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Zusammenfassung

Bei der Wechselwirkung zwischen Licht und Materie wird der Impuls, den Photonen
fiihren, an Atome iibertragen und umgekehrt. Die resultierenden mechanischen
Krafte konnen genutzt werden, um Atomwolken oder sogar einzelne Atome auf
eine Temperatur nahe am absoluten Nullpunkt zu kiihlen und auf kleinstem Raum
gefangen zu halten, Bedingungen also bei denen die Quanteneigenschaften der Materie
zu Tage treten.

Im freien Raum ist die Wechselwirkung zwischen einem einzelnen Photon und einem
Atom jedoch schwach. Das optische Potential eines Lasers wird daher gew6hnlich von
einer enormen Anzahl von Photonen generiert und spielt die Rolle eines klassischen
Potentials. Ein optischer Resonator dagegen, also zwei sphérische Spiegel die einen
Hohlraum bilden, kann einzelne Photonen einschliefen und viele Male reflektieren
bevor sie verloren gehen. Im Parameterbereich starker Kopplung der Hohlraum-
Quantenelektrodynamik (Cavity QED) kann ein Photon von einem Atom wiederholt
absorbiert und abgestrahlt werden, und selbst die Kréfte die von einem einzelnen
Photon erzeugt werden kénnen ausreichen, um ein Atom zu fangen. Umgekehrt
hat die Bewegung eines Atoms einen grofien Einfluss auf das Feld innerhalb des
Hohlraums, da ein Atom die Resonanzfrequenz in Abhdhngigkeit seiner Position
relativ zur Mode verschiebt. Das optische Potential wird dadurch zu einer aktiven
Komponente mit einer vielfaltigen nicht-linearen Dynamik zwischen Atomen und
Photonen. Photonen die aus dem Resonator entweichen transportieren Informationen
iiber das System und dienen zusétzlich als Dissipationskanal, ein zentraler Bestandteil
von auf Hohlraumresonatoren basierenden Kiihlmethoden. Cavity QED bietet einige
einzigartige Moglichkeiten zur Handhabung individueller Quanten-Objekte. Oft ist
die Motivation in diesem Bereich Grundlagenforschung, zum Beispiel die direkte
Beobachtung von Dekohérenz oder von nicht-klassischen Zustédnden des Lichts und
der Materie. Zuséatzlich haben die entwickelten Techniken potentielle Anwendungen
in der Quanten-Informationsverarbeitung und fir Quantencomputer.

Diese Doktorarbeit fasst meine Forschung zur Theorie der Cavity QED zusam-
men. Fortschrittliche Computer erméglichen heute die Simulation einiger Teilchen
in Wechselwirkung mit einer oder mehreren Hohlraummoden, wobei die komplet-
ten Quanteneigenschaften aller Bestandteile mit einbezogen werden kénnen. Wir
demonstrieren wie ein Ringresonator zur Entstehung von nicht-klassischen Impuls-
korrelationen und Verschrinkung beitragt. Numerische Simulationen zu einer resona-
torgestiitzten Kithlmethode werden préasentiert, die verglichen mit konventioneller
Laserkiihlung fiir eine groflere Klasse von Teilchen anwendbar ist und zu niedrigeren
Temperaturen sehr nahe am Nullpunkt zu fithren verspricht. Der letzte Teil dieser Ar-
beit beschéftigt sich mit dem Phinomen der Selbstorganisation, ein Phaseniibergang



hin zu einer kristallinen Struktur, die durch Interferenz zwischen der Hohlraummode
und seitlich eingestrahltem Laserlicht begiinstigt wird. Wir untersuchen den Einfluss
der Quantenstatistik auf den Ordnungsiibergang und bestétigen eine stark herab-
gesetzte Schwelle fiir das Eintreten des Phaseniibergangs bei einem degenerierten
Fermigas, falls die Fermienergie eine bestimmte Resonanzbedingung erfiillt.
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Abstract

When light and matter interacts, the momentum carried by photons is transferred to
atoms and vice versa. The resulting mechanical forces can be tailored to cool atomic
clouds or even single atoms to temperatures close to absolute zero and to trap them
in a small region of space, a regime where the quantum nature of particles becomes
significant.

In free space, however, the interaction of a single photon with an atom is weak.
The optical potential of lasers therefore usually is generated by an enormous number
of photons and plays the role of a classical potential. In contrast, an optical resonator
composed of two spherical mirrors forming a cavity can confine single photons and
reflect them many times before they are lost. In the strong coupling regime of cavity
quantum electrodynamics (cavity QED), a photon can be repeatedly absorbed and
re-emitted by an atom, and even a single photon can produce sufficiently large forces
to trap an atom. Conversely, as an atom shifts the resonator frequency depending
on its position relative to the field mode, the atomic motion has a large impact
on the intra-cavity field. The optical potential becomes an active component with
rich non-linear atom-photon dynamics. Photons leaking out of the resonator convey
information about the system and additionally act as a channel of dissipation, a vital
ingredient for cavity-assisted cooling schemes. Cavity QED offers unique possibilities
for the manipulation of individual quantum objects. Fundamental research is often the
motivation in this field, for example direct observation of decoherence or non-classical
states of light and matter. Additionally, the developed techniques find potential
applications in quantum information processing and quantum computing.

This thesis summarises my research in cavity QED theory. Advances in computa-
tional power allow the simulation of several particles interacting with one or several
cavity modes while taking the full quantum nature of all constituents into account. In
this few-particle regime, we demonstrate the emergence of non-classical momentum
correlations and entanglement mediated by the two modes of a ring cavity. We
present numerical simulations of a cavity-assisted cooling scheme which is expected
to work with a larger class of particles and provide lower final temperatures than
conventional laser cooling methods. In the last part, we turn to the phenomenon of
self-organisation, a phase transition to a crystalline structure induced by interference
between the cavity mode and laser light shone on the particles from the side. We
investigate the impact of quantum statistics and confirm a strong suppression of
the threshold for the onset of the phase transition if a degenerate Fermi gas fulfills
certain resonance conditions.
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Chapter 1

General introduction

1.1 Manipulation of single quantum objects

It is fair to say that the photon, the elementary constituent of light, has been at the
very heart of the quantum revolution shaping the previous century, and the photon
continues to amaze and surprise physicists to the present day. Indeed it was the
discovery of the quantised character of light, made by Max Planck in the context
of black-body radiation [1.1] and generalised by Albert Einstein in his work on the
photoelectric effect [1.2], that paved the way towards a completely new understanding
of nature.

The photon beautifully reveals the most intriguing principles of quantum mechanics.
For example, a single photon can be ‘split’ and sent through an interferometer on two
distinctive paths. Depending on the difference in path lengths, the photon interferes
with itself constructively or destructively upon recombination, clearly exhibiting
wavelike character [1.3]. At the same time a photon can be regarded as an indivisible
particle in a sense that every attempt to detect which of the two paths has been
chosen will yield a definite single result and destroy the interference pattern. The
same particle-wave duality [1.4] and quantum interference has been demonstrated for
electrons [1.5], atoms [1.6] and even molecules on the nanometre scale [1.7], entities
which do not behave like waves in the theory of classical mechanics.

Einstein was rewarded the Nobel Prize 1921 for his discovery of the photoelectric
effect [1.2], and in the following years Heisenberg, Dirac, and Schrodinger amongst
others made important contributions to continue the development of the arising
quantum theory and its mathematical framework [1.8]. However, quantum mechanics
was at that time regarded solely as a mathematical instrument. Well suited to explain
phenomena otherwise incompatible with a classical understanding of physics, like the
spectral density of black-body radiation [1.1] or the coefficients for spontaneous and
stimulated emission of light [1.9], it was thought to be otherwise inaccessible to direct
experimental verification. Least was it deemed possible to create, manipulate and
investigate individual quantum objects like single photons or single atoms. Too fragile
seemed a photon which is easily absorbed by any surrounding matter converting its
tiny portion of energy to heat, too volatile a microscopic atom moving with several
hundred metres per second at room temperature beyond hope of non-destructive
observation. Instead, gedankenexperimente were invented in order to challenge the
new concepts, for example Schrodinger’s famous cat [1.10] kept inside a closed box
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together with a mechanism which releases poison, triggered by an atomic decay. By the
quantum laws the cat is suspended in a controversial state of superposition between life
and death. The process which prevents us from seeing quantum phenomena in daily
life, such as a cat being simultaneously dead and alive, is the loss of extremely delicate
quantum phase relations through irreversible interaction with the infinite degrees of
freedom of the surroundings, including the box, air molecules and ultimately the many
photons our eyes rely upon to make observations. Controlling this decoherence [1.11,
1.12] by sufficiently shielding a system from its environment, even on the microscopic
scale, is a tremendous experimental challenge.

Almost a century later, in 2012 the Nobel laureates Serge Haroche and David
J Wineland were honored “for ground-breaking experimental methods that enable
measuring and manipulation of individual quantum systems”. While Wineland is active
in the field of trapped ions [1.14], Haroche’s domain of research at I’Ecole Normale
Supérieure (ENS) is cavity quantum electrodynamics (cavity QED) [1.13]. In his
experiments, a pair of highly polished super-conducting spherical mirrors form an open
cavity which acts as resonator for photons with frequencies in the microwave regime
[1.15]. Such a device reflects single photons back and forth many times, trapping them
for over a hundred milliseconds. During this time, the photons travel over 40 000 km
between the mirrors, before they are lost by the virtue of mirror absorptions and
scattering off small imperfections. This resembles the gedankenexperiment of the
Einstein-Bohr photon box [1.16], and also a version of Schrodinger’s cat could be
realised, although not in the literal sense but as quantum-mechanical superposition
of distinctive classical states of light [1.17].

Additionally to impressive photon storage times, the full power of the ENS exper-
iments stems from the controlled interaction of cavity photons with single atoms
traveling through the resonator. Due to the large number of photon round trips and
by making use of two highly excited internal atomic Rydberg states which act as a
very sensitive dipole antenna, the ‘holy grail of cavity QED’ was reached [1.13]. In the
regime of strong coupling the interaction strength between cavity and atom exceeds
the dissipation like photon loss and spontaneous emission. This has the consequence
that, with atom and cavity tuned on resonance, a single photon can be absorbed
by an atom and then re-emitted into the cavity many times before it is lost. Off
resonance, an atomic beam can be prepared in a way that it extracts information
about the light field one atom at a time while leaving the photons intact. For the
first time it was possible to count and even monitor single photons throughout their
lifetime without destroying them [1.17, 1.18].

Research towards non-destructive manipulation of individual quantum objects,
a field in which cavity QED is only one of many routes [1.19-1.21], opens up the
possibility to put fundamental concepts like decoherence to a test [1.22]. Additionally,
it is strongly motivated by envisioned applications and algorithms which rely on this
degree of control, for example in the realm of quantum information processing and
quantum computing [1.23, 1.24].
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1.2 Cooling and trapping neutral atoms with light forces

So far we have only considered interaction of light with the internal atomic dynamics,
i.e. with the electrons orbiting the nucleus. Photons, however, carry momentum
proportional to their frequency which manifests as a recoil kick on the center-of-mass
motion of an atom absorbing or emitting a photon. While in the microwave regime
this recoil is negligible, mechanical effects of light on matter play an important role in
the optical frequency range. Let us first briefly discuss the radiative forces experienced
by an atom in free space and the implications for trapping and cooling atoms with
light before coming back to cavity QED and the case where ultracold atoms move
inside a resonator for optical frequencies.

The forces acting on an atom illuminated by a coherent light source such as a laser
[1.25, 1.26] can be split into two parts, the dipole force and the radiation pressure
[1.27]. On the one hand, the dipole force has a conservative nature and gives rise to
an optical potential. In a photon picture, it can be related to stimulated absorption
and emission. For example, two running waves with opposite direction create a
standing wave intensity pattern, and the dipole force in such an optical lattice can
be explained by the momentum exchange corresponding to coherent scattering of
photons from one beam to the other. In a classical picture, the dipole force can be
interpreted in terms of the electric dipole induced within the atom by the field. As
the interaction energy between the field and the dipole depends on the light intensity,
an intensity gradient directly corresponds to a potential gradient. This also explains
the change from an attractive to a repulsive force with respect to regions of high
light intensity, when the driving laser is tuned below or above the atomic resonance,
respectively. Below resonance the induced dipole oscillates in phase with the field,
whereas above resonance it is forced out of phase, resulting in a sign change of the
interaction energy. On the other hand, the radiation pressure is related to absorption
of a laser photon followed by spontaneous emission to free space. The momentum
of each absorbed photon is transferred to the atom leading to a force aligned with
the direction of a running wave, whereas the two opposing forces cancel each other
out in a standing wave. The recoil kick associated with spontaneous emission has no
directional preference and therefore does not result in a net force on average. It does,
however, contribute to momentum diffusion.

Shining light on atoms from opposite directions with the frequency tuned below an
atomic resonance, the radiation pressure gives rise to a velocity-dependent friction
force. This Doppler cooling method [1.28, 1.29] is limited by the natural linewidth
of the atomic transition. Sub-Doppler temperatures are achievable by exploiting
polarisation gradients and spatially overlapping optical potentials for different internal
atomic states. In a simplified picture of Sisyphus cooling, the atoms constantly lose
kinetic energy by running ‘uphill’ towards the maximum of one optical potential
where they are optically pumped to the minimum of a different one and the process
starts over [1.30]. Here the temperature is limited by the momentum diffusion induced
by the recoil of a single photon scattering event (recoil limit).

The overwhelming success of laser cooling and trapping techniques [1.31-1.34]
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opens the realm to experiments with ultracold quantum gases. From this extremely
rich field [1.35] let us only highlight a few examples. A Bose-Einstein condensate
(BEC) is a state of matter with temperatures close to absolute zero, where particles
cease to exist as individual entities and instead form a collective coherent matter wave.
Predicted in 1925 [1.36, 1.37], today BECs are routinely created for many atomic
species and even molecules [1.38-1.44], often used as basis for further experiments.
Ultracold atoms in optical lattices, i.e. optical potentials generated by the dipole-force
of strong far-detuned counter-propagating laser beams, provide an excellent setting
to engineer otherwise inaccessible Hamiltonians of condensed matter physics in an
extensively controllable way [1.45, 1.46].

1.3 Cold atoms in optical resonators

In conventional optical lattices the light forces are generated by a large number of
photons, and the back-action of scattered photons on the light field is negligible. This
situation changes dramatically when ultracold atoms are placed inside a high-quality
resonator for photons with optical frequencies [1.47, 1.48]. Vast improvements in the
fabrication of cavity mirrors in combination with very small mode volumes made it
possible to reach the aforementioned strong coupling also in the optical regime [1.49].
In such a cavity, even a single photon can create a dipole force strong enough to trap
an atom [1.50, 1.51]. Furthermore, cavity-generated optical potentials are subject to
quantum fluctuations and significant back-action from atomic motion and photon
scattering, therefore taking an active role in the coupled atom-cavity dynamics [1.47,
1.48].

Even with reflectivities close to unity, cavity photons eventually leak out through
the mirrors with a rate connected to the linewidth of the resonator. On the one
hand, this signal can convey information like atomic trajectories [1.50, 1.51], on the
other hand it constitutes a dissipation channel which can extract energy from atomic
motion. This cavity cooling mechanism [1.52] takes advantage of the intra-cavity
field reacting to atomic positions with a finite response time. In a carefully chosen
parameter regime, the optical potential is deepened while an atom climbs a potential
well and flattened while it slides down, resulting in a friction force and a loss of
kinetic energy on average. One of the potential advantages compared to conventional
laser cooling mentioned above is the fact that cavity cooling persists in the regime of
low atomic excitation [1.53].

In this dispersive regime with a cavity far detuned from all internal atomic reson-
ances, which is adopted throughout the present thesis, spontaneous emission from
atoms is strongly suppressed and the exact internal structure becomes irrelevant.
Instead, the atoms can be described as linearly polarisable particles acting as a
position-dependent refractive index for the cavity mode. As a consequence, cavity-
assisted cooling schemes might be extended to a large class of particles for which laser
cooling cannot easily be applied due to missing suitable closed level cycles, such as
molecules [1.54]. Furthermore, the final temperature is limited by the cavity linewidth
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which can be significantly narrower than most optical lines, making sub-Doppler and
even sub-recoil cavity cooling possible [1.55].

In many ways the dispersive regime at optical frequencies constitutes an orthogonal
approach to cavity QED, compared to the microwave experiments discussed above.
While in the latter case the atom momentum is fixed and the internal atomic
dynamics plays the crucial role, the former case focuses on the external, motional
atomic aspects like cavity-mediated light forces, long-range interactions and self-
organisation phenomena [1.47, 1.48]. It is worth noting that even if linear polarisability
is assumed, the dynamical equations governing the quantised motion of ultracold
particles coupled to a cavity mode are inherently non-linear [1.56].

1.4 Outline of the thesis

The findings presented in this thesis contribute to a deeper understanding of the
microscopic dynamics of moving-particle cavity QED in the dispersive regime. By
taking advantage of high-performance computing clusters, advances in computational
power allow numerical simulations of the full quantum state of up to five particles
moving inside a high-quality optical resonator, taking into account the quantised
nature of the motional degrees of freedom and the intra-cavity-field on equal footings.

This thesis is organised in four parts, it contains three published articles in the field
of cavity QED theory and one published release announcement for a programming
framework intended to assist in the implementation of efficient quantum simulations.
At the beginning of each publication, a note indicates the current author’s contri-
butions. Part I is an introduction to cavity QED and the notion of open quantum
systems as well as the numerical methods used to simulate their dynamics. Part 11
describes the programming framework whose ongoing development, extension and
improvement was a substantial part of this thesis. The parts III and IV contain all
the research results and correspond to the two distinct geometries of a laser driving
the optical resonator directly and a laser which pumps the particles from the side,
respectively.

The article of chapter 7 presents an optomechanical approach to two particles
moving inside a ring cavity. Through the cavity-mediated interactions between
the particles, it reveals classically forbidden positive momentum correlations and
entanglement, which is particularly strong directly after the detection of a photon lost
from the cavity. Chapter 8 summarises our work on an improved cavity-assisted cooling
scheme with the prospect to reach temperatures below the recoil limit and, ultimately,
quantum degeneracy. The impact of quantum statistics on the cooling dynamics
in a ring cavity and a standing-wave cavity geometry are numerically investigated,
respectively. Chapter 10 is concerned with the phenomenon of self-organisation, a
phase transition towards a cristalline state with long-range order that is observed
with transversally pumped particles in a cavity. In particular, the dependence of this
phase transition on quantum statistics is numerically examined for few particles in
the fully quantised regime. We can confirm a recently predicted suppression of the
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pump strength threshold for self-organisation of quantum-degenerate fermions, given
that a resonance condition with respect to the Fermi momentum is fulfilled.



Part |

Introduction to cavity QED






Chapter 2

Open quantum systems

In quantum mechanics, the state of an isolated system is described by a normal-
ised state vector |¢(t)) in a Hilbert space H with the time evolution given by the
Schrédinger equation

. d
ihy (@) = H(t) [4(2)) - (2.1)

While the Hamiltonian H () can in principle be explicitly time dependent, this is not
the case for the Hamiltonians appearing in this thesis, therefore we write H(t) = H in
the Schrodinger picture. Equation (2.1) defines a unitary time evolution, in particular
the norm of the state [¢)(t)) is preserved for all times and the evolution is fully
reversible.

Such an isolated system represents a highly idealised situation, as in fact a real
experiment always interacts with its environment. In the context of quantum optics,
this environment is the continuum of radiative modes, usually represented by a
thermal reservoir, with the special case of the vacuum state as a zero-temperature
reservoir. In principle the environment could be included in the Hamiltonian H to
obtain once again an isolated system with a unitary time evolution. However, this
approach can lead to an overcomplicated model which is hard or impossible to solve,
and even if we could solve it, the microscopic details of how photons are carried away
from the system are of little interest in most cases. Instead, we strive to retain the
physical effect of the reservoir on the system, in particular adding quantum noise,
dissipation and radiative shifts, while assuming that the effect the system has on the
environment can be neglected. A classical analogon is, for example, the Brownian
motion of a heavy particle submerged in a liquid or gas: instead of tracking the
countless collisions with the environment, we describe the net effect of damping and
diffusion these collisions have.

Dissipation is a key ingredient in all quantum optics experiments. On the one hand
it has to be controlled or minimised because it destroys coherence, which is often
sought-after as a characteristic quantum property. On the other hand, dissipation is
essential in all cooling schemes as it is the only way how a system can lose energy
and entropy [2.1, 2.2]. In the framework of decoherence and open quantum systems,
the state vector |¢(t)) is replaced by a density operator p(t), which additionally to
pure states can describe statistical mixtures as more general quantum states. The
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Bath

Figure 2.1: A small system with Hamiltonian Hg is coupled by the interaction Hamilto-
nian Hp to the environment, described by the Hamiltonian Hg and acting
as a heat bath.

unitary time evolution of eq. (2.1) is replaced by the von Neumann equation

S olt) = — [H, (1) 22)

in this formalism. In the following section we will introduce a general closed equation
of motion for the density operator of an open system, the master equation. This
equation belongs to the important class of quantum Markov processes with weak
coupling to a reservoir [2.3, 2.4]. In section 3.4 we will introduce the specific master
equation describing particles moving in an optical resonator.

2.1 Master equation

We consider the situation of a small system weakly coupled to a large environment
as sketched in fig. 2.1. The total Hamiltonian can be written as

H = Hs + H; + Hg, (23)

where Hg, Hg and Hj are the Hamiltonians of the system, the bath and the interaction,
respectively. The interaction Hamiltonian in an interaction picture with respect to
Hg + Hp is

Hy(t) = e~ n(Hs+HB)U o (Hs+Hp)t (2.4)

Starting from the von Neumann equation for the total density operator p(t) in the
interaction picture

S olt) = — [H(1), p(0)] (25)
one can derive an equation local in time for the reduced density matrix describing
the system alone, i.e. pg := trp p(t), where trg denotes the trace over the reservoir
degrees of freedom [2.4]

sty == [ ds tay (0, (Hi(t — 9). ps(0) @ pu] (2.6)

10



2.2 Numerical methods

Two important approximations have been made to arrive at eq. (2.6). The Born
approzimation is essentially a weak-coupling assumptions which states that p(t) ~
ps(t) ® pp factorises at all times and allows us to neglect terms of higher than second
order in Hi. Here, pp is the stationary state of the bath, which we assume is not
affected by the system. The Markov approximation, which states that the reservoir
auto-correlation timescale g is much smaller than the timescale 7¢ on which the
system changes appreciably, allows us to make the right hand side of eq. (2.6) depend
on the current value of pg(t) alone instead of the history of the system, and to extend
the integration limit to infinity. It is important to keep in mind that the master
equation is a coarse-grained equation of motion, in the sense that it cannot resolve
the dynamics of very short times on the order of 73.

For a finite-dimensional system with D states, eq. (2.6) can be brought into the
so-called standard- or Lindblad form [2.4], here transformed back to the Schrédinger
picture density operator (also denoted pg(t) for brevity)

d D2—1
&Ps(t) =-3 [Hs,ps } + Z (QJkP )} — T Jeps(t) — Ps(t)inJk) , (2.7)

where the jump operators J belong to the specific dissipation channel with rate
v > 0. The first term involving Hyg is the coherent part of the dynamics and generates
unitary evolution similar to the von Neumann equation (2.2). In general Hg # Hg,
the interaction with the bath can introduce additional coherent dynamics, for example
Lamb- and Stark shifts or dipole-dipole interaction.

The specific form of Hg, J; and 75, depends on the details of the interaction
Hamiltonian H; at hand. In general, to obtain these quantities, one has to evaluate
one-sided Fourier transforms of reservoir correlation functions such as

/Ooo ds ei“’5<BL(t)B/3(t - s)> = /OOO ds e trp {BL(t)Bﬁ(t - s)pB} , (2.8)

where B, and Bg are interaction-picture operators acting on the bath and w is a
transition frequency of Hg. For a steady-state reservoir, the correlations are inde-
pendent of ¢. The imaginary parts of the correlations eq. (2.8) contribute to the
Hamiltonian Hg, whereas the real parts lead to dissipation described by Jj, and V-

In numerical simulations we are always dealing with finite-dimensional systems,
and the assumptions which justify the Born-Markov approximation are often very
well fulfilled in quantum optics, which explains the importance of eq. (2.7) for this
thesis. In the next section we will discuss two specific numerical methods for solving
the master equation.

2.2 Numerical methods

2.2.1 The master equation as ordinary differential equation

The right-hand side of the master equation (2.7) is often abbreviated by a Liouvillian
operator L, a linear super-operator acting not on a state but on a density matrix p,
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Chapter 2 Open quantum systems

where we now drop the subscript and understand p as the reduced density matrix of
the system:

d

= Lp. (2.9)
For a finite-dimensional system with dimension D, the master equation is a first-order
differential equation in a D?-dimensional vector space, by writing the density matrix
p as a vector with D? complex entries and the super-operator £ as a D? x D? matrix
acting on this vector. The time evolution of an initial state p(0) can then be obtained
by an ordinary differential equation (ODE) solver with standard numerical methods*.
Implementations include C++QED [2.6-2.9], which is discussed in detail in part IT of
this thesis, or QuTiP [2.10], a Python implementation of the popular but discontinued
Matlab Quantum Optics Toolbox [2.11].

This method is only suited for systems typically up to a few thousand states.
Because of the scaling with D?, for larger systems it soon becomes impossible to store
the density matrix in memory, or the calculation of a time step takes impractically
long.

2.2.2 Monte Carlo wave function method

For systems of intermediate complexity, before entering the realm of true many-body
physics, the Monte Carlo wave-function method (MCWF') has proven to be well suited
[2.12-2.14]. Tt provides a numerical method for calculating the time dependence of
any expectation value or even the full density matrix p. Instead of operating on the
density matrix with a size of D? c-numbers’, the MCWF method integrates several
realisations of state vectors, each consisting of only D c-number entries. A copy of the
initial state vector is evolved coherently with an effective non-hermitian Hamiltonian
H,g and subjected to quantum jumps at random times, thus building up a quantum
trajectory of the system. While the dissipation channel m and the times of quantum
jumps are chosen randomly (hence the name Monte Carlo), the method assures the
correct dissipation rates by its selection rules described below.

Starting with the master equation eq. (2.7) written in the equivalent form

o) =+ (Hueolt) — p(O Hlyg) + Y Jup()J}, = Lot)  (2.10)
Hug = H — 15%: Jb T, (2.11)

the method consists of repeating the following two steps to evolve |¢(t)), nicely
summarised in [2.7]

*for example the fourth-order adaptive stepsize Runge-Kutta Cash-Karp method [2.5]
tHere we are only interested in the scaling with N, using hermitiancy and unit trace the density
matrix has D(D + 1)/2 — 1 independent entries
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2.2 Numerical methods

(1) Evolve the normalised state vector |¢(t)) for a short time 0t with the non-
hermitian Hamiltonian H,y according to the differential equation

ih 0 (1)) = How [0(0)). (21

to obtain to first order in ¢t

i it
[t +50)) = e F (1) = (1= S Hondt) [0(0) + OGF).  (2.13)
Because H,y is non-hermitian, the norm of the state is not preserved, in fact
it decreases according to

lnra(t + GNP = ((0)[(1+iH] 6t /R) (1 — iHandt /D)1 (1)) + O(5¢%)
=1-6tY_ (W)L Tmlb(t)) + O(6t%) < 1. (2.14)

We define dp to be the total loss of the squared norm and dp,, the loss to a
particular dissipation channel, i.e.

Opm = ot <w(t)|‘]:njm’w(t>> op = Z(Spmv (2'15>

and we require ¢ to be sufficiently small so that dp < 1.

(2) A quantum jump occurs with probability dp. We choose a random number
0 <e <1, and if dp < ¢ (which is the case most of the times because dp < 1)
then no jump occurs and the new state is obtained by normalising |15 (t + dt)):

[(t+6t)) = [nm(t + 6t)) - (2.16)

1
v1—9dp
However, if the random number indicates that a quantum jump occurred, i.e.
€ < dp, the decay channel is chosen randomly among the .J,,, according to the
probability distribution II,, = dp,,/dp. In practice, this can be done with the
already drawn ¢ by choosing the m for which Z;”:_ll opj < e <377 dp;. The
new state is obtained by applying the jump operator and normalising the state:

ot

it +58) =[5

Jm [1(2)) - (2.17)

We will refer to the deterministic step (1) and the stochastic step (2) as the Hamilto-
nian and the Liouvillian part of the method, respectively. Of course in real applications
of the MCWF method the first-order time evolution as obtained from eq. (2.13)
would lead to stability problems. Instead, this integration step has to be performed
with a stable method as the integration in sec. 2.2.1.
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Chapter 2 Open quantum systems

Let us now consider N trajectories labeled |1, (t)), obtained with different seeds for
the random number generator, all starting with the same initial condition [, (0)) =
|1)). We define the ensemble average

N
Tx(t) = 1 3 (D)) (1) (218)
n=1

In the limit N — oo, the averaged density operator & (t) := limy_, 0 x can be shown
to be a solution of the original master equation [2.14]

d_

°
If p(0) = |¢) (¢| is a pure state, then p(t) = 7 (t) for all ¢. Truncation to finite N
leads to an approximate solution p(t) ~ oy (¢). In the general case of a mixed initial
state p(0) = 3, i [©@) (| with p; > 0 and 3, p; = 1, the MCWF method can be
carried out for each of the pure states [¢)(?)) to obtain the trajectories \Qm(f) (t)) and
ensemble averages

(t) = L7 (t). (2.19)

(i 1 X i
oW (1) = & > [ (1) W) (2.20)
n=1
The approximate solution of the master equation in this case is
plt) = 3 piaw (2). (2.21)

In many cases it is not possible to reconstruct the density matrices Eg\if) (t) because
of their size. Still one can use the MCWEF method to obtain approximations to
expectation values of system operators. If A is such a system operator and (A)(t) =

tr {Ap(t)} is the trajectory of its expectation value, then

N
A0~ 1 3 Y pi ) (0] (1) (222

n=1 14

The prize to pay for the more favorable scaling with D instead of D? is that we
have to average over a whole ensemble of quantum trajectories in order to obtain
expectation values, and finite ensemble sizes always introduce statistical noise. It
arises the question of convergence and if one gains from the MCWF method compared
to integrating the master equation directly. An answer is given in [2.15], where it
is shown that for a prescribed statistical error the scaling of the CPU time with D
is in favour of the stochastic method for sufficiently large systems. Furthermore, in
situations where the density matrix cannot be held in computer memory due to its size
and integration of (2.9) becomes impossible, the MCWF method might still be able
to provide valuable insight into the system dynamics, and single trajectories reflect
microscopic processes [2.16]. Finally, while parallelising ODE solvers seems difficult
and connected with considerable overhead, the MCWF method is intrinsically parallel
and can easily take advantage of a high-performance computing cluster environment.
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Chapter 3

Ultracold particles in optical resonators

3.1 Optical resonators

Many objects in everyday live show iridescent behaviour, an apparent change of
colour depending on the angle of view at which they are observed. Examples can
be found in nature where the inside surface of certain sea shells or the wings of
butterflies shimmer in all colours, but also in man made objects like compact discs
and soap bubbles. These effects are caused by multiple beam interference when visible
light is reflected many times on the two surfaces of a thin semi-transparent layer.
Depending on the angle of observation, this interference is constructive for some
wavelengths and destructive for others [3.1]. A Fabry-Pérot interferometer has the
same underlying principle: two high-quality parallel mirrors reflect incident light
many times, filtering out most wavelengths due to destructive interference, while
certain narrow bandwidths of light can pass the device almost unmitigated [3.2]. The
term optical resonator comes from a slightly different point of view: the space between
the mirrors contains several modes of the electromagnetic field, which are capable
of self-oscillations. The oscillator can be driven by shining light with a resonant
frequency onto the mirrors, and at this frequency also the most energy is irradiated
from the resonator by dissipation.

The Fabry-Pérot interferometer has become an invaluable tool both in classical
optics and quantum optics. To name just a few examples, it is used for spectral
analysis of light with very good resolution, as filter device in fiber optics networks
of telecommunication and as resonator for many types of lasers. Optical resonators
have improved to a degree where they can be used as ‘containers’ for light, storing
photons for times on the order of several microseconds in the optical regime [3.3] and
over a hundred milliseconds in the microwave regime [3.4]. This allows to explore
non-classical states of the electromagnetic field, for example Fock states with a well-
defined number of photons. Furthermore, compared to free space, a photon which is
reflected many times can interact much more strongly with matter like ions, atoms
or molecules inside the resonator. In the context of quantum optics the mirrors are
usually curved instead of plain (cf. fig. 3.1a and section 3.2.1) and their distance is
small, which increases the stability of the resonator mode. The term ‘optical cavity’,
which we use as synonym for an optical resonator, is motivated by such a setup.

Even though we are interested in the optical cavity as a quantum device, it is
instructive to review the classical theory of the Fabry-Pérot interferometer [3.5], as it
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Chapter 3 Ultracold particles in optical resonators

explains terms like the finesse, quality factor and linewidth of a resonator and their
relations to each other, which can be directly applied to the quantum case.

Transmittance of a Fabry-Pérot interferometer

Figure 3.1b shows the idealised version of a Fabry-Pérot interferometer consisting of
two transparent parallel plates at a distance d apart from each other, each with a non-
reflective and a highly reflective surface. The electric field amplitude is attenuated by
the factor r (the factor ¢) upon reflection (transmission) at the border from the optical
thicker to the optical thinner region of the mirrored plate surface. The quantities r’
and t’ stand for reflection and transmission at the border from the optical thinner to
the optical thicker region, respectively. The angle of incidence is § < 1 and we ignore
any dependence of r and ¢t on 6. A wave reflected inside the plate acquires a relative
phase shift of m compared to a wave reflected at the outside, which is expressed by
the relation r = —/, and energy conservation requires tt' = 1 — r2 [3.5]. As we are
only interested in relative phase differences of the partial waves, we can describe
the incident wave by its scalar complex amplitude Ey. Each round trip inside the
interferometer results in a phase shift

0= @cos@z ?cos@, (3.1)
where A is the wavelength of the light, w = 27e/\ its angular frequency and c is the
speed of light. The complex amplitude of the reflected light (cf. fig. 3.1b) can be
written as

E, = Egr + Eogtr't'e 0 + Egtr®t'e20 4 . (3.2a)

= Fy [r + r'tt'e™ (1 + (r?e79) 4 (r2e ) 4 . )} (3.2b)
r'tt'e10 r(l— e*i‘s)_

:EO T+m :EO ll—?"%ﬁs . (32C)

Similarly, the transmitted amplitude is

. . i 1— 2
Ey = Eptt’ [1 + 270 4 (r2e710)2 4 } =Ep 1_7422_151 : (3.3)

The intensity of a light field with amplitude E is proportional to |E ]2 /2. With

eqs. (3.2) and (3.3) we can calculate the reflected Intensity I, ~ |E,|*/2 and the

transmitted Intensity I; ~ |E;|*/2 in terms of the incident intensity I ~ |Eo|?/2:
I, Fsin?(5/2) I 1

Ir _ L 4
Io 1+ Fsin?(5/2) Iy 1+ Fsin?(6/2)’ (34)

where we have introduced the coefficient of finesse F' = (137;2 )2.

From now on let us consider orthogonal incident light, i.e. cos @ = 1. The transmitted
intensity is maximal when § = 27n for integer n. For a fixed distance d, using eq. (3.1)
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3.1 Optical resonators

(a) Artist’s view of a microwave resonator with spherical mirrors. The
standing wave intensity pattern is visualised by a red glow. In the
optical regime, the cavity length and mode waist is on the order of nm.

Ey /9
E()T -
Eot?"/tle_ils EOtt//Q !/ _—id
13,0 —i25 | Eotr'“t'e™
Eotrte — Eot,r_/4t/e—125
d

(b) An idealized Fabry-Pérot interferometer. The incident light wave ar-
riving from the left is partly reflected and partly transmitted through
the device. The partial waves with different numbers of round trips
inside the resonator acquire different relative phases and attenuations
and can interfere constructively or destructively.

Figure 3.1: Optical resonator and schematic view.
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Figure 3.2: The transmittance of a Fabry-Pérot interferometer with highly reflecting
mirrors (r = 0.95 in this case) has sharp maxima at frequencies separated
by the free spectral range wg;. The linewidth Aw is equal to the intensity
damping rate of the resonator.

this condition in terms of the frequency of the light is w = nwe/d. Two frequencies
of maximal transmittance are separated by the free spectral range wg, = we/d. The
transmittance function, which is also called Airy function, is plotted in fig. 3.2.

Linewidth, finesse and decay rate

The linewidth Aw of an optical resonator is defined as the full width at half maximum
of the transmittance function in frequency space (cf. fig. 3.2). From its definition it
is apparent that the Airy function reaches 1/2 whenever its argument is dmax & 91 /2,
where dax is the position of a maximum and

d1/2 = 2arcsin (\/11?> A \/2F (3.5)

The approximation holds for large reflectivities, i.e. 1/v/F < 1. By solving eq. (3.1)
for w and inserting d; /5, we find

& fsr
Wy = S = Wi 3.6
1/2 dvV F T F ( )

and the linewidth is Aw = 2wg./(mv/F). The ratio of the free spectral range to the
linewidth is called finesse F, it only depends on the reflectivity of the mirrors:

Wfsr_ﬂ'\/F_ m|r|
Aw 2 1—7r2

F= (3.7)

The decay rate v of the intra-cavity intensity in the absence of external driving
can be estimated by the following consideration: the light is reflected once each half
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3.2 Quantisation of the electromagnetic field

round trip inside the resonator, which is completed in a time d/c. Therefore the
fractional intensity loss during this time is 1 — 72, and we can calculate the rate v as
-2 (1 —rDwge  |r|wgs

7 d/c T F “ (38)

This clearly demonstrates the connection between linewidth and intensity decay rate
(or equivalently photon decay rate) of an optical resonator. It is worth noting that
the correspondence eq. (3.8) holds for the angular frequency of the light, measured
in radians per seconds. In terms of the ordinary frequency v measured in hertz it
reads v = 2w Av. Usually, in the literature of experimental physics one finds ~v/(27)
quoted in hertz.

Instead of the decay rate for the intensity we use the decay rate of the field
amplitude £ = /2 throughout the remainder of this thesis. In addition to the
finesse, a commonly used quantity to describe the behaviour of a resonant system is
the quality factor @ = wy/Aw, the ratio between the resonance frequency and the
linewidth. A ‘high-Q optical resonator’ is one where the light is stored for a long
time compared to its optical period. The following relations connect the decay rate,
the finesse and the quality factor:

_ Wisr  Wo

(3.9)

3.2 Quantisation of the electromagnetic field

Maxwell’s equations exhibit a distinctive wavelike character of radiation and explain
beautifully phenomena like interference and diffraction of light. They also give rise
to independent orthogonal modes of the free electromagnetic field, each of which
has a fixed spatial form and harmonic time dependence, whereas the only remaining
free parameter is a complex amplitude. Therefore each mode resembles a harmonic
oscillator, and in the classical theory the energy of such an oscillator is a continuous
quantity which can have any value.

At the beginning of the 20th century, in contrast to believes prevalent at that time,
Max Planck postulated that the exchange of energy between radiation of frequency
v and the oscillators in the walls of a black body (one which only absorbs and emits
but does not reflect or transmit radiation) is only possible in discrete portions of hv
[3.6]. This idea, even though reluctantly embraced by Planck himself, enabled him
to correctly reproduce the experimentally observed spectral energy density of the
black-body radiation. The new fundamental constant h, which today is named after
Planck, lies at the heart of modern quantum physics. Albert Einstein went one step
further by realising that the discrete energy exchange is not some strange property
of the black-body’s oscillators, rather it is the electromagnetic field itself which is
quantized [3.7]. He developed a theory where light travels in discrete wave packets
with energy hr, now known as photons [3.7]. A prominent experimental manifestation
of the photon is the photoelectric effect which Einstein was able to explain in his
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Chapter 3 Ultracold particles in optical resonators

work: light shined on metal can dissociate electrons, but only if a threshold frequency
is reached, regardless of the intensity of the light. Below this threshold, each photon
does not carry enough energy to overcome the electrons’ binding energy. For the
same reason, above threshold, the energy of the emitted electrons only depends on
the frequency and not on the intensity of the light.

Because every field mode behaves like a harmonic oscillator, the mathematical
description is completely analogous to that of a mechanical oscillator*[3.1, 3.9]. For
each mode [ with frequency w; and mode function f;(r) there are operators a; and le,
which destroy and create a photon in this mode, respectively. They follow the bosonic
commutation relation [dy, d;r,] = ;. The Hamilton operator of the electromagnetic

field in a resonator with subtracted zero point energy can be written as

Hp =Y hwala. (3.10)
l

The mode functions constitute an orthogonal system which is expressed by the
relation [ f5(r)- £y (r)d3r = &V}, where V] is the mode volume. They are solutions
of the Helmholtz equation

w2
Af(r) + C—éfl(r) = 0. (3.11)

Boundary conditions such as a vanishing tangential electric field at the cavity mirrors
determine the possible values of w;. The electric field operator of a single mode in
the Schrédinger picture can be expressed as a linear combination of @; and d}:

By(r) = i,/z’z‘l/l (Fu(r)i — £ (maf) (3.12)

where gg is the vacuum permittivity.

We will now discuss two configurations with relevance to this thesis in more detail:
the field inside a standing-wave cavity with spherical mirrors and plain waves in free
space.

3.2.1 Standing-wave cavity

A cavity with spherical mirrors (cf. fig. 3.1a) supports an infinite number of funda-
mental TEMyg Gaussian modes, for each fixed number of anti-nodes n there are two
degenerate modes with orthogonal polarisation. The two mode functions in paraxial
approximation can be written as [3.9]

fiao(r,x) =¢€ wo e r cos | kx — arctan 20 + br® + (n = r
= —_— X _—— J—
L2ib L2 () P w(x)? kwd =~ 2R(x) 2 ’
(3.13a)

*In the framework of non-relativistic quantum electrodynamics, the equations of motion of the
electromagnetic field coupled to charges moving slowly compared to the speed of light can be
derived from a standard Lagrangian. Quantisation is then performed in a canonical way by
assigning operators and appropriate commutation relations to the truly independent variables
and associated conjugate momenta [3.8]. Here we only present the results relevant to this thesis.
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Figure 3.3: Cut through the mode function |f; 5(r, 2)|? inside a standing-wave cavity
with spherical mirrors as given by eq. (3.13). Near the cavity center the
wave fronts are approximately plain.

with

w(z) = wor |1 + (2"”)2 Rx)=x |1+ (lmj> . (3.13b)

2
kwg

The cavity is aligned along the x-axis with the origin at the cavity center between
the two mirrors, r = y/y? + 22 is the radial distance from the center line, wq is the
minimum width of the mode at * = 0, €12 are two orthogonal polarisation unit
vectors (possibly complex) and R(z) is the radius of the wave-front at position .
The cavity length is L ~ n\/2 where A = 27 /k is the wave length associated to
the mode. Near the cavity center the curvature becomes zero and the wave fronts
are plain as shown in fig. 3.3. At the position of the mirrors, the wave-front radius
coincides with that of the mirrors, R(+L/2) = R. The mode waist wy is determined
by R through eq. (3.13b) and the mode volume is given by

™

V=1

wi L. (3.14)
We assume that all particles interacting with the cavity are located near the cavity
center where the true mode function is well approximated by

r2 ) {cos(k:m) for n odd (3.15)

rx)=€12€Xp| ——5
f1,2(7 ) ) p( w% sin(kz) for n even.

Additionally, in all our models the particles are confined to one dimension along the
z-axis by an appropriate trap and the polarisation is fixed by the particle’s dipole
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moment orientation. We are left with an effectively one dimensional mode function
f(z) = ecos(kz) (or sin(kx)), the free cavity Hamiltonian

Hp = hwed'a (3.16)
and the electric field operator
. Fiew,
E(x) = iy 5 cos(ha) (ea—eal), (3.17)

where we = ck and V is given by eq. (3.14).

3.2.2 Plain waves

The free electromagnetic field is conveniently quantised by introducing a cubic volume
with edge length L and by imposing periodic boundary conditions. The volume has to
be large compared to the relevant experimental scales so that all expectation values
are independent of L. Taking the limit L — oo in the end yields the free space case.
This approach leads to plain wave mode functions of the form

Fro(r) = €roe™” (3.18)

which are indexed by the wave vector k and the polarisation o € {1,2}. The two
polarisation vectors €1 2 are orthogonal to each other and to k. For linear polarisation,
the vectors can be chosen real, whereas complex vectors describe elliptically or
circularly polarised light.
The periodic boundary conditions define the discrete values of the wave vector
2

k= T (g, Ny, n2) Ny, Ny, Ny € N, (3.19)
and the mode frequencies wy through the dispersion relation wy = c|k|. The operator
of the electric field is the sum over all single-mode operators eq. (3.12):

~ . hw —_— T
E(r)=i) 5 23 (ekoe™ ik — 1,0 % 7al,, ) . (3.20)
k,o

3.3 Jaynes-Cummings model

The simplest possible non-trivial model for coupling matter to radiation consists of
a single two-level atom, fixed in space, interacting with a single cavity mode. This
so-called Jaynes-Cummings model [3.10] is analytically solvable and still contains
enough physics to be relevant for real experiments.

Strictly speaking there are no two-level atoms. In fact, an atom with electrons
moving in the electrostatic potential of the core (neglecting coupling to the transverse
electromagnetic field for the moment) has an infinite number of discrete bound
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eigenstates. However, under the condition that we can single out two atomic states,
a ground state |¢g) and an excited state |e) separated by an energy fuw,, as well as
a single cavity mode (cf. fig. 3.2) with frequency w. near w,, the James-Cummings
model can provide satisfactory results. We assume that w, is far detuned from all
other cavity resonance frequencies, and that all other atomic transition frequencies
are far detuned from any cavity mode. The neglected states and cavity modes can
be treated in perturbation theory and lead to small energy shifts, which we assume
to be integrated into w, and w.. Finally we assume that the atom is tightly trapped
or very heavy, so that we can neglect its center-of-mass motion on experimental
timescales. The full Hamiltonian of the model

H = Hy+ Hipt (3.21)
is the sum of the free Hamiltonian describing the uncoupled subsystems
Hy = hwed'd + w616 (3.22)

and their interaction Hamiltonian Hj,, which we will discuss below. Here, the
operators & = |g) (e| and 67 = |e) (g| correspond to de-excitation and excitation of
the atom, respectively.

As previously discussed, an electric field mode is a harmonic oscillator like a mass
on a spring. Likewise, the mathematical description of a two-level atom is analogue
to a spin-%: The state of a two-level atom can be mapped to a point (Bloch vector)
on the unit sphere (Bloch sphere). With the north and south pole being mapped to
le) and |g), respectively, free evolution of the atom corresponds to a rotation of the
Bloch vector around the z-axis, whereas coherent driving of the atom corresponds to
a rotation around an axis in the z-y-plane. In this sense the Jaynes-Cummings model
is the theory of coupling a spring to a spin (spin boson model) [3.9]. The coupling
Hamiltonian in dipole- and long-wavelength approximation reads

Hi = —d - E(X), (3.23)

where X is the position of the atom and d is the atomic dipole operator. The hydrogen
atom for example has d= qT, where 7 is the position operator of the electron relative
to the core and ¢ is the charge of the electron. Equation 3.23 is the first term of a
multipole expansion of the electromagnetic field [3.8]. It is justified to keep only the
dipole term in this expansion if the dipole moment of our two states does not vanish
and if the wavelength of the mode is large compared to the size of the atom, which
is usually the case in cavity QED.

For symmetry reasons a neutral atom has no permanent dipole, i.e. <g|d|g> =
(e|d|e) = 0, and we can write the dipole operator in the atomic basis as

d=dé + d*s', (3.24)

"Far detuned in this context means with respect to the characteristic frequencies like the linewidth
of the states in question and the coupling strength between cavity and atom
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where d = (g|d|e). We can make d - € purely imaginary by choosing the phase of |g)
and |e), then by using eq. (3.17) the interaction Hamiltonian becomes

A
Hine =i cos(kX)(dé + d*67) - (ea — e*al). (3.25)
2€0V

In the Hamiltonian (3.25), the terms proportional to ¢a' and 6%a correspond to
energy conserving processes where an excitation is exchanged between the atom and
the mode, whereas d and 6Tal correspond to energy non-conserving processes with
the simultaneous (de-)excitation of the atom and the mode. In an interaction picture
with respect to Hy one finds the former terms oscillating with the difference of the
frequencies w. and w,, whereas the latter oscillate with the sum of these frequencies.
Arguing that the rapidly oscillating terms average out quickly during the evolution
of the system, these terms are ignored in the rotating wave approximation (RWA)
[3.11]. We can make d - € purely imaginary by choosing the phase of |g) and |e) so
that eq. (3.21) becomes the Jaynes-Cummings Hamiltonian

H = hwea'a + hwa6'6 + hg(X)(6aT + 67a) (3.26)

with the coupling constant

. We
X)=—-id-€" cos(kX). 3.27
o(X) = —id - &\ [ cos(xX) (3.27)
The eigenstates of the system without coupling is given by the tensor products |g, n)
and |e,n) where |n) is a Fock state of the field mode. The Hamiltonian commutes
with the operator for the total number of excitations

M =dla+ 676, (3.28)

which consequently is a constant of motion. The Hilbert space can be decomposed
into invariant subspaces
H =D Han, (3.29)
neN
where H is spanned by |g,0) and H,,, n > 0, is spanned by the doublets |g,n) and
le,n — 1). In this basis, the matrix representation of H on the manifold H,, (n > 0)

is
B nwe 0,/2
H,=h (Qn/2 o A) , (3.30)

where Q,, = 2¢(X)+/n is called n-photon Rabi frequency and A = w. — w, is the
detuning between cavity and atom. As a consequence of the RWA, the problem of
diagonalising H is reduced to diagonalising 2 x 2 matrices of the form eq. (3.30).
It is worth noting that this Hamiltonian is formally equivalent to that of a spin-%
placed in a magnetic field with a component proportional to A along the quantisation
axis z and a component proportional to §2,, along the z-axis. With the definition
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3.3 Jaynes-Cummings model

(EF — hnwe)/(h)

Figure 3.4: Energy of the dressed states (solid) and the uncoupled states (dotted) as
a function of the cavity-atom detuning A. The coupling turns the level
crossing into an avoided crossing with energy splitting A2, = 2hg\/n at
resonance, which increases with the total number of excitations n.

Q, = VAT + Q2 the eigenvalues EX and corresponding normalised eigenstates
|+, n) of Hy, are [3.12]

EZ = hnw, — h% + h% (3.31a)
|+,n) = cos(0,/2) |g,n) +sin(6,/2) le,n — 1)

= n) = —sin(6,/2) |g,n) + cos(6/2) [e,n — 1), (3.31b)

where the mixing angle 8, is the angle of the fictitious magnetic field with the z-axis,
ie. tanf, = Q,/A. Using basic trigonometric identities, the components of the
eigenstates can be expressed in terms of the physical parameters:

O _ [+ A N
—_— = = —_— = = . . 2
cos - 20, sin - 20, (3.32)

The eigenstates eq. (3.31b) describe combined excitations of the bare atom ‘dressed’
with the cavity field, hence their name dressed states. Figure 3.4 shows their energies
as a function of the detuning A. At resonance (A = 0) where the energies of the
uncoupled states cross, the coupling results in an avoided crossing with minimal
energy splitting i€, (normal mode splitting). In this regime, a ground state atom
placed in the cavity with a Fock state of n photons undergoes Rabi oscillations: the
probability of finding the atom in the excited state oscillates with frequency €2,, in
time between 0 and 1. In the strong coupling regime where the coupling g is much
larger than the decay rate of both the cavity and the atom, Rabi oscillations and
normal mode splitting are visible even on the single-photon level [3.13].
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Chapter 3 Ultracold particles in optical resonators

In the opposite far detuned regime |A| > ,,, the dressed states approach the
uncoupled states as can be seen in fig. 3.4 and from eq. (3.31b). To lowest order in
Q,/|Al, the energies E, ,, and E. , of the uncoupled states are shifted as a result of
the coupling according to

2

0Eyn = h (i) n (3.33a)
X 2

§Een = —h2 ( A) (n+1). (3.33b)

From the point of view of the cavity, the atom acts as a dielectric which has an index
of refraction and shifts the mode frequency by

9(X)?

c::l: ’
ow, A

(3.34)

where the positive (negative) sign holds for an atom in its ground (excited) state.

From the point of view of the atom which is brought into a cavity with n photons,

the shifts can be interpreted as light shifts of the atomic states and the transition

frequency:

9(X)?
A

This shift has a contribution proportional to the photon number and a constant
Lamb shift contribution induced by the interaction of the excited atomic state with
the cavity vacuum fluctuations. Note that g(X) has a periodic spatial dependency,
the gradients of the light shifts egs. (3.33a) and (3.33b) are proportional to the dipole
force a cavity exerts on an atom in its ground state or excited state, respectively. For
ground state atoms, positive detuning results in a force towards the nodes of the
mode (low-field-seeker), whereas for negative detuning the force is directed towards
the anti-nodes (high-field-seeker). This aspect is further discussed in sec. 3.4.1.

(2n + 1). (3.35)

Ow, = —

3.4 Master equation for moving particles in a cavity

Let us extend the simple Jaynes-Cummings model to IV atoms and take into account
several important aspects: center-of-mass motion of the two-level atoms along the
cavity axis, coherent driving of the cavity or the atom with a laser of frequency wr,,
and dissipation via spontaneous emission from the atoms or loss of photons through
the cavity mirrors. In the regime of ultracold particles, quantum fluctuations of the
atomic motion become relevant, and the motion has to be described by the momentum
operator P and position operator X with the canonical commutation relation [X , ]5} =
ih. Dissipation is introduced through coupling to the environment, which is formed
by the continuum of electromagnetic field modes in our case. Consequently, instead
of Schrodinger’s equation for a state vector the system has to be described by a
master equation acting on a density matrix (cf. sec. 2.1). In this section we discuss
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3.4 Master equation for moving particles in a cavity

the structure of the master equation and some approximations with relevance to this
thesis [3.14].
In the master equation ]
. i
p=—3Hpl+Lp (3.36)
the Hamiltonian H describes coherent evolution and the super-operator £ is respons-
ible for dissipation. H can be written as

N [ P2 .
H=-hAd'a+) [2]\2 — hA.616; + hgcos(kX ;) (6Fa + 6;ah) | + Hy, (3.37)
J=1

where we introduced the constant of maximal atom-field coupling g = ¢(0), and the
laser pump is described by

_ {Zjvzl hQ (65 + 6’}) transversal pump of the atoms (3.38)

hn(a + af) longitudinal pump through the mirror.

The first case applies to a laser pumping the atoms from the side with a coupling
strength €2, whereas the second case corresponds to a laser pumping the cavity directly
through one of the semi-transparent mirrors with a coupling strength 7. We assume
Q and 7 to be real for the sake of a slightly simpler notation. The contribution of each
particle is labeled with the index j. Equation (3.37) is reported in a reference frame
rotating with the laser frequency, therefore eq. (3.38) is time-independent and the
free evolution of the cavity and the internal dynamics of the atom are proportional
to the detunings A, = wy, — we and A, = wy, — wy, respectively. In the kinetic energy
term of the atoms, ]5]- is the center-of-mass momentum operator and M is the total
mass of the particle. Coupling between the cavity and the particles in RWA and
long-wavelength approximation is similar to the Jaynes-Cummings case (3.26), with
the difference that this time the center-of-mass position operator X ;j in the argument
of the cavity field mode function makes the coupling position-dependent and describes
the mechanical recoil connected to the emission or absorption of a cavity photon by
an atom.
The Liouvillian £ of the master equation (3.36) is

Lp=k (2&pdT —atap — pde)
1 o . (3.39)
+ ((ﬁ&p — pélé + 2/ du N(u)&e_lk“Xp&Telk“X> .
-1

The first summand proportional to the cavity field decay rate s takes into account
loss of photons through the cavity mirrors, whereas the second summand proportional
to the atomic coherence decay rate v accounts for the effect of photons spontaneously
emitted from excited atoms into free space. In this process, the anisotropy of dipole
radiation is reflected by the normalised distribution

N(u) = g (14w (1-33%) +a?). (3.40)
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Chapter 3 Ultracold particles in optical resonators

Here, u and @ are the normalised projections of the photon emission direction and
of the atomic dipole vector d onto the cavity axis, respectively. N(u) is obtained
by making use of the symmetry with respect to rotation around the cavity axis and
integrating the full angular distribution of dipole radiation [3.15] over the azimuth
angle. The momentum recoil associated with the spontaneous emission of photons is

represented by the momentum kick operators etikuX

Let us add a few additional remarks concerning the validity of the master equation
eq. (3.36). We neglect collisional scattering between the particles, which is justified for
low densities or spin-polarised fermions without s-wave scattering. In the microwave
regime, thermal photons usually play an important role and lead to additional jump
operators in the Liouvillian eq. (3.39). At optical frequencies, however, thermal
photons can be safely ignored even at room temperature. For the coupling of the
atoms to the environment we assumed that each particle interacts with its individual
bath, ignoring effects like free-space dipole-dipole interaction. This is justified if the
particles are far apart from each other compared to the optical wavelength or if the
atomic dipole is small, e.g. in the low-excitation regime discussed below. Finally,
adding more cavity modes to the model is straight forward, for example to describe
a ring cavity, just by adding the corresponding free Hamiltonians, interaction terms
and Liouvillians to the master equation.

3.4.1 Important approximations
The dispersive regime

We are interested in the regime where the atomic detuning A, is the largest frequency,
ie. |[Aa| > |wsys|. Here, wgys stands for any of the ‘system frequencies’ k, A¢, 2, g.
Such a separation of timescales has the physical consequence that the fast internal
atomic dynamics follow the much slower external dynamics of the laser and the cavity
adiabatically, and the internal degrees of freedom can be eliminated from the picture.
The effect of the internal degrees of freedom on the cavity and external motion can
be described entirely by two-time correlation functions of ' and &, corresponding
to second order atomic excitation processes. The result is a master equation for the
cavity and the center-of-mass atomic motion alone, where we have traced over the
internal degrees of freedom. Note that we don’t necessarily assume |A,| > v at this
point, so for now we will keep terms of order v/|A,|. As a consequence we find that
the cavity introduces a new channel of dissipation where a cavity photon is lost by
exciting the atom followed by spontaneous emission. Below we will discuss under
which conditions spontaneous emission can be neglected.

The technical details of the adiabatic elimination are described in sec. 3.5, here we
present the resulting effective master equation

. i
P = _ﬁ [Heffap] + ﬁeff/% (341&)
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3.4 Master equation for moving particles in a cavity

where
N o ; N p2
Hog = —h|Ac =Y Upcos®(kX;)|aTa+> —L + Hy. 3.41b
ff l c ; 0 ( ]) ; oM L,eff ( )
Lestp = k(2apa’ — alap — pa'a)
N o U 1 A (3.41c)
+ veﬂrzl [—b}bjp — pblb; + 2/_1 duN(u)bjpb}]
]:
7 o\ A Q —ikuX;
b = cos(ka)a—i—g e J (3.41d)

o = {Ejvzl hnege cos(kX ;) (a4 a')  transversal pump (3.41¢)

hn(a + &T) longitudinal pump.

In the case of a longitudinally driven cavity the pump term is unchanged. If the
particles are illuminated transversally, this term acts as an effective pump for the
cavity mode with a strength and phase depending on the particle’s position. The
effective parameters of eq. (3.41) are

Aag? AagQ vg?

U = —— = — = —_——
0 Ag_’_,yg Tleff Ag‘i")ﬂ Veff A%‘i")’Q

(3.42)

In eq. (3.41Db), the term AU, COS2(k‘X ;)a'a can be interpreted as a cavity frequency
shift resulting from a position-dependent and fluctuating refractive index, or as
a periodic optical potential for the particle depending on the fluctuating photon
number. The sign of A, also determines the sign of the cavity-particle detuning, as
We — wa = Ay — Ac & A,. From eq. (3.42) it is clear that in a cavity which is red-
detuned from the particles (i.e. A, < 0 and Uy < 0) particles are high-field-seekers,
whereas for blue detuning (i.e. A, > 0 and Uy > 0) particles are low-field-seekers.

Spontaneous emission

For the remainder of this thesis we will assume that the effective spontaneous emission
Yef can be ignored. Let us specify in more detail under which experimental conditions
this is achievable and justified.

In the regime v < |A,| we can approximate the effective parameters Uy, neg and
Yeft €q. (3.61) to lowest order in v/|A,|:

2 Ly vg?

off R T— off X 5. 4
- Teff % A Yeff X A7 (3.43)

Q

U()%

g

For the case v < |wsys| or 7 ~ |wsys| spontaneous emission can be neglected as Yo is
of the same order of magnitude as terms which have already been discarded in the
derivation of eq. (3.41).

In the regime v > |wsys| one might choose to increase the experimentally easily
accessible parameters A, and Q while keeping |2|/|Aa] < 1 constant, until the
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Chapter 3 Ultracold particles in optical resonators

regime v < |A,| is reached. As a consequence 7 is again small compared to both
Up and neg and spontaneous emission can be ignored. The effective pump strength
Neft is not affected by this scaling, however Uy might become very small. For example,
if the atoms are pumped from the side to study the effect of self-organisation (cf.
part IV), then neg compared to a critical pump strength is the important parameter
and Uy might even tend toward zero. If, however, the cavity and not the atom is
pumped, i.e. for Q@ = neg = 0, then U is the only remaining parameter in which the
effective coupling of the atom to the cavity becomes manifest. In this case it depends
on the specific system at hand, whether for a given detuning, which should be large
enough to suppress spontaneous emission, the cavity-atom coupling Uy can be made
sufficiently large to retain interesting physics. This might be achieved, for example,
by reducing the cavity mode volume to increase g.

Strongly driven cavity limit

For the case that the cavity mode is strongly driven by the laser, a coherent steady
state |a) with

_n
K —1A¢
establishes. If || > 1 quantum fluctuations and also the back-action of the particles
onto the cavity field are negligible. To describe such a situation with a classical

coherent field we formally replace @ with a and a' with o in the master equation
[3.14].

o =

(3.44)
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3.5 Additional material: adiabatic elimination

3.5 Additional material: adiabatic elimination of the excited
atomic state

In this section we discuss the details of the adiabatic elimination to derive the effective
master equation (3.41) from the more general equation (3.36). To keep the notation
simple we restrict ourselves to one particle, the extension to N particles is straight
forward if we neglect dipole-dipole interaction.

In the dispersive limit where A, is the largest frequency (cf. sec. 3.4.1), conceptually
the adiabatic elimination is performed by a projection of the total density matrix
Prot Onto the subspace of interest, where the internal degrees of freedom have been
traced over. A formal solution for the projected master equation can be iteratively
inserted back into itself, which yields an integrodifferential equation and an expansion
in the small parameter € ~ |wsys|/|Aa|, Where wgys is any of the small frequencies
Q, g,k and A.. A master equation for the projected density matrix can be obtained
by truncating this expansion after the quadratic term and justifying the Markov
approximation, i.e. the future evolution depends only on the current state and not
its past.

Let us now undertake these steps in more detail, following closely the derivations
given in [3.16-3.18]. To demonstrate the technique we will start with a model without
external motion in sec. 3.5.1 and then turn to the slightly more involved case in
sec. 3.5.2 where the center-of-mass motion of the atom is retained.

3.5.1 Model without center-of-mass motion

First we write the master equation (3.36) with fixed position of the atom in the form

Prot (t) = Lapiot(t) + &(Le + L1) prot () (3.45a)
Lop =1[Aa576,p| +9DI5)(p) (3.45b)
eLep =i |Acita, p| + KDla](p) (3.45¢)
eLip = —ig [aT a+ éal, p} —iQ [&T 16, ,o} , (3.45d)

where we have made the separation of timescales explicit by inserting the small
parameter ¢ < 1 to keep track of the order in the expansion. Then we define the
projections

Ppioy := tra {prot} @ lim exp(Lat)pg = pe © pg (3.46a)
Qptot = (1 — P)prot (3.46b)

where pf is the atomic initial state, p% = |g) (g| is the atomic steady state under the
evolution induced by £, and p. = tra {ptot} is the trace over the internal degrees of
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Chapter 3 Ultracold particles in optical resonators

freedom. We have P? = P, Q% = @ and easily verify the following relations:

PLo= L.P QLe = LcQ (3.47a)
PLy=L,P =0 QLo = Lo = LaQ (3.47b)
PLP =0 (3.47¢)

We denote v(t) := Ppiot(t) and w(t) := Qpiot(t) and can write the projected master
equation as

0(t) = eLev(t) + ePLrw(t) (3.482a)
W(t) = (Lo + L + QL) w(t) + eQL1v(1). (3.48b)

The iterative expansion in € could be performed in the time domain, but is most
conveniently seen by taking the Laplace transform f(t) — f(s) := [5° exp(—st)f(t)
of eq. (3.48). This turns the set of differential equations into an algebraic set of
equations

s9(s) —v(0) = eL0(s) + ePL1w(s) (3.49a)
sw(s) —w(0) = (Lo + L + QLy) W(s) + eQL10(s). (3.49Db)

Solving for w(s) yields
W(s) = [s — (La + eLe + QL) (eQL1T(s) + w(0)), (3.50)

which can be inserted back into eq. (3.49a):

s9(s) = (v(0) +ePLr [s — (La +Le + QL] w(0)) =
eLe0(s) + e2PLr[s — (La +eLe +eQL1)]F QL1T(s). (3.51)

We will ignore the term proportional to € in the left hand side of eq. (3.51) because it
leads only to a small correction of the initial conditions v(0) which will not accumulate
over time. Then we drop terms of third and higher order in € on the right hand side
to arrive at

s9(s) = v(0) = {Le + €2 PLi[s — La] ™ QL1 B(s). (3.52)

By inverting the Laplace transform we find an integrodifferential equation for v(t),
which is correct to second order in e:

0(t) = eLev(t) + > PLy /Ot drexp(Lam)QL1v(t — 7). (3.53)

The physical interpretation of this equation is quite clear: the change of the reduced
system v at time ¢ has two contributions, the first term on the right hand side
describes the ‘free’ evolution of the cavity decoupled from the atom, the second term
is the effect of the coupling to second order in L;. By reading this term from right to
left we can identify the absorption of a cavity or a laser photon (Lyv(t — 7)) at time
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Figure 3.5: Demonstration of validity of the Markov approximation. The real part
(black) and the imaginary part (red) of the function [j dre(~7H18a)7 f(t )
(solid) is compared to its Markov approximation [5° dre(=7i8)7 f(¢) =
f(t)/(y —1A,) (dashed). After the initial oscillations have damped out
(t > 4~ 1), the Markov approximation follows the original function closely.
The parameters are f(t) = e“! A, = 20,7 =1,w = 1.

t — 7 to create an atomic dipole moment |e) (g|, followed by the ‘free’ evolution of
the atom for a time 7 where the dipole is oscillating and decaying (exp(L,7)) and
a second interaction with the cavity or laser at time ¢ to re-absorb the excitation
(PL;). All the possible times 7 back in the history of the system, at which the atomic
excitation could have been created, are now summed up to form the integral over .

A crucial step to turn eq. (3.53) into a master equation for v(t) is to apply the
Markov approximation which makes the right hand side dependent on v(¢) instead of
v(t — 7). We note again that v(t —7) = p.(t — 7) ® p%, and exp(L,7) only acts on the
internal atomic degrees of freedom of Lyv(t — 7), letting the induced dipole oscillate
with the frequency A, and decay with the rate «, while the typical rate of change for
pc is on the order of wgys. For the case that v > |wsys|, the Markov approximation
is easily justified, because the integrand decays on a time which is short compared
to the rate of change in p.(t — 7). But even if 7 is small compared to wgys we have
a highly oscillating part and a slowly varying part p.(t — 7). Loosely speaking, in
such a situation only the times near 7 = 0 (on the order of A;1) contribute to the
integral because everything else averages out.

To make this argument a little bit more rigorous, let us define p.(w) as the
Fourier transform of p.(t), which is non-zero only for frequencies w < A, due to our
assumptions, i.e. for frequencies with |w|/|Aa| ~ €. One exemplary integral which
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appears in eq. (3.53), with a highly oscillating and a slowly varying part, will look
like

t . 00 t . .
/ drel™7 )T, (1 — 1) = \1ﬁ/ dw/ drelm 1875 ()@t (3.54a)
0

w)eiwt A
1_ (—y+iAa—iw)t
\/271/ —iAs +iw ( ¢ )
(3.54Db)
t>>"f ! ¢
w)el _pe(t)
Tﬂ/ B +0(e) = 25+ 009
(3.54c)
- /0 dre=1HAT, (1) 4 O(e), (3.54d)

where we have assumed ¢ > v~ ! in eq. (3.54c) so that any transient from the initial
condition has damped out. The functions of eq. (3.54) are illustrated in fig. 3.5. This
shows that we can apply the Markov approximation to eq. (3.53) and also extend
the integration to infinity, with corrections of order €2 which can be neglected:

0(t) = eLov(t) + 2 PLy /0 T A exp(Lam)QLIv(1) = eLov(t) + £2B(1). (355

It is not at all obvious that eq. (3.55) is a master equation of Lindblad form. To
find the effective Liouvillian for v(), let us now expand the compact notation and
evaluate the integral.

2B(t) = —/0 drtr, { (93 + Q)6" + (90" + Q)5

exp(Lar) [(96+ 06T + (90" + )6, pe(t) @ p ]|} © i

(3.56)
We will use 6p2, = p26T = 0 and abbreviate
/ dr tra {6’ exp(ﬁa)ﬁTpgs} = / dT<6(7’)6T> =S (3.57a)
0 0 Ps
/ dr try {6T exp(ﬁa)p;&} :/ dT<&T6(7)> =5 (3.57Db)
0 0 Ps
which leads to
e2B(t) = —¢* (Safav(t) — (S + §)av(t)a’ + S*v(t)ala)
(3.58a)
— g2 (Safo(t) - S*av(t) - Su(t)al + S*v(t)a)
= g° Re(S)Dla + ©2/g] (v(t))
(3.58b)

—ig? Im($) [a'a, v()| - igQTm(9) |a+ af, v(t)] .

tFor t ~ v~ or if 7 is strictly zero here, this highly oscillating term can be neglected nevertheless

with a rotating-wave-type argument.
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To evaluate S we use (6(7)) = (—y+1A,)(6(7)) for any inital atomic density matrix
under the evolution induced by £,. The quantum regression theorem then tells us, that

for the function f(7) = <6(T)6T> with f(0) =1 we have f'(1) = (—y +1A4) f(7)
PEs

and therefore f(7) = exp((—7y + iA,)7). We readily derive

1 oy +ilA,

S :/O ATf(1) = A =7 gAY (3.59)

The final form of the master equation for v is therefore
o= —% [Hegr, v] + Logrv (3.60a)
Heg = —h(A, — Up)ata + neg(a + ah) (3.60b)
Legv = £D[a](v) + e D]a + 2/g](v) (3.60c)

where we have defined
Aag? AagQ v9°

Up= 27 P Ll AP — 3.61
0 Ag‘i")/z Tleff A§+72 Veft Ag“i")ﬁ ( )

We can identify the frequencies of eq. (3.61) with a dispersive shift of the cavity
resonance frequency, an effective pump via coherent scattering of laser photons into
the cavity and an effective loss of cavity photons via spontaneous emission from the
atom, respectively.

3.5.2 Model with center-of-mass motion

Let us now include the center-of-mass motion of the two-level atom, moving in one
dimension along the cavity axis. In this case external and internal dynamics of the
atom are coupled, as every absorption (or emission) of a plain wave photon with wave
number k is associated with a momentum kick hku described by the phase factor
exp((i')ikuX' ), where u is the projection of the normalised photon wave vector onto
the cavity axis. Spontaneous emission is not isotropic, therefore it is convenient to
define the normalised angular distribution of dipole radiation N (u) given in eq. (3.40).
The full master equation is now

Prov = [LB+ R+ (L + Lo+ QL) pron (3.622)
with
£itp =i[A5"6, p| + D15 (p) (3.62b)
1 o o
Rp = 27/ du N (u)ge *X pstelkuX _ 2~6p61 (3.62¢)
-1
eLep =i |Acita, p| + kDIal(p) (3.62d)
e __1[P2
eL” = : lQM’p (3.62¢)
eLip=—i[(9(X)a+0)6t +he,p|. (3.62f)
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Here g(x) = g cos(kx) combines the coupling constant g and the cavity mode function,
k is the photon wave number of a cavity photon, M is the atomic mass and X (ﬁ)
is the center-of-mass position (momentum) operator with [X’ , ]5] = ih. We assume
that the frequencies associated with the center-of-mass motion of the atom are small
compared to the internal dynamics, i.e. the recoil frequency wg = hk?/2M < |A,]
and the atom is precooled so that kp/M < |A,| with 5 = ((P2))"/2. Extra care has
to be taken because the superoperator R couples external and internal dynamics of
the atom. The action of R has been factored out of £ so that the latter acts on
the internal degrees of freedom alone and PLM = £ P = ( still holds. For R we
find RP =0 and PR = PRQ.
The projected master equations are

O(t) = e(Le + LX(t) + (PR + ePLy)w(t) (3.63a)
w(t) = (L + QR+ & (Lo + L3 + QL) ) w(t) + £QLrv(2). (3.63b)

Again we use the Laplace transform and neglect the small corrections to the initial
condition v(0) to find

sv(s) —wv(0) =« (EC + E;Xt)
. —1
+ 2 PLy s — (L84 QR+ 2(Le + L2+ QLY))| QLB (s)

T ePR[s— (L0 4 QR+ e (Lo + L2+ QL1))] T Qeri(s).
(3.64)

We now use the power series expansion (A — B)™! = A7l + A~'1BA~! + ... and
keep only terms up to order €2, further we use the fact that RBP # 0 only if B is at
least quadratic in Lr:

() —v(0) ~ e (Lot £5) 0(s) + 2 PLr [s— £ QLrb(s)

+ PR [s - ] or [s — ] L QLi(s)
(3.65)

Let us transform this equation back to the time domain:
t .
0(t) = (Lo + LNY0(t) + £2PLy / dr exp(LMT)QLv(t — 7)
0

t . t—7 .
+ €2PR/ dr exp(ﬁ;ntT)Qﬁl/ dr’ exp(ﬁ;ntT,)Qﬁlfu(t — 7 — 7—/)
0 0
(3.66)

The interpretation of the first and second term in the right hand side is the same as
in eq. (3.53). The third term is a momentum diffusion term caused by spontaneous
emission from the atom. It corresponds to the creation of an atomic dipole |e) (g| at
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3.5 Additional material: adiabatic elimination

time t — 7 — 7/, free evolution of the dipole for the time 7/, excitation to the upper
state |e) (e| at time ¢ — 7, free evolution of the excited state population for the time
7 and a spontaneous emission event with associated atomic recoil (PR) at time ¢.
The two integrations over 7 and 7 take into account all the possible combinations
of times when the first and second interaction events with £; occur. The Markov
approximation v(t — 7) — v(t) in the second term and v(t — 7 — 7/) — v(¢) in the
third term can be justified in the same way as before. We have now arrived at an
equation analog to eq. (3.55).

0(t) = e(Le + LYY0(t) + £2PL / dr exp(L™T)QLo(t)
0

t . t—7 .
+e?PR / dr exp(LMT)QL; / A7’ exp(LM7)QLyv(t)
0 0
(3.67)
=e(Le + L&YYv(t) + 2B(t) + 2 M (1) (3.68)

The term labeled B(t) gives the same expression as eq. (3.58b) where ¢ is now
replaced by g(X) = g cos(kX). The momentum diffusion term M (¢) is evaluated to

M(t) =2y (/11 du {N(u) (9(X)a + Q)e_ik“f(pc(t) (g(X)a + Q)eikux}
—[9(X)a + Q) pe(t)[g(X)al + Q])
X /Ot dr /OtT dr’ lt]ra {6’ (exp(ﬁiﬂtT)ﬁT eXp([Z;ntT')pgsc}) 6’T}

+ try {6’ (exp(ﬁiﬂtﬂ (eXp(,C;ntT,)OA'T,O:S) 6’) 6’T}] ® pas-
(3.69)
The integrand of the integration over 7 and 7’ is
tra {& (exp(/iiamT)&T exp(ﬁgntT’)pssﬁ) 6T}

+ tra {6 (eXp([’;nt)T (GXP(EgntT’)ﬁTpZS) &) &T} — 92" Re {6(_%&&)7/}

(3.70)
and thus
t>>z_1
¢ t—T ALY 1+e 2 —2¢7 7 cos(Aat) 1
2 [are [ ar me (et - M1
/0 Te ; T e{e } T+ A VT A
(3.71)
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Chapter 3 Ultracold particles in optical resonators

The term proportional to [g(X)a + Q] pe(t) [g(X)aT + ] in eq. (3.69) cancels with
X )a

the corresponding term appearing in D[g( + Q)(pe(t)) from B(t). Putting this

all together we find the master equation
o(t) = —% [Hofr, v] + Logv (3.72a)
where
P? .
He = —ih (Ac — U cos® (kX)) a'a + o T imercos(kX)(@+al)  (3.72b)
Legv = kDI[a](v) + Yesr (—ZA)TlAw —vbTh+ 2/ du N(u)%?ﬁ) (3.72¢)
-1
7 % Q —ikuX
b= (cos(kX)a+ — e . (3.72d)
9
The effective parameters Uy, neg and veg are defined in eq. (3.61). While for the
sake of simplicity we have derived this result for a single atom moving in only one

dimension, the derivation can be easily extended to N atoms moving in two or three
dimensions [3.18, 3.19].
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Chapter 4

Background to the programming
framework

As discussed in the sections 2.1 and 3.4, the quantum optical master equation can be
used to describe a wide range of dissipative quantum systems encountered in quantum
optics. However, solving master equations of the form (2.7) and (3.41) is numerically
challenging. In a Hilbert space with N quantum states, to calculate the time evolution
of the density matrix p directly, a system of N? coupled equations has to be solved.
With conventional computing power this direct approach is typically possible for
systems with up to a few thousand states. However already the Hilbert space of a few
particles coupled to one or two resonator modes with typical spatial resolution for
the quantized motion of the particles can easily have several ten thousands of states.

When pushing the limits regarding system sizes, an efficient use of computing
resources is crucial for successful simulations. A lot of experience with the MCWF
method was gathered in the Innsbruck quantum optics group of Helmut Ritsch.
However, every new generation of PhD students dealing with moving-particle cavity
QED ended up re-inventing the wheel by implementing their own version, mostly with
a limited degree of modularity and re-usability. In 2006, this led to an effort by Andréas
Vukics to bundle the available expertise in a highly modular purely object-oriented
programming framework utilizing the modern programming language C++, hence
the birth and naming choice of C++QED version 1 [4.1]. Version 2 of the framework
introduced a multi-array concept and advanced compile-time algorithms, tailored to
the tensor product structure of composite quantum systems [4.2].

Other approaches exist for simulating the dynamics of open quantum systems,
for example the Matlab Quantum Optics Toolbox (active development has stopped
in 2002) [4.3] and QuTiP, an actively developed implementation written in Python
[4.4]. Here the user interface for the definition of a system consists of quantum
operators and state vectors as well as the operation of the former on the latter. In
contrast, C++QED operates on a higher level of abstraction: it allows the user to build
composite quantum systems out of predefined building blocks (‘small’ subsystems like
modes, particles, gbits, multi-level atoms etc.) and establish interactions between the
constituents (Jaynes-Cummings, mode coupling, photon scattering etc.). This allows
to define complex open quantum systems in a few lines of code (cf. the example
listing 4.1). The time evolution of a given initial state can be simulated with a number
of available time-evolution drivers: full quantum dynamics (Schrodinger equation,
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Chapter 4 Background to the programming framework

for closed quantum systems), full master equation, single Monte Carlo trajectory or
ensemble of Monte Carlo trajectories. Albeit this high level of abstraction certainly
comes at the cost of limited flexibility, C++QED proved to be particularly useful in the
context of cavity QED [4.5-4.9], and furthermore facilitates the user in implementing
customized building blocks and interactions.

The further development of C++QED is one of the main achievements of this thesis.
The focus herein was on the improvement of usability and stability as well as the
implementation of new features, which lead to a new milestone release [4.10] and are
summarised in sec. 4.3. First, however, we will give a brief outline of the C++QED design
characteristics and a simple use case example in sections 4.1 and 4.2, respectively.

4.1 Framework characteristics

The C++QED framework aims for maximal performance by taking advantage of op-
timisations both on the physics side and on the numerical side of the problem. Here
we summarise some of these aspects, for a more detailed discussion we refer to the
documentation [4.1, 4.2, 4.11].

Interaction picture Adaptive numerical methods usually struggle with very different
timescales in the system. The time step has to be chosen small enough to resolve
the fast dynamics, consequently an excessive amount of steps has to be taken to
appreciably advance the slowly varying part. For example, the kinetic energy term
in the master equation (3.37) proportional to P? can have arbitrarily large matrix
entries in a momentum state basis, depending on the desired spatial resolution of
the simulation. Transforming to an interaction picture with respect to the exactly
solvable parts of the Hamiltonian, whenever possible, helps to avoid this problem.
Instead of eq. (2.12) we solve

d
ihy W) = Hum[¢n) (4.1a)
where
) = U |¢r) (4.1Db)
Hui=U""! (HnHU - i(iU) (4.1c)

and U is the operator transforming between the two pictures. Note that in the context
of dissipative state vector trajectories, U is generally non-unitary [4.1]. For example,
a single moving particle interacting with a single lossy mode in the dispersive regime
might have the transformation

Ut — to) = exp (l— (W= A — ir) aTa] (t - t0)> @)
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4.1 Framework characteristics

In C++QED, the interaction picture is aligned to the Schrédinger picture after each step
of the MCWF method by applying U. On the one hand it is more convenient in terms
of code-reusability to calculate the quantum jumps and expectation values in the
Schrodinger picture. On the other hand, because U is not unitary, its matrix elements
can become very large or very small for t — oo, leading to numerical problems.

Adaptive-stepsize MCWF algorithm As discussed in sec. 2.2.2, the MCWF method
consists of a deterministic Hamiltonian part and a stochastic Liouvillian part. The
Runge-Kutta Cash-Karp method used for the Hamiltonian part has an intrinsic time
step management, which chooses integration time steps 0t as large as possible while
assuring Hyp 10t < 1 in order to stay within a prescribed relative and absolute error
margin. In an adaptive-stepsize version of the MCWF method, also the Liouvillian
part has to be considered for finding the optimal time step. The additional requirement
of a small total jump probability dp in each step will be violated not only if the
jump rates increase too much, but also if the time step d¢ is chosen too large. In the
C++QED implementation, the time step is decreased if either the Hamiltonian or the
Liouvillian part requires this, and it is increased if both these parts agree.

To this end, two additional parameters controlling the time step are introduced: a
limit dpjimit and a tolerance Opy, ;. > OPiimit against overshooting this limit. After the
Hamiltonian part, if at time ¢t + ¢ the total jump probability is found to be larger
than dpiimi¢; but still within the tolerance, the method continues while decreasing the
time step tried in the next cycle to counteract the increasing jump probability. If at
time ¢ + 0¢ the total jump probability is even larger than the tolerance dpj; ., allows,
then the Hamiltonian step is discarded altogether and the method resumes from time
t with a decreased time step dt.

Modular and object-oriented architecture C++ is an object-oriented program-
ming language with modelling techniques like virtual inheritance, polymorphism and
the notion of public and private interfaces [4.12]. Making heavy use of these features,
C++QED consists of a large class hierarchy to avoid code duplication whenever possible
and improve maintainability. For example, the simulation of a two-level atom shares
large portions of code with the simulation of a cavity mode, as do the different kinds
of time evolution methods. The framework’s interface is organised in well-separated
layers of abstraction: on the highest level, the user can combine existing free sys-
tems (referred to as frees) and interactions to build composite quantum systems (cf.
sec. 4.2). On an intermediate level, the user might write customised interactions and
frees. Finally, on the lowest innermost level, the very internals of the framework like
the various simulation methods, data structures and input/output operations are
defined.

Exploitation of momentum space Usually cavity QED is most naturally formulated
in momentum space, tailored to the kinetic energy term of moving particles as well
as to periodic mode functions and optical potentials. If all modes involved have the
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Chapter 4 Background to the programming framework

same wavelength, the interaction matrices in this basis are of tri-diagonal form, for
which C++QED offers specialised classes.

Compile-time algorithms C++ is a compiled programming language, which means
that the computation of results starting from human-readable source code is done in
two stages: in stage (1) the source code is transformed by a compiler to binary machine
code forming an executable file, whereas in stage (2) this executable is processed
together with the input data to generate the results. Through the technique of template
metaprogrammaing (TMP) [4.12], it is possible to shift parts of the computation from
stage (2) to stage (1). Specifically, the C++ language allows to parameterise types
with other types and to perform calculation with these parameter types as operands,
which ultimately makes TMP a Turing-complete programming language of its own
[4.13], acting completely in stage (1). C++QED takes advantage of TMP in two ways
[4.2]. First, TMP is used to perform several structural tests on the definition of the
input model in order to recognise inconsistencies at a very early stage. Second, as
much information about the model as possible is processed already at the compile
time stage (1) to produce executable code which is highly optimised for the specific
model and thus reduce the runtime. The advantage is obvious, as typically a C++QED
program is compiled once and then executed many times to simulate different physical
parameters or different MCWF trajectories. An example for typical compile-time
information is the number and interaction graph of the involved subsystems, whereas
typical runtime information includes the dimensionality of each subsystem and
parameters like detuning, pump strength and decay rate.

Multi-platform and open source C++QED completely builds on free and open source
libraries and is itself released under the Boost Software License, a license which was
certified by the Open Source Initiative in 2008 and allows non-commercial and
commercial use, modification and distribution of the software [4.14]. Supported
platforms are the operating systems Linux and Mac OS X. Additionally, although
untested, it should run on Windows with minor adjustments to the installation
process.

4.2 Example

To demonstrate the usage of C++QED and the MCWF method introduced in sec. 2.2.2
we will investigate the simple model sketched in fig. 4.1: a cavity coupled to two sta-
tionary and transversally pumped two-level atoms. Note that for this low-dimensional
system the full master equation is easily integrable, providing us with a reference
solution to which we can compare the MCWEF method. In order to further demon-
strate the validity of the adiabatic elimination of the excited atomic state (cf. secs.
3.4.1 and 3.5), the dispersive regime is chosen, i.e. the detuning between atoms and
cavity defines the largest frequency scale of the system. This model can be described
by the following code:
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4.2 Example
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Figure 4.1: Two stationary two-level atoms coupled to a lossy cavity and pumped
from the side.

#include "EvolutionComposite.h”
#include "Mode.h”

#include ”Qbit.h”

#include ”JaynesCummings.h”

int main(int arge, char x*xargv)

{

// Definition and handling of system parameters
ParameterTable p;

evolution :: Pars pe(p);

mode::ParsLossy plm(p);

gbit :: ParsPumpedLossy plq(p);
jaynescummings::Pars pjc(p);

QM_Picture& gqmp=updateWithPicture(p,argc,argv,”——");

// Definition of free susbsystems and interactions

gbit :: Ptr myQbit=qbit::make(plq,qmp);

mode::Ptr myMode=mode::make(plm,qmp);

jaynescummings::Ptr myJC=jaynescummings::make(myQbit,myMode,pjc);

// Initial condition
quantumdata::StateVector<1> psi_a = gbit::init(plq);
quantumdata::StateVector<3> psi = mode::init(plm)=psi_axpsi_a;

// Definition of system layout, evolution of system
evolve(psi, composite::make(_<1,0>(myJC),-<2,0>(myJC)),pe);

}

Listing 4.1: Script simulating two qubits in a cavity mode.

Lines 9-13 introduce objects collecting all parameters like physical frequencies,
dimensions and solver options. All these parameters have sensible default values which
can be overwritten by command-line parameters. Note that we have chosen to only
use one set of parameters for both gbits, which will therefore share all their parameters.
Line 15 processes the command-line, thus finalising all parameters and assessing
which physical picture to use, i.e. Schrédinger picture, unitary interaction picture or

45



Chapter 4 Background to the programming framework

interaction picture (the default). Lines 18-20 create the individual subsystems and
interactions while assigning them the finalised parameters: a gbit, a cavity mode and
the Jaynes-Cummings interaction. Again a single gbit object is sufficient to simulate
both gbits, as they are indistinguishable. Lines 23-24 define the initial conditions
and also the order of the subsystems. In our case the mode has the subsystem index
0 because its initial state is at the first position of the tensor product, whereas the
two gbits have the subsystem indices 1 and 2. Finally, in line 27, the interaction
graph is defined and the simulation is started. Here it is stated that subsystem 1
interacts with subsystem 0 via the Jaynes-Cummings interaction, as does subsystem
2 with subsystem O.

Figure 4.2 shows the results of the MCWF simulations. In fig. 4.2a, two exemplary
trajectories are plotted together with their individual random quantum jumps. Figure
4.2b illustrates the convergence with increasing number of trajectories N and also
compares the result to a model with adiabatically eliminated excited atomic state.

4.3 Development achievements

This section summarises the main contributions of the current thesis’ author to the
C++QED framework.

Code base It is now possible to continue simulations from where they left off. This
‘trajectory resume’ makes it possible to reuse existing data if longer trajectories are
needed, or to simulate sequences of piecewise constant parameters as in chapter 8. To
this end a new binary input/output mechanism including compression for trajectory
state files has been implemented, which eliminates rounding errors when a trajectory
is continued.

The existing ring cavity interaction between a moving particle and two modes
has been fixed to include the interference term, i.e. scattering from one mode to
the other via the particle. This implementation additionally optimises the regularly
encountered case where the two modes have the same wavelength, such that the
interaction remains tri-diagonal.

Momentum and position correlations can now be calculated within the framework
with a high time resolution.

Several bugs were fixed to improve the overall code quality.

A Python interface to the C++QED framework Python is a cross-platfrom dynam-
ical programming language popular in the scientific community. Amongst other
things it provides a scientific toolbox (SciPy) including numerical routines (NumPy)
[4.15] and bindings to many third-party C/C++ libraries for convenient use. Such
an interface has been implemented for the C++QED library. Although it is not feature
complete yet, it demonstrates how simulations can be started and controlled within
Python, relieving the user from the syntactically and conceptually stricter C++
syntax. An example Python script is shown in the publication chapter 5.
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4.3 Development achievements

.......... N =10 |
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Figure 4.2: (a) Two typical quantum trajectories of the photon number expectation

value. The times at which jumps occured due to a photon lost from
the cavity (dashed) or spontaneously emitted by the first atom (dotted)
and the second atom (dash-dotted) are indicated by vertical lines. (b)
Ensemble average of the photon expectation value for different numbers
N of trajectories. For N = 1000, the trajectory is indistinguishable
from the full master equation integration. The red line was obtained by
a model where the excited atomic states are adiabatically eliminated,
which leaves a cavity driven with the effective pump strength 7. and
the additional decay rate 7eg given in eq. (3.42). The parameters are
(Aa, 7,2, A 9)

= (400, 10,30, —4, 20)x
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Note that Python is an interpreted language and as such is missing the compilation
stage in which C++QED performs important computations as discussed in sec. 4.1.
Instead, in the context of Python this is handled by on-demand compilation and
loading of modules as soon as the simulation script is executed. Resulting compiled
modules are cached for later use. The actual simulations are computed purely within
the C++QED library, thus there is no performance penalty usually associated with an
interpreted language.

Infrastructure A new cross-platform build system has been integrated which makes
it easier for end users to compile the framework and which improves MacOS support.
Installation packages for the popular Linux distributions Ubuntu and Arch have
been prepared. The project has been migrated to the git version control system,
integration of the git revision number into compiled programs and ultimately the
generated output files guarantees reproducibility of simulations.

High-performance computing cluster integration Typically C++QED is used in a
high-performance computing cluster (HPC) environment to simulate many trajectories
in parallel. Submitting jobs to the cluster’s scheduler is a non-trivial task. A Python
tool has been developed which makes it easier to use C++QED in such an environment
[4.16]. Tts features include submitting several job arrays to the cluster corresponding
to predefined sets of physical parameters, post-processing of the results and tools to
recover in case of failures.

Physical and structural test suite To reduce the probability of introducing new
bugs during development, an extensive test suite has been implemented, testing
both physical correctness of simulations as well as various structural aspects of
the framework. In the former category of tests, mainly well known limiting cases
are simulated and compared either to analytic results or numerical simulations
of corresponding approximations. Furthermore it is assured that results acquired
with the various time evolution methods agree. In the latter category, tests assure
correct functionality of the Python interface including on-demand compilation and
of template meta programming techniques. It is possible to run the complete test
suite, only individual tests or tests belonging to certain fine grained categories, thus
making it easy during development to test only the aspects which are of interest.
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Publication

COMPUTER PHYS1CS COMMUNICATIONS 185, 2380 (2014)

C++QEDv2 Milestone 10: a C++/Python
application-programming framework for simulating open
quantum dynamics'

Raimar Sandner! and Andrds Vukics?

! Institute for Theoretical Physics, University of Innsbruck,
Technikerstrafie 25, 6020 Innsbruck, Austria
? Institute for Solid State Physics and Optics,
Wigner Research Centre of the Hungarian Academy of Sciences,
P.O. Box 49, H-1525 Budapest, Hungary

The v2 Milestone 10 release of C++QED is primarily a feature release, which also
corrects some problems of the previous release, especially as regards the build system.
The adoption of C++11 features has led to many simplifications in the codebase. A full
doxygen-based API manual is now provided together with updated user guides. A largely
automated, versatile new testsuite directed both towards computational and physics
features allows for quickly spotting arising errors. The states of trajectories are now
saveable and recoverable with full binary precision, allowing for trajectory continuation
regardless of evolution method (single/ensemble Monte Carlo wave-function or Master
equation trajectory). As the main new feature, the framework now presents Python
bindings to the highest-level programming interface, so that actual simulations for
given composite quantum systems can now be performed from Python.

URL: http://www.sciencedirect.com/science/article/pii/S0010465514001349
DOI: 10.1016/j.cpc.2014.04.011

tThe author of the present thesis wrote the Python frontend, the build system and testsuite of the
C++QED framework. In addition, he contributed significantly in the design and implementation
of the C++ codebase, such as the trajectory-state input/output feature.
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New version program summary

Program Title:C++QED
Catalogue identifier: AELU v2.0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html

Program obtainable from:
CPC Program Library, Queen’s University, Belfast, N. Ireland

Programming language: C++/Python
Computer: 1386-1686, x86_64

Operating system: in principle cross-platform, as yet tested only on UNIX-like systems
(including Mac OS X)

RAM: The framework itself takes about 60MB, which is fully shared. The additional
memory taken by the program which defines the actual physical system (script)
is typically less than 1MB. The memory storing the actual data scales with the
system dimension for state-vector manipulations, and the square of the dimension
for density-operator manipulations. This might easily be GBs, and often the memory
of the machine limits the size of the simulated system.

Classification: 4.3 Differential Equations, 4.13 Statistical Methods, 6.2 Languages

Ezxternal routines: Boost C++ libraries, GNU Scientific Library, Blitz+-+, FLENS,
NumPy, SciPy

Catalogue identifier of previous version: AELU _v1_0
Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381
Does the new version supersede the previous version?: Yes

Nature of problem:

Definition of (open) composite quantum systems out of elementary building blocks
[5.1, 5.2]. Manipulation of such systems, with emphasis on dynamical simulations
such as Master-equation evolution [5.3] and Monte Carlo wave-function simulation

[5.4].

Solution method:
Master equation, Monte Carlo wave-function method

Reasons for new version:

The new version is mainly a feature release, but it does correct some problems of the
previous version, especially as regards the build system.

Summary of revisions:

We give an example for a typical Python script implementing the ring-cavity system
presented in Sec. 3.3 of Ref. [5.1]:
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C++411 code

Python code

invoking the
framework

#include "EvolutionComposite.h"
#include "ParticleTwoModes.h"

int main(int argc, charx argv[])

{

import sys
from cpypyqed import *

command-line
parameters

ParameterTable p;
evolution: :Pars pe(p);

particle::Pars pp(p);

mode: :ParsLossy pmP(p,"P");
mode: :ParsPumpedLossy pmM(p,"M");
particlecavity: :ParsAlong pcP(p,"P");
particlecavity::ParsAlong pcM(p,"M");

pcP.modeCav=MFT_PLUS;
pcM.modeCav=MFT_MINUS;

auto gmp=updateWithPicture(p,
argc,argv,"--");

p=parameters.ParameterTable ()
pe=evolution.Pars(p)

pp=particle.Pars(p)
pmP=mode.ParsLossy(p,"P")

pmM=mode .ParsLossy (p,"M")
pcP=particlecavity.ParsAlong(p,"P")
pcM=particlecavity.ParsAlong(p,"M")

pcP.modeCav=ModeFunctionType.PLUS
pcM.modeCav=ModeFunctionType.MINUS

qmp=updateWithPicture(p,
sys.argv,"--")

defining free
elements

particle::Ptr part (make(pp ,qmp));
mode ::Ptr plus (make(pmP,qmp));
mode ::Ptr minus(make (pmM,qmp));

part=particle.make(pp ,qmp)
plus = mode.make(pmP,qmp)
minus= mode.make (pmM,qmp)

initial condi-

auto psi(wavePacket (pp)*

psi=particle.wavePacket (pp) **

tion init (pmP)*init (pmM)) ; mode . init (pmP) **mode . init (pmM)
evolve<0>( evolve(
psi, psi,

defining
interactions &
composite on
the fly, and
evolving the
system

Restrictions:

composite: :make(
_<1,0>(ParticleAlongCavity(plus,
part,pcP)),
_<2,0>(ParticleAlongCavity(minus,
part,pcM)),
_<1,2,0>(ParticleTwoModes (plus,
minus,part,pcP,pcM))),
pe);}

makeComposite ({
(1,0) :ParticleAlongCavity(plus,
part,pcP),
(2,0) :ParticleAlongCavity (minus,
part,pcM),
(1,2,0) :ParticleTwoModes (plus,
minus,part,pcP,pcM)}),
pe)

Total dimensionality of the system. Master equation—few thousands. Monte Carlo
wave-function trajectory—several millions.

Unusual features:
Because of the heavy use of compile-time algorithms, compilation of programs written
in the framework may take a long time and much memory (up to several GBs).

Additional comments:
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e The framework is not a program, but provides and implements an application-
programming interface for developing simulations in the indicated problem
domain.

e We use several C++11 features which limits the range of supported compilers
(g++ 4.7, clang++ 3.1)

e Documentation, http://cppged.sourceforge.net/

Running time:
Depending on the magnitude of the problem, can vary from a few seconds to weeks.
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Chapter 6
Background

While in part I we have introduced general concepts and models of cavity QED, the
remainder of this thesis addresses the rich physics induced by mechanical effects
of intra-cavity light fields on moving particles and the coupled dynamics stemming
from back-action of the latter on the former. We distinguish two scenarios: in the
current part III, the case of a resonator illuminated by coherent laser light through
the mirrors is discussed. In part IV, we will investigate a setup where the particles
are pumped from a transverse direction and can scatter photons into the cavity mode.
Although similar at first glance, these two principal ways of driving the system reveal
fundamental different behaviour, originating from additional interference between
the cavity mode and the pump field in the transversally driven case.

In fact, cavity QED offers a multitude of interesting effects even without continu-
ously driving the system by a laser. For example, the presence of a resonator changes
the electromagnetical mode density. Spontaneous emission can be strongly enhanced
or suppressed by the presence of a cavity, as discovered by Purcell and Kleppner,
respectively [6.1, 6.2]. In a more recent example of an experiment without continuous
pump, with the strong coupling regime achievable [6.3, 6.4], single atoms can act as
a probe extracting information about single photons without destroying them. This
even allows monitoring the birth and death of a thermal photon in real time [6.5].

In many cavity QED experiments, however, a pump laser is an essential ingredient,
adding an additional degree of freedom and a channel for detection as well as providing
energy to the system to compensate for losses. This is especially important for the
regime of optical frequencies, where atomic decay rates and cavity losses are larger
compared to the microwave case. Thinking of the cavity as frequency filter, it is
only natural to send a weak probe beam through the device, assessing its spectral
properties. In this way, the presence or absence of matter, even of a single atom in
the strong coupling regime, can be detected by looking at the transmission of the
light: with a sufficiently large coupling constant the transmission peak is shifted more
than the cavity linewidth. While the empty cavity is transparent for a resonant probe
beam, particles inside the cavity are indicated by a vanishing probe signal. This
technique was successfully applied in early cavity QED experiments with relatively
fast atoms entering and leaving the cavity from a magneto-optical trap (MOT') on
ballistic trajectories. In this scenario, light forces are negligible, the pump and cavity
field takes a passive role as observer. With the advent of slow, ultra-cold atoms,
interaction times with the cavity could be increased significantly, and the kinetic
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energy of the particles became comparable to the optical potential depth. In this
regime, particle trajectories are considerably affected by mechanical effects of the
cavity field, which itself depends on the position of the particles and thus becomes a
much more active, dynamical component of the coupled system. The temperature
scale for ultra-cold atoms is given by the recoil energy of a single photon scattering
event, i.e. kT ~ h?k?/(2M). By using the transmitted probe signal as a feedback
device for the laser pump, trapping of atoms in a strong far-off-resonant field [6.6]
or even in the field of a single photon was realised, and trajectories of single atoms
can be reconstructed with a high spatial and temporal resolution [6.7, 6.8]. In the
low-saturation regime of atomic excitation adopted in this thesis, the laser pump
gives rise to effects like cavity-assisted cooling schemes without spontaneous emission,
interesting particle momentum correlations and entanglement as well as long-range
order and measurement back-action [6.9, 6.10].

6.1 Laser cooling and cavity-assisted cooling schemes

Before introducing cavity cooling let us first recapitulate conventional free-space laser
cooling techniques and their associated temperature limits. The free-space mechanical
action of light on matter in the regime of validity of the long-wavelength and dipole
approximation (cf. sec. 3.3) can be split in two parts, the radiation pressure and
the dipole force [6.11]. The origin of radiation pressure is incoherent scattering from
atoms involving spontaneous emission. For an incoming plain wave with wave vector
k, an absorbed photon transfers its momentum £k unidirectionally to the atom. In
contrast, a spontaneously emitted photon in free space is emitted randomly to any
direction with equal probability. Many spontaneous emission events thus do not
contribute to a net force but rather constitute force fluctuations acting on the atom.
In summary, radiation pressure of a plain wave leads to a force in direction of the
light and to recoil heating in form of momentum diffusion comparable to the diffusion
seen in Brownian motion. In contrast to the dissipative radiation pressure, the
dipole force has a conservative nature, stemming from coherent stimulated absorption
and emission processes in a field with spatial gradient. It gives rise to an optical
potential which is the basis for applications like optical lattices and optical tweezers.
Fluctuations in the dipole force also contribute to momentum diffusion, leading to
dipole heating.

For atoms moving against the direction of a laser beam, the Doppler effect results
in a blue frequency shift of the light as ‘seen’ by the atom. Conversely, atoms moving
away from a laser experience a red shifted light frequency. This velocity dependency
can be used to cool atoms in an optical molasses: red-detuned laser light will only
affect those atoms for which the Doppler effect shifts the light into resonance, i.e.
those atoms moving towards a laser, thus slowing them down [6.12, 6.13]. By using
two counter-propagating beams for each spatial coordinate (or one per coordinate
reflected back by a mirror), atoms can be cooled in three dimensional space. The sea
of photons acts like a viscous fluid with damping forces which can exceed gravity
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by a factor of 10°, slowing down atoms to speeds on the order of several ten cm/s,
compared to speeds of several hundred m/s at room temperature. What is missing
is a restoring force to ultimately trap the atoms, therefore usually an arrangement
of two magnetic coils is added as trapping device. As atoms try to leave the trap
region, a radially increasing Zeeman effect shifts the atomic levels into resonance
only with those lasers which push the atoms back towards the center, selected by
light polarisation. Such a setup, called magneto-optical trap (MOT), was developed
1987 [6.14] and has since become a standard device in the field of cold neutral atoms.

The final temperature expected within the theory of Doppler cooling is limited by
the natural linewidth [6.15]

hry

kBTDoppler = 7 . (6 1)

Shortly after the first successful demonstrations of Doppler cooling, surprising meas-
urements revealed temperatures well below the Doppler limit eq. (6.1). It was soon
discovered that the internal level structure, in particular different magnetic sub-levels
of the atomic ground state, could be exploited to achieve strong damping forces even
for very slow velocities which are dominated by diffusion in the Doppler cooling case.
In the polarisation gradient cooling method [6.16-6.18], counter-propagating beams
of different polarisation generate a spatially varying polarisation pattern, which leads
to an optical potential depending on the internal magnetic quantum number m
(Zeeman sublevel). Moving atoms can run ‘up-hill’ losing kinetic energy or ‘down-hill’
gaining kinetic energy, and the potential maximum for one m level can correspond
to a potential minimum for a different one. Because of the conservative nature of the
optical potential, no cooling can be achieved with the dipole force alone. The key
point in this cooling scheme is optical pumping between different m j-levels. The rate
of optical pumping depends on the natural linewidth and detuning of the excited
state, intensity and polarisation of the electric field (at the atom’s position) and
the Clebsch-Gordan coefficients. Polarisation gradient cooling operates in a regime
where, on average, a moving atom is more likely to be optically pumped from the
top of the potential hill corresponding to its current m level to the bottom of the
potential well corresponding to the target m level, compared to the reverse process
which contributes to heating. In this more probable optical pumping process, the
energy of the absorbed laser photon is less than the energy of the sponateneously
emitted photon, and the difference in energies is compensated by a loss of kinetic
energy. It is important to note that the optical pumping has to be slow in a sense
that it follows the center-of-mass motion of the atom non-adiabatically with some
delay. Polarisation gradient cooling is also named Sisyphus cooling referring to the
Greek mythological figure who was condemned to eternally roll a stone up a hill only
to see it roll down again as he reaches the top. Today standard MOTs exploit both
described mechanisms. Fast atoms are slowed down by the Doppler cooling effect
which has a large velocity capture range, slow atoms additionally experience a strong
friction by virtue of Sisyphus cooling.
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The achievable temperature is the recoil limit

h2k?

T (6.2)

kBTrecoil =
corresponding to the diffusion caused by a single scattered photon for an atom at
rest. This is in fact a fundamental limit for cooling methods in free space which
rely on randomly directed spontaneous emission. A laser cooling method which can
circumvent the recoil limit is dark state cooling [6.19], where the last spontaneous-
emission photon is not random. All methods described so far have in common that
they rely on spontaneous emission as dissipation channel and on the specific internal
level structure. For Doppler cooling at least a closed level structure is needed*,
Sisyphus cooling and dark state cooling rely on an even more complex internal
structure.

Cavity cooling offers exciting new possibilities to overcome some of these problems
of conventional laser cooling. The coupled system of atoms and one or several resonator
modes share the available dissipation channels, which means kinetic energy can be
extracted by photons leaking out through the mirrors and spontaneous emission
can be avoided. A number of cooling methods exist which use a cavity as passive
device. For example, in the bad cavity limit, the free space emission rate is tailored
to favour the cavity frequency, which can be exploited to enhance Doppler cooling.
Here, however, we will once more concentrate on the good cavity and strong coupling
limit, where due to the finite response time of the electromagnetic field the mode
takes over a much more dynamical role. These schemes can be extended to a large
atom-laser detuning without spontaneous emission, where the cooling process becomes
independent of the precise internal structure of the particles and all levels contribute
simultaneously to the overall polarisation. Cavity cooling therefore offers a promising
prospect on cooling particles for which conventional laser cooling is impractical, for
example atomic species not meeting the requirements of laser cooling on the internal
level structure, molecules with a rich excitation spectrum of vibrational and rotational
modes [6.20], or even macroscopic objects like nano-beads [6.21, 6.22] or membranes
[6.23].

To understand the dynamical cavity cooling effect [6.24], let us first employ the
classical picture of a single atom moving inside a longitudinally pumped high-finesse
cavity. Let us assume that the atom shifts the mode function by a maximum of Uy
(cf. eq. (3.41b)), and that the pump detuning is negative with A, ~ Uy < 0 and
Kk < |A¢l, so that the cavity is shifted into resonance with the laser if the atom is
positioned at a minimum and out of resonance if it is positioned at a maximum of the
optical potential, respectively. The intra-cavity field intensity therefore is highest in
the former case and lowest in the latter. This however only truly reflects a stationary
situation. In Sisyphus cooling, the non-adiabaticity of the optical pumping gives
rise to a cooling mechanism. Similarly, in a high-finesse cavity it is the intra-cavity

*In practice repump lasers are used to make atoms available to the cooling cycle again if they have
reached levels which are dark to cooling lasers.
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field which follows the atomic motion non-adiabatically, therefore the highest field
intensity is obtained after a moving atom has passed through a potential minimum,
while it is converting kinetic to potential energy. Analogously the field minimum and
with it the most shallow potential is obtained after the atom has passed through a
potential maximum, while it is converting potential to kinetic energy. On average,
the atom experiences a steeper potential hill while it is moving ‘up-hill’ compared to
while it is moving ‘down-hill’; leading to a net friction force slowing the atom down
and ultimately trapping it in a single potential well.

While the classical model predicts the particle to come to a complete halt, mo-
mentum diffusion mainly due to dipole force fluctuations leads to a finite temperature.
In a semi-classical treatment, the dynamical cooling mechanism can be explained
in a dressed-state picture of the strongly coupled atom-cavity system. Resembling
a Sisyphus-type cooling, a dressed state is on average excited in regions of weak
coupling and decays in regions of strong coupling, the difference in potential energy
being compensated by a loss of kinetic energy. A detailed analysis of the friction
coefficient reveals one of the cooling regions at Uy < 0 and A, < 0, a parameter
regime which is employed throughout this thesis. By comparing the friction to the
competing diffusion, a steady state temperature of

hk
kBTcavity ~ ?

(6.3)
is found.

Note that compared to the Doppler limit eq. (6.1), the cavity linewidth takes the
role of the atom’s natural linewidth +. Therefore sub-Doppler cooling is possible if
k < 7. The question arises whether by improving the cavity further, cavity cooling
can be used to go even below the recoil limit eq. (6.2), an important milestone as
we have explained above. Equation (6.3) cannot be applied directly to sub-recoil
temperatures, as its semi-classical derivation is valid only in a regime where the
kinetic energy of the particles is large compared to the recoil energy. As one of the
practical challenges in reaching such low temperatures, besides building a sufficiently
high-quality cavity, a decreasing cavity linewidth directly is connected to a smaller
velocity capture range and increased cooling time scale [6.25]. Strong evidence that
sub-recoil cavity cooling is possible has been provided recently by Wolke et al. in
Hamburg [6.26]. This experiment, however, started with a weakly excited BEC and
did not yet cool a thermal gas.

Reaching quantum degeneracy with laser cooling as the only cooling mechanism
is a challenging task which has only recently been accomplished by an Innsbruck
experiment [6.27]. Usually re-absorption of fluorescence photons and light-assisted
inelastic scattering inhibits sufficient phase-space densities. In reference to the Ham-
burg experiment, our own work on sub-recoil cavity cooling in chapter 8 presents a
detailed numerical analysis where the cavity modes and center-of-mass motion of
the particles is treated on equal footings in the quantum regime. To address the
problem of a small velocity capture range, an optimised sequence with decreasing laser
detuning is used. The results show a promising prospect on the possibility to reach
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quantum degeneracy with cavity cooling methods starting from a thermal ensemble.
Additionally to comparing fermions to bosons, cavity cooling in a multi-mode cavity
with ring geometry is investigated and compared to the standing-wave case. The
following section introduces some of the properties and unique effects characterising
such a ring cavity.

6.2 The ring cavity geometry

So far we have discussed the linear Fabry-Pérot interferometer geometry as shown
in fig. 3.1. In a ring cavity, instead of being reflected back and forth resulting in a
standing wave, photons can travel in two running waves with opposite direction and
a mode function proportional to exp(zikx). In the simplest case this is achieved by
an arrangement of three mirrors as sketched in fig. 7.1 of the following chapter. Such
a resonator has a similar frequency response with narrow peaks separated by the free
spectral width (cf. fig. 3.2), each peak however corresponds to two degenerate modes
of the electromagnetic field instead of one.

The presence of this second mode has decisive consequences to the coupled particle-
field dynamics [6.10, 6.28]. Due to the translational invariance of this geometry, the
total momentum of particles and fields including pump and losses is conserved, in
contrast to a linear cavity where the mirrors can absorb momentum. Atoms scatter
photons from one mode to the other resulting in a dynamic position-dependent phase
locking between the two modes, which can be exploited for example to monitor single
atoms [6.29]. For multiple atoms, the phase locking leads to long-range atom-atom
interaction mediated by the ring cavity [6.30, 6.31].

For our studies the mathematically equivalent description of the ring resonator in
terms of two standing-wave modes  sin(kz) and o cos(kz) with wave number k [6.32,
6.33] is more convenient than the description with a set of running-wave eigenmodes.
This choice is especially well suited for the case of a symmetrically pumped resonator
as depicted in fig. 8.1, resulting in a driven and damped standing-wave mode (e.g.
cos(kz)) and a mode which is only damped and can only be populated through
Rayleigh scattering from the particles (e.g. sin(kz)). Population in the sin-mode then
leads to a shift of the optical potential experienced by the atoms. Additionally to the
amplitude of the standing wave as in the linear cavity case, for the ring cavity also
the phase of the cavity-induced optical lattice depends on the position of the atoms.
Similar to the friction forces discussed in the previous section, a cooling regime also
exists for a ring cavity [6.28]. Because the friction force does not vanish at the field
nodes, the efficiency for decelerating and trapping moving particles can surpass that
of a linear cavity [6.31]. Schulze et al. present a ring cavity cooling scheme which
operates efficiently in the far off-resonant regime with respect to the internal states of
the particles [6.32]. As discussed earlier, this makes it in principle applicable to a wide
range of polarisable particles. The method relies on the strongly driven cosine mode
to provide sufficiently tight trapping on the one hand and a collective enhancement
of the particle-field coupling due to the large photon number on the other hand.
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By choosing a cavity-drive detuning close to the anti-stokes sideband of the trap,
scattering of photons into the initially empty sine mode provides fast cooling rates.

Niedenzu et al. give a detailed analysis of the microscopic dynamics involved in
the ring cavity setup [6.33]. As main result they developed a Bose-Hubbard model
[6.34] for the ring cavity. While usually the Bose-Hubbard approximation includes
the restriction to the first motional band, here it turns out that taking into account
also the second band is essential to capture important physical effects like dephasing
of tunneling oscillations and decoherence of the wave function.

Based on this previous work, the publication in chapter 7 analyses the ring-cavity
system for two particles in the regime of a strongly driven cosine cavity mode. One of
the main physical effects is a classically forbidden positive momentum correlation of
the particles. This is related to a strong delocalisation of the centre-of-mass. Another
main result is entanglement between the particles ‘heralded’ by photon detection,
i.e. entanglement which is specially pronounced right after the detection of a photon
outside the resonator. Single trajectories of the Monte Carlo wave-function simulation
reveal a pronounced logarithmic negativity, a measure for entanglement [6.35]. In
the limit of tight trapping of the particles, the full model can be approximated by
an optomechanical model [6.32] characterised by quadrature-quadrature coupling
of two harmonic oscillators representing the particles to a third harmonic oscillator
representing the field. The Hamiltonian describing this model applies to a whole class
of optomechanical systems, for example a cavity with vibrating end mirrors [6.36],
two light membranes inside a cavity field positioned at the maximum slope [6.37] of
the field or very light nano-sized dielectric spheres held inside the cavity field [6.38].
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The motion of two distant trapped particles or mechanical oscillators can be strongly
coupled by light modes in a high finesse optical resonator. In a two mode ring cavity
geometry, trapping, cooling and coupling is implemented by the same modes. While
the cosine mode provides for trapping, the sine mode facilitates ground state cooling
and mediates non-local interactions. For classical point particles the centre-of-mass
mode is strongly damped and the individual momenta get anti-correlated. Surprisingly,
quantum fluctuations induce the opposite effect of positively-correlated particle motion,
which close to zero temperature generates entanglement. The non-classical correlations
and entanglement are dissipation-induced and particularly strong after detection of
a scattered photon in the sine mode. This allows for heralded entanglement by post-
selection. Entanglement is concurrent with squeezing of the particle distance and
relative momenta while the centre-of-mass observables acquires larger uncertainties.
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Chapter 7 Publication: Quantum-correlated motion and heralded entanglement
7.1 Introduction

The past decades have seen tremendous success in the implementation of control
schemes for the motional state of matter via light fields either in free space or in
optical cavities. A diversity of examples exist where the quantum regime of motion
has been reached. The masses span many orders of magnitude, from the microscopic
atomic size systems such as atoms in optical cavities [7.1-7.4] and laser-cooled ions
in ion traps [7.5] to the macroscopic level with cavity-embedded membranes [7.6],
mirrors [7.7] or levitated dielectric nano-particles [7.8].

A common interaction Hamiltonian that well approximates many quantum light—
matter interfaces is quadrature—quadrature coupling [7.9]; more specifically, the
displacement of the mechanics is coupled directly to a quadrature of the high-Q
optical field mode that can be then used as an observable for indirect position
detection. Adding a second mechanical system coupled to the field then allows one to
engineer an effective two-particle mechanical coupling by eliminating the mediating
light mode. Recently, an expansion to quadratic coupling has been proposed [7.10]
and the investigation of dissipation-induced [7.11-7.13], noise-induced [7.14] and
remote entanglement [7.15, 7.16] has been of great interest, including a scheme for
sensitive force measurements [7.17] and entanglement of macroscopic oscillators [7.18,
7.19].

Here we show that all this can be implemented in a system consisting of two
particles strongly trapped in the cosine mode of a ring cavity, where the two-particle
interaction is carried by sideband photons in the sine mode. For deep trapping it
yields the typical linearized optomechanical Hamiltonian [7.20]. First we present the
general model of two particles moving within a ring resonator. We then analyse single
quantum trajectories depicting strong correlations and entanglement. A subsequent
investigation of momentum correlations reveals classically forbidden positive values
in steady state, even in the absence of entanglement. The steady state shows a strong
delocalization of the centre-of-mass independent of the particle separation. We also
show how to generate entanglement either in a pulsed regime or heralded by the
detection of photons. Analytical calculations are carried out in the regime of strong
particle confinement and matched to the more generally valid numerical simulations
with good agreement. Finally, the occurrence of correlations in the system is explained
in a simple adiabatic model.

We structure this presentation in two major parts according to the Gaussian/non-
Gaussian nature of the system dynamics. Entanglement on trajectories and that on
average as well as momentum correlations during the non-Gaussian dynamics of the
two atoms in the cavity are numerically investigated in the beginning, while the
Gaussian approximation makes the topic of the second major part of the paper. This
part corresponds either to atoms in very deep traps (to compare to the results obtained
in the first part) or more generally to a wide range of optomechanical systems in the
linear regime and with diverse physical realizations (moving membranes, levitated
nano-spheres etc.).
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7.2 Motion of two particles in a ring resonator

We study two small polarizable particles confined within a symmetrically-pumped
ring resonator, see figure 7.1. Symmetric pumping results in a standing-wave optical
potential with spatial dependence cos?(kx) [7.20, 7.21]. The cosine mode is strongly
pumped and approximated by a highly excited coherent state |a.) with |ac| > 1 (and
without loss of generality a. € R). The particles scatter photons into the unpumped
orthogonal sine mode. This setup can be generally described by the Hamiltonian [7.20,
7.21]

2 [ p?
H = 21 % + hUpa? cos? (kx;) + hlUpa'asin® (k;) | +
hUpa 2
+ ﬂ (CL + (,“LT) ZSID(2]€$Z) — hAC(ZTa. (71)
i=1

2

Here, a denotes the annihilation operator of the quantum-mechanical sine mode,
Uy < 0 the optical potential depth per photon, x; and p; the particles’ centre-of-mass
position and momentum operators, respectively, and m the particle mass. The pump
is detuned by A := wp — w from the bare cavity resonance frequency w.. To avoid
instabilities we restrict ourselves to red detuned lasers (A. < 0) for which a cooling
regime exists [7.22]. The sine mode is only weakly populated by scattering such

that <aTa> is negligible compared to o2 [7.20]. Damping of the cavity mode is taken

into account by the Liouvillian Lp = & (2apaJr —atap — paTa> [7.23] in the master
equation

1
in

To get some insight into the dynamics, we solve equation (7.2) numerically for
some typical parameters. The direct solution of the master equation (7.2) is compu-
tationally very demanding owing to the large Hilbert space of the joint particles-field
system. Therefore, we resort to Monte Carlo wavefunction simulations [7.24], in which
the system is coherently evolved between the so-called “quantum jumps”. These
jumps correspond to a photon detected at the resonator output [7.24]. Besides the
more favourable usage of computer resources, single trajectories also provide an
additional insight into the microscopic processes in the system. The simulations were
efficiently implemented with the freely available* C++QED framework [7.25, 7.26]
and performed in a joint momentum- and Fock basis.

A typical trajectory is shown in figure 7.2, where the blue arrows indicate the times
at which jumps occur. Initially, the particles were prepared in the ground state of
two separated potential wells and owing to the deep potential tunnelling is strongly
suppressed. The momentum correlation coefficient C, for the two particles is defined
as

oo cov(p1,p2) _ (p1p2) — (p1)(p2) (7.3)
P ApiAps Ap1Aps ’ .

*http://cppqed.sourceforge.net
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Figure 7.1: Sketch of the system. The pumped standing-wave mode (red) traps
the particles, the second orthogonal one (black) mediates an effective
interaction between them.

where C, = 1 means perfect correlation and C, = —1 perfect anti-correlation of
the motion. Quantum jumps by photodetection trigger strong correlations and
entanglement between the particles due to the cavity-mediated interaction. The
logarithmic negativity [7.27] already after the first jump approaches the value for
a maximally entangled Bell state and the correlation reaches a value of C, ~ 0.5.
The emerging state corresponds to a superposition of two particles moving to the
right and two particles moving to the left such that the centre-of-mass momentum
remains zero. As we will see later this behaviour is caused by the excitation of a single
particle into the first excited state within the trap. Beginning with the second jump
the system is subject to fast oscillations which are of the order of the trap frequency.
Note that only the field is dissipative in our model and induces quantum jumps.
However, the particles respond to the sudden changes of the field in a correlated way.

Interestingly, while entanglement is quite pronounced on single trajectories, it
remains small on average. The averaged steady-state logarithmic negativity is Ea ~
1073 for our parameters. The logarithmic negativity is not an expectation value and
hence its value for an ensemble of trajectories cannot be obtained from its values on
single realizations—it has to be directly computed from the density operator. It is
therefore possible that the logarithmic negativity of a mixture of entangled states is
smaller than the weighted average of the individual values. A prominent example for
this is the equal statistical mixture of two Bell states, which is not entangled.

We now examine the momentum correlations in more detail. Classical simulations
reveal much stronger damping of the centre-of-mass motion than that of the relative
motion. Hence the particles become anti-correlated [7.1, 7.22, 7.28], see figure 7.3.
Surprisingly, the quantum simulations of the ring resonator system yield the opposite
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Figure 7.2:

7.2 Motion of two particles in a ring resonator
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Figure 7.3: Classical simulations [7.22] for 1000 initial conditions. Left: initial con-
dition, right: distribution at wrt = 3000. The particles become anti-
correlated and cooled. Same parameters as in figure 7.2.

result. On average, initially uncorrelated particles become positively correlated due
to the cavity input noise. This effect is visible in the steady-state density matrix
presented in figure 7.4. There, the momentum distribution is elongated into the first
quadrant, which is a signature of positive correlations. Note that quantum mechanics
allows pure states with positive correlations, but still zero average centre-of-mass
motion with large uncertainty. The time evolution of the momentum correlation
coefficient is depicted in figure 7.5. We observe smaller correlations around the
cooling sideband A, = —w := —/4h|Up|a2ER /h as compared to the other chosen
detuning A. = —k. Here ER = hwg := h?k?/2m is the recoil energy. For comparison,
we also present the results of simulations containing the quadratic optomechanical
Hamiltonian (7.6) introduced later on in this paper. The latter yields accurate
results provided that the position spread remains small compared to a wavelength,
kAx < 1. This is fulfilled for operation near the cooling sideband, but not for
A. = —k. Positive correlations of the particle motion can also be observed in much
shallower potentials where the particles are barely trapped and both light modes are
treated quantum-mechanically [7.29].

In the dynamics, correlations and entanglement are generated by quantum jumps
induced by photon count events. Hence they are particularly strong immediately
after a jump. In real experiments, it is generally not possible to exactly keep track
of each emitted photon due to the detector efficiency, i.e. one cannot exactly follow
a certain quantum trajectory. Hence, the system always evolves into a mixed state
and if a photon is observed (measured) outside of the resonator, it is impossible to
determine whether it was the first, the second and so on. Naturally, the question
arises whether effects observed on single trajectories (like entanglement) “survive”
this averaging and can still be expected to be observable after jumps. Every time a
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Figure 7.6: Diagonal elements of the reduced two-particle conditional density mat-
rix (7.4) after a photon detection in steady state. Particle correlations as
well as entanglement become much more pronounced compared to the
density matrix shown in figure 7.4. Same parameters and colour code as
there.

photon is detected, the mixed state inside the resonator is projected into the state

apal

Py = W» (7.4)

where p is the density matrix evolved according to the master equation (7.2). Inter-
estingly, the momentum correlation coefficient (7.3) is nearly constant (C, ~ 0.5 for
A. = —k and C, = 0.3 on the cooling sideband, respectively), regardless of the time
the jump occurred at, see figure 7.6 also. The heralded entanglement measured by
the logarithmic negativity is smaller than on single trajectories, but still prominent
with a value Exr ~ 0.2 for our parameters and a jump in steady state.

The conditional density matrix (7.4) is closely related to the field autocorrelation
function [7.23]

atataa ata
990 = <(aTa>2> - <<aTa2:j' (75)

It has the very intuitive interpretation as the ratio between the photon number
after and prior to a jump in steady state [7.30]. For our parameters, it indicates
photon bunching close to a thermal (chaotic) state (for which ¢(?(0) = 2). This
is consistent with the picture of the mode being incoherently populated through
particle noise—perfectly localized particles do not scatter. Hence the field expectation
vanishes and only its variance gives a contribution.
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7.3 Gaussian optomechanical treatment

So far, we have studied the mainly numerically accessible general system (7.1) of
two particles in a ring resonator. Now, we investigate the special case of tightly
confined particles allowing for more analytical insight into the dynamics. In this limit,
it is justified to keep only the first- and second-order terms in the expansion of the
trigonometric factors and the Hamiltonian (7.1) can be mapped onto the linearized
optomechanical model

2 2
H=>" hwbj»bi — hAcata + hg > (b + b})(a +al) (7.6)

=1 =1
as shown in [7.20]. Here we have defined w := \/4h|Uy[a2ER /h, g := Upackéo/V/2,
the oscillator length &, := \/h/mw and b; := (z;/& + i&pi/h)/v/2. The scaling of
the oscillator length suggests that the Lamb—Dicke regime k&y < 1 may also be
reached for very heavy particles in shallower traps. As we do not consider any direct
particle—particle interactions, the Hamiltonian (7.6) is also valid for particles not

confined in the same, but rather in distant sites within the resonator.

Interestingly, the Hamiltonian (7.6) applies to a whole class of systems. A few
well-studied realizations are (i) a cavity with vibrating end mirrors where the mirror—
light interaction is always linear and governed mainly by the cavity length and the
zero point motion of the mechanics [7.31, 7.32], (ii) two light membranes inside
a cavity field positioned at the maximum slope of the field amplitude where the
coupling depends on the reflective properties of the membranes and is increased with
decreasing mass [7.33] and (iii) very light nano-sized dielectric spheres held inside
the cavity field either by an external trapping light mode or by means of optical
tweezers [7.8].

The Hamiltonian (7.6) is quadratic in the bosonic operators so that an initially
Gaussian state remains Gaussian throughout the time evolution. Gaussian states
are completely defined by a displacement vector and a covariance matrix V;; :=
L eov(&, &) + cov(€;,&)], with & := (&1, pr, T2, P2, X, P), & := /€ = (b; +b]) /v/2,
pi == pi&o/h = (b; — bj)/(l\/i) and the field quadratures X and P [7.34]. As shown
in [7.35], the time evolution of V' is determined by the equation (its steady-state
version is called the Lyapunov equation)

V(t)=AV(t) + V() AT + B, (7.7)

where A and B are the drift- and diffusion matrices appearing in stochastic Heisenberg—
Langevin equations equivalent to the master equation. The steady-state solution
of (7.7) for the covariances is cov(pi, p2) = var(p;) — 1/2 and cov(Z1, T2) = var(z;) —
1/2 (both particles behave the same way). It only exists in the cooling regime A, < 0
since the momentum variance is only positive for red detuning. The momentum
covariance is also genuinely positive. For C, we find the simple (g-independent)
expression

K2+ (A + w)?

T i
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which is precisely the ratio of the Stokes- (I'_, heating) and anti-Stokes (I'y, cooling)
scattering rates found when adiabatically eliminating the cavity field [7.9]. These
rates I'y = % also define the time scale 7 ~ (I'y — T'_)~! on which the
steady state is reached.

Cp has a minimum at A, = —v/k? + w? and approaches unity for |A.| — oo and
Ac. — 07. From the form of the steady-state covariance matrix we can deduce that
steady-state entanglement between the particles can only occur if cov(Z1,Z2) < 0,
which implies squeezing of the position variable. This is a direct consequence of the
entanglement criterion derived in [7.36]. See figure 7.7 for an example of the Lyapunov
time evolution. For such deep potentials (a regime which we can numerically analyse
by changing the effective parameters w and g to the values listed in figure 7.7) we
restricted ourselves to Monte Carlo simulations of the master equation containing the
Hamiltonian (7.6). Again, the C++QED framework provides a helpful basis for their
numerical implementation as it also supports the simulation of coupled oscillators.

The steady-state covariance matrix reveals strong correlations between the particles
and the field quadratures, making it intuitively clear that the reduced conditional
density matrix for the particles strongly differs from its steady-state counterpart.
Each photon detection highly influences the joint state of particles and cavity field.
We show both density matrices in figure 7.7. The logarithmic negativity for the
conditional density matrix is o0 ~ 0.25 and C, is found to be C, ~ 0.9. Due to the
particles—field correlations in steady state the conditional density matrix (7.4) does
not describe a Gaussian state. Indeed, it reveals a double-peak structure.

Given that steady state dynamics shows little or no traces of the entanglement
that is clearly present in individual trajectories, we pursue now an alternative road
that investigates the transient regime. Such a regime could for example be reached
with short light pulses that can be used to generate build-up of motional correlations
in the system. While we are free to explore any regime numerically, the problem
can be analytically tackled mainly in the adiabatic case where the cavity mode can
be eliminated from the dynamics, when g < k or g < |A; £ w| [7.9]. We verify,
however, that the generality is not lost since numerical investigations show the optimal
entanglement regime indeed being around the point analytically treated.

We skip the cumbersome analytical elimination procedure (that closely follows
the one used in [7.9]) and simply make use of the simple form of the end result
that shows displacement—displacement coupling of the reduced bipartite system,
HY ~ —hY >k TjZr, with

T_—<Ac_wr_+AC+“r+>. (7.9)
KR K

A second result of such an elimination procedure is that decay of the system can
occur in a correlated fashion, namely with an effective jump operator proportional
to by + ba. Now, we choose the operating conditions such that ;%3 reduces to a
simple beam splitter interaction bibz + b;bl and point out a very general conclusion
(see [7.37]) that this interaction does not lead to entanglement when starting in
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Figure 7.7: Upper plot: momentum correlation obtained from Monte Carlo simu-
lations in the Lamb-Dicke limit for k{, = 0.1 (red, ensemble of 500
trajectories) and solution of equation (7.7) (blue). The position correla-
tion is likewise pronounced. Lower plots: diagonal elements of the reduced
particle density matrix in steady state (left) and of the reduced conditional
density matrix (7.4) (right). Parameters: w = 200wg, g = Swg, k = 100wgr
and A. = —20wg. Note that here the particles—field interaction is much
stronger than in figure 7.2 where g =~ 0.2wg.
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Figure 7.8: Transient entanglement (lower red curve) and momentum variance (upper
blue curve) as obtained from the Lyapunov equation. Black dashed lines:
solution of the master equation for the ring resonator (2000 trajectories),
for comparison. Parameters: w = 30wr, ¢ = Swgr, kK = Swr and A, =
—(w — k).

non-correlated initial states but rather to a simple state swap process where in the
limit of strong coupling (coupling larger than decoherence rates), a quantum state
of a subsystem can be written on the other subsystem. Than, taking advantage of
the correlated decay, we show that transient entanglement is present in transient
dynamics. This is illustrated in figure 7.8 where we show the time evolution of the
logarithmic negativity. The relatively large entanglement obtained at half of the
interaction time (defined by the inverse of the effective coupling strength g) can
be accessed in an experimental situation for example by the use of laser pulses of
tailored shape and duration.

Our effective optomechanical Hamiltonian (7.6) is formally similar to a model
describing the microscopic dynamics of self-organization of particles in a cavity
field [7.38]. The behaviour of single trajectories there can be explained with the help
of an adiabatic model. We now strive to develop a model in the spirit of [7.38], capable
of describing the behaviour of single Monte Carlo trajectories of the master equation
containing the Hamiltonian (7.6). To this aim, we diagonalize the scattering operator
>oi(bi + bI) to obtain the new particle basis {|e;)} containing radiative (eigenvalue
Ai # 0, they always appear with both signs +1) and non-radiative (A\; = 0) states.
Ignoring terms stemming from the oscillator energies for the moment, the radiative
states radiate a field |A\;a) with o := —ig/(k —iA.). The crucial assumption now is
adiabaticity (cavity decay assumed to define the fastest time scale), i.e. we assume
each particle state |e;) to be correlated with its associated unperturbed field state to
find the approximated joint particle—field stochastic state vector

[9() =D ci(t) lej) M) - (7.10)

J

The coefficients ¢;(t) are determined by the effective conditional Monte Carlo time
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evolution generated by the non-Hermitian Hamiltonian (abbreviating |i) := |e;))

(2

Hym i= hw'y (i] Y2 bLbx [3) 1) (5] = ihe Y [ ial* [i) (il (7.11)
i k

for the particles only. Its Hermitian part contains the oscillator energies expressed in
the scattering basis and couples the constituents of the latter.

From the form of the state vector (7.10) one can conclude what happens if a
photon is detected. Applying the jump operator o< a on the internal state (7.10)
at time ¢j yields a [¢(t5)) o< >, ¢i(t) Ai |ei) |[Aicr). Hence, all information about the
non-radiative contributions are erased and the relative phases between the radiative
states change sign (as for each \; there exists also an eigenvalue —\;). Since |\;a? < 1
the reduced density matrix for the particles directly after a jump mainly contains the
pure state [1p) oc 37, ¢;i(t) ) [ej) (during the time evolution the particle state reads
[vp) m 30 ¢j(t) |ej)). Inserting the coefficients for a state describing two particles in
the ground state, the first jump excites one of them and the photon number increases
by a factor of 3. The resulting state of the particles |¢p) ~ % ([tbotbr) + |[112bo)) is
entangled with £y = 1 and correlated with C, = 1/2. Beginning with the second
jump, fast oscillations with a frequency determined by w build up, which is in
qualitative agreement with single trajectories of the ring resonator model as shown
in figure 7.2. This way it is possible to qualitatively and quantitatively reconstruct
single trajectories of the optomechanical model (7.6).

7.4 Conclusion and outlook

Starting from two particles in a ring resonator, our conclusions are quite general. We
have proposed a tripartite optomechanical system with two identical oscillators that
can be correlated via the mediation of a photon field and the interaction amplified by
the cavity confinement. The Gaussian evolution of the reduced mechanical bipartition
has been followed both numerically and analytically, while non-Gaussian effects owing
to the deviation from the bilinear Hamiltonian have been investigated numerically.
The non-intuitive and classically forbidden positive momentum correlations are
an important result of the paper, and are interpreted as strong delocalizations
(superpositions) of the centre-of-mass independent of the particle separation and thus
of the extension of the effective system; this suggests possible use of the setup to test
the quantum-classical boundary. Furthermore, we have studied entanglement on single
Monte Carlo trajectories as well as of the averaged density matrix. Entanglement
heralded by photodetection has also been investigated. Transient entanglement as
shown here can also be exploited in a pulsed regime where light pulses can drive the
mechanical bipartition into a strongly entangled state.
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8.1 Introduction

Cavity cooling has been proposed and successfully demonstrated in practise as a
quite general method to cool polarisable point particles already more than a decade
ago [8.1-8.4]. Several important experimental demonstrations using various systems
and geometries were recently achieved [8.5], also in close connection to optomechanical
cooling [8.6, 8.7]. In its generic form, this cooling mechanism works without the need
of resonant excitation and spontaneous emission and reveals a final temperature
only limited by the linewidth x of the cavity mode involved, i.e. kgT =~ hx [8.5].
For deeply trapped particles one can operate in the sideband cooling regime with
trapping frequency v larger than x, where ground-state cooling can be expected [8.6,
8.8]. In the opposite case, where the cavity-generated optical potential is shallow
compared to the particles’ kinetic energy, the situation is much more complex as we
have to consider the full sinusoidal dependence of the mode function.

As the optical potential is periodic with half of the wavelength, photon scattering
only exchanges multiples of two recoil momenta between the atomic motion and
the cavity field. Microscopically, this corresponds to a consecutive absorption and
stimulated emission process of cavity photons. Hence, on the one hand one could
argue that cavity cooling cannot achieve temperatures below the recoil limit due to
the half-wavelength periodicity of the cavity potential [8.9]. On the other hand, a
cavity with frequency and energy resolution below a single recoil could be suited
to surpass this limit by energy selection. Strong evidence for this effect has been
reported in recent experiments in Hamburg, where cavity cooling on the subrecoil
scale has been observed [8.10].

In this letter we study the quantum limit of cavity cooling in great detail by help
of quantum Monte Carlo wave function simulations [8.11, 8.12] of the corresponding
master equation. In order to allow investigations of particle quantum statistics
and correlations, we need to consider at least two particles coupled to the cavity
field, which itself can support a single or two modes. Even when confining the
particle motion along the cavity axis we still have to account for at least three
independent quantum degrees of freedom. Despite restriction to only a few photons
per mode and a not too high spatial resolution of the wave function, the associated
Hilbert space typically consists of several ten thousand dimensions, which requires
substantial computational effort. Here we make use of C++QED [8.13], a freely
available framework for simulating open quantum dynamics.

In the following, upon introducing our system Hamiltonian and master equation
and defining the operating parameters we first present the results of a three-stage
cooling process from a thermal distribution towards the quantum ground state. We
then study the mean kinetic energy and address the influence of invariant subspaces
on the final temperature and state. In the last part we analyse the appearance of
momentum correlations during the cooling process, which can be nicely seen and
interpreted via the two-particle momentum distributions.
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Figure 8.1: Two identical particles interacting with a) two degenerate modes of a
ring resonator and b) a single standing-wave mode.

8.2 Theoretical model

We consider two polarisable particles (e.g. two-level atoms, molecules, nanobeads) of
mass m moving along the axis of an optical resonator, as depicted in fig. 8.1.

Assuming large detuning between the light and optical particle resonances, the
particles’ internal excitation will remain small and spontaneous emission can be
neglected [8.5]. The intracavity light is described by one or two degenerate standing-
wave eigenmodes. For our studies the description of the two-mode ring resonator (cf.
fig. 8.1a) in terms of standing-wave modes o sin(kx) and x cos(kx) with wave number
k [8.6, 8.14] is more convenient than the mathematically equivalent description with
a set of running-wave eigenmodes x exp(+ikx). It allows easier comparison with
the linear resonator (cf. fig. 8.1b) by formally restricting one of the modes to zero
photons. The coherent interaction of particles and field modes of the ring resonator
is then described by the Hamilton operator [8.6]

H:

2
1=

2
P4 huy (alac cos®(kx;) + alag sinz(kxi))]
Y [2m
hU,
4 220

2
5 (aias + alac> Z sin(2kx;)
i=1

— hACalac — hACa;’as — ihn (as — a;r) . (8.1)

Here z; and p; are the particles’ centre-of-mass position and momentum operators,
respectively, Uy < 0 is the potential depth per photon and af (af) is the creation
operator for sine (cosine) mode photons. The pump laser of effective strength 7 is
detuned by A. := wp — w. from the bare cavity resonance frequency. Note that an
effective driving of the sine mode (as considered here) can be realised by symmetrically
driving the two counter-propagating running-wave modes with an appropriate phase
relation [8.6]. Whilst the first line of the Hamiltonian (8.1) accounts for the two
potentials created by the degenerate light modes, the second line describes the
particle-mediated coherent redistribution of photons between the two modes, which
is responsible for photon scattering to the unpumped cosine mode.

The Hamiltonian evolution, however, cannot take track of the dissipative process
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of photon leakage through the resonator’s mirrors. Indeed, the system needs to be
characterised by its density operator p with time evolution

. 1
p= ih [H, P] + Lep + Lsp, (8.2)

where the Liouvillean superoperators in this master equation explicitly read L;p =
K (Qaipaz - j»aip - pa;-rai) for i € {c,s} [8.15] with the photon number decay rate
2k. Note that the linear cavity (cf. fig. 8.1b) is obtained from eq. (8.2) by formally
setting a. = 0.

Direct particle—particle interactions as collisions are neglected in our model. They
will certainly play a role at higher densities and should be included in a next-step
model. Here we concentrate on cavity cooling and only shortly come back to possible
effects of collisions in the follwing section.

a

8.3 Simulation of cavity cooling in the quantum regime

In this letter we concentrate on the weak pump case, where the intracavity light
fields are responsible for friction and diffusion and mediate long-range interparticle
interactions, but do not contribute to particle confinement. The latter is provided
by an external magnetic or optical trap with trap frequencies much below the
recoil frequency. Targeting quantum degeneracy in this trap naturally requires a
full quantum treatment of both, field modes and particles, which renders a direct
integration of the master equation (8.2) computationally unfeasible due to the large
dimension of the joint Hilbert space. For this reason we run Monte Carlo wave function
simulations (MCWEFS) [8.11, 8.12], where the evolution of stochastic state vectors is
induced by a non-Hermitian effective Hamilton operator including damping. This
deterministic propagation is interrupted by quantum jumps at random times, which
can be interpreted in terms of photon counting events of the light leaving the resonator.
For large ensembles the statistical mixture of such stochastic states converges towards
the full solution of the master equation. The numerical implementation of these Monte
Carlo wave function simulations was realised with the aforementioned C++QED
framework [8.13].

Note that the chosen parameter regime is in contrast to our previous work on
deeply trapped particles [8.16], where the strong pump field mode is used to trap
the particle and can be replaced by a c-number to obtain a much smaller effective
Hilbert space.

To discretise the Hilbert space we introduce periodic boundary conditions for
the particles at kx = +m, yielding two-particle momentum basis states |n,m) :=
|p1 = nhk) ® |p2 = mhk) with integer n, m. We start from an empty cavity without
photons and the two particles located at kx = £7/2 with a Gaussian distribution
and zero average momentum, properly (anti-)symmetrised for bosons (fermions).
Here we neglect the spin degrees of freedom as is justified e.g. for spin-polarised
particles. Other possible configurations like pairs of fermions with opposite spins,
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as they appear in the BCS model [8.17], might show yet another behaviour but are
beyond the scope of this letter.

In order to model the characteristics of a thermal state and to remove artefacts due
to the periodic boundary conditions, we assign random phases to each basis component
of the Monte Carlo trajectory initial states. For sufficiently many trajectories the
initial state then becomes a statistical mixture of momentum states without any
coherences. Note that here the two particles are only found in momentum states
with the same parity if they are bosons or in momentum states with different parity
if they are fermions. Implications of this choice will be discussed in the next section.

Standard semiclassical simulations of cavity cooling of point particles predict a
final temperature kg1 = hx only limited by the cavity linewidth x, which also agrees
with full quantum simulations to very low temperatures [8.1]. While smaller x leads
to lower temperature, unfortunately the time scale for cooling becomes much slower
as well and the effective velocity capture range is reduced [8.18]. This renders cooling
of a wide momentum distribution towards degeneracy in a single step experimentally
impractical. Hence, here we present a multi-step cooling scheme as inspired by the
recent Hamburg experiment [8.10], where the operating parameters are adjusted in
time to speed up cooling by first precooling the highest momenta and subsequently
reducing pump power 7 and detuning |A.| for the final step.

So far we have ignored any effects stemming from direct atom—atom collisions
in our effective 1D approximation of the cooling geometry. As can be seen from a
Fourier transformation of the Hamiltonian (8.1), momentum transfer between atomic
states can only occur in portions of Ap = +2hk. Therefore the total population in
the odd and even momentum subspaces is conserved by the Hamiltonian evolution.
In a realistic experimental trap, however, there will be transverse motion and particle—
particle collisions on longer timescales mixing these two families, e.g. two particles
with momentum |1,1) can scatter into the |0,2) state and vice versa. The fast 2hk
particle is then cavity-cooled to zero velocity, which makes this effective process
unidirectional. Another important aspect of collisions has been observed in the
aforementioned Hamburg experiment [8.10], where they play a crucial role in cooling
particles from non-integer momentum states in the vicinity of p = +2hkk to the zero
momentum state. As it is not in the scope of the present work to describe these
processes, but much rather the essence of cavity cooling of a thermal state with broad
momentum distribution, we refrain from including collision terms in the simulations
at this point.

The effective detuning of the pump is chosen such that the creation of a photon in the
cavity is energetically strongly suppressed if not accompanied by momentum transfer.
Cooling is achieved when a scattered photon leaves the resonator, which eliminates the
re-absorption possibility [8.19]. In most cases this prevents standard laser cooling to
reach degeneracy, although this limitation has recently been surpassed in an Innsbruck
experiment [8.20]. Intuitively, in the regime A, < 0 the cavity-enhanced scattering
to the blue sideband extracts energy from the particles” motion [8.5]. To resonantly
enhance this process the detuning is chosen to match the energy difference between
the final and initial atom states. From the dispersion relation for free particles with
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Figure 8.2: Population fraction not addressed by the cooling process for the three
cooling steps as a function of the cavity-pump detuning scanned around
the free-space optimal value (8.3). The final step (c) targets ground-state
cooling as in the Hamburg experiment [8.10]. Parameters: Uy = —2.5wgr
and xk = 0.25wR.

Ap = —2hk one thus obtains

2 2
_ in2 il @ _ Pinit _ . Kinit)
A NU0<sm (ka;)> = S - 2 = g (1 o) (8.3)

where N = 2 is the number of particles, P = hK, Kinit > 2k and wr = Er/h :=
hk?/(2m) is the recoil frequency. As the particles are nearly homogeneously distrib-
uted in position space, the bunching parameter B := <sin2(kzx)> determining the
cavity frequency shift induced by the particles is well approximated by B ~ % In the
regime of weak cavity pump with potential depths well below the recoil energy, the
particle position space distribution remains approximately homogeneous throughout
the cooling process and hence the bunching parameter stays constant. For condi-
tion (8.3) to be relevant, a narrow cavity resonance on the recoil frequency scale
is required, i.e. the damping constant x needs to be less than the smallest possible
kinetic energy transfer, k < 4hk?/(2m) = 4wgr. The condition of well-resolved lines
also requires that the photon numbers and the coupling strength |Uy| are sufficiently
small to avoid broadening of the resonance.

Because of the quadratic dispersion relation and the small linewidth only one
process with momentum transfer |p| = nhk — |p| = (n — 2)hk with integer n > 2
can be resonant for a given detuning. In order to efficiently cool an initial state
which contains momentum contributions up to |p| = 4hk, in analogy to [8.10],
we thus apply a pulse sequence with three separate stages, which aim to transfer
|p| = 4hk — |p| = 2hk, 3hk — hk and 2hk — Ohk, respectively. Ideally, the final
state then only has contributions of the two lowest momentum states with p = Ohk
and p = +hk, with their relative magnitude determined by the initial distribution in
the two (odd and even) momentum subspaces. In an experiment one could of course
also envisage a continuous frequency ramp of the pump laser or cavity resonance.

In order to determine the optimal detuning for the three-step cooling sequence, we
scan the resonance around the anticipated optimal detuning as given in eq. (8.3). In
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Figure 8.3: Time evolution of the single particle kinetic energy in an optimised three-
stage process. Detunings for the three stages: A./wr = (—14.75, —12,—7)
(ring cavity bosons), A, /wr = (—14.5,—10.25, —7) (linear cavity bosons),
AcJwr = (—14.25,—10.75, —6.75) (ring cavity fermions) and A./wr =
(—14.5,—10.75, —6.25) (linear cavity fermions). The other parameters are
the same as in fig. 8.2. Black lines: initial state containing only even
momenta for bosons in a ring (solid) and a linear cavity (dotted).

fig. 8.2 we plot the residual population remaining in states with momenta larger or
equal to the momentum state which is targeted for depletion as a function of the
detuning and choose the minimum as the detuning for this stage. Due to photons
being generated during cooling the particle energies are slightly shifted and also the
bunching parameter can change by a small amount. Thus the optimum detuning
deviates from the expected free-space value (8.3), which could also be attributed to
an effective mass of the particles in the weak cavity-generated lattice.

To study quantum-statistical effects explicitly we compare both cases of bosons and
fermions. Interestingly, pronounced differences in cooling rates and pairing appear
already in the first cooling stage applied to a relatively hot ensemble not too close to
degeneracy. In order to investigate the influence of cavity-mediated interactions in
greater detail we compare a ring cavity geometry (cf. fig. 8.1a) and a linear cavity as
depicted in fig. 8.1b, i.e. by formally setting a. = 0 in the Hamiltonian (8.1). Here
the differences are clearly due to the interactions generated by the second unpumped
cavity mode.

8.4 Ground-state cooling

We now examine the results of the MCWEFS for the optimised three-step cooling
sequence, averaged over a sufficiently large ensemble of 1000 trajectories. Figure 8.3
shows the mean kinetic energy per particle (Eyi,) as a function of time. Note that
for our choice of the initial state (cf. previous section) half of the population resides
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Figure 8.4: Projection onto the fermionic ground state P,. The parameters are the
same as in fig. 8.3.

in odd and even momentum states, respectively. Hence the best possible cooling
achieves (Fyin) = 0.5ER. For bosons, where in our initial state both particle momenta
always have the same parity, this means that only half of the population can be
cooled to the ground state |0,0). For fermions, however, the ground states are the
anti-symmetrisations of |+1,0). As these states have mixed momentum parity, just
like the initial state for fermions, it is in principle possible to cool the ensemble to
quantum degeneracy as seen in fig. 8.4. The black lines in fig. 8.3 correspond to
bosons with an initial condition where only even momentum states are populated. In
the ring cavity case the mean kinetic energy approaches zero and quantum degeneracy
is reached. In all cases cooling in the linear cavity is not as efficient compared to the
ring cavity geometry. The reason for this will be discussed below.

In figs. 8.5 and 8.6 the single-particle momentum distribution is plotted over
time. It can be seen that each stage redistributes states with a distinct momentum
|p| = nhk to corresponding lower momentum states with |p| = (n — 2)hk. The greater
efficiency of a ring cavity compared to a linear cavity is most apparent in the last
stage, where in the standing-wave case a considerable fraction of the population
remains trapped in the |p| = 2hk states. Figure 8.6 shows that for a ring cavity only
a very tiny amount of population is left in the |p| = 2k momentum state. Its ratio
to the p = 0 population can be used as a first estimate for an effective temperature
in the even momentum state space via Py/Py =~ exp(—4FER /kpTeq), which hints for
a subrecoil cooling behaviour.

8.5 Qualitative difference between ring cavity and linear
cavity

The fact that not all of the population is transferred to |p| = 0, +1Ak momentum
in a standing wave is apparent from the final momentum space distributions. This
effect is connected to subspaces of the two-particle Hilbert space which are invariant
under the Hamiltonian (8.1) for a. = 0 and do not include the lowest energy states.
Any population initially present in one of these subspaces is thus inaccessible to
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Figure 8.5: Single-particle momentum distribution for bosons in a ring cavity. The
initially broad distribution is cavity-cooled to |p| = 0, £1hk momentum
states. The parameters are the same as in fig. 8.3.

ground-state cooling. A typical example is the bosonic state
[¥) = (10,2) +2,0) — [0, -2) — [-2,0)) /2. (8.4)

This state is a dark state for the linear cavity and the particles will not scatter
any photons. On the other hand, in a ring cavity the interference term between the
two modes (i.e. the second line of eq. (8.1)) breaks this symmetry and the atoms
redistribute light between the two modes while being transferred to the bosonic ground
state |0,0). As mentioned above, collisions between particles or an external atom
trap decrease the lifetime of such a dark state preventing population accumulation.
This might explain the absence of these trapping states in the experiment [8.10].

8.6 Momentum correlations

Let us finally look at the connection between particle correlations, cavity cooling
and quantum statistics in our simulations. Already in the classical limit particle
correlations lead to important modifications of single-mode cavity cooling [8.21].
Classical simulations of ring cavities reveal a strong damping of the centre-of-mass
motion leading to momentum space (anti-)pairing of particles [8.22]. On the contrary,
for the case of two deeply trapped quantum particles or membranes in a ring resonator
positive momentum correlations and even entanglement emerged [8.16]. The former
can be quantified by the momentum correlation coefficient (normalised covariance)

C cov(p1,p2) _ (prp2) — (p1)(p2) (®.5)
" ApiAp ApiApy '
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Figure 8.6: Occupation probabilities of the lowest few momentum eigenstates for
bosons in a ring cavity (upper left), bosons in a linear cavity (upper right),
fermions in a ring cavity (lower left) and fermions in a linear cavity (lower
right). Same parameters as in fig. 8.3.

Here we extend this study to indistinguishable particles obeying either Bose or
Fermi statistics. In fig. 8.7 we show C, as a function of time exhibiting a complex
evolution. Note that in the unperturbed ground state bosons as well as fermions are
uncorrelated. Thus all population in the lowest energy states does not contribute
to momentum correlations and ideal cooling should eliminate all correlations. The
small excited state fraction, however, reveals strong correlations as highlighted in the
two-particle momentum space distribution shown in fig. 8.8. As one might expect,
fermions are anticorrelated and bosons are correlated in momentum space. This
behaviour is substantially more pronounced in ring cavities and, in the case of bosons,
survives very long cooling times, even exhibiting an oscillatory behaviour. Note that
positive pair correlations with zero average momentum strongly point towards the
appearance of momentum-entangled states.

Let us remark here that these correlations can be much stronger if the pump is
tuned away from optimal cooling. One can enhance certain correlation by targeting
the corresponding states instead of the ground state in a tailored pulse sequence. A
detailed analysis, however, would go beyond the scope of this work.

8.7 Conclusion and outlook
Extensive numerical simulations confirm the experimental observation of subrecoil

cooling towards degeneracy using high-@) cavities. We show that efficient cooling of a
thermal distribution requires either collisional redistribution or several cavity modes

86



8.7 Conclusion and outlook

7" bosons ring —
fermions ring ---
bosons linear ------

fermions linear i

600 800 1000 1200

WRt

Figure 8.7: Momentum correlation coefficient (8.5) for different particle statistics and
cavity geometries. The parameters are the same as in fig. 8.3.

to avoid the appearance of decoupled momentum subspaces, which cannot be cooled
solely by a single mode as in the recent Hamburg experiment [8.10]. We predict that
bosons and fermions can be cooled in the same way towards a high occupation of
their respective ground states.

As a ring cavity works generally much better than a single-mode resonator one can
expect further improvements including more modes similar to the classical case [8.23].
In principle, a linear cavity supports many non-degenerate modes separated by the
free spectral range, so that one could also envisage an extension of the studied scheme
to such a multimode setup. The sequential pulses can then be replaced by differently
detuned driving lasers for these modes. This would allow to address the three cooling
stages simultaneously and hence to reduce and optimise the cooling time. Such a
setup also allows to generate and observe more exotic particle—particle correlations.

As a bottom line we suggest that cavity cooling is a viable route towards producing a
degenerate gas of a wide class of polarisable particles without the need of evaporation.
Hence it could be applied at much lower densities and particle numbers once a
sufficient number can be loaded inside a high-Q) resonator.
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Figure 8.8: Two-particle momentum population at times where the (anti-)correlations
are maximal according to fig. 8.7. Positive correlations (bosons) and
negative correlations (fermions) can be seen in the occupation profiles
being elongated along different diagonals.
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Laser-driven particles in resonators
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Chapter 9

Background to cavity-induced atomic
self-organisation

There are essentially two possibilities for coherently driving a coupled particle-cavity
system with a laser: shining the laser on the partially reflecting mirrors of the cavity
to drive the cavity mode, or shining the laser on the particle from the side. The
former case has been discussed so far, in the latter case the particles are excited
and can emit fluorescence photons to free space, but through the coupling to the
resonator photons also can be scattered coherently into the cavity. In fact, in the
far detuned regime of low atomic excitation and with a strong coupling constant g,
the coherent scattering process dominates spontaneous emission [9.1]. As has been
discussed before (cf. sec. 6.1), dynamical cavity cooling in the good cavity and strong
coupling regime works by non-adiabatically exciting dressed states. These dressed
states can be addressed with both laser pump configurations, therefore cavity cooling
also works in a scenario where the particles are pumped transversally. This has been
pointed out for example in [9.2], where even lower temperatures compared to a setup
with direct cavity pump were predicted.

There is, however, a fundamental difference between the two scenarios. While
the optical potential created by the cavity mode proportional to cos?(kz) has a
periodicity of A/2, a transversal driving field leads to interference with the cavity field
with the periodicity of A. With an initially empty cavity mode and a homogeneous
particle distribution, density fluctuations of the particles lead to photon scattering
into the cavity and an emerging intra-cavity field with random phase. Above a certain
threshold pump strength the system undergoes a transition from an unordered
phase to a phase with long-range order in the resulting optical potential with A-
periodicity. Because the initial phase is random, there is a broken symmetry in this
self-organisation process with two possible configurations: in two dimensions, these
configurations resemble the occupation of black or white fields of a checker board,
respectively. If the particle motion is restricted to one dimension, as is the case in
the scope of this thesis, it is the occupation of either the ‘odd’ or the ‘even’ sites
which characterise the self-organisation.

This unique effect has been predicted by Domokos et al. [9.3] and experimentally
confirmed by Black et al. [9.4]. The underlying mechanism is a strong cooperative
coupling of the atoms to the radiation field, leading to a runaway process where the
atoms are trapped, cooled and organised in the field they scatter into the cavity,
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enhancing further the rate of scattered light. Ultimately momentum diffusion and
the resulting residual kinetic energy competes with the self-organisation process. The
arising atomic distribution is comparable to a self-sustained Bragg lattice optimising
scattering into the cavity. Historically, a similar effect of ‘optical binding’ has been
predicted [9.5], and a related concept of self-organisation gives rise to the idea of a
collective atomic recoil laser [9.6].

One of the signatures of self-organisation is a ‘super-radiant’ scaling of the intra-
cavity intensity with N2, the square of the particle number. In contrast, for a
configuration with a spatial period of \/2, negative interference of light scattered
from the individual potential wells leads to a field intensity scaling proportional to
N related to density fluctuations [9.3, 9.4]. Another signature is the observation of
random jumps of 7 in the phase of the emitted cavity light between experimental
runs, corresponding to the two possible configurations [9.4].

The significance of atomic self-organisation in an optical resonator extends beyond
the possibility to circumvent a potentially unfavourable linear scaling of the cavity-
assisted cooling time with the particle number [9.3, 9.7]. There is a strong connection
between self-organisation and the famous Dicke model describing an ensemble of
two-level atoms strongly interacting with a single mode [9.8], which is known to
undergo a phase transition from a normal to a super-radiant phase [9.9]. A tremendous
experimental challenge for any realisation of the Dicke model and its phase transition
is the requirement of a coupling strength on the order of the energy separation of
the involved states, a condition which is nearly impossible to satisfy directly for
transitions in the optical frequency range. Instead it was proposed to utilise strong
cavity-induced Raman-type coupling between atomic ground states [9.10], and this
idea was then generalised to a two-mode expansion of the atomic matter field of a
Bose-Einstein condensate [9.11, 9.12]. In fact, a laser-driven BEC inside a high-finesse
cavity can be directly mapped to the Dicke model, with collective excitations in
momentum space constituting self-organisation. In this configuration, the phase
transition from the unordered to the organised phase is equivalent to the Dicke
phase transition. The resulting state of matter can be regarded as a supersolid [9.13,
9.14] with non-trivial diagonal long-range order (periodic density modulations) and
non-diagonal long-range order (phase coherence).

To the present day research on self-organisation is a very active field. The semi-
classical regime [9.15-9.18] and self-organisation of bosons [9.19-9.23] has been studied
extensively. Recently, the effect of fermionic statistic has been addressed [9.24-9.26],
predicting a strong suppression of the pump threshold for self-organisation of a
quantum-degenerate Fermi gas if the cavity photon momentum coincides with twice
the Fermi momentum. Our own work presented in chapter 10 confirms this effect
numerically for the few-particle case in simulations including quantum fluctuations
of the particles and the cavity mode, without prescribing a fixed temperature and
going beyond the two-mode expansion of the Dicke model.
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Figure 10.1: Polarisable particles moving along the axis of a standing-wave optical
resonator are coherently pumped in the transversal direction. Above
a critical threshold the particles collectively scatter photons into the
cavity while organising themselves in the emerging optical potential.

10.1 Introduction

Ultracold particles moving in an optical resonator are a fast growing research field
since the advent of laser cooling [10.1-10.3]. The establishment of cavity cooling [10.4]
extended cooling possibilities to a large class of linearly polarisable particles and in
the last years cavity optomechanics [10.5] has experienced a tremendous boost, both
theoretically and experimentally [10.3]. Recently, cavity cooling was even extended to
the subrecoil regime in the domain of ultracold quantum gases where the nonlinear
coupled dynamics of field and particles require a full quantum description [10.6-10.8].

Particularly rich physical dynamics appear for transversally illuminated particles
inside high-@ optical resonators (cf. fig. 10.1), where the cavity-induced backaction of
the scattered field onto the particles induces a phase transition to crystalline particle
order. First described semiclassically [10.9-10.15] this phenomenon also appears
quantum-mechanically as a phase transition at zero temperature [10.16-10.23]. Above
a critical threshold pump laser intensity the atoms form self-sustained regular Bragg
lattices, which maximise the collective scattering of laser light into the resonator
(superradiance). Self-organisation has been experimentally demonstrated with both
thermal gases [10.24, 10.25] and atomic Bose-Einstein condensates (BECs) [10.26—-
10.28]. It bears a close connection to the generic model of the Dicke superradiant
phase transition [10.29-10.31].

Interestingly, the quantum statistical properties of the particles have a decisive
influence onto the self-ordering dynamics. As a particularly striking effect, a resonant
reduction of the superradiance threshold for fermions almost towards zero pump
amplitude has been predicted when the cavity photon momentum coincides with
twice the Fermi momentum [10.32-10.34].

Since we are dealing with an open system with atom pumping and photon leakage
through the mirrors, fluctuations and nonthermal equilibrium phenomena are essential
parts of the full dynamics, as already observed experimentally [10.35, 10.36]. We
consider here the so-called dispersive limit at high laser to atom detuning, where
the particles constitute a dynamic refractive index within the resonator and only
coherently scatter pump laser light into the cavity. The relative phase and magnitude
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of the scattered photons depend on the particle positions, while the motion of the latter
is governed by the optical dipole force exerted by the cavity and pump fields [10.1].
Recent experiments [10.6, 10.28, 10.36] have achieved cavity loss rates small enough
to be comparable to the particle recoil energy scale. Lacking separate timescales, the
light field then does not adiabatically follow the particle motion, inducing an even
more complex correlated or even entangled particle-field dynamics.

At the semiclassical level and for distinguishable particles the nonthermal properties
of the corresponding stationary equilibrium state and its transient dynamics have
been studied recently [10.12-10.15]. A related study was carried out for bosons at
zero temperature with emphasis on the effect of cavity losses on the depletion of
a BEC [10.37]. In addition, the effect of fermionic statistics on the nonequilibrium
stationary state has been explored with perturbative diagramatic techniques [10.38].

In this work we investigate quantum-statistical effects on the nonequilibrium
stationary state close to the self-organisation threshold. Upon including quantum
fluctuations and Markovian noise induced by photon losses, we compute the density
matrix of the joint state of light and up to five atoms. Here the particles’ average
energy is not set by a prescribed temperature, instead their momentum distribution
follows dynamically from the interplay of cavity cooling and fluctuations. In general,
a nonthermal distribution emerges, which exhibits strong atom-field correlations. In
principle, even starting from a particle ensemble at finite temperature, the combined
cooling and self-ordering can lead to a quantum degenerate ordered final state.

Since the photons leaking out of the cavity provide a directly accessible non-
destructive probe of the system, we characterise the self-organisation transition with
the help of the Husimi-@Q-function, the intensity and the power spectrum of the light
emitted from the cavity. This provides an experimentally directly accessible tool,
so that the whole self-ordering phase transition process can be monitored in real
time even in a single experimental run with minimal backaction [10.2]. To investigate
the full quantum limit of cavity-induced self-organisation and cooling we resort to
numerical solutions of the master equation within a truncated atomic momentum
Hilbert space for a finite fixed particle number.

10.2 Effective mode model

We consider N ultracold particles within a high-Q) optical resonator illuminated by
a transverse laser far detuned from any internal resonance (cf. fig. 10.1). The light
scattered by the particles into the resonator interferes with the pump field and creates
an optical lattice potential along the cavity axis. We assume the particles’ motion
to be restricted to the cavity axis by means of a suitable transversal confinement.
The coherent time evolution of this joint particle-field system is then governed by
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the second-quantised Hamiltonian [10.1, 10.18]

L/2 <t h? d? ; 9
H = 7L/2\Ij (f) [*%@ +hUOCL a cos (kCC)

+hn(a + ab) cos(k:x)} U(z)dz — hAcata, (10.1)

where k denotes the wave number of the cavity mode which also sets the recoil energy
scale hwr = h?k?/(2m), m is the mass of a single particle, and L = M2n/k is the
unit cell length of the periodic boundary conditions, equal to an integer M times
the wavelength A = 27 /k. The parameter Uy is the light shift per particle, n the
effective pump amplitude per atom and a the annihilation operator of a cavity photon.
The field operators () (¥(x)) create (destroy) a particle at position 2 and obey
bosonic or fermionic commutation or anticommutation relations, respectively. The
Hamiltonian (10.1) is expressed in a reference frame rotating with the pump laser
frequency wy. Consequently, the detuning A := wp — we between the pump and the
bare cavity resonance frequency appears explicitly.

As an important feature the Hamiltonian (10.1) allows for momentum transfers of
Ap = +hk in addition to Ap = +2hk from scattering within the cavity [10.7, 10.39].
This enables the system to self-order and has also important consequences for the
cooling behaviour. Note that direct particle-particle interactions, which could induce
arbitrary momentum transfers Ap (e.g. collisions), are neglected.

The second-quantised representation (10.1) allows us to optimally exploit the
symmetries of the system and the bosonic or fermionic statistics of the quantum
particles. To this end we expand the particle’s creation and annihilation operators in
the complete set of orthonormal mode functions

{\/z, @Cos(nAkm), \/Esin(nAkx)} (10.2)

with integer n > 1. The momentum space discretisation is given by hA, = k2w /L,
therefore the cavity wave vector k is an integer multiple of Ay (k = M Ay). The high-
energy modes can be excluded from the model by introducing a cutoff n < n. [10.18].
This is possible as their occupation remains low due to the ongoing cavity cooling
effect [10.9]. Additionally, we introduce a cutoff for the cavity photon number. Both
cutoffs were checked for consistency a posteriori.

Note that the subspaces spanned by odd (sine) and even (cosine) parity modes,
respectively, are decoupled. For bosons initially in a BEC the sine modes remain
unpopulated and can be excluded from the picture. For a degenerate Fermi gas,
however, all modes with energies below the Fermi energy are filled up, therefore sine
and cosine modes both have to be taken into account. Nevertheless, the dimensionality
of the actual problem to be solved can be further reduced by exploiting invariant
subspaces (cf. appendix 11.1).

Photons leaking out of the resonator inevitably introduce noise and damping into
the system and thus prevent a pure Hamiltonian evolution of the system’s Schrodinger
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wave function. Much rather, the system will evolve into a stochastic mixture described
by the joint particle-field density operator governed by the master equation [10.40]

p= % [H,p| + K (2@/)@T —alap — paTa) , (10.3)
with the cavity photon decay rate 2x. We neglect spontaneous emission of the atoms
under the assumption of a large detuning of the laser with respect to any internal
atomic resonance. An expansion of the (bosonic or fermionic) field operator ¥(z) in
terms of the mode functions (10.2) yields an effective mode model, whose explicit
Hamiltonian is reported in appendix 11.1.

10.3 Self-organisation in the quantum regime

Self-organisation can be understood already on a classical level, i.e. with classical
particles and a damped cavity field [10.9, 10.11]. At this level, when the threshold
pump strength for the phase transition is reached, the symmetry of the system is
spontaneously broken as the initially homogeneously distributed particles organise
and occupy one of two possible configurations [10.1, 10.9] corresponding to even
or odd sites of the cavity optical lattice ~ cos?(kz). In the perfectly homogeneous
phase, no photons are scattered into the cavity because of destructive interference
and self-organisation is triggered only by density fluctuations. The occupation of
the odd or even potential wells, respectively, is associated with one of two opposite
phases of the intracavity light field relative to the pump laser. The order parameter
of the phase transition is given by © = (cos(kz)) (or equivalently (a)), which is zero
in the completely homogeneous phase and +1 in the limit that the particles are
completely localised at antinodes. Quantum-mechanically, the dynamics lead towards
a self-organised state which is a superposition of the two configurations in odd and
even wells correlated with the corresponding field phase [10.41]. Initial atom-field
entanglement decays on the timescale of the photon lifetime rendering the stationary
state into a mixture of the two configurations.

For both the entangled state and the mixture the mean field (a) and the order
parameter (cos(kz)) are zero, while the photon number (afa) is finite. Above threshold,
the stationary state is approximately [10.16]

1 1
Pss =~ 5 ‘0‘7 +> <a7 "H + 5 |—04, _> <_O‘= _’ ) (10'4>

where |o) is a coherent state with complex field amplitude o and |+) is the state
of particles organised in the odd or even wells, respectively. With increasing pump
strength, the components’ coherent states |«) and |—a) have less and less overlap.
This behaviour can be seen in the Q-function [10.42] of the cavity field, as shown in
fig. 10.2a.

The classical order parameter (cos(kz)),,, is always zero and thus unsuitable in
the quantum case. In order to find an alternative measure, we project pss to obtain
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Figure 10.2: a) The order parameter © and intracavity photon number (a'a), b)
the cavity field spectrum |S(w)| as a function of the pump strength,
respectively. Insets: The Q-function of the photon field splits up into
two coherent peaks across the threshold. Parameters: N = 2 bosons,
Uo/wR = —0.5, KJ/wR = 1, AC/wR = —2.5.

Po = (| pss|) / tr {a|pss|a), with o maximising the @Q-function obtained from the
cavity field associated with pgs. Far above threshold, where (o] — o) ~ 0, we have
Po = |+) (+]. We then calculate the order parameter with this projected particle
state, i.e.

© := (cos(kx)),, - (10.5)

As long as the @Q-function only has one maximum at o = 0, this is exactly zero
because of the system’s symmetry. The threshold 7., i.e. the driving for which © first
becomes larger than zero, is therefore defined to be the pump strength at which the
@-function splits up and has two local maxima. The sudden increase of the mean
intracavity photon number at the threshold, which is expected in the thermodynamic
limit, is smoothened in the few particle regime considered here. This is illustrated in
fig. 10.2a.

In addition to the order parameter, the onset of self-organisation can also be
seen in the cavity field spectrum, as observed experimentally with a BEC [10.27,
10.43]. To this end we calculate S(w) = F({a'(T 4 t)a(T))), where F is the Fourier
transform with respect to ¢, and T is a time sufficiently large for the system to have
reached its stationary state [10.42]. Figure 10.2b shows |S(w)| for bosons. Below
threshold, the two peaks correspond to collective modes, characterised by light-field
oscillations and particles excited from momentum zero to hk and vice versa. At
low pump strength, the peaks are located at ~ +wgr and are almost perfectly sharp
(undamped) since the collective modes are almost purely atomic excitations. Slight
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Figure 10.3: Time evolution of the momentum population p for a) bosons and b) fer-
mions, starting with a quantum degenerate initial state at temperature
zero. Participation of the fermion with p = 0 in the photon scatter-
ing dynamics is strongly suppressed, as its target states p/(hk) = +1
are essentially blocked. Parameters: N = 5, n/wr = 2, A./wr = —4,
UO/CL)R = —0.5, Ak/k = 0.5.

asymmetries in the peaks are caused by the difference between positive and negative
energy fluctuations with respect to the laser frequency, corresponding to stokes and
anti-stokes processes. With increasing pump strength, apart from a broadening of
the peaks due to mixing of atomic excitations with the decaying photonic excitations,
we observe a softening of the collective modes which become energetically less and
less costly. At a critical pump strength these modes are shifted to zero energy (w =0
in fig. 10.2b). This process, accompanied by collective scattering of photons into the
cavity at the laser frequency, is called superradiant because of the quadratic scaling
of the photon number with N. The presence of such a dominant coherent peak at
w = 0 is thus an additional characterisation of self-organisation, as already observed
semi-classically [10.15]. Within our model this superradiant coherent peak has zero
width since we do not include a finite linewidth of the pump laser.

For fermions, the behaviour of the order parameter is qualitatively similar to
the bosonic case illustrated in fig. 10.2a. The spectrum, however, shows qualitative
differences which will be discussed below.

10.4 Quantum statistics and self-organisation

Self-organisation and superradiance have been demonstrated with both a thermal
gas [10.24, 10.25] in the classical regime as well as for a BEC close to T'= 0 [10.26,
10.28]. Self-ordering of course requires excitations out of the p = 0 condensed state
to higher momenta with increments +hk (cf. fig. 10.3a). The qualitative behaviour
of BEC self-organisation resembles its thermal counterpart, with the recoil energy
scale hwg playing the role of the temperature scale kg7 [10.44].

In contrast to bosons, fermionic statistics allows for a qualitatively different self-
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Figure 10.4: The phase diagram of two and three bosons and fermions, respectively.
The threshold is compared with the analytic results of [10.12] in the
semiclassical limit (dashed line) and [10.44] for bosons (dash-dotted line),
as well as [10.38] for fermions (solid line, kp/k = 1). For bosons, the
sudden decrease of the order parameter with increasing pump strength
is an artefact of the photon number cutoff. Parameters: Uy/wr = —0.5,
k/wr = 1.

ordering behaviour [10.32-10.34]. In fact, a Fermi gas introduces a new internal energy
scale, the Fermi energy er, and indeed its ratio to the recoil energy hwr dramatically
affects the behaviour of the fermionic self-organisation. As illustrated in fig. 10.3b,
due to the Pauli pressure fermions occupy higher momentum states even at T'=0
including cosine and sine modes. This prevents a direct mapping of the system’s
Hamiltonian onto an effective Dicke model (demonstrated for a BEC [10.45]) and
the understanding of self-organisation in terms of a simple superradiant transition
is not possible, except for the limiting case of an infinitely large Fermi momentum
relative to the cavity photon momentum [10.46].

The central effects of Fermi statistics on self-ordering so far have been evaluated
based on the assumption of a thermal equilibrium for the particles and neglecting
the role of quantum fluctuations of the cavity field [10.32-10.34]. Here we test these
predictions in comprehensive nonequilibrium simulations for a small number of
particles including light-matter entanglement and quantum fluctuations of the cavity
field. Due to Pauli blocking we can expect that for fermions not all particles will
equally participate in the self-organisation phenomena. Whilst for classical particles
and bosons scattering of a photon is always allowed and thus the critical pump
strength scales as 7. o< 1/v/N [10.10, 10.12, 10.21, 10.44], only fermions coupled to
an unoccupied final state can scatter (cf. fig. 10.3b). This fraction strongly depends
on the Fermi energy and hence scales differently with V. For a sharp Fermi surface,
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Figure 10.5: a) Cavity field spectrum and b) initial conditions with lowest-energy
particle excitations for bosons (I) and fermions (II-IV). For fermions the
value Ag/k =1,0.5,0.25 is varied. For bosons only the case Ay /k =1
is shown, as the dynamics are unchanged in the other cases. Note that
in case II the peaks in the spectrum at twpg correspond to transitions
which are forbidden in the initial state but become possible during
relaxation towards the stationary state. The frequency of the transition
indicated by the arrow in II b) lies outside the depicted spectral range.
The resonance condition k = 2kp is fulfilled in IV. Here the central
peak in the spectrum at the laser frequency (w = 0) is dominant even
for the smallest pump strengths. Parameters: N = 4, Uy/wr = —1/16,
kjwr =1/8, Ac/wr = —1/2.

ne can be estimated analytically. In one spatial dimension one obtains ep oc (N/L)?,
which in turn means 7. o< /In(N)/N for k > kg or even 1. o VN for k < kg [10.32].

Figure 10.4 depicts the value of the order parameter (10.5) as a function of the
(dispersively shifted) cavity detuning and the pump amplitude for two and three
bosons and fermions, respectively. In this low-particle regime the notion of a sharp
Fermi surface becomes questionable. Nevertheless, we see qualitative agreement of
our numerical data with the scaling discussed above: for N = 3 fermions the rescaled
V/Nne is larger than for N = 2, while for bosons it does not change.

While the Fermi blockade causes an unfavourable threshold scaling with the number
of particles, the existence of a Fermi surface can also give rise to a resonant reduction
of the threshold if k& = 2kp. This “umklapp superradiance” [10.32] involves particles
scattered from one end of the Fermi surface to the other (i.e. from —kp to kp)
by the two-photon transition with momentum transfer hk = 2hkp. This process
has essentially no energy cost and thus can drastically lower the self-organisation
threshold. Here the ordered state is very close to the Fermi surface and has essentially
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the same kinetic energy as the homogeneous ground state. Note that this availability
of some already excited particles can also explain the threshold reduction found
in [10.21] for bosons at small temperature compared to the zero temperature limit.

In our simulations with a fixed number of fermions prepared initially at 7' = 0, the
resonance condition k = 2kp can be reached by different means: either by adjusting
the cavity wavenumber k directly or by altering the particle density L/N and thus
the Fermi momentum. Here we choose to keep k fixed and vary the trap volume L
which the fermions can occupy by altering Ay = 27/L. This has the advantage that
the recoil frequency wr stays the same for all parameters.

In order to investigate the role of umklapp superradiance, we prepare the initial
state in the resonant condition, perform the full quantum dissipative evolution and
compute the order parameter and intracavity spectrum once the stationary state
is reached. As mentioned in the beginning, our simulations include the relaxation
of the particles into a (generally) nonequilibrium stationary state different from
the initial one. In particular, redistribution of energy and momentum will alter
the Fermi surface, thereby modifying the resonance condition. Whether and how
the umklapp superradiance manifests itself in this stationary state is a non-trivial
question. The answer is illustrated in fig. 10.5. Here we compare bosons in a BEC
with zero-temperature fermions at three different densities corresponding to the three
Fermi momenta krp = 2k (Ar = k), kr = k (Ax = 0.5k) and 2kp = k (A = 0.25k).
In the last case the resonance condition is fulfilled. Initially, with no cavity photons
present, the particles move freely with a quadratic dispersion relation. As already
mentioned, the cavity only supports momentum transfer to and from the particles in
units hk. This corresponds to steps of 1 on the xz—axes of fig. 10.5b, where arrows
indicate the particle excitations with lowest possible energy cost. These excitations
are visible in the spectra shown in 10.5a as peaks at the corresponding frequencies.

The effect of resonant umklapp scattering is clearly visible in the spectra by
comparing the initially resonant case (fig. 10.5a IV) with the other two fermionic
non-resonant cases as well as with the bosonic case. The appearance of a coherent
peak at zero frequency in the resonant case signals the onset of superradiance even
at almost vanishing pump strengths. For all the other cases this onset of a coherent
scattering peak is located at higher pump strengths. Such a low superradiant threshold
is possible because of (almost) resonant particle excitations with momentum hk,
creating the correct density modulation period for coherent Bragg scattering into
the cavity.

Even though the umklapp resonant condition can lower the threshold for the
appearance of the superradiant peak much below the bosonic threshold, the number
of photons in the cavity and the amplitude of the order parameter (10.5) can still be
lower than in the bosonic case, due to the unfavourable scaling with N illustrated
above. For instance, the threshold pump strength scales as 9. ~ /N/In(N) at k ~ 2kp
if we assume a sharp Fermi surface. Therefore the effect of umklapp superradiance
is much less visible in the photon number or the order parameter as compared to
the spectrum. Still, for certain parameter regimes and in the resonant case a lower
self-organisation threshold for fermions can be seen even in these quantities, as shown
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Figure 10.6: a) Order parameter and b) photon number for fermions (solid line) and
bosons (dashed line) for the resonance case k = 2kp. The threshold for
fermions is lower compared to bosons. Insets: The Q-function of the
photon field at a pump strength which lies above threshold for fermions
and below threshold for bosons, respectively. Same parameters as in
fig. 10.5.

in fig. 10.6.

10.5 Conclusions

Self-ordering of ultracold particles in an optical resonator field survives as a stationary
nonthermal equilibrium state in the long-time limit even if cavity losses with their
inherent field quantum fluctuations are taken into account. The quantum statistics of
the particles turns out to have a decisive influence on the light-induced crystallisation
of quantum particles in cavity fields even in this nonequilibrium context. This can be
nicely monitored in real time with minimal perturbations by observing the spectrum
of the scattered light.
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Chapter 11

Additional material

11.1 Mode model

Starting from the Hamiltonian (10.1), we use the mode model from [11.1], extended to
include the sine modes and generalized for an arbitrary momentum space discretisation
Ayg.

We expand the particles’ field operator \T/(ac) in the complete set of orthonormal
mode functions

1
vo,1(x) = i3

on1(x) = \/Ecos(nAlﬂ), on—1(x) = \/?sin(nAkx), (11.1)

with integer n > 1. The modes are labeled by the multi-index j = (j, jr), which
contains the mode number j and the parity j, = 1 for the cosine and j, = —1 for
the sine modes. This yields the decomposition

U(x) =D ()5, (11.2)

J,j<nc

where the ¢; follow either bosonic or fermionic (anti-) commutation rules and the
¢j,—1 operators are formally set to zero for bosons.

With ¢ = (éo,1,..,Cne,1,C1—1, - .,énm_l)T as column vector and &f = (6;5 Lree
AT T AT

Cne1>Cl—1y- > Cp. 1) as TOW vector, we can write the Hamiltonian (10.1) as

H = —hAcata + hog (aTKé) + h(a + ah) (éTCk/Aké)

T h%cﬁa (é* (I + C%/Ak) c) . (11.3)

where wr = hk?/(2m) is the recoil frequency and I is the identity matrix. The
matrices K and Cj; with integer M, producing the kinetic energy term and the
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terms proportional to cos(kz) and cos(2kz), respectively, are defined as

0 b
Az 1222 ab /VI%

2
& 1% , b /b
: 0

where a = 1/v/2 and b = 1/2. For C}, the two blocks belong to the cosine and sine
modes, respectively. The two populated secondary diagonals are separated by M
modes. Additionally, modes j, k for which j + kK = M are coupled by the entries b for
cosine modes and —b for sine modes, respectively. For reference, the quadratic forms
appearing in the mode-expanded Hamiltonian (11.3) read

1
NPEUEE T 7 T At
¢'Cye = ﬂ (CM,ICOJ + CQJCM,l)

1 . A A
+ 5 Z 0 ker [5j,k+M + i1 mk + ]w5j+k:,M} c}ck. (11.5)
T
1§jJ7kSnc

For our simulations we use the usual basis of Fock states

{‘n0,1,-~~annc,1§n1,—1;-~~,nnc,71>} (116)

ZJ. nj:N7
where nj =0,..., N for bosons and n; = 0,1 for fermions.

As already noted and as can be seen from the coupling matrices (11.4), sine and
cosine modes are decoupled. However, for M := k/Aj > 1 one can identify further
subgroups of modes which are decoupled from all other groups. We will now specify
these groups and use them to identify invariant subspaces of the Hilbert space H
spanned by the basis states (11.6).

Let us group all available modes into s sets of modes, where s := [M /2| + 1 for
bosons and s := 2| M/2] 4+ 1 for fermions:

g1 = {jljr =lr,jmod M =1V jmod M = M —1}, (11.7)

with I = 1 (I = £1) for bosons (fermions) and I < [M/2]. The significance of
these sets is that two modes are coupled through the dynamics induced by the
Hamiltonian (11.3) if and only if they belong to the same set. As a consequence, the
number operator corresponding to each group, i.e.

iy =Y ele (11.8)
J€q

commutes with H and () is constant over time. This enables us to define invariant
subspaces of H: two basis states of (11.6) belong to the same invariant subspace if
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and only if they produce the same s-tuple ((7;));. We can exclude any basis state
from our model if it belongs to a subspace which is not populated by the initial state.

For example, for a degenerate Fermi gas with N =4, k/Ay = 4 and n. = 6, the
basis (11.6) consists of 715 states. By virtue of the above considerations we only have
to take 72 basis states into account.
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