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Zusammenfassung

Die mechanische Wechselwirkung zwischen neutraler Materie und elektromagneti-
scher Strahlung bildet die Grundlage vieler Standardverfahren der modernen Physik
mit Anwendungen in Biologie, Chemie und Medizin. Die vielseitige Natur dieser
Lichtkräfte birgt jedoch weiterhin Raum für unerforschte Phänomene und neue
Erkenntnisse. Die vorliegende Arbeit behandelt zwei unterschiedliche Teilaspekte
dieses spannenden Themenkreises.
Der erste Teil widmet sich der komplexen Dynamik mehrerer Teilchen, welche

gemeinsam mit dem selben Lichtfeld wechselwirken. Dabei bedienen wir uns eines
etablierten Modells, bei dem die einzelnen Teilchen als Strahlteiler (beam splitter)
angenommen werden, sodass die Wechselwirkung mit einer einfallenden ebenen
Welle in einem eindimensionalen Aufbau über Transfermatrizen beschrieben werden
kann. Dieses Modell hat den großen Vorteil, dass die Lichtkräfte auf die einzelnen
Strahlteiler mit Hilfe des Maxwell’schen Spannungstensors exakt berechnet werden
können. Dies erlaubt die selbstkonsistente Beschreibung eines Systems, bei dem
einfallende Lichtstrahlen Kräfte auf Teilchen ausüben, diese dabei das Licht jeweils
unterschiedlich streuen sodass sich wiederum die Kräfte auf das gesamte Ensemble
verändern.

Das beschriebene Transfermatrix-Modell wurde ursprünglich für Atomwolken
in optischen Gittern entworfen. In der vorliegenden Arbeit wird untersucht, wie
dieses Modell zur Beschreibung der Lichtkräfte im Inneren eines ausgedehnten
Dielektrikums verwendet werden kann. Dabei zeigt sich, dass es durch eine geeignete
Wahl eines einzelnen Kopplungsparameters möglich ist, die optischen Eigenschaften
eines homogenen Mediums exakt durch eine Abfolge unendlich vieler Strahlteiler
wiederzugeben. Da die Kräfte auf die einzelnen Strahlteiler bekannt sind, lassen sich
so auch die optischen Kräfte im Inneren des Mediums berechnen.

Die selbstkonsistente Natur des Transfermatrix-Modells erlaubt es schließlich, die
aus den Lichtkräften im Inneren eines Mediums resultierenden Verformungen zu be-
rücksichtigen. Wir zeigen, wie es nach dem Einschalten eines externen Laserstrahls zu
Dichtemodulationen innerhalb eines ursprünglich homogenen Dielektrikums kommt,
welche nicht nur zur Dehnung oder Kontraktion des Mediums führen können, sondern
auch die Eigenschaften eines solchen Mediums in einer optischen Falle beeinflussen.
Die so gewonnenen Erkenntnisse haben nicht nur Auswirkungen auf akademische

Grundsatzfragen zur Natur der Strahlungskräfte in polarisierbaren Materialien,
sondern betreffen auch angewandte Forschung im Bereich der Biologie und der
Medizin, wo die elastischen Eigenschaften biologischer Zellen und ihre Erforschung
mithilfe optomechanischer Methoden von großem Interesse sind.

Auf die ursprünglichen Anwendung hinter der Transfermatrix-Methode auf Atom-
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Zusammenfassung

wolken in optischen Gittern bezieht sich ein weiterer Teilaspekt dieser Arbeit, bei
dem eine neue Methode zum Fangen von Teilchen in zwei gegenläufigen Wellen
orthogonaler Polarisierung beschrieben wird. Im Gegensatz zu den üblichen opti-
schen Gittern, bei denen sich die Teilchen durch ein vorgegebenes Potential bewegen,
erzeugen die Strahlteiler hier selbst ihre Falle aus mehrfach gestreutem Licht. Diese
Ergebnisse sind für die weitere Erforschung und Manipulation von Atomwolken oder
polarisierbaren Nanoteilchen von großem Interesse.

Im zweiten Teil der vorliegenden Arbeit werden die mechanischen Lichteffekte auf
Atome in thermischen Strahlungsfeldern beleuchtet. Experimente zu Lichtkräften
setzen üblicherweise auf Laserlicht, da dieses besser kontrollierbar ist und höhere
Intensitäten erlaubt. Dennoch ist es erstaunlich, dass Strahlungskräfte aufgrund
natürlicher, thermischer Quellen bisher so wenig Beachtung fanden, obwohl die
physikalischen Grundlagen zur Wechselwirkung zwischen Materie und Licht bei
inkohärenter und breitbandiger Strahlung natürlich genau so auftreten wie bei
Laserlicht. Daher entwickeln wir in dieser Arbeit ein Modell zur Beschreibung der
Strahlungskräfte zwischen einer heißen Kugel und einem Atom außerhalb dieser
Kugel.
Die dabei auftretende Gradientenkraft ist in guter Näherung proportional zur

vierten Potenz der Temperatur und kann für kleine Schwarzkörper die Gravitation um
einige Größenordnungen übertreffen. Trotz des unterschiedlichen Abstandsverhaltens
bleibt die Dominanz der strahlungsinduzierten Gradientenkraft auch für Ensembles
kleiner Schwarzkörper erhalten.
Der abstoßende Strahlungsdruck hängt stark vom Absorptionsverhalten der be-

teiligten Atome ab: so ergibt sich für Wasserstoff, dass der Strahlungsdruck für
Temperaturen unter einigen tausend Kelvin vernachlässigbar gering ist, während
beispielsweise Lithiumatome schon von wenige hundert Kelvin heißen Schwarzkörpern
abgestoßen werden.
In der vorliegenden Arbeit werden diese bisher weitgehend unbeachteten Kräf-

te anhand einfacher und allgemeiner Modelle untersucht. Besonderes Augenmerk
wird dabei auf mögliche Auswirkungen auf astrophysikalische Szenarien gelegt, wo
die Wechselwirkung zwischen aufgeheiztem Staub und Atomen, Molekülen oder
Nanopartikeln eine wichtige Rolle spielt.
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Abstract

The mechanical interaction between neutral matter and electromagnetic radiation
is the basis of many modern standard technologies in physics and beyond. But the
versatile nature of these light forces ensures that there remain many unexplored
phenomena. The present thesis treats two different aspects of this fascinating topic.
The first part addresses the complex dynamics of an ensemble of particles col-

lectively interacting with the same light field. To do so we use a well established
model describing the individual particles as beam splitters such that the interaction
with the incident plane waves can be described with a transfer-matrix approach, in a
one dimensional setup. This model has the great advantage that the light forces on
each particle can be exactly calculated using Maxwell’s stress tensor. This allows
for a self-consistent description of the system where incident light fields accelerate
individual particles, which in turn scatter the light and thus change the fields and
corresponding forces on the other scatterers.
Originally, this transfer-matrix model was developed to describe atom clouds in

one-dimensional optical lattices. In the present thesis we enhance this formalism
to describe the optical forces inside an extended dielectric. There we show how a
special choice of a single coupling parameter enables us to exactly reproduce the
optical properties of a homogeneous object in the limit of an infinite stack of beam
splitters. Since the force on each individual beam splitter is known we thus obtain
the correct volumetric force density inside the medium.
The self-consistent nature of the transfer-matrix formalism finally enables us to

incorporate the strain and deformation induced by the light forces inside the medium.
Sending a light field through an initially homogeneous dielectric then results in
density modulations which in turn alter the optical properties of this medium. We
can show how objects in various radiation fields contract or elongate and how this
affects the trapping properties of dielectric media in laser traps.

These results have implications on fundamental research on the nature of radiation
forces inside polarizable media as well as on applied technologies in Biology or
Medicine, where the elastic properties of biologic cells are routinely probed using
optomechanical methods.
In line with the original scope of the transfer-matrix model, i.e. atom clouds in

optical lattices, we also present a short work on a novel method to trap particles
in two counter-propagating waves of orthogonal polarization. In contrast to typical
optical lattices, where particles are trapped in a prescribed periodic potential, the
beam splitters here generate their own trap made of multiply scattered light. These
results are of great interest for future research and manipulation of atomic ensembles
or polarizable nanoparticles.

vii



Abstract

A second part of the present thesis is concerned with mechanical light-effects on
atoms in thermal radiation fields. Typical experiments on light forces use laser light
since its coherent nature allows for precise control and high local intensities. But yet
it is surprising that radiation forces from natural, thermal sources have received so
little attention yet, although the basic physical effects leading to the forces are the
same for every source of radiation. We therefore develop a model to describe the
radiation forces between a hot sphere and an atom outside that sphere.
For small blackbodies, the emerging gradient force is in good approximation

proportional to the fourth power of temperature and may surpass gravity by several
orders of magnitude. And despite a different distance behaviour this attractive
radiation-induced gradient force prevails also for ensembles of small blackbodies.

The strength of the more familiar repulsive scattering force strongly depends on the
absorption spectrum of the involved atoms: for hydrogen we find that the scattering
force can be neglected for thermal fields of temperatures below several thousand
Kelvin, but lithium atoms, for instance, are repelled even by blackbodies of several
hundred Kelvin.
In this thesis these so far widely ignored forces are discussed at hand of generic

models. A special emphasis lies on possible implications on astrophysical scenarios
where the interactions between heated dust and atoms, molecules or nanoparticles
are of crucial interest.
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1 General Introduction

The present thesis summarises my work on two different topics in the field of
mechanical light effects. The first part mainly concerns the internal strain and
deformation of an initially homogeneous dielectric due to local variations of radiation
forces. The second part explores the forces experienced by a polarizable particle in
the incoherent thermal field emitted by a small hot object.

Since the two topics are very distinct, this chapter will first provide a short overview
on the general field of optical forces. More specific introductions on the two topics
will follow in sections 1.2 and 1.3.

1.1 The physics and history of radiation forces in a nutshell
The first notion of radiation forces apparently came from Johannes Kepler (Kepler
1619) (as cited in (Aspelmeyer et al. 2013)) who noted that a comet’s tail always
points away from the sun. By the end of the nineteenth century, after the development
of classical electrodynamics, this idea was confirmed in experiments by Nichols and
Hull (Nichols et al. 1901) and Lebedev (Lebedev 1901). However, the measured forces
remained very minute and so it was not until after the invention of the laser that
Arthur Ashkin proposed and demonstrated the first optical trap of small particles
and laid the foundation of the field of optical manipulation (Ashkin 1970).
For objects small compared to the used wavelength, the processes leading to

radiation forces can be easily understood: first, there is a scattering force or radiation
pressure1 linked to the absorption of light. Whenever an object absorbs an incoming
photon it receives a kick of momentum ~k, where k is the wavevector of the photon.
After a while the object will spontaneously reemit one or several photons, but this
will happen in a random direction and will–on average–not produce a net recoil. The
scattering force is thus directly proportional to the absorption rate of photons and
their momentum. A beam of light will therefore push an object in the direction of
light propagation, i.e. the direction of the Poynting vector.
Simultaneously, an electric field applied to a small polarizable medium perturbs

the internal molecular structure and induces a dipole moment proportional to the
incident field. From the simple picture of a dipole consisting of two separated charges
it is apparent that a homogeneous electric field will generate a Lorentz force of
equal magnitude but opposing direction on both charges, hence the net force in

1 Note that the term radiation pressure is often used to describe the whole phenomenon of radiation
forces. In the present work radiation pressure shall be used only as a synonym for the scattering
force. Also note that we use the terms optical forces, light forces and radiation forces as synonyms,
even if the frequencies involved are not in the visible range of the electromagnetic spectrum.
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1 General Introduction

a homogeneous field is zero. An inhomogeneous field, however, will result in a
nonzero dipole or gradient force in the direction of the intensity-gradient of the
applied field. The probably most striking example of this force are optical tweezers
where the gradient force of a tightly focused Gaussian beam typically traps particles
at the intensity maximum, with a slight displacement due to the scattering force
component (Ashkin et al. 1986).
For larger objects both processes happen throughout the whole medium such

that the radiation field inducing forces in one volume element is influenced by the
presence of the surrounding medium. Therefore, radiation forces on larger objects
are generally not strictly separable into a scattering- and dipole-force component.

It is essential that the object in an optical trap is not a passive “victim” of radiation
forces but actively interacts with the electromagnetic field. In fact, it is just this active
interaction that creates the force. In theory, this fact is visible in the calculation of
forces using the Maxwell stress tensor where the self-consistent field is required to
calculate the resulting force. An exciting display of this feature is optical binding
where one trapped particle changes the surrounding field to modify the trapping
positions of subsequent particles (Čižmár et al. 2010).

Optical tweezers soon became a cross-disciplinary tool as the control and manipula-
tion of microscopic objects is of broad interest, especially in biology. If care is taken to
adjust the laser wavelength to a range of low absorption–the 1064 nm Nd:YAG-laser
is common–one can trap living cells, bacteria or viruses for long times without harm.
In combination with adequate visualisation techniques this allows one to study also
microchemical or mechanical processes within the object. A subject of continuous
research is also the improvement of the force measurement within the tweezers. The
high sensitivity achieved there is successfully used to probe material properties of
biological samples, Brownian motion, streaming properties in microfluidics, the forces
involved in molecular motors or the elasticity of DNA-strands (Ashkin 2006).
The explanation and examples above were given for micro- to nanometre sized

particles, but the most fundamental scientific progress was achieved on the atomic
level. Although the principles behind the forces remain the same, an accurate
quantum mechanical description of optical forces on atoms results in various effects
not found in the classical regime. For instance, the level structure of atoms and
molecules ensures that the absorption process involved in the scattering force is
possible only if the frequency and polarization of the incoming radiation matches an
atomic transition. This level structure is also responsible for the dispersive nature of
the dipole force which changes sign and pulls atoms towards intensity minima, if the
laser frequency is larger than the atomic transition energy.2 Also, when the dipole
force on atoms is expressed as a dynamic Stark-shift of the current atomic state, one

2 For typical macroscopic transparent materials this does not happen. The fact that an object
is transparent in the optical or infrared regime implies that the band gap of this material is too
large for these frequencies, otherwise the photons could be absorbed. Hence, when interacting with
a transparent object, laser light is always red detuned and the particle seeks maxima of intensity.
However, transparent objects can be drawn towards minimal intensity if the surrounding medium
has a higher refractive index.

2



1.2 A transfer-matrix approach to self-consistent optomechanical dynamics

has to keep track of the change of this state if the atom moves through the applied
resonant field. And, as a last but not exhaustive example of unique quantum effects
in radiation forces, also quantum fluctuations of the atom-field interactions can play
a crucial role (Cohen-Tannoudji 1992; Gordon et al. 1980).

It was soon discovered that the described features in combination with the Doppler
effect can be used to cool atoms (Dalibard et al. 1989; Hänsch et al. 1975) which
paved the way to today’s unmatched control of quantum systems. Using additional
evaporative cooling allowed for the creation of Bose-Einstein condensates (Anderson
et al. 1995; Davis et al. 1995) which have become such a standard tool of quantum
optics that their production process is hardly worth a sentence in many modern
experimental publications.

Another powerful tool is the optical lattice where atoms are trapped in the periodic
potential generated by a standing wave field. This allows the realisation of several
textbook experiments on quantum physics, simulations of condensed matter theories
and the exploration of exotic quantum states of bosonic and/or fermionic gases (Bloch
2005; Jessen et al. 1996).
The interactive nature of radiative forces mentioned earlier is the key element

of optical cavities, where the multiple interaction of atoms with the same photons
results in intriguing effects including, but not limited to, self-organisation of atoms
in light fields (Domokos et al. 2003; Ritsch et al. 2013).
To conclude this broad overview let us note that the techniques of atom optics

and the afore mentioned classical applications of radiation forces meet in the field of
optomechanics. One of the goals here is to cool nano- and micrometre-sized objects
to the lowest vibrational states to gain, for instance, new fundamental insights on
macroscopic quantum states as well as new highly sensitive measurement devices for
gravitational or magnetic fields (Aspelmeyer et al. 2013).

1.2 A transfer-matrix approach to self-consistent
optomechanical dynamics

Not long after the invention of optical traps it was reported that radiation forces of a
focused Gaussian beam deform the surface of water (Ashkin et al. 1973). Already in
this first publication the result was linked to the Abraham-Minkowski controversy on
the momentum of light propagating inside a dielectric medium. This famous dispute is
about the contradicting tensors proposed by Max Abraham and Hermann Minkowski
in the early twentieth century to extend Maxwell’s stress tensor to polarizable
media. One of the consequences is that the photon momentum inside a medium
of refractive index n reads ~k/n in Abraham’s version but n~k in Minkowski’s
description. More information on that topic, how these different momenta supposedly
affect the deformation of an object and various solutions to the problem can be found
in (Barnett et al. 2010; Pfeifer et al. 2007).
Aside from this disturbing fundamental question, the stress and deformation of

materials due to radiation forces is also an important topic for applications. As

3



1 General Introduction

mentioned above, optical tweezers are routinely used to test material properties of
biological samples. One result there is that highly elastic human red blood cells start
to stretch along the beam axis as soon as they are put in an optical trap (Guck et al.
2001; Singer et al. 2001). This effect is of great interest for medical usage as it might
lead to new diagnostic tools (Lee et al. 2007). Some numerical studies therefore
attempt to describe the deformation of biological objects, typically by calculating
alleged surface forces due to the jump of the photon momentum at the interface
between the sample and the surrounding water (Guck et al. 2001; Sraj et al. 2010).
In the first part of the present work we use a different approach to calculate

radiation force-distributions inside dielectric media. The used scheme was introduced
by Deutsch et al. to compute the propagation of plane electromagnetic waves through
a one-dimensional array of scatterers such as, for instance, thin atomic clouds or
micro-membranes (Asbóth et al. 2008; Deutsch et al. 1995). In this framework, each
scatterer is represented by a beam splitter partly reflecting, transmitting or absorbing
the incoming light. Fortunately, this process can be described using a transfer-matrix
model which allows for the fast calculation of the full, self-consistent dynamics of
multiple scattering.
We show that this scheme can be applied to extended dielectrics, since a dense

array of beam splitters with properly chosen parameters modifies the electromagnetic
field in the same way as a homogeneous dielectric of a given refractive index n. And
since the force on each slice is known we are able to calculate the optical force density
inside a dielectric medium. This force then generates local stress which in turn leads
to the deformation of an elastic object.
At the end of this first part, the transfer-matrix formalism is used to develop a

new and self-consistent trapping mechanism for polarizable particles illuminated by
two counter-propagating beams of orthogonal polarization and possibly different
wavelength. We also show how long-range interactions between different particles
in standard optical lattices can be triggered and tuned by additional, orthogonally
polarized beams.

1.3 Radiation forces induced by thermal light

Almost all the research mentioned above uses laser light to explore radiation forces on
atoms or microparticles. This is because the coherent nature of laser light allows for
the tight focusing needed in optical tweezers and the interference needed to generate
optical lattices. Also, the narrow linewidth of lasers is useful to control a setup by
addressing, for instance, only certain atomic transitions.

Kepler’s observation of the radiation pressure effects in comet tails however calls our
attention to the optical forces generated by natural sources of light. In astrophysics
it is well known that the scattering force is of great importance for the dynamics
of gaseous clouds or the stability of stars (Carroll et al. 1996). In atomic physics
thermal light fields usually play a role as an undesired source of blackbody Stark-
shifts, although some recent experiments try to probe atom-surface interactions due

4



1.4 Overview

to thermal near-fields (Obrecht et al. 2007).
And although the sometimes surprisingly versatile thermal emission from small

particles has been studied in various contexts (Reiser et al. 2013) the framework of
attractive gradient forces due to a finite source of thermal radiation has–at least to our
knowledge–not been studied yet. In the second part of this thesis we therefore draft
a simplified but generic description of the radiative interaction between polarizable
particles and spherical blackbodies.

1.4 Overview

This work is organised as follows: The first part is mainly devoted to the application
of a transfer-matrix model (Deutsch et al. 1995) to the trapping and deformation of
a one-dimensional object due to radiation forces. After a short heuristic introduction
in chapter 2, we show in a publication (Sonnleitner et al. 2011) reprinted in chapter 3
why an array of beam splitters is equivalent to a homogeneous dielectric.

In a second work presented in chapter 4 we extend the formalism to compute
the forces in inhomogeneous media (Sonnleitner et al. 2012). This allows us to
compute the interplay between optical forces and elastic back-action self-consistently.
In various examples for different setups, including objects in standing waves, two
orthogonally polarized beams and single beams, we show that the deformation of an
initially homogeneous medium depends strongly on the initial conditions, such that
both elongation and contraction is possible. Furthermore, our results are in stark
contrast to the results expected from a simplified notion of a surface force resulting
from a sudden jump in photon momentum.
In the preprint (Ostermann et al. 2013) presented in chapter 5 we use the beam

splitter formalism in its original scope of individual polarizable particles reshaping
their optical trapping fields. We present a setup where particles are exposed to two
non-interfering beams of orthogonal polarization and different frequency. Multiple
scattering between the beam splitters then results in a dynamic reorganisation process
where the particles finally trap themselves. We also show how a perturbative beam
can be used to mediate interactions between particles trapped in a standard optical
lattice.
The second part of this thesis presents our approach to describe the light forces

on an atom, molecule or Rayleigh scatterer in the incoherent thermal radiation
field of a spherical blackbody. In the introductory chapter 6 we present the basic
calculations on how a thermal light field affects an atom and what type of forces
arise if this thermal field has a finite source. These results are then extended in
the publication (Sonnleitner et al. 2013) reprinted in chapter 7 where we show that
the attractive gradient force outmatches both the repulsive radiation pressure and
gravity for a wide range of parameters.

Chapter 8 contains several additional calculations on this topic, such as an estima-
tion for the forces arising if the atom in the thermal field is replaced by a nanoparticle
described as a Rayleigh scatterer. We there also present an extensive calculation of

5



1 General Introduction

the self-consistent dynamics between small radiating blackbodies and an ensemble
of atoms or nanoparticles interacting both gravitationally and via attractive light
forces due to thermal radiation.
The thesis concludes with a curriculum vitae and a bibliography. The author’s

contributions to the publications reprinted in this thesis are indicated by a short
note at the beginning of each article.
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Part I

A Transfer-Matrix Approach to
Self-consistent Optomechanical

Dynamics
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2 Background: Multiple scattering
approach to optical manipulation of
elastic media

Imagine a plane electromagnetic wave travelling along the x-axis into a cloud of
polarizable particles. A fraction of that wave will be reflected, a fraction will be
absorbed and a third fraction will be transmitted and continues its way. If the
wave is travelling through an array of such clouds, these scattering events will occur
several times and the electromagnetic field will be reshaped by the presence of the
polarizable particles acting as beam splitters.

To describe this process we employ the macroscopic Maxwell equations in a region
without charges and derive

∇×∇×E + µ0∂
2
t D = 0 (2.1)

with the vacuum permeability µ0 and the electric displacement D related to the
electric field E and the polarizability P via D = ε0E + P. Assuming time harmonic
fields travelling along the x-direction we set E(x, t) = Re[E(x) exp(−iωt)ez].

As mentioned above and illustrated in figure 2.1, this wave shall propagate through
N identical clouds of particles with polarizabilities α such that P(x, t) = η(x)αE(x, t).
Within each cloud the particles shall be distributed according to a Gaussian distribu-
tion such that the total particle density reads

η(x) = η0

N∑

i=1

1√
2πσ2

e−
(x−xi)2

2σ2 . (2.2)

The total number of particles is then given as
∫∫∫

η(x)dxdydz = Nη0A, with A
denoting the area occupied by the clouds in y and z-direction. Equation (2.1) can
then be reduced to a scalar equation reading

(
∂2
x + k2)E(x) = −k2E(x)η0α

ε0

N∑

i=1

1√
2πσ2

e−
(x−xi)2

2σ2 . (2.3)

If the clouds are well localised we may use limσ→0(2πσ2)−1/2 exp(x2/(2σ2)) = δ(x)
to replace the Gaussian distributions with Dirac delta functions. In figure 2.2 we
show an example where this is valid for kσ < 1/20. Equation (2.3) then reduces
to (Deutsch et al. 1995)

(∂2
x + k2)E(x) = −2kζE(x)

N∑

i=1
δ(x− xi), (2.4)
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Figure 2.1 Schematic intensity profile of a plane wave interacting with Gaussian clouds
of polarizable particles (grey shades) localised at x1, . . . , x5.

where we defined a coupling parameter ζ := kαη0/(2ε0). This description has the
clear advantage that the solutions in the regions xi < x < xi+1 are simple plane
waves. The role of the beam splitters at xi is to impose the boundary conditions
limx↑xi E(x) = limx↓xi E(x) and limx↑xi E

′(x) = limx↓xi E
′(x) + 2kζ limx↓xi E(x) for

i = 1, . . . , N . These boundary conditions can be reshaped into matrix equations
which are the foundation of the multiple scattering transfer matrix model (Asbóth
et al. 2008; Deutsch et al. 1995; Ostermann et al. 2013; Sonnleitner et al. 2011,
2012; Xuereb et al. 2009). More details are given in the publications presented in
the upcoming chapters 3 and 4, in this chapter we focus on a phenomenological
introduction.

In an experiment, the parameter ζ can be calculated after measuring the reflectivity
R := Ireflected/Iincoming and the transmittivity T := Itransmitted/Iincoming of a beam
splitter as

Re ζ = ±
√

(1 +R+ T )2 − 2(R2 + T 2 + 1)
2T , Im ζ = 1−R− T

2T . (2.5)

We see that Im ζ is proportional to the amount of light being neither reflected nor
transmitted. Thus Im ζ describes how much power is absorbed by the beam splitter
or scattered in other directions.
The transfer-matrix approach allows a fast computation of the optical fields

throughout the whole system and using the Maxwell stress tensor this can be used
to calculate the light forces acting on each beam splitter.
By design this formalism can be used to calculate the self-consistent dynamics of

atom clouds in one-dimensional optical lattices (Asbóth et al. 2008). Other systems
where this model can be applied include micro-membranes in optical cavities (Jayich
et al. 2008; Thompson et al. 2008; Xuereb et al. 2012, 2013), submicron particles in
effective 1D geometries (Grass 2013) or atoms interacting with the light travelling
through a nearby nanofibre (Chang et al. 2013; Schneeweiss et al. 2013). All these
examples are natural applications of the initial idea of a field propagating through
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Figure 2.2 Electric fields interacting with different clouds of polarizable particles: The
blue and green solid curves represent the real and imaginary parts of solutions to
equation (2.3) for a single wide (kσ = 1, left figure) or thin (kσ = 0.05, right figure)
Gaussian particle distribution resembled by the grey shapes. For comparison the red
and orange dashed lines show the real and imaginary parts of an electric field computed
using the transfer-matrix method (Deutsch et al. 1995). This is obviously a valid
approximation for the situation depicted on the right where kσ � 1. Parameters are
chosen such that kαη0/(2ε0) = ζ = 0.5 + 0.3i; the boundary conditions are fixed as
E(x0) = 1 and E′(x0) = i/2 (arbitrary units) with kx0 = −10.

an array of individual scatterers.
To describe light interacting with an extended region of homogeneous density we

would set the particle density η(x) as a rectangular function ranging, for instance,
from x = 0 to x = L. But it is easy to see that such a rectangular function can again
be well approximated by a sum of Gaussian distributions as described in equation (2.2)
with a width σ = L/N and a uniform spacing d = xi+1 − xi = L/(N − 1), provided
L/N � 1.
As illustrated in figure 2.3 a numerical solution of equation (2.3) reproduces the

electric field inside a homogeneous medium of refractive index n as long as η0 is
chosen such that ζ fulfils

ζ = cos(kd)− cos(nkd)
sin(kd) . (2.6)

This relation is one of the key results of the next chapter 3 and allows us to describe
a homogeneous medium by an array of (infinitesimally spaced) beam splitters. We
can therefore use the transfer-matrix method to compute the fields and—more
importantly—the forces inside an extended dielectric medium.

The volumetric optical forces acting inside an object induce deformations which in
turn change the local refractive index. This process can be well understood in the
transfer-matrix formalism where the local forces displace the initially equally spaced
beam splitters. In chapter 4 we show how this displacement of the beam splitters is
linked to the local strain and the resulting inhomogeneous refractive index n(x). As
a result we calculate the self-consistent dynamics of a dielectric object where elastic

11



2 Background: Multiple scattering approach to optical manipulation of elastic media

kx

E
(x

)
[a

rb
.

un
its

]

kx

E
(x

)
[a

rb
.

un
its

]

−1

0

1

2

−3 −2 −1 0 1 2 3 4 5 6 7

−1

0

1

2

−3 −2 −1 0 1 2 3 4 5 6 7

Figure 2.3 Electric field travelling through approximately rectangular particle densities
produced by a sum of N = 5 (left figure) and N = 500 (right figure) Gaussian
distributions of width σ = L/N and spacing xi+1 − xi = L/(N − 1) for kL = 4. Blue
and green solid lines show the real and imaginary parts of solutions to the corresponding
equation (2.3). For comparison, the red and orange dashed lines show the real and
imaginary parts of a field travelling through a medium of refractive index n = 2 + 0.3i
located in the region [0, L]. Since the parameters are chosen such that ζ = kαη0/(2ε0)
satisfies equation (2.6) the solutions agree for N � 1, as can be seen in the right figure.
The boundary conditions are fixed as E(x0) = 1 and E′(x0) = i/2 (arbitrary units)
with x0 = −10L.

back-action tries to compensate for optomechanical deformations.
Finally, in the preprint article presented in chapter 5 we apply the transfer-matrix

method to describe an array of individual nano-particles or atoms. But in contrast to
typical standing wave traps we there propose an orthogonal beam trap where particles
interact with two counter-propagating waves of orthogonal polarization and possibly
different frequency. We show that the light fields then induce an effective interaction
between the beam splitters causing them to trap and/or organise themselves in this
initially translationally invariant setup. We also explain how a perturbative beam
polarized orthogonally to a typical one-dimensional optical lattice can be used to
trigger correlated motions between different particles trapped in that lattice.
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3 Publication

Optical forces, trapping and strain on
extended dielectric objects
M. Sonnleitner∗, M. Ritsch-Marte and H. Ritsch

We show that the optical properties of an extended dielectric object are reliably
reproduced by a large number of thin slices forming a linear array of beam
splitters. In the infinite slice number limit this self-consistent approach allows to
calculate light forces within a medium directly from the Maxwell stress tensor
for any dielectric with prescribed refractive index distribution. For the generic
example of a thick slab in counter-propagating fields the effective force and
internal strain distribution strongly depend on the object’s thickness and the
injected field amplitudes. The corresponding trapping dynamics may even change
from high-field-seeking to low-field-seeking behaviour while internal forces lead to
pressure gradients and thus imply stretching or compression of an elastic object.
Our results bear important consequences for a wide scope of applications, ranging
from cavity optomechanics with membranes, size selective optical trapping and
stretching of biological objects, light induced pressure gradients in gases, to
implementing light control in microfluidic devices.

EPL (Europhys. Lett.) 94, 34005 (2011) doi: 10.1209/0295-5075/94/34005

∗The author of the present thesis performed all of the calculations in this publication.
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3 Publication: Optical forces, trapping and strain on extended dielectric objects

3.1 Introduction

Light forces on particles can be understood from the basic principle of redistribution
or absorption of the optical momentum. This principle led to the development of
physical models appropriate not only for point particles, such as atoms (Cohen-
Tannoudji 1992), but also for extended solid objects, such as thin membranes or
microbeads (Ashkin 1970). In a recent approach based on a simple model of a series
of optical beam splitters (Asbóth et al. 2008) it was shown that these two cases can
be treated uniformly. Using moving beam splitters (Xuereb et al. 2009) one can
rederive the dynamics of atoms trapped in optical lattices and well known basic
phenomena, such as Doppler cooling of free particles and cavity cooling of nanoscopic
mirrors or membranes of negligible thickness.
In this work we generalise this approach to calculate light forces on and within

extended dielectric objects, which we treat as the limiting case of a growing number
N of more closely spaced layers. Multiple scattering between these layers ensures
that the overall refractive index reaches a prescribed continuum value in the limit
of N →∞, which can be performed analytically. By calculating the force on each
slice using the Maxwell stress tensor formalism and taking the continuum limit we
directly obtain the local forces in the medium as well as the field in a self-consistent
form.
Our model can be compared with a previously given approach for polarizable

point particles (Cohen-Tannoudji 1992). If the point particles are generalised to be
embedded in a dielectric medium and if their modifications of the fields are treated
in a self-consistent way, the resulting expressions for the local forces are the same.
We will also compare our results with basic but nonetheless controversial arguments
using the change of effective photon momentum to estimate light forces on dielectric
surfaces.
While freely movable objects will arrange in a force free configuration (Asbóth

et al. 2008; Singer et al. 2003), the averaged force of the field within a rigid or elastic
object will lead to differential forces invoking local compression or stretch. This can
lead to essential shape modifications as prominently observed for biological objects,
such as biological cells (Guck et al. 2001), or coupling to vibrational (acoustic)
modes of membranes or microspheres (Eichenfield et al. 2009; Kippenberg et al.
2008; Thompson et al. 2008). Our model will allow a microscopic study of this
effect for various configurations and density distributions of the particles and can be
generalised to dynamic media as fluids or gases.

3.2 A homogeneous medium approximated by a sequence of
beam splitters

Let us consider two monochromatic plane-waves propagating in opposite directions
at normal incidence through a one dimensional array of thin polarizable layers as
sketched in fig. 3.1. This represents an idealised model of a stack of thin slices of
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x1 x2 x3 xN

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

AN

BN

CN

DN
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d d

L = (N − 1)d
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Figure 3.1 N equidistant slices with coupling parameter ζ in a standing-wave field with
incoming intensity amplitudes Il and Ir. Note that the electric field is continuous, but
its derivative jumps at each beam splitter position xj (cf. the boundary conditions
of eq. (3.1)). To establish notation, the amplitudes of the plane-wave solutions are
displayed below.

dielectric materials (Bhattacharya et al. 2008) or trapped clouds of cold atoms in a
1D optical lattice (Deutsch et al. 1995). Each layer is characterised by its position xj
(j = 1, . . . , N) and the dimensionless coupling parameter ζ = kηα/(2ε0) proportional
to the atomic polarizability α and the areal particle density η within the slice. ε0
is the vacuum permittivity and k = ω/c the wave number of the optical field. The
spatial behaviour of the field E(x) exp(−iωt) is determined by the corresponding 1D
Helmholtz-equation (Asbóth et al. 2008; Deutsch et al. 1995)

(
∂2
x + k2

)
E(x) = −2kζ E(x)

N∑

j=1
δ(x− xj) (3.1)

with boundary conditions

lim
x↑xj

E(x) = lim
x↓xj

E(x) and lim
x↑xj

E′(x) = lim
x↓xj

E′(x) + 2kζ lim
x↓xj

E(x)

at each of the N beam splitters.
Between the slices the field propagates freely, i.e. EL,j(x) := Aj exp(ik(x −

xj)) + Bj exp(−ik(x− xj)) for xj−1 < x < xj and ER,j(x) := Cj exp(ik(x− xj)) +
Dj exp(−ik(x− xj)) for xj < x < xj+1.
Obviously, ER,j(x) ≡ EL,j+1(x) and thus we have Aj+1 = Cj exp(ik(xj+1 − xj))

and Bj+1 = Dj exp(−ik(xj+1 − xj)), for j = 2, . . . , N − 1. As one can conclude
from fig. 3.1 the field amplitudes Bj {Cj} are a sum of the reflected {transmitted}
fraction of Aj and the transmitted {reflected} fraction of Dj . Therefore each slice
can be considered as a beam splitter with reflection and transmission amplitudes
r = iζ/(1− iζ) and t = 1/(1− iζ). The coupling of the field amplitudes can then be
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x1 x2 x3 x4

Evac(x) ≡ EL,1(x) Emed(x) = Geinkx + He−inkx

EL,2(x)

EL,3(x)

ER,3(x)

ER,4(x)

Figure 3.2 Schematic setup: Choosing the coupling parameter ζ as in eq. (3.4) ensures
that the electric field at every beam splitter position x1, . . . , xN is the same as the field
inside a medium with refractive index n.

rewritten in the transfer-matrix form (Deutsch et al. 1995)
(
Cj
Dj

)
=
(

1 + iζ iζ
−iζ 1− iζ

)(
Aj
Bj

)
=: MBS

(
Aj
Bj

)
. (3.2)

For a distance d between the beam splitters we get with
Pd := diag

(
exp(ikd), exp(−ikd)

)
:

(
Cj
Dj

)
= MBS

(
PdMBS

)j−1
(
A1
B1

)
. (3.3)

In the region within an array of N beam splitters, multiple scattering reshapes the
resulting field as a function of ζ. Since we are interested in modelling homogeneous
dielectric media, we determine the value for ζ such that the field at each beam
splitter xj (j = 1, . . . , N) reproduces the field at this position inside a dielectric
with refractive index n, i.e. Emed(x) = G exp(ikn(x− xj)) +H exp(−ikn(x− xj)),
as schematically depicted in fig. 3.2. This condition can be met exactly for any finite
distance d between the individual slices, if

ζ = cos(kd)− cos(nkd)
sin(kd) . (3.4)

Note that the refractive index n can be chosen complex to account for absorption
inside the medium (Jackson 1999) and a nonuniform distance d or coupling parameter
ζ could model a spatially varying index.

Inserting ζ from eq. (3.4), the eigenvalues of the transfer matrix M := PdMBS read
exp(±inkd). As shown in refs. (Asbóth et al. 2008; Deutsch et al. 1995) this allows
to directly calculate the amplitudes of the fields generated by a cascade of N beam
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−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.2 0.1 0.06

Re rm
Im rm

Im tm

Re tm

20 40 60 80 100

Distance kd

Number of Beam Splitters N

d = L
N−1 n = 1.3 + 0.025i kL = 5

Re r
(N)
BS

Im r
(N)
BS

Re t
(N)
BS

Im t
(N)
BS

Figure 3.3 The total reflection and transmission coefficients for an object formed by N
beam splitters distributed equally over a length L and ζ given by eq. (3.4). Obviously,
r

(N)
BS and t(N)

BS rapidly converge to the values for a homogeneous medium with increasing
slice number N .

splitters, which will be our key to compute analytic expressions for the optical force
distribution on and inside a dielectric medium.
We first check if our model reproduces the correct reflection and transmission

coefficients for a dielectric slab of length L and refractive index n, which for plane-
waves at normal incidence are given by (Born et al. 1993)

rm =
(
1− n2) sin(nkL)(

n2 + 1
)

sin(nkL) + 2in cos(nkL)
, (3.5a)

tm = 2in(
n2 + 1

)
sin(nkL) + 2in cos(nkL)

. (3.5b)

For any finite set of N beam splitters the total reflection and transmission coeffi-
cients can be read off from CN = r

(N)
BS DN + t

(N)
BS A1 and B1 = r

(N)
BS A1 + t

(N)
BS DN . In

figure 3.3 we show that the corresponding coefficients calculated from eq. (3.3) via
MN := MBS (PdMBS)N−1,

r
(N)
BS = (MN )1,2

(MN )2,2
, t

(N)
BS = 1

(MN )2,2
, (3.6)

converge to rm and tm as N →∞, which can be shown analytically.

3.3 Forces on and within a dielectric medium
In earlier works, beam splitters represented atomic clouds or point particles settling
at force-free positions with a spacing of ∼ λ/2 (Asbóth et al. 2008; Deutsch et al.
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3 Publication: Optical forces, trapping and strain on extended dielectric objects

1995). Here, however, we take the limit of an infinite number of beam splitters
concentrated at a finite length L and calculate the optical force on each layer at a
predefined fixed position. In general, the total electromagnetic force on an object
(i.e. each slice) embedded in vacuum is given by (Jackson 1999)

F =
∮

A

∑

β

Tαβ nβ dA, (3.7)

where A denotes the surface of the object, n is the normal to A and Tαβ is the
Maxwell stress tensor

Tαβ = ε0EαEβ + 1
µ0

BαBβ − 1
2δα,β

(
ε0E2 + 1

µ0
B2
)
. (3.8)

Using two planes orthogonal to the direction of propagation (i.e. the x axis) as
surface and plane-wave fields as above, the time-averaged optical force per area
(pressure) on the jth slice simply reads (Xuereb et al. 2009)

Fj = ε0
2
(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
. (3.9)

Of course the same argument can also be used for the force on an extended object
of length L exposed to incoming field amplitudes A and D, i.e.:

Fmed = ε0
2
(
|A|2 + |rmA+ tmD|2 − |tmA+ rmD|2 − |D|2

)
. (3.10)

From above we know that the correct total reflection and transmission coefficients
are obtained in the limit of a continuous system, i.e. limN →∞. This guarantees
that our discrete model predicts the correct total force on the object. From fig. 3.3
we conclude that the total force and the field distribution within the medium are
very well approximated by our beam splitter model even for a moderate number of
elements.

To obtain the internal force distribution we rewrite eq. (3.9) using d = L/(N − 1)
and set x = (j − 1)d as the distance between the jth and the first beam splitter. It is
also necessary to change notation by A1 → A, DN → D and ∆AD := argA− argD.
After some calculation we find the (volume) force density as limit of the force on
more and more closely spaced slices F(x) := limN→∞NFj/L to be

F(x) = 2kε0
|N |2

[
|A|2 Im

[
f(L− x)g∗(L− x)

]− |D|2 Im
[
f(x)g∗(x)

]

+ |AD| Im [
e−i∆ADf(x)g∗(L− x)− ei∆ADf(L− x)g∗(x)

]]
(3.11)

where z∗ denotes the complex conjugate of z and

N = (n2 + 1) sin(nkL) + 2in cos(nkL),
f(x) = (n2 − 1)

(
in cos(nkx) + sin(nkx)

)
,

g(x) = n
(
i cos(nkx) + n sin(nkx)

)
.

(3.12)
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3.4 Central results and examples

One finds that the integrated force density is equal to the total force per unit area
derived by the Maxwell stress tensor in eq. (3.10), as required.

With some algebra one can see that the result for the force density in eq. (3.11) can
also be obtained by calculating the force on a test-atom in the effective optical field
inside a dielectric medium using the well known approach by Cohen-Tannoudji (Cohen-
Tannoudji 1992). In this form the optical force on a dipole at the position xA in the
external field E(x) reads

FL = 1
4∂x|E(xA)|2 Reα− 1

2 |E(xA)|2∂xφ(xA) Imα . (3.13)

Here φ(x) = − arg(E(x)) and α is the polarizability of the dipole. The first term in
eq. (3.13) proportional to Reα is often referred to as dipole force, the (dissipative)
term proportional to Imα is called radiation pressure or scattering force (Cohen-
Tannoudji 1992). Note that as we have to insert the effective fields within the medium,
the forces in general show a nonlinear dependence on the polarizability induced by
multiple scattering within the medium, as found in previous work (Asbóth et al. 2008).
The agreement between eq. (3.13) and the force from eq. (3.11) is demonstrated in
fig. 3.7.

3.4 Central results and examples
Before turning to the discussion of the force distribution within a medium as given by
eq. (3.11) to investigate possible light-induced deformations of the objects, let us first
treat optical trapping of an extended object as given by eq. (3.10) in a standing-wave
configuration.

To provide insight into the role of the position and length of the object, we rewrite
eq. (3.10) in terms of the incoming laser intensities Il and Ir. With x0 denoting
the position of the centre of the object we have A = |El| exp(iφl) exp(ik(x0 − L/2)),
D = |Er| exp(iφr) exp(−ik(x0 +L/2)) and Il,r = ε0c|El,r|2/2. With ∆AD = φl−φr +
2kx0 =: 2kξ we finally get

Fmed(L, ξ) = 1
c (Il − Ir)u(L)− 4

c

√
IlIrv(L) sin(2kξ), (3.14)

where we defined u(L) := 1 + |rm(L)|2 − |tm(L)|2 and v(L) := Im[rm(L)t∗m(L)] in
terms of the reflection and transmission amplitudes rm and tm given in eq. (3.5).

To trap an object of a given length L in a standing-wave, one needs to find positions
ξ0 with zero average force Fmed(L, ξ0) = 0 and a proper restoring force for small
excursions, i.e. Fmed(L, ξ) ' −κ0(ξ − ξ0) for k(ξ − ξ0) � 1 with κ0 > 0 being the
trap stiffness. Obviously, the first condition is met if

sin(2kξ0) = u(L)
4v(L)

Il − Ir√
IlIr

. (3.15)

This equality gives real solutions only if the laser intensities, the object length L
and the refractive index n are chosen such that the absolute value of the term on
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3 Publication: Optical forces, trapping and strain on extended dielectric objects

the right hand side is less than one. If this is met, the first zero of the force Fmed is
given by

ξ̃0 := 1
2k arcsin

[
u(L)
4v(L)

Il − Ir√
IlIr

]
. (3.16)

Due to the overall symmetry of the setup, the other zeros of Fmed satisfy ξ0 ∈ Ξ+∪Ξ−,

Ξ+ :=
{
mπ
k + ξ̃0,m ∈ Z

}
,

Ξ− :=
{

(2m−1)π
2k − ξ̃0,m ∈ Z

}
.

(3.17)

Linearising Fmed in the vicinity of every ξ0 gives

Fmed(L, ξ) ' −8k
c

√
IlIrv(L) cos(2kξ0)(ξ − ξ0). (3.18)

Using cos(2kξ0) = ±
√

1− sin2(2kξ0) with the positive {negative} case referring to
ξ0 ∈ Ξ+ {ξ0 ∈ Ξ−} and eq. (3.15) leads us to the following linear approximations for
Fmed

F0,+(L, ξ) = −κ0(L) sgn[v(L)](ξ − ξ0) if ξ0 ∈ Ξ+,

F0,−(L, ξ) = +κ0(L) sgn[v(L)](ξ − ξ0) if ξ0 ∈ Ξ−,
(3.19)

where sgn(x) := x/|x| denotes the signum function and the trap stiffness is given by

κ0(L) := 2k
c

√
16v2(L)IlIr − u2(L)

(
Il − Ir)2. (3.20)

Hence we conclude that if v(L) > 0, then the trapping positions are ξ0 ∈ Ξ+ and
F0,+ describes the restoring force, whereas if v(L) < 0, trapping occurs at ξ0 ∈ Ξ− and
the force is approximated by F0,−. Examples for the trapping properties and the total
force Fmed are depicted in figs. 3.4 and 3.5. Note that sgn[v(L)] ' − sgn[sin(kLRen)]
for kL Imn� 1.
For symmetric pump intensities (Il = Ir) we have ξ̃0 = 0 and the centre of

mass of the object is trapped at positions ξ0 with cos(2kξ0) = 1 for v(L) > 0 or
cos(2kξ0) = −1 for v(L) < 0. These are exactly the maxima and minima of the
field intensity of a standing-wave in free space. We thus find that, apart from a
few singular points, stable trapping positions correspond either to the maximum
or the minimum intensity and we observe size-dependent low- or high-field-seeking
behaviour. For exactly symmetric input the stability jumps between two positions as
function of size, while pump asymmetry allows a continuous shift of the stationary
position.
We compared our findings to experimental and numerical works on submicron-

sized spheres trapped in a standing-wave field created by interfering evanescent
waves (Čižmár et al. 2006) or Gaussian beams (Zemánek et al. 2003). Despite the
differences in the setup, our simple but analytic approach leads to very similar results
for the total forces, the trap stiffness, and the size dependent low- or high-field-seeking
behaviour.

20



3.4 Central results and examples

−3
−2
−1

0
1
2
3

0 1 2 3 4 5

π
Ren

2π
Ren

3π
Ren

4π
Ren

Length kL

(a) Effective Trap Stiffness κ0 sgn(v) [in units of Ilk/c]

(i)

(ii)

−π/4

0

π/4

0 1 2 3 4 5

π
Ren

2π
Ren

3π
Ren

4π
Ren

Length kL

(b) ξ̃0 [in units of 1/k]

(i)
(ii)

Ir = Il/5
Ir = Il/2

Figure 3.4 The trapping properties for an object with n = 2.4+0.02i in a standing-wave
field with asymmetric intensities, Ir = Il/2 (blue, solid line) and Ir = Il/5 (red, dashed
line). (a) The effective trap stiffness κ0(L) sgn[v(L)] as used in eq. (3.19). If κ0 sgn(v) is
positive, trapping occurs at ξ0 ∈ Ξ+, else, Ξ− defines the set of stable trapping positions.
(b) The first zero of the total force ξ̃0 as defined in eq. (3.16). The labels (i) and (ii)
mark the lengths used for the examples in fig. 3.5.

As one can see in eq. (3.15), the total force can only have zeros if |u(L)(Il − Ir)| ≤
4|v(L)|√IlIr. For asymmetric pump one can therefore find lengths for which ξ̃0 and
κ0 are no longer real values and trapping is impossible. This should have important
applications for optical size selection of objects. In fig. 3.4 we observe a contraction of
the domains of ξ̃0 and κ0 for larger object lengths. This can be explained as follows:
For growing values of kL Imn, the transmission tm(L) goes to zero whereas the
reflection rm(L) reaches a limit, therefore v(L) also goes to zero and condition (3.15)
cannot be fulfilled any more. This simply means that large and/or highly absorbing
objects cannot be trapped in an unbalanced standing-wave (i.e. Il 6= Ir).

Forces within an extended medium

Obviously, the total force responsible for the trapping does not act uniformly on each
part of the object. In fact the internal force distribution as given by eq. (3.11) even
shows sign changes within the object, with local forces possibly much larger than
the average force per volume. This of course induces internal strain, which strongly
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Figure 3.5 The total force Fmed on an object with n = 2.4 + 0.02i in a standing-wave
field with asymmetric intensities (Ir = Il/2) for kL = 1.8 (i) and kL = 3.9 (ii). The
dashed red lines represent the linear approximation F0,+(L, ξ) from eq. (3.19), the
dash-dotted blue lines represent F0,−(L, ξ). As one can see in fig. 3.4 v(L) is negative
in (i) thus F0,− approximates the trapping force on the object. In (ii) v(L) is positive
and trapping is described by F0,+. In (i) the extent of an object trapped at position
π/2− ξ̃0 is highlighted grey.

depends on the object length, on the refractive index and on the incoming intensity
amplitudes. The oscillating behaviour of F(x) originates in the dipole force term of
eq. (3.13), which is ∝∂x|E(x)|2, as depicted in figs. 3.6 and 3.7. In fig. 3.6 one can
observe significant internal forces although the total force on the object vanishes.
Let us point out that we do not find any significant forces appearing specific-

ally at the object’s surface. The appearance of such a surface force attributed to
the change of the wave-vector (photon momentum) is an issue in the Abraham-
Minkowski controversy, reviewed for instance in (Barnett et al. 2010), and in optical
cell stretchers (Guck et al. 2001).

Since such a non-uniform force distribution creates strain, it also possibly leads to
a modification of an elastic object’s shape or induces microscopic flow in a liquid
dielectric. Looking at N slices initially at rest, we expect the distance between the
first and the last slice to change as ∂2

t L := ∂2
t (xN − x1) = (FN − F1)/m, where m

denotes the mass of a single slice. In the limit N →∞, the continuity equation leads

22



3.4 Central results and examples

−6

−4

−2

0

2

4

6

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

Position kx

Lo
ca

li
nt

en
sit

y
[in

un
its

of
I l

]

Fo
rc

e
de

ns
ity

[in
un

its
of

I l
k

/
c]

Figure 3.6 Internal force distribution (blue line, left ordinate) and field intensity (red
line, right ordinate) for an object with length kL = 1.8, refractive index n = 2.4 + 0.02i
and incoming intensities Ir = Il/2. The central position x0 = ξ̃0 − π/2 is chosen such
that Fmed =

∫ x0+L/2
x0−L/2 F(x) dx = 0, cf. fig. 3.5, case (i).

to ∂2
t L = (F(L)−F(0)) /µ or

∂2
t L = 4k

cµ|N |2
[(
Il + Ir

)
Im
[
f(0)g∗(0)− f(L)g∗(L)

]

+ 2
√
IlIr cos(2kξ) Im

[
f(L)g∗(0)− f(0)g∗(L)

]]
. (3.21)

with a mass density µ, and f , g, and N as given in eq. (3.12).
In fig. 3.6 the parameters are chosen such that the object’s central position is

trapped and we observe that (F(L)−F(0)) < 0, indicating contractive strain. But
note that one can also find examples of trapped objects with ∂2

t L > 0.
The above equation (3.21) is valid for homogeneous media only and certainly will

not give the correct result for highly compressible material: In the case of elastic
media, the internal optical forces will lead to a spatial variation in the material
density and refractive index. This again will reshape the local optical fields and thus
change the force distribution. We thus expect a complicated nonlinear response of
such an object, the detailed investigation of which we will leave to future work.

Up to now we always assumed a standing-wave field i.e. the two counter-propagating
beams of equal polarisation and with fixed phase. In the general case of orthogonal
directions of polarisation or a random phase of the two beams, the fields cannot
interfere. The local intensities and forces are calculated separately for left and right
incidence and added up in the end. Therefore, the time-averaged forces are modified
by setting the interference terms ∝√IlIr in eq. (3.14), (3.21) and ∝|AD| in eq. (3.11),
respectively, to zero. Under these circumstances, the forces no longer depend on the
object’s centre of mass position or the relative phase between the incoming beams.
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Figure 3.7 Field intensity (red line, right ordinate) and internal force distribution (left
ordinate) for kL = 5, n = 1.8 + 0.08i and left incidence only (i.e. Ir = 0). It is apparent
that the total internal force (blue, solid line) is a sum of the dipole force (orange, dashed
line) and the scattering force (green, dash-dotted line), as discussed in eq. (3.13).

In fig. 3.7 we show the forces for single side illumination of an extended object.
Surprisingly we still find a strong length dependence of the force and the appearance
of internal strain. In the chosen example the left and right surfaces are pulled
in opposite directions and the object will be stretched in such a field. There are,
however, also configurations with different behaviour, if the length is suitably chosen.
In fact, for a non-absorbing medium one can read from eq. (3.11) that the force at the
rear end will always vanish. Therefore, the expected length change is proportional
to ∂2

t L ∝ −F(0), which depends on the object’s size. Again, a naive argument to
derive the force based on effective photon momentum change due to a shift of the
wave-vector at the surface will fail qualitatively.

Our findings for the internal force density can be directly compared to the Lorentz
force experienced by bound charges and currents inside a dielectric (Mansuripur
2004; Zakharian et al. 2005). The results for the force inside a dielectric slab (fig. 1
in (Zakharian et al. 2005)) and a semi-infinite dielectric (eq. (3) in (Mansuripur
2004)) match exactly the force distributions obtained from eq. (3.11).

3.5 Conclusions and Outlook
Optical forces in extended media can exhibit quite complex and surprising behaviour
even in the most simple 1D geometry and for linearly polarizable rigid objects.
Depending on the object size, refractive index and relative pump intensities, our
analytic approach predicts interesting trapping features such as a size dependent
change from high-field-seeking to low-field-seeking behaviour. Regarding internal
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3.5 Conclusions and Outlook

forces we described the appearance of compressing or stretching forces on and within
the object. Although our model is rather simplistic the results should be qualitatively
similar for other shapes such as microspheres or more complex structured objects.
It seems straightforward to generalise our approach in several respects, e.g. to

assume a more complicated spatial distribution of the object’s refractive index or
to include elasticity. Similarly, the effect of using several frequencies or partially
coherent light can be included to extend the scope of the results. One very interesting
case of course would be the generalisation to liquid or gaseous media, where internal
pressure changes would have a strong effect and generate highly nonlinear dynamics.
Here the dipole force on a cloud could not only lead to trapping but also compression
or expansion of the sample.
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Optomechanical deformation and strain in
elastic dielectrics

M. Sonnleitner∗, M. Ritsch-Marte and H. Ritsch

Light forces induced by scattering and absorption in elastic dielectrics lead
to local density modulations and deformations. These perturbations in turn
modify light propagation in the medium and generate an intricate nonlinear
response. We generalize an analytic approach where light propagation in one-
dimensional media of inhomogeneous density is modelled as a result of multiple
scattering between polarizable slices. Using the Maxwell stress tensor formalism
we compute the local optical forces and iteratively approach self-consistent density
distributions where the elastic back-action balances gradient- and scattering
forces. For an optically trapped dielectric we derive the nonlinear dependence
of trap position, stiffness and total deformation on the object’s size and field
configuration. Generally trapping is enhanced by deformation, which exhibits
a periodic change between stretching and compression. This strongly deviates
from qualitative expectations based on the change of photon momentum of light
crossing the surface of a dielectric. We conclude that optical forces have to be
treated as volumetric forces and that a description using the change of photon
momentum at the surface of a medium is inappropriate.

New J. Phys. 14, 103011 (2012) doi: 10.1088/1367-2630/14/10/103011
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Figure 4.1 Schematic illustration of the interaction between optical forces and local
deformations within elastic media.

4.1 Introduction

As light carries momentum besides energy, its propagation through a polarizable
medium is accompanied by forces. Although the momentum of a single light quantum
is very small, laser light can generate appreciable forces on the microscopic scale.
Optical forces are nowadays routinely used to manipulate and trap particles ranging
from single atoms and molecules (Ashkin 1970; Hänsch et al. 1975; Phillips 1998) to
plastic beads, biological cells or microbes up to the size of tens of micrometres (Padgett
et al. 2011; Stevenson et al. 2010; Thalhammer et al. 2011). The mechanical motion
of even larger objects such as silica mircodisks or suspended mirrors has been damped
and cooled by light forces (Kippenberg et al. 2008; Wiederhecker et al. 2009). While
most of the existing work targets the overall effect on the centre of mass of the
particles, it has been shown by us as well as by other groups that these forces do not
act homogeneously but exhibit distinct patterns within the medium (Mansuripur
2004; Sonnleitner et al. 2011; Zakharian et al. 2005). For any elastic medium this leads
to local compression or stretching. Of course, the modified density also changes the
local refractive index and light propagation, which again alters the forces as displayed
schematically in figure 4.1. The resulting coupled complex evolution thus obviously
requires self-consistent models and solutions (Mansuripur 2010). In addition, as
the light mediated interaction is inherently long-range, even a small but periodic
variation of the refractive index can have a very large overall collective effect coupling
distant areas over a large volume.

This work is organized as follows: in section 4.2 we first present the basic scattering
approach to treat the light propagation in an inhomogeneous refractive medium and
use a previously developed formalism based on the free space Maxwell stress tensor to
calculate the corresponding local force distribution (section 4.3). This method is then
used in section 4.4 to develop an iterative scheme to calculate the steady state density
and field distribution as a function of geometry and field intensity. In section 4.5
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4.2 Multiple scattering model of light propagation in inhomogeneous media

we discuss essential physical consequences predicted by our model at the hand of
numerical examples. Finally, in section 4.6 these results are set against common
calculations of the total deformation at hand of the change of photon momentum at
an interface between two dielectrics.

4.2 Multiple scattering model of light propagation in
inhomogeneous media

The effective light propagation in a medium can be seen as the result of multiple
individual scattering processes, which in general requires intricate numerical treat-
ments, if one cannot make use of material symmetries. Here we restrict ourselves to
the simple but still non-trivial case of two incoming counterpropagating plane waves
in a transversely homogeneous and linearly polarizable medium. In this limit only
forward and backward scattering add up phase coherently, while all amplitudes for
transverse scattering average out. From the viewpoint of the forward and backward
propagation directions, transverse scattering thus can just be added to an effective
absorption rate in the medium. This is certainly not perfectly fulfilled in an actual
setup, but still can be expected to give the correct qualitative behaviour, as long
as the transverse extensions are much larger than the wavelength of the light. A
more realistic treatment, e.g. in terms of Gaussian transverse beams, is possible,
but greatly complicates the model and would obscure many interesting physical
phenomena found in this simple approach.

Restricting the dynamics to the forward and backward scattering amplitudes along
the propagation directions gives a simple and tractable model for our medium via a
one dimensional (1D) array of N thin slices at positions x1, . . . , xN . Here the spatial
behaviour of the electric field E(x, t) = Re[E(x) exp(−iωt)]ey is determined by a 1D
Helmholtz equation (Asbóth et al. 2008; Deutsch et al. 1995; Sonnleitner et al. 2011)

(
∂2
x + k2

)
E(x) = −2kζE(x)

N∑

j=1
δ(x− xj). (4.1)

The field-induced polarization density at each slice is P (x) = αηAE(x)∑N
j=1 δ(x−

xj), where we introduced the dimensionless coupling parameter ζ = kηAα/(2ε0)
proportional to the atomic polarizability α and the areal particle density ηA within
the slice. ε0 is the vacuum permittivity and k = ω/c the wave number of the optical
field. Note that we assumed here that the dipoles in each slice can simply be added up
coherently for scattering along the propagation direction. As illustrated in figure 4.2,
the equation above is satisfied by interconnected plane wave solutions (Deutsch et al.
1995), here denoted as

Ej(x) := Cje
ik(x−xj) +Dje

−ik(x−xj) = Aj+1e
ik(x−xj+1) +Bj+1e

−ik(x−xj+1), (4.2)

for xj < x < xj+1. The amplitudes left and right of a material slice (beam splitter)
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Figure 4.2 Schematic illustration of the displacement and deformation process x 7→ x̃ =
x+u(x). The initial medium (left figure) occupies the space [0, L], the slices are marked
with dotted lines separated by d0 = L/(N − 1). In this case, the field generated by
multiple scattering by the beam splitters (blue curve, cf. (4.2)) reproduces the solution
for a homogeneous medium with refractive index n (red curve), if the coupling is chosen
as in (4.6). On the right hand side we see the displaced medium with irregularly spaced
slices of the same coupling ζ and the resulting electric field. The background shading
illustrates the change in the distances, i.e. the strain u′(x) = −(ρ̃(x)− ρ)/ρ, with dark
colours indicating regions of higher density.

at position xj are connected via

(
Cj
Dj

)
=
(

1 + iζ iζ
−iζ 1− iζ

)(
Aj
Bj

)
=: MBS

(
Aj
Bj

)
. (4.3)

The amplitudes (Aj , Bj) and (Cj−1, Dj−1) are coupled by a simple propagation
matrix, i.e. (Aj , Bj)T = Pdj (Cj−1, Dj−1)T with Pdj := diag

(
exp(ikdj), exp(−ikdj)

)
,

with the distance dj := xj+1 − xj , j = 1, . . . , N − 1.
Therefore, the amplitudes to the left of the (j + 1)th slice are obtained by a simple

multiplication of the previous transfer matrices
(
Aj+1
Bj+1

)
= PdjMBS · · ·Pd2MBSPd1MBS

(
A1
B1

)
. (4.4)

The amplitudes A1 and DN are determined by the amplitudes and phases of waves
coming in from the left (i.e. −∞) and from the right (+∞), respectively, and
constitute boundary conditions on the solutions for the Helmholtz equation (4.1). B1
and CN are obtained by computing the total reflection and transmission amplitudes

30



4.2 Multiple scattering model of light propagation in inhomogeneous media

via

1
t

(
t2 − rlrr rr
−rl 1

)
= MBSPdN−1MBS · · ·Pd2MBSPd1MBS,

B1 = rlA1 + tDN and CN = tA1 + rrDN .

(4.5)

Note that the reflection coefficients for left or right incidence on an inhomogeneous
setup usually do not coincide, i.e. rl 6= rr, but the transmission amplitude t is
independent of the direction of propagation. More details on the properties of these
generalized transfer matrices are given in appendix 4.A.

For equally spaced, thin polarizable slices we set xj = (j − 1)d0, such that x0 = 0
and xN = (N − 1)d0 =: L and (4.4) simplifies to (Aj+1, Bj+1)T = Th

j(A1, B1)T ,
with Th := Pd0MBS. In an earlier work (Sonnleitner et al. 2011) we showed that
choosing a uniform distance d0 between the slices and setting the coupling parameter

ζ = cos(kd0)− cos(nkd0)
sin(kd0) (4.6)

leads to the same optical fields as found inside a medium with refractive index n. A
sufficiently dense array of beam splitters with spacing d0 = L/(N − 1) is then in the
limit N →∞ indistinguishable from a homogeneous medium of refractive index n
and length L.

A decisive step in this work, which allows us to account for local material density
variations, is the introduction of a local displacement variable u(x)

xj 7→ x̃j = xj + u(xj), j = 1, . . . , N. (4.7)

As illustrated schematically in figure 4.2, such shifts alter the local fields as well as
the total reflection and transmission properties of the object.
The distances between the slices then change as

d̃j − d0 = x̃j+1 − x̃j − d0 = u(xj+1)− u(xj) =: ∆j . (4.8)

A continuous limit can be consistently defined via u(xj) → u(x) for x ∈ [0, L] to
obtain

lim
N→∞

∆j

d0
= lim

N→∞
u(xj + d0)− u(xj)

d0
= u′(x). (4.9)

In analogy with the theory of elastic deformations, we call u′ strain or deforma-
tion (Landau et al. 1986; Lautrup 2005), and the relative change in the initially
homogeneous local material density ρ simply reads

ρ̃(x)− ρ
ρ

= −u′(x). (4.10)

Let us here comment on the notation we will use for the rest of this work. As defined
in the paragraph above (4.6), our coordinates are chosen such that the unperturbed
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medium occupies the region [0, L]. Introducing a displacement u then shifts the
object to [u(0), L+ u(L)], with L+ u(L)− u(0) =: L̃. But to ease notation, all the
quantities such as the electric field strength E or force F shall remain defined with
respect to the original position such that e.g. E(0) [E(L)] always marks the field at
the left [right] edge of the medium. The amplitudes at the boundaries then have
to be adjusted with corresponding phases, cf. (4.22). This, however, is relevant
for mathematical formulations only, physical discussions and figures are unaffected
by this detail. In (4.7) we introduced a tilde to distinguish the shifted x̃j from the
original xj . For most other quantities such as the fields or forces, we will omit this
tedious notation. Only the changed length L̃, the inhomogeneous density ρ̃ (4.10)
and refractive index ñ (4.19) still have to be distinguished from their original values
L, ρ and n.

As mentioned before, defining the coupling ζ as in (4.6) ensures that the solutions
of the wave equation (4.1) agree with the field inside a homogeneous dielectric at
positions xj = (j − 1)d0, if the fields are assumed to agree at x1. In the continuous
limit N → ∞, the latter requirement is always fulfilled (Sonnleitner et al. 2011).
Interestingly we still preserve this feature for a model with displaced slices, if we
choose the following approach:
Let, as in (4.2), Ej(x) denote the plane wave solution of the Helmholtz equa-

tion (4.1) and

Enj (x) = Gje
injk(x−xj) +Hje

−injk(x−xj) for xj < x < xj+1 (4.11)

denote a field defined in the same region, but with a refractive index nj . To obtain
the desired equivalence between a stratified dielectric and a set of irregularly spaced
slices, we assume for any given j ∈ {1, . . . , N − 2}

lim
x↓xj

Ej(x) = lim
x↓xj

Enj (x) (4.12)

and demand that with E(↑y) ≡ limx↑y E(x),

Ej(↑xj+1) = Ej+1(↓xj+1), E′j(↑xj+1) = E′j+1(↓xj+1) + 2kζEj+1(↓xj+1), (4.13)
Enj (↑xj+1) = Enj+1(↓xj+1), E′nj (↑xj+1) = E′nj+1(↓xj+1), (4.14)
Ej(↑xj+1) = Enj (↑xj+1), Ej+1(↑xj+2) = Enj+1(↑xj+2). (4.15)

The first line shows the conditions that Ej and Ej+1 are solutions of the Helmholtz
equation (4.1), cf. (4.3) or (Deutsch et al. 1995), the second line denotes Fresnel’s
equations for the transition between two dielectrics. In the third line, finally, we
demand that the plane wave solutions of (4.1) agree with the fields inside the
dielectrics at positions xj+1 and xj+2. This leads to the required, successive coupling
between ζ, the distances dj = xj − xj−1 and dj+1, and some indices nj , nj+1.
Solving (4.13)-(4.15) under the assumption (4.12) and demanding solutions inde-
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4.2 Multiple scattering model of light propagation in inhomogeneous media

pendent of the field amplitudes results in two conditions, for j = 1, . . . , N − 1

nj sin(kdj)
sin(knjdj)

= nj+1 sin(kdj+1)
sin(knj+1dj+1) , (4.16)

ζ = 1
2

[
cos(kdj)− cos(njkdj)

sin(kdj)
+ cos(kdj+1)− cos(nj+1kdj+1)

sin(kdj+1)

]
. (4.17)

One can easily check that these conditions give the known relation (4.6) in the
equidistant case where dj = dj+1 ≡ d0 and nj = nj+1 ≡ n. Unfortunately, we were
not able to find solutions with finite values of dj 6= dj+1 for both conditions. Inspired
from (4.6) one may try

nj = 1
djk

arccos
(

cos(djk)− ζ sin(djk)
)
. (4.18)

to find that this approach satisfies (4.17), but not (4.16). However, choosing ζ as
in (4.6), writing dj = d0(1 + ∆j/d0), and taking the continuous limit N →∞ with
∆j/d0 → u′(x) (4.9) alters (4.18) to

ñ(x) =
√
n2 + u′(x)
1 + u′(x) , (4.19)

satisfying both (4.16) and (4.17). With the given inhomogeneous refractive index we
can compute the electric field inside a strained, 1D dielectric by solving

(
∂2
x + ñ2(x)k2

)
E(x) = 0 (4.20)

numerically. A comparison with the field computed via the transfer matrix method
described in (4.4) shows excellent agreement, for sufficiently large N .
Another way to approximate the optical field is to expand the transfer matrices

in (4.4) for small local deformations ∆j and then perform the continuous limit. This
analytical approximation works sufficiently well for the typically small strain u′

obtained in the scope of parameters used in this work. The lengthy results of this
approach are presented in appendix 4.B, equation (4.60).
Inserting the relation between strain and density modifications (4.10) we finally

obtain
ñ2 =

(
n2 + 1

)
ρ− ρ̃(x)

2ρ− ρ̃(x) ' n2 +
(
n2 − 1

) ρ̃(x)− ρ
ρ

, (4.21)

where we assumed (ρ̃− ρ)/ρ� 1 for the final expansion.

4.2.1 Computing the reflection and transmission amplitudes
To find solutions for the fields inside the medium with refractive index distribution
ñ(x), one needs to specify initial values. As discussed for the discrete system
in (4.5), the medium can be described in terms of a transfer matrix such that
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4 Publication: Optomechanical deformation and strain in elastic dielectrics

B0 = rlA0 + tD0 and CL = tA0 + rrDL, if the electric fields outside the medium are
given as E(x) = A0 exp(ikx) + B0 exp(−ikx) for x ≤ 0 and E(x) = CL exp(ik(x−
L)) +DL exp(−ik(x− L)) for x ≥ L. The amplitudes A0 and DL are determined by
the intensities Il,r and phases φl,r of the fields incident from the left and right and
the displacement u, as

A0 =
√

2Il
ε0c
eiφleiku(0) and DL =

√
2Ir
ε0c
eiφre−ik(L+u(L)). (4.22)

Therefore, the initial conditions for solutions of (4.20) are E(0) = A0 + B0 and
E′(0) = ik(A0 −B0).
But obviously, the reflection and transmission coefficients rl, rr and t strongly

depend on the refractive index ñ(x). To calculate those one can either use some
approximations, cf. appendix 4.B, equation (4.59), or solve the field equation (4.20)
for specially chosen boundary values, e.g.

E[1](0) = iE[1]′(0)/k = tDL ⇒ E[1](L) = DL(rr + 1), E[1]′(L) = ikDL(rr − 1),
E[2](L) = −iE[2]′(L)/k = tA0 ⇒ E[2](0) = A0(1 + rl), E[2]′(0) = ikA0(1 + rl),

(4.23)

allowing the easy computation of rl, rr and t.
It is easy to see that if ñ(x) is symmetric, i.e. ñ(x) = ñ(L − x), x ∈ [0, L], then

a beam entering from the left experiences the same medium as one from the right
and hence rl = rr. Note that for the homogeneous case where u′ = 0 and ñ = n, we
recover the usual (Born et al. 1993)

th = 2n
2n cos(nkL)− i(n2 + 1) sin(nkL) ,

rh = i(n2 − 1) sin(nkL)
2n cos(nkL)− i(n2 + 1) sin(nkL) .

(4.24)

4.3 Light forces in an inhomogeneous medium
In general, the total electromagnetic force on an object embedded in vacuum is given
by (Jackson 1999)

Fα =
∮

A

∑

β

Tαβ nβ dA, (4.25)

where A denotes the surface of the object, n is the normal to A and Tαβ is the
Maxwell stress tensor

Tαβ = ε0EαEβ + 1
µ0

BαBβ − 1
2δα,β

(
ε0E2 + 1

µ0
B2
)
. (4.26)

Using two planes orthogonal to the direction of propagation (i.e. the x-axis) as
integration surfaces and the plane wave fields defined in (4.2), the time-averaged
optical force per area (pressure) on the jth slice simply reads (Xuereb et al. 2009)

Fj = ε0
2
(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
. (4.27)
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Figure 4.3 Illustration of the influence of a given strain u′ (green) on the optical force
density (blue) and the local intensity (red). The dotted lines show the homogeneous case
u′ = 0, the continuous lines represent the perturbations computed using the refractive
index distribution ñ(x) (purple). The reflection and transmission amplitudes here change
from rh ' −0.29− 0.29i, th ' −0.64 + 0.59i to rl ' −0.20− 0.21i, rr ' −0.15− 0.24i,
t ' −0.76 + 0.51i. Please note that in this case the strain is not chosen such that it
balances the optical forces as in (4.39).

Following the beam splitter relation in (4.3) we rewrite Cj = (1 + iζ)Aj + iζBj and
Dj = −iζAj + (1− iζ)Bj to obtain

Fj = −ε0
(
|ζ(Aj +Bj)|2 − Im[ζ(Aj +Bj)(Aj −Bj)∗]

)
. (4.28)

The naive limit limN→∞ Fj would give a vanishing force per slice as limN→∞ ζ = 0,
cf. equation (4.6) with d0 = L/(N − 1). But assigning each slice to one N th of the
object’s total length L we can define a force density F(x) := limN→∞NFj/L and
use

lim
N→∞

N
L ζ = kn

2−1
2 . (4.29)

Following the derivation of the inhomogeneous refractive index (4.19) we can replace
Aj +Bj = Ej(↑xj+1) = Enj (↑xj+1)→ E(x) (4.15) and in the continuous limit it is
reasonable to set Aj − Bj = −iE′j(↑xj+1)/k → −iE′(x)/k, if E(x) is a solution of
the wave equation (4.20). Hence we obtain the local optical force density

F(x) = ε0
2 Re

[(
n2 − 1

)
E(x)

(
E′(x)

)∗]
, (4.30)

where we used the algebraic limit theorem for limN→∞N |ζ|2/L = 0. Again, the
results from the formula above are fully consistent with forces computed using a large
but finite number of slices (4.4) and (4.27) as well as an analytical approximation
presented in appendix 4.B, equation (4.63).
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4 Publication: Optomechanical deformation and strain in elastic dielectrics

In figure 4.3 we compare the intensity and optical forces in a medium with
homogeneous refractive index n to fields and forces obtained by solving (4.20)
and (4.30), respectively, for a given strain u′.

4.3.1 Identification of radiation pressure and dipole force components
inside a homogeneous dielectric

In the case of a medium with uniform refractive index n, i.e. with u′ ≡ 0, the
force density computed from (4.30) can be identified with established expressions
for optical forces on dielectric test particles. There, the time-averaged force on
a dipole at position x0 in the external field E(x, t) = Re{E(x) exp(−iωt)} with
E(x) = |E(x)| exp(−iϕ(x)) reads (Cohen-Tannoudji 1992)

FL = 1
4∂x|E(x0)|2 Reα− 1

2 |E(x0)|2∂xϕ(x0) Imα , (4.31)

where α is the polarizability of the dipole. The first term proportional to Reα is
often referred to as dipole or gradient force, the (dissipative) term proportional to
Imα is called radiation pressure or scattering force (Cohen-Tannoudji 1992).

Inside a homogeneous dielectric we may write the spatial component of the electric
field as E(x) = G exp(ink(x − x0)) + H exp(−ink(x − x0)), where the amplitudes
G and H are chosen such that Fresnel’s conditions at the boundary of the object
are met. Using this field and rewriting (4.31) into a force density on particles with
volume density ηV located at x0 leads to

FL(x0) = −ηVk Im{GH∗}Re{αn∗}+ k
2ηV

(|G|2 − |H|2) Im{αn∗}. (4.32)

As the coupling parameter in (4.1) is defined as ζ = kηAα/(2ε0), with ηA denoting
the areal particle density in each of the N slices, we may write using (4.6) and (4.29)

ηVα = lim
N→∞

N
L ηAα = lim

N→∞
2 N
kLε0ζ = ε0(n2 − 1). (4.33)

This relation also resembles the Lorentz-Lorenz relation for the case of a thin gas (Born
et al. 1993), where the individual dipoles do not directly interact with each other.

It can easily be checked that the force density in (4.32) together with the Lorentz-
Lorenz relation (4.33) gives exactly the same result as the force computed from (4.30),
if we insert the same field for a homogeneous dielectric. This demonstrates that our
approach to calculate fields and forces from multiple scatterers is consistent with
well known results derived from more general assumptions.

4.3.2 Integrated force and trap formation

To compute the total force on an extended dielectric in a standing wave we can use
the same derivation as for the force on an infinitesimal slice in (4.27) and get

Ftot = ε0
2
(
|A0|2 + |rlA0 + tDL|2 − |rrDL + tA0|2 − |DL|2

)
, (4.34)
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with A0 and DL denoting the amplitudes at the object’s left and right boundaries,
as given in (4.22). Defining the position of the centre of the object x0 = (u(0) + L+
u(L))/2, we can express the total force in terms of ξ := x0 + (φl − φr)/(2k)

Ftot(ξ) = 1
c

(
Ilsl − Irsr + 2v

√
IlIr cos(2kξ + ψ)

)
, (4.35)

with sl = 1 + |rl|2 − |t|2, sr = 1 + |rr|2 − |t|2, v = |rlt
∗ − r∗r t|, ψ = arg(rlt

∗ − r∗r t).
If 4IlIrv2 ≥ (Ilsl − Irsr)2, the force vanishes at every position ξ0 ∈ Ξ+ ∪ Ξ− where

Ξ+ :=
{
mπ
k + ξ̂0,m ∈ Z

}
and Ξ− :=

{
mπ−ψ
k − ξ̂0,m ∈ Z

}
,

ξ̂0 := 1
2k

(
arccos

[
Irsr − Ilsl
2v
√
IlIr

]
− ψ

)
.

(4.36)

Using some trigonometric properties one can show that stable trapping positions
are those defined in the set Ξ+. For ξ0 ∈ Ξ− we find F ′tot(ξ0) > 0 and hence Ξ− is a
set of unstable trapping position. Linearizing the total force in (4.35) around stable
trapping positions ξ0 ∈ Ξ+ leads to a trap stiffness of

κ = 2k
c

√
4IlIrv2 − (Ilsl − Irsr)2. (4.37)

Since the reflection and transmission coefficients strongly depend on the object’s
size, one finds that the parameter ψ can change its sign abruptly for certain values
of L. This leads to sudden jumps between a low- and high-field-seeking behaviour
for a trapped object (Čižmár et al. 2006; Sonnleitner et al. 2011; Stilgoe et al. 2008;
Zemánek et al. 2003). Figure 4.5 shows how trap position and trap stiffness is
changed by the strain induced on the object by optical forces.

4.4 Self-consistent balancing of optical force and elastic
back-action

In the previous sections 4.2 and 4.3 we found expressions for the local fields and
the local optical force densities in deformed, dielectric media. But depending on
the given elastic properties, the strain will result in stress which typically tries to
compensate the external volumetric forces.

In this section we will investigate the behaviour of a linear elastic, dielectric object
subjected to the optical forces described by (4.30). More precisely, we will provide
a framework to compute the equilibrium configuration between the optical forces
and the elastic counter reaction in a self-consistent manner. In our computations we
will assume only optical forces and neglect thermal or piezoelectric effects as well as
surface tension.

Mechanical equilibrium between some general volume force density f and the result-
ing stress denoted by the tensor σ is given by Cauchy’s equilibrium equation (Lautrup
2005)

fi +
∑

j

∂jσij = 0, (4.38)
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4 Publication: Optomechanical deformation and strain in elastic dielectrics

for i, j denoting the coordinates of the system. Since the model discussed here
considers only one relevant dimension, this equilibrium equation simplifies to f+∂xσ =
0. The constitutive relation for a linear elastic, 1D object simply reads σ = Eu′,
where E is Young’s modulus and u′ is the local strain (Lautrup 2005).

Hence we see that an equilibrium between the optical force density and the elastic
strain requires

F(x) + Eu′′(x) = 0, (4.39)

at every position x ∈ [0, L], with F being a solution of (4.30). Note that the electric
field computed from (4.20) also depends on the amplitudes at the edges of the object
and therefore also on the displacement u, cf. (4.22).

Solving (4.39) for an equilibrium requires boundary conditions on the displacement
u and the strain u′ which are determined by the given setup. The displacement is
fixed by the assumed trapping mechanism, e.g. if the object is trapped by a standing
wave, we have to fulfil (u(0) + L + u(L))/2 ∈ Ξ+. But note that ξ̂0 depends on
the reflection and transmission coefficients and hence also on the deformation u′, cf.
(4.36).

The strain has to be chosen such that the stress σ = Eu′ at each surface balances
external surface forces (Lautrup 2005). Assuming for the moment an object subjected
to volumetric optical forces only, we integrate the equilibrium equation (4.39) at
obtain

0 =
∫ L

0

(F(x) + σ′(x)
)
dx = Ftot + σ(L)− σ(0). (4.40)

For an object trapped by light fields, we get Ftot = 0 and σ(0) = σ(L) = 0, due to
the lack of surface pressure. In section 4.5.2, however, we fix the slab by an external
mechanism balancing the total optical force via surface interaction. Hence if the
left boundary of the slab is retained at x = 0 (i.e. u(0) = 0), then σ(L) = 0 and
σ(0) = Ftot.
To solve equation (4.39) numerically, we use an iterative approach where the

equilibrium condition is rewritten in the form

F(x)[ui, u′i] + Eu′′i+1(x) = 0, (4.41)

with ui and u′i denoting the displacement and strain obtained by the ith iteration
step and F(x)[ui, u′i] is the force density computed using ui and u′i. The updated
u′i+1 and ui+1 can then be obtained by simple numerical integration, with integration
constants chosen in accordance to the boundary conditions of the used setup. With
the updated optical force densities F(x)[ui+1, u′i+1] one can compute the next step
of the iteration. An obvious choice for initial values is a homogeneously shifted
distribution (i.e. a constant u0) with a given starting length L and refractive index n.
This iterative scheme proved to be sufficiently exact but significantly faster com-

pared to other methods of solving nonlinear equations, such as Newton’s method.
We also confirmed our computations with force densities obtained from the transfer
matrix approach in (4.4) and the analytic approximation described in appendix 4.B,
respectively.
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4.5 Examples and physical interpretation

In our basic considerations above we always assumed the object to be exposed to two
counterpropagating laser beams of the same, linear polarization forming a standing
wave. These results can easily be extended to describe situations with only one
incident beam or with two counterpropagating beams of different polarization. In
the latter case, one has to calculate the intensities and forces separately for each
polarization direction.

In this section we will present four showcase examples to give insight into the large
variety of possible results. The first two examples deal with the case where an object
is trapped by two counterpropagating beams. The latter examples will treat the case
where the object is illuminated by only one beam and externally fixed at one end.
For each of the given examples one has to specify the boundary conditions for u and
u′, as discussed in section 4.4.
For all considered setups we will see that the interaction between optical forces

and elastic back-action strongly depends on the ratio between the initial length L
and the wavelength of the deformation beam in the unperturbed medium, λ/Re[n].
Concerning the intensity and the elastic properties of the medium we find that all
results grow linearly in (Il + Ir)/(Ec), at least in the scope of parameters where a
solution of the equilibrium equation (4.39) could be obtained within a reasonable
error tolerance. That is why the local intensities, I(x) = ε0c|E(x)|2/2, and force
densities are given in units proportional to E in the upcoming figures. Note that the
numbers used in the simulations are unrealistic in order to exaggerate the effects,
since an intensity of I = 0.1Ec would imply I ' 30W/µm2 for E ∼ 1MPa.

4.5.1 Example: object trapped by two counterpropagating beams

As argued above, an object with initial length L subjected to optical forces will
in general experience local deformations and an overall length change. Figure 4.4
shows the relative length change ∆L = (L̃ − L)/L for different initial lengths L
in the cases where an object is trapped in a standing wave (blue lines) or by two
beams of orthogonal polarization (red curves) and equal intensity. Obviously, both
configurations are symmetric regarding an inversion of x at the centre of the object
and therefore we find rl = rr, as mentioned in section 4.2.1.
Surprisingly, in the standing wave case we observe abrupt switching from strong

compressive to stretching behaviour around certain initial lengths. A comparison
with section 4.3.2 and earlier discussions in (Sonnleitner et al. 2011) shows that these
switches are concurrent with jumps of the stable trapping position ξ0. Generally
speaking, objects with small values of kL are trapped at local maxima of the intensity
in the standing wave. But for larger objects, the term ψ in (4.36) abruptly changes
its sign and the object seeks positions centred around intensity minima. As indicated
by the dotted grid lines, these jumps occur at lengths of minimal reflection |rh|2 and
maximal transmission |th|2 (4.24), i.e. at L = mλ/(2 Re[n]), m ∈ N.

For larger objects we observe a slight decay of the maximal relative length change,
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Figure 4.4 Relative length change, transmission |t|2 and reflection |rl|2 for a dielectric
slab trapped by two plane waves forming a standing wave (blue) or having orthogonal
directions of polarization (red lines). The incoming intensities and Young’s modulus are
related as Il = Ir = 0.05Ec, where c is the speed of light in vacuum; the refractive index
is chosen as n = 1.3 + 0.0025i. The discontinuities in the standing-wave case stem from
abrupt jumps in the stable trapping positions at L = mλ/(2 Re[n]), m ∈ N (grid lines).
The circles indicate the values used for the examples in figure 4.6 and 4.7.

which is found also for computations with Im[n] = 0 and thus is not caused by
additional radiation pressure only. However, a glance at the reflectivity and trans-
mission shows that the self consistent deformation prevents configurations with zero
reflectivity which would usually result in maximum elongation or compression. For
the given standing wave trap we generally observe that deformations computed with
the steady state equation (4.39) tend to increase reflectivity and decrease transitivity
compared to a homogeneous medium, for both Im[n] = 0 or Im[n] 6= 0.

In figure 4.5 we compare the trap stiffness κ from (4.37) and the trapping position
ξ̂0 from (4.36) between unperturbed and self-consistently deformed objects. We find
that the deformation significantly increases the trap stiffness, even if the total size of
the object remains unchanged, cf. figure 4.4. An elastic object in a standing wave
therefore assists in enforcing its own trap, just like a rabbit who starts to dig when
captured in a pit. Note that for a compressible slab in a standing wave there is no
critical length of zero trap stiffness, but deformation always leads to a stable trapping
position.
Two examples for optical force densities and the associated deformation in the

standing wave setup are shown in figure 4.6. There we see that the strain is negative
(i.e. the material density is increased) at positions where the force density changes
from positive values, denoting a force pushing to the right, to negative values
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Figure 4.5 Trap stiffness κ (4.37) and stable trapping position ξ̂0 ∈ Ξ+ (4.36) for an
object trapped in a standing wave. The same parameters are used as in fig. 4.4, i.e. Il =
Ir = 0.05Ec and n = 1.3+0.0025i. A comparison of the blue curves denoting equilibrium
solutions of (4.39) with the orange, dashed lines computed for the homogeneous objects
shows that the deformation induced by optical forces significantly increases the total
trapping strength. For the given case where Il = Ir, the trap positions remain unchanged.

associated with a force pushing to the left. One can clearly see the difference between
the compressive situation (a) where the object is trapped at maximal intensity
and situation (b), where the trapping occurs at minimal intensity and the object
experiences a stretching force.
To trap a dielectric slab with two non-interfering plane waves of orthogonal

polarization, the intensities of said beams have to be equal, i.e. Il = Ir. In this
case there are certain starting lengths L ' (2m + 1)/(4 Re[n]), m ∈ N0, for which
the intensities inside the unperturbed object add up to a constant value. Hence for
these specific lengths the dominant gradient forces add up to zero and the object’s
length remains unchanged. Apart from that we find an expanding behaviour for
L > λ/(4 Re[n]), as can also be seen in the examples in figure 4.7.

In the case of non-interfering beams, figure 4.4 also shows that the reflectivity and
transitivity is no longer periodic in the object’s length L. For the reflectivity we find
that the zeros are shifted from L = mλ/(2 Re[n]), m ∈ N, towards smaller lengths
and no longer coincide with lengths of maximal elongation.

4.5.2 Example: object fixed at the left boundary and illuminated by one
beam

Figure 4.8 shows the relative length change in the case where the left edge of a
dielectric slab is fixed by some external mechanism. Here we observe a striking
difference whether the object is illuminated from the left (blue) or right hand side
(red curves). In the first case we find only stretching behaviour with minor oscillations
of the relative length change ∆L. However, if the object is illuminated from the
right hand side (i.e. the beam is incident on the free surface) we again find both

41



4 Publication: Optomechanical deformation and strain in elastic dielectrics

−5

0

5

−1

−0.5

0

0.5

1

1.5

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

x [in units of λ]

F
(x

)(
×

10
−

2 E/
λ

)
u

′ (x
)×

10
−

2

I
(x

)/
(E

c)

(a)

−5

0

5

−1

−0.5

0

0.5

1

1.5

−0.4 −0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

x [in units of λ]

F
(x

)(
×

10
−

2 E/
λ

)
u

′ (x
)×

10
−

2

I
(x

)/
(E

c)

(b)

Figure 4.6 Dielectric objects trapped in a standing wave configuration with Il = Ir =
0.05Ec. The initial lengths are chosen as L ' 0.19λ (a) and L ' 0.4λ (b); n =
1.3 + 0.0025i. As mentioned in (4.10), positive strain u′(x) (green curves) denotes larger
distances between the particles and hence a reduction of material density. The density
is increased at positions where the force density (blue lines) F is zero and F ′ < 0, i.e.
where the light intensity (depicted red) has a maximum value. As indicated by the
marks in figure 4.4 and verifiable from the signs of u′(x), the object on the left gets
squeezed whereas the right hand side example shows a stretched object.

compression and elongation, depending on the initial length L.
Furthermore we observe a stronger impact of absorption than for the previous

case with two counterpropagating beams. Now we see that if Im[n] 6= 0, then ∆L
increases (light incident from the left, radiation pressure pushing the object to the
right) or decreases (light incident from the right) for larger initial lengths L. As we
see from the dash-dotted lines, the length change continues to oscillate around a
constant value also for large values of L, if Im[n] = 0.

For the reflectivity [transmitivity], the self consistent strain again results in a shift
of the minimal [maximal] values to the left of L = mλ/(2 Re[n]), m ∈ N. Note that
for the given, asymmetric setup rl 6= rr, but the difference in the total reflectivity
|rl|2 − |rr|2 remains very low for the given parameters.
To explain the different results for left and right incident beams, we take a closer

look at the interface where a single beam exits the slab, e.g. at hand of figure 4.9.
Let us assume a beam entering from the left and Ir = 0. Then the intensity is not
only constant on the right of the object, but Fresnel’s formulae also tell us (for a
homogeneous object)

d
dx I(L) = 0 and d2

dx2 I(L) = k2I(L)
(
1− 2 Re[n]2 + 2 Im[n]2

)
≤ 0, (4.42)

and hence the intensity has a local maximum at the edge where the beam exits the slab.
For the usually dominant gradient force Fgr(x) ∼ d

dx I(x) we thus find Fgr(L) = 0
and Fgr > 0 left of the surface. Considering the steady state equation (4.39) and
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Figure 4.7 Dielectric objects trapped by two counterpropagating beams with orthogonal
polarization and Il = Ir = 0.05Ec. As in figure 4.6, the initial lengths are L ' 0.19λ (a)
and L ' 0.4λ (b); n = 1.3 + 0.0025i. As can be seen from figure 4.4, the length of
the first example is chosen such that the intensities (red curves) inside the medium
almost add up to a constant value. Hence the force densities (blue curves) and the
self-consistent deformation (green lines) practically vanish (please note the changed
scale on the axes). For the second example we obtain a stretching of ∆L ' 6.6× 10−3.

omitting the scattering force shows that

F(L) + Eu′′(L) ' Fgr(L) + Eu′′(L) = 0 (4.43)

and hence the strain u′ has a local minimum at the right edge x = L. If light enters
only from the right hand side we find analogous behaviour for the left edge x = 0.
Since minimal strain corresponds to a maximum in local material density (4.10), we
conclude that the gradient force tends to accumulate material at the surface where a
single light beam exits the object. A similar statement holds for the aforementioned
case with two counterpropagating beams oscillating in orthogonal polarizations, but
then one has to add up the forces generated by the two beams.

In total, the constraints on the strain as derived from (4.42), (4.43) and section 4.4
are found as

left incidence only, Ir = 0 : u′(0) = Ftot/E ≥ 0; u′(L) = 0 is a minimum, (4.44)
right incidence only, Il = 0 : u′(0) = Ftot/E ≤ 0 is a minimum; u′(L) = 0. (4.45)

So if Il = 0, the strain is fixed at a minimum with negative value on the left edge, at
zero on the right edge, and oscillates proportional to the intensity in between. So
in total we find both negative (compressive) and positive (expanding) deformation,
depending on the length and refractive index of the object. For Ir = 0 we see a
positive strain at the left edge and a minimum with u′(L) = 0 at the right boundary.
Hence the deformations oscillate between zero and some positive value and always
lead to a total stretching behaviour.
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Figure 4.8 Relative length change, transmission |t|2 and left reflection |rl|2 for a dielec-
tric slab fixed at the left edge and illuminated by only one beam incident from the left
(blue) or right (red curves) hand side, respectively. The initial refractive index is chosen
as n = 1.3 + 0.0025i, the dash-dotted lines show the results for the non-absorptive
case n = 1.3 (in the third plot for |rl|2 the additional lines were omitted to avoid
ambiguity). The beams are of intensity Il,r = 0.1Ec, the circles indicate the values
used in figure 4.9. The grid lines mark the locations of the minima [maxima] of the
reflectivity [transmitivity] in the homogeneous case at L = mλ/(2 Re[n]), m ∈ N.

4.5.3 Identifying length changes by probing the reflectivity

As one can see from figures 4.4 and 4.8, the relative length change ∆L obtained
for a given ratio of total intensity to Young’s modulus can be imperceptibly small,
especially if the original length is not chosen in an optimal relation to the vacuum
wavelength of the trapping beam, λ. But one possibility to detect minor stretching
or squeezing for arbitrary initial lengths can be found in the use of a second, weaker
laser probing the change in the reflectivity of the medium: assuming a non-dispersive
medium, a probe laser with a vacuum wavelength matching the Fabry-Pérot condition

λp '
2LRen
m

, m ∈ N, (4.46)

will travel through a slab of length L without being reflected, i.e. |rh(λp)|2 ' 0.
Turning on a powerful laser will deform the object and hence also change the
reflectivity for the weak probe beam. Figure 4.10 shows the relative change of
reflectivity

δR = |rl|2 − |rh|2
|rl|2 + |rh|2

(4.47)
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Figure 4.9 Two dielectric objects fixed at the left edge and illuminated from the left (a)
or from the right hand side only (b), with Il,r = 0.1Ec. As predicted from (4.42), the
intensity (red) is locally maximal and the force densities (blue lines) are (almost) zero at
the interface where light exits the slab. For left incidence we observe only positive (i.e.
stretching) strain u′ (green lines) whereas both elongating and compressive deformation
is feasible for right illumination.

between the unperturbed and the strained medium for different wavelengths of the
probe laser beam. We can see that as λp crosses values defined in (4.46), δR changes
from negative to positive values if the object is compressed (i.e. ∆L < 0) and vice
versa if ∆L > 0.

4.6 Estimating the deformation by computing the photon
momentum transfer on a surface

There exist numerous experimental and theoretical papers reporting optical stretching
of deformable objects, such as biological cells (Guck et al. 2001; Rancourt-Grenier et
al. 2010), or light induced outward bending of liquid-gas surfaces (Ashkin et al. 1973;
Casner et al. 2001). In the mentioned publications, the light-induced deformation is
estimated by considering an effective photon momentum change at the transition from
one medium to another. In this context, the optical forces emerge as surface forces,
acting on the interface between two regions of different refractive index. Since the
considered materials are incompressible, the refractive index in each region remains
constant.

Let us try here a similar approach to estimate the deformation of an elastic object
and put our results in context with these earlier works. But note that the very different
physical properties of a linear elastic medium as compared to incompressible water,
plane waves instead of Gaussian beams and a wave description instead of geometric
optics, do not allow a straightforward comparison of the results. But nevertheless
we can investigate whether our findings based on a volumetric description of optical
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Figure 4.10 Relative change in the reflectivity of a strained object for different probe
laser wavelengths λp, for slabs trapped in a standing wave pattern with Il = Ir =
0.0005Ec (red) and Il = Ir = 0.005Ec (blue curves), n = 1.3 + 0.0025i. In the left
frame we used an initial length L = 0.7λ and obtained compressive behaviour with
∆L ' −0.2×10−3 (red) and ∆L ' −2.0×10−3 (blue). The results on the right indicate
stretching with ∆L ' 0.3× 10−3 (red) and ∆L ' 3.1× 10−3 (blue) for L = 0.8λ.

forces are compatible with a concept of surface forces due to photon momentum
exchange.

Following the line of (Ashkin et al. 1973; Guck et al. 2001; Rancourt-Grenier et al.
2010) one estimates the time averaged force per area on an interface separating
two regions with different indices of refraction n1 6= n2 ∈ R and fields E(x) =
A exp(in1kx) +B exp(−in1kx), x ≤ 0, and E(x) = C exp(in2kx), x > 0, as

F1,2 = ∆p
∆t =

Iinc
(
p1(1 +R)− p2T

)

~kc
. (4.48)

Here Iinc = n1cε0|A|2/2 is the total energy-flux density entering the system, R =
|B|2/|A|2 and T = n2|C|2/(n1|A|2) is the reflected and transmitted fraction the
energy-flux and pi = ~kni describes the momentum of a single photon in a medium
with index ni, i = 1, 2. As in (Ashkin et al. 1973; Guck et al. 2001; Rancourt-
Grenier et al. 2010) we here used Minkowski’s version of the momentum of light
in dielectric media. Out of curiosity about simple but puzzling arguments on
stretching or compression of media in connection with the Abraham-Minkowski
controversy (Ashkin et al. 1973; Barnett et al. 2010; Mansuripur 2010; Pfeifer et al.
2007) we also included results computed by naively inserting Abraham’s result for
the photon momentum, pi = ~k/ni, in figure 4.11. One must note, however, that
Abraham’s stress tensor would also require a material tensor component. A thorough
calculation should always give the same results, independent of the used version of
stress tensor (Barnett et al. 2010; Pfeifer et al. 2007).
Neglecting internal reflections, the force on an extended object with index n2

embedded in a medium n1 and subjected to a single beam is estimated to give
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Figure 4.11 Expected deformation due to the change in photon momentum at the
interfaces between vacuum and a homogeneous dielectric of refractive index n = 1.3,
as obtained from (4.50). For the blue lines we used Minkowski’s photon momentum
p = ~kn, the red curves are computed using Abraham’s p = ~k/n. The left figure
shows the situation where a homogeneous object is trapped by a sanding wave with
Il = Ir = 0.05Ec. As in figure 4.4, the deformation changes abruptly, if the object
switches from a low-field to a high-field seeking behaviour. The right hand figure depicts
the relative length change for an object illuminated from only one side with Il = 0.1Ec,
Ir = 0. In both situations we find that Minkowski’s momentum only leads to stretching,
whereas the naive adaption of Abraham’s photon momentum would solely result in
compression.

Ftot = F1,2 + TF2,1. The deformation of such an object is then simply the difference
in the two forces on the surfaces, reading Fdef = TF2,1 − F1,2. Assuming a linear
elastic medium with Young’s modulus E , the relative length-change can be estimated
by ∆L = Fdef/E . For the values used in the previous examples n1 = 1, n2 = 1.3,
I0 = 0.1Ec, we obtain ∆L ' 0.059 when using Minkowski’s momentum and ∆L '
−0.046 for Abraham. These deformations have about the same order of magnitude
as our full self-consistent computations, depicted e.g. in figure 4.8, but do not depend
on the length of the object.

Formally one can refine these calculations from (4.48) and include also light incident
from the right such that E(x) = C exp(in2kx) +D exp(−in2kx), x > 0 to obtain

F1,2 = ε0n1p1
2~k

(
|A|2 + |B|2

)
− ε0n2p2

2~k
(
|C|2 + |D|2

)
. (4.49)

For D = 0 this reduces to (4.48) and for n1 = n2 = 1 and p1 = p2 = ~k we
recover the force derived previously with the Maxwell stress tensor (4.27). This
allows us to formulate a generic wave optics extension for the deformation estimated
above in the scope of geometric optics, now also including size dependent reflection
and transmission. The total deformation pressure on an object with length L and
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homogeneous refractive index n ∈ R surrounded by vacuum then reads

Fdef = ε0npn
~k

(
|G|2 + |H|2

)
− ε0

2
(
|A|2 + |B|2 − |C|2 − |D|2

)
(4.50)

where the amplitudes inside the medium are computed using Fresnel’s relations G =(
(n+ 1)A+ (n− 1)B

)
/(2n), H =

(
(n− 1)A+ (n+ 1)B

)
/(2n), the amplitudes outside

are connected by the homogeneous reflection and transmission coefficients (4.24),
B = rhA+ thD, C = thA+ rhD, and the incoming A and D are given in (4.22). As
expected, a similar calculation for the total force Ftot gives the same result as we
obtained previously in (4.34).

The resulting relative length change ∆L = Fdef/E is presented in figure 4.11. There
we find that the estimations using optical surface forces even qualitatively differ from
the results we obtained with the present description using the full, volumetric optical
forces, cf. figures 4.4 or 4.8, even if the force on the surface is adapted to include
interference due to internal reflections.
An intuitive example is the object of length L = λ/(2n) where rh = 0 and

th = 1. In a standing wave trap with Il = Ir this object is then trapped at
ξ0 = x0 + (φl − φr)/(2k) = 0, cf. section 4.3.2 or figure 4.5. Using Minkowski’s
pn = ~kn we then find that the force due to photon momentum transfer vanishes at
each surface and hence ∆L = 0 in figure 4.11.

But from the examples in figure 4.6 we deduce that the intensity at the surface is
zero, yet the object will contract due to the intensity maximum at its central position.
This is because the dipole force pulls each volume element towards the next local
maximum of intensity, regardless of whether this volume element is located at the
surface or in the bulk of the medium.
In fact, none of our calculations or simulations showed any distinctive effects

suggesting a surface force at the boundaries of a dielectric (Sonnleitner et al. 2011).
This is supported by computations on large but finite stacks of polarizable slices
where the forces on the first or last slice qualitatively do not differ from those on
the second or next to last, respectively. We therefore conclude that optical forces
have to be treated as real volumetric forces (Mansuripur 2010; Rinaldi et al. 2002)
and that a description using the change of photon momentum at the surface of a
medium is inappropriate, regardless of using Abraham’s or Minkowski’s momentum.

4.7 Conclusions
Using an implicit calculation of optical fields and forces allows to self-consistently
determine the stationary local deformations of an elastic object, where the local
stress balances the local light forces by elastic back action. These solutions show a
surprisingly variable and nonlinear dependence on the chosen parameters. Generally
we see a length and illumination dependent, spatially quasiperiodic strain pattern,
which can lead to length stretching as well as compression. As expected, standing
wave configurations yield the strongest forces and effective length changes with a
clear resonant structure for special ratios of initial object length L and trap beam
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wavelength λ. In the standing wave setup, variations in the trap wavelength λ lead
to discrete jumps of the stable trapping positions. At L = mλ/(2 Re[n]), m ∈ N,
the particle switches from a position centred around an intensity maximum to one
around a field node, which is associated with changes from compression to elongation
of the object. Interestingly, in particular close to these instability points, this
generally leads to an increase in trap stiffness. We expect that this indicates possible
bistability between high and low field seeking behaviour for certain lengths very close
to L = mλ/(2 Re[n]).
Although the calculations presented here were performed in the scope of elastic

media, we believe that the model can be extended to deformable but incompressible
media like water or even dilute gases. Here in particular stability thresholds for the
homogeneous solutions should prove physically very interesting, as they could lead
to stationary flows, periodic density oscillations or light induced density pattern
formation and particle ordering in a gas.
Here we limited our considerations to the case, where a steady state solution can

be found. As for other nonlinear dynamical effects (Asbóth et al. 2008), there are of
course regions in parameter space, were no stationary solutions exist and we find
self sustained oscillations or even disintegration of the material. Indications of this
behaviour appear e.g. in a non-converging iteration procedure. At this point we leave
this to future work.
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Appendix 4.A General features of transfer matrices

In equation (4.3) we already used the concept of a transfer matrix to couple the
plane wave amplitudes left and right of a beam splitter. Let us generally define the
set of transfer matrices as

T :=
{

T ∈ C2×2
∣∣∣ ∃ r1, r2, t ∈ C : T = 1

t

(
t2 − r1r2 r2
−r1 1

)
≡ T(r1, r2, t)

}
. (4.51)

One can easily show that T1 · T2 ∈ T for all T1,T2 ∈ T and · here denoting the
usually omitted matrix multiplication. Since also

[T(r1, r2, t)]−1 = 1
t

(
1 r1
−r2 t2 − r1r2

)
∈ T (4.52)

we conclude that (T , ·) is a group.
To motivate definition (4.51), let us consider two plane waves El(x) = A exp(ik(x))+

B exp(−ik(x)), x ≤ 0, and Er(x) = C exp(ik(x− L)) +D exp(−ik(x− L)), x ≥ L,
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left and right of a dielectric with a homogeneous refractive index n. Hence their
amplitudes are coupled as

(
C
D

)
= Sn,1 · PnL · S1,n

(
A
B

)
. (4.53)

where Sn1,n2 couples the amplitudes at the intersection from a region with refractive
index n1 to a region with index n2 and Pd denotes the propagation matrix over a
distance d, i.e.

Sn1,n2 = 1
2n2

(
n2 + n1 n2 − n1
n2 − n1 n2 + n1

)
and Pd =

(
eikd 0
0 e−ikd

)
. (4.54)

One can easily show that Sn,1 · PnL · S1,n = T(rh, rh, th), with rh and th as given
in (4.24). But the attempt to construct a total transfer matrix for stacked media such
as SnK ,1 ·PnKdK · SnK−1,nK · · · Sn2,n1 ·Pn1d1 · S1,n1 with arbitrary ni, di, i = 1, . . . ,K,
will show that one reflection coefficient is not enough. However, such a system
can be described by a more general T (r1, r2, t) ∈ T such that B = r1A + tD and
C = r2D + tA.

Appendix 4.B Analytical approximations for electric fields
and forces for small deformations

In section 4.2 and in an earlier work (Sonnleitner et al. 2011) we showed that for
equally spaced slices the amplitudes of the electric fields are related as (Aj+1, Bj+1)T =
Th

j(A1, B1)T , with Th := Pd0MBS. Choosing the coupling ζ as in (4.6), the eigenval-
ues of Th read exp(±inkd0). This leads to

lim
N→∞

Th
j−1 =: T(x) = 1

2n

(
f(−x) + g(−x) f(x)− g(x)
f(−x)− g(−x) f(x) + g(x)

)
(4.55)

where x = limN→∞ L(j − 1)/(N − 1) and

f(x) = n cos(nkx)− i sin(nkx),
g(x) = n cos(nkx)− in2 sin(nkx).

(4.56)

Allowing small local density variations d̃j−d0 = ∆j we may use Pdj ' Pd0+ik∆jσzPd0

to expand the relation between the field amplitudes from (4.4) as
(
Aj+1
Bj+1

)
'
[
Th

j + ik
j∑

m=1
∆mTh

j−mσzTh
m
](

A1
B1

)
, (4.57)

where σz = diag(1,−1). In the limit of infinitely many slices within a finite length L,
the sum above can be rewritten to an integral and we obtain

(
A(x)
B(x)

)
'
[
T(x) + ik

∫ x

0
u′(y)T(x− y)σzT(y) dy

](
A(0)
B(0)

)
. (4.58)
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Since limN→∞MBS = id2, the total reflection and transmission coefficients for the
displaced object can be read off and expanded in linear order of u′ from equations (4.5)
and (4.58)

t ' th + 2ik
(f(L) + g(L))2

∫ L

0
u′(y) (f(y)f(L− y) + g(y)g(L− y)) dy,

rl ' rh + 2ik
(f(L) + g(L))2

∫ L

0
u′(y)

(
f(L− y)2 − g(L− y)2

)
dy,

rr ' rh + 2ik
(f(L) + g(L))2

∫ L

0
u′(y)

(
f(y)2 − g(y)2

)
dy.

(4.59)

Here rh and th denote the reflection and transmission amplitudes of a homogeneous
medium with length L and refractive index n, as given in (4.24). As mentioned in
section 4.2.1 we find that symmetric local strain, i.e. u′(x) = u′(L− x), x ∈ [0, L],
results in rl ' rr and antisymmetric strain gives t ' th and rl − rh ' rh − rr.
Using the reflection and transmission amplitudes from (4.59) to replace B(0) =

rlA(0) + tD(L) in (4.58) leads to analytical approximations for the local field amp-
litudes inside a deformed medium

A(x) ' ah(x) +
∫ x

0
u′(y)ax(x, y) dy +

∫ L

0
u′(y)aL(x, y) dy,

B(x) ' bh(x) +
∫ x

0
u′(y)bx(x, y) dy +

∫ L

0
u′(y)bL(x, y) dy,

(4.60)

with the individual terms reading

ah(x) =
A0
(
f(L− x) + g(L− x)

)
+DL

(
f(x)− g(x)

)

f(L) + g(L) ,

bh(x) =
A0
(
f(L− x)− g(L− x)

)
+DL

(
f(x) + g(x)

)

f(L) + g(L) ,

ax(x, y) = ik

n
(
f(L) + g(L)

)
(
A0
(
f(L− y)f(y − x) + g(L− y)g(y − x)

)
+

+DL

(
f(y)f(y − x)− g(y)g(y − x)

))
,

bx(x, y) = −ik
n
(
f(L) + g(L)

)
(
A0
(
f(L− y)f(x− y)− g(L− y)g(x− y)

)
+

+DL

(
f(y)f(x− y) + g(y)g(x− y)

))
,

aL(x, y) =
ik
(
f(x)− g(x)

)

n
(
f(L) + g(L)

)2
(
A0
(
f(L− y)2 − g(L− y)2)+

+DL

(
f(y)f(L− y) + g(y)g(L− y)

))
,

bL(x, y) =
ik
(
f(x) + g(x)

)

n
(
f(L) + g(L)

)2
(
A0
(
f(L− y)2 − g(L− y)2)+

+DL

(
f(y)f(L− y) + g(y)g(L− y)

))
.

(4.61)
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The functions f and g are given in (4.56), the amplitudes at the boundary A0 ≡ A(0)
and DL ≡ D(L) are determined by the incoming intensities and the displacement
and can be read off from (4.22).
To obtain an approximation for the forces we use (4.28), take the limit F(x) :=

limN→∞NFj/L with limN→∞Nζ/L = k(n2 − 1)/2 and insert the amplitudes
from (4.60) to find

F(x) = kε0
2 Im

{
(n2 − 1)

(
A(x) +B(x)

)(
A(x)−B(x)

)∗}

F(x) ' Fh(x) +
∫ x

0
u′(y)Fx(x, y) dy +

∫ L

0
u′(y)FL(x, y) dy, (4.62)

where

Fh(x) = 2kε0
|(f(L)+g(L)|2 Im

{(
n2 − 1

)(
A0f(L− x) +DLf(x)

)×

× (A0g(L− x)−DLg(x)
)∗}

Fx(x) = kε0
2 Im

{(
n2 − 1

)[(
ah(x)− bh(x)

)∗(
ax(x, y) + bx(x, y)

)
+

+
(
ah(x) + bh(x)

)(
ax(x, y)− bx(x, y)

)∗]}

FL(x) = kε0
2 Im

{(
n2 − 1

)[(
ah(x)− bh(x)

)∗(
aL(x, y) + bL(x, y)

)
+

+
(
ah(x) + bh(x)

)(
aL(x, y)− bL(x, y)

)∗]}

(4.63)

with the terms aX and bX as given above in (4.61).
Just like the field amplitudes in (4.60) and the reflection and transmission coef-

ficients in (4.59), the above result is only an approximation for the case of small
deformation u′. That is, we neglect products of ∆l∆m in (4.57) and hence also
correlations of type

∫∫
u′(y1)u′(y2) . . . dy1dy2. But a comparison of the approximated

results in the continuous limit with solutions of the wave equation (4.20) or numerical
computations for a large but finite number of beam splitters confirmed that this first
order expansion is sufficient for the scope of parameters used in this work.
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matrix approach to study the forces induced by non-interfering fields of orthogonal
polarization or different frequencies in a 1D geometry and find long-range self-
ordering of particles without a prescribed order. Adjusting laser frequencies
and powers allows tuning of inter-particle distances and provides a wide range
of possible dynamical couplings not accessible in usual standing light wave
geometries with prescribed order. In this work we restrict the examples to two
frequencies and polarisations but the framework also allows to treat multicolour
light beams with random phases. These dynamical effects should be observable
in existing experimental setups with effective 1D geometries such as atoms or
nanoparticles coupled to the field of an optical nanofibre or transversely trapped
in counterpropagating Gaussian beams.
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5.1 Introduction

Coherent interference of light scattered from different particles in an extended
ensemble of polarizable, point-like particles leads to important modifications of the
forces on the particles as well as to new inter-particle light-forces, even if the light
fields are far detuned from any optical resonance (Bender et al. 2010; Courteille
et al. 2010). While a full 3-D treatment certainly leads to a very rich and complex
dynamics (Douglass et al. 2012), key physical effects can already by discussed in
effective 1D geometries. One particularly interesting example are atoms in or close
to 1D optical micro structures (Vetsch et al. 2010; Zoubi et al. 2010) as e.g. an
optical nanofibre, where even a single atom can strongly modify light propagation
and forces (Domokos et al. 2002; Horak et al. 2003). In a milestone experiment
Rauschenbeutel and coworkers recently managed to trap cold atoms alongside a
tapered optical fibre (Vetsch et al. 2010) and related setups predict and demonstrate
strong back-action and inter-particle interaction (Chang et al. 2012a; Goban et al.
2012; Lee et al. 2013) leading to the formation of periodical self-ordered arrays (Chang
et al. 2013; Grießer et al. 2013). Alternatively, in free space interesting dynamical
effects of collective light scattering were recently predicted and studied in standard
1D optical lattices of sufficient optical density (Asbóth et al. 2008; Deutsch et al.
1995). One could also consider arrays of optical membranes to study such effects.

In this work we extend an existing model (Asbóth et al. 2008; Deutsch et al. 1995;
Sonnleitner et al. 2011, 2012) towards light configurations with multiple frequencies
and polarizations of the fields illuminating the particles. In particular, this includes
a new class of geometries where crystalline order can be dynamically generated
and sustained even without prescribing a standing wave lattice geometry. As a
generic example the polarizations of two counter-propagating fields can be chosen
orthogonally, such that incident and scattered fields do not directly interfere. Light
scattering thus occurs for both fields independently and the forces on the particles
can simply be added up. However, any structure forming by the scattering of one field
component will be seen by all other fields and thus change their scattering properties
and the induced forces. On the one hand this mediates nonlinear interaction between
the different fields while on the other hand it generates inter particle interactions
throughout the sample, inducing a wealth of nonlinear complex dynamical effects.
Besides such dynamic self-ordering phenomena, we also study the possibilities to
induce tailored long-range interactions via multicolour illumination and collective
scattering of particles trapped in prescribed optical lattice potentials.
This work is organized as follows: First we introduce the basic definitions and

dynamical equations of the well-established generalized multiple scattering model
for light forces (Asbóth et al. 2008; Deutsch et al. 1995; Sonnleitner et al. 2011,
2012) and extend this framework to support multiple polarizations and frequencies.
This formalism is then applied to an orthogonal beam trap consisting of an array of
particles modelled as beam splitters irradiated by two counter-propagating beams
of orthogonal polarization and possibly different wavenumbers, cf. figure 5.1a. For
two beam splitters we analytically derive conditions for the intensity ratios and
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5.2 Multiple scattering approach to multicolour light propagation in linearly polarizable media

Figure 5.1 Sketch of the intensity distribution of two light fields of orthogonal polariza-
tion and different colour propagating through a 1D array of thin beam splitters located
at positions x1, . . . , xN . The upper graph (a) shows illumination from two sides with
beams of orthogonal polarization, while the lower graph (b) shows a symmetric standing
wave trap (red) perturbed by an extra field with orthogonal polarization (blue).

wavenumbers to trap or stabilize them at a given separation. These results are then
numerically extended to higher particle numbers.

As a generalization and connection to usual experimental setups for optical lattices
we then analyze how an additional beam polarized orthogonally to a prescribed
standing wave perturbs the trapped particles and induces peculiar interaction patterns
in 1D optical lattices, cf. figure 5.1b.

5.2 Multiple scattering approach to multicolour light
propagation in linearly polarizable media

It is now well established that propagation of far detuned light through a one
dimensional atomic lattice or an array of dielectric membranes can be well described
in a plane wave approximation with multiple scattering by a corresponding series of
beam splitters (Asbóth et al. 2008; Deutsch et al. 1995; Sonnleitner et al. 2011, 2012).
A very analogous situation arises when the light is transversely strongly confined by
optical structures so that scattering dominantly occurs along a preferred direction.

The spatial dynamics of the electric field E(x, t) = E(x) exp(−iωt) is then described
by the 1D Helmholtz-equation

(
∂2
x + k2

)
E(x) = −2kζ E(x)

N∑

j=1
δ(x− xj), (5.1)

where N denotes the total number of beam splitters at positions x1, . . . , xN ; ζ :=
kηα/(2ε0) is a dimensionless parameter proportional to the atomic polarizability α,
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the wavenumber k = ω/c and the density of particles combined to a single beam
splitter, η. The plane wave solution between two beam splitters, x ∈ (xj , xj+1), then
reads

E(x) = Cje
ik(x−xj) +Dje

−ik(x−xj) ≡ Aj+1e
ik(x−xj+1) +Bj+1e

−ik(x−xj+1) , (5.2)

the amplitudes Aj , Bj left and Cj , Dj right of the beam splitter at position xj (cf.
figure 5.1) are related by the linear transformation matrix MBS , with

(
Cj
Dj

)
=
(

1 + iζ iζ
−iζ 1− iζ

)(
Aj
Bj

)
=: MBS ·

(
Aj
Bj

)
. (5.3)

From (5.2) we read off the propagation matrix
(
Aj+1
Bj+1

)
=
(
eik(xj+1−xj) 0

0 e−ik(xj+1−xj)

)(
Cj
Dj

)
=: Mp(xj+1 − xj) ·

(
Cj
Dj

)
(5.4)

The values of the electric fields then are fixed by the incoming beam amplitudes A1
and DN . The total reflection and transmission coefficients are calculated from the
total transfer matrix of the setup and give the remaining amplitudes at the boundaries
as B1 = rtot1 A1 + ttotDN and CN = rtot2 A1 + ttotDN self-consistently (Sonnleitner et al.
2012). Using Maxwell’s stress tensor (Jackson 1999) yields the time averaged force
per unit area on the jth beam splitter as (Asbóth et al. 2008)

Fj = ε0
2
(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
. (5.5)

This simple but powerful formalism to calculate the fields and forces on single
atoms, atom clouds or other dielectric media such as membranes or elastic dielectrics
allows to describe complex dynamics such as self-organization or even laser cooling
in any effective 1D geometry (Chang et al. 2012b; Ni et al. 2012; Xuereb et al. 2009;
Xuereb et al. 2012).

Previous approaches were limited to a single frequency and polarization in a
counter-propagating geometry. Here we show that it is straightforward to generalize
the beam splitter method to allow for multiple frequencies and polarizations. The
field propagating in the x-direction shall then be written as

E(x, t) = Ey(x) exp(−iωyt)ey + Ez(x) exp(−iωzt)ez, (5.6)

where Ey(x) [Ez(x)] is defined as the component polarized in the direction of ey [ez]
oscillating with frequency ωy = kyc [ωz = kzc]. We want to emphasize that writing
the total field as a sum of linearly polarized fields in (5.6) is an arbitrary choice.
None of the upcoming conclusions would change if we chose another orthogonal basis
system (e.g. circular polarizations).
The main assumption of this work is that the particles do not scatter photons

from one mode into the other. As long as this is fulfilled, the beam splitter model
can be employed for each component independently. This assumption is obviously
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5.3 Light forces in counter-propagating beams with orthogonal polarization

correct if the beam splitters are made of non-birefringent materials as they are used
in many optomechanical experiments.
If the beam splitters are assumed to be single atoms one has to take additional

care as these typically have tensor polarizabilities. In this case one would choose
counterpropagating circularly polarized waves in equation (5.6) because the two modes
then address different atomic transitions. If we additionally assume sufficiently large
detuning for each field, we can also neglect mixing due to spontaneous emissions
into other Zeeman-levels. The polarizability then loses all spin and polarization
dependencies resulting in a scalar quantity

This is why the coupling parameter ζ introduced in equation (5.1) is proportional
to a linear atomic polarizability and the wavenumber. For a generalization of the
beam splitter method to multi-level atoms with tensor polarizability we refer to a
work by Xuereb et al. (Xuereb et al. 2010). In this work we will assume that the
atomic polarizability α is the same for ky and kz, hence ζz = ζykz/ky. Of course,
a more realistic scenario is easily possible within our framework but it would add
unnecessary complexity here. Our central goal is the study of multiple scattering
dynamics and not the effect of optical pumping and polarization gradients.
In the following chapters we will study how the introduction of different fre-

quency fields provides new prospects to manipulate arrays of particles, ranging from
equidistant lattices to individually tuned inter-particle distances as well as the design
and control of motional couplings.

5.3 Light forces in counter-propagating beams with
orthogonal polarization

In this section we explore forces and dynamics of a 1D lattice geometry modelled by
a chain of beam splitters at distances dj := xj+1 − xj irradiated from both sides by
light with orthogonal polarizations (ey and ez) and possibly distinct frequencies (ωy
and ωz), cf. figure 5.1a. In contrast to a standard optical lattice setup as treated
before (Asbóth et al. 2008; Deutsch et al. 1995) no a priori intensity modulation due
to wave interference is present and we start with a fully translation invariant field
configuration. Hence the light field itself does not prescribe any local ordering and
only multiple light scattering from the particles themselves creates local trapping
forces. Due to the translation invariance of the setup no stable particle configuration
can be expected. However, the coupled particle field dynamics still induce relative
order. Hence our central goal is to find conditions, when the light forces induced
by two non-interfering beams are nevertheless sufficient to obtain stationary stable
particle arrays and how this spontaneous crystal formation arises.

5.3.1 Stability conditions for two beam splitters

To get some first insight, we start with the simplest nontrivial example of two beam
splitters at a distance d = x2 − x1. The intensities from the left and right beam
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Figure 5.2 Light force onto the left (5.7) (solid lines) and right beam splitter (5.8)
(dashed lines) as function of their distance d for ζ = 0.01 and k = ky = kz = 2π/λ. For
equal intensity P = Iz/Iy = 1 and frequency (blue curves) the two forces add to zero
and vanish at distances d = λ/8 and d = 3λ/8. For asymmetric intensities P = 0.7
(red curves) we find distances with equal forces F1 = F2 but a net centre of mass force
remains. The black curve shows a similar behaviour occurring for different wavenumbers
k/ky = 1.2 of same power P = 1. The red (green) dot marks unstable (stable) stationary
points.

are given as Iy = cε0
2 |Ay,1|2 and Iz = cε0

2 |Dz,2|2, respectively. Here we chose the
convention that all variables with index y correspond to light polarized in direction
of ey which is injected from the left (negative x-axis) and index z corresponds to ez
polarized light injected from the right. The individual beam splitters are counted
from left to right with integer indices, hence, for example Bz,2 is the B-amplitude of
the light field polarized parallel to ez at the second beam splitter, cf. (5.2).

Using (5.3) and (5.4) to compute the fields for any given distance d, it is straight-
forward to obtain the total force on each beam splitter by simply adding the forces
generated by the light in each polarization, i.e. F1 = Fy,1 +Fz,1 and F2 = Fy,2 +Fz,2.
The individual forces Fy,1, Fz,1, Fy,2 and Fz,2 are obtained from (5.5).

Despite the simple physical situation the corresponding general analytic solution
already is rather unhandy. Thus we first restrict ourselves to real valued ζ neglecting
absorption in the beam splitter or equivalently neglecting spontaneous emission in
an atom fibre system. Assuming small values of ζ and dropping terms of O(ζ3) and
higher, we then find the following approximate formulas for the force on the two
particles:

F1 =2
c


Iy ζ

2 (4 cos2(dky)− 1
)

1 + 4ζ2 cos2(dky)
−

Iz
(
kz
ky
ζ
)2

1 + 4
(
kz
ky
ζ
)2 cos2(dkz)


 , (5.7)

F2 =2
c


 Iy ζ

2

1 + 4ζ2 cos2(dky)
−
Iz
(kz
ky
ζ
)2 (4 cos2(dkz)− 1

)

1 + 4
(kz
ky
ζ
)2 cos2(dkz)


 . (5.8)

For a given set of control parameters, i.e. the intensity ratio P := Iz/Iy and the
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5.3 Light forces in counter-propagating beams with orthogonal polarization

wavenumbers ky and kz, the beam splitters will settle at a distance d0 for which
the two forces are equal, i. e., F1|d=d0 = F2|d=d0 , and the configuration is stable
(∂dF1|d=d0 > 0, ∂dF2|d=d0 < 0). In this case, the system can still exhibit centre of
mass motion but the particles keep a constant distance. From (5.7) and (5.8) we see
that a stable configuration in the special case of equal wavenumbers, k = ky = kz
requires

∆F = F1 −F2 = 4ζ2 cos(2d0k)
1 + 4ζ2 cos2(d0k))

(Iy + Iz)
c

= 0. (5.9)

Independent of the injected laser intensities, which just appear as a multiplicative
factor, this corresponds to a pair distance ds0 = (2n + 1)π/(4k) (n ∈ N). Here
the solutions for odd n correspond to a stable configuration, while even n leads to
unstable behaviour. As numerical example we plot the full distance dependent forces
for three typical sets of parameters in figure 5.2, where stationary distances of equal
force can be read off the intersection points. If these occur at zero force, the centre of
mass is stationary as well. For small ζ these distances of zero force on each particle
can be approximated by

d±1 = 1
ky


arccos


± 1

2ky

√
k2
yIy + k2

zIz

Iy + (kz/ky)2ζ2 (Iy − Iz)


+ n1π


 n1 ∈ Z, (5.10)

d±2 = 1
kz


arccos


± 1

2kz

√
k2
yIy + k2

zIz

Iz − ζ2 (Iy − Iz)


+ n2π


 n2 ∈ Z. (5.11)

Conditions (5.10) and (5.11) imply F1|d=d±1
= 0 and F2|d=d±2

= 0, respectively. Any
solution fulfilling d−1 = d−2 thus gives a stable and stationary configuration, where the
forces on both beam splitters vanish and small perturbations induce a restoring force,
as shown in figure 5.2. In general, such solutions can only be determined numerically
and are not guaranteed to exist for every set of parameters. In appendix 5.A we show
that the line of argument can also be reversed and one can calculate the intensity
ratios and wavenumbers needed to obtain a stable configuration for a desired distance
d. This allows precise distance control of the particles via intensities and frequencies.
Let us now exhibit some more of the intrinsic complexity of the system in a

numerical example. In figure 5.3a we first plot the forces on the two beam splitters
as function of distance and relative wavenumber for fixed equal intensity from both
sides. Clearly the intersection of the two force surfaces exhibits a complex pattern
with a multitude of stationary distances which can be controlled e.g. via the chosen
frequency ratio.
In an alternative approach we can numerically find a stable stationary distance

of the two beam splitters as function of intensity and wavenumber ratio by time
integration of their motion with some damping added, cf. figure 5.3b. We see that
depending on the parameters for a given initial condition the system can settle to
a large range of different stationary distances, exhibiting rather abrupt jumps at
certain critical parameter values. Generally a numerical evaluation requires very
little effort and can be easily performed for large parameter ranges. Despite the fact
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Figure 5.3 a) Force on left (orange) and right beam splitter (green) as function of the
wavenumber ratio kz/ky and distance for two partly absorbing beam splitters with
ζ = 1/12− i/150 and P = 1 (left figure). b) Stationary distance of two beam splitters
with ζ = 0.01 as function of the wavenumber ratio kz/ky and the intensity ratio P
obtained by numerical integration of their equation of motion including an effective
friction term.

that there is no externally prescribed order, the particles mostly tend to arrange at
configurations with stationary distance.

5.3.2 Self-ordering dynamics for higher numbers of beam splitters

In principle, determining stationary states for a larger number of beam splitters
is straightforward by first solving (5.3) and (5.4) for the fields and using these to
calculate the forces. However, to determine a completely stationary configuration of
N beam splitters for a given input field configuration, we have to solve N nonlinear
equations to guarantee a vanishing force at each particle as function of the N − 1
relative distances. This problem can have no or infinitely many solutions. Often one
does not get an exact solution, but solutions with vanishingly small centre of mass
force.
As a rather tractable example we plot the zero force lines as function of the two

relative distances for the case of three beam splitters illuminated by light of equal
power, P = 1, but different colour, kz/ky = 1.1, in figure 5.4. One finds many
intersections of these lines, where two forces vanish, but only for a few distances we
get triple intersections where the forces on all three particles vanish and stationary
order can be achieved. These solutions then still have to be checked for stability
against small perturbations to find a stable steady state.
To investigate the dynamics of a higher number of beam splitters it is more

instructive to solve the dynamical equations of motion for various initial conditions
until an equilibrium configuration is reached. To arrive at a stationary solution we
assign a mass to the beam splitters and add an effective friction coefficient µ in the
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5.3 Light forces in counter-propagating beams with orthogonal polarization

Figure 5.4 Zero-force lines for three beam splitters as function of the two distances for
kz/ky = 1.1, ζ = 0.1 and equal power P = 1. Common crossings of all three lines (red
circles) denote a stationary (but possibly unstable) configuration with no centre of mass
motion.

classical Newtonian equations of motion,

mẍj = −µẋj + Fj(x1, ..., xN ). (5.12)

In the following simulations we assume that the system is in the so called over damped
regime, meaning that the characteristic time scale of undamped cloud motion, i.e.
the oscillation period, is much smaller than the relaxation time of the cloud’s velocity
towards a constant value due to viscous friction. Under this assumption the equations
of motion (5.12) reduce to a set of differential equations of first order (Asbóth et al.
2008),

µẋj = Fj(x1, ..., xN ). (5.13)

In figure 5.5 we show the solutions of (5.13) for ten beam splitters in a simple
orthogonal beam trap with Iz = Iy and kz = ky = k. In a traditional standing
wave trap, the beam splitters would settle at the chosen initial equidistant spacing
dOL ≈ λ/2, cf. equation (5.23), which can be determined self-consistently (Asbóth
et al. 2008). However, for two trap beams of orthogonal polarization no prescribed
periodicity is present and the particles themselves create field configurations which
confine their motion through multiple scattering. Our simulations show that for
a large range of operating conditions the light forces generated by two counter-
propagating beams with orthogonal polarizations will indeed induce an ordering of
the particles, i.e. multiple scattering between the beam splitters is sufficiently strong
to generate a stable configuration.
Interestingly, the final distances d1 = d2 = · · · = dN converge to the same result

as obtained for the standing wave optical lattice as the number of beam splitters
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Figure 5.5 Trajectories of N = 10 beam splitters for P = 1, ky = kz and ζ = 0.01
(left figure) started from a regular array of distance λ/2. The colour coding in the
background shows the corresponding evolution of the total field intensity Itot := Iy + Iz.
The figure on the right depicts the change of the relative distances di := xi+1−xi which
converge towards a stable equidistant order of reduced distance.

N is increased, cf. figure 5.6. Thus orthogonally polarized trap beams have the
same trapping properties as a standing wave setup, as N →∞. The beam splitters
themselves then form an effective Bragg reflector to synthesize a standing wave
configuration, which traps the particles.
A substantially more complex behaviour is found for the case of two colour illu-

mination with different intensities, Iy 6= Iz. The trajectories for some representative
cases can be found in figure 5.7. Interestingly, there is still a wide range of parameters
where one obtains stationary patterns, but we generally get a non-equidistant spacing,
cf. figure 5.8, and a finite centre of mass force. As above for two beam splitters, this
force can be controlled via the intensity ratio to stabilize the centre of mass or induce
controlled motion. Of course, the configuration not only depends on the operating
conditions, but also on the initial conditions allowing for a multitude of different
stationary configurations.
In summary we conclude that the particles prefer to form crystalline structures

held in place by collective multiple scattering. The more particles we have, the
more complex these patterns can get and the more different solutions can exist.
The complexity of the problem increases further, if one allows for a variation of the
individual coupling parameters ζ, e.g. to represent number fluctuations of the atoms
trapped at each lattice site or size variation of trapped beads. Note that although
appearing similar at first sight, the mechanism is different from standard optical
binding of polarizable beads, which works on transverse shaping of the incoming light
with the particles acting as small lenses (Dholakia et al. 2010), which we neglected
in our model.

Let us finally note that analogous results should be obtained for a setup using two
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Figure 5.6 Dependence of the relative distances di (given in units of 1/k) on the
beam splitter number N. The parameters are chosen symmetric i.e. P = 1, k =
ky = kz, resulting in a equidistant lattice cf. figure 5.5. For large N we observe
asymptotic convergence towards the effective lattice constant as found for a standing
wave configuration, cf. equation (5.23) or (Asbóth et al. 2008). For the red dots we use
ζ = 0.01. A small imaginary part of zeta (green dots) ζ = 0.01 + i0.001 decreases the
distances but still yields stable configurations.

counter-propagating beams of equal polarization, but sufficiently different frequencies,
such that scattering between the different colours is suppressed. From the particles
point of view, the interference pattern of the combined fields then oscillates so rapidly
that they cannot follow and the two forces stemming from the two fields can be
calculated independently. Such frequency shifts are a common method to generate
3D optical lattices by using a different frequency in each dimension. But in contrast
to those cases, here we get a mutual interaction between the light intensities of
the different frequency components. During the evolution the spatial shifts of the
beam splitters induced by one field are seen by all other fields and influences their
propagation.

5.4 Tailored long-range interactions in a bichromatic optical
lattice

Optical lattices for ultracold atoms are of course an extremely well established and
controllable technology. In general, parameters are chosen in a way to avoid back-
action of the particles on the fields. The underlying physics helps here to achieve
this goal as particles tend to accumulate in zero force regions, where their influence
on the lattice light is minimized (Asbóth et al. 2008; Deutsch et al. 1995). This is
radically changed in the orthogonally polarized beam setup described above, where
trapping forces are only created by the back-action of the particles on the two beams
and interactions in the lattice occur via multiple collective scattering.
In the following chapter we will consider a second generic example to generate
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Figure 5.7 Trajectories of N = 10 beam splitters for P = 1, kz/ky = 1.3 and ζ = 0.01
(left figure). The colour coding in the background shows the total field intensity
Itot := Iy + Iz during the reorganization process of the system. On the right hand side
the trajectories (N = 10) for P = 1.3, ky = kz are shown. In both cases we observe a
finite centre of mass force in the long time limit, while the pattern formed is stable but
is no longer equidistant.

tailored long-range interactions in an optical lattice. In particular we study the
extra forces introduced by a second perturbation field of different wavelength in
a given optical lattice formed by two strong counter-propagating beams of equal
wavenumber k and polarization ey, cf. figure 5.1b. By adding an extra beam of
different wavenumber kp and polarization ez we can introduce tailored perturbations
and couplings, as its gradient is generally non-zero at the positions of the original
lattices sites.
For generality we allow intensity asymmetries for the dominant standing wave

field P := Ir/Il where the first indices l and r stand for left and right suggesting the
direction of incidence. The intensity of the additional perturbing field is called Ip.
The same index notation will also be used for the corresponding field amplitudes.

5.4.1 Two beam splitters in an bichromatic optical lattice

The first relevant system to study interactions and couplings introduced by an
additional field of different frequency are two beam splitters trapped at a distance dsw,
cf. equation (5.23), in a far detuned optical lattice at stable positions x0

1 = x0−dsw/2
and x0

2 = x0 + dsw/2. Here x0 denotes the centre of mass coordinate calculated
following (Sonnleitner et al. 2012), via

x0 = 1
2k

(
arccos

[(
Ir − Il

)(
1 + |r|2 − |t|2)

2| Im(rt∗)|√IlIr

]
− π

2u
)

+ nπ

k
, n ∈ Z (5.14)

with u = sgn[Im(rt∗)].
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Figure 5.8 Relative distances di := xi+1 − xi between N = 4 beam splitters, after the
system has reorganized and stabilised, as function of intensity ratio P. If we assume
k = ky = kz there is only one point (P = 1) where d1 (red curve), d2 (blue curve) and
d3 (green curve) have the same values. This corresponds to a formation of an equally
spaced lattice. The dashed lines show the relative distances for kz/ky = 1.1, where no
equidistant configuration can be realized.

The reflection and transmission coefficients r and t of the total system derived
from the total transfer matrix are

t = eik(x2−x1)

ζ2 (e2ik(x2−x1) − 1
)− 2iζ + 1

, (5.15)

r = −
ζ
(
(ζ − i)e2ik(x2−x1) − ζ − i

)

ζ2 (e2ik(x2−x1) − 1
)− 2iζ + 1

. (5.16)

The incident field amplitudes of the standing wave component are assumed as
Al =

√
2Il/(ε0c) exp(ikx1) and Dr =

√
2Ir/(ε0c) exp(−ikx2) so that the remaining

amplitudes at the boundaries are Bl = rAl + tDr, Cr = tAl + rDr. This allows to
calculate the lattice forces on the first and second particle,

F1 = ε0
2
[
|Al|2 + |Bl|2 − |(1 + iζ)Al + iζBl|2 − |iζAl − (1− iζ)Bl|2

]
, (5.17)

F2 = ε0
2
[
|(1 + iζ)Al + iζBl|2 + |iζAl − (1− iζ)Bl|2 − |Cr|2 − |Dr|2

]
. (5.18)

The additional perturbation field is described by Ap =
√

2Ip/(ε0c) exp(ikpx1),
Bp = rAp and Cp = tAp and generates the additional forces (ζp = k/kp ζ)

F1p = ε0
2
[
|Ap|2 + |Bp|2 − |(1 + iζp)Ap + iζpBp|2 − |iζpAp − (1− iζp)Bp|2

]
, (5.19)

F2p = ε0
2
[
|(1 + iζp)Ap,z + iζpBp|2 + |iζpAp − (1− iζp)Bp|2 − |Cp|2

]
. (5.20)
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Figure 5.9 Dependence of the coupling constants κ1 (blue) and κ2 (red) on the perturb-
ation field intensity Ip for ζ = ζp = 0.1, k = kp and P = 1. As soon as the perturbation
field is switched on, the constants differ.

Here we restrict the corresponding added dynamics of the two beam splitters to small,
time dependent perturbations ∆x1(t),∆x2(t) << dsw from the equilibrium positions
x0 given in (5.14). Using x1(t) = x0−dsw/2+∆x1(t) and x2(t) = x0 +dsw/2+∆x2(t)
and linearising the forces for small ∆x1(t) and ∆x2(t) yields to the following coupled
equations of motion

m∆ẍ1(t) = −K∆x1 + κ1
(
∆x2(t)−∆x1(t)

)
+ Fext,

m∆ẍ2(t) = −K∆x2 − κ2
(
∆x2(t)−∆x1(t)

)
+ Fext. (5.21)

A detailed calculation of the coefficientsK, κ1, κ2 and Fext is shown in appendix 5.B.
The equations above correspond to two coupled harmonic oscillators driven by an
external force Fext.
The solution of the system (5.21) can be calculated analytically yielding
(

∆x1(t)
∆x2(t)

)
=
(

1
1

)(
a1 cos(ω1t+ ϕ1) + Fext

K

)
+ a2

(
−κ1
κ2
1

)
cos(ω2t+ ϕ2) (5.22)

with ω1 =
√
K/m and ω2 =

√
(K + κ1 + κ2)/m.

Note that the coupling constants κ1 and κ2 here are not necessarily equal, cf. also
figure 5.9, as there is no energy conservation enforced for the motion of the two beam
splitters. Since the parameters can be chosen in a way so that the coupling constant
κ1 is equal to zero, one-sided couplings can be achieved. This means that only the
motion of beam splitter number two is coupled to beam splitter number one, which
does not couple to the rest of the system. The direction of this effect is governed
by the direction of incidence of the perturbation beam. Besides, κ2 > 0 holds for
all values of Ip, meaning that no antisymmetric modes can be obtained if κ1 < 1,cf.
equation (5.22). Generally we find that tuning the perturbation field intensity offers
a variety of different dynamics not accessible with traditional standing wave setups.
This motivates a more detailed treatment of this system, using numerical methods.
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Figure 5.10 Perturbation induced force Fip on N = 4 beam splitters at their unper-
turbed equilibrium positions in an optical lattice as function of the lattice constant d
for ζ = 0.1. The red line corresponds to the force F1p, the blue line to F2p, the green
line to F3p and the magenta line to F4p.

5.4.2 Long-range coupling of beam splitters in an optical lattice

As shown in (Asbóth et al. 2008) the effective self-consistent lattice constant in a
standing wave with asymmetry A := (Il− Ir)/

√
IlIr, with Il := ε0

c |Al|2, Ir := ε0
c |Dr|2

adjusts to

dsw = λ

2

(
1− 1

π
arccos

[
−ζ2√4 +A2 +

√
4− ζ2A2

2(1 + ζ2)

])
. (5.23)

In an optical lattice, multiple scattering induces long-range interactions between the
particles in the form of collective oscillation modes. In the self-consistent configuration
the particles arrange at intensity maxima at minimal field gradients, so that this
interaction is strongly suppressed for small perturbations. Adding, however, a second,
perturbative field by a single running wave beam of wavenumber kp injected from one
side induces an additional force on each particle perturbing the regular periodic order.
This perturbation then acts back on the original standing wave field. Note that a
single plane wave by itself would only add a constant force, but this force is modified
by multiple scattering depending on the particle distances. As an instructive example
we show these perturbing force acting on N = 4 beam splitters in figure 5.10. We see
that the additional force is different for all the particles and changes as a function
of the lattice constant relative to the wavelength of the perturbing light. Hence, by
a proper choice of parameters almost any combination of magnitudes and signs of
forces on the different beam splitters can be achieved.

This can be exploited for different purposes to control and study lattice dynamics.
As a first and direct application it is possible to tailor a specific field to induce
oscillations of selected particles in the optical lattice by deflecting them from their

67



5 Preprint: Scattering approach to two-colour light forces and self-ordering of . . .

−4.55

−4.44

0 5 10 15 20 25 30 35 40
Time t [arb. units]

[in
un

its
of

1/
k

p
]

x
1(

t)

0.15

0.24

x
2(

t)

4.68

4.79

x
3(

t)

9.38

9.47

x
4(

t)

Figure 5.11 Correlated oscillatory motion of N = 4 beam splitters in a lattice induced
by an additional perturbation field with intensity Ip = Il = Ir, wavenumber kp = k,
ζ = ζp = 0.1 and damping parameter µ = 0.01. The black, dashed lines show the initial
unperturbed trapping positions xi = nid0 − x0 (ni ∈ {1, 2, . . . , 4}) for d0 = 0.23λp.

equilibrium position. As shown in figure 5.10, the force on the individual beam
splitters depends strongly on the prescribed lattice constant. This means that there
is a wide range of realizable dynamics as long as the lattice constant can be tuned, cf.
equation (5.23). This can be potentially refined by the simultaneous use of several
perturbation frequencies.
For example, using the parameters from figure 5.10 we anticipate interesting

behaviour for a lattice with spacing dsw ≈ 0.23λp + mπ, m ∈ N as in that case
F1p = F3p = −F2p = −F4p (cf. dash-dotted line in figure 5.10). This behaviour is
verified by calculating the trajectories via (5.12), the results are shown in figure 5.11.
Obviously it is possible to correlate the motion of distant beam splitters in an optical
lattice via the additional beam. After switching on the perturbation at t = 0, particles
number one and three show amplified oscillations, while the other’s oscillations are
damped.
In a second approach the additional field is designed to enhance interactions

between selected distant areas in the lattice. As shown in figure 5.12, exciting an
oscillation of one particle weakly coupled to the standing wave field will usually have
little effect on the other trapped particles. But after adding a perturbative field
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Figure 5.12 Example plot for the resonant coupling of three beam splitters, trapped in a
standing wave configuration with d0 = λp/2. We used ζ = 0.01, ζp = 0.1, Il = Ir = 20Ip

and k/kp = 0.99. The rightmost beam splitter is displaced from the equilibrium position
at t = 0, resulting in a damped oscillation (damping parameter µ = 0.01). The black
curves show the resulting dynamics for Ip = 0. The green (x3(t)), blue (x2(t)) and red
(x1(t)) curves show the dynamics if the coupling field is switched on. Note the resonant
coupling between x1 and x3.

with carefully chosen parameters, this oscillation can be transferred to the other
particles, forcing them to move along. Note that due to the fact that the additional
perturbation (coupling) field is imposed from only one side, this coupling effect is not
symmetric and excitations can flow in a desired direction. For example, a perturbing
field entering from the left hand side will maximally transfer the motion of the
rightmost beam splitter. This setup allows one to correlate the motion of particles
and can even be used as a channel to transfer e.g. quantum information through the
lattice, very much like phonons in ion crystals.

5.5 Conclusions

We have shown that even in the case of non-interfering counter-propagating light
fields of different polarization and frequency, stable lattice configurations of particles
held in space by multiple coherent scattering are possible. In contrast to conventional
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optical lattices the light here plays a decisive dynamical role as multiple scattering is
essential to form and stabilize the structure. Compared to prescribed optical lattices
the physics is much closer to the case of solids, where lattice dynamics in form of
phonons not only keep the atoms in place, but also mediate long-range interactions.
Interestingly, in conventional optical lattices such interactions can be tailored by
adding additional coupling fields of suitable frequency and polarization. While
we have performed our calculations only for 1D geometries, where a semi-analytic
scattering approach can be used, similar effects should be present in 3D geometries
as well.
In general, for very far detuned optical fields these effects will be rather small

but their importance will grow with the size of the lattice as well as in transversely
confined fields. Particularly strong effects can be expected in fields guided by nano-
optical devices such as nano fibres or hollow core fibres. Here even for a few particles
strong interactions can be expected.
In this work we have restricted ourselves to the bichromatic case for sake of

simplicity. Nevertheless one can expect even more complex dynamics for an increasing
number of input fields as the forces show a more complex distance dependence. Note
that here we have ignored any internal optical resonances of the particles. Working
close to such resonances certainly should strongly increase the effects but also will
complicate the analysis.
Let us finally mention here that the system not necessarily requires a fixed set

of beam splitters as a starting point. As an alternative we can consider each beam
splitter to be formed by a small sub-ensemble of atoms in a 1D beam configuration,
as it has been proposed before (Asbóth et al. 2008; Deutsch et al. 1995). In our case
of non-interfering counter-propagating beams, one can expect that under suitable
conditions the cold atoms arrange in small groups forming at local field intensity
maxima (Grießer et al. 2013). Groups of atoms at certain spatial sites then commonly
form beam splitters shaping a self-consistent lattice structure.
In contrast to conventional lattices, back-action of the particles onto the fields

is an essential part of the dynamics and the field thus strongly mediates collective
interactions. Light scattering on one end of the lattice influences the lattice depth at
the other end, which opens a completely new branch of ultracold atom optical lattice
physics. Note that also atoms trapped in optical resonator fields (Ritsch et al. 2013)
exhibit similar dynamical coupling effects but in that case the back-action is strongly
restricted by the resonator geometry limiting the available interaction wavenumbers.
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Appendix 5.A Distance control for two particles
In section 5.3.1 we saw that distances with vanishing force on both beam splitters,
leading to a stable or trapped configuration for given intensity ratios and wavenumbers
for the special case k = ky = kz require equal intensity from left and right. If we
reverse the line of argument and ask for intensity ratios and wavenumbers where
the two beam splitters can be trapped at a given distance d, the result allows us to
study the full system, i.e. different polarizations and frequencies. In this case precise
distance control is possible.
First we need to find the zeros of (5.7) and (5.8) with respect to P.

P1 =
(
4 cos2(dky)− 1

)(
k2
y + 4k2

z ζ
2 cos2(dkz)

)

k2
y

(
1 + 4ζ2 cos2(dky)

) (5.24)

P2 =
k2
y + 4k2

z ζ
2 cos2(dkz)

k2
y

(
1 + 4ζ2 cos2(dky)

)(
4 cos2(dkz)− 1

) (5.25)

Both solutions P1 and P2 have to be positive, which is not valid for all values of d,
cf. figure 5.13.

To obtain a trapping condition for the wavenumbers, i.e. wavenumbers where the
total force F1 + F2 vanishes, we solve P1 = P2, finding

k±z = 1
d

arccos


±

√
cos(2dky)

√
2(1 + 2 cos(2dky)


+ 2πn, n ∈ Z. (5.26)

71



5 Preprint: Scattering approach to two-colour light forces and self-ordering of . . .

Equation (5.26) allows us to calculate the needed wavenumbers to trap the beam
splitters at a given distance d. The associated intensity ratio can be calculated
via (5.24) or (5.25).

Obviously there exists a wide range of parameters which allow stable and trapped
configurations of beam splitters in multicolour light beams with orthogonal polariza-
tions (or sufficiently different wavenumbers).

Appendix 5.B Linearisation of the forces on two beam
splitters in a bichromatic optical lattice

In section 5.3.1 we calculate the equations of motion for two beam splitters in a
standing-wave geometry perturbed by an additional field with orthogonal polarization.
For that purpose we use linearised forces (5.17), (5.18), (5.19) and (5.20). Here we
want to show how this linearisation is done and how the constants K, κ1, κ2 and
Fext can be calculated.
The force F1 depends only on the positions x1(t) and x2(t) of the two beam

splitters. Replacing these variables via x1(t) = x0 − dsw/2 + ∆x1(t) and x2(t) =
x0+dsw/2+∆x2(t) results in a force dependent on ∆x1(t) and ∆(t) := ∆x2(t)−∆x1(t).
Assuming small ∆x1(t) and ∆(t) we perform a 2D Taylor approximation to first
order resulting in

F1 = a+ b∆x1 + c(∆x2(t)−∆x1(t)) (5.27)

where we defined real constants a,b and c which are lengthy expressions depending
on the system’s parameters.

The same method works for the remaining forces F2, F1p and F2p, where the latter
two only depend on the relative distance ∆(t).

F2 = u+ v∆x2 + w(∆x2(t)−∆x1(t)) (5.28)
F1p = K1p +K2p(∆x2(t)−∆x1(t)) (5.29)
F2p = K3p +K4p(∆x2(t)−∆x1(t)) (5.30)

Performing these tedious calculations we find that some of the obtained constants
are zero (a = u = 0) while others have the same values. We define −K := b = v,
κ1 := K2p + c, −κ2 := K4p +w with c = w and Fext := K1p = K3p. With this results
result we get the forces used in the equations of motion (5.21).
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Light forces induced by sources of
thermal radiation
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6 Background: forces on atoms in
thermal radiation fields

Since the early proposal by Ashkin (Ashkin 1970) the mechanical interaction of atoms
or molecules and electromagnetic fields are typically explored using coherent and
narrow-band radiation from lasers. These allow for fascinating and groundbreaking
research including, amongst others, cooling and trapping of single atoms or atomic
clouds in optical lattices, resonators and optical tweezers (Ashkin 2000; Chu et al.
1986; Cohen-Tannoudji 1992; Ritsch et al. 2013; Wineland et al. 1979).

As explained in chapter 1, the intra-atomic processes induced by the optical fields
and resulting in “optical forces” are the absorption and spontaneous emission of
photons leading to radiation pressure and an induced shift of the atomic levels causing
the dipole or gradient force. Obviously, both mechanisms are not exclusive to coherent
or narrow-band radiation: the absorption of ambient radiation is a continuous and
omnipresent process; the dynamic Stark shifts due to thermal radiation is more
subtle but is nevertheless a source of error in precision spectroscopy (Farley et al.
1981; Gallagher et al. 1979; Jentschura et al. 2008; Safronova et al. 2010).

The most prominent force in connection with thermal fields is radiation pressure.
In astrophysics it plays a crucial role, e.g. for the internal stability of stars, the
formation of star systems and galaxies or in the dynamics of comets and their
tails (Carroll et al. 1996; Evans 1993; Robertson 1937). Surprisingly—at least to our
knowledge—the gradient force has not been studied yet in this context.
In the following sections we will therefore briefly review the dynamic Stark shift

for atoms in isotropic thermal fields where, due to symmetry, no forces are expected.
However, this changes once a finite source of radiation, such as a hot sphere, is
considered in section 6.2. A comparison with radiation pressure shows that the
overlooked gradient force actually dominates for a wide range of parameters. The
publication (Sonnleitner et al. 2013) presented in chapter 7 is based on the findings
of this introductory chapter. Further calculations are presented in chapter 8.

6.1 The dynamic Stark shift for an atom in a thermal bath

The effect of a weak electromagnetic field on an atom shall be described as a
perturbation in the electric dipole approximation (Bransden et al. 1983),

V (t) = er ·E(x, t)eηt, (6.1)
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where e is the elementary charge, r is the electron’s position operator1 and E(x, t)
is the electric field at the atom’s position x. The factor exp(ηt) is introduced to
account for a slowly increasing perturbation starting at a time t0 → −∞ and will
vanish as we take the limit η → 0.

The incoming electric field can be written as a superposition of plane waves of
frequency ω = c|k| ∈ [0,∞] incident from a solid angle Ω(x),

E(x, t) =
∫ ∞

0

∫

Ω(x)
|Eω| cos(ωt+ φk)

(
ek

[1] cos(αk) + ek
[2] sin(αk)

)
dΩdω. (6.2)

Here |Eω| is the field’s amplitude in the spectral region [ω, ω + dω]; ek
[1] and ek

[2]

span the plane of polarization orthogonal to a wavevector k coming in from a region of
solid angle [Ω,Ω +dΩ]. The variables αk and φk describe the polarization and phase
of the electric field and will be chosen randomly from the interval [0, 2π) to account
for the unpolarized and incoherent nature of the thermal light field, respectively.
From time-dependent perturbation theory, cf. appendix 6.A, one can define the

quantity2

∆n = 〈n|V (t) |n〉 − i
~

∑

m 6=n

∫ t

−∞
ei(ωn−ωm)(t−t′) 〈n|V (t) |m〉 〈m|V (t′) |n〉 dt′ (6.3)

associated with the level shift ∆En and the additional line width Γn of the atomic
eigenstate |n〉 via

∆n = ∆En − i~
2 Γn. (6.4)

To calculate the mean value of ∆n we have to deal with terms involving different
stochastic processes, e.g. 〈cos(ωt+ φk) cos(ω′t′ + φk′)〉. The assumed incoherent
light field allows us to perform the averaging independently for k 6= k′ such that we
find
〈
cos(ωt+ φk) cos(ω′t′ + φk′)

〉
=

=
{
〈cos(ωt+ φk) cos(ωt′ + φk)〉 = cos(ω(t− t′))/2 for k = k′,
〈cos(ωt+ φk)〉 〈cos(ω′t′ + φk′)〉 = 0 else.

(6.5)

A similar procedure for the randomised directions of polarization finally leads to an
average shift of

〈∆n〉 = − ie2

4~
∑

m6=n

∫ ∞

0

∫

Ω(x)
|Eω|2

(
|〈m| r · ek

[1] |n〉|2 + |〈m| r · ek
[2] |n〉|2

)
×

×
∫ t

−∞
cos(ω(t− t′))eiωnm(t−t′)eη(t+t′)dt′dΩdω, (6.6)

1 For a multi-electron atom or molecule r is the sum of the positions of all Ne electrons, i.e.,
r =

∑Ne

k=1 rk.
2 The sum is here understood to be a sum over discrete as well as an integral over the continuous

eigenstates |m〉 of the unperturbed atomic Hamiltonian. Also, |n〉 is assumed to be nondegenerate.
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where we set ωnm := ωn − ωm. The time integral gives
∫ t

−∞
cos(ω(t− t′))eiωnm(t−t′)eη(t+t′)dt′ = ie2ηt

2

( 1
ωnm + ω + iη

+ 1
ωnm − ω + iη

)
.

(6.7)
Using that limη→0(x + iη)−1 = Px−1 + iπδ(x) and identifying the terms in equa-
tion (6.4) with the real and imaginary party of ∆n we finally obtain a mean level
shift

〈∆En(x)〉 = e2

8~
∑

m 6=n
P
∫ ∞

0

∫

Ω(x)
|Eω|2

(
|〈m| r · ek

[1] |n〉|2 + |〈m| r · ek
[2] |n〉|2

)
×

×
( 1
ωnm + ω

+ 1
ωnm − ω

)
dΩdω, (6.8)

where P denotes the Cauchy principal value integral, and an additional effective line
width

〈Γn(x)〉 = e2π

4~2
∑

m 6=n

∫ ∞

0

∫

Ω(x)
|Eω|2

(
|〈m| r · ek

[1] |n〉|2+

+ |〈m| r · ek
[2] |n〉|2

)
δ(|ωnm| − ω) dΩdω. (6.9)

One can easily see that this perturbative approach breaks down if |ωnm| ' ω. In this
case we have to solve the problem in the dressed-state picture (Haas et al. 2006).
Farley and Wing (Farley et al. 1981), however, argue that a full, non-perturbative
treatment will finally, after integrating over the resonance, give the same result.
Equation (6.8) can be simplified for the special case of an atom immersed in an

isotropic, incoherent electric field, where Ω(x) = 4π. To connect the polarization
vectors ek

[1] and ek
[2] with the spherical coordinates used to parametrise the solid

angle element, i.e. dΩ = sinϑ dϑ dϕ, we set

k = ω

c



− cosϕ sinϑ
− sinϕ sinϑ
− cosϑ


 , ek

[1] =



− cosϕ cosϑ
− sinϕ cosϑ

sinϑ


 and ek

[2] =



− sinϕ
cosϕ

0


 .

(6.10)
The squared matrix elements in equation (6.8) then read, for instance,

|〈m| r · ek
[1] |n〉|2 =

(
|〈m|x |n〉|2 cos2 ϕ+ |〈m| y |n〉|2 sin2 ϕ

)
cos2 ϑ+

+ |〈m| z |n〉|2 sin2 ϑ+ 〈n|x |m〉 〈m| y |n〉 cosϕ sinϕ cos2 ϑ+ . . . (6.11)

but after integrating over the unit sphere, the mixed terms ∼ 〈n|x |m〉 〈m| y |n〉 etc.
vanish and only
∫ 2π

0

∫ π

0

(
|〈m| r · ek

[1] |n〉|2 + |〈m| r · ek
[2] |n〉|2

)
sinϑ dϑ dϕ =

= 8π
3
(
|〈m|x |n〉|2 + |〈m| y |n〉|2 + |〈m| z |n〉|2

)
= 8π

3 |〈m| r |n〉|
2 (6.12)
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Figure 6.1 Numerical computation of the integral G(y) as defined in equation (6.16)
and its continuation to negative values as G(−y) = −G(y).

remains. Defining |rmn|2 := |〈m| r |n〉|2 the mean energy shift is then simply given
by

∆En = e2π

3~
∑

m6=n
|rmn|2P

∫ ∞

0
|Eω|2

( 1
ωnm + ω

+ 1
ωnm − ω

)
dω. (6.13)

If the isotropic electromagnetic field is the result of a thermal bath of temperature T
and differential energy density uω, cf. appendix 6.B,

uω = ~
π2c3

ω3

e
~ω
kBT − 1

(6.14)

we can use uω = 2πε0|Eω|2, cf. appendix 6.C, to reproduce the formula given in (Farley
et al. 1981), reading

∆En = e2

6π2ε0c3

(
kB T

~

)3 ∑

m6=n
G

(~(ωn − ωm)
kB T

)
|rmn|2. (6.15)

Here we used (Farley et al. 1981)

G(y) = P
∫ ∞

0

x3

ex − 1

( 1
y + x

+ 1
y − x

)
dx, (6.16)

which has to be computed numerically and is drawn in figure 6.1.
Introducing the oscillator strengths3 defined as (Bethe et al. 1977; Bransden et al.

1983; Sakurai et al. 2011)

fmn := 2me(ωm − ωn)
3~ |〈m| r |n〉|2 (6.17)

3 This dimensionless number is positive for processes where ωm > ωn and obeys the neat Thomas-
Reiche-Kuhn sum rule as

∑
m
fmn = Ne, with Ne being the number of electrons in the atom. It is

related to Einstein’s absorption coefficient as Bmn = e2π/(2meε0~)fmn/(ωm − ωn) (Bransden et al.
1983; Einstein 1917; Hilborn 2002).
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6.1 The dynamic Stark shift for an atom in a thermal bath
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Figure 6.2 The Planckian energy density (6.14) for different temperatures, the rainbow
highlights the range of optical frequencies. The dashed vertical lines indicate the
frequencies of the first two transitions of atomic hydrogen in the ground state: the
hyperfine 1s(F = 0 − F = 1) line and the 1s − 2p transition. The numerical values
for the transition frequencies were taken from (Wiese et al. 2009) and are displayed in
table 6.1.

the energy shift (6.15) can be rewritten as

∆En = e2(kB T )3

4π2ε0c3me~2
∑

m 6=n
G

(~(ωn − ωm)
kB T

)
fmn

ωm − ωn
. (6.18)

From equations (6.15) or (6.18) combined with figure 6.1 we can infer the sign of
the energy shift: for a particle in the ground state all oscillator strengths fm0 are
positive and G is negative for kBT � ~(ωm − ω0). Therefore we expect a negative
energy shift, ∆E0 < 0, for atoms in their ground state.
On the other hand, highly excited atoms have the strongest transitions to lower

levels, hence transitions with ωn − ωm > 0 will dominate and for moderate temperat-
ures the numerical integral G will adopt positive values. These atoms will therefore
experience a positive energy shift.
For example we use the numbers given in (Farley et al. 1981) to confirm our

estimates as, e.g. for hydrogen we find ∆E1s/~ ≈ −0.26 Hz or for Rubidium ∆E5s/~ ≈
−17.5 Hz, for T = 300 K. We also find that the absolute value of the frequency shift is
much larger for Rydberg atoms than for atoms in the ground state, e.g. for hydrogen
∆E14p/~ ≈ 11.6 kHz or for Rubidium ∆E19s/~ ≈ −16.4 kHz, again at T = 300 K.
This can be easily understood as Rydberg atoms have far stronger transition lines.

For some elements, especially for atomic hydrogen in the ground state, the frequency
of the first optical transition is far above the bulk of the black-body power spectrum,
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6 Background: forces on atoms in thermal radiation fields

cf. figure 6.2. Therefore the AC Stark shift can be well approximated by the static
(DC) shift reading (Bransden et al. 1983)

∆EDC = −αX2 〈E(x)2〉, (6.19)

where αX is the static polarizability of the atomic species X and 〈E(x)2〉 denotes
the average squared electric field. For isotropic irradiance of energy density uω this
reads

〈E(x)2〉 = 4π
∫ ∞

0
1
2 |Eω|2dω = 1

ε0

∫ ∞

0
uω dω. (6.20)

For blackbody radiation we find
∫∞

0 uωdω = π2(kB T )4/(15c3~3), cf. equation (6.14).
The static polarizability for atomic hydrogen in the 1s ground state reads (Bransden
et al. 1983)

αH = 9
24πε0a

3
0, (6.21)

with the Bohr radius a0 = ~/(meαc) and the fine-structure constant α = e2/(4πε0~) ≈
1/137. Hence the energy shift for ground-state hydrogen in a thermal bath of tem-
perature T can be approximated by (Jentschura et al. 2008)

∆E1s(T ) ≈ −3π3k4
BT

4

5α3m3
ec

6 . (6.22)

6.2 The dynamic Stark shift for an atom close to a hot
sphere

Obviously, the Stark shift induced by an isotropic thermal bath, cf. equation (6.15),
is again isotropic and will not accelerate an atom initially at rest. Hence we shall
discuss the simple anisotropic case of an atom in the vicinity of a spherical blackbody.
As shown in figure 6.3, a sphere of radius R at a distance r > R appears like a

disk of radius Rd = R
√
r2 −R2/r at distance rd = (r2 −R2)/r (Guess 1962). In the

spherical coordinates consistent with the notation introduced in equation (6.10) this
corresponds to a region ϕ ∈ [0, 2π), ϑ ∈ [0, arctan(Rd/rd)] or a solid angle

Ω� = 2π
(

1−
√
r2 −R2

r

)
. (6.23)

Starting again from equation (6.8) we now find that the terms with the squared
matrix elements are more evolved and read
∫

Ω�

(
|〈m| r · ek

[1] |n〉|2 + |〈m| r · ek
[2] |n〉|2

)
dΩ =

= 4π
3

(
1−
√
r2 −R2

r

)(
|〈m|x |n〉|2 + |〈m| y |n〉|2 + |〈m| z |n〉|2

)
+

+ π

3
R2√r2 −R2

r3

(
|〈m|x |n〉|2 + |〈m| y |n〉|2 − 2|〈m| z |n〉|2

)
. (6.24)
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Figure 6.3 Sketch of an atom at distance r from a radiating sphere of radius R. As
explained in (Guess 1962) the sphere then appears as a disc of radius Rd at distance rd

corresponding to a solid angle Ω� as given in equation (6.23). The individual light rays
propagate along wavevectors k, cf. equation (6.10).

After using |Eω|2 = uω/(2πε0), cf. appendix 6.C, inserting the blackbody relation
given in (6.14) and using again G(y) defined in (6.16) we obtain the total energy
shift caused by a hot sphere,

∆E�n = e2

48π2c3ε0

(
kB T

~

)3 ∑

m6=n
G

(~(ωn − ωm)
kB T

)
×

×
[
4
(

1−
√
r2 −R2

r

)(
|〈m|x |n〉|2 + |〈m| y |n〉|2 + |〈m| z |n〉|2

)
+

+ R2√r2 −R2

r3

(
|〈m|x |n〉|2 + |〈m| y |n〉|2 − 2|〈m| z |n〉|2

) ]
. (6.25)

As long as the atom is not oriented along some external magnetic field, no
quantisation axis is defined and the term proportional to (|xnm|2 + |ynm|2 − 2|znm|2)
vanishes. In this case we obtain the intuitive result where the shift for an atom close
to a hot sphere is linked to the shift in an isotropic field as

∆E�n = 1
2

(
1−
√
r2 −R2

r

)
∆En = Ω�

4π ∆En. (6.26)

Here we emphasise that the geometric prefactor is nothing but the ratio between the
solid angle occupied by the radiation source and the whole 4π environment.
The gradient or dipole force is then given as F�n (r) = −∂r∆E�n or

F�n (r) = ∆En
2R

R3

r2
√
r2 −R2 . (6.27)

81



6 Background: forces on atoms in thermal radiation fields

6.3 Absorption rate and radiation pressure induced by
blackbody radiation

As discussed in appendix 6.A, a perturbation such as the interaction with a light
field will not only shift the energy levels of an atom, but also trigger transitions to
other atomic states. From equations (6.9) and (6.14) we find that for the case of
isotropic thermal radiation the natural line width of a state |n〉 will be broadened by
an additional term (Farley et al. 1981; Jentschura et al. 2008)

Γn = e2

3π~ε0c3
∑

m 6=n
|rmn|2

|ωn − ωm|3

e
~|ωn−ωm|
kB T − 1

, (6.28)

or, in terms of the oscillator strength fmn defined in (6.17),

Γn = e2

2πmeε0c3
∑

m6=n
|fmn|

|ωn − ωm|2

e
~|ωn−ωm|
kB T − 1

. (6.29)

For an atom in the ground state, a transition to another (i.e. higher) state implies
the absorption of a photon and the transfer of momentum. To estimate the effect of
this radiation pressure we use that Γn = ∑

m6=n τnm
−1 where τnm is the transition

time for the process of absorption of a photon of momentum ~|ωn − ωm|/c. The
momentum transferred per unit time is proportional4 to the radiation pressure which
thus reads

F rp
n (r) ' e2~

2πmeε0c4
R2

4r2
∑

m 6=n
|fmn|

|ωn − ωm|3

e
~|ωn−ωm|
kB T − 1

. (6.30)

Note that equation (6.28) was derived for the case of isotropic irradiance which is
why we had to include the geometric factor πR2/r2, normalized by 4π, to obtain the
radiation pressure from the field emitted by a hot sphere, cf. also equation (6.70)
for the corresponding average Poynting vector. The radiation pressure from a hot
sphere can also be expressed in terms of a potential energy,

V rp
n (r) = arpR

r
with arp = e2~

8πmeε0c4R
∑

m 6=n
|fmn|

|ωn − ωm|3

e
~|ωn−ωm|
kB T − 1

. (6.31)

A comparison with the dipole force (6.27) shows that the two forces show a very
different distance behaviour.

To compare the relative strengths of the two forces we plot the main contributions to
the total radiation pressure (at r = R) on a ground-state hydrogen atom in figure 6.4
and compare them to the prefactor of the dipole force as as given in equation (6.27)
using the estimation from (6.22). Here we find that the radiation pressure is much

4 For an exact treatment of the radiation pressure we would also have to consider the reemission
of a photon. As this will typically be a spontaneous process it will on average not deposit any
momentum, but require additional time. The force given here is thus an approximate upper bound
for the radiation pressure.
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Figure 6.4 Contributions of the 1s− 2p, 1s− 3p and the hyperfine 1s (F = 0− F = 1)
transitions to the total radiation pressure on a ground-state hydrogen atom at r = R.
The comparison with the prefactor for the gradient force F� = ∆E/(2R) shows that
radiation pressure can be ignored for T . 5000 K at R = 1 mm. The numbers for the
oscillator strengths and transition frequencies were taken from (Wiese et al. 2009) and
are displayed in table 6.1.

smaller than the dipole force for temperatures less than a few thousand Kelvin. In
figure 6.5 a similar plot for lithium shows that radiation pressure there dominates
earlier, as the first optical transition energy is only ~∆ω2s−3p ≈ 1.85 eV.
However, we point out that these comparisons are only crude estimates since the

approximation to use the static polarizability for the dipole force breaks down once a
specific transition becomes important, which is exactly when the radiation pressure
force comes into play, cf. also figure 6.2.

6.4 Limits of our model

In this section we shall address the validity and the limits of several assumptions we
made about the thermal radiation of the hot sphere interacting with an atom.

The first and major assumption is that the sphere is a blackbody. As explained in
appendix 6.B, a blackbody is an idealised concept where the absorption and emission
coefficient is equal to one for all frequencies. The thermal emission of realistic objects
can be connected to the Planckian energy density by introducing the emissivity, a
property describing the spectral and directional radiation characteristics of a given
material. As the emissivity itself may depend on the temperature, the total power
emitted by a non-black body might not scale with the fourth power of temperature
as predicted by the Stefan-Boltzmann law (Siegel et al. 1992).

Additionally, the derivation of Planck’s law, cf. appendix 6.B, uses the assumption
of a sufficiently large cavity capable of supporting all relevant wavelengths (Bohren
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6 Background: forces on atoms in thermal radiation fields
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Figure 6.5 Contributions of the 2s− 3p, 2s− 4p and the hyperfine 2s (F = 1− F = 2)
transitions to the total radiation pressure on a ground-state lithium atom at r = R.
The prefactor for the gradient force F� = ∆E/(2R) was computed using the DC Stark
shift approximation (6.19) using αLi ≈ 36.5αH (Yan et al. 1996). Note, however, that
this approximation breaks down at temperatures of a few hundred Kelvin when the
individual transitions become relevant. The numerical values for the oscillator strengths
and transition frequencies were taken from (Wiese et al. 2009) and are displayed in
table 6.1.

et al. 1983; Reiser et al. 2013). Therefore this approximation breaks down if one or
more dimensions of the object shrinks to sizes comparable to the thermal wavelength
λth ≈ 2.898×10−3 m ·K/T (Bransden et al. 1983). The thermal radiation from (sub-)
micron sized objects is therefore strongly modified by geometric effects and they will
typically emit less power than expected from a the Stefan-Boltzmann law (Greffet
et al. 2002; Martynenko et al. 2005; Rosenberg et al. 2008; Wuttke et al. 2013; Yu
et al. 2010) although amplified emission is possible too (Reiser et al. 2013).

As the main objective of this work is to investigate the basic mechanism of optical
forces from thermal radiation sources, we decided to stick to the approximate but
nevertheless generic scenario of a small blackbody. For radii larger than a few microns,
this assumption should not be too far off.

For an atom in the near-field of an object a wide range of factors have to be
considered, such as evanescent thermal fields or interactions of the atom with its
own field reflected off the surface. These and other effects are incorporated in the
research on van der Waals or Casimir-Polder forces (Antezza et al. 2005; Ellingsen
et al. 2012; Klimchitskaya et al. 2009; Obrecht et al. 2007) but shall not be discussed
here. We expect that a full treatment would show that the forces described in the
present work merge with those interactions close to the surface.
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6.A Energy shift and decay rate in time-dependent perturbation theory

Table 6.1 Parameters for the transitions in atomic hydrogen and lithium used for
figures 6.2, 6.4 and 6.5 as collected in (Wiese et al. 2009). For the hyperfine transition
in Li we used fnm = 2πmeε0c

3/(ω2
mne

2) gm/gn Anm to compute the oscillator strength
from the given spontaneous emission coefficient Anm and degeneracies gm and gn.

transition frequency ωmn [Hz] osc. strength fmn
H: 1s− 2p 1.54948× 1016 0.41641

1s− 3p 1.83641× 1016 0.079142
1s 2S1/2 (F = 0− F = 1) 8.92467× 109 5.7786× 10−12

7Li: 1s22s− 1s22p 2.80738× 1015 0.74696
1s22s− 1s23p 5.82527× 1015 4.711× 10−3

1s22s 2S1/2 (F = 1− F = 2) 5.04442× 109 2.71408× 10−12

Appendix 6.A Energy shift and decay rate in
time-dependent perturbation theory

In this short overview we follow Sakurai (Sakurai et al. 2011) to calculate the shift
of the eigenenergies of a nondegenerate state |n〉, H0 |n〉 = ~ωn |n〉, exposed to a
time-dependent, perturbative interaction εV (t) where V (t) is linear and self-adjoint
and a parameter 0 < ε� 1. Inserting a state

|ψ(t)〉 =
∑

m

cm(t)e−iωmt |m〉 (6.32)

into the Schrödinger equation and projecting on a state e−iωnt |n〉 gives

ċn(t) = −ε i
~
∑

m

cm(t) ei(ωn−ωm)t 〈n|V (t) |m〉 , (6.33)

which can be solved by a formal integration

cn(t)− cn(t0) = −ε i
~
∑

m

∫ t

t0
cm(t′) ei(ωn−ωm)t′ 〈n|V (t′) |m〉 dt′. (6.34)

Before we continue, note and keep in mind that ∑m here actually denotes the sum
over the discrete and and integral over the continuous eigenstates of H.

Let us assume that our state is initially an eigenstate of H0, for example, |ψ(t0)〉 =
e−iωnt0 |n〉, hence ck(t0) = δk,n. An iterative application of equation (6.34) then gives

cn(t) = 1− ε i
~

∫ t

t0
〈n|V (t′) |n〉 dt′ − ε2 1

~2
∑

m

∫ t

t0

∫ t′

t0
ei(ωn−ωm)t′ 〈n|V (t′) |m〉×

× e−i(ωn−ωm)t′′ 〈m|V (t′′) |n〉 dt′′ dt′ +O(ε3), (6.35)

and for k 6= n we obtain

ck(t) = −ε i
~

∫ t

t0
e−i(ωn−ωk)t′ 〈k|V (t′) |n〉 dt′ +O(ε2). (6.36)
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6 Background: forces on atoms in thermal radiation fields

Let us define
∆n := i~

ċn(t)
cn(t) (6.37)

such that cn(t) = exp(−i ∫ tt0 ∆n(t′)dt′/~). If ∆n turns out to be time independent
we find

|ψ(t)〉 = e−i(ωnt+∆n(t−t0)/~) |n〉+
∑

m 6=n
cm(t)e−iωmt |m〉 . (6.38)

This suggests the interpretation that the real part of ∆n gives the energy shift ∆En
of our initial state |n〉, whereas the imaginary part is linked to the induced decay
rate Γn to other states (Farley et al. 1981; Haas et al. 2006; Sakurai et al. 2011), i.e.

∆n = ∆En − i~
2 Γn. (6.39)

Plugging the result from equation (6.35) into our definition (6.37) shows that, up
to second order in ε and using ωnm := ωn − ωm,

∆n = ε 〈n|V (t) |n〉 − ε2 i
~
∑

m6=n

∫ t

t0
eiωnm(t−t′) 〈n|V (t) |m〉 〈m|V (t′) |n〉dt′. (6.40)

Note that the matrix element 〈n|V (t) |n〉 does not contribute to the second order
term.
To compare our formalism with the results from time-independent perturbation

theory let us assume a slowly increasing perturbation V (t) = V0eη t with 0 < η � 1.
Let us further set t0 → −∞ such that equation (6.35) reads

cn(t) = 1− ε i
η ~
〈n|V0 |n〉 eη t + ε2

1
η ~2

∑

m

|〈m|V0 |n〉|2e2η t

2i(ωn − ωm + iη) + . . . (6.41)

and after using equation (6.40) we get

∆n = ε 〈n|V0 |n〉 eη t + ε2
∑

m 6=n

|〈m|V0 |n〉|2e2η t

~(ωnm + iη) . (6.42)

Taking the limit η → 0 allows us to compare our interpretations with the results
from time-independent perturbation theory. To do so, we use (Sakurai et al. 2011)

lim
η→0

1
x+ i η

= P 1
x
− iπδ(x) (6.43)

where P denotes the Cauchy principal value and δ(x) is Dirac’s delta function. Thus
we obtain

∆En = ε 〈n|V0 |n〉+ ε2
∑

m6=n

|〈m|V0 |n〉|2
~ωnm

, (6.44)

~Γn = −2 Im ∆n = 2πε2
∑

m6=n
|〈m|V0 |n〉|2δ(~ωnm), (6.45)
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6.B Planck’s law of blackbody radiation

and, as expected, this is the same energy shift as we would find in stationary
perturbation theory (Sakurai et al. 2011).
As another important example we assume an oscillating perturbation V (t) =

V0 cos(ωt)eη t, 0 ≤ η � 1, and calculate a time-dependent shift as

i~
ċn(t)
cn(t) = ε 〈n|V0 |n〉 cos(ωt)+

ε2
∑

m 6=n

|〈m|V0 |n〉|2 cos(ωt) [(ωnm + iη) cos(ωt) + iω sin(ωt)]
~
(
(ωnm + iη)2 − ω2) + . . . (6.46)

where we already set t0 → −∞ and exp(2ηt)→ 1. In many examples the perturbation
is an electromagnetic wave with frequencies in the range of 1013Hz to 1015Hz, thus
oscillating too fast for atomic time-scales in the order of nanoseconds. Hence the
atoms only “feel” an average, effectively time-independent potential and we redefine
(with τ = 2π/ω)

∆n ' lim
η→0

i~
τ

∫ τ/2

−τ/2

ċn(t)
cn(t)dt, (6.47)

∆En '
ε2

4~
∑

m 6=n
|〈m|V0 |n〉|2

( 1
ωnm − ω

+ 1
ωnm + ω

)
, (6.48)

Γn '
ε2π

2~2
∑

m 6=n
|〈m|V0 |n〉|2δ(|ωnm| − ω). (6.49)

Appendix 6.B Planck’s law of blackbody radiation
Planck’s derivation of the spectral energy density of blackbody radiation and the
associated introduction of Planck’s constant h marks without doubt one of the
greatest milestones in modern physics (Planck 1901). It goes without saying that
this crucial topic has been discussed in numerous textbooks, the following short
introduction is based on the book by Bransden and Joachain (Bransden et al. 1983).

A blackbody is the idealised concept of an object that absorbs all the radiation of
all wavelengths. Kirchhoff’s law states that if such an object is in thermal equilibrium
with its environment of temperature T , it has to reemit the same amount of energy
as it absorbs. Stefan could show empirically that the total power emitted per unit
area depends only on the temperature as

P/A = σT 4, (6.50)

where σ = π2k4
B/(60~3c2) has later been named the Stefan-Boltzmann constant. By

the end of the nineteenth century this and some other characteristics of blackbody
radiation were well established, but the spectral energy density remained a mystery.
Theoretical derivations by Rayleigh and Jeans predicted infinite energies for high
frequencies which obviously were not confirmed by experiments.
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6 Background: forces on atoms in thermal radiation fields

Apart from the cosmic microwave background (Fixsen et al. 1996), reasonably
accurate blackbody radiation can be obtained from a box with a small hole. Imagine
the box being made of a well absorbing material and kept at constant temperature.
Then light entering the box through the whole might be reflected several times inside
the box, but in the end it will certainly be absorbed before it can leave the box.
Hence, all the radiation coming out of the whole has been emitted from the walls
and therefore should carry blackbody signature.

Inside the box we find standing waves with wavelengths λ = 2L/n, where L is the
length of each edge of our cubic box and

n =
√
n2
x + n2

y + n2
z. (6.51)

The natural numbers ni give the numbers of antinodes of the standing waves in each
dimension. Obviously, many different combinations of nx, ny and nz give the same
total n. Drawing nx, ny and nz in three independent axes shows that for large n or,
equivalently, large L the combinations meeting

√
n2
x + n2

y + n2
z ≤ n fill one eighth of

a sphere of radius n. The total number of modes of wavelengths larger than λ then
read

N(λ) = 1
8

4πn3

3 = 4πL3

3λ3 (6.52)

and the number of modes in an interval [λ, λ+dλ] is then dNλ = N(λ)−N(λ+dλ) ≈
4πL3/λ4 dλ. As described nicely by Reiser and Schächter (Reiser et al. 2013) and
mentioned in section 6.4, this derivation of the density of states is based on the
assumption that the volume is large compared to all wavelengths. Given this
assumption the mean spectral energy density is now the number of modes per volume
L3 multiplied by the mean energy of each mode, i.e.

uλdλ = 2dNλ

L3 〈ελ〉 . (6.53)

The factor of 2 accounts for the two possible polarizations of the standing waves in
the box.

Rayleigh and Jeans assumed that each mode could carry any real value of energy
ελ ≡ ε, independent of its wavelength. These energies would be distributed according
to Boltzmann statistics with β = 1/(kBT ), such that the mean energy reads

〈ε〉 =
∫∞
0 ε exp(−εβ)dε∫∞
0 exp(−εβ)dε = 1/β. (6.54)

This mean energy is independent of the wavelength and hence the integrated energy
density is proportional to λ−4, resulting in the “ultraviolet catastrophe” mentioned
earlier.
Plank’s revolutionary idea was to propose that the energies of the modes take

discrete values ελ = mεp(λ), with m ∈ N and εp(λ) yet to be determined. The
integrals from equation (6.54) are then replaced by sums as

〈ελ〉 =
∑∞
m=0mεp exp(−mεpβ)∑∞

m=0 exp(−mεpβ) = εp
eεpβ − 1 . (6.55)
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6.C Poynting vectors and energy densities for incoherent electromagnetic fields

To comply with an improved version of Wien’s approximation stating uλ = f(λT )/λ5

(Planck 1900; Wien 1896) with some unknown function f , the energy per light
quantum must be

εp = hc/λ = ~ω (6.56)

where h ≈ 6.626× 10−34Js is Planck’s constant and ~ = h/(2π). Finally we obtain
the spectral energy density of blackbody radiation

uλ dλ = 8πhc
λ5

1
ehc/(kBTλ) − 1

dλ, (6.57)

or, using uω dω = uλ dλ with λ = 2πc/ω and dλ = 2πc/ω2 dω,

uω dω = ~
π2c3

ω3

e~ω/(kBT ) − 1
dω. (6.58)

Appendix 6.C Poynting vectors and energy densities for
incoherent electromagnetic fields

In sections 6.1 and 6.2 we need to connect the spectral energy density uω with the
amplitudes of electric fields, |Eω|2. As this is an error-prone task we shall provide a
few examples which might prove useful not only for the topic of thermally radiating
spheres.
The energy density u and energy flux density, i.e. Poynting vector, S are defined

as (Jackson 1999)

u(x, t) = 1
2
(
E(x, t) ·D(x, t) + B(x, t) ·H(x, t)

)
,

S(x, t) = E(x, t)×H(x, t).
(6.59)

For fields in vacuum these expressions are simplified as D = ε0E and H = B/µ0,
µ0 = 1/(ε0c2),

u(x, t) = ε0
2

(
|E(x, t)|2 + c2|B(x, t)|2

)
,

S(x, t) = ε0 c
2E(x, t)×B(x, t).

(6.60)

Note that for complex vectors a,b ∈ C3, the dot product shall be defined as
a · b = ∑

i a
∗
i bi, with z∗ denoting the complex conjugate of z ∈ C.

For plane waves with a wavevector k = ωκ/c one can easily verify that B = κ×E/c
and κ ·E = 0. Using some properties of the cross product we find

u(x, t) = ε0|E(x, t)|2 and S(x, t) = ε0 c |E(x, t)|2κ = c u(x, t)κ. (6.61)

When dealing with highly oscillating fields it can be useful to average over a period
τ = 2π/ω. Defining E(x, t) = Re[E(x)e−iωt] and 〈f(t)〉t := τ−1 ∫ τ

0 f(t) dt leads to
〈
|E(x, t)|2

〉
t

= 1
4

〈(
E(x)e−iωt + E∗(x)eiωt

)2
〉

t
= 1

2 |E(x)|2. (6.62)
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6 Background: forces on atoms in thermal radiation fields

After averaging over one period of time the energy density and the Poynting vector
of equation (6.61) change to

u(x) := 〈u(x, t)〉t = ε0
2 |E(x)|2 and S(x) := 〈S(x, t)〉t = ε0 c

2 |E(x)|2κ. (6.63)

A superposition of plane waves, E = ∑
k Ek and B = ∑

k Bk = 1
c

∑
k κ × Ek,

results in an energy density and Poynting vector reading

u = ε0
2
∑

k,k′

((
Ek ·Ek′

)(
1 + κ · κ′)− (κ ·Ek′

)(
κ′ ·Ek

))
,

S = ε0 c
∑

k,k′

((
Ek ·Ek′

)
κ′ − (Ek′ · κ

)
Ek
)
.

(6.64)

For the example of two counter-propagating waves with κ1 = −κ2 this simplifies to

u = ε0
(
|Ek1 |2 + |Ek2 |2

)
and S = ε0 c

(
|Ek1 |2 − |Ek2 |2

)
κ1. (6.65)

To describe a superposition of incoherent waves we set

Ek(x, t) = |Ek| cos(ωt+ φk)
(
ek

[1] cos(αk) + ek
[2] sin(αk)

)
(6.66)

where φk ∈ [0, 2π) describes the phase and αk ∈ [0, 2π) fixes the direction of
polarization in the plane spanned by the unitvectors ek

[1] and ek
[2]. Averaging over

the uncorrelated phases and polarizations then results in

〈Ek(x, t) ·Ek′(x, t)〉φk,φk′ ,αk,αk′
= |Ek|2 δ(k− k′)/2. (6.67)

For incoherent radiation received from a direction Ω we may write E(x, t) =∫
Ek d3k ≡ ∫∫ Ek(x, t) dΩdω and this results in simple expressions for the averaged

energy density and flux as

〈u〉 = ε0
2

∫∫
|Ek|2 dΩdω and 〈S〉 = ε0 c

2

∫∫
|Ek|2κ dΩdω. (6.68)

If the field’s amplitude only depends on the frequency and not on the direction of
incidence, i.e. Ek ≡ Eω, and if we assume isotropic irradiance we obtain

〈u〉 = ε0
2 4π

∫ ∞

0
|Eω|2 dω and 〈S〉 = 0. (6.69)

Defining the spectral energy density via 〈u〉 =
∫∞

0 uω dω we finally see that uω =
2πε0|Eω|2.

If the radiation is not isotropic but originates from a sphere of radius R at distance
r > R we find, using the notation introduced in figure 6.3,

〈u〉 = ε0
2 Ω�

∫ ∞

0
|Eω|2 dω = 1

2

(
1−
√
r2 −R2

r

)∫ ∞

0
uω dω,

〈S〉 = ε0 c

2

∫

Ω�
κdΩ

∫ ∞

0
|Eω|2 dω = −ez

R2c

4 r2

∫ ∞

0
uω dω.

(6.70)
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7 Publication

Attractive optical forces from blackbody
radiation

M. Sonnleitner∗, M. Ritsch-Marte and H. Ritsch

Blackbody radiation around hot objects induces ac Stark shifts of the energy
levels of nearby atoms and molecules. These shifts are roughly proportional to the
fourth power of the temperature and induce a force decaying with the third power
of the distance from the object. We explicitly calculate the resulting attractive
blackbody optical dipole force for ground state hydrogen atoms. Surprisingly,
this force can surpass the repulsive radiation pressure and actually pull the atoms
against the radiation energy flow towards the surface with a force stronger than
gravity. We exemplify the dominance of the “blackbody force” over gravity for
hydrogen in a cloud of hot dust particles. This overlooked force appears relevant
in various astrophysical scenarios, in particular, since analogous results hold for
a wide class of other broadband radiation sources.

Phys. Rev. Lett. 111, 023601 (2013) doi: 10.1103/PhysRevLett.111.023601

Light forces on particles microscopically arise from the basic physics of absorption
and redistribution of photon momentum. For light far detuned from any optical
resonance, the interaction is dominated by coherent scattering and can be attributed
to an optical potential corresponding to the dynamic Stark shift of the involved
atomic energy levels. Red-detuned light induces a negative Stark shift on low energy
states so that particles are high-field seekers drawn towards regions of higher radiation
intensity. From precision experiments in atomic spectroscopy it has been known for
at least half a century that blackbody radiation also induces Stark shifts of atomic
states. In particular the ground state is shifted towards lower energy (Angstmann
∗The author of the present thesis performed all of the calculations in this publication.
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rd

r-rd

Rd

R

Figure 7.1 An artist’s view of the interaction between an atom and a hot sphere of
radius R. From a distance r it appears as a disk of effective radius Rd at distance rd.

et al. 2006; Farley et al. 1981; Gallagher et al. 1979; Itano et al. 1982; Jentschura
et al. 2008; Mitroy et al. 2009; Porsev et al. 2006; Safronova et al. 2010). Albeit
a small shift, it constitutes an important perturbation of precision spectroscopy
proportional to the radiated blackbody intensity (Parthey et al. 2011) growing with
the fourth power of temperature. Obviously, for a thermal source of finite size the
radiation field intensity decays with distance from the surface inducing a spatially
varying Stark shift. Our central claim now is that this shift constitutes a spatially
varying optical potential exerting an effective optical dipole force on neutral atoms.

In this Letter we study the surprising and peculiar properties of this—so far
overlooked—optical force for the simple but generic example of individual hydrogen
atoms interacting with “hot” spheres. Since the first electronic excitation of hydrogen
is in the far UV region, the largest part of a typical blackbody radiation spectrum
is below the first optically coupled atomic excited state, i.e., the 2p state. Thus
it induces an attractive dispersive dipole force analogous to the dominant force in
optical tweezers (Ashkin et al. 1986). Of course, at the same time some narrow
high frequency components are resonantly absorbed and spontaneously reemitted
generating a repulsive radiation pressure. The relative size of these two components
depends on temperature. As shown below, for hydrogen these forces can be explicitly
calculated by generalizing known derivations of the Stark shift (Farley et al. 1981;
Jentschura et al. 2008) exhibiting a surprising dominance of the attractive dipole
force up to a limiting temperature. Geometrical considerations as shown in Fig. 7.1
reveal that in the far field the blackbody intensity decays with the second inverse
power of the distance r of the atom, implying an unusual 1/r3 effective attractive
force.
Let us mention here that for an atom very close to a (hot) surface additional

interactions of similar magnitude such as van der Waals forces or forces arising from
zero-point and thermal fluctuations of the electromagnetic field appear (Antezza
et al. 2005; Obrecht et al. 2007). These are also mostly attractive and depend on the
detailed material properties of the surface. We will not consider these in our generic
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calculations.
In the following we will briefly review the calculation of the temperature-dependent

Stark shift in a thermal field and then generalize it to the case of radiation emitted
from a finite-size spherical blackbody. The corresponding potential and forces are
then evaluated as a function of the radius R and the temperature T of the sphere.
The resulting forces are then compared to other forces (possibly) acting on the
particle, such as gravity or attraction by a dc Stark shift from a charged sphere.
We finally apply the model to atomic hydrogen moving close to a cloud of small
thermal particles, where the “blackbody optical force” turns out to surpass the effect
of gravity.
Let us recall some important results on polarizability and the Stark shift of light

atoms and, in particular, hydrogen. The static polarizability αH = (9/2)4πε0a3
0 of

ground state hydrogen atoms was calculated almost a century ago (Buckingham
1937; Epstein 1916), with a0 being the Bohr radius. As atomic hydrogen has its
first radiative transition at an energy of E2p − E1s ≈ 10.2 eV, most of the blackbody
radiation components are well below this frequency (up to temperatures of a few
thousand kelvin). Hence, using this static polarizability the ground state energy
shift can roughly be estimated to be ∆E = −αH〈E2〉/2, with the time-averaged
square of the total electric field E; cf. Eq. (7.3). A quantitatively more reliable
calculation requires summation of the perturbative contributions of all higher-lying
states including their energies and dipole matrix elements, which has already been
carried out by several authors (Farley et al. 1981; Jentschura et al. 2008).
The perturbative expression of the dynamic Stark shift of an energy level |n〉 in

an isotropic thermal bath explicitly reads (Farley et al. 1981; Jentschura et al. 2008)

∆En = e2(kB T )3

6π2ε0(c ~)3
∑

i;m6=n
f

(~(ωn − ωm)
kB T

)
|〈n| ri |m〉|2, (7.1)

where ~ωn denotes the energy of the unperturbed state |n〉, ri is the electron-core
distance operator, and f(y) is Cauchy’s principal value integral

f(y) = P
∫ ∞

0

x3

ex − 1

( 1
y + x

+ 1
y − x

)
dx. (7.2)

In general, the sign and magnitude of the Stark shift depend on the chosen atomic
or molecular state and on the radiation field temperature T (Farley et al. 1981;
Jentschura et al. 2008). However, it will mostly cause a negative energy shift for the
ground state. For the 1s state of hydrogen it can be approximated by (Jentschura
et al. 2008)

∆E1s(T ) ≈ − 3π3(kBT )4

5α3(mec2)3 , (7.3)

which gives a small shift of ∆E1s/~ ≈ −1 Hz for T = 400 K. For higher excited
atomic states the blackbody shift is much larger, reaching a few kHz (Farley et al.
1981). For these states, however, the resonant absorption and emission processes
discussed below also become important.
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One arrives at similar expressions for radiation-induced absorption and stimulated
transition rates between different levels resulting in an effective line width given
by (Farley et al. 1981; Jentschura et al. 2008)

Γn = e2

3π c3~ε0

∑

i;m 6=n
|〈n| ri |m〉|2

|ωn − ωm|3

exp
(
~|ωn−ωm|
kB T

)
− 1

. (7.4)

This gives a good estimate for the expected radiation pressure force. For hydrogen in
its 1s ground state, the temperature-dependent transition time to the 2p state given
via τ1s→2p(T ) = 1/W1s→2p(T ) and Γn = ∑

m 6=nWn→m is extremely long, yielding
τ1s→2p(300 K) ≈ 10162 s and τ1s→2p(1000 K) ≈ 1042 s. Note, however, that one gets a
very rapid increase of this absorption with temperature, over several tens of orders
of magnitude, giving τ1s→2p(6000 K) ≈ 0.2 s around the solar temperature, where the
force thus changes from attraction to repulsion.

For the sake of completeness let us also include the hyperfine transition within the
hydrogen ground state manifold, i.e., the famous 21-cm line. For this radio transition
we use the Rayleigh-Jeans approximation for the thermal energy density and the
known relations between Einstein’s absorption and emission coefficients to obtain
the absorption rate WF0→F1(T ) = 3~ω21A21/(kBT ) with ω21 ≈ 8.9 GHz being the
angular frequency of the transition and A21 ≈ 2.87× 10−15 s−1 (Lequeux 2005). We
see that these rates grow linearly in temperature but are typically very small, i.e.,
WF0→F1(100 K) ≈ 1.26× 10−11 s−1. Hence, transitions take several thousand years
and only deposit negligible momentum. This shows that resonant excitations due to
thermal radiation can be neglected for neutral hydrogen in the ground state, at least
up to temperatures of a few thousand K. In this regime the force induced by the
ac Stark shift will dominate.
In an isotropic thermal bath, due to symmetry, the blackbody field cannot have

any directional effect on the movement of the atom, but can only induce friction
and diffusion. Thermal light radiated from a finite source, however, creates a
spatially varying Stark potential giving rise to a net force. As a generic example
we consider a hot sphere of radius R with an atom located at a distance r ≥ R
from its center. As depicted in Fig. 7.1 (cf. also (Guess 1962)) the atom then sees
radiation from the projection of the sphere as a disk of radius Rd at distance rd,
with Rd = R

√
1− (R/r)2 and rd = (r2 −R2)/r covering a solid angle of

Ω� = 2π


1− rd√

r2
d +R2

d


 = 2π

(
1−
√
r2 −R2

r

)
. (7.5)

After a somewhat lengthy calculation to integrate over all incoherent contributions
of the electric field radiated from a hot sphere, we finally arrive at a simple and
intuitive result for the spatial dependence of the induced Stark shift,

∆E�n (r) = 1
2

(
1−
√
r2 −R2

r

)
∆En = Ω�

4π ∆En, (7.6)
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Figure 7.2 Comparison of the spatial decay of various interaction strengths between an
atom and a hot sphere of radius R: blackbody (1−

√
r2 −R2/r, red solid line), gravity

(R/r, blue dashed line) and electrostatic potential (R4/r4, green dash-dotted line), cf.
also Eq. (7.10). The orange dashed line extrapolates the asymptotic inverse quadratic
long-range radiation potential, R2/(2r2).

where ∆En is the isotropic shift for a state |n〉 computed from Eq. (7.1). The
increasing ac Stark shift for an atom approaching a hot sphere thus induces the
rapidly growing dipole force

F�n (r) = −∂r∆E�n (r) = ∆En
2

R2

r2
√
r2 −R2 . (7.7)

For negative ∆En, as, e. g., for an atom in the ground state, the atom is pulled
towards the sphere. Directly at the surface, where the validity of our model ends, the
force diverges, but the potential energy remains finite: ∆E�n (R) = ∆En/2. This shift
corresponds to illumination by half of the full 4π solid angle. The spatial dependence
of the different potentials in Eq. (7.10) is shown in Fig. 7.2 with the blackbody
potential falling off as ∼ R2/(2r2) for r � R.
In the derivation above we set the ambient temperature around the sphere and

the atom to zero. If Tamb 6= 0, the radiation from the sphere coming in from a solid
angle Ω� will add up with background radiation from 4π − Ω�. Equation (7.7) will
thus change to F�n (r) = (∆En(T )−∆En(Tamb))R2/(2r2√r2 −R2). The effects of a
surrounding temperature bath are thus of the order of T 4− T 4

amb and will be ignored
in the upcoming simple examples.

This “new” attractive force is rather unexpected and—so far at least in principle—
quite intriguing. In order to assess the practical importance, however, as a next step
we will compare the forces created by the blackbody Stark shift to other atom-sphere
interactions, such as gravitational forces or forces induced by electrostatic shifts.
Gravitational forces may be derived from the potential

VG(r) = −GmM�
r

= −G4πmρR3

3 r = −aGR

r
, (7.8)
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with M� being the mass of the sphere of density ρ and m the mass of the atom,
which for atomic hydrogen is m ≈ mproton.

If the central sphere carries a surface charge of density σQ, defined as 4πR2σQ = Q,
the atom will experience an additional electrostatic Stark shift, which for the ground
state of atomic hydrogen is found to be (Bransden et al. 1983)

∆E[Q]
1s = − 9a3

0Q
2

16π ε0r4 = −
9πa3

0σ
2
QR

4

ε0r4 = −aQR
4

r4 . (7.9)

In total, a neutral atom interacting with a hot sphere of radius R, mass density ρ,
temperature T , and surface charge density σQ thus sees the total potential

V (r) = −aGR

r
− aQR

4

r4 − aBB

(
1−
√
r2 −R2

r

)
, (7.10)

where we have set aBB = |∆En|/2. If the energy shift is positive, we must change
the sign to get a repulsive interaction.

As forces following power laws have no natural length scale, we will use the radius R
of the sphere as a reference length and first compare the potential energies generated
by these different interactions at the surface. Figure 7.3 displays the different
prefactors for different temperatures and surface charge densities as a function of
sphere radius. Here, for aBB we have used the approximated Eq. (7.3).
As the blackbody potential at the surface is independent of the sphere size, it

clearly dominates gravity for small objects (R � 1m). For an interplanetary dust
particle of R = 1µm, ρ = 2 g/cm3 radiating at T = 100 K (Evans 1993), we obtain
aBB ≈ 1.7× 108aG. For an adult human, i.e., a sphere of water with a total mass
of 70 kg, radiating at T = 300 K, aBB ≈ 0.42 aG. For larger masses the blackbody
potential only yields a weak perturbation; e. g., for our sun (with R = 6.96× 108 m,
ρ = 1.408 g/cm3, T = 5778 K (Lequeux 2005)) we get aBB ≈ 5.5× 10−15aG. Hence,
blackbody radiation can dominate over gravity and perturb particle orbits in a way
that Kepler ellipses change to rosettes or spiral trajectories towards the surface.
Note that aberrational effects due to the relative motion of atom and sphere

generate an additional weak friction force of a different nature, leading to the known
Poynting-Robertson drag on dust particles orbiting a star (Guess 1962; Lequeux
2005). For fast atoms an analogous effect should be added to the gradient forces
described here.
For the sake of brevity we also ignored the fact that thermal radiation from

micron-sized particles will certainly not follow Planck’s law (Odashima et al. 2009).
A more elaborate calculation would therefore produce somewhat different numbers
without changing the basic physical mechanisms and their magnitude.

The above considerations show that particularly strong effects can be expected
from hot and light objects. As a simple, but striking example we model a hot cloud as
the integral effect of a dilute random ensemble of thermally radiating small particles.
For a mass density ρ and a spherically symmetric Gaussian particle distribution of
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Figure 7.3 Comparison of the energy shift of the hydrogen ground state induced by
blackbody radiation (aBB, red lines), the electrostatic interaction (aQ, green dash-dotted)
and the gravitational potential energy (aG, blue dashed line) at the sphere surface as
function of the radius R for a mass density ρ = 1 g/cm3.

width σ, g(r) = exp[−r2/(2σ2)]/[(2π)3/2σ3], the mean gravitational potential can be
computed explicitly to give

〈VG(r)〉 = −N aGR

r
erf
(

r√
2σ

)
(7.11)

with the error function erf(x) = 2/
√
π
∫ x

0 exp(−t2)dt. For the blackbody contribution
we use the approximation VBB(r � R) ' −aBBR

2/(2r2) to obtain

〈VBB(r)〉 = −πN aBBR
2

r
P
∫ ∞

0
s g(s) ln

(
r + s

|r − s|

)
ds. (7.12)

At the center of the cloud we get the simple expressions

〈VG(0)〉 = − N aGR√
π/2σ

and 〈VBB(0)〉 = −N aBBR
2

2σ2 . (7.13)

The blackbody radiation induced interaction will dominate for parameters satisfying
〈VBB(0)〉/〈VG(0)〉 > 1 or, making use of Eq. (7.3), when

σ

R
<

√
πaBB

2
√

2aG
' 9π5/2(kBT )4

80
√

2α3Gρ (mec2)3mpR2 . (7.14)

As illustrated in Fig. 7.4, we thus arrive at the quite surprising result that even for
“large” dust clouds with σ = 10, . . . , 100 m, gravitational interaction with hydrogen is
not only assisted but even dominated by blackbody induced dipole forces.

While the idea of an attractive optical force induced by blackbody radiation appears
rather exotic and unintuitive at first, we have nevertheless shown that in many cases,
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Figure 7.4 Gravitational [blue lines] and blackbody induced [red lines] potential of
randomly distributed spheres of size R = 5µm and temperature T = 300 K such that
aBB ≈ 1.1× 109 aG for ρ = 1 g/cm3. The dashed lines show the potentials calculated in
Eqs. (7.11) and (7.12) using a distribution of width σ = 300 m. The solid lines are the
result of a random sample of N = 8000 Gaussian distributed spheres.

as, e. g., for ground state hydrogen atoms, the “blackbody force” dominates the
repulsive radiation pressure. For small objects it can even be stronger than the
gravitational interaction. Despite its outgoing radiative energy flow, a hot finite-size
sphere thus attracts neutral atoms and molecules, a force, which to the best of our
knowledge, has been overlooked so far. Although in many cases it will be very weak
and challenging to measure in the lab, one can think of many tailored or astrophysical
scenarios, which should be revisited in the context of these findings. Let us note
here that at sufficiently high temperatures radiation pressure dominates and the
total force changes its sign. Hence, only above a critical, rather high, temperature
hydrogen atoms will be repelled by blackbody radiation as intuitively expected. Note
that the dipole force is state selective and can induce spatial separation of atoms in
different long-lived states.

Our results actually go beyond the case of blackbody radiation and basically also
hold for other broadband incoherent light sources, with narrower frequency distri-
butions but higher photon flux compared to blackbody radiation. This potentially
generates much stronger forces which are strongly species specific. On the microscopic
scale it is also important to note that the precise shape of the hot particle surface
will be decisive and strong enhancement effects could be expected near tips, grooves,
and edges. Hence, our findings could go much beyond the originally intended scope,
e. g., towards the effect of hot microstructured surfaces in vacuum chambers or the
total energy shift induced by cosmic background radiation.
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8 Additional calculations on optical
forces from blackbody radiation

The following chapter contains some additional results on the dynamics generated
by optical forces from finite sources of thermal radiation. Most of these calculations
were performed after the publication of the paper presented in chapter 7.

First we present a simple estimation on how the cross section for atom-sphere
collisions change if an additional blackbody force is incorporated. This is followed by
a short discussion of the radiation forces on Rayleigh scatterers in the thermal field
of a larger hot sphere.

In section 8.3 we elaborate on the forces generated by an ensemble of hot spheres
as shortly mentioned in the previous chapter, cf. figure 7.4. Apart from spherically
symmetric sphere configurations we also introduce a scenario in toroidal symmetry.

In section 8.4 we finally develop a framework to calculate the coupled dynamics of
an ensemble of spheres and a gas of atoms. We also explore whether the additional
radiative interaction influences the stability of this dynamic mixture of two types of
particles in section 8.4.2.

8.1 Estimating the scattering cross section for atom-sphere
collisions

Consider a particle of mass m and initial velocity v0 entering a radially symmetric
potential energy landscape V (r) from r0 =

√
x2

0 + b2 → ∞, where b is the (finite)
impact parameter. For a monotonic V (r) with limr→∞ V (r) = 0 we can compute a
critical impact parameter br′(v0) for which the closest distance of the particle to the
origin is rmin[br′(v0)] = r′:
From energy conservation we know that Ekin(r0 → ∞) = Ekin(r′) + V (r′) or

v′ =
√
v2

0 − 2V (r′)/m. On the other hand, conservation of angular momentum gives
br′(v0) v0 = r′ v′ such that

br′(v0) = r′
√

1− 2V (r′)/(mv2
0). (8.1)

If the source of the interaction is a sphere of radius R then bR(v0) gives the impact
parameter for which the particle scratches along the surface of said sphere. Any
particle with an impact parameter b ≤ bR(v0) will therefore hit the sphere and thus
the collisional cross section is given by

σc(v0) = π bR(v0)2 = π R2
(

1− 2V (R)
mv2

0

)
. (8.2)
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Figure 8.1 Comparison of 2D atom-sphere scattering without (left figure) and with
(right figure) an attractive blackbody potential. Atoms (trajectories drawn red) are
incident from the far right and interact with the spheres (indicated by the black circles)
via the potential V (r) = −aGR/r−aBB(1−

√
r2 −R2/r); left figure: aG = Ekin(r0)/10,

aBB = 0, right figure: aBB = Ekin(r0) = 10 aG with an initial kinetic energy Ekin(r0)
at r0 � R. Notice how the critical impact factor for collisions bR changes, cf. also
equation (8.2).

Using the notation introduced in chapter 7, figure 8.1 shows the trajectories of
atoms scattering from a massive and thermally radiating sphere generating a potential
energy V (r) = −aGR/r − aBB(1−

√
r2 −R2/r), such that V (R) = −aG − aBB. For

a very small initial relative velocity v0 we see a modified scattering behaviour as
bR(v0) is visibly larger than R.

If the atom is part of an ensemble where the velocity follows a Maxwell-Boltzmann
distribution such that m

〈
v2

0
〉
/2 = kBT/2, the averaged collisional cross section reads

〈σc〉 = π R2
(

1 + 2aG + aBB
kBT

)
. (8.3)

8.2 Estimating the radiation forces between a hot and a
cold dust particle

As can be seen from figure 7.3, the energies for the interaction between a hot blackbody
and an atom are vanishingly small. But although the arguments in the introductory
chapter 6 are at first based on the atomic Stark-shifts, the final estimation using the
static polarizability (cf. equation (6.19)) is valid for atom clusters or nanoparticles
as well.
If the particle in the vicinity of a hot sphere is not an atom but a small Rayleigh

scatterer of radius R̃ and refractive index n, its reaction to an external field can
again be described by a scalar polarizability

α = 4πε0R̃
3n

2 − 1
n2 + 2 . (8.4)
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Figure 8.2 Comparison of the prefactors for the gravitational potential, aG (blue dashed
line), the dipole force, aBB (red solid lines) and the radiation pressure, arp (green dash
dotted lines) for the interaction of a sphere of radius R = 5µm with a Rayleigh scatterer
of variable radius R̃ and the complex refractive index of ice (data taken from (Warren
1984)). Both spheres are assumed to have a mass density of 1g/cm3. We see that the
repulsive radiation pressure is stronger than the attractive gradient force for T > 300 K,
both are much stronger than gravity. Note that the radius of the central sphere enters
in the expression for arp, cf. equation (8.7), a larger blackbody will therefore repel the
Rayleigh particle even stronger.

Of course, the complex refractive index of any material changes drastically in the range
of frequencies covered by typical blackbody radiation. Adopting equations (6.19)
and (6.26) to our case we find that the attractive potential for a Rayleigh particle
next to a sphere of radius R and temperature T is given by

VBB(r) = −
(

1−
√
r2 −R2

r

)
πR̃3

∫ ∞

0
uλ Re

[
n(λ)2 − 1
n(λ)2 + 2

]
dλ, (8.5)

where uλ dλ is the differential energy density for blackbody radiation for wavelengths
in the range [λ, λ + dλ], see also (6.57). The terms behind the brackets with the
spatial dependence can be combined to a coupling strength aBB. Figure 8.2 shows a
comparison of this aBB with the prefactors for the gravitational potential, aG, and
the repulsive radiation pressure, arp, cf. equation (8.7), respectively.

Increasing the attractive gradient force here also implies that the repulsive radiation
pressure is strongly enhanced. This force is proportional to the imaginary part of
the polarizability α and the wavevector k = 2π/λκ of the incident light, Frp(r) =
Im[α]k

〈
E(r)2〉. In the thermal light field at distance r from a hot sphere of radius

R and temperature T we thus use the expression for the Poynting vector (6.70) to
obtain a radiation pressure

Frp(r) = πR2

r2 R̃3
∫ ∞

0

2πuλ
λ

Im
[
n(λ)2 − 1
n(λ)2 + 2

]
dλ. (8.6)
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Integration gives the corresponding potential Vrp(r) = arpR/r with

arp = πRR̃3
∫ ∞

0

2πuλ
λ

Im
[
n(λ)2 − 1
n(λ)2 + 2

]
dλ. (8.7)

Of course, these estimates only hold for sufficiently small particles. Once the
particle’s radius R̃ is comparable to the thermal wavelength one has to use Mie
scattering techniques.

8.3 Averaged interactions for ensembles of small spheres

The gravitational and radiative interaction between an individual atom and a single
sphere are, of course, very small. In the following we shall therefore discuss the
cumulative effect of N hot spheres distributed according to a density function g(r)
with

∫
g(r) d3r = 1. If a sphere at position r′ generates a potential V (|r− r′|), then

the averaged cumulative potential is given by

〈V (r)〉 = N

∫

R3
V (|r− r′|)g(r′) d3r′. (8.8)

From now on we will only consider the gravitational interaction, VG(r) = −aGR/r,
and the gradient force induced by hot radiating spheres, VBB(r) ' −aBBR2/(2|r|2).
The radiation pressure induced by blackbody radiation described in equation (6.30),
Vrp(r) = arpR/|r|, is—at least for atoms—typically much weaker than the gradient
force and shall be ignored here. If needed, its effects can be obtained from the result
for gravity by replacing aG by −arp.

The mean potential defined in equation (8.8) suffers from two assumptions: First,
we don’t take into account that our point of observation must not lie inside one of
the spheres of radius R which corresponds to the requirement |r− r′| > R. But for
small spheres distributed over a wide volume this would obviously have a very little
effect on the total result. The same is true for the error we introduce by using a the
approximations for |r| � R for the radiation induced interactions. In figure 8.3 the
mean potentials calculated via equation (8.8) are compared to the average potentials
using the correct distance behaviour and show very good agreement.
In equation (8.8) we assumed that the potentials of all individual spheres can be

simply added up. This is certainly true for gravitational interactions but for the
radiative interactions this might not be the case: the assumption is valid only if
the electromagnetic field emitted from a sphere at position r′ and measured at a
position r is not absorbed by other blackbodies (partly) blocking the solid angle
Ω�(r− r′) (cf. equation (6.23)) and if the light is not scattered away or absorbed by
some background gas.
The arguments above boil down to the requirement of a dilute distribution of

spheres. A good indicator whether the spheres are too closely packed is if the maxi-
mum of the mean potential exceeds the value for a thermal bath, cf. equation (6.26).
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Figure 8.3 Calculated averaged gravitational (orange diamonds) and blackbody poten-
tial (red circles) for a spherically symmetric Gaussian distribution of hot spheres, cf.
equations (8.12) and (8.15). The blue and green solid lines show the mean potentials
obtained by averaging over 800 ensembles, 35 potentials are shown as examples in
grey. We see a very good agreement between the mean results despite the fact that the
calculated results use the approximation where VBB ∼ r−2 which is valid only for r � R.
The parameters used are R = 10µm, aBB = 3 × 107aG; the width of the Gaussian
distribution is σ = 50 m; the total number of spheres N = 1000.

As this must not be the case we require

min
r∈R3
〈VBB(r)〉 < ∆E(T ) = −2 aBB (8.9)

8.3.1 Average interactions in spherical symmetry

Assume N hot spheres spread according to a spherically symmetric particle distribu-
tion g(r) = 4πρ(r) with

∫∞
0 ρ(r)r2 dr = 1. Choosing w.l.o.g. that r = rez and after

integrating over the polar angle we obtain an average gravitational potential

〈VG(r)〉 = −NaGR2

∫ ∞

0

∫ π

0

ρ(r′)√
r2 + r′2 − 2rr′ cosϑ′

r′2 sinϑ′ dϑ′dr′. (8.10)

The integral over the azimuthal angle ϑ′ gives

∫ π

0

sinϑ′√
r2 + r′2 − 2rr′ cosϑ′

dϑ′ =
{

2/r for r′ < r,

2/r′ for r′ > r.
(8.11)

such that
〈VG(r)〉 = −NaGR

(
1
r

∫ r

0
ρ(r′)r′2 dr′ +

∫ ∞

r
ρ(r′)r′ dr′

)
(8.12)

for r > 0. At the origin we obtain 〈VG(0)〉 = −NaGR
∫∞

0 ρX(t, r′)r′ dr′.
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The potential from the gradient force induced by the blackbody radiation of the
spheres decays as ∼ |r−r′|−2 and hence we find after integrating over the polar angle

〈VBB(r)〉 = −NaBBR
2

4

∫ ∞

0

∫ π

0

ρ(r′)
r2 + r′2 − 2rr′ cosϑ′ r

′2 sinϑ′ dϑ′ dr′. (8.13)

Subsequent integration over the azimuthal angle gives
∫ π

0

sinϑ′
r2 + r′2 − 2rr′ cosϑ′dϑ

′ = 1
rr′

ln
(
r + r′

|r − r′|

)
. (8.14)

The remaining radial integral has a singularity at r′ = r but for smooth particle
distributions the Cauchy principal value integral

〈VBB(r)〉 = −NaBBR
2

4 P
∫ ∞

0
ρ(r′)r

′

r
ln
(
r + r′

|r − r′|

)
dr′ (8.15)

exists for r > 0. At the origin we use

lim
r→0

r′

r
ln
(
r + r′

|r − r′|

)
= 2 (8.16)

to compute that 〈VBB(0)〉 = −NaBBR2/2
∫∞
0 ρ(r′) dr′.

In the publication presented in chapter 7 we introduced a Gaussian particle
distribution, i.e. ρ(r) = 4π/(2πσ2)3/2 exp(−r2/(2σ2)). The averaged potential energy
of the blackbody radiation induced dipole force then has a minimum at r = 0
with 〈VBB(0)〉 = −NaBBR2/(2σ2). Using the requirement for a dilute distribution
given in equation (8.9) we find that the number of radiating spheres is bounded by
N < 4σ2/R2. This corresponds to a maximal particle density

N
ρ(0)
4π = N

(
√

2πσ)3 <
1√

8π5R2σ
, (8.17)

or approximately 0.2 cm−3 for R = 10µm and σ = 1 km. If the particles have a mass
density of 2000 kg/m3 this corresponds to a maximal total mass M < 3.4× 105kg.
In figure 8.4 we see the averaged effect of a Gaussian cloud of spheres on atomic

trajectories, cf. also figure 8.1 for scattering events of a single sphere.

8.3.2 Average interactions in a special toroidal setup
As a second example let us assume that the radiating spheres are distributed according
to a special toroidal symmetry

g(r, ϑ) = 1
2πS3σ2 ρ(ϑ)e−

r2
2σ2S2 . (8.18)

As shown in figure 8.5, the particles are scattered around a ring of radius S from
the origin. Radially, their density decays like a Gaussian of width σS. Note that
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Figure 8.4 Trajectories (blue lines) of atoms travelling from left to right through a
Gaussian cloud of radiating spheres. The background colour shows the total potential
〈VBB〉 + 〈VG〉 in units of |〈VG(0)〉| = NaGR/(

√
π/2σ) and calculated using equa-

tions (8.12) and (8.15). Used parameters are R = 10µm, aG ≈ 3.6 × 10−9aBB (i.e.
T = 300 K for ρ = 1 g/cm3); the N = 6 × 1014 spheres are distributed with a width
σ = 400 m; the atoms’ initial kinetic energy is Ekin(r0) = 5 aBB .

the notation here is different from the previous example where σ had the dimension
of a length, here it is a dimensionless parameter, typically σ � 1. The angular
distribution along the torus is given by ρ(ϑ) which is normalized to ensure that

∫ ∞

0

∫ 2π

0

∫ 2π

0
g(r, ϑ) r (S + r cosϕ) dϑ dϕdr =

∫ 2π

0
ρ(ϑ) dϑ = 1. (8.19)

The toroidal coordinates are linked to the Cartesian ones via x = (S + r cosϕ) cosϑ,
y = (S + r cosϕ) sinϑ and z = r sinϕ; r ≥ 0, ϑ ∈ [0, 2π), ϕ ∈ [0, 2π).
For simplicity we restrict our analysis to the one dimensional dynamics in the

centre of the torus where r = 0. The calculated potentials and forces will therefore
only affect the movement along the ϑ-direction.

The average gravitational potential at a position r = (S cosϑ, S sinϑ, 0) generated
by a particle density g defined in equation (8.18) then reads

〈VG(ϑ)〉 = −NaGR
∫ ∞

0

∫ 2π

0

∫ 2π

0

g(r′, ϑ′)
∆(r′, ϑ− ϑ′, ϕ′)r

′(S + r′ cosϕ′) dϑ′dϕ′dr′ (8.20)

where ∆(r, ϑ, ϕ) :=
[
2S2(1 − cos(ϑ)) + r2 + 2Sr cos(ϕ)(1 − cos(ϑ))

]1/2 such that
the distance between a point r′ = ((S + r′ cosϕ′) cosϑ′, (S + r′ cosϕ′) sinϑ′, r′ sinϕ′)
and r in toroidal coordinates is ∆(r′, ϑ− ϑ′, ϕ′). Introducing s′ = r′/S we find

〈VG(ϑ)〉 = −NaGR2πSσ2

∫ 2π

0

∫ ∞

0
ρ(ϑ′) s′e−

s′2
2σ2 IϕG

(
s′, 1− cos(ϑ− ϑ′)) ds′dϑ′, (8.21)
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S

ϑ

ϕr

Figure 8.5 Schematic illustration of a toroidal particle density as given in equation (8.18).
Here N ≈ 7000 particles (grey dots) are distributed with ρ(ϑ) ∼ 0.05 + sin2(3ϑ/2). The
green circle has a radius of σS which is also the width of the Gaussian distribution
along r (here σ = 1/20). For the dynamics we restrict ourselves to a one dimensional
movement along a circle of radius S at r = 0, here drawn in black.

where we defined

IϕG(s, γ) :=
∫ 2π

0

1 + s cosϕ√
s2 + 2γ + 2sγ cosϕ

dϕ (8.22)

= 2
γ
√
s2 + 2γ(s+ 1)

[ (
s2 + 2γ(s+ 1)

)
E
(

4γs
s2+2γ(s+1)

)
−

− s2K
(

4γs
s2+2γ(s+1)

) ]
,

with the complete elliptic integrals of first and second kind,

K(k) =
∫ π/2

0

1√
1− k2 sinϑ

dϑ and E(k) =
∫ π/2

0

√
1− k2 sinϑ dϑ. (8.23)

The subsequent radial integration can be carried out numerically and we define

IG(σ, ϑ) :=
∫ ∞

0
s e−

s2
2σ2 IϕG (s, 1− cos(ϑ)) ds (8.24)

such that the mean gravitational potential in a toroidal setup in given by a periodic
one-dimensional convolution integral

〈VG(ϑ)〉 = −NaGR2πSσ2

∫ 2π

0
ρ(ϑ′)IG(σ, ϑ− ϑ′) dϑ′. (8.25)

Similarly, the mean potential due to thermal radiation in the long-distance approx-
imation can be written as

〈VBB(ϑ)〉 = −NaBBR
2

2

∫ ∞

0

∫ 2π

0

∫ 2π

0

g(r′, ϑ′)
∆2(r′, ϑ− ϑ′, ϕ′)r

′(S + r′ cosϕ′) dϑ′dϕ′dr′.

(8.26)
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The angular and radial integration can be carried out similarly to the gravitational
case with

IϕBB(s, γ) :=
∫ 2π

0

1 + s cosϕ
s2 + 2γ + 2sγ cosϕ dϕ (8.27)

= π

γ

(
1− s2

√
s4 − 4s2γ(γ − 1) + 4γ2

)

and

IBB(σ, ϑ) =
∫ ∞

0
s e−

s2
2σ2 IϕBB (s, 1− cos(ϑ)) ds. (8.28)

Hence we obtain another one-dimensional convolution for the potential induced by
the dipole interaction with thermally radiation spheres

〈VBB(ϑ)〉 = −NaBBR
2

4πS2σ2

∫ 2π

0
ρ(ϑ′)IBB(σ, ϑ− ϑ′) dϑ′ (8.29)

The averaged forces in the ϑ-direction due to these potentials then read 〈F (ϑ)〉 =
− 1
S ∂ϑ 〈V (ϑ)〉.

8.4 Coupled dynamics of gas and hot dust
Up to now we always analysed the influence of a single or a group of small hot
spheres on the dynamics of a single atom, molecule or nanoparticle. The next logic
step is to explore the mutual interactions between a cloud of small spheres and an
ensemble of atoms. Of special interest is the possibility of self-organisation due to
the electromagnetic forces, as it has been described for polarizable particles in a
cavity (Grießer et al. 2010).
The following chapter will treat this matter in a simplified setup where small

spheres, now called dust, with a particle distribution gd(t, r) generate a gravitational
and blackbody potential for an atomic gas of distribution gg(t, r). The gas in turn
also acts gravitationally on the dust and, of course, both ensembles also see their
own gravitational potentials.
Both ensembles are assumed to be sufficiently rarefied such that collisions can be

neglected. We will therefore describe the dynamics of the phase space distribution
fX(t, r,v) with gX(t, r) =

∫
fX(t, r,v) dnv for X ∈ {g, d} by a pair of collisionless

Boltzmann equations reading

∂tfX(t, r,v) + v · ∇rfX(t, r,v)− 1
mX
∇rVX(t, r) · ∇vfX(t, r,v) = 0. (8.30)

Here mg (or md) describes the mass of an individual gas (or dust) particle and Vg
(or Vd) is the potential acting on this particle. As the potentials are generated by
the particles themselves they obviously depend on both distributions gg and gd and
are therefore time dependent. More details on the shape of the potentials is given in
the upcoming example in section 8.4.1.
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The collisionless Boltzmann equation is often also called Vlasov equation, especially
in plasma physics. For electrostatic or gravitational interactions the potential obeys
a Poisson equation, ∇2

rV (t, r) ∝ g(t, r), and we would call equation (8.30) a Vlasov-
Poisson system.

Of course, the coupled Boltzmann equation above conserve mass

∂tgX(t, r) +∇r ·
∫

Rn
vfX(t, r,v) dnv = 0, X ∈ {g,d}, (8.31)

and for gravitational or electrostatic interactions energy, too. In our case, however,
the radiating spheres loose energy to the radiation field which in turn interacts with
the gas. To recover energy conservation we would therefore have to include the
dynamics of the radiation field as well as the process heating the dust particles such
that they maintain their constant temperature.

We can not deny that the following calculations are motivated by the interaction of
gas and dust in astrophysical scenarios ranging from planetary rings, to protoplanetary
discs or molecular clouds. Although these systems differ strongly in size, kinetic
energies, density and other parameters, they have in common that diluted atomic or
molecular gas interacts with cosmic dust particles ranging from a few nanometres to
several millimetres or beyond. Our idea mentioned also in the publication presented
in the previous chapter 7 was that an additional force from the thermal radiation of
the dust particles could play a role in one of these scenarios.
Having said that, let us also clarify that the model and assumptions employed

here are actually not suitable to realistically describe any of these systems. That is
firstly because we believe that the characteristics of the blackbody interaction should
be studied in an abstract, generic framework before going into the full detail of some
specific setup. But secondly we also came to the conclusion that the blackbody
interaction is far too weak to modify a natural system where dust interacts with an
atomic gas with kinetic energies in the order of several tens to hundreds of Kelvin.
More promising is a scenario where hot dust grains interact with smaller particles
in the scale of nanometres as described in section 8.2, but still this interaction is in
reality more complex than the simplified models in this work.
The calculations presented here are therefore a first attempt to study the generic

effects and shall not be misunderstood to realistically describe a specific astrophysical
scenario.

8.4.1 Coupled dynamics of gas and hot dust in a toroidal symmetry

In section 8.3.2 we introduced a simplified particle distribution following a toroidal
symmetry and derived the potentials for periodic movement along the angle ϑ. Here
we will explore the coupled dynamics of gas and dust each distributed according to
equation (8.18) but possibly with different widths such that

gg(t, r, ϑ) = 1
2πS3σ2

g
ρg(t, ϑ) e

− r2
2σ2gS2 (8.32)
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and vice versa for gd(t, r, ϑ). The radius S of the main ring shall be equal for both
species.

The coupled Boltzmann equations in toroidal symmetry with movement restricted
in the ϑ-direction then read for both X ∈ {g,d}

∂tfX(t, ϑ, vϑ) + vϑ
S ∂ϑfX(t, ϑ, vϑ)− 1

mXS
∂ϑVX(t, ϑ) ∂vϑfX(t, ϑ, vϑ) = 0, (8.33)

where we used the potential energies from section 8.3.2 to construct

Vg(t, ϑ) =
〈
V g,g
G (t, ϑ)

〉
+
〈
V d,g
G (t, ϑ)

〉
+
〈
V d,g
BB (t, ϑ)

〉
, (8.34a)

Vd(t, ϑ) =
〈
V g,d
G (t, ϑ)

〉
+
〈
V d,d
G (t, ϑ)

〉
. (8.34b)

The upper indices indicate which species generates a certain potential, for example〈
V g,d
G
〉
denotes the mean gravitational potential generated by the gas and acting on

the dust, i.e.
〈
V g,g
G (t, ϑ)

〉
= −GmgMg

2πSσ2
g

∫ 2π

0
ρg(t, ϑ′)IG(σg, ϑ− ϑ′) dϑ′, (8.35a)

〈
V g,d
G (t, ϑ)

〉
= −GmdMg

2πSσ2
g

∫ 2π

0
ρg(t, ϑ′)IG(σg, ϑ− ϑ′) dϑ′, (8.35b)

〈
V d,g
G (t, ϑ)

〉
= −GmgMd

2πSσ2
d

∫ 2π

0
ρd(t, ϑ′)IG(σd, ϑ− ϑ′) dϑ′, (8.35c)

〈
V d,d
G (t, ϑ)

〉
= −GmdMd

2πSσ2
d

∫ 2π

0
ρd(t, ϑ′)IG(σd, ϑ− ϑ′) dϑ′. (8.35d)

These potentials are derived from equation (8.25) but here we introduced the total
mass of a species, MX = NXmX , and used that aG = Gmgmd/R with the gravita-
tional constant G.

As derived in section 8.3.2, the gradient-force component of the blackbody interac-
tion between dust and gas reads

〈
V d,g
BB (t, ϑ)

〉
= −NdaBBR

2

4πS2σ2
d

∫ 2π

0
ρd(t, ϑ′)IBB(σd, ϑ− ϑ′) dϑ′. (8.35e)

Note that the potentials depend on the densities ρX(t, ϑ) =
∫
R fX(t, ϑ, vϑ) dvϑ hence

each species moves in the fields generated by its own particle density while it is
influenced by the interaction with the other species, too.
To obtain dimensionless potentials we define

Vg(t, ϑ) =
∫ 2π

0
ρg(t, ϑ′)IG(σg, ϑ− ϑ′) dϑ′ +

Mdσ
2
g

Mgσ2
d

∫ 2π

0
ρd(t, ϑ′)IG(σd, ϑ− ϑ′) dϑ′+

+
NdaBBR

2σ2
g

2GmgMgSσ2
d

∫ 2π

0
ρd(t, ϑ′)IBB(σd, ϑ− ϑ′) dϑ′, (8.36a)

Vd(t, ϑ) =
∫ 2π

0
ρg(t, ϑ′)IG(σg, ϑ− ϑ′) dϑ′ +

Mdσ
2
g

Mgσ2
d

∫ 2π

0
ρd(t, ϑ′)IG(σd, ϑ− ϑ′) dϑ′.

(8.36b)

111



8 Additional calculations on optical forces from blackbody radiation

such that

Vg(t, ϑ) = −GmgMg
2πSσ2

g
Vg(t, ϑ) and Vd(t, ϑ) = −GmdMg

2πSσ2
g
Vd(t, ϑ). (8.37)

Finally, after introducing the constants1

t∗ =
√

4π2(σgS)3

GMg
and v∗ϑ = 2πσgS

t∗
(8.38)

we define τ := t/t∗ and u := vϑ/v
∗
ϑ to obtain a dimensionless set of equations for

X ∈ {g, d}

∂τfX(τ, ϑ, u) + 2πσgu ∂ϑfX(τ, ϑ, u) + ∂ϑVX(τ, ϑ) ∂ufX(τ, ϑ, u) = 0. (8.39)

Figure 8.6 shows the result of a self-consistent numerical simulation of the coupled
dynamics of a “gas” consisting of small Rayleigh scatterers and dust in a toroidal
setup. In these simulations we initialise the phase-space densities of the two species
as fX(0, ϑ, u) ' ρX(0, ϑ) exp(−u2/(2ũ2

X)), where ũX is the dimensionless thermal
velocity of species X ∈ {g,d}. The initial spatial distribution ρX(0, ϑ) is then chosen
to have a slight inhomogeneity, the resulting forces then reshape the distributions of
the two interacting species. A short overview over the used numeric method is given
in the following section.

The example in figure 8.6 shows that the small scatterers are pushed away from the
hot spheres by the radiation pressure, which is modelled as described in section 8.2
using the complex refractive index of ice, cf. figure 8.2. As mentioned before, the
radiation pressure on a Rayleigh particle has the same distance behaviour as the
gravitational interaction. Its effect can therefore be included in the dynamics by
adding a term

〈
V d,g
rp (t, ϑ)

〉
= NdarpR

2πSσ2
d

∫ 2π

0
ρd(t, ϑ′)IG(σd, ϑ− ϑ′) dϑ′ (8.40)

to the total potential for the gas in equation (8.34a). Note that this potential is
repulsive and, as shown in figure 8.2, it is much stronger than the gravitational
interaction between a dust particle and a Rayleigh scatterer. However, one should
keep in mind that the range of the radiation pressure would be reduced by absorption
in optically thick media, an effect which is not included in this setup.

A numerical model for the coupled dynamics in toroidal symmetry

To solve the coupled dynamics of gas and dust in this toroidal setup we use a
numerical simulation to propagate the distribution functions along characteristic

1According to Kepler’s third law, t∗ corresponds to one “year” on a cyclic orbit around a mass Mg
at a distance σgS.
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ũ
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Figure 8.6 Evolution of the phase-space densities for two types of particles: heavy and
hot dust particles with density fd and small Rayleigh scatterers (“gas”) with density
fg. The first and the third row show the evolution of fg and fd according to the
collisionless Boltzmann equation (8.39) when radiation forces are included; the second
row shows how fg would evolve if only gravity is accounted for; the colours range from
blue (zero density) to dark red (maximal density). We see that the small particles
start to cluster if blackbody forces are present, the heavy particles however remain
in their initial distribution. The species travel on a ring of radius S = 1011m with
distributions of widths σg = σd = 10−4, their initial kinetic energy is Ekin = 50 kBK and
the initial spatial distributions are homogeneous for the “gas” and ρd(ϑ) ∼ 1 + 0.1 sinϑ.
The hot dust particles have a radius R = 5µm, radiate at T = 100 K, have a mass
md ≈ 5 × 10−10 g and do not react to their own radiation. The “gas” particles have
the complex refractive index profile of ice, cf. figure 8.2, radius R̃ = 10 nm, mass
mg = 4× 10−18 g and a total number of Ng ≈ 1035 particles which corresponds to an
average particle density of 500 cm−3. The total mass ratio is Mg = 10Md. The scaling
factors are τ̃ = 1/(σgũg) and the dimensionless thermal velocity ũg =

√
Ekin/mg/v

∗
ϑ.
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curves using a time splitting method described in the following paragraphs (Filbet
et al. 2003; Grießer et al. 2010; Sonnendrücker et al. 1999).
First, we recall that the collisionless Boltzmann equation

∂tf(t, x, v) + v ∂xf(t, x, v) + a(t, x) ∂vf(t, x, v) = 0 (8.41)

can be transformed into a set of ordinary differential equations

df
dt = ∂f

∂t
+ dx

dt
∂f

∂x
+ dv

dt
∂f

∂v
= 0 with dx

dt = v and dv
dt = a. (8.42)

Therefore, a distribution f is constant along the characteristic curves x(t) and
v(t) solving the differential equations above, i.e. f(t1, x(t1), v(t1)) = f(t0, x0, v0), if
x(t0) = x0 ' x(t1)− v(t0) (t1 − t0) and v(t0) = v0 ' v(t1)− a(t0, x0) (t1 − t0).

The method of characteristics with time splitting then uses the following procedure
to evolve one time step ∆t from a solution at t = tn (Sonnendrücker et al. 1999):

1. half an Euler time step in x-direction: f [1](x, v) = f (tn, x− v∆t/2, v),
2. a full Euler time step along the characteristic in v-direction using the accelera-

tion at time t = tn + ∆t/2: f [2](x, v) = f [1] (x, v − a(tn + ∆t/2, x)∆t),
3. a half Euler time step in x-direction: f

(
tn+1, x, v

)
= f [2] (x− v∆t/2, v).

Since the origins of the characteristic curves will typically not lie on a grid point one
needs to perform a 2D-interpolation once at each of the three steps.
In our case we have two Boltzmann equations coupled by a mutual interaction

such that a ≡ ∂ϑVX depends on both distributions, cf. equation (8.36). Therefore
we have to use the distributions f [1]

g (ϑ, u) and f [1]
h (ϑ, u) to compute the accelerations

needed for the second part of each time step.

8.4.2 Linear stability of gas and dust distributions with mutual
gravitational and radiative interaction

Describing the interaction of gas and dust in terms of coupled collisionless Boltzmann
equations (8.30) allows us to explore whether the additional blackbody interaction
is suitable to modify, enhance or trigger structure formation within the gas-dust
mixture. To do so we will employ the marginal stability criterion (Binney et al. 2008;
Chavanis et al. 2009) which we introduce in a more general form before applying it
to the toroidal case described in the previous section.

General marginal stability criterion for two interacting species

Consider the following pair of coupled collisionless Boltzmann equations for two
ensembles of particles with phase space distributions f and h, respectively, moving
along a single spatial dimension x

∂tf(t, x, v) + v ∂xf(t, x, v)− ∂xφ[f, h](t, x) ∂vf(t, x, v) = 0, (8.43a)
∂th(t, x, v) + v ∂xh(t, x, v)− ∂xψ[f, h](t, x) ∂vh(t, x, v) = 0. (8.43b)
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The distributions ρf (t, x) =
∫∞
−∞ f(t, x′, v)dv and ρh(t, x) =

∫∞
−∞ h(t, x′, v)dv are

assumed to be periodic in space with ρf (t, x) = ρf (t, x+L) and ρh(t, x) = ρh(t, x+L).2
The potentials for the mutual interactions shall be generated by a convolution of

the spatial distributions with some periodic functions a, b, c and d,

φ[f, h](t, x) =
∫ L

0
a(x− x′)ρf (t, x′) dx′ +

∫ L

0
b(x− x′)ρh(t, x′) dx′, (8.44a)

ψ[f, h](t, x) =
∫ L

0
c(x− x′)ρf (t, x′) dx′ +

∫ L

0
d(x− x′)ρh(t, x′) dx′. (8.44b)

A trivial solution of the system (8.43) is a pair of time independent and homogen-
eous distributions3 f(v) and h(v). Now, the system shall be called unstable if small
perturbations δf(t, x, v) and δh(t, x, v) of the homogeneous solutions start to grow
in time. If that is the case, the system will rather be found in some inhomogeneous
state. This means, the interactions are strong enough to concentrate the particles in
certain locations.
Expanding equations (8.43) in linear order of these perturbations leads to

∂tδf(t, x, v) + v ∂xδf(t, x, v)− ∂xφ[δf, δh](t, x) f ′(v) = 0, (8.45a)
∂tδh(t, x, v) + v ∂xδh(t, x, v)− ∂xψ[δf, δh](t, x)h′(v) = 0. (8.45b)

As mentioned, we assume that the distributions are periodic in x such that we can
use the Fourier series with k = 2π/L

δf(t, x, v) =
∞∑

n=−∞
f̂n(t, v)einkx, δh(t, x, v) =

∞∑

n=−∞
ĥn(t, v)einkx, (8.46)

φ(t, x) =
∞∑

n=−∞
φ̂n(t)einkx, ψ(t, x) =

∞∑

n=−∞
ψ̂n(t)einkx, (8.47)

to obtain a new form of the linearised coupled Boltzmann equations, for all n ∈ Z,

∂tf̂n(t, v) + inkv f̂n(t, v)− ink φ̂n(t) f ′(v) = 0, (8.48a)
∂tĥn(t, v) + inkv ĥn(t, v)− ink ψ̂n(t)h′(v) = 0. (8.48b)

An additional Laplace transformation f̂n(t, v)→ f̃n(ω, v) exp(−iωt), ω ∈ C, allows
us to simplify equations (8.43) even further for n 6= 0

f̃n(ω, v) = nkφ̃n(ω)f ′(v)
nkv − ω , h̃n(ω, v) = nkψ̃n(ω)h′(v)

nkv − ω . (8.49)

2The restriction on periodic functions is in anticipation of the toroidal case discussed later and is
not a general requirement for the stability analysis in these systems.

3 Note that a homogeneous distribution actually is not a stable solution in a self-gravitating system.
This inconsistency is the reason why typically the so called Jeans’ swindle is adopted, where the
gravitational contribution of the homogeneous density is ignored and only local inhomogeneities
generate forces (Binney et al. 2008).
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As mentioned above, we are interested in solutions δf and δg growing in time.
In the Laplace-transformed versions this is equivalent to solutions with Imω > 0.
Solutions with Imω < 0 damp out in time and thus correspond to stable homogeneous
configurations. Solutions to (8.49) with real valued ω represent the thin line between
stable and unstable solutions and are thus called marginally stable.

In equations (8.44) we introduced the potentials as convolutions which is particu-
larly useful for Fourier series as

φ̂n(t) = 2πân
∫ ∞

−∞
f̂n(t, v)dv + 2πb̂n

∫ ∞

−∞
ĥn(t, v)dv (8.50)

and similarly for ψ̂n(t), with ân denoting the Fourier components of a(x) etc. Using
equations (8.49) we then obtain a system of linear equations for φ̃n(ω) and ψ̃n(ω),

φ̃n(ω) = 2nkπânφ̃n(ω)
∫ ∞

−∞

f ′(v)
nkv − ω dv + 2nkπb̂nψ̃n(ω)

∫ ∞

−∞

h′(v)
nkv − ω dv, (8.51a)

ψ̃n(ω) = 2nkπĉnφ̃n(ω)
∫ ∞

−∞

f ′(v)
nkv − ω dv + 2nkπd̂nψ̃n(ω)

∫ ∞

−∞

h′(v)
nkv − ω dv. (8.51b)

The integral terms will be abbreviated as

Fn(ω) :=
∫ ∞

−∞

f ′(v)
nkv − ω dv and Hn(ω) :=

∫ ∞

−∞

h′(v)
nkv − ω dv. (8.52)

With (8.51) we transformed a system of partial differential equations (8.43) to ho-
mogeneous linear equations. These have nontrivial solutions only if their determinant
vanishes, i.e.
(
2nkπânFn(ω)− 1

)(
2nkπd̂nHn(ω)− 1

)
− 4n2k2π2b̂nĉnFn(ω)Hn(ω) = 0, (8.53)

and since this is a relation between ω and k this criterion is called dispersion
relation (Chavanis et al. 2009). If the coupling interactions are turned off, i.e.
b̂n = ĉn = 0, we find the typical marginal stability conditions for a single species.

If a, b, c and d are even functions, their Fourier coefficients will be real valued and
the real and imaginary parts of the dispersion relation (8.53) read

4n2k2π2
(
ând̂n − b̂nĉn

)(
ReFn ReHn − ImFn ImHn

)
−

− 2nkπ
(
ân ReFn + d̂n ReHn

)
+ 1 = 0, (8.54a)

4n2k2π2
(
ând̂n − b̂nĉn

)(
ReFn ImHn + ImFn ReHn

)
−

− 2nkπ
(
ân ImFn + d̂n ImHn

)
= 0. (8.54b)

As explained above we are interested in marginal stability solutions with Imω = 0.
Setting ω = ωr + iωi we apply the Sokhotski–Plemelj theorem already used in
chapter 6 to the integral terms (8.52) to find

lim
ωi→0

Fn(ω) = P
∫ ∞

−∞

f ′(v)
nkv − ωr

dv + iπ

nk
f ′ (ωr/(nk)) , (8.55)
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a similar result holds for Hn(ωr).
Equation (8.54b) is satisfied if ImFn = ImHn = 0. In the case of real valued ω,

this corresponds to f ′(ωr/(nk)) = h′(ωr/(nk)) = 0. In the following we will assume
that the trivial solutions f(v) and g(v) follow a Maxwell-Boltzmann distribution
with βX = kBTkin/mX

f(v) = 1
L
√

2πβf
e
− v2

2βf , and h(v) = 1
L
√

2πβh
e
− v2

2βh . (8.56)

They thus have maximal values at v = 0 and hence ImFn = ImHn = 0 is true only if
ωr = 0. We note therefore that there exist no stable oscillatory perturbations where
ωi = 0 and ωr 6= 0. From equation (8.55) we find that ReFn(0) = −(nkLβf )−1 and
similarly, ReHn(0) = −(nkLβh)−1.

After inserting these results into equation (8.54a) the condition of marginal stability
for a system of coupled collisionless Boltzmann equations reads

(
2π ân
Lβf

+ 1
)(

2π d̂n
Lβh

+ 1
)
− 4π2 b̂n ĉn

L2βfβh
= 0. (8.57)

If the interaction is purely gravitational we use the Poisson equation ∇2φ[δf, δh] =
κG(Mfδρf +Mhδρh), where κ is some prefactor depending on the chosen geometry.4
From a comparison with equation (8.50) we find that ân = ĉn = −κGMf/(2πn2k2)
and b̂n = d̂n = −κGMh/(2πn2k2). Then, as expected, equation (8.57) gives Jeans’
instability criterion for the gravitational collapse of a two-species gas,5

k2
J := n2k2 = κG

kBTkin
(ρ̄fmf + ρ̄hmh) , (8.58)

with mf being the mass of a single particle of species f , ρ̄f = Mf/L and the velocities
obey a Maxwell distribution with βf = kBTkin/mf .
To discuss some further general properties we use the well established form for a

single species in a gravitational form and define

m(k) = 1−Gα/k2 (8.59)

with the gravitational constant G and all other parameters included in α > 0.
The marginal stability criterion m(kJ) = 0 thus defines the Jeans wavenumber for
the given system. Obviously, m(k) takes values in the range (−∞, 1] and since a
homogeneous particle distribution should be stable for vanishingly small interactions,
the limit of limG→0m(k) = 1 corresponds to a stable solution. As mentioned before,
the marginal stability criterion marks the border between stable (i.e. Imω < 0)
and unstable (i.e. Imω > 0) solutions. We note that (i) m(k) = 1 is stable and

4In setup where ρf describes the particle density along a single dimension, κ as the units of
length−2.

5 The better known one-species version can be obtained by averaging ρ̄m := ρ̄fmf + ρ̄hmh, the
version given above can be found in the appendix of (Sopik et al. 2005).
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(ii) m(k) = 0 is the border of stability and hence we conclude that 1 ≥ m(k) > 0
defines the region of stable solutions. For the Jeans instability this has the intuitive
consequence that small-scale fluctuations with k > kJ will not lead to a gravitational
collapse but large scale inhomogeneities with k < kJ will (Binney et al. 2008).
In section 8.2 we mentioned the radiation pressure which has the same distance

behaviour as gravity. The effect of this repulsive interaction can thus be assessed
by switching G → −G in equation (8.59). We then find that m(k) ≥ 1 and the
marginal stability criterion can therefore not be fulfilled once a repulsive interaction
dominates.

Application of the marginal stability criterion to a toroidal setup

In section 8.4.1 we discussed the effective one dimensional, periodic dynamics of
interacting gas and dust in a special toroidal configuration. Using the more general
formalism given above one can easily derive a marginal stability criterion for this
toroidal system.

Comparing the underlying collisionless Boltzmann equations (8.39) and (8.43) we
identify the potentials φ[fG, fD] ≡ −Vg with (cf. equation (8.36))

a(ϑ) = −IG(σg, ϑ), b(ϑ) = −Mdσ
2
g

Mgσ2
d
IG(σd, ϑ)− NdaBBR

2σ2
g

2GmgMgSσ2
d
IBB(σd, ϑ), (8.60a)

and ψ[fG, fD] ≡ −Vd where

c(ϑ) = −IG(σg, ϑ), d(ϑ) = −Mdσ
2
g

Mgσ2
d
IG(σd, ϑ). (8.60b)

After writing the phase-space densities and potentials as Fourier series with L = 2π
we can replace equation (8.49) by

f̃X,n(ω, u) = −nṼX,n(ω) f ′X(u)
2nπσgu− ω

(8.61)

for both species, X ∈ {g, d}. The factor 2πσg comes from the prefactor in the
dimensionless toroidal Boltzmann equation (8.39).
For the dispersion relation (8.53) we thus find
(
2nπânFg,n(ω)− 1

)(
2nπd̂nFd,n(ω)− 1

)
− 4n2π2b̂nĉn Fg,n(ω)Fd,n(ω) = 0 (8.62)

with FX,n(ω) =
∫
f ′X(u)/(2nπσgu− ω) du defined in analogy to equation (8.52).

Using again a Maxwellian velocity profile for the initial homogeneous distribution
fX(u) = 1/(2π

√
2πβX) exp

[−u2/(2βX)
]
we find after adapting equation (8.55) that

ReFX,n(0) = −(4nπ2σgβX)−1.
Inserting this into the real part of equation (8.62) we finally obtain a marginal

stability criterion for the toroidal setup:
(

ân
2πσgβg

+ 1
)(

d̂n
2πσgβd

+ 1
)
− b̂nĉn

4π2σ2
gβgβd

= 0. (8.63)
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Figure 8.7 The left hand side of the marginal stability equation (8.63) for different
Fourier components without (blue line) and with (red line) the thermal radiation
potentials. As discussed below equation (8.59), negative values in combination with an
attractive potential indicate that small perturbations of a homogeneous initial state
grow exponentially. In this case the repulsive interaction due to radiation pressure
dominates, which can be seen from the large positive values of the red curve. The setup
here is the same as in figure 8.6 where the radiation forces clearly trigger unstable
behaviour while the instabilities due to gravity are not seen in the timescales shown
there.

The Fourier components needed for this stability criterion can be computed
numerically from the known functions IG and IBB, cf. equations (8.22) and (8.28).
Figure 8.7 shows an example where large hot and small cold particles interact
gravitationally and via thermal radiation forces. The parameters used there are the
same as for figure 8.6 and result in a dominant repulsive interaction due to radiation
pressure between the large and small particles. This radiation pressure obviously
triggers strong instabilities which are visible sooner than the instabilities expected
from a pure gravitational model.
To calculate the Fourier coefficients for the gravitational potentials we could

in principle also use the Poisson relation ∇2
rVG(r, ϑ, ϕ) = −4πGmMg(r, ϑ). The

Laplace operator in toroidal coordinates gives a lengthy expression

∇2
rV = 1

r(S + r cosϕ)

[
∂

∂r

(
r(S + r cosϕ) ∂

∂r
V

)
+ r

S + r cosϕ
∂2

∂ϑ2V+

+ ∂

∂ϕ

(
S + r cosϕ

r

∂

∂ϕ
V

)]
(8.64)

which can be greatly simplified as we are only interested in the values at the singular
ring where r = 0, cf. figure 8.5. On this axis we can argue that, due to symmetry, all
derivatives with respect to ϕ must vanish, i.e.

[
∂nϕV

]
r=0 = 0. We may also assume

that
[
∂rV

]
r=0 = 0, because the particle distribution g(r, θ) is also flat at r = 0, cf.

equation (8.18). However, this cannot be assumed for the second partial derivative
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with respect to r and hence we obtain
[
∇2

rV
]
r=0

=
[
∂2
rV
]
r=0

+ 1
S2

[
∂2
ϑV
]
r=0

. (8.65)

To compute the Fourier components of the gravitational potentials on the r = 0
axis we would therefore need ∂2

rV , which we did not calculate. Therefore it is more
reasonable to stick to the numerical values used also for the example in figure 8.7.
In conclusion we find that the stability criterion introduced in equation (8.57)

can be used to qualitatively predict the dynamics of a mixture between micron and
nanometre-sized particles. Especially the example in figure 8.6 shows that these
dynamics are strongly modified by the presence of radiation forces originating in the
blackbody radiation emitted by hot dust particles. Although the model used here
is very generic it serves as a motivation for further studies of the versatile optical
forces from thermal radiation.
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