number operator a†a. The energy shift of the state |D〉, when time-
integrated during the interaction time, leads to the phase shift of the Ramsey fringe.
The detuning between cavity and atom ∆PL is denoted by ∆ in the main text and the
remainder of the supplemental material.

Master equation

The system evolution is calculated by numerically integrating the following master equa-
tion in Python, using QuTiP [B.45, B.46]. The master equation consists of four terms,
describing unitary evolution, atomic decay, cavity decay with rate κ, and incoherent
cavity driving, derived from a stochastic drive term [B.47, B.40]:

dρ

dt
=− i

~
[ρ,HI ] (B.2)

+
∑

i=D,S,S′

Γi
2

(
2σ−i ρσ

+
i − ρσ+

i σ
−
i − σ+

i σ
−
i ρ
)

+
κ

2

(
2aρa† − ρa†a− a†aρ

)
+ δn

([
[a, ρ] , a†

]
+
[[
a†, ρ

]
, a
])

The photons are described by a Fock state basis, truncated at n = 9. This number is
sufficient, since for the measured coherent states the mean photon number is below two,
which would correspond to a population of below 2 · 10−4 for the Fock state |n = 9〉. In
the experiment, the incoherent drive is implemented by adding white amplitude noise

165



B. Publication: Ion-based quantum sensor for optical cavity photon numbers

to the RF-amplitude for the acousto-optic modulator of the cavity drive beam. The
bandwidth of the frequency generator used for generating the noise reaches from DC to
10 MHz. Since the full cavity linewidth is only 2κ = 2π×136 kHz, this can be considered
white noise.

Expanding the last term of Eq. B.2 and combining it with the cavity-decay term, we
get:

κ+ δn

2

(
2aρa† − ρa†a− aa†ρ

)
+
δn

2

(
2a†ρa− ρaa† − aa†ρ

)
,

which corresponds to thermal driving of the cavity [B.48] with a thermal bath with mean
photon number nth = δn/κ. Since the coherent and incoherent drive do not interfere,
the total mean photon number is given by the sum of the coherent and incoherent
contributions as 〈n〉 = ncoh + nth.

Second transition |D′〉–|P ′〉

For simulating the second transition, (data in Fig. 2(c) and (e) of the main text), the
following parameters need to be changed: g is replaced by g′, and due to the different
Clebsch-Gordan coefficients, only the following decay channels exist: Γ|S′〉 = 11/15 ΓPD

for decay from |P ′〉 to the dark state |S′〉, and Γ|S〉 = ΓPS for decay from |P ′〉 to |S〉.
Γ|D〉 is replaced with Γ|D′〉 = 4/15 ΓPD for decay from |P ′〉 to |D′〉. Note that for this
transition, |P ′〉 has no allowed decay to the second ground state |42S1/2,mJ = −1/2〉.
In Eq. B.1, D is replaced by D′ and P by P ′. Note also that the photon polarization is
the same for both transitions |D〉–|P 〉 and |D′〉–|P ′〉.

B.2.2. Reconstruction algorithm

In order to reconstruct the photon number distribution in the cavity (Fig. 4 in the main
text), we first define a likelihood function [B.49] as

L (η, δn) =
N∏
k=1

[Pk (η, δn)]fk (B.3)

× [1− Pk (η, δn)]1−fk × const.

In this formula, N = 51 is the number of points per Ramsey fringe, fk is the measured
probability to find the ion in |D〉 for point k in the fringe, Pk is the excitation probability
expected from solving the master equation with the cavity drive parameters η and δn as
input, and const is a scaling factor. The quantity L describes the likelihood to observe
the measured result (given by fk) for certain parameters (η, δn), based on the model
of the system (given by Pk(η, δn)). The parameters that best describe the data are
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obtained by maximizing the likelihood or its logarithm

log [L (η, δn)] =
N∑
k=1

(
fk log [Pk (η, δn)] (B.4)

+ (1− fk) log [1− Pk (η, δn)]
)

+ const.

In order to obtain Pk for a given set (η, δn), we numerically integrate the master equation
Eq. B.2. The number N was chosen such that there are a sufficient number of points for
the sinusoidal fits to the Ramsey fringes.

The iterative algorithm for maximizing the likelihood function runs as follows:

1. Integrate Eq. B.2 for given values of η and δn.

2. Calculate the likelihood function using Eq. B.4.

3. Change η and δn and repeat.

This sequence is iterated until the maximum value of the likelihood has been found in a
Nelder-Mead simplex optimization. The corresponding values of ηopt and δnopt are the
most likely ones to explain the measured data, and the reconstructed photon number
distribution is given by the corresponding diagonal elements p(n) of the cavity density
matrix obtained from integrating the master equation with ηopt and δnopt as input.

B.2.3. Photon number calibration

We independently calibrated the intracavity mean photon number to be able to compare
the reconstructed photon number distribution with the expected values. Given the
probability for a photon to leave the cavity through the output mirror of pout = 11(2)%,
which corresponds to a total photon detection efficiency ε = pout× ζ = 4(1)% (including
detector efficiency and optical loss in the path efficiency ζ), we calculate an expected
count rate of 2κ× pout × ζ = 38(8) kHz for the single-photon counting module (SPCM)
at the cavity output for a mean photon number of 〈n〉 = 1 in the cavity. This rate
corresponds to an expected number of counts of C0 = 475(100) during the interaction
time of τ = 50 µs. We take the cavity field build-up time into account by including a
correction factor c = 0.922, extracted from a simulation, and accordingly get a number
of counts of C1 = C0/c = 515(108) for the calibration. By measuring the output counts
C, we are thus able to calibrate the mean photon number in the cavity field for a given
input power as 〈n〉 = C/C1.

B.2.4. Fit model

For analyzing the Ramsey fringes, we use a fit model of the following form:

E(φ) = B +A · cos (π (φ− φ0))

Here, E(φ) stands for the excitation of the ion to the state |D〉 (or |D′〉), φ for the phase
of the second Ramsey pulse with respect to the first one, A is the amplitude of the
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fringe, φ0 the fringe shift, and B is the offset of the fringe. The contrast is calculated as
2A/(2B), with 2A the peak-to-peak value of the fringe and 2B the maximum possible
peak-to-peak value. This definition takes into account that spontaneous emission reduces
the fringe offset to B < 0.5, leading to a maximum possible peak-to-peak value of the
fringe of 2B, as the minimum value is zero and the midpoint of the fringe is B. We
include the spontaneous emission from the excited state |P 〉 by making the offset B
dependent on the off-resonant excitation to state |P 〉 (or |P ′〉). B therefore has to be
recalculated for each value of 〈n〉 as

B = B〈n〉=0 · exp
(
−Γ|S′〉pP (′) 〈n〉 τ

)
Here, pP (′) = 2g2〈n〉/

(
Γ2
|D(′)〉 + ∆2

)
is the probability to off-resonantly excite the ion

from |D〉 (|D′〉) to state |P 〉 (|P ′〉), and B〈n〉=0 = 0.4915 is the maximum offset achievable
for the given coherence time and 〈n〉 = 0. This number is half of the maximum achievable
excitation of a single Doppler-cooled ion.

The phase offset of −0.12(1)π for 〈n〉 = 0, obtained from the fit, is due to an ac Stark
shift of the ion levels, caused by the non-zero spatial overlap of the ion wave packet and
a laser field at 783 nm used to actively stabilize the cavity length; this field populates a
TEM01 cavity mode [B.50].

B.2.5. Uncertainty analysis of the reconstructed photon statistics

The uncertainties of the reconstructed photon number distributions are determined by
quantum projection noise [B.51] in the Ramsey measurement. The following method
is used to estimate the uncertainties of the reconstructed states shown in Fig. 4 of the
main text.

1. For a given Ramsey fringe, the maximum likelihood method returns the parameter
set (ηopt, δnopt), which determines the corresponding photon number distribution.

2. A Monte-Carlo simulation is executed to obtain a random Ramsey fringe which
takes into account the quantum projection noise: The ion populations of this
fringe are based on the measured ion populations with additional noise following
a binomial distribution with 250 cycles used in the experiment.

3. We reconstruct (ηi, δni) from the Ramsey fringe obtained in Step 2. The index i
indicates the iteration number in the Monte Carlo simulation.

4. Steps 2 and 3 are repeated until the standard deviations of all calculated numbers
(ηi, δni) have converged according to the criterion that the standard deviation
as a function of the number of samples varies less than 5%. The uncertainties
(∆η, ∆δn) are then set to the values of the standard deviations. The mean of the
obtained ηi and δni is ηopt and δnopt.

5. The upper limit of the reconstructed distribution is given by (η + ∆η, δn+ ∆δn),
and the lower limit by (η−∆η, δn−∆δn). The uncertainties of the mean photon
numbers 〈n〉 and Mandel Q parameters are calculated by propagating these values.
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Figure B.6.: Ramsey fringe when the cavity is driven with a coherent field with addi-
tional white noise. The black circles are data points and the red line is
a sinusoidal fit to the data. From the fit, a phase shift of 0.71(2)π and a
contrast of 0.57(3) are extracted. The error bars are quantum projection
noise. (inset) Photodiode measurement of the cavity input field.

B.2.6. Driving the cavity with additional amplitude noise

We estimate the intracavity field from a calibration measurement of the cavity drive beam
(inset of Fig. B.6) with a photodiode. In the photodiode signal, there is a contribution
from the coherent statistics, which is calibrated independently (see Sec. B.2.3), and
a noise contribution with thermal statistics. The coherent statistics is determined by
the coherent amplitude η, while the thermal part is described via the mean thermal
photon number nth = δn/κ. By dividing the voltage on the photodiode into the offset
part (coherent statistics) and oscillations on top (thermal part), we can calibrate δn
as a function of the amplitude VAC of the oscillations: we first extract the conversion
factor SV between photodiode voltage and SPCM counts, as C = SV · VDC, where C
is the number of measured counts in the SPCM and VDC is the voltage measured on
the photodiode for coherent driving. Next, we can calculate the noise contribution via
δn = κSVVAC/C1, using the fact that the number of SPCM counts originating from the
thermal part is proportional to VAC. In this way, we calculate the mean coherent and
thermal photon numbers of the expected as ncoh = 0.64(14) and nth = 0.44(9), both of
which agree with the reconstructed values ncoh, rec = 0.68(16) and nth,rec = 0.47(15).

B.2.7. Phase resolution of the Ramsey measurements

The phase resolution δφ of our Ramsey measurement is limited by quantum projection
noise [B.51] in the measurement of the ion’s state. In order to estimate δφ, we start
by simulating a single reference fringe for a mean photon number 〈n〉 = 1 with N
phase values, by numerically solving the master equation Eq. B.2. Using the excitation
probability Qk for a given phase φk in this fringe, we draw a random sample mk with a
probability Πk given by the binomial distribution

Πk(mk) =

(
M

mk

)
QMk (1−Qk)M−mk ,
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where M = 250 is the number of repetitions for measuring the ion excitation and mk

is the number of times that the ion is found in the excited state |D〉 out of M trials.
The excitation of the ion to state |D〉 is then calculated as pk = mk/M (corresponding
to the values fk in Eq. B.4). This is repeated for all N phase values φk used in the
real measurement. Next, we extract the phase shift of this simulated fringe, by fitting a
sinusoidal function to the simulated data pk vs. φk. This procedure is repeated 50, 000
times and we obtain a distribution of extracted phase values with a standard deviation
σφ. We define the phase resolution as δφ = 2σφ, since this is the minimum distance
between two phase distributions that are distinguishable. A value of δφ = 0.011π is
found. Translating this result into a resolution of the mean photon number via

δφ =
g2

∆
τ δn̄,

we find values of δn̄PD = 0.013(5) for the |D〉–|P 〉 transition and δn̄P ′D′ = 0.020(8) for
the |D′〉–|P ′〉 transition. In other words, it is possible to distinguish the phase shift of
the qubit Bloch vector for cavity field states, whose mean photon number is different by
just δn̄PD or δn̄P ′D′ , respectively.

B.2.8. Choice of experiment parameters

The detuning ∆ and interaction time τ are chosen in the following way:

1. First, τ is fixed. We require τ to be short enough that the measured Ramsey fringe
contrast is not significantly reduced due to noise sources that become significant
on this time scale, but long enough that we can consider the cavity field to be
in steady state, that is, longer than the build-up time of the cavity field. In our
case, τ = 50 µs is chosen to be much shorter than the coherence time of 950 µs of
the ion qubit (due to magnetic field fluctuations) and much longer than the cavity
build-up time of 1.7 µs, extracted from a numerical simulation of our cavity. For
this value of τ , we observe a Ramsey fringe contrast of 99(2)% with no photons in
the cavity.

2. Next, the maximum intracavity photon number 〈n〉max is chosen for the planned
set of measurements. Here, we wanted to observe the contrast reduction and
phase shift at the single-photon level up to values beyond 〈n〉 = 1, so we chose
〈n〉max = 1.5.

3. Finally, ∆ is fixed. For a given value of 〈n〉, as ∆ is reduced, the Ramsey fringe
contrast is also reduced due to the increased rates of measurement-induced de-
phasing and spontaneous emission. If ∆ is too small, it will not be possible to
distinguish the contrast for 〈n〉max from noise. On the other hand, increasing ∆
extends the range of observable photon numbers, but at the cost of reduced sensi-
tivity to changes in contrast and phase as a function of photon number. We chose
the detuning ∆ = 2π ·125 MHz, corresponding to a contrast of 0.5 for 〈n〉max = 1.5.
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Note that in our experiment, uncertainties in the measured Ramsey fringe contrasts
and phase shifts stem from quantum projection noise [B.51]. For each phase in the
Ramsey fringe of Fig. 2(a) in the main text, the measurement was repeated 250 times,
corresponding to a total data acquisition time of several hours. With these statistics,
the signal-to-noise ratio (SNR) of the Ramsey fringe, defined as the ratio of the root-
mean-square of the ion excitation data in the fringe to the mean quantum projection
noise, decreases from 30 for the fringe with 〈n〉 = 0 to 16 for the fringe with 〈n〉 = 1.6.
Our choice of a contrast of 0.5 for the maximum mean photon number was therefore
conservative: We could have chosen a lower value for ∆ and accepted a lower SNR.
Also, acquiring more data to reduce the statistical uncertainty would have given us even
more room to reduce ∆. However, this approach becomes more challenging for longer
measurement times in view of experimental drifts.

It is also worth noting that the ratio of the spontaneous emission rate γsp = γ〈n〉g2/∆2

and the rate of measurement-induced dephasing in the weak-pull regime [B.25] γm ∝
〈n〉g4/(κ∆2) is independent of ∆ and proportional only to the mean photon number and
the cooperativity: γm/γsp ∝ 〈n〉g2/(κγ). For this reason, increasing ∆ does not enhance
the relative strength of the measurement-induced dephasing effect with respect to the
contrast reduction due to spontaneous emission.

B.2.9. Strong-pull regime in an optical cavity

We estimate that it would be possible to reach the strong-pull regime (g2/∆ > κ) in the
optical domain with state-of-the-art mirrors. Ref. [B.52] reports a measurement of high-
reflectivity mirrors with transmission T = 5 · 10−7 and scattering and absorption loss of
A = 1.1·10−6 per mirror for wavelengths near 850 nm, corresponding to a finesse of 2·106.
For a cavity with such mirrors and the length of our cavity of 19.98 mm, a photon lifetime
of τc = 42 µs is expected, while the one-sided output coupling T/(2T + 2A) = 16% is
comparable to that of our cavity.

In this regime, we would need to modify the procedure of Sec. B.2.8 because our
experimental goal would be different. The goal of the measurements presented in the
main text is to observe the evolution of the Ramsey fringe contrast and phase shift
over a range of intracavity photon numbers. In contrast, the strong pull regime offers
a setting in which one could resolve a splitting of the qubit transition corresponding to
the different photon number states in the cavity field [B.25]. In this way, it would be
possible to project the cavity field onto a particular number state via measurement of
the ion state.

The question then becomes: For given values of g and κ corresponding to a particular
experimental implementation, what values of ∆ satisfy the strong-pull condition while
allowing the dispersive frequency shift χ = g2/∆ to be resolved via qubit spectroscopy
within the cavity lifetime?

We consider that an ion is initially prepared in |S〉 and is coupled to the cavity field
on the |P 〉− |D〉 transition for an interval τ1. During this interval, the ion is driven by a
classical laser field (which we refer to as a spectroscopy laser) on the |S〉−|D〉 transition.
Subsequently, for an interval τ2, state detection with 397 nm and 866 nm laser fields
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is used to determine whether the ion is in |S〉 or |D〉. Performing this measurement
for different detunings of the spectroscopy laser would allow one to resolve the photon
number-state splitting.

For a projective measurement that collapses the cavity field onto a nonclassical state,
the total interval τ1 + τ2 must be shorter than the cavity lifetime. As an initial estimate,
we neglect τ2 and choose the longest possible interval for the ion interaction with the
cavity field, that is, by setting τ1 = τc = 42 µs. The frequency resolution of the
spectroscopy laser is then given by 2π/τ1 = 2π · 24 kHz. This frequency resolution must

be narrower than χ, thus constraining our choice of ∆: ∆ < g2τ1
2π . A second bound

corresponds to the strong-pull condition: ∆ < g2

κ .
Table B.1 lists values for g corresponding to both the 40Ca+ transition used in the

main text and to the D2 line in neutral 133Cs. In 133Cs, the qubit would be comprised
of the states |62S1/2, F = 3,mF = 3〉 and |62S1/2, F = 4,mF = 4〉, and a microwave field
or an optical Raman transition would be used to probe the qubit transition. Here, we
assume that the cavity lifetime is τc and that the mirror radii of curvature are identical to
those of our current cavity, yielding the same mode volume. We see that the first bound
corresponds to ∆ < 2π·39 MHz for 40Ca+ and to ∆ < 2π·164 MHz for 133Cs. The second
bound corresponds to ∆ < 2π · 490 MHz for 40Ca+ and to ∆ < 2π · 2 GHz for 133Cs.
In both cases, the first bound is the infimum and thus the relevant bound. This bound
also corresponds to an optimum point for experiments, since decreasing ∆ further will
increase the effective spontaneous emission rate, broadening the spectroscopic signal.
Note that g can be further enhanced by taking advantage of collective atom-cavity
coupling.

Finally, we return to the question of ion state detection in the interval τ2. Detecting
the state of the ion was achieved with current technology in 10.5 µs with 99% readout
fidelity [B.53, B.54]; the detection time can be made faster or slower depending on the
fidelity requirement. We thus see that including realistic values for τ2 in the estimate
above will lower the upper bound on ∆ by about 25%.

Table B.1.: Estimation for the strong-pull regime in atom-cavity systems. For
40Ca+, the |D〉 − |P 〉 transition from the main text was considered,
while for 133Cs we considered the transition |62S1/2, F = 4,mF = 4〉 −
|62P3/2, F

′ = 5,m′F = 5〉.
Species 40Ca+ 133Cs

Wavelength (nm) 854 852
g/2π (MHz) 0.968 2.0
γ/2π (MHz) 11.5 2.6
κ/2π (kHz) 1.9 1.9
∆/2π (MHz) 39 164
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[3.10] S. B. Jäger, S. Schütz, and G. Morigi, “Mean-field theory of atomic self-
organization in optical cavities,” Physical Review A, vol. 94, no. 2, p. 023807, 2016.

179



Bibliography
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[5.6] J. Asbóth, P. Domokos, H. Ritsch, and A. Vukics, “Self-organization of atoms in
a cavity field: Threshold, bistability, and scaling laws,” Physical Review A, vol. 72,
no. 5, p. 053417, 2005.
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