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Zusammenfassung

Die vorliegende Arbeit befasst sich mit hybriden Implementationen in der Cavity
Quantenelektrodynamik (Cavity QED). Darunter versteht man Systeme, die Grund-
bausteine aus der Circuit Quantenelektrodynamik (Circuit QED) mit kalten Ato-
men oder mit Spins in Festkörpern kombinieren. Die Bausteine der Circuit QED sind
kleine Inseln und Drähte aus supraleitendem Material, die sich zu Resonatoren und
künstlichen Atomen zusammensetzen lassen. Ein wichtiges Ziel ist die Schaffung
einer Verbindung zwischen den unterschiedlichen Implementationen in der Cavity
Quantenelektrodynamik, um so deren jeweilige Stärken nutzen zu können. Systeme,
die auf echten Atomen basieren haben den Vorteil, dass ein Photon über eine relativ
lange Zeit in einem Atom oder einem Ensemble von Atomen gespeichert werden
kann. Künstliche Quantensysteme können sich ähnlich verhalten wie echte Atome,
haben aber den Vorteil, dass sie auf kleinstem Raum integriert werden können und
auf viel kürzeren Zeitskalen manipulierbar sind. Um die Stärken der verschiede-
nen Implementationen nutzen zu können, muss eine Verbindung hergestellt werden,
was durch starke Kopplung an einen gemeinsamen Resonator erreicht werden kann.
Im Bereich der künstlichen Quantensysteme werden häufig supraleitende Koplanare-
Wellenleiter-Resonatoren (CPW Resonatoren) eingesetzt. Ein vorrangiges Ziel dieser
Arbeit ist es daher, aufzuzeigen, unter welchen Umständen starke Kopplung zwischen
Ensembles von Atomen oder, alternativ, zwischen Stickstoff-Fehlstellen-Zentren in
Diamant, und einem CPW Resonator erreicht werden kann. Darüber hinaus erge-
ben sich interessante Perspektiven, um auf dieser Basis neuartige Lasersysteme zu
entwerfen und zu untersuchen.

Dieser Teil der Arbeit entstand in enger Kooperation zwischen Theorie und Expe-
riment, was viele Ideen und Ansätze hervorgebracht hat und darüber hinaus den
direkten Vergleich mancher theoretischer Ergebnisse mit den Experimenten ermög-
lichte. Die Experimente wurden in der Gruppe von Jörg Schmiedmayer, insbesondere
von Johannes Majer und Robert Amsüss, geplant und durchgeführt.

In einem weiteren Teilprojekt, das ebenfalls im Bereich der Cavity QED angesiedelt
ist, wird das Verhalten von Quanten Kaskadenlasern (QC Lasern) und deren Tem-
peraturbeständigkeit untersucht. Während in üblichen Halbleiterlasern Photonen
durch Übergänge zwischen dem Valenzband und dem Leitungsband erzeugt werden,
basieren Kaskadenlaser auf Übergängen innerhalb eines Bandes. Ein Kaskadenlaser
besteht aus sich wiederholenden Abfolgen von verschiedenen Halbleiterschichten,
die eine Serie von Potentialtöpfen bilden. Wird eine Spannung angelegt, so passie-
ren Elektronen die Struktur und es kommt wiederholt zur Emission von Photonen.
Üblicherweise wird die Leistung eines Kaskadenlasers durch Heizeffekte begrenzt.
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Zwischen den einzelnen Emissionsschritten werden Phononen erzeugt und der La-
ser erhitzt sich so lange, bis die Lasertätigkeit zum erliegen kommt. Ein Teil dieser
Arbeit beschäftigt sich mit Möglichkeiten, diesem unerwünschten Prozess entgegen-
zuwirken. Darüber hinaus wird ein alternativer Pumpmechanismus untersucht, der
auf einem Temperaturgradienten innerhalb der Halbleiterstruktur basiert anstatt
auf dem Anlegen einer Spannung.
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Abstract

This thesis is concerned with hybrid systems in cavity quantum electrodynamics
(cavity QED). These are systems that combine elements from circuit quantum elec-
trodynamics (circuit QED) with atoms or spin ensembles. A central goal of this
work is to establish a link between the different implementations in cavity QED
in order to pool their individual strength. Systems based on real atoms have the
advantage that an excitation can be stored over a relatively long time in an atom
or an ensemble of atoms. Artificial quantum systems, or circuit QED systems, can
behave like real atoms, but can be densely integrated on a chip and manipulated
on a shorter timescale. To combine the strength of both systems it is necessary
to connect them, a task that can be fulfilled by the strong coupling to a common
resonator. In circuit QED, superconducting coplanar waveguide (CPW) resonators
are widely-used. Thus, an important aim of this thesis is to demonstrate under
which circumstances it is possible to reach the strong coupling regime for ensembles
of atoms, or nitrogen vacancy centers and CPW resonators. Moreover, interesting
prospects for new laser systems in this context are investigated.

This part of the present thesis was performed in close collaboration between physi-
cists working in experimental and theoretical cavity QED. This collaboration moti-
vated many research objectives and allowed for the comparison of some theoretical
findings with actual measurements. The experiments were realized in the group of
Jörg Schmiedmayer, in particular by Johannes Majer and Robert Amsüss, at the
Atomic Institute in Vienna.

In a second project, also relating to cavity QED, the behavior of quantum cascade
(QC) lasers and their temperature stability are studied. While in conventional semi-
conductor lasers photons are created by transitions between the valence band and
the conduction band, QC lasers are based on intraband transitions. A QC laser is
built from repeated patterns of semiconductor materials which establish a series of
potential wells. An external electric potential causes electrons to travel through the
structure and leads to repetitive photon emission. The output power of a QC laser
is usually limited by heating processes. Between the photon emission steps, phonons
are produced and the laser gradually heats up until the lasing activity ceases. Here
we study possible ways to reduce this detrimental heating processes. Moreover, an
alternative mechanism for providing gain based on a sustained spatial temperature
gradient instead of an external potential is investigated.
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1. General Introduction and
Motivation

The theory of classical electrodynamics describes the interaction between charged
particles and the electromagnetic field. The idea that light is comprised of discrete
lumps of energy brings about the quantization of the electromagnetic field. Finally,
mirrors that form a cavity in which photons are repeatedly reflected single out
resonant field modes. In short: Cavity QED deals with the interaction between
matter and the quantized field modes in a resonator.

Starting with the first steps towards quantum electrodynamics, a short history of
the field of cavity QED is given in Sec. 1.1 to point out key developments and to
motivate the research activities presented in this thesis.

1.1. So it has come to this: A brief history of cavity
QED

The quantization of the electromagnetic field was motivated by the difficulties dis-
covered in the description of the nature of black-body radiation. In 1900 Max Plank
rather reluctantly presented the idea that the modes of the electromagnetic field ex-
change energy with heated bodies only in multiples of ~ω, thus solving the so-called
“ultraviolet puzzle”. This lumps of radiation with energy ~ω later were termed
“Lichtquanten” by Albert Einstein in his work about the photoelectric effect [1.1].
The actual term “photon” was suggested by Lewis in 1926 [1.2]. It was not until
the work of Schwinger, Feynman, Tomonaga and Dyson, who solved the self-energy
problem in the early formulation of quantum electrodynamics in the late 1940s, that
the theory became as successful as it is in describing the interaction of light and
matter. However, the key aspect of this research rather laid on matter than on
light. New paths were explored with the invention of new sources of light.



1. General Introduction and Motivation

The field of quantum optics owes its present relevance to the invention of the laser.
Early studies in quantum optics were mostly concerned with the statistical proper-
ties of laser light, thus introducing a theoretical description of the quantum states
of light [1.3]. The development of tunable lasers not only allowed for precision mea-
surements in spectroscopy, they are also an indispensable tool for the trapping and
cooling of atoms, techniques that are major building blocks of quantum optics as we
know it today [1.4–1.7].

A fundamental part of the theoretical description of light-matter interactions con-
cerns the treatment of dissipation in a consistent quantum mechanical way, as a
majority of the problems studied in quantum optics are open system, i.e. interact-
ing with some sort of environment. It is again the invention of the laser that triggered
the development of the description of dissipation in quantum mechanics. Since an
essential part of a laser is a lossy cavity, lasers are per se open systems. Naive
approaches to include damping fail when it comes to the requirement that, to be
consistent with quantum mechanics, the commutation relations must be preserved.
The solution lies in the close relationship between dissipation and fluctuations: The
interaction with the environment results not only in damping, but also in a fluctu-
ating force. Taking into account the fluctuating force preserves the commutation
relations, which becomes apparent in the Heisenberg picture [1.8, 1.9]. The equiva-
lent formulation in the Schrödinger picture is given by the master equation approach.
It also relies on the partition of the whole dynamics into those for the small system
we are interested in, those for a heat bath surrounding it, and an interaction between
system and bath [1.10, 1.11]. The requirements and results brought about by the
master equation approach are discussed in Sec. 2.3.

The field of cavity quantum electrodynamics was initiated by Edward Mills Purcell
who noted in 1946 that the spontaneous emission rate of a spin in a magnetic
resonance setup should be enhanced in a resonant structure [1.12]. The main idea
was to enhance the spontaneous emission rate by coupling it to a damped oscillator
(an R-L-C circuit), serving as an additional loss channel. The same argument holds
for the spontaneous emission rate of an atom in a cavity. Until Purcell’s note, the
spontaneous emission rate of an excited atom, arising from the coupling to near-
resonant field modes and the shift of atomic energy levels caused by the dissipative
coupling to off-resonant field modes, had been assumed to be immutable. The
role of the cavity is to support near resonant modes that have a high amplitude
inside the cavity and thus to increase the interaction of the spin with near-resonant
modes (i.e. the spontaneous emission rate) [1.13]. Cavity-enhanced emission has been
realized experimentally in the microwave [1.14] and the optical regime [1.15]. The
cavity can also be designed such that resonant field modes are suppressed, resulting
in the effect of spontaneous emission inhibition [1.16]. The parameter regime in which
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1. General Introduction and Motivation

cavity-enhanced or inhibited emission can be found is usually called perturbative
regime. The term expresses the assumption that the coupling between the atom
and the mode is weak compared to the cavity decay rate and that a perturbative
treatment is possible.

The Purcell effect can also be explained by the constructive interference between
the field emitted by the atom and the field reflected by a mirror. This situation
is comparable with an atom interacting with an ensemble of atoms surrounding it,
leading to superradiant emission [1.17]. Both subjects, superradiance theory and
cavity QED in the perturbative limit have been developed around the same time.

The first experiments in the field of cavity QED were performed in the perturbative
regime, altering incoherent quantum dynamics. It took quite some time to enter
the so-called strong coupling regime where the system was expected to behave in a
completely different way. The strong coupling regime is defined by the requirement
that the coupling rate between the atom and the field exceeds the loss rates of both,
cavity and atom. Loosely speaking, a photon will be reabsorbed by the atom before
it gets the chance to be lost via a mirror. To reach this regime in an experiment, it is
necessary to build cavities with a low photon loss rate and a very small mode volume,
as the mode volume is inversely proportional to the cavity-atom coupling rate. The
first successful experiments were performed in the collective strong coupling regime,
both for microwave [1.18] and optical cavities [1.19]. The collective coupling rate of
N atoms scales with

√
N , making it possible to observe strong coupling by increasing

the number of atoms. In microwave cavity QED, experiments with better cavities
followed, where a stream of excited atoms was sent through the cavity, interacting
with it for the time it takes to pass through the mode volume [1.20]. Even better
control over the timing and velocity was achieved in a series of experiments where
Rydberg atoms were sent through the cavity [1.21–1.23]. In optical cavity QED the
strong coupling regime with single atoms was first observed in 1992 [1.24].

Today, cavity QED is studied in a wide variety of contexts ranging from cavity
assisted cooling of atoms [1.25, 1.26], over the signature of states of ultracold gases
in cavity transmission spectra [1.27], to the storage of quantum information using
the cavity as a link between several components of the system [1.28, 1.29].

A very recent direction of research is towards so-called hybrid systems that combine
solid state devices from circuit quantum electrodynamics with trapped atoms or spins
in a solid. The physics of circuit quantum electrodynamics shares many concepts
with cavity QED, although the implementation is fundamentally different. The com-
ponents of circuit QED are µm sized structures of superconducting material forming
resonators or small islands (Cooper-pair boxes) and are entirely man-made. Over
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1. General Introduction and Motivation

the recent years the development in circuit QED retraced the scientific milestones
of cavity QED with cold atoms, albeit at an accelerated pace [1.30–1.32].

1.2. Motivation and Outline

The first part of the present work is motivated by the effort to identify promising
building blocks for hybrid systems, in particular ensembles of ultracold atoms or
spins in a solid strongly coupled to a resonator. Important questions in this context
are the influence of thermal excitations, as the resonators are in the GHz regime,
and the role of the frequency inhomogeneity in solid state systems. The second part
of the thesis is motivated by promising developments in the field of semiconductor
heterostructures, which can be etched down to form different types of microdisc
cavities. Such a structure can be operated as a laser in the THz regime and has
been implemented in various forms for different wavelengths [1.33–1.35]. However,
the regime of operation of such devices is usually limited by intrinsic heating. It is
therefore a desirable goal to reduce the intrinsic heating and thereby extending the
range of operation.

The work on the strong coupling between spin ensembles and cavities is presented
in Part I. The main aspects of the theoretical approach are outlined in Sec. 2. Sec-
tions 3, 4 and 5 contain publications concerned with particular implementations of
cavity QED systems either planned or already realized at the Atomic Institute in
Vienna. In Part II the results of another cavity QED project with focus on quantum
cascade lasers (QC lasers) are presented. In Sec. 6 we give a brief introduction into
this type of laser and the theoretical description. In Sec. 6.3 we study two QC lasers
that are coupled via their evanescent fields. Finally, in Sec. 6.4 we motivate an
alternative pumping mechanism for structures similar to those of QC lasers based
on a spatial temperature gradient and investigate prospects for extending the op-
erating regime of QC lasers by counteracting intrinsic heating. The results on the
temperature gradient pumping and the prevention of heating are summarized as a
preprint in Sec. 7.
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Part I.

Strong coupling of spin
ensembles and superconducting

resonators





2. Introduction to cavity QED with
ensembles

The aim of this section is to clarify the notation and to point out the basic similarities
and differences when dealing with single spins and whole ensembles of spins coupled
to a cavity. Note that the term spin is used synonymously with the term two-level
system or two-level atom, as well as the term light refers to radiation in the visible
and in the microwave regime. We then introduce the master equation approach
for open quantum systems and discuss the hallmarks of the strong coupling regime
before we briefly introduce some implementations of hybrid systems.

In the forthcoming discussion we always assume single mode cavities. A cavity mode
can be conveniently modelled by a one-dimensional oscillator with frequency ωc and
annihilation and creation operators a and a†. An atom resonantly interacting with
the mode can be truncated to a two-level system with upper state |e〉 and lower
state |g〉, connected by an electric (or magnetic) dipole transition at the frequency
ωa. The raising and lowering operators for the two-level system are σ+ = |e〉 〈g|
and σ− = |g〉 〈e| with

[
σ+, σ−

]
= σz. Other atomic transitions are assumed to be

off-resonant.

2.1. The Jaynes-Cummings Hamiltonian

A single standing-wave cavity mode interacting with a two-level system localized at
an antinode of the field is described by the Jaynes-Cummings Hamiltonian

HJC = HA + HF + HI

= 1
2~ωaσ

z + ~ωca†a+ i~g
(
a†σ− − aσ+

)
. (2.1.1)

The dipole coupling constant g =
√

ωcd2

2~ε0V
quantifies the coupling strength per pho-

ton between the two-level system and the mode, where d denotes the dipole matrix



2. Introduction to cavity QED with ensembles

element of the atomic transition, and V refers to the mode volume [2.1]. To be-
gin with we introduce the eigenstates of the bare Hamiltonian HA + HF. Without
HI the states |e, n− 1〉 (two-level system in its excited state, n − 1 photons in the
cavity) and |g, n〉 (two-level system in its ground state, n photons in the cavity)
are degenerate. The degeneracy is lifted by the interaction, or in other words, the
diagonalization of the full Hamiltonian yields new eigenstates, often called dressed
states for each pair of excited states with n excitations (n = 1, 2, · · · )

|+, n〉 = 1√
2

(C |e, n− 1〉+ iD |g, n〉) (2.1.2)

|−, n〉 = 1√
2

(D |e, n− 1〉 − iC |g, n〉) , (2.1.3)

where

C =

1 +
1
2 (ωa − ωc)√

1
4 (ωa − ωc)2 + g2n

 1
2

, (2.1.4)

and

D =

1−
1
2 (ωa − ωc)√

1
4 (ωa − ωc)2 + g2n

 1
2

. (2.1.5)

The energies of each pair of states are given by

E+,n = (n− 1
2)~ωa + ~

√
1
4 (ωa − ωc)2 + g2n (2.1.6)

E−,n = (n− 1
2)~ωa − ~

√
1
4 (ωa − ωc)2 + g2n . (2.1.7)

The energy of the ground state is

EG = −1
2~ωa . (2.1.8)

At resonance (ωc = ωa) we obtain simplified expressions for the eigenstates

|+, n〉 = 1√
2

(|e, n− 1〉+ i |g, n〉) (2.1.9)

|−, n〉 = 1√
2

(|e, n− 1〉 − i |g, n〉) , (2.1.10)
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Figure 2.1.: (a) Energies of the dressed states |+, 1〉 and |−, 1〉 as a function of the detuning
ωa − ωc. For large detunings the dressed states asymptotically approach the unperturbed states.
At ωa − ωc = 0 the splitting between the states is 2~g. (b) Sketch of the Jaynes-Cummings ladder
with the first and second pair of excited states. The separation between the excited-state doublets
increases with

√
n.

and also for the eigenenergies

E+,n = (n− 1
2)~ωa +

√
n~g (2.1.11)

E−,n = (n− 1
2)~ωa −

√
n~g . (2.1.12)

The energies of the eigenstate pairs in the resonant case form the so-called Jaynes-
Cummings ladder in which the splitting between each pair of states grows anhar-
monicly with

√
n, see Fig. 2.1. The splitting between the |+, 1〉 and |−, 1〉 states is

given by 2~g and is usually referred to as vacuum Rabi splitting. For an atom in the
state |e〉 that enters the empty cavity, the state |e, 0〉 is no longer an eigenstate but
can be written as a superposition of the eigenstates |+, 1〉 and |−, 1〉. The spectrum
of the emitted radiation therefore yields two peaks [2.1]. The excited atom will emit
a photon into the cavity and reabsorb it a short time later, hence the probability to
find the atom in the excited state will undergo Rabi oscillations.

The eigenenergy pairs are split by 2~g
√
n. For sufficiently large g this anharmonicity

can lead to the situation where the |−, 1〉 → |−, 2〉 transition is off-resonant when
the driving frequency is tuned to the |g, 0〉 → |−, 1〉 transition. The states |g, 0〉
and |−, 1〉 then form an effective two level system [2.2]. Another consequence of the
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2. Introduction to cavity QED with ensembles

anharmonicity is the collapse and revival of Rabi oscillations when an atom interacts
with a coherent state in a cavity [2.3, 2.4].

The study of the Jaynes-Cummings Hamiltonian alone gives some insight into the
dynamics of the system. The actual behavior of an atom interacting with a cavity
mode will strongly depend on the quality of the mirrors, shielding the mode from
its surrounding, and the spontaneous emission rate of the atom. The description
of open quantum systems, motivated by this (almost always) inevitable coupling to
the environment, will be discussed in Sec. 2.3.

2.2. The Tavis-Cummings Hamiltonian

We now turn to the description of an ensemble of identical two-level atoms coupled
to a single cavity mode. The Hamiltonian

HTC = ~ωca†a+ ~ωa
2

N∑
j

σzj + ~g
N∑
j

(
σ+
j a+ a†σ−j

)
. (2.2.1)

thus contains a sum over all atoms (with index j) that couple to the mode. Here we
assumed that all atoms have the same frequency ωa and that they are coupled with
the same strength g. The energy eigenstates of the Tavis-Cummings Hamiltonian
are highly degenerate, reflecting the many possibilities to deposit an excitation in
the ensemble. A simplified treatment is possible if all atoms are confined in a small
volume and couple to the field with equal strength. The only state of the ensemble
containing one excitation which takes part in the dynamics is then a symmetric
superposition of all possible states with one excited atom. It also is the first state
in a whole ladder of so-called Dicke states with growing number of excitations.

2.2.1. Dicke states

It is instructive to introduce the collective spin operators

Sz = 1
2

N∑
j

σzj and S± =
N∑
j

σ±j (2.2.2)

together with the total spin operator S = (Sx, Sy,Sz), where S± = (Sx±i Sy). The
eigenstates of S and Sz are the Dicke states |J,M〉 with S |J,M〉 = J (J + 1) |J,M〉

14



2. Introduction to cavity QED with ensembles

and Sz |J,M〉 = M |J,M〉 where J = 0, 1, · · · , N/2 andM = −J,−J+1, · · · , J [2.5].
The state with all atoms in the excited state |e, e, · · · , e〉 is identified with the state
|J, J〉, while |J,−J〉 corresponds to the state |g, g, · · · , g〉. Both states have max-
imum angular momentum J = N/2. The total number of excitations is given by
J + M . The collective raising and lowering operators generate the intermediate
states according to

S± |J,M〉 =
√

(J ±M + 1) (J ∓M) |J,M ± 1〉 . (2.2.3)

These states are a sufficient basis in the case that the atoms are confined in a volume
small compared to the wavelength of an emitted photon and equally coupled to it.
This implies that a photon that is absorbed in this cloud of atoms cannot be assigned
to a single atom. For example, the state |J,−J + 1〉 is a symmetric superposition of
all states containing one excitation, i.e

1√
N

(|e, g, · · · , g〉+ |g, e, · · · , g〉+ · · ·+ |g, g, · · · , e〉) . (2.2.4)

There are several important properties that emerge from this collective description:
The Dicke states |J,M〉 with J = N/2 form a ladder of states with equidistant ener-
gies. For a single excitation, the coupling between the mode and the ensemble scales
with

√
N , as can be seen by applying the collective raising operator in Eq. (2.2.3)

to the state |N/2,−N/2〉. As long as the number of excitations is small compared
to N , the ensemble behaves like a harmonic oscillator. To see this we write∣∣∣〈J,M + 1

∣∣∣S+
∣∣∣ J,M〉∣∣∣2 = (J +M + 1) (J −M)

= (J +M + 1) (N − (J +M)) (2.2.5)
≈ (J +M + 1)N for J +M � N (2.2.6)

and compare it to
∣∣∣〈n+ 1

∣∣∣a†∣∣∣n〉∣∣∣2 = (n + 1). Both matrix elements scale linearly
with the number of excitations [2.6].

2.2.2. Weak excitation limit

In the weak excitation limit the ensemble and the cavity mode can be regarded as a
pair of harmonic oscillators coupled at a rate of g

√
N . This is sketched in Fig. 2.2(a).

At the level of a single excitation the Jaynes-Cummings and the Tavis-Cummings
Hamiltonian are equivalent, except that the resonant splitting between the first
excited state pair is 2~g

√
N for the many atom case. An important difference shows
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√
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√
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√
N

0

g
√
N

Figure 2.2.: (a) Sketch of the harmonic energy ladders of the Dicke states and the cavity mode.
The gray shaded area indicates the regime in which the ensemble is well approximated by a harmonic
oscillator. (b) Spectrum of the coupled harmonic oscillators.

up for more than one excitation in the system. To clarify this we consider the
Hamiltonian for two coupled harmonic oscillators with creation operators a† and b†
and with the same frequency ωc [2.1]

HHO = ~ωca†a+ ~ωcb†b+ i~g
√
N
(
a†b− ab†

)
. (2.2.7)

The eigenstates are

|En,m〉 =

(
a† − ib†

)n (
a† + ib†

)m
√

2n+mn!m!
|0〉a |0〉b (2.2.8)

with eigenenergies

En,m = n~
(
ωc − g

√
N
)

+m~
(
ωc + g

√
N
)
. (2.2.9)

The eigenenergies are sketched in Fig. 2.2(b) and are fundamentally different from
the anharmonic spectrum of a single two-level system in a cavity shown in Fig. 2.1(b).
Coherent excitation of the form HP = i~η

(
e−iωta† − eiωta

)
causes resonances only
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2. Introduction to cavity QED with ensembles

at
(
ωc − g

√
N
)
and

(
ωc + g

√
N
)
as can be deduced from

HP |En,m〉 =i~η
(
e−iωta† − eiωta

) (a† − ib†
)n (

a† + ib†
)m

√
2n+mn!m!

|0〉a |0〉b

=i~η

e−iωt
a†
(
a† − ib†

)n (
a† + ib†

)m
√

2n+mn!m!
− eiωt

a
(
a† − ib†

)n (
a† + ib†

)m
√

2n+mn!m!

 |0〉a |0〉b
=i~η

e−iωt

(
a† − ib† + a† + ib†

) (
a† − ib†

)n (
a† + ib†

)m
2
√

2n+mn!m!

−eiωt

[(
a† − ib†

)n
a+ n

(
a† − ib†

)n−1
] (
a† + ib†

)m
√

2n+mn!m!

 |0〉a |0〉b
=i~η

e−iωt

(
a† − ib†

)n+1 (
a† + ib†

)m
+
(
a† − ib†

)n (
a† + ib†

)m+1

2
√

2n+mn!m!

−eiωt


(
a† − ib†

)n [(
a† + ib†

)m
a+m

(
a† + ib†

)m−1
]

√
2n+mn!m!

+
n
(
a† − ib†

)n−1 (
a† + ib†

)m
√

2n+mn!m!


 |0〉a |0〉b

=i~η

e−iωt

(
a† − ib†

)n+1 (
a† + ib†

)m
+
(
a† − ib†

)n (
a† + ib†

)m+1

2
√

2n+mn!m!

−eiωt
m
(
a† − ib†

)n (
a† + ib†

)m−1
+ n

(
a† − ib†

)n−1 (
a† + ib†

)m
√

2n+mn!m!

 |0〉a |0〉b .
(2.2.10)

The coherent excitation couples the state |En,m〉 only to the states |En+1,m〉, |En,m+1〉,
|En,m−1〉, and |En−1,m〉 for which the transition frequencies are

(
ωc − g

√
N
)
and(

ωc + g
√
N
)
. The spectrum shows this normal mode splitting until the pumping is

so strong that the ensemble is pushed out of the regime where it can be described
by a harmonic oscillator.
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2. Introduction to cavity QED with ensembles

2.2.3. Superradiance

The radiative decay of a fully inverted ensemble has been widely studied in the
context of superradiance. As the inverted ensemble starts to cascade down the
ladder of Dicke states, the emission rate increases, resulting in a large pulse of
radiation. This can be seen from

S+ S- |J,M〉 = (J +M) (J −M + 1) |J,M〉 (2.2.11)

which is proportional to the spontaneous emission rate of the ensemble [2.7]. For
M = J we find the emission rate is ∝ N as J = N/2, for M = 0 however it is ∝ N2.
This increase can be understood as a result of strong correlations between the atoms
in the ensemble that build up during the emission process. The correlation between
two atoms σ+

i σ
−
j can be calculated via

〈J,M |S+ S- |J,M〉 = 〈J,M |
(

N∑
i=1

σ+
i

) N∑
j=1

σ−j

 |J,M〉
= N (N − 1) 〈J,M |σ+

i σ
−
j |J,M〉+ 〈J,M |

N∑
i

σ+
i σ
−
i |J,M〉

(2.2.12)

where the second term on the right hand side gives the number of excitations J+M .
Thus the correlation between two spins is given by

〈J,M |σ+
i σ
−
j |J,M〉 = J2 −M2

N (N − 1) , (2.2.13)

where we used Eq. (2.2.11), and reaches the maximum value of ≈ 1/4 forM = 0 [2.6].
In our case the ensemble does not emit into free space but predominantly into the
cavity mode. The dynamics then strongly depends on the quality of the mirrors.
For a large cavity decay rate the cavity stays basically empty all the time and acts
as a loss channel. In a good cavity the ensemble and the mode will periodically
exchange energy.

In the bad cavity limit the strong correlations provide the basis for superradiant
lasers where a repumping mechanism is used to maintain superradiant emission.
The excitations are predominantly stored in the ensemble, which is also the primary
carrier of phase information [2.8, 2.9].

It has to be noted that the states with J = N/2 are only a small fraction of all
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2. Introduction to cavity QED with ensembles

possible states which also include states with J < N/2. The collective operators
do not couple states with different J and in any description that solely relies on
collective operators the states with J < N/2 will not be populated if in the initial
state J = N/2. At the same time processes that are not collective processes, like
the emission from independently radiatively damped atoms, cannot be described by
collective operators alone [2.10].

2.3. Open quantum systems

There are powerful tools available to treat open quantum systems. The central
starting point of all methods is the intuition that damping occurs as a result of the
interaction with a large and complex environment. Thus it becomes clear that be-
sides the ability to absorb energy the environment also exerts some sort of backaction
on the system. Since the environment is large and its fluctuations are presumably
uncorrelated, the backaction can be treated as a noise term. Here we follow the
master equation approach and outline the important steps and assumptions for its
derivation. The master equation determines the temporal evolution of the density
operator describing a quantum system coupled to a bath. Both aspects, dissipation
and fluctuations are reflected in the master equation approach.

2.3.1. Master equations

The system we are interested in, e.g. a cavity mode coupled to a spin or a cavity
mode alone, is embedded in an environment that takes the role of a heat bath. The
Hamiltonian for the system and the bath is

Htot = HS + HB + V (2.3.1)

where V describes the interaction between the system and the bath. The dynamics
of the density matrix χ for the whole system is determined by the von Neumann
equation

d
dtχ = 1

i~ [Htot, χ] . (2.3.2)
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2. Introduction to cavity QED with ensembles

Ultimately, we will only be interested in the dynamics of our small system. This
leads to the definition of the reduced density matrix

ρ = trB [χ] . (2.3.3)

We restrict ourselves here to a short summary of the calculations necessary to derive
the master equation. Equation (2.3.2) is transformed into the interaction picture

χ̃ = e(i/~)(HS + HB)tχe−(i/~)(HS + HB)t (2.3.4)

to describe only the slow dynamics governed by the interaction Hamiltonian V

d
dt χ̃ = 1

i~
[
Ṽ, χ̃

]
, (2.3.5)

where

Ṽ = e(i/~)(HS + HB)t V e−(i/~)(HS + HB)t . (2.3.6)

Equation (2.3.5) is formally integrated and the result is substituted inside the com-
mutator of Eq. (2.3.5) to obtain an integro-differential equation for χ̃ which reads

d
dt χ̃ = 1

i~
[
Ṽ (t) , χ̃ (0)

]
− 1

~2

∫ t

0
dt′
[
Ṽ (t) ,

[
Ṽ
(
t′
)
, χ̃
(
t′
)]]

(2.3.7)

Taking the partial trace of this equation leads to an equation for ρ̃, the reduced
density operator of the system we are interested in, but which still depends on χ̃
and all of its past. Note that the first term of Eq. (2.3.7) can be eliminated under
the assumption that system and bath are uncorrelated at t = 0, i.e. χ̃ (0) = χ (0) =
ρ (0)B0, with initial bath density operator B0, and the assumption that the bath
operators have zero mean in B0 (which can be arranged by including a shift in the
system Hamiltonian). The assumption that the system and the bath are initially
uncorrelated and that the interaction is weak justifies the approximation that both
systems will remain uncorrelated (χ̃ (t) = ρ̃ (t)B0). Moreover, as the system is
thought to be very small compared to the bath, the state of the bath should be
unaffected by the interaction. This approximations and assumptions simplify the
equation for ρ̃, but the evolution of ρ̃ still depends on its own past. The physical
reason for this is that, in principle, an earlier state of the system can leave its
footprint in the state of the bath and be influenced by this modified bath later.
However, in many situations the correlation time of the bath is short compared
to the timescale on which the system evolves. This justifies the assumption that
the evolution of ρ̃ is independent of its own past, a property it has in common with
Markov processes. The approximation is therefore known as Markov-approximation.
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Detailed information about the derivation can be found in [2.11, 2.12].

The master equation for a two-level system with spontaneous decay rate γ coupled
to a lossy cavity with decay rate κ reads

d
dtρ = 1

i~ [H, ρ] + L [ρ] , (2.3.8)

where H is the Hamiltonian from Eq. (2.1.1) and the Liouville superoperator is given
by

L [ρ] =Lcavity [ρ] + Lspont [ρ]

=κ (n̄ (ωc) + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κn̄ (ωc)

(
2a†ρa− aa†ρ− ρaa†

)
+ γ

2
(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
. (2.3.9)

We have already included the situation that the cavity is at finite temperature T 6= 0,
resulting in the thermal occupation of the mode with n̄ photons, where

n̄ (ω) = e−
~ω
kBT

1− e−
~ω
kBT

. (2.3.10)

In the optical regime thermal excitations in general play no role. However, in the
GHz regime, in which CPW resonators work, they must be considered. Each of the
contributing terms in Eq. (2.3.9) can be assigned to a physical process. The terms
proportional to 2aρa† and 2a†ρa describe the transition rates from the states with
(n + 1) and (n− 1) photons into the n photon state. The rates from the n photon
state into the (n + 1) and (n − 1) states are proportional to −(aa†ρ + ρaa†) and
−(a†aρ + ρa†a). The third line of Eq. (2.3.9) accounts for spontaneous emission
and, under the assumption that the atom is well isolated, does not include thermal
photons.

2.3.2. Operator expectation values

The master equation describes the dynamics of the reduced density operator and is
a common starting point for the study of dissipative quantum systems. For small
systems the master equation may be solved directly. For larger systems this is
out of question as, for example, the density matrix of N two-level atoms has the
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dimensionality 2N × 2N . For moderate system sizes a possible way to determine the
behavior of a quantum system is the Monte Carlo wave function approach [2.12–
2.14]. However, ensemble sizes of N ≈ 106 − 108, that we intend to study, are still
out of reach.

The approximation we chose to be able to describe our system is that we assume
all atoms and their coupling rates to be identical. It is therefor neither necessary
nor illuminating to describe N atoms separately. We illustrate this for the master
equation

d
dtρ = 1

i~ [HTC, ρ] + LTC [ρ] , (2.3.11)

with the Hamiltonian in Eq. (2.2.1) and

LTC [ρ] =κ (n̄ (ωc) + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κn̄ (ωc)

(
2a†ρa− aa†ρ− ρaa†

)
− γ

2

N∑
j=1

(
σ+
j σ
−
j ρ+ ρσ+

j σ
−
j − 2σ−j ρσ+

j

)
. (2.3.12)

In order to describe the dynamics of our system we derive operator expectation value
equations, which are a simple way to get information from a master equation [2.12].
We calculate the expectation value equation for the cavity field

d
dt 〈a〉 = tr

(
a

d
dtρ

)
= − (κ+ iωc) 〈a〉 − igN

〈
σ−1

〉
, (2.3.13)

where we use cyclic permutations under the trace and the assumption that all atoms
are equal, i.e. ∑N

j=1 σ
−
j = Nσ−1 . The inversion follows the equation

d
dt 〈σ

z
1〉 = −2ig

(〈
σ+

1 a
〉
−
〈
σ−1 a

†
〉)
− γ (1 + 〈σzi 〉) (2.3.14)

which couples to the new quantity
〈
σ+

1 a
〉
that describes the exchange of excitations

between the mode and the ensemble. Calculating the expectation value equation
for

〈
σ+

1 a
〉
will also yield third order expectation values. In order to obtain a closed

set of equations that can be solved either analytically or numerically we have to
truncate the set of equations at some point. This truncation can be done at different
levels of complexity of the equations, depending on the underlying physical situation
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we need to describe. For example, the assumption of fixed 〈σz1〉 = −1 simplifies
matters considerably, as we retain only the dynamics of coupled harmonic oscillators.
Nevertheless, this assumption is valid and useful if we want to describe an ensemble
which is only weakly excited, i.e. the number of excitations is much less than N .

In order to describe higher order expectation values we have to derive their equations
and find a way to deal with expectation values of even higher order that emerge
during the calculations. The truncation can be achieved by expanding higher order
expectation values by means of lower order expectation values [2.9, 2.15]

〈abc〉 = 〈abc〉c + 〈ab〉 〈c〉+ 〈ac〉 〈b〉+ 〈cb〉 〈a〉 − 2 〈a〉 〈b〉 〈c〉 , (2.3.15)

where 〈· 〉c denotes the joint cumulant. Expanding all higher order expectation
values and neglecting the joint cumulants finally leads to a closed set of equations.
Note that neglecting a joint cumulant is to neglect a correlation. If, for instance, we
expand 〈

σ+
1 σ
−
2

〉
=
〈
σ+

1 σ
−
2

〉
c

+
〈
σ+

1

〉〈
σ−2

〉
(2.3.16)

and neglect
〈
σ+

1 σ
−
2

〉
c
, we would miss the atom-atom correlations that are responsible

for superradiant emission. The derivation of a set of expectation value equations
must be carried out up to the order one wishes to keep and to study. However, due
to the growing number and complexity of the equations this becomes increasingly
difficult unless further approximations are possible.

2.4. Strong coupling regime

The parameter regime where the rate at which a cavity and an atom exchange energy
by far exceeds the loss rates of the cavity mirrors and the spontaneous decay rate
of the atom, is called strong coupling regime, i.e. g � κ, γ/2. A photon that is
emitted by the atom is rather reabsorbed than lost via the mirrors of the cavity or
into other modes. This regime is characterized by

C1 = g2

γκ
� 1 ,

where C1 is called the cooperativity parameter of the system. In terms of the
spectrum of the Jaynes-Cummings model this means that the splitting between the
states in Fig. 2.1(a) of 2~g exceeds the width of the peaks, governed by κ and γ.
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Figure 2.3.: (a):
∣∣〈a〉st∣∣2 as a function of ωp and N . (b): ReE± solid lines (black/red) and

−2 ImE± dashed lines (black/red) that correspond to the position and width of the normal mode
resonances in the spectrum. In the limit of strong coupling the splitting approaches 2g

√
N . As a

reference ±g
√
N is shown as blue dashed line. The parameters were chosen to ωa = ωc = 0, κ = 5,

γ = 4, g = 1, and η = 1.

Why is it that we are interested in reaching the strong coupling regime? The strong
coupling regime allows for the basic operations needed for the storage of photons
and the generation of entangled states between the light field and the atom. By
controlling the interaction time between both subsystems, Rabi oscillations can be
used to perform complex atom-field interactions. However, the condition C1 � 1 is
very restrictive in terms of possible experimental setups. The implementation based
on Rydberg atoms coupled to a microwave cavity constitutes a successful realiza-
tion [2.16]. The step towards ensembles of atoms makes more systems available, as
the
√
N enhancement of the coupling comes into play. The condition for collective

strong coupling is given by
C = NC1 � 1 ,

which can be met even for very small g with a sufficient number of spins N . As
already mentioned in Sec. 2.2.1 the excitation spectrum of the coupled ensemble-
cavity system in the weak excitation limit is equivalent to the spectrum of two
coupled harmonic oscillators. As long as the number excitations is small compared to
N , this description is valid. The coupling to a whole ensemble could therefore allow
for the storage of many photons. Storage and retrieval of classical microwave pulses
(i.e. far from the single photon limit) has already been demonstrated successfully
with the electron spins of nitrogen enclosed in fullerene cages [2.17].

To illustrate the transition to the collective strong coupling regime we look at the
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2. Introduction to cavity QED with ensembles

steady state field inside a cavity driven by a weak probe field of frequency ωp and
strength η. The cavity is coupled to an ensemble of N identical atoms. The equation
for the field

d
dt 〈a〉 = tr

(
a

d
dtρ

)
(2.4.1)

= − (κ+ i∆c) 〈a〉 − igN
〈
σ−1

〉
+ η (2.4.2)

couples to

d
dt
〈
σ−1

〉
= −

(
γ

2 + i∆a

)〈
σ−1

〉
− ig 〈a〉 (2.4.3)

where we already used the weak excitation assumption 〈σz1〉 = −1 and introduced
∆c = ωc − ωp and ∆a = ωa − ωp. The steady state field reads

〈a〉st = η

(κ+ i∆c) + g2N

( γ2 +i∆a)
= η

(ωp − E+) (ωp − E−) (2.4.4)

with the complex poles

E± = 1
2 (ωa + ωc)−

1
2i
(
γ

2 + κ

)
±

√
g2N − 1

4

(
γ

2 + κ+ i (ωa − ωc)
)2

. (2.4.5)

In Fig. 2.3(a) we depict |〈a〉st|
2 as a function of ωp and N . With increasing N the

splitting of the normal modes becomes visible. The regime of oscillations is entered
for g2N > 1

4
(γ

2 + κ
)2, as can be seen in Fig. 2.3(b). The width of the peaks then is

−2 ImE± = γ
2 + κ [2.18]. In the limit of g

√
N � κ, γ/2 the normal mode splitting

approaches 2g
√
N . In experiments, the detection of the two-peaked spectrum is

usually considered a hallmark for the achievement of strong coupling.

2.5. Cavity emission spectrum

The spectrum of the cavity emission is an important quantity for the characterization
of the ongoing dynamics. Moreover, in some experiments the light emitted by the
cavity is the only source of information that is accessible. There are different ways of
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2. Introduction to cavity QED with ensembles

probing a cavity to infer the energy eigenstates, one of them was already described
in Sec. 2.4. A probe beam with tunable frequency ωp excites the coupled system
and results in an increased transmission signal whenever a resonance is approached.
This is a common procedure in experiments and was also used for the acquisition of
the data shown in Sec. 4 and Sec. 5.

Here we briefly discuss the calculation of the cavity emission spectrum by using the
Wiener-Khintchine theorem and the quantum regression theorem. Assuming that
we deal with stationary and ergodic processes, the spectrum is given by the Fourier
transform of the two-time correlation function of the cavity emission

S (ω) = 1
2π

∫ ∞
−∞

dτeiωτ
〈
a† (τ) a (0)

〉
. (2.5.1)

In general the spectrum of a coherently driven cavity is comprised of a coherent and
an incoherent part

S (ω) = Scoh (ω) + Sinc (ω) (2.5.2)

where the coherent part is proportional to a δ-function and located at the driving
frequency. In the following we study an incoherently driven cavity, thereby keeping
the total phase invariance that allows to assume 〈a〉 =

〈
σ±j

〉
= 0. To calculate

the incoherent spectrum of the cavity emission it is necessary to determine the two-
time correlation function

〈
a† (τ) a (0)

〉
. The quantum regression theorem states that

for linear systems the correlation function 〈A (t+ τ)B (t)〉 with τ > 0 follows the
same equation, as a function of τ , as 〈A (t+ τ)〉 does [2.10]. This implies that from
the complex conjugate of Eq. (2.3.13) and by using the stationarity assumption we
obtain

d
dτ
〈
a† (τ) a (0)

〉
= − (κ− iωc)

〈
a† (τ) a (0)

〉
+ igN

〈
σ+

1 (τ) a (0)
〉
, (2.5.3)

which couples to the correlation function
〈
σ+

1 (τ) a (0)
〉
. Analogously to Eq. (2.5.3)

we calculate

d
dτ
〈
σ+

1 (τ) a (0)
〉

= −
(
w + γ

2 − iωa
)〈

σ+
1 (τ) a (0)

〉
− ig

〈
σz1 (τ) a† (τ) a (0)

〉
= −

(
w + γ

2 − iωa
)〈

σ+
1 (τ) a (0)

〉
− ig 〈σz1 (τ)〉

〈
a† (τ) a (0)

〉
,

(2.5.4)

where we expanded the second term according to Eq. (2.3.15), neglected the cumu-
lant and used the total phase invariance. Equation (2.5.4) also features an incoherent
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pump rate w that is included in the Liouvillian as an inverse spontaneous decay. For
details see Sec. 3.7. Written in matrix form we find

d
dτ

〈a† (τ) a (0)
〉〈

σ+
1 (τ) a (0)

〉 =
(
− (κ− iωc) igN
−ig 〈σz1〉st −

(
w+γ

2 − iωa
))〈a† (τ) a (0)

〉〈
σ+

1 (τ) a (0)
〉 .

(2.5.5)

Due to stationarity we set 〈σz1 (τ)〉 = 〈σz1〉st. The simplest way to proceed is to use
the Laplace transform on Eq. (2.5.5) and then to solve for

〈
a†a

〉
(s). For s = −iω

we obtain the Fourier transform of the correlation function. The Laplace transform
of Eq. (2.5.5) reads(

s+ (κ− iωc) −igN
ig 〈σz1〉st s+

(
w+γ

2 − iωa
))〈a†a〉 (s)〈

σ+
1 a
〉

(s)

 =

〈a†a〉st〈
σ+

1 a
〉
st

 . (2.5.6)

With Cramers rule we arrive at

〈
a†a

〉
(s) =

〈
a†a

〉
st

(
s+ w+γ

2 − iωa
)
− igN

〈
σ+

1 a
〉
st

(s+ κ− iωc)
(
s+ w+γ

2 − iωa
)
− g2N 〈σz1〉st

. (2.5.7)

The steady state quantities in Eq. (2.5.7) have to be determined either analytically
or numerically, depending on the complexity of the problem. Since the spectrum
is proportional to

(〈
a†a

〉
(s) + c.c.

)
it is worthwhile to look at the result in some

limiting cases (we restrict the discussion to the resonant situation ωc = ωa and
simplify the notation by defining the frequency axis with respect to ωc) [2.19]. By
rewriting Eq. (2.5.7) we find the very general formula

〈
a†a

〉
(s) =

〈
a†a

〉
st

(
s+ w+γ

2

)
− igN

〈
σ+

1 a
〉
st

s2 + s
(
κ+ w+γ

2

)
+ κw+γ

2 − g2N 〈σz1〉st
(2.5.8)

that offers some insight into the ongoing physics:
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Case 1: w+γ
2 , κ � s. In the numerator of Eq. (2.5.8) we can neglect s compared

to w+γ
2 . Together with the reduced denominator this reads

〈
a†a

〉
(s) ≈ 1

κ+ w+γ
2

〈
a†a

〉
st
w+γ

2 − igN
〈
σ+

1 a
〉
st

s+ κw+γ
2 −g2N〈σz1〉st
κ+w+γ

2

. (2.5.9)

The resulting spectrum is a Lorentzian with a width (FWHM) of

Γ = 2
κ+ w+γ

2

[
κ
w + γ

2 − g2N 〈σz1〉st
]
. (2.5.10)

For low pumping rates w we find 〈σz1〉st ≈ −1 which leads to a very large linewidth.
For w > γ we obtain 〈σz1〉st > 0, thereby reducing the linewidth of the emission. The
reduction takes place until the inversion saturates, i.e. 〈σz1〉st = 1 and the linewidth
grows with increasing w. This behavior is shown in Sec. 3.13 in Fig. 3.15.

Case 2: w+γ
2 , κ � s = −iω ≈ ∓ig

√
N . In the numerator only the part propor-

tional to s is kept. We write

〈
a†a

〉
(s) ≈

s
〈
a†a

〉
st

s2 + s
(
κ+ w+γ

2

)
− g2N 〈σz1〉st

=
−iω

〈
a†a

〉
st

g2N − ω2 − iω
(
κ+ w+γ

2

) , (2.5.11)

where we again used that for low pumping we get 〈σz1〉st ≈ −1 [2.19]. With g2N −
ω2 =

(
g
√
N + ω

) (
g
√
N − ω

)
we get

〈
a†a

〉
(−iω) ≈

−iω
〈
a†a

〉
st(

g
√
N + ω

) (
g
√
N − ω

)
− iω

(
κ+ w+γ

2

) . (2.5.12)

For ω ≈ ±g
√
N we find

〈
a†a

〉 (
∓ig
√
N
)
≈ ∓1

2
i
〈
a†a

〉
st(

g
√
N ∓ ω

)
∓ i

2

(
κ+ w+γ

2

) . (2.5.13)
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Which corresponds to a spectrum with two peaks, separated by 2g
√
N , each having

a width of Γ′ =
(
κ+ w+γ

2

)
(FWHM).

The spectrum of the system of spins coupled to the mode shows quite different
behavior depending on the parameter regime in which we study it. In the limit
of γ � κ Case 1 corresponds to a bad cavity laser [2.9, 2.20]. Case 2 features the
Rabi peaks of the collective strong coupling regime that were already discussed in
Sec. 2.4.

The calculation of the spectrum becomes more complicated for the case of a co-
herently driven cavity, where we have a defined phase. The correlation function〈
a† (τ) a (0)

〉
then couples to the quantities

〈
σ+

1 (τ) a (0)
〉
, 〈a (τ) a (0)〉,

〈
σ−1 (t) a (0)

〉
and 〈σz1 (τ) a (0)〉, but in essence the approach is the same. The steady state values
necessary for the calculation have to be determined from a more complicated set
of equations, since the assumption of total phase invariance is no longer valid, for
details see Sec. 3.10. The spectrum of a coherently driven cavity containing N atoms
is addressed in detail in [2.1], but in the language of Fokker-Planck equations.

2.6. Experimental Implementations

In general many possible implementations can be envisaged. However, here we
concentrate on two special cases of different ensembles coupled to CPW resonators.
The intention of this introduction is to point out what the promising innovations
of this implementations are and which properties require special attention in the
theoretical treatment.

2.6.1. Coplanar waveguide resonators

The resonators considered for the most part of this work are so-called coplanar
waveguide resonators (CPW resonators). They consist of two ground planes and
a central wire that are made of a superconducting material, for example Niobium.
The center conductor is coupled to input and output channels via gap capacitors
and has a length of a few centimeters corresponding to a resonance frequency in the
GHz regime.

The CPW resonators have a very small mode volume, as the field is strongly localized
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in the vicinity of the chip surface. This results in a large field per photon which is
proportional to the coupling strength g. The temperatures at which CPW resonators
are operated are usually in the mK regime. However, in Sec. 3 the influence of
thermal excitations in experiments with CPW resonators at higher temperatures is
discussed. The motivation for this analysis is that the technical challenges connected
with working in the mK regime are such that some configurations, for example the
one described in Sec. 2.6.2, are extremely hard to realize. It is therefore worthwhile
to study what can still be observed when working at higher temperature.

Strong coupling between a CPW resonator and a superconducting qubit has been
successfully demonstrated by several groups [2.21, 2.22]. A superconducting qubit
consists of a small island or a loop of superconducting material that has a very
anharmonic internal energy level structure such that the lowest two states can be well
approximated by a two-level system. The states can be represented by the number
of cooper pairs on the superconducting island (charge qubit) or the orientation of
the charge flow in the loop (flux qubit). The CPW resonator can also be used
to mediate the coupling between two superconducting qubits [2.23]. This field of
research is usually referred to as circuit quantum electrodynamics [2.24]. Here, the
cavity already has been used as a bus to connect superconducting qubits. The next
logical step is to establish the connection with systems well known from atom-based
quantum optics, again using the cavity as a bus. Interconnecting elements from
circuit quantum electrodynamics and atomic quantum optics could be a possible
way to combine the individual advantages of both systems [2.25, 2.26].

2.6.2. Rubidium Ensemble

Here we introduce a particular example of a hybrid quantum system based on a CPW
resonator coupling to an ensemble of ultracold 87Rb atoms [2.26]. The magnetic
hyperfine transition between the states |F = 1,mF 〉 and |F = 2,m′F 〉, with transition
frequency fa = 6.83 GHz, is well suited for the coupling to the CPW resonator. The
transverse field of the mode induces transitions with ∆mF = mF − m′F = ±1 of
which one is selected to be in resonance with the resonator mode by applying a
magnetic bias field. The cloud of atoms has to be placed close to the surface of the
resonator. The confinement of the atoms near the chip surface is accomplished by
wire traps that can be integrated into the chip [2.27]. Depending on the efficiency of
the initial trapping and transport procedure the ensemble can contain N = 106−108

atoms.

The atoms are very well isolated from any thermal contact, therefore thermal exci-
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Figure 2.4.: Sketch of the experimental implementations described in Sec. 2.6.2 and Sec. 2.6.3.
On the left the CPW resonator with the cloud of 87Rb atoms is depicted. The atoms are trapped
close to the surface to ensure sufficient overlap with the mode volume. On the right the atomic
cloud is replaced by a diamond containing a high density of NV centers. The diamond can be fixed
directly to the chip surface, simplifying the experimental procedure considerably.

tations of the ensemble are not considered. However, the thermal occupation of the
mode must be taken into account in the theoretical description, since the resonator
is in contact with the rest of the setup at finite temperature. In the experiment some
care has to be taken with the cable connection to the resonator to avoid additional
heating due to the contact with measurement devices at room temperature.

The results of the theoretical considerations in preparation for the experimental
realization are presented in Sec. 3. Moreover, prospects for the implementation of a
narrow-linewidth micromaser are discussed.

2.6.3. Nitrogen-Vacancy Centers

Nitrogen vacancy (NV) centers are point defects in the crystal structure of a di-
amond. Each defect consists of a nitrogen atom replacing a carbon atom and a
neighboring vacant lattice site. The electronic structure of NVs has been intensively
studied in the recent years [2.28, 2.29]. Here we are interested in NV centers in the
negative charge state, where an additional electron from the surrounding crystal and
one of the vacancy electrons form a spin S = 1 pair. The ground state is a spin
triplet where the mS = ±1 states are split from the mS = 0 state by approximately
2.88 GHz, as can be seen in Fig. 2.5(a). The splitting is caused by strong spin-spin
interaction with the remaining vacancy electrons. A homogeneous magnetic field
allows to tune one of the transitions mS = 0 → mS = ±1 into resonance with
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Figure 2.5.: (a) Ground state triplet of the negatively charged NV center. (b) On of the mS =
0 → mS = ±1 transitions can be tuned into resonance with the cavity (at ωc/(2π) = 2.7 GHz) by
means of a homogeneous magnetic field.

the cavity. In Fig. 2.5(b), the shift of the transition frequencies is indicated. The
off-resonant transition causes a frequency shift of the mode.

The NV center can have four different orientations in the crystal due to the symme-
try of the unit cell in diamond. An ensemble of NVs is therefore in general divided
into four subensembles, each tuning differently, as they enclose four different angles
with the applied magnetic field. It is possible to find an orientation of the diamond
on the chip so that two of the four subensemble enclose the same angle with the
field. The diamond is fixed directly to the chip surface to maximize the overlap be-
tween the mode volume and the crystal. The number of NVs coupled to the mode is
approximately N = 1012. Another important feature of the NV ensemble is the in-
homogeneous frequency distribution, having a width of approximately 10 MHz, that
can be attributed to local variations of the crystal field. Some of these variations
are closely connected to the fabrication process of the sample, where a diamond
containing a high concentration of nitrogen is irradiated with neutrons. The neu-
trons cause the defects necessary to form the NV centers in a subsequent annealing
process at about 900 ◦C. Some of the defects caused by the radiation remain and
the majority of the nitrogen atoms is not converted to NV centers. Therefore each
NV is surrounded by a different environment, leading to uncontrollable frequency
shifts. The exact mechanisms of the inhomogeneous broadening are not yet fully
understood and might also have a dynamic component. One has to keep in mind
that NVs in the negative charge state can be converted to the neutral charge state,
which behaves differently. Experiments at room temperature show that intense ra-
diation at 514 nm switches neutral NVs to the negative charge state, from which
they relax back after switching off the irradiation [2.30]. The role of such processes
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at cryogenic temperatures is yet unknown.

The strong coupling of an NV ensemble to a resonator has been successfully demon-
strated in recent years [2.31, 2.32]. For ensembles of other impurity spins the strong
coupling regime could also be reached [2.33, 2.34].

For the theoretical description of the system it is necessary to find an appropriate
description of the inhomogeneous frequency distribution. Moreover, the ensemble
spins couple to a finite temperature bath because the sample is in direct contact
with the chip surface. Terms describing this coupling have to be included into the
master equation. The results of the experimental and theoretical work on NV center
ensembles are presented in Sec. 4 and Sec. 5.
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We study the nonlinear dynamics of an ensemble of cold trapped atoms with a hyperfine transition
magnetically coupled to a resonant microwave cavity mode. Despite the minute single atom
coupling one obtains strong coupling between collective hyperfine qubits and microwave photons
enabling coherent transfer of an excitation between the long lived atomic qubit state and the
mode. Evidence of strong coupling can be obtained from the cavity transmission spectrum even at
finite thermal photon number. The system makes it possible to study further prominent collective
phenomena such as superradiant decay of an inverted ensemble or the building of a narrowband
stripline micromaser locked to an atomic hyperfine transition.

PACS numbers: 37.30.+i, 42.50.Pq

3.1. Introduction

The idea of resonant coupling of an ensemble of atoms to a single cavity mode
has been addressed in numerous aspects and contexts, some dating back several
decades [3.1]. Recently, in the context of quantum information processing, such
† The author of the present thesis performed all of the calculations in this publication.



3. Publication: Cavity QED with an ultracold ensemble on a chip

Hamiltonians attracted renewed attention because the ensemble can serve as quan-
tummemory with long coherence times [3.2–3.5]. Despite small coupling of individual
atoms, the strong collective coupling of the ensemble to a particular cavity mode
allows for the coherent transfer of an excitation to the ensemble, its storage and its
retrieval after some time shorter than the coherence time of the system. Hence, due
to collective effects, one can utilize atomic transitions and geometries for which the
strong coupling regime would not be accessible otherwise.

As a particularly striking example, one can even envisage the use of states that
are very weakly coupled to the field, for example, an optically forbidden hyperfine
transition, which only couple to the field via magnetic dipole interaction. What
makes this idea attractive and possibly feasible with current technology is the fact
that it should be possible to fabricate high-Q stripline waveguide cavities on the
superconducting surface of a microchip, which confine the microwave mode to a very
small effective volume and to simultaneously trap a large ensemble of cold atoms
very close to the surface. The combination of high-Q stripline waveguide cavities and
atom-trapping technology surely will involve new challenges, but there seem to be
no fundamental problems. As already demonstrated, such a cavity can be strongly
coupled to on-chip Cooper-pair box qubits [3.6]. By combining the two systems,
one thus could establish a connection between the atomic ensemble and solid-state
qubits. This setup hence bridges an enormous range of time scales starting from the
sub-microsecond scale of solid-state qubits, over the millisecond lifetime of microwave
photons, to the atomic hyperfine coherence lifetime of seconds.

In the particular setup discussed here, the ensemble consists of a cloud of ultracold
87Rb trapped in an on-chip magnetic wire trap and pumped to one of the trappable
hyperfine levels, for example, F = 1, mF = −1. The interaction between the atoms
and the field is dominated by the magnetic dipole transitions between |F = 1,mF 〉
and |F = 2,m′F 〉. These transitions are widely used for hyperfine manipulations of
cold atomic ensembles by externally injected microwaves [3.7]. We assume in the
following that the experimental setup guarantees that the cavity is resonant with
only one of the possible transitions ( ∆mf = mF − m′F = ±1 with transition
frequency ωa/ (2π) = 6.83 GHz, corresponding to T ≈ 330 mK), and hence allows
for the atoms to be treated as two-level systems. Actually, in some cases it is more
favorable to use Raman-type coupling employing an extra radio-wave field to choose
a suitable microwave transition [3.8].

We ignore some of these technical details at this point and focus on the three main
topics: After the introduction of the model in Sec. 3.2, we first investigate condi-
tions for strong coupling between the ensemble and the cavity and the experimental
consequences when one adds the obscuring effects of thermal photons due to a finite
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cavity temperature. In Secs. 3.6 and 3.7 we discuss the methods we use, whereas
in Secs. 3.8– 3.11 we address several aspects of the resulting dynamics. Here the
optically aligned ensemble, which has much lower effective temperature, can be ex-
pected to act as a heat sink for the cavity mode removing thermal photons. As the
upper and lower hyperfine states have a virtually infinite lifetime compared with
other system time scales, we can also completely invert the system, mimicking an
effective negative temperature, and use it to pump energy into the system. As a
prominent example, we study in Sec. 3.12 the superradiant decay of a fully inverted
ensemble again with some thermal photons initially present. Finally, we exhibit in
Sec. 3.13 the possibility of building an ultranarrow linewidth single-chip stripline
micromaser operating directly on an atomic clock type transition, which is in close
analogy to an optical-lattice-based setup, as recently suggested in [3.9].

3.2. Model

3.3. Collective atom-field Hamiltonian

A single atom, formally represented here by a two-level system resonantly coupled
to a cavity mode, can be well described by the Jaynes-Cummings Hamiltonian. For
N two-level systems trapped so close to each other in the cavity that they see the
same field and thus are coupled to the mode with equal strength g, we then get the
generalized Hamiltonian:

H = ~ωma†a+ ~ωa
2
∑
j

σzj + ~g
∑
j

(
σ+
j a+ a†σ−j

)
. (3.3.1)

with a being the annihilation operator for a cavity photon, σ+
j being the excitation

operator for the jth two-level system and
[
σ+
i , σ

−
j

]
= σzi δij . The frequency of

the two-level systems and the mode are denoted by ωa and ωm, respectively. The
coupling strength g = ~B (~r) · ~µ/~ depends on the strength of the magnetic field
per photon ~B at the position ~r of the atoms and the magnetic moment ~µ of the
considered transition.

What make an ensemble of atoms coupled to a cavity interesting are collective
effects emerging from the common coupling of all atoms to the same mode. This
can be well illustrated by introducing collective atomic operators S± = ∑

j σ
±
j and

Sz = 1
2
∑
j σ

z
j . The treatment in terms of collective operators provides a convenient
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basis for classifying the possible states of the ensemble and is therefore discussed
here. As we see in Sec. 3.4, we have to resort to Hamiltonian (3.3.1) in our particular
treatment. The introduction of S± and Sz leads to the Tavis-Cummings form of this
Hamiltonian:

HTC = ~ωma†a+ ~ωa Sz +~g
(
S+ a+ a† S−

)
(3.3.2)

where single photons are coupled to distributed (delocalized) excitations in the en-
semble [3.1]. Let us shortly review some of its most known properties here. Math-
ematically, the collective operators follow the standard commutation relations for
angular momentum operators S = (Sx,Sy, Sz), with S± = (Sx±i Sy). The cor-
responding eigenstates of S2 and Sz are the so-called Dicke states |J,M〉, with
S2 |J,M〉 = J(J + 1) |J,M〉 and Sz |J,M〉 = M |J,M〉, where J = 0, 1, . . . , N/2
and M = −J, . . . , J . Formally, a fully inverted ensemble corresponds to the max-
imum angular momentum of J = N/2 [3.10, 3.11] and projection M = N/2. Re-
peated application of the collective downward ladder operator S− on the initial state
|J, J〉 =̂ |e, e, . . . , e〉 gives the lowest state |J,−J〉 =̂ |g, g, . . . , g〉.

The states in between are generated according to

S± |J,M〉 =
√

(J ±M + 1) (J ∓M) |J,M ± 1〉 . (3.3.3)

The interaction can then be conveniently rewritten in terms of normalized collective
operators S̃± = 1√

N

∑
i σ
±
i to obtain

H̃ = ~ωma†a+ ~ωa S̃+ S̃−+~geff
(
S̃+

a+ a† S̃−
)
, (3.3.4)

with geff = g
√
N . Note that in the case where the atoms in the ensemble couple to

the cavity with different coupling constants gi, we generalize to S̃± = 1
geff

∑
i giσ

±
i ,

with geff =
√∑

i g
2
i . This reduces to geff = g

√
N if all gi are equal. To simplify

matters, we remain with the case of equal coupling strength.

Allowing only one excitation in the system, we see that the ground state |0〉a =̂
|J,−J〉 =̂ |g, g, . . . , g〉 is only coupled to the symmetric atomic excitation state
S̃+ |0〉a = |1〉a = |J,−J + 1〉 =̂ 1√

N
(|e, g, g, . . . , g〉+ |g, e, g, . . . , g〉+ · · ·+ |g, . . . , g, e〉),

while other atomic states with only one excitation play no role. Hence, in this form
we end up again with a two-level atomic system, where the dependence of the atom-
cavity coupling on the number of atoms is explicitly visible. Even for transitions
with a very small coupling constant g, strong coupling can be achieved for sufficiently
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large N .

Note that in Eq. (3.3.4) we use S̃z ≈ −1
2 + S̃

+
S̃
−

N , where S̃z = 1
2N
∑
i σ

z
i . This

approximation is exactly valid only either for a single atom or the special case where
we consider only one excitation in the system. The constant −1

2 is neglected in the
Hamiltonian. In general, we find for a state with J = N

2 and M = −J + s

〈J,−J + s| S̃z |J,−J + s〉 = −1
2 + s

2J (3.3.5)

and

〈J,−J + s| S̃+ S̃− |J,−J + s〉 = s− s (s− 1)
2J . (3.3.6)

For s� N we neglect the second term on the right-hand side of Eq. (3.3.6) and find
the approximation for S̃z, which becomes exact for s = 1.

For large ensembles with few excitations this approximation is closely related to the
bosonization procedure. For M ≈ −J with J = N/2 and from[

S̃+
, S̃−

]
= 1

N

[
S+,S−

]
= 2 Sz

N
=
(
−1 +O

( 1
N

))
1 , (3.3.7)

we find that for few excitations it is possible to identify S̃+ and S̃− with bosonic
creation and annihilation operators. Hence, we end up with a system of coupled
oscillators, for which a great deal of solution techniques exist.

Let us now come back to the atom-field interaction [Eq. (3.3.4)]. It is well known
that the eigenstates are coherent superpositions of the two previously introduced
basis states, where the excitation is located either in the mode or in the ensemble.
Let |0〉m and |1〉m = a† |0〉m be the possible states of the mode and |0〉a and |1〉a be
the ensemble states. With ωa = ωm, the two eigenstates then read

|+〉 = 1√
2

(|1〉a |0〉m + |0〉a |1〉m) , (3.3.8)

|−〉 = 1√
2

(|1〉a |0〉m − |0〉a |1〉m) , (3.3.9)

and as expected are separated by the energy difference 2geff. Of course, the system
possesses more states containing essentially one excitation quantum, but those are
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not directly coupled to the ground state if we consider only collective operators.
The collective operators couple states within one J manifold, like the previously
discussed manifold with maximum angular momentum J = N/2 and M = −J . . . J .
Taking into account the manifolds of states with J < N/2, one can see that in
general there is a large number of states describing an ensemble with n excitations.
In the forthcoming calculations including spontaneous emissions, such states with
J < N/2 can be populated as well [3.12]. In addition, we also do not restrict the
dynamics to a single excitation.

3.4. Master equation including decoherence and
thermal noise

In any realistic implementation of the preceding model, coupling of the thermal
environment to the field mode and the atoms is unavoidable. This generates several
sources of noise and decoherence we have to address to be able to reliably describe
the dynamics. Despite its high Q value, the microwave resonator still has a non-
negligible finite linewidth κ = 1/τ . In other words, a stored photon is likely to be
lost from the cavity after the time τ . Similarly, atomic excitations are assumed to
decay with a rate that is, fortunately, in our case negligibly small in practice [3.13].
However, we have to consider trap loss of atoms leaving the cavity mode, which
generates an effectively faster decay of the atomic excitation, denoted by the rate
γa. This can be to some extent controlled by a suitable choice of the trapping states
and trap geometry. An additional and in general quite serious source of noise are
thermal photons that leak into the cavity. For an unperturbed cavity mode they
lead to an average occupation number of

n̄(ωm, T ) = e−
~ωm
kBT

1− e−
~ωm
kBT

, (3.4.1)

where T denotes the temperature of the environment. In principle, such thermal
photons are also present on the atomic transition and lead to a thermalization of
the optically pumped atomic ensemble. Fortunately, the weak dipole moment of
the atom renders this thermalization rate so slow that it can be ignored at the
experimentally relevant time scales. In principle, even this rate could be collectively
enhanced, but it largely addresses collective states only very weakly coupled to the
cavity mode.

Putting all these noise sources together, we can use standard quantum optical meth-

42



3. Publication: Cavity QED with an ultracold ensemble on a chip

ods to derive a corresponding master equation for the reduced atom-cavity density
matrix [3.14]:

d
dtρ = 1

i~ [H, ρ] + L [ρ] , (3.4.2)

with the Liouvillian

L [ρ] =Lcavity [ρ] + Lspont [ρ]

=κ (n̄+ 1)
(
2aρa† − a†aρ− ρa†a

)
+ κn̄

(
2a†ρa− aa†ρ− ρaa†

)
− γa

2

N∑
j=1

(
σ+
j σ
−
j ρ+ ρσ+

j σ
−
j − 2σ−j ρσ+

j

)
. (3.4.3)

We assumed here that direct thermal excitations of the atoms can be neglected
due to the weak coupling of the hyperfine transition to the environment. The only
significant influx of thermal energy thus occurs via the cavity input-output couplers
(mirrors). Note that the part of the Liouvillian describing spontaneous emission
reflects the assumption that the atoms are coupled to N statistically independent
reservoirs. The main reason for this treatment is that the decay rate γa summarizes
the very small decay rate of atomic excitations and the loss rate of atoms from the
trap. Since the loss of individual atoms from the trap is a noncollective process, the
independent reservoirs assumption is advisable. This part of the Liouvillian cannot
be written in terms of collective operators, and therefore it will not conserve J [3.15].
Therefore, states with J < N/2, including dark states, become accessible.

3.5. Signatures of strong coupling

A decisive first step toward applications of such system is the precise characteriza-
tion and determination of their limits. In particular, the experimental confirmation
of sufficiently strong atom-field coupling compared to the inherent decoherence pro-
cesses is of vital importance. This has to be seen in connection with extra limitations
induced by thermal photons in the mode, which in contrast to optical setups play
an important role in the microwave domain. We thus need reliable methods to de-
termine the atom number, their effective coupling strength, and noise properties.
In particular, we want to find the minimum temperature requirements that would
make it possible to observe strong coupling.
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Figure 3.1.: (a) Steady-state number of photons
〈
a†a
〉
ss

in the pumped cavity for different de-
tunings ∆m = ωm−ωl and different temperatures, obtained from Hamiltonian HTC. The parameters
chosen were κ = 1, N = 2, g = 3, γa = 0.05, η = 0.1. With increasing temperature the two peaks
indicating strong coupling are superimposed by thermal photons. To compare the dynamics of HTC
and H, we plot both results for T = 0.04 K (n̄ = 3× 10−4) in (b).

3.6. Numerical solution for small particle number

To get some first qualitative understanding of finite T effects, we study the coupled
atom-field dynamics in the regime of strong coupling under the influence of thermal
photons based on the direct numerical solution of the master equation. Of course,
here we have to resort to the limit of only a few atoms with increased coupling
per particle. Nevertheless, at least the qualitative influence of thermal photons will
become visible. For the practical implementation, we rely on the quantum optics
toolbox for Matlab to explicitly calculate the dynamics of the density matrix [3.16],
which allows straightforward implementation of the Hamiltonian in Eq. (3.3.2) for-
mulated in terms of the collective operators.

The cavity is pumped by a coherent microwave field with frequency ωl and strength
η, which in the frame rotating with ωl is represented in the Hamiltonian by the
additional term Hp = i~

(
ηa† − η∗a

)
. From the stationary solution, we then deter-

mine the steady-state photon number in the cavity for different frequencies of the
pump field to determine the central system resonances, where the pump frequency
matches the eigenfrequencies ωm ± geff of the coupled ensemble-cavity system. At
zero temperature and weak pumping, we get the well-known vacuum Rabi splitting
showing two distinct resonances separated by 2geff. With increasing temperature
and number of thermal photons, these two peaks will get increasingly broadened
and reside on a broad background. Figure 3.1(a) illustrates the effect.
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Figure 3.2.: Effects of higher temperatures: For T = 0.1 K, (a) shows the steady-state number
of photons, whereas (b) and (c) show the real and imaginary part of the steady state field in the
cavity. The peaks in the photon number start to broaden and finally vanish. The amplitude of the
field shows similar behavior. Panels (d), (e), and (f) show the same quantities for T = 0.7 K. The
remaining parameters were chosen as in Fig. 3.1.

To compare the dynamics obtained from the restricted Tavis-Cummings Hamiltonian
HTC in Eq. (3.3.2) with the dynamics of Hamiltonian H in Eq. (3.3.1), we compare
the results for both cases in Fig. 3.1(b). Even for the rather small atom numbers
chosen here, the difference and thus the influence of the nonsymmetric states is
hardly visible in this observable.

The peaks in the photon number in principle stay visible also for higher tempera-
tures, but they start to broaden and finally vanish. Regardless, the detection on the
thermal background gets technically more challenging. The intracavity steady-state
amplitude of the field shows a similar behavior and a determination of the split-
ting becomes increasingly impossible, despite the fact that phase-sensitive detection
(homodyne) can help. An example is shown in Fig. 3.2. This effect is expected
to be less important if the ensemble contains a large number of atoms. However,
this regime is not accessible for direct numerical simulations and we have to develop
alternative semianalytic approaches.
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3.7. Truncated cumulant expansion of collective
observables

To overcome the system size restrictions of a direct numerical solution, we now turn
to an alternative approach that does not rely on the simulation of the dynamics
of the whole density matrix. Instead, we derive a system of coupled differential
equations for the expectation values of the relevant system variables. The inversion
of atom i then obeys

d
dt 〈σ

z
i 〉 = Tr{σzi

d
dtρ}

= −i2g
(〈
σ+
i a
〉
−
〈
σ−i a

†
〉)
− γa (〈σzi 〉+ 1) (3.7.1)

which couples to
〈
σ+
i a
〉

and
〈
σ−i a

†
〉

=
〈
σ+
i a
〉∗
. We assume that all atoms are

equal, which allows us to replace 〈σzi 〉 with 〈σz1〉. Expectation values for pairs of
different atoms like

〈
σ+
i σ
−
j

〉
can be replaced with

〈
σ+

1 σ
−
2

〉
.

While these equations are exact in principle, the procedure ultimately leads to an
infinite set of coupled equations. We thus have to start approximations and truncate
this set at a chosen point, neglecting higher-order cumulants [3.9, 3.17]. The trun-
cation has to be carefully chosen and tested in general. Here we stop at third order,
which in similar situations has proven to be well suited to describe the essential
correlations [3.9].

The expansion for an expectation value of the form 〈ab〉 is the well-known relation
〈ab〉 = 〈ab〉c + 〈a〉 〈b〉, with 〈ab〉c being the covariance between a and b. Along this
line, one expands third-order terms in the form

〈abc〉 = 〈abc〉c︸ ︷︷ ︸
neglected

+ 〈ab〉c 〈c〉+ 〈ac〉c 〈b〉

+ 〈bc〉c 〈a〉+ 〈a〉 〈b〉 〈c〉 . (3.7.2)

We make one exception in this expansion when it comes to the quantity
〈
a†aσz1

〉
;

the reason for this is discussed in Appendix 3.17.

The number of equations depends on the order of the cumulants we wish to keep
track of. Furthermore, the problem is greatly simplified if there is no coherent input
field driving our cavity. In this case, no defined phase exists in our system, so we can
assume that 〈a〉 =

〈
a†
〉

=
〈
σ±1

〉
= 0. Note that while for a single system trajectory
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Figure 3.3.: The steady-state field and photon number in the cavity for different frequencies of
the pump. The size of the ensemble was chosen to be N = 105 and we set κ = 7× 103, η = 5× 105,
γa = 0.3 and g = 40. Panel (a) shows the steady-state number of photons, whereas (b) and (c) show
the real and imaginary parts of the steady-state field in the cavity for T = 0.1 K, which corresponds
to n̄ = 0.04. The remaining figures show the same quantities for T = 0.7 K, corresponding to
n̄ = 1.67. The results show that for a sufficiently large number of atoms strong coupling remains
observable despite of the presence of thermal photons.

a coherent field can build up as in a laser, for an average over many realizations the
preceding assumption holds. For a covariance like

〈
σ+

1 a
〉
c

=
〈
σ+

1 a
〉
−
〈
σ+

1

〉
〈a〉, we

therefore find
〈
σ+

1 a
〉

=
〈
σ+

1 a
〉
c
. The four remaining equations are

d
dt 〈σ

z
1〉 =− i2g

(〈
σ+

1 a
〉
−
〈
σ−1 a

†
〉)
− γa (〈σz1〉+ 1) , (3.7.3)

d
dt
〈
a†a

〉
=− igN

(〈
a†σ−1

〉
−
〈
aσ+

1

〉)
− 2κ

〈
a†a

〉
+ 2κn̄ , (3.7.4)
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d
dt
〈
aσ+

1

〉
=−

(
κ+ γa

2 + i (ωm − ωa)
)〈

aσ+
1

〉
− ig

(〈σz1〉+ 1
2 +

〈
a†a

〉
〈σz1〉+ (N − 1)

〈
σ+

1 σ
−
2

〉)
, (3.7.5)

and

d
dt
〈
σ+

1 σ
−
2

〉
=− γa

〈
σ+

1 σ
−
2

〉
− ig 〈σz1〉

(〈
σ−1 a

†
〉
−
〈
σ+

1 a
〉)

. (3.7.6)

To inject energy into our system without losing the property of having no defined
phase, we can introduce an incoherent pump of the atoms. In essence, this gives
an additional term in the Liouvillian very much resembling spontaneous emission
in opposite direction. Formally, it reads −w

2
∑N
j=1

(
σ−j σ

+
j ρ+ ρσ−j σ

+
j − 2σ+

j ρσ
−
j

)
,

where w denotes the rate of the pump. The modifications of Eqs. (3.7.3)–(3.7.6)
narrow down to the replacement of γa with γa + w and of −γa (〈σz1〉+ 1) with
− (γa + w)

(
〈σz1〉+ w−γa

w+γa

)
in Eq. (3.7.3).

Introducing a coherent pump leads to a larger set of 13 coupled equations for the
quantities 〈a〉, 〈σz1〉,

〈
σ+

1

〉
,
〈
aσ+

1

〉
c
, 〈aσz1〉c,

〈
σ+

1 σ
−
2

〉
c
,
〈
a†a

〉
c
,
〈
aσ−1

〉
c
,
〈
a†a†

〉
c
,〈

σ−1 σ
−
2

〉
c
,
〈
σz1σ

+
2

〉
c
, 〈σz1σz2〉c and

〈
a†aσz1

〉
; for details, see Appendix 3.16. In this

case we transform into a rotating frame with respect to the frequency of the pump
ωl. This results in ∆m = ωm − ωl for the detuning of the cavity and ∆a = ωa − ωl
for the detuning of the atoms with respect to the pump frequency.

In general, the set of equations is too complex for a direct analytical solution and
has to be integrated numerically. In this way we obtain the steady-state expectation
values of relevant observables as the occupation number of the cavity

〈
a†a

〉
or the

inversion of the ensemble 〈σz1〉.

To compare the results of the obtained equations with the results in Sec. 3.6, we plot
the steady-state number of photons and the field in the cavity for different frequencies
of the pump laser in Fig. 3.3. We clearly see that effective strong coupling appears
for a sufficiently large number of weakly coupled atoms and can stay visible also
at higher temperatures. Further discussion is given in Sec. 3.10. In Fig. 3.4 we
schematically depict the setup including the described loss and pump processes.
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Figure 3.4.: To simplify matters, we depict the cavity as a Fabry-Perot cavity which can be
pumped through a mirror with high reflectivity. The observation of the dynamics is carried out
using the second mirror, which has a lower reflectivity. Additionally, we can pump the ensemble
incoherently from the side.

3.8. Cavity output spectrum at finite temperature

Naturally, the total field intensity in the cavity is only part of the story and signifi-
cant physical information can be obtained from a spectral analysis of the transmitted
field. Using the quantum regression theorem, the spectrum of the light transmitted
through one of the mirrors can be expressed in terms of the Fourier transform of the
corresponding autocorrelation function of the field amplitude.

At finite T this is not the full story, and to obtain the actual spectrum of the light
impinging on the detector, one has to include the thermal photons in the output
mode reflected from the cavity. Hence, the normalized first-order correlation function
of the field outside the cavity will have additional contributions from the correlation
function of the thermal field, as well as of the correlation between the thermal
field and the cavity field [3.18]. The latter is causing interference effects between
cavity field and the thermal field. The correlations between reservoir operators and
cavity operators can be expressed in terms of averages involving cavity operators
alone [3.15, 3.18]. For a cavity radiating into a thermal reservoir, we find for the
normalized first-order correlation function

49



3. Publication: Cavity QED with an ultracold ensemble on a chip

g (τ) = 1
N

{
1

2πg (ω)
〈
r†f (0) rf (τ)

〉
+ 2κ

[
lim
t→∞

〈
a† (t) a (t+ τ)

〉]

+2κn̄ (ωm, T )
[

lim
t→∞

〈[
a† (t) , a (t+ τ)

]〉]}
, (3.8.1)

with

N = 1
2πg (ω)

〈
r†frf

〉
+ 2κ

(〈
a†a

〉
ss
− n̄ (ωm, T )

)
. (3.8.2)

Here, rf denotes the annihilation operator of a reservoir photon and g (ω) denotes
the density of states in the reservoir. Equations for the correlation functions in
Eq. (3.8.1) can be obtained via the quantum regression theorem. The resulting
system of coupled equations is Laplace transformed to give the contributions to the
spectrum that arise from the reservoir, the cavity and cavity-reservoir interference.
The initial conditions necessary for the Laplace transform are the steady-state values
obtained either numerically for the coherently pumped cavity or analytically (see
Sec. 3.13).

We show the spectrum of the cavity without any pump, coherent or incoherent, but
with T = 0.1 K in Fig. 3.5. The spectrum shows absorption dips at the frequencies
of the coupled ensemble-cavity system. Some thermal photons that leak into the
cavity are absorbed and lost into modes other than the cavity mode. In this form
the thermal field is a broadband probe of resonant system absorption.

3.9. Cooling the field mode with the atomic ensemble

The spectra depicted in Fig. 3.5 show a weak loss of thermal photons from the
coupled ensemble-cavity system. Cavity photons are absorbed and sometimes scat-
tered into a mode other than the cavity mode. As the ensemble can be nearly
perfectly optically pumped into a particular state, its effective temperature is close
to zero and hence well below the mode temperature. A relative purity of the en-
semble of 10−5 corresponds to T ∼ 28 mK, where we used ~ωa/kbT = ln

(
10−5)

with ωa/2π = 6.83 GHz. This leads to the question as to what extent the thermal
occupation of the mode can be reduced by thermal contact between the two systems
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Figure 3.5.: (Color online) Overview of the transmitted spectrum S for different sizes of the
ensemble (a). The temperature of the cavity is set to T = 0.1 K (n̄ = 0.04). The remaining
parameters were chosen to be κ = 7× 103, γa = 0.3, g = 40, ωa = ωm = 2π × 6.83 GHz. The dips
in the spectrum indicate that thermal photons are absorbed by the ensemble and re-emitted into
modes other than the cavity mode. The increasing distance between the absorption dips reflects the
increasing number of atoms. In panels (b)-(d) we depict the spectra at N1 = 3.2×105, N2 = 1×105,
and N3 = 3.4× 104, indicated in (a) by the dashed horizontal lines.

via such energy transfer and loss. In Fig. 3.6(a) we show the dynamics of the photon
number in the mode at different temperatures after putting the systems into contact.
In Fig. 3.6(b) we consider different loss or decay rates γa of the excited atoms. In
practice one could think of coupling to an magnetically untrapped atomic state or
adding some repumping mechanism to increase this intrinsically very low rate. The
dynamics is found numerically by integrating Eqs. (3.7.3)–(3.7.6). To see the effect
for increasing temperature in Fig. 3.6(a), we initialize the ensemble with all atoms
in the ground state, whereas the mode contains n̄ (ωm, T ) photons. The decay rate
of the atoms is chosen to be γa = 5 × 104. With increasing temperature the initial
number of photons also increases. Due to coherent transfer and decay via the atoms,
a constant fraction of the photons is removed from the cavity mode. In Fig. 3.6 (b)
we show the same effect except that we now keep the temperature fixed to T = 4 K
and vary the decay of the atoms γa = 1 × 103 . . . 2 × 105. The steady state of the
photon number strongly depends on γa. The red curve (with diamond markers) is
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Figure 3.6.: (Color online) Loss of photons from the cavity mode. (a) Dynamics of the occupa-
tion of the mode for different temperatures and γa = 5 × 104. A constant fraction of the photons
is removed from the cavity mode. (b) For fixed T = 4 K (n̄ = 11.7), the loss rate of the atoms is
varied between γa = 1× 103 and 2× 105. The steady-state number of photons shows that there is
an optimal loss rate. The red curve (with diamond markers) corresponds to the expected number
of photons according to Eq. (3.9.1). The remaining parameters were chosen to be κ = 7 × 103,
g = 40, ωa = ωm = 2π × 6.83 GHz, N = 105.

the expected number of photons remaining in the cavity〈
a†a

〉
ss

= n̄ (ωm, T )− 1
2κNγa

(1 + 〈σz1〉ss
2

)
(3.9.1)

which coincides with the numerical results. The inversion 〈σz1〉ss can be calculated
analytically from Eqs. (3.7.3)–(3.7.6). The loss of thermal photons is proportional
to the loss rate γa and the number of atoms in the excited state N

(
1+〈σz1〉ss

2

)
. The

latter becomes very small if γa becomes large. Hence there is an optimal loss rate
for each set of parameters.
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Figure 3.7.: Steady state of the photon number (a) and the inversion (b) for a loss rate γa = κ =
7 × 103. Increasing the number of atoms N leads to a more effective removal of thermal photons.
The remaining parameters are chosen to be g = 40, ωa = ωm = 2π×6.83 GHz, T = 4 K (n̄ = 11.7).

The removal of thermal photons becomes more effective if the number of atoms is
increased. Meanwhile, the inversion of the ensemble also drops since the fraction
of excited atoms is decreased. Overall, the effect is clearly visible (see Fig. 3.7),
but it seems that for the actual parameters here its practical value remains limited.
However, with a larger atom number and more tailored decay rates the method
could be employed to reset a particular mode shortly before starting any quantum
gate operation. Note that this treatment of the cooling process is limited to short
time scales since the permanent loss of excitations via γa involves the loss of atoms
from the ensemble. The number of lost atoms after the time t, approximated by
the number of thermal photons that entered the cavity tκn̄, has to be much smaller
than the ensemble size N , which restricts the time t.

In the situation where the mode is at T ≈ 0 K and the atoms are subject to in-

53



3. Publication: Cavity QED with an ultracold ensemble on a chip

 

 

lo
g
1
0
[N

]

(a) (b)

(c)

(d)

N1

N2

N3

ω(rad/s)ω(rad/s)
−1−1 00 1× 1051× 105

1

1

1

10

8

4

4

4.8

4.6

4.4

4.2

6

6

5.8

5.6

5.4

5.2

−0.5 0.5

2

2

2

2
3

3× 10−11

3× 10−11

4× 10−11

12× 10−11

S
(s
)

S
(s
)

S
(s
)

S(s)

Figure 3.8.: (Color online) The temperature of the cavity is now set to T = 0.001 K (n̄ = 0) and
an incoherent pump of the atoms with w = 0.05 is switched on. The spectrum now shows increased
emission at the frequencies of the coupled system. Again figures (b)-(d) depict the spectra at
N1 = 3.2× 105, N2 = 1× 105, and N3 = 3.4× 104, indicated in (a) by the dashed horizontal lines.

coherent pumping we find increased transmission for the resonance frequencies (see
Fig. 3.8). We again recover the

√
N dependence of the splitting of the peaks.

3.10. Coherently driven cavity mode

An experimentally readily accessible quantity is the cavity field amplitude, which can
be deduced by phase-sensitive (homodyne) detection of the output. This quantity is
much less obscured by random thermal field fluctuations than the spectral intensity
in total. As a phase reference, we therefore now introduce a coherent phase stable
pump of the cavity, which is again represented in the Hamiltonian by the additional
term Hp = i~

(
ηa† − η∗a

)
.

As mentioned previously, a coherent pump strongly increases the number of nonvan-
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Figure 3.9.: Steady state field in the driven cavity, real part (a) and imaginary part (b). The
size of the ensemble is chosen to be N = 105. The lines for T = 0.01 K (n̄ = 0) and T = 10 K
(n̄ = 30) coincide.

ishing cumulants and at our level of truncation leads to a set of 13 coupled equations,
which can be found in Appendix 3.16. Based on this set, we can calculate the sta-
tionary real- and imaginary part of the field in the cavity after transient dynamics.
The amplitude of the field inside the cavity becomes maximal if the frequency ωl
of the driving laser hits one of the resonances of the coupled system. As we give
a phase reference now the effect of a higher temperature on the field in the cavity
is barely visible, in particular if we chose a large ensemble of N = 105 atoms (see
Fig. 3.9).

Note that although not giving the vacuum Rabi splitting, the average atom-field
coupling can be still deduced from these resonances as g enters in their frequency.
If we go back to a rather small ensemble of N = 102 atoms, the influence of the
temperature becomes visible. To ensure that we still can observe well split levels,
which are not covered by the linewidth of the cavity, we increase the coupling con-
stant g in our simulation. The results in Fig. 3.10 show that thermal effects become
visible in the field only if the number of thermal photons is not negligible compared
to N .
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Figure 3.10.: Steady state field in the driven cavity, real part (a) and imaginary part (b), for
T = 0.01 K (n̄ = 0) (solid lines) and T = 10 K (n̄ = 30) (dashed lines). For the small ensemble
with N = 102 atoms we recover the effects of the thermal photons. To compensate for the lower
number of atoms, the coupling is chosen to g = 1200. Otherwise, the splitting would be covered by
the cavity linewidth.

3.11. Spectrum of the coherently driven cavity

The spectral intensity distribution of the coherently pumped cavity is calculated in
a way similar to that described in Sec. 3.8. In contrast to the incoherent pump
process that excites atoms in a noncollective way, as can be seen from the Liouvil-
lian, the interaction with the coherently pumped mode is a collective interaction.
To demonstrate this behavior, we calculate the spectral distribution of the mode
intensity, without caring about the reservoir it radiates into, and the spectrum of
the fluorescence of the atoms.
The cavity mode and the atomic transition are assumed to be on resonance with
ωa = ωm = 2π × 6.83 GHz, which is also the frequency of the pump laser. To
calculate the incoherent part of the spectra we need the Fourier transform of the
two-time correlation functions

lim
t→∞

〈
a† (t) a (t+ τ)

〉
c

= lim
t→∞

(〈
a† (t) a (t+ τ)

〉
−
〈
a†(t)

〉
〈a (t+ τ)〉

)
(3.11.1)
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Figure 3.11.: (Color online) Incoherent spectrum of the mode (a) and of the fluorescence of the
ensemble (b) for T = 0.025 K, κ = 7×103, γ = 0.3, N = 105, η = 9×105 in red (gray) and η = 106

in black. The pump driving the system is on resonance with the cavity and the ensemble. Insets
(c) and (d) show a magnification of the central peak of each spectrum. The lower red (gray) line
represents the result for η = 9× 105.

and

lim
t→∞

〈
σ+
i (t)σ−j (t+ τ)

〉
c

=

lim
t→∞

(〈
σ+
i (t)σ−j (t+ τ)

〉
−
〈
σ+
i (t)

〉〈
σ−j (t+ τ)

〉)
. (3.11.2)

The quantum regression theorem and Eqs. (3.16.1) to (3.16.5) give

d
dτ
〈
a† (0) a (τ)

〉
c

=− (κ+ i∆m)
〈
a† (0) a (τ)

〉
c

− igN
〈
a† (0)σ−i (τ)

〉
c

(3.11.3)
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and

d
dτ
〈
σ+
i (0)σ−j (τ)

〉
c

=−
(
γa
2 + i∆a

)〈
σ+
i (0)σ−j (τ)

〉
c

+ ig
(
〈a (τ)〉

〈
σ+
i (0)σzj (τ)

〉
c

+ 〈σzi (τ)〉
〈
σ+
i (0) a (τ)

〉
c

)
(3.11.4)

where we use
lim
t→∞

〈
a† (t) a (t+ τ)

〉
c
≡
〈
a† (0) a (τ)

〉
c

and
lim
t→∞

〈
σ+
i (t)σ−j (t+ τ)

〉
c
≡
〈
σ+
i (0)σ−j (τ)

〉
c
.

Equations (3.11.3) and (3.11.4) couple to four other two-time correlation functions
that have to be calculated. To solve for the desired quantities, we Laplace trans-
form both sets of equations and use Cramer’s rule to obtain ˜〈a† (0) a (τ)〉c (s) and

˜〈
σ+
i (0)σ−j (τ)

〉
c
(s). The necessary steady-state values are obtained numerically.

The incoherent spectra of the mode and of the atoms both show a narrow peak at
ωa = ωm which has a width of ≈ 2γa (see Fig. 3.11). The double-peaked structure is
a remainder of thermal excitations acting as a broad band probe for the ensemble-
cavity system. With increasing strength of the coherent pump the narrow central
peak becomes dominant. The appearance of the central peak is probably related to
weak contributions from almost-dark states (very weakly coupled to the mode). Let
us mention in this context that the atomic ensemble is not restricted to a manifold
of the Dicke states with fixed J since we include spontaneous emission in our model.
It is hence possible that the ensemble ends up in a dark state, where it does not
couple to the cavity mode. The time-constant that determines the decay into and
the decay of such a dark state is of the order 1/γa. This allows for the buildup
of long time coherences, and the times the ensemble is in a dark state significantly
change the statistics of the photon emission. The result is then a narrow peak in
the incoherent spectrum [3.19, 3.20], where the width of the peak is determined by
the characteristic time the ensemble resides in a bright or dark state, in our case γa.
In the case of an incoherently pumped ensemble, the narrow peak does not arise. A
reason for this can be the nature of the incoherent pump which is noncollective and
hence able to pump the ensemble out of a dark state in a shorter time. This is not
possible in the case of the coherently pumped cavity: Spontaneous emission brings
the ensemble to a dark state, but the collective interaction with the mode cannot
reach it there.
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Figure 3.12.: (Color online) Dynamics of superradiant emission: numerical solutions of the dy-
namical equations for an ensemble of N = 105 atoms. The rapid drop of the inversion 〈σz1〉 during
the emission can be seen in (a). The exchange of excitations between the ensemble and the cavity
is characterized by

〈
aσ+

1
〉
in (b). Negative imaginary part of

〈
aσ+

1
〉
indicates emission from the

ensemble into the cavity, where a positive imaginary part indicates absorption of cavity photons by
the ensemble. In (c) the number of photons in the cavity is depicted. Panel (d) shows the spin-spin
correlation

〈
σ+

1 σ
−
2
〉
. In this example the temperature of the mode was chosen to be T = 4 K.

3.12. Superradiance

A great advantage of the considered setup is that one has full control of the atomic
state. Hence, instead of starting at a zero-temperature ground state we can prepare
an almost fully inverted ensemble, which can feed energy into the system and cor-
responds to an effective negative temperature [3.21]. Since we have no initial phase
bias in the system, Eqs. (3.7.3)–(3.7.6) are suitable for describing the dynamics. The
resulting superradiant dynamics for an initially fully inverted ensemble is depicted
in Fig. 3.12. In free space the emission occurs in a characteristic burst of duration
≈ 1

γaN
[3.22]. The presence of the cavity causes a partial reabsorption of the emitted
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Figure 3.13.: Dynamics of the photon number in the cavity with increasing temperature. The
onset of the superradiant emission is shifted to earlier times since the initially present thermal
photons contribute to the fluctuations that trigger the emission process.

photons, which can be seen in Fig. 3.12 (c). Due to the large number of emitted
photons it should be clearly detectable even on a fairly high thermal background.
Following the pulse shape, one also can extract the effective coupling parameters to
characterize the system.

The process of superradiance can create a transient entangled state of the ensem-
ble [3.23]. This entanglement can be revealed by entanglement witnesses which can
be inferred from the calculated observables. We have seen some indication of such
entanglement appearing. However, the persistence of the entanglement under the
influence of noise and with the presence of the cavity will be part of future work.

The onset of superradiant emission is determined by spontaneously emitted photons
that trigger the forthcoming burst of radiation. The presence of thermal photons is
expected to reduce the time until the onset of the burst. This behavior is recovered
by our equations as shown in Fig. 3.13, where we depict the dynamics of the photon
number in the cavity for different temperatures.
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Figure 3.14.: (Color online) Steady-state inversion of the ensemble (a) and occupation of the
cavity mode (b) for varying ensemble size N and pump strength w. The temperature was chosen to
be T1 = 0.001 K, which corresponds to an empty cavity (n̄ = 0). Vertical red dashed lines mark the
masing threshold w = γa = 0.3. The horizontal red dashed lines at N = 105 indicate the position
of the curves shown in (c) and (d). From (c) we recover the passage of the inversion through zero
for w = γa = 0.3. At this point we see in (d) a rapid increase of the photon number in the mode.

3.13. Narrowbandwidth hyperfine micromaser

The collectively coupled ensemble can be used to construct a stripline micromaser
with a very low linewidth. To this aim the inversion of the ensemble is sustained by
an external incoherent pump of the atoms. In contrast to the calculations in Sec. 3.8,
we ignore the fact that the cavity radiates into a thermally occupied reservoir. After
passing the masing threshold, the thermal occupation outside becomes negligible.
To determine the linewidth of the emitted light we calculate the Laplace transform
of the two-time correlation function

〈
a†(t)a(0)

〉
. Using the quantum regression
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theorem we find

d
dt

〈a†(t)a(0)
〉〈

σ+
1 (t)a(0)

〉 =
(

−κ igN
−ig 〈σz1〉ss −

w+γa
2

)
×

〈a†(t)a(0)
〉〈

σ+
1 (t)a(0)

〉 . (3.13.1)

Laplace Transform of Eq. (3.13.1) gives

(
κ+ s −igN

ig 〈σz1〉ss
w+γa

2 + s

)
×

 ˜〈a†(t)a(0)〉
˜〈

σ+
1 (t)a(0)

〉
 =

〈a†a〉ss〈
σ+

1 a
〉
ss

 , (3.13.2)

where 〈· 〉ss denotes steady state values and ·̃ denotes Laplace transformed quan-
tities.

The steady-state values on the right-hand side of Eq. (3.13.2) can be obtained ana-
lytically. Setting the time derivatives of the dynamical equations to zero, a quadratic
equation for 〈σz1〉ss is attained. One of the solutions yields a physically meaning-
ful result for calculating the remaining steady-state values and hence

〈
a†a

〉
ss

and〈
σ+

1 a
〉
ss
. To illustrate the effect of the increasing pump strength, we show the

steady-state inversion of the ensemble and the occupation of the cavity in Figs. 3.14
and 3.17. Once the critical pump strength is reached, the systems behave identically
for different temperatures. The number of atoms in the ensemble is varied between
103 and 106, whereas the pump parameter w ranges from 10−3 to 104. In both
figures we mark the pump strength w = γa = 0.3, for which we find the inversion
becomes positive, with a vertical red dashed line. At this point we also find a rapid
increase of the number of photons in the cavity. The horizontal lines mark the cross
sections for N = 105 shown in what follows.

To solve for ˜〈a†(t)a(0)〉, we use Cramers rule on Eq. (3.13.2), which yields

˜〈a†(t)a(0)〉(s) =

〈
a†a

〉
ss

(
w+γa

2 + s
)
− igN

〈
σ+

1 a
〉
ss

(κ+ s)(w+γa
2 + s)− g2N 〈σz1〉ss

, (3.13.3)

so that with s = −iω the spectrum is given by

S (ω) = 1
2π

(
˜〈a†(t)a(0)〉 (ω) + ˜〈a†(t)a(0)〉

∗
(ω)
)
. (3.13.4)

For each set of parameters we calculate the spectrum and determine the linewidth
numerically. The linewidth of the maser for two different temperatures T1 = 0.001 K
and T2 = 0.1 K is shown in Figs. 3.15(a) and 3.16(a). For w = γa = 0.3 we see a
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Figure 3.15.: (Color online) (a) Linewidth of the spectrum S (ω). For each set of parameters we
numerically determine the linewidth of the spectrum. The parameters were chosen to be κ = 7×105,
γa = 0.3, g = 40, ωm = ωa = 2π× 6.83× 109, T = 0.001. (b) Exemplary spectrum for N = 105 and
w = 0.55, marked in (a) by the white cross.

rapid drop in the linewidth for both temperatures and a resulting minimal linewidth
of δ = 1

2π4.7× 10−3 Hz. Above the critical pump strength the pump noise destroys
the coherence between the individual atoms [3.9]. In in Figs. 3.15(b) and 3.16(b)
we plot exemplary spectra for N = 105 and w = 0.55, marked by the white cross.

For T2 = 0.1 K the cavity contains on average n̄ = 0.04 photons that can be recovered
from the constant background in Figs. 3.17(b) and 3.17(d). Since the number of
thermal photons is small compared to the considered ensembles, the inversion is
nonsensitive to the increased temperature.

In Fig. 3.16 we recover the linewidth of the cavity κ = 7× 105 if the pump is below
threshold and again if the pump exceeds a critical strength wmax. Above wmax the
coherence between different spins is destroyed by the pump noise [3.9]. The behavior
between the threshold and wmax resembles the behavior for T = 0.001 K shown in
Fig. 3.15.

3.14. Conclusions

Our studies show that a hybrid cavity QED system consisting of a stripline mi-
crowave resonator at finite T and an ensemble of ultracold atoms is a rich and
versatile setup for observing and testing prominent quantum physics phenomena.
The effectively very cold temperature and good localization of the atomic cloud al-

63



3. Publication: Cavity QED with an ultracold ensemble on a chip

 

 

N

(a)

w(1/s)

2πδ(rad/s)

×

10110−110−210−3

101

100

100

102

102
103

103

103

104

104

105

10−2

10−1

105

104.5

103.5

105.5

106

(b)

ω(rad/s)

S
(s
)

0 0.4 0.8× 106−0.4−0.8

10

10

10

10

10

10
−8

−6

−4

0

−2

2

Figure 3.16.: (Color online) Finite temperature effects in the spectrum. Panel (a) again shows
the linewidth of the spectrum. Below the critical pump strength we recover the linewidth of the
cavity. The parameters were chosen to be κ = 7×105, γa = 0.3, g = 40, ωg = ωa = 2π×6.83×109,
T = 0.1. (b): Exemplary spectrum for N = 105 and w = 0.55, marked in (a) by the white cross.

low symmetric collective strong coupling to the microwave mode. While the weak
magnetic dipole coupling requires large atom numbers and an extremely well local-
ized microwave mode to obtain significant coupling, it also makes the system quite
immune to external noise. In addition to the long lifetime of the atomic states, this
renders the system an ideal quantum memory or allows for very narrow spectral re-
sponse or gain. As all the atoms are identical and well trapped, the system exhibits
only a very narrow inhomogeneous broadening. Operated in an active way, one
thus can envisage a truly microscopic maser with an very narrow linewidth directly
locked to an atomic clock transition. The uniform coupling and the possibility of
efficient optical pumping enables the study of superradiant decay into the stripline
mode, where a precise phase and intensity analysis of the emitted radiation can be
performed.

While many of our considerations are guided by parameters expected from an ultra-
cold atom ensemble, it is easy to generalize to alternative setups using NV-centers or
other solid-state ensembles. There larger ensembles can be easily envisaged but one
also gets much more varying coupling constants and larger inhomogeneous widths.
It is not obvious whether the technically more simple setup and larger numbers in
this case can compensate for these imperfections.

This could be particularly important for a next step: possible optical readout of the
ensemble. For the atomic case, the uniformity of the coupling over many optical
wavelengths should allow a nice directional readout of the ensemble state, once a
laser could coupled in.
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Figure 3.17.: (Color online) Same as Fig. 3.14 with T2 = 0.1, which corresponds to n̄ = 0.04. In
(d) the thermal excitations in the mode appear as a constant background from which the increase
due to the pump stands out.
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3.16. Appendix A: Coupled Equations

Transformation to a rotating frame with respect to the frequency of the pump ωl
results in ∆m = ωm − ωl for the detuning of the cavity and ∆a = ωa − ωl for the
detuning of the atoms. The coupled equations are given by:
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d
dt 〈a〉 = − (κ+ i∆m) 〈a〉 − igN

〈
σ−1

〉
+ η (3.16.1)

d
dt
〈
a†
〉

= − (κ− i∆m)
〈
a†
〉

+ igN
〈
σ+

1

〉
+ η∗ (3.16.2)

d
dt 〈σ

z
1〉 =− γa (1 + 〈σz1〉)

− 2ig
((〈

σ+
1 a
〉
c

+
〈
σ+

1

〉
〈a〉
)
−
(〈
σ−1 a

†
〉
c

+
〈
σ−1

〉〈
a†
〉))

(3.16.3)
d
dt
〈
σ−1

〉
=−

(
γa
2 + i∆a

)〈
σ−1

〉
+ ig (〈σz1a〉c + 〈σz1〉 〈a〉) (3.16.4)

d
dt
〈
σ+

1

〉
=−

(
γa
2 − i∆a

)〈
σ+

1

〉
− ig

(〈
σz1a

†
〉
c

+ 〈σz1〉
〈
a†
〉)

(3.16.5)

d
dt
(〈
aσ+

1

〉
c

+ 〈a〉
〈
σ+

1

〉)
=−

(
κ+ γa

2 + i (∆m −∆a)
)(〈

aσ+
1

〉
c

+ 〈a〉
〈
σ+

1

〉)
− ig

(〈σz1〉+ 1
2 + (N − 1)

(〈
σ+

1 σ
−
2

〉
c

+
〈
σ+

1

〉〈
σ−2

〉))
− ig

〈
σz1a

†a
〉

+ η
〈
σ+

1

〉
(3.16.6)

d
dt (〈aσz1〉c + 〈σz1〉 〈a〉) = − (κ+ i∆m) (〈aσz1〉c + 〈σz1〉 〈a〉) + η 〈σz1〉

− 2γa
(〈
aσ+

1

〉
c

〈
σ−1

〉
+
〈
aσ−1

〉
c

〈
σ+

1

〉
+ 〈a〉

〈
σ+

1 σ
−
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〉)
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〉
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〈a〉+ 〈aa〉c

〈
σ+

1

〉
+ 〈a〉 〈a〉
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1

〉)
−
(
1 + 2

〈
a†a

〉
c
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〉
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〉
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a†σ−1

〉
c
〈a〉 − 2

〈
a†
〉
〈a〉

〈
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〉
+ (N − 1)

(〈
σz1σ

−
2

〉
c

+ 〈σz1〉
〈
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〉)]

(3.16.7)
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d
dt
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1 σ
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+
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d
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(3.16.9)

d
dt
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(3.16.11)
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(3.16.14)

3.17. Appendix B: Validity of the cumulant expansion

The validity of the truncation of the expansion performed previously relies on the
assumption that higher-order cumulants are negligible. This can be checked in
principle by truncating at higher orders and comparing the results. In general,
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Figure 3.18.: (a) Dynamics of the photon number in the cavity mode for an initially fully inverted
ensemble. The solid line shows the dynamics produced by the set of equations where

〈
a†aσz1

〉
c
was

neglected. The dashed curve is the result of the full set of 13 equations in which
〈
a†aσz1

〉
c
is kept.

(b) Numerically obtained cumulant
〈
a†aσz1

〉
c
in the steady state. With increasing loss rate of the

cavity κ the correlation between photon number and inversion decreases.

it turns out that there is one cumulant which requires more care: the correlation
between the inversion and the photon number

〈
a†aσz1

〉
. In the regime where geff

κ >

1 and geff
γa

> 1 holds, the number of photons necessary to saturate the ensemble
is low. Therefore small fluctuations of the photon number can cause significant
changes in the inversion [3.24]. The correlation between the photon number and the
inversion

〈
a†aσz1

〉
c
is therefore kept in our calculations. Hence, an expansion like in

Eq. (3.7.2) would not be advantageous because none of the terms could be dropped.
We therefore calculate the dynamical equation for

〈
a†aσz1

〉
which gives
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d
dt
〈
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− ig
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〈
aσz1σ
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2

〉)
+ η
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a†σz1

〉
+ η∗ 〈aσz1〉 (3.17.1)

The expectation values of products of three operators are expanded as in Eq. (3.7.2),
except for

〈
a†aσz1

〉
. The expansion of expectation values with four operators is more

involved and produces also expectation values of products of three operators which
are again expanded. Cumulants of order three and four are neglected. The resulting
equation for

〈
a†aσz1

〉
can be integrated numerically along with the equations for the

other quantities mentioned previously.

To estimate the influence of the correlation between the photon number and the
inversion

〈
a†aσz1

〉
c
on the dynamics we plot the photon number in the cavity during

the decay of a fully inverted ensemble. We therefore integrate a set of 12 equations
that is obtained if

〈
a†aσz1

〉
is expanded and

〈
a†aσz1

〉
c
is neglected. For comparison

we also show the dynamics obtained from the full set of 13 equations in which〈
a†aσz1

〉
c
is kept [see Fig. 3.18 (a)].

The steady state of both solutions differs only slightly. The correlation
〈
a†aσz1

〉
c
is

shown in Fig. 3.18 (b). With increasing cavity decay rate κ the correlation between
photon number and inversion decreases.
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Figure 4.1.: (a) (Color online) Schematic of the experimental setup. A (001) diamond is po-
sitioned in the middle and parallel to the surface of a λ/2 CPW resonator. The chip dimensions
are 12× 4 mm, the center conductor is 20 µm wide, the gaps are 8.3 µm. A 2-axis Helmholtz coil
configuration creates a magnetic field in an arbitrary direction ϕ within the (001) plane, tuning the
NV centers. (b) Sketch of a diamond lattice with the four possible NV center orientations. Due to
the diamond symmetry, the NV ensembles denoted as I (red) and II (green) are tuned equivalently,
since these ensembles enclose the same angle with the applied magnetic field.

fast processing speeds, long-distance information transfer and scalability. A variety
of hybrid systems have been conceived, including cold atoms and ions, nanome-
chanics, and molecules [4.1–4.6]. Superconducting (SC) qubits [4.7] are appealing
processing devices due to the fast processing speed and their customizability. Su-
perconducting coplanar waveguide (CPW) resonators have been used to reversibly
transfer quantum states between two qubits and the resonator [4.8]. Color centers in
solids on the other hand – most prominently the negatively charged nitrogen-vacancy
defect in diamond (NV) – show astonishingly long coherence times even at room tem-
perature [4.9] and provide coherent bridges between electron spin resonances (ESR)
in the GHz range and optical photons suitable for long-distance transfer [4.10].

The coupling between a single spin and the electromagnetic field is typically rather
weak. However, when writing single excitations into ensembles of N spins, it is en-
hanced by a factor

√
N [4.11]. Provided that excitations can be coherently written to

and retrieved from the ensemble by strong coupling to high-Q resonators, quantum
memories can be constructed [4.12, 4.13]. Efforts parallel to this work have suc-
ceeded in demonstrating strong ensemble-resonator coupling using NVs [4.14] and
other impurity spins [4.15–4.17]. Schemes such as gradient echoes [4.18] and con-
trolled reversible inhomogeneous broadening [4.19] can be used to store quantum
information [4.20].

In this Letter, we employ a strongly coupled system consisting of a CPW resonator
and an ensemble of NVs to directly demonstrate key features of ensemble coupling,
such as the

√
N scaling of the coupling rate. Properties of the spin ensemble includ-
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Figure 4.2.: (Color online) Resonator transmission |S21|2 as a function of the magnetic field for
(a) ϕ = 45◦ and (b) ϕ = 3◦. While in (a) an avoided crossing of the coupled resonator-spin ensemble
system is observed when ωr = ωI−, we see in (b) the additional splitting of the ωII− transition. (c)
Comparison of the vacuum Rabi splitting of 2gI/2π = 18.5 MHz for ϕ = 45◦ (B = 8.2 mT) (gray
line) and the

√
2 larger splitting of 2g/2π = 26.3 MHz (black line) for ϕ = 0◦ (B = 14.3 mT). Each

dataset is fitted by a two-peak Lorentzian curve. (d) Transition frequencies ωI± and ωII± between the
ground |0〉I,II and the excited states |±〉I,II for different magnetic field angles (ϕ = 45◦, 3◦, 0◦).The
dashed lines indicate the cavity frequency.

ing the NV spin-lattice relaxation time T1 and ESR zero-field splitting parameters,
are determined via the cavity resonance shift caused by dispersive interactions. We
also observe the hyperfine interaction between NVs and nearby 13C nuclear spins.

The experimental setup is sketched in Fig. 4: A 4.5×2.25×0.5 mm3 high-temperature
high-pressure diamond is placed on top of a superconducting coplanar waveguide
resonator and fixated via a spring-loaded metallic pin. Our single crystal diamond
sample has two polished (100) surfaces and is specified to contain a nitrogen impurity
concentration of about 200 ppm. In order to form negatively charged NV defect
centers, the sample was neutron irradiated with a fluence of 5× 1017 cm−2 to create
vacancies [4.21]. Subsequent annealing for four hours at 900 ◦C resulted in an NV
concentration of about 6 ppm which was determined by comparing the fluorescence
intensity of an ensemble to a single NV. Resonator chip and diamond are enclosed in
a copper box and positioned in the center of two pairs of perpendicular Helmholtz
coils. This coil configuration allows to apply a homogeneous magnetic field B (up to
about 25 mT) over the extent of the diamond and allows for adjusting the magnetic
field direction in the plane of the resonator surface, without changing the resonators
frequency [4.22].

To explain our experimental observations, we consider the spin Hamiltonian of a
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single NV center [4.23]

HNV = geβeB · S + S
↔
DS− gnβnB · I + I

↔
AS, (4.0.1)

where the first and third term describe the Zeeman interaction of an electronic
NV spin (S = 1, ge = 2.0028) and a 13C nuclear spin (I = 1/2, gn = 1.4048)
with an external magnetic field B, the second the zero-field splitting (ZFS) (D/h =
2.877 GHz, E/h = 7.7 MHz) of the NV ground state and the last the hyperfine
interaction of the electron and nuclear spin (hyperfine coupling parameters A‖/h =
200 MHz, A⊥/h = 120 MHz). The Bohr magneton and the nuclear magneton are
denoted as βe and βn. The eigenenergy spectrum was obtained by diagonalizing the
Hamiltonian and confirmed with EasySpin [4.24].

Although the main axis of an NV center is along any of the four crystallographic
〈111〉 directions, for the (001) crystal plane there are only two magnetically inequiv-
alent directions, labeled I and II in Fig. 4(b). Hence, applying a magnetic field
in an arbitrary direction within the (001) plane divides the whole ensemble of NV
centers into two magnetic subensembles due to the electron Zeeman effect. Conse-
quently, each subensemble will be tuned into resonance with the CPW resonator at
a different magnetic field value (see Fig. 4(d)). For the CPW resonator, we chose a
capacitively coupled λ/2 niobium SC-resonator, fabricated on sapphire substrate. A
meander geometry ensures a large overlap of the magnetic mode volume with the spin
ensemble. At zero magnetic field and with the diamond on top, the resonator has a
center frequency of ωr/2π = 2.701 GHz and a quality factor Q ≈ 3200. Comparing
these values with the empty and coupling limited resonator (ωr/2π = 2.897 GHz
and Q ≈ 4 × 104) shows that the diamond introduces considerable losses, possibly
due to surface conductivity effects [4.25]. All subsequently shown measurements of
the resonator S21-parameter are performed by using a vector network analyzer with
a probe power corresponding to roughly 8× 104 photons in the resonator. Lowering
the power did not alter the signal, except for lowering the signal to noise ratio [4.26].
During all measurements the temperature was below 60 mK, ensuring a high degree
of spin-polarization and a low thermal photon background in the frequency range of
interest.

A calculation similar to Verdu et al. [4.2] adapted for NV centers (see also Kubo
et al. [4.14]) shows that the small mode volume of a CPW resonator leads to a
coupling strength of g0/2π ≈ 12 Hz for a single NV center 1 µm above the center
conductor. This is not enough to exceed the losses κ/2π ≈ 0.8 MHz of the resonator
and the decoherence rate of the color center. However, by coupling a large number
of spins N ≈ 1012 collectively to the same electromagnetic mode of the resonator, an
enhancement of gcol/2π ≈

√
Ng0/2π ≈ 10 MHz allows to enter the strong coupling
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regime. This can be modeled by a generalized Hamiltonian

H = ~ωra†a+ ~
2
∑
i,j

ωijσ
z
ij + ~

∑
i,j

gij(σ+
ija+ a†σ−ij),

where the index i runs over the different Zeeman subensembles I, II and j accounts for
an inhomogeneous distribution of spin transition frequencies ωij as well as coupling
strengths gij . The operators σ+

ij and σ−ij describe the spin raising and lowering op-
erators, a† and a denote the creation and annihilation of a cavity photon. Although
the presence of inhomogeneous broadening of the spin transitions has interesting
consequences [4.27, 4.28], the subsequent analysis assumes ωij = ωi. The effective
coupling strength then reduces to gcol =

√∑
i g

2
i . Furthermore, if the number of

excitations meets nexc �
√
N , the spin ensemble is well approximated by a system

of coupled harmonic oscillators [4.29].

For strong coupling, an avoided crossing with a level-splitting of 2gcol is expected
when the ensemble of spins is tuned into resonance with the cavity. Fig. 4(a) shows
the transmission through the resonator as the magnetic field amplitude is varied for
a field direction of ϕ = 45◦. There, a large Rabi splitting of 2gI/2π = 18.5 MHz is
observed, corresponding to a single Zeeman subensemble in resonance (ωr = ωI−).
The FWHM linewidths of the two peaks are found to be slightly different ≈ 2π ×
(4.4, 3.3) MHz at the avoided crossing. By applying a field in the [100] direction
(ϕ = 0◦), where the energy levels of the two subensembles I and II coincide, we can
directly measure the

√
N -enhancement. Since twice as many spins couple to the field

mode, an enhancement compared to the case for ϕ = 45◦ of gcol ≈
√

2gI is expected.
Indeed we obtain an enhancement by a factor of 1.42 ( 2gcol/2π = 26.3 MHz).
We also note an increase of the linewidth of the two peaks to ≈ 2π × 7.3 MHz
for ϕ = 0◦. In case the magnetic field projections experienced by the two NV
subensembles do not coincide (e.g. ϕ = +3◦), two distinct avoided crossings are
observed (see Fig. 4(b), (d)).

Qualitatively one can understand the observed difference in peak amplitude and
peak width in Fig. 4(c) by the presence of higher lying NV states ( |+〉I , |−〉II).
Including these states leads to a model of three (or more) coupled oscillators, where
the peaks do not have equal height and width [4.30]. Furthermore inhomogeneous
broadening, which is not contained in a model of coupled oscillators, influences the
width and shape of the peaks [4.28].

Another interesting observation is the appearance of weak satellite lines around the
main ESR line, visualized in Fig. 4(b) by the resonator transmission amplitude as a
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Figure 4.3.: (Color online) (a) Measured (dots) and simulated (solid lines) nearest neighbor 13C
satellite lines as a function of the magnetic field angle (colors denote the subensembles I and II).
Also shown is the measured (center of the avoided crossing) and theoretical position of the main
NV ESR (squares and dashed lines). The dotted line marks the angle at which the data in (b) is
taken. (b) Amplitude of the lower (black) and higher (gray) frequency peak of the transmission
signal obtained from Lorentzian fits as a function of the magnetic field. Satellite lines due to the
hyperfine interaction of nearest neighbor 13C nuclear spins with the electronic NV are visible and
indicated by arrows. For ϕ = 12.3◦ we see the four allowed ESR transitions of subensemble I (red
arrow) and one of subensemble II (green arrow).

function of the magnetic field. As previously shown [4.23], the hyperfine interaction
of a nearest neighbor 13C nuclear spin with the NV spin leads to an ESR doublet
split by 130 MHz in zero field. However, for our geometry and a non-zero magnetic
field, the pseudo-nuclear Zeeman effect [4.31] gives rise to two additional transitions,
resulting in four allowed ESR lines (selection rules |∆mS | = 1, |∆mI | = 0). In
Fig. 4(a) we show the position of the satellite lines as a function of the magnetic field
direction. These findings agree well with the simulation of the full spin Hamiltonian
Eq. 4.0.1 when we assume hyperfine coupling parameters A‖/h = 200 MHz and
A⊥/h = 120 MHz [4.32]. Since the isotope 13C only appears at its natural abundance
of 1.1% in our samples, we estimate the coupling strength of these resonances to be
weaker by a factor of

√
3× 1.1/100. For this reason we do not observe an avoided

crossing for these lines but only a reduction of the transmission amplitude and an
increased linewidth. Also note that some remote satellite lines observed are not
predicted by the model.

Additionally, we use a cavity readout scheme in the dispersive regime of cavity QED,
where ∆ = |ωr−ω±| �

√
Ng. Here the atomic ensemble can be seen as a refractive
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medium, lowering the resonator frequency by ∆c ' Ng2/∆ when the ensemble
is polarized in the ground state. If we add an additional MW tone ωd = ω±, a
fraction of the NV ensemble is excited, leading to a positive shift which is plotted
in figure 4. In Fig. 4(a) we scan the spectroscopy frequency ωd across the NV
ESR lines and obtain the zero-field splitting parameters of the diamond sample by
making use of the aforementioned dispersive interaction. We extract values for the
parallel component of the zero-field splitting D/h = 2.877 GHz and the transversal
component E/h = 7.7 MHz from the position of the minimum and the distance of
the two peak maxima, respectively. As a fit function we used a simple asymmetric
lineshape [4.33]. These values are in accordance with ODMR measurements of the
same sample and taking temperature effects into account [4.34].

We also present a relaxation measurement of the spin ensemble after excitation
at ωd/2π = 2.885 GHz (see Fig. 4(b)). In this measurement we first excite the NV
centers, then wait for a given time after the dispersive tone has been switched off and
finally probe the cavity resonance. This sequence is repeated for different waiting
times. The resonant cavity probe signal is switched on only in this last part of the
measurement sequence. From an exponential fit we determine a relaxation time
constant τ = 44± 4 s. This value agrees well with previous T1 measurements of NV
centers in diamond at low temperature [4.35, 4.36]. In order to study the influence
of the probe signal on the spin relaxation, we excite the NV centers as before and
then probe the cavity continuously on resonance. For low probe powers ( ≈ 5× 104

photons) the obtained time constant τ = 45±4 s agrees with the previously measured
decay time. This shows that the measurement is non-destructive which is due to the
fact that the dispersive measurement is a quantum non-demolition measurement at
low probe power. However, we note that for higher probe powers the observed time
constant substantially decreases and the form of the decay deviates from a simple
monoexponential decay.

In conclusion we have shown the strong coupling of an NV spin ensemble to a CPW
resonator and its

√
N -scaling with the number of emitters. We determined the spin-

lattice relaxation time and ZFS parameters at 60 mK using dispersive measurements,
a powerful technique in cavity QED. Furthermore the observed coupling to nuclear
spin degrees of freedom in diamond may provide an avenue towards extended storage
times and quantum information processing with auxiliary nuclear spins.
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Figure 4.4.: (a) Dispersive resonator shift as a function of the spectroscopy frequency ωd/2π
(B = 0 mT). This measurement allows to extract the zero-field splitting parameters D/h =
2.877 GHz and E/h = 7.7 MHz. (b) NV spin relaxation measured via the resonator shift after
the excitation frequency has been switched off (B = 0 mT, ωd/2π = 2.885 GHz). Black dots refer
to resonator frequency measurements after a given time after switch off (τ = 44 ± 4 s), diamonds
mark measurements with a continuously probed resonator (τ = 45± 4 s) (see text for details). An
exponential fit of the black data points is also displayed.
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5.1. Introduction

Systems of spin ensembles coupled to a cavity mode are considered a promising
physical realization for processing and storage of quantum information [5.1], ultra-
sensitive high-resolution magnetometers [5.2], or localized field probes. Collective
magnetic coupling of a large ensemble to the field mode allows us to reach the
strong-coupling regime, even if a single particle is hardly coupled. Implementations
based on superconducting coplanar waveguide (CPW) resonators provide an inter-
face of the spin ensemble with processing units for superconducting qubits. Here
the spins can serve as a quantum memory or as a bridge to optical readout and
communication [5.3].

Different types of ensembles were proposed for this setup, ranging from clouds of
ultracold atoms [5.3] over polar molecules [5.4] to solid-state systems like rare-earth
spin ensembles [5.5] or color centers in diamond [5.6, 5.7]. Here we focus on the
negatively charged nitrogen-vacancy (NV) defects in diamond . Those are naturally
present in diamond but can also be readily engineered with very high densities, still
maintaining long lifetimes and slow dephasing in particular at low temperatures of
T < 1 K. In the optical domain, they are extremely stable and have been very well
studied for many years [5.8].

The magnetic properties of the relevant defect states can be conveniently modeled by
effective independent spin-one particles, where the effective local interaction of the
electrons within the defect shifts the (mS = ±1) states with respect to the mS = 0
state [5.9]. On the one hand, this coupling provides the desired energy gap in the
3 GHz regime, but, on the other hand, as a consequence of local variations of the
crystal field, this shift exhibits a frequency distribution leading to an inhomogeneous
broadening of the ensemble. The inhomogeneities are thought to be predominantly
caused by crystal strain and excess nitrogen, which is not paired with a neighboring
vacancy [5.10].

While, for a perfectly monochromatic ensemble of N particles in a cavity, strong
coupling simply requires an effective coupling gsingle

√
N larger than the cavity and

spin decay rates, not only the width, but also the details of the inhomogeneous
distribution are known to strongly influence the dynamic properties of the real world
system [5.11–5.13]. In particular, Gaussian and Lorentzian distributions of equal half
widths, lead to different widths and magnitudes of the vacuum Rabi splitting. Only
above a critical coupling strength the rephasing via common coupling to the cavity
mode will prevent dephasing of the collective excitation and lead to a well resolved
vacuum Rabi splitting.
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In our theoretical studies we use different approximation levels to analyze the central
physical effects present in the coupled system of cavity and inhomogeneously broad-
ened ensemble, as they are observed in the measurements. While many qualitative
features can be readily understood from a simple, coupled damped oscillator model
with an effective linewidth, a detailed understanding of the observed frequency shifts
and coupling strengths in the experiments requires more sophisticated modeling of
the energy distributions and dephasing mechanisms. In particular the observed tem-
perature dependence relies on a finite temperature master-equation treatment of a
collective spin with proper dephasing terms. This is compared to the experimental
values of up to (N ≈ 1012) particles as presented already in [5.7]. We focus on the
interplay between the cavity mode and the ensemble and in particular on the role
of the frequency distribution of the ensemble. This analysis is also applicable to
systems other than NV ensembles. Though the detailed microscopic mechanisms
within the NV ensemble that cause the inhomogeneous frequency distribution are of
considerable relevance, our central point of interest is the effect of the inhomogeneity
rather than its origin. A thorough investigation of the broadening mechanisms is
beyond the scope of this manuscript.

The paper is organized as follows. The general properties of the system are intro-
duced in Sec. 5.2. A first approximative treatment using coupled harmonic oscillators
is shown in Sec. 5.6. In Sec. 5.7 we incorporate the inhomogeneous frequency dis-
tribution of the NVs via an extra decay of the polarization of the ensemble. In this
context we also analyze the effects of thermal excitations in the spin ensemble and
in the cavity. Finally, in Sec. 5.8 we interpret our measurements using the resol-
vent formalism in order to extract the exact form of the inhomogeneity [5.13]. The
prospect of implementing a narrow bandwidth transmission line micro-maser using
an inhomogeneously broadened ensemble is discussed in Sec. 5.9.

5.2. General system properties and experimental
implementation

The ground state of the NV center is a spin triplet (S = 1), where the mS = ±1
states are split from themS = 0 state by about 2.88 GHz at zero magnetic field [5.10].
In addition the degeneracy between the mS = ±1 states is lifted due to the broken
C3v symmetry. Applying a homogeneous magnetic field enables Zeeman tuning of
the mS = ±1 states, so that the mS = 0→ ±1 transitions can be tuned selectively
into resonance with the CPW cavity.

87



5. Publication: Strong magnetic coupling of an inhomogeneous NV ensemble to a
cavity

Note that here the Zeeman tuning is also varying with the NV centers orientation
relative to the applied field direction. In NV center ensembles all the four symmetry
allowed orientations of the NV main axis are found and in general each orientation
will enclose a different angle with the magnetic field and will be shifted by a different
amount.

However, if the magnetic field direction is oriented within the (001) plane of the
diamond, always two of four orientations exhibit the same angle with the field and
at special angles all four are tuned by the same amount.

In general we therefore have to distinguish between themI,II
S = ±1 states of subensem-

ble I and II. The Hamiltonian for one NV subensemble can be written as

HNV = g̃µBB · S +DS2
z + E(S2

x − S2
y), (5.2.1)

where the first term describes the Zeeman effect with g̃ = 2 for an NV center
and µB is the Bohr magneton. The second term denotes the zero-field splitting
with D = 2.88 GHz and typical strain-induced E parameters of several MHz. The
presence of non-zero E parameters in large NV ensembles causes a mixing of the
pure Zeeman states for low magnetic field values which are denoted as |0,±〉. As the
magnetic-field amplitude is increased, the eigenstates are again well approximated
by pure Zeeman states.

The transition frequencies ωI,II
± between the eigenstates |0〉I,II and |±〉I,II are depicted

in Fig. 5.1(b).

5.3. Theoretical model

Assuming that only the transition |0〉I → |−〉I with frequency ωI
− is in or close to

resonance with the cavity mode, we can reduce the description of a single NV to a
two-level system. The effects caused by the presence of the far detuned |+〉I state can
be included in a constant effective frequency shift as addressed in Sec. 5.6. We thus
approximate the composed system of cavity and ensemble with the Tavis-Cummings
Hamiltonian

HTC = ωca
†
cac + 1

2

N∑
j

ωjσ
z
j +

N∑
j

(
gjσ

+
j ac + H.c.

)
, (5.3.1)
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where ~ = 1. The first two terms describe the unperturbed energies of the cavity,
with frequency ωc and creation operator a†c, and of the N ensemble spins using
the usual Pauli spin operators

([
σ+
i , σ

−
j

]
= σzi δij

)
. Each spin can have a different

frequency ωj which is statistically spread around the center frequency ωI
−. The third

term describes the coupling to the cavity with individual strength gj . Assuming
that the ensemble spins are confined to a volume that is small compared to the
wavelength, the ensemble will interact collectively with the mode. In the case of
few excitations, the ensemble behaves like a harmonic oscillator which couples to
the mode with the collective coupling strength Ω. The collective coupling strength
is given by Ω =

√∑N
j |gj |

2 which for identical gj = gsingle = g gives Ω = g
√
N .

The effects of unequal coupling of the spins are addressed in [5.14]. To include the
probe field of the cavity we add another term Hp = i

(
ηa†ce−iωpt − η∗aceiωpt

)
, to

Eq. (5.3.1).

Effects of the coupling to a finite temperature bath are analyzed in Sec. 5.7, where
we study the master equation of the ensemble-cavity system.

For an ensemble with identical frequencies and coupling strengths we find that we
can reach the regime of coherent oscillations between the cavity and the ensemble
spins if the collective coupling Ω dominates the linewidth of the cavity κ and the
decay rate of the single spin γhom. This is commonly known as strong-coupling
regime. In the case of an ensemble with inhomogeneous frequency distribution it is
not immediately clear under which conditions we can observe the avoided crossing.
Here we address the influence of the width and form of the inhomogeneous frequency
distribution on the avoided crossing.

5.4. Experimental setup and parameters

The experimental set-up has been described already in detail in [5.7] and is explained
here only in brevity in the following. The heart of the experiment is a λ/2 supercon-
ducting coplanar waveguide (CPW) resonator with a center frequency of 2.7 GHz
that is cooled down to 20 mK in a dilution refrigerator. In order to couple NV defect
centers to the microwave field in the cavity, a (001)-cut single-crystal diamond is
placed in the middle of the resonator, where the oscillating magnetic field exhibits
an antinode. A meander geometry of the resonator ensures that a large fraction of
the magnetic mode volume is covered by spins. The high-pressure high-temperature
diamond chosen in this setup contains an NV concentration of about 6 ppm, which
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corresponds to an average separation of about 10 nm.

A two-axis Helmholtz coil configuration creates a homogeneous static magnetic field
oriented with an arbitrary direction within the (001) plane of the diamond, which
is at the same time parallel to the resonator chip surface. Since perpendicular
magnetic field components with respect to the resonator surface would shift the
resonance frequency of the cavity, great care was taken during the alignment of the
set-up. With the diamond on top of the chip the cavity quality factor is Q = 3200.

In a typical experiment, we first set the magnetic field direction and amplitude and
then measure the microwave transmission through the cavity with a vector network
analyzer.

5.5. Cavity transmission spectra for inhomogeneous
ensembles

As a generic experiment to test and characterize the system properties we analyze
the weak-field probe transmission spectrum through the resonator in the weak-field
limit, where the number of excitations is negligible compared to the ensemble size.
Hence, at least at low temperatures, we can largely ignore saturation effects and ap-
ply various simplified theoretical descriptions to extract the central system param-
eters. In fact, as we deal with more than N > 1011 spins in a transition frequency
range of about 107 Hz, we have several thousand spins per Hz frequency range and
up to a million spins within the homogeneous width of at least several kHz. Hence
theoretical modelling as a collection of effective oscillators should provide an excel-
lent model basis. This has to be taken with care at higher temperatures, kBT ≈ ~ωc,
when we have a significant fraction of the particles excited.

5.6. Coupled collective oscillator approximation

A photon that enters the cavity will be absorbed into a symmetric excitation of
the ensemble spins with a weight given by the individual coupling strength. Subse-
quently the broad distribution of the spin frequencies induces a relative dephasing of
this excitation so that the backcoupling to the cavity mode is suppressed. As spon-
taneous decay (T1 ≈ 44 s) is negligibly slow [5.7], the decay rate of the polarization
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of the ensemble is just proportional to this dephasing and thus the inhomogeneous
width of the spins.

As the number of photons entering the ensemble is very small compared to N in
a first model, we simply approximate the ensemble as a harmonic oscillator with
frequency ωa1 = ωI

− and an effective large width γ that mimics the inhomogeneity.
The ensemble oscillator is coupled to the cavity with frequency ωc and decay rate κ.

This very simplified model already allows us to study the coupling dynamics of
the collective energy levels of the broadened ensemble and the cavity mode, and in
particular the avoided crossing of the energy levels, when the relative energies are
varied.

To keep the model as simple as possible but still grasping the essential properties,
the presence of the other offresonant spin ensembles at ωI

+, ωII
−, and ωII

+ is modelled
by additional oscillators with frequency ωaj , (j = 2, 3, 4) and equal decay rate γ.

For a small probe field injected into the cavity with the frequency ωp the correspond-
ing equations in a frame rotating with ωp then read:

d
dt 〈ac〉 = − (κ+ i∆c) 〈ac〉 − ig

4∑
j=1

Nj

〈
σ−j

〉
+ η (5.6.1)

d
dt
〈
σ−j

〉
= −

(
γ

2 + i∆aj

)〈
σ−j

〉
− ig 〈ac〉 , (5.6.2)

with probe amplitude η, ∆c = ωc − ωp and ∆aj = ωaj − ωp. From Eqs. (5.6.1)
and (5.6.2) we can calculate the steady state field in the cavity 〈ac〉st, which can be
written as

〈ac〉st = η

κ+ Γa + i (∆c − Ua) + g2N1
γ/2+i∆a1

, (5.6.3)

where

Γa =
4∑
j=2

g2Njγ/2
(γ/2)2 + ∆2

aj

and Ua =
4∑
j=2

g2Nj∆aj

(γ/2)2 + ∆2
aj

. (5.6.4)

In the absence of the offresonant levels (N2 = N3 = N4 = 0) we recover the situa-
tion, where for ωa1 = ωc and g

√
N1 > (γ/2−κ)/2 we find two normal modes split by

2
√
g2N1 − (γ/2− κ)2/4. The offresonant transitions make the situation more com-
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Figure 5.1.: (a) (Color online) Measured transmission as a function of f I− = ωI−/(2π) tuned by
the magnetic field and pump frequency fp = ωp/(2π). (b) Transition frequencies f I,II± = ωI,II± /(2π)
as a function of the magnetic field for a field angle of ϕ = 22.5

◦
. The frequency of the cavity

fc = ωc/ (2π) is denoted by the (red) dashed line. (c) Fit of
∣∣〈ac〉st∣∣2 to the transmitted signal close

to the resonance. We obtain the decay rate γ = 10.92 MHz. (d)
∣∣〈ac〉st∣∣2 as a function of fa1 and

fp incorporating the parameters obtained from the fit.

plex. As it can be seen in Eq. (5.6.3), they induce a shift Ua of the cavity frequency
and increase the decay rate of the cavity by Γa. Both, shift and additional decay
rate, depend on the probe frequency ωp. For the parameters in our measurement
we find that Γa is negligible compared to κ. We further approximate Ua by setting
ωp = ωc (as the scan range of ωp around ωc is small compared to ωaj (j = 2, 3, 4)).
We obtain the model of two coupled oscillators, where one of them has been shifted
by the offresonant transitions. As a function of ωp and ωa1 (tuned by the magnetic
field), |〈ac〉st|

2 shows an avoided crossing. Although the offresonant transitions are
shifted by the magnetic field as well, the effect in Ua is negligibly small, so that we
assume that Ua is constant.

We show the measured signal at the avoided crossing in Fig. 5.1(a). By fitting
|〈ac〉st|

2 to the normal mode splitting we can deduce the inhomogeneous width γ
and the effective coupling g

√
N . The Q factor of our cavity corresponds to κ/(2π) =

0.4 MHz, then 2κ is the full width at half maximum (FWHM) of the cavity resonance.
An exemplary fit result is shown in Fig. 5.1(c). We have included a linear term in
the fit to account for a background in the data. In Fig. 5.1(d) we plot |〈ac〉st|

2 using
the obtained parameters.

From the fit we deduce a decay rate γ = 10.92 MHz of the ensemble oscillator and an
effective coupling of g

√
N = 9.51 MHz. To demonstrate the effect of the ensemble

oscillator width γ on the normal mode splitting, we plot |〈ac〉st|
2 for ωc − Ua = ωa1

92



5. Publication: Strong magnetic coupling of an inhomogeneous NV ensemble to a
cavity

0
-30 -20 -10 0 10 20 30

|〈a
c
〉 st

|2

∆c[MHz]

γ [MHz]

10

20

40

γ [MHz]

10

20

40

γ [MHz]

10

20

40

γ [MHz]

10

20

40

Figure 5.2.: Simulation of the normal mode splitting at resonance (ωc − Ua = ωa1) for different
values of γ. Finally for large values of γ the doublet is not resolved any more and the avoided
crossing (sketched on the right) becomes blurred.

and different values of γ in Fig. 5.2.

Treating the ensemble as a broad harmonic oscillator with decay rate γ corresponds
to the assumption that the frequency distribution of the real ensemble is a Lorentzian
distribution, given that all spins couple with equal strength [5.13].

5.7. Polarization decay and collective coupling at finite
temperature

Despite the fact that cooling to very low temperatures is possible in the experiments,
it is still important and instructive to study the role of thermal excitations in the
system. In contrast to previous models based on virtually zero T atomic ensembles,
the NV centers are in thermal contact with the chip at small but finite T . We will
now investigate how sensitive the system reacts on thermal fluctuations.

At this point we include any shifts caused by the off-resonant ensembles in an ef-
fective detuning and concentrate on the collective coupling between the cavity at
ωc and the near resonant ensemble centered around ωI

−. For simplicity we assume
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equal coupling g for all spins to get

H̃TC = ωca
†
cac + 1

2ω
I
−

N∑
j

σzj + g
N∑
j

(
σ+
j ac + H.c.

)
. (5.7.1)

To include thermal excitations of the mode and the ensemble we have to add stan-
dard Liouvillian terms to the dynamics and study the corresponding master equation
of the reduced cavity-ensemble system [5.15], where the inhomogeneous width of the
ensemble is still simply approximated by an effective dephasing term γp for the po-
larization. In this model decay γhom and dephasing γp are described by separate
quantities, which already should improve the model. The master equation reads

d
dtρ = 1

i
[
H̃TC + Hp, ρ

]
+ L [ρ] , (5.7.2)

where

L [ρ] = κ (n̄ (T, ωc) + 1)
(
2acρa†c − a†cacρ− ρa†cac

)
+ κn̄ (T, ωc)

(
2a†cρac − aca†cρ− ρaca†c

)
+ γhom

2
(
n̄
(
T, ωI

−

)
+ 1

) N∑
j=1

(
2σ−j ρσ+

j − σ
+
j σ
−
j ρ− ρσ

+
j σ
−
j

)

+ γhom
2 n̄

(
T, ωI

−

) N∑
j=1

(
2σ+

j ρσ
−
j − σ

−
j σ

+
j ρ− ρσ

−
j σ

+
j

)

+ γp
2

N∑
j=1

(
σzj ρσ

z
j − ρ

)
. (5.7.3)

The first two lines of Eq. (5.7.3) describe the coupling of the cavity to the bath, while
the next two lines include the coupling of the ensemble to the bath. The number of
thermal excitations at temperature T and frequency ω is denoted by n̄ (T, ω). The
term in the last line introduces nonradiative dephasing at a rate γp of the spins and
thereby models the inhomogeneity.

Based on the master equation we can derive a hierarchic set of equations for various
system expectation values starting with

d
dt 〈ac〉 = Tr{ac

d
dtρ}

= − (κ+ i∆c) 〈ac〉 − igN
〈
σ−i

〉
+ η , (5.7.4)
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d
dt
〈
σ−i

〉
= −

(
γhom

2 + γhomn̄
(
T, ωI

−

)
+ γp + i∆I

−

)〈
σ−i

〉
+ ig 〈σzi ac〉 , (5.7.5)

d
dt 〈σ

z
i 〉 = −i2g

(〈
σ+
i ac

〉
−
〈
σ−i a

†
c

〉)
− γhom (〈σzi 〉+ 1)

− 2γhomn̄
(
T, ωI

−

)
〈σzi 〉 , (5.7.6)

which also includes equations for
〈
acσ

+
i

〉
, 〈acσzi 〉,

〈
σ+
i σ
−
j

〉
,
〈
a†cac

〉
,
〈
acσ
−
i

〉
,
〈
a†ca
†
c

〉
,〈

σ−i σ
−
j

〉
,
〈
σzi σ

+
j

〉
,
〈
σzi σ

z
j

〉
, and

〈
a†cacσ

z
i

〉
. In order to truncate the system higher-

order terms in the equations are expanded in a well defined way [5.16], then higher-
order cumulants are neglected [5.17, 5.18]. The equations again are written in a frame
rotating with the cavity probe frequency ωp. Despite the inhomogeneous broadening,
which is included by the nonradiative dephasing of the spins, we assume that all
spins are equal so that we only have to include the equations for one spin i and pairs
i, j [5.17]. This set of equations can be integrated numerically to study the dynamics
of the coupled system. We note that when we fix 〈σzi 〉 = −1 we immediately arrive
at the model discussed in Sec. 5.6 with γ = γhom + 2γp.

In our experiment we measure the avoided crossing for different temperatures of
the environment and compare it to the results of our model. First we note that
the steady state of the inversion as a function of the temperature 〈σzi (T )〉st can be
written as [5.5]

〈σzi (T )〉st = 1
1 + 2n̄

(
T, ωI

−
) 〈σzi (T = 0)〉st

= tanh
( ~ωi

2kBT

)
〈σzi (T = 0)〉st . (5.7.7)

For higher temperatures 〈σzi (T )〉st is reduced and therefore so are the effective num-
ber of NVs that take part in the dynamics. In the model equations this is represented
by the last term in Eq.(5.7.5) for the polarization involving 〈acσzi 〉, which leads to a
cutoff for the coupling at higher T . As a zero-field approximation we thus write

Ω(T ) = g

√√√√N tanh
(

~ωI
−

2kBT

)
, (5.7.8)

where we replaced ωi by the center frequency ωI
−. Equation (5.7.8) should give

an approximate description of the reduction of the Rabi splitting with increasing
temperature.
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This treatment however neglects the presence of the mS = +1 state which will also
be populated with increasing T . Including this level and assuming n̄

(
T, ωI

+

)
≈

n̄
(
T, ωI

−

)
we find the population difference between the mS = 0 and −1 state to

be

N−1(T )
N

− N0(T )
N

= − 1
1 + 3n̄

(
T, ωI

−
) . (5.7.9)

This suggests

Ω̃(T ) = g

√
N

1 + 3n̄
(
T, ωI

−
) (5.7.10)

to be a better description for the temperature dependence of the coupling.

In a second step we integrate the whole hierarchic set of equations numerically for
ωc = ωI

− and varying pump frequency ωp. From |〈ac〉st|
2 (ω) we determine the Rabi

splitting for different temperatures, from which we obtain the collective coupling.
This can be compared to our measurements and the approximations in Eqs. (5.7.8)
and (5.7.10).

In Fig. 5.3(a) we show that the measured coupling strength is in disagreement with
the Eq. (5.7.8), which is most significant for very low temperatures. Both functions
Eqs. (5.7.8) (5.7.10) fail to capture the behavior for low temperatures. The disagree-
ment is even more pronounced as we include the effect of the mS = +1 state. So far
we have found no definite explanation for the disagreement. However, one possible
explanation would be that for low temperatures not all defects are “active“. As tem-
perature increases, more NVs become available but at the same time the number of
NVs taking part in the dynamics is proportional to tanh

(
~ωI
−/(2kBT )

)
.

The collective coupling strength determined from the numerical integration of the
coupled equations, shown in Fig. 5.3(b), exactly follows Eq. (5.7.8). This shows
that the assumption Ω(T ) ∝ 〈σzi (T )〉st is reasonable. However, the almost constant
value of the coupling strength Ω(T ) found in the experimental data for very low T
cannot be explained in the above theoretical model. Interestingly the same behav-
ior is also found in measurements of the dispersive shift of the cavity mode as a
function of temperature by the offresonant spin ensemble at zero magnetic field. As
possible explanations one might think of a reduced thermal excitation probability
due to spin-spin coupling or an effective reduction of active NV centers close to zero
temperature.
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Figure 5.3.: (Color online) (a) Collective coupling strength obtained from our measurements for
different temperatures (black markers) and Ω(T ) = a0

[
tanh

(
~ωI−/(2kBT )

)]1/2 (red dashed line),
where a0 was chosen to match the high temperature behavior. Including the mS = +1 state via
Eq. (5.7.10) gives the result denoted by the blue dotted line. (b) Collective coupling strength
determined from the results of the numerical integration of the coupled equations with g

√
N = a0

(a0 determined from (a), black markers) and Ω(T ) (red dashed line).

5.8. Detailed modeling and reconstruction of
inhomogeneous distributions

The simplified model descriptions discussed above in Secs. 5.6 and 5.7 provided
for an analytically tractable and qualitatively correct description of the effect of
an inhomogeneous broadening of the ensemble. This also allows us to get a fairly
good estimate for the total width of the frequency distribution of the ensemble.
However, such an effective width model inherently is connected to the assumption
of a Lorentzian shape of the ensemble frequency distribution. In actual crystals
such an assumption is not obvious and other distributions of local-field variations
and strain distributions are possible as well.

To obtain more accurate information about the distribution we will now use an
improved model based on the resolvent formalism to treat the coupling between a
central oscillator (the mode) and the spin degrees of freedom [5.13, 5.19]. Here each
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frequency class of spins is treated individually. For low temperatures virtually all
spins are in the mS = 0 state, i.e., the lower state of our effective two-level system,
and their excitation properties can be approximated by a frequency distributed set
of oscillators (the Holstein-Primakoff approximation).

We define creation and annihilation operators for the corresponding ensemble oscil-
lators representing a subclass of two-level systems with equal frequency via

σzj = −1 + 2a†jaj and σ+
j = a†j

√
1− a†jaj ≈ a

†
j . (5.8.1)

The approximation in Eq. (5.8.1) is justified as long as the number of excitations in
each ensemble is much smaller than the number of spins in this energy region. In
our experimental setup this is very well justified and we thus obtain the unperturbed
part of the Hamiltonian as

H′0 = ωca
†
cac +

N∑
j

ωja
†
jaj , (5.8.2)

and the interaction term

V′ =
N∑
j

(
gja
†
jac + g∗jaja

†
c

)
, (5.8.3)

which constitute H′ = H′0 + V′. In this section we account for the decay of cavity
excitations and the spontaneous decay of the spins by introducing nonzero imaginary
parts of the corresponding transition frequencies Imωc = −κ and Imωj = −1

2γhom
and the resolvent of the Hamiltonian H′ is defined as G (z) = 1/

(
z −H′

)
.

Let us consider the state |ϕc〉 = |1c, 0, . . . , 0〉 where we have one photon in the cavity
and no excitation in the ensemble.

The matrix element of the resolvent Gcc (z) = 〈ϕc|G (z) |ϕc〉 can be written as

Gcc (z) = 1
z − Ec −Rcc (z) , (5.8.4)
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where we define the matrix element of the level shift operator

Rcc (z) = V ′cc +
∑
i 6=c

V ′ci
1

z − Ei
V ′ic

+
∑
i 6=c

∑
j 6=c

V ′ci
1

z − Ei
V ′ij

1
z − Ej

V ′jc + . . . , (5.8.5)

where V ′kl = 〈ϕk|V′ |ϕl〉 and Ec = 〈ϕc|H′0 |ϕc〉. States |ϕi〉 with i 6= c are states
where the excitation is absorbed in the ensemble spin i. We note that V ′cc = 0 and
that V ′ij = 0 for i, j 6= c since our Hamiltonian does not include spin-spin interaction.
Only the second term in Eq. (5.8.5) remains and we can write

Rcc (z) =
∑
i 6=c

|gi|2

z − Ei
. (5.8.6)

Introducing the coupling density profile ρ (ω) ≡ ∑j |gj |
2 δ (ω − Reωj) as it is done

in [5.13] leads to

Rcc (z) =
∫

ρ (ω)
z − ω + i

2γhom
dω . (5.8.7)

Approaching the branch cut at ω − i
2γhom we write

lim
η→0+

Rcc

(
ω − i

2γhom ± iη
)

= R±cc

(
ω − i

2γhom
)
. (5.8.8)

Using limη→0+
1

x±iη = P 1
x ∓ iπδ (x), where P denotes the Cauchy principal value,

we find

R±cc

(
ω − i

2γhom
)

= P
∫

ρ (ω′)
ω − ω′

dω′ ∓ iπρ (ω) . (5.8.9)

Experimentally we probe the transmission of a weak probe signal amplitude through
the cavity as a function of frequency. The position and shape of the weak-field
transmission resonances can be determined from the complex poles of G+

cc (ω) =
1/
(
ω − ωc −R+

cc (ω)
)
, which contains the spin energy distribution on the right-hand

side. We can therefore extract information about the coupling density ρ (ω) =
− 1
π ImR+

cc

(
ω − i

2γhom
)
by carefully analyzing the measured transmission spectrum.
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Figure 5.4.: (Color online) Coupling density of the ensemble determined from an exemplary
transmission measurement at T = 20 mK. The errorbars are calculated from the uncertainties
in R+

cc (ω) which we obtain from fitting Eq. (5.8.11) to the data. We fit the q-Gaussian (red) in
Eq. (5.8.12) to the coupling density to determine the width and the behavior of the tails of the
distribution.

For small γhom the reconstruction simplifies to:

ρ (ω) ≈ − 1
π

ImR+
cc (ω) + 1

2π
∂ ReR+

cc (ω)
∂ω

γhom , (5.8.10)

where ImR+
cc

(
ω − i

2γhom
)
is expanded in a Taylor series around γhom = 0. We can

therefore directly use the frequency distribution of the transmitted signal |〈ac〉st|
2

via

|〈ac〉st|
2 ∝

∣∣∣G+
cc (ω, ωc)

∣∣∣2
= 1(

ω − ωc − ReR+
cc (ω)

)2
+
(
κ+ ImR+

cc (ω)
)2 (5.8.11)

to determine R+
cc (ω). Let us point out here that Eq. (5.8.11) exhibits a Lorentzian

shape as a function of ωc with peak position ω − ReR+
cc (ω) and peak width of

2
(
κ+ ImR+

cc (ω)
)
. After extraction of the relevant parameters which determine

R+
cc (ω) from the measured spectra, we can simply use Eq. (5.8.10) to find the cou-

pling density ρ (ω). Assuming that all spins are coupled with equal strength, one
finds that ρ (ω) = g2NM (ω) where M (ω) is the frequency distribution of the
spins.
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Figure 5.5.: (Color online) In (a) we show the coupling density for different temperatures. The
q-parameter and width γq of the coupling density do not change significantly with increasing tem-
perature. The coupling g

√
N =

(∫
ρ (ω) dω

)1/2 is reduced, as can be seen in (b). The red line
shows Ω(T ) = a0

[
tanh

(
~ωI−/(2kBT )

)]1/2 with a0 chosen to match the high temperature limit of
the data (black markers). To compare Ω(T ) with our previous results determined directly from the
splitting we plot the data already shown in Fig. 5.3 using grey markers.

The shape of the coupling density, i.e., the frequency distribution of the spins, plays
an important role in the cavity-ensemble interaction [5.12, 5.13]. If the coupling
density falls off sufficiently fast with distance from the center, the width of the
Rabi peaks will decrease with increasing collective coupling strength g

√
N . For

the spin frequency distribution, the limiting case is the Lorentzian coupling density
profile, for which the width of the Rabi peaks is independent of g

√
N [5.12]. Any

distribution falling faster than 1/ω2 will provide a decrease of the width of the Rabi
peaks. Moreover, knowing the coupling density gives us the opportunity to study
the transmission through the cavity for different parameter ranges via Eq. (5.8.4).

To determine ρ (ω) the raw data have to be rearranged, since in the experiment we
cannot simply vary ωc but we shift the center frequency of the spins by a magnetic
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field. We therefore shift each scan by ωc−ωI
− (B) to obtain fixed ensemble frequencies

and tuning of the cavity frequency. As the only significant quantity is the detuning
between the cavity and the ensemble this does not change the dynamics. For fixed ω
we fit a Lorentzian to

∣∣G+
cc (ω, ωc)

∣∣2 to determine R+
cc (ω) in order to calculate ρ (ω).

We plot an exemplary result for ρ (ω) in Fig. 5.4. To determine the behavior of the
tails of the distribution we fit the function

L (ω) = b+ I

[
1− (1− q) (ω − ω0)2

a

] 1
1−q

, (5.8.12)

to the data. L (ω) is related to the q-Gaussian, a Tsallis distribution. The di-
mensionless parameter 1 < q < 3 determines how fast the tails of the distribution
fall off, while a is related to the width. The actual width (FWHM) is given by
γq = 2

√
a(2q−2)

2q−2 . For q → 1 we recover a Gaussian distribution, while for q = 2 we
find a Lorentzian distribution. The wings fall off as 1/ω2/(q−1).

From the fit in Fig. 5.4 we find values for q = 1.389 ± 0.007 and γq/(2π) =
(12.54± 0.10) MHz. The temperature during the measurement was 20 mK.

The same analysis is performed for data measured for T = 20− 1000 mK, see
Fig. 5.5(a). The fitted curves are not shown. For the resulting coupling densi-
ties we find almost no change in the width or the q-parameter. However, with
increasing temperature

∫
ρ (ω) dω = g2N is reduced, as can be seen in Fig. 5.5(b).

The resulting coupling strength is in agreement with the results obtained from the
analysis in Sec. 5.7. It also reproduces the unexpected behavior for small values of
T .

To study the behavior of an ensemble following a q-Gaussian distribution with the
q-parameter we determined, we show |Gcc (ω)|2 for ωc = ω0 as a function of the
collective coupling strength g

√
N in Fig. 5.6 b). The transmission for an ensemble

with Gaussian distribution (q → 1) is shown in Fig. 5.6 a) and for a Lorentzian
distribution (q → 2) is shown in Fig. 5.6 c). The width parameter a is chosen
accordingly to ensure that γq is the same for all three cases. In Figs. 5.6 d)- f)
the transmission for the three ensemble types is shown for g

√
N = 4, 8 and 16 MHz,

respectively. For the ensemble with Lorentzian distribution (solid black line) we see
that the width of the Rabi resonances remains constant with increasing collective
coupling. For the Gaussian distribution (dotted black line) and the intermediate
distribution with q = 1.39 (dashed red line) we find a decrease in the peak width
for increasing collective coupling. In Fig. 5.7 we plot the real and imaginary part of
one of the complex poles of G+

cc (ω), determining the position and width of one of
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Figure 5.6.: (Color online) We plot |Gcc (ω)|2 as a function of the collective coupling strength
g
√
N and for three different values of the q-Gaussian parameter q (grayscale figures on the left are

plotted on a logarithmic scale). For g
√
N = 4, 8 and 16 MHz, marked by d), e) and f) we show the

transmission for all three values of q together. The transmission for the Gaussian coupling density
with q → 1 (dotted black line), for the coupling density of our ensemble with q = 1.39 (dashed red
line) and for the Lorentzian coupling density with q → 2 (solid black line) are shown on the right.
The parameters were chosen to γq/(2π) = 10 MHz, κ/(2π) = 0.4 MHz and γhom/(2π) = 1 Hz.

the Rabi peaks. As we focus on the resonant case the spectrum is symmetric. We
chose γhom = 0, κ/(2π) = 0.4 MHz, γq/(2π) = 10 MHz, and q = 1.39. This again
shows the decreasing width of the Rabi Peaks as g

√
N increases.

We therefore assume that for our ensemble it is possible to increase the lifetime of
the collective states by increasing the collective coupling. This could be achieved
by a further decrease of the mode volume or an increase of the NV density in the
sample.

In Fig. 5.8 we show the behavior of the transmission with increasing γq. For the
Lorentzian coupling density the splitting of the resonance peaks is always reduced if
γq > 0. For coupling densities falling off faster than 1/ω2, as is the case in Figs. 5.8(a)
and (b), the splitting of the resonance peaks is even slightly increased for γq > 0,
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Figure 5.7.: (a) Real part and (b) modulus of the imaginary part of one of the complex poles
of G+

cc (ω) in the regime where g
√
N/(2π) > γq/(2π) = 10 MHz. The collective coupling strength

g
√
N is shown as dotted line in (a). With increasing g

√
N the modulus of the imaginary part,

proportional to the width of the Rabi peaks, is reduced.

until the peaks finally merge. Hence a finite but small enough inhomogeneous width
might even mimic somewhat higher active spin numbers.

As a bottom line we see that common coupling to a cavity mode can suppress
dephasing of the polarization, if the effective Rabi frequency is larger than the
inhomogeneous width. This could be interpreted as the effect that the exchange of
the excitation between the ensemble and the cavity is so fast, that there is no time
for decoherence in the ensemble.
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Figure 5.8.: |Gcc (ω)|2 on resonance as a function of the inhomogeneous width γq for an ensemble
with (a) Gaussian coupling density, (b) q-Gaussian (q = 1.39) coupling density and (c) Lorentzian
coupling density. To keep the transmission visible for large values of γq the range of the color coding
is limited to [0, 0.1]. The parameters were chosen to g

√
N/(2π) = 10 MHz, κ/(2π) = 0.4 MHz and

γhom/(2π) = 1 Hz.
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5.9. A transmission line micro-maser with an
inhomogeneous NV ensemble

A recent proposal to construct a laser operating on an ultra-narrow atomic clock
transition predicted very narrow optical emission above threshold [5.17]. Similar
ideas, employing the collective coupling between a cold atomic ensemble and a mi-
crowave cavity, have been proposed to construct stable stripline oscillators in the
microwave regime [5.18].

Here we study the prospects of implementing such an oscillator by coupling a dia-
mond to the CPW resonator. At first sight in view of the MHz scale inhomogeneous
broadening, one would expect fast dephasing. However, as we have seen above,
for strong enough coupling one observes a continuous rephasing of the polarization
inducing a long lived polarization and coherent Rabi oscillations. Thus one could
expect narrow microwave emission nevertheless.

Let us consider the case of the cavity mode tuned to resonance with the spin transi-
tion |0〉I → |−〉I, which is partially inverted by an external incoherent pump. Such
a pump could in principle be facilitated by optical pumping and it can be consis-
tently modeled by a reversed spontaneous decay. Alternatively one could think of
pulsed inversion by tailored microwave pulses or a time switching of the magnetic
bias field.

Mathematically such incoherent pumping can be modelled by adding the terms
−w

2
∑N
j=1

(
σ−j σ

+
j ρ+ ρσ−j σ

+
j − 2σ+

j ρσ
−
j

)
, where w denotes the pump rate, to the

Liouvillian in Eq. (5.7.3).

For the explicit calculations, here we use the effective linewidth model, as out-
lined in Sec. 5.7 without any coherent pump. Hence the total phase symmetry
of the system is not broken and we assume 〈ac〉 =

〈
a†c

〉
=
〈
σ±j

〉
= 0. Start-

ing from the master equation in Eq. (5.7.2) we derive four coupled equations for〈
σzj

〉
,
〈
a†cac

〉
,
〈
acσ

+
i

〉
, and

〈
σ+
i σ
−
j

〉
. We used the cumulant expansion

〈
a†cacσ

z
i

〉
=〈

a†cacσ
z
i

〉
cum

+
〈
a†cac

〉
〈σzi 〉 which takes this simple form because of the total phase

invariance. Assuming that the higher-order cumulant
〈
a†cacσ

z
i

〉
cum

can be neglected,
we arrive at a closed set of four equations that can be solved analytically.

To study the spectrum of the emitted light we calculate the two-time correlation
function

〈
a†c (τ) ac (0)

〉
via the quantum regression theorem. We switch to a frame
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Figure 5.9.: (Color online) In (a) we show the steady state number of photons in the cavity〈
a†cac

〉
st

as a function of the incoherent pump rate w and the inhomogeneous width γp. The
resulting linewidth ∆f is shown in (b). For small γp both, ∆f and

〈
a†cac

〉
st

show rapid changes as
w becomes larger than γhom. The critical width of the inhomogeneity is given by γp,crit = g2N/κ.
The parameters were chosen to N = 1012, g/(2π) = 10 Hz, κ/(2π) = 1 MHz and γhom/(2π) = 1 Hz.

rotating with ωc and define ∆ = ωI
− − ωc. We obtain

d
dτ

〈a†c (τ) ac (0)
〉〈

σ+
i (τ) ac (0)

〉 =

(
−κ igN

−ig 〈σzi 〉st −
(
w+γhom

2 + γhomn̄
(
T, ωI

−

)
+ γp − i∆

))〈a†c (τ) ac (0)
〉〈

σ+
i (τ) ac (0)

〉 (5.9.1)

From Eq. (5.9.1) we can calculate the spectrum via Laplace transformation [5.20].
We show the linewidth of the obtained spectrum in the resonant case (∆ = 0) for
different values of the pump w and the inhomogeneous width γp (see Fig. 5.9). The
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minimum linewidth is ∆f ≈ g2/κ. For small γp the region where we find narrow
linewidth emission is characterized by γhom < w < 2g2N/κ. The critical width of the
inhomogeneity is given by γp,crit = g2N/κ. Hence once we achieve enough pumping
and coupling strength the system could provide for an extremely stable microwave
oscillator.

5.10. Conclusions

We showed theoretically and experimentally that an ensemble of spins with an in-
homogeneous frequency distribution coupled to a cavity mode can exhibit strong
coupling, where the coherent energy exchange between mode and ensemble dom-
inates cavity decay and polarization dephasing. A detailed theoretical modeling
connecting probe transmission and frequency distribution allows us to extract not
only the effective coupling strength and particle number but also the detailed fre-
quency distribution. The microscopic mechanisms that cause the inhomogeneous
broadening are not treated as a central theme in this work, but we hope that the
knowledge of the frequency distribution can be of use in further investigations on
this subject. Interestingly for our dense NV ensemble, the frequency distribution
of the spins can be well described as a q-Gaussian with q = 1.39, showing that the
wings of the distribution fall off faster than 1/ω2. The temperature dependence of
the effective available spin number fits quite well with expectations, except for an
unexpected decrease for very low temperature. In summary such an NV-ensemble
cavity QED system exhibits a prolonged lifetime of the eigenstates of the coupled
cavity-ensemble system [5.13] and has great potential as a quantum interface be-
tween superconducting and optical qubits. The long effective T1 time could also
be the basis of building a compact ultrastable microwave oscillator if the strong
coupling overcomes the dephasing from the inhomogeneous broadening.
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Part II.

Quantum cascade lasers





6. Introduction to quantum cascade
lasers

Quantum cascade (QC) lasers are built from thin layers of semiconductor material
that form a repetitive pattern of quantum wells. The thickness of the barriers
between the wells can be designed to form a requested structure of the energy levels,
tunneling rates between the wells and dipole matrix elements for transitions within
a well [6.1, 6.2]. An electron that passes through the structure undergoes several
intraband transitions. This constitutes the main difference between QC lasers and
conventional semiconductor lasers which are based on interband transitions between
the conduction and valence band.

To operate the device, an external electric field is applied so that electrons tunnel
into the active region of the QC laser, as indicated in Fig. 6.1. The ratio of the
scattering times between the upper laser level |u〉 and lower laser level |l〉, τul and
between |l〉 and |i〉, τli can be designed to allow for laser action. This can be done
by deliberately choosing the energy separation between |l〉 and |i〉 to be close to the
energy of non-radiative phonon modes, ensuring very short τli. In general there are
several other scattering paths for the electrons that allow electrons to bypass the
ideal carrier transport path indicated in Fig. 6.1 and it is a major goal of QC laser
design to suppress these paths [6.2].

Here we develop a simplified theoretical description of QC lasers that allows to study
the temperature dependence of the laser activity and the dynamics of coupled QC
lasers. Details concerning the design and growth of the structures are beyond the
scope of this thesis and are therefore omitted.

6.1. Devices

There are many different designs of QC lasers available [6.2]. Here we intend to study
QC lasers implemented as microdisc cavities. The cavities are formed by etching
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active region active regioninjector

|u〉

|l〉
|i〉

|u〉

|l〉

|i〉

Figure 6.1.: Schematic representation of the repetitive quantum well structure emerging as a
result of the arrangement of the semiconductor layers. The overall slope visualizes the applied
electric field. The horizontal arrows indicate the flow of electrons while the laser transitions are
depicted as red arrows. The injector region contains several energy levels that are not specified in
this sketch. A common value for the thickness of each period of the structure is ≈ 50 nm [6.3].

of the previously grown heterostructure so that cylindrical structures with a radius
of r ≈ 50 µm and with perpendicular and smooth boundaries remain [6.4, 6.5].
Sub-wavelength sized cavities can be designed to support only a single whispering-
gallery mode. The light is confined by the boundary of the disk as it impinges on the
outer edge with an angle larger than the critical angle of refraction according to the
refractive index of the laser material. Contact layers on the top and bottom allow
for electrical pumping of the structure. The number of repetitions of the periodic
heterostructure differs strongly depending on the wavelength of the QC laser. For
infrared QC lasers 30 repetitions are required while for THz QC lasers about 200
repetitions are necessary.

Microdisc QC lasers can be coupled by placing them in close proximity [6.5]. The
strength of the coupling is proportional to the distance as the coupling is accom-
plished via the evanescent fields of the whispering-gallery modes, see Fig. 6.4.

In Sec. 6.2 we develop a simplified theoretical description of a single cascade laser

114



6. Introduction to quantum cascade lasers

Laser

} Injection

}

Figure 6.2.: Energy levels of a single cascade pattern with coherent repumping of the upper
injection level |I1〉 at rate J . The states |U〉 and |L〉 are the upper and lower laser levels.

and study the lasing activity as a function of the temperature of the laser material.
In Sec. 6.3 the description is extended to include the coupling between two lasers.

6.2. Theoretical description of a single QC laser

To describe a single cascade laser we introduce a model for a single element of the
repetitive cascade structure into which electrons enter at the rate rin and leave it at
the rate rout, see Fig. 6.2. In real devices an electron passes trough many elements
of the cascade, which is described in the model by a coherent pump of rate J that
recycles population from the state |I4〉 to the state |I1〉. The cavity is resonant with
the transition between the laser levels |U〉 and |L〉. A corresponding Hamiltonian
reads

H = H0 + HI + V

= ~ωma†a+ ~ωu |U〉 〈U |+ ~ωl |L〉 〈L|+
4∑
j=1

~ωj |Ij〉 〈Ij |

+ i~g
(
aσUL − a†σLU

)
+ i~ (Jσ14 − J∗σ41) , (6.2.1)
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where we introduced the cavity photon annihilation operator a, the coupling constant
g, and the abbreviation σij = |i〉 〈j|. The transition frequencies are set to ω1−ωu =
2π×1 GHz, ωu−ωl = 2π×3 THz, ωl−ω2 = 2π×1 GHz, ω2−ω3 = 2π×1 THz, and
ω3−ω4 = 2π×1 GHz. We define all frequencies with respect to ωl and transform to
a frame rotating with ωm, introducing the detunings ∆u = ωu − ωm, ∆j = ωj − ωm
with j = 1, . . . , 4. We furthermore introduce the phenomenological gain shift factor
α and define ∆′u = ∆u + αVext, where Vext is the applied voltage, and the carrier
induced shift of the mode ∆′m = β (〈L〉 − 〈U〉). Note that number of repetitions of
the periodic heterostructure is implicitly contained in the ratio between the pump
rate J and the rate of carrier extraction rout.

Dissipative processes include the spontaneous transition rates between the states and
losses due to imperfections of the cavity. We furthermore assume that the device is
at T 6= 0, resulting in a thermal occupation of the mode and incoherent transitions
within the heterostructure, induced by thermal photons or phonons.

To include the dissipative processes in our description we follow the master equation
approach

d
dtρ = i

~

[
ρ, H̃

]
+ L [ρ] , (6.2.2)

where H̃ is the Hamiltonian in the rotating frame and the Liouvillian is given by

L [ρ] = κ (n2 + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κn2

(
2a†ρa− aa†ρ− ρaa†

)
+ γ1 (n1 + 1)

2 (2σU1ρσ1U − σ1UσU1ρ− ρσ1UσU1)

+ γ1n1
2 (2σ1UρσU1 − σU1σ1Uρ− ρσU1σ1U )

+ γ2 (n2 + 1)
2 (2σLUρσUL − σULσLUρ− ρσULσLU )

+ γ2n2
2 (2σULρσLU − σLUσULρ− ρσLUσUL)

+ γ3 (n3 + 1)
2 (2σL2ρσ2L − σ2LσL2ρ− ρσ2LσL2)

+ γ3n3
2 (2σ2LρσL2 − σL2σ2Lρ− ρσL2σ2L)
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+ γ4 (n4 + 1)
2 (2σ32ρσ23 − σ23σ32ρ− ρσ23σ32)

+ γ4n4
2 (2σ23ρσ32 − σ32σ23ρ− ρσ32σ23)

+ γ5 (n5 + 1)
2 (2σ43ρσ34 − σ34σ43ρ− ρσ34σ43)

+ γ5n5
2 (2σ34ρσ43 − σ43σ34ρ− ρσ43σ34) . (6.2.3)

We calculate expectation value equations up to second order. Third order expec-
tation values are decomposed and third order cumulants are neglected. We also
assume total phase invariance which results in 〈a〉 = 〈σUL〉 = 0. The populations of
each energy level are determined by the equations

d
dt 〈U〉 = g

(〈
a†σLU

〉
+ 〈aσUL〉

)
+ γ1 (n1 + 1) 〈I1〉

− (γ1n1 + γ2 (n2 + 1)) 〈U〉+ γ2n2 〈L〉 (6.2.4)
d
dt 〈L〉 = −g

(〈
a†σLU

〉
+ 〈aσUL〉

)
+ γ2 (n2 + 1) 〈U〉

− (γ2n2 + γ3 (n3 + 1)) 〈L〉+ γ3n3 〈I2〉 (6.2.5)

d
dt 〈I1〉 = J∗ 〈σ41〉+ J 〈σ14〉 − γ1 (n1 + 1) 〈I1〉+ γ1n1 〈U〉+ rin (6.2.6)
d
dt 〈I2〉 = − (γ3n3 + γ4 (n4 + 1)) 〈I2〉+ γ4n4 〈I3〉+ γ3 (n3 + 1) 〈L〉 (6.2.7)
d
dt 〈I3〉 = − (γ4n4 + γ5 (n5 + 1)) 〈I3〉+ γ5n5 〈I4〉+ γ4 (n4 + 1) 〈I2〉

− rout 〈I3〉 (6.2.8)
d
dt 〈I4〉 = −J 〈σ14〉 − J∗ 〈σ41〉+ γ5 (n5 + 1) 〈I3〉 − γ5n5 〈I4〉 . (6.2.9)

The carrier input rate rin determines the external pumping of the structure. To
determine the input rate as a function of the applied voltage Vext we introduce the
phenomenological function [6.3]

rin (Vext) = rmax
w4
res

w4
res − (Vext − Vres)4 , (6.2.10)

where rmax is the maximum current injection rate, Vres is the voltage for which the
maximum current is obtained and wres is the width of the current curve.
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For the transition dipole operator σ14 we obtain the equation

d
dt 〈σ14〉 = J∗ (〈I4〉 − 〈I1〉)−

(
γ1 (n1 + 1)

2 + γ5n5
2

)
〈σ14〉 , (6.2.11)

where we omitted the contribution i (∆1 −∆4) 〈σ14〉 which arises during the cal-
culation. This is a reasonable assumption as we intend to describe the situation
where the electron enters the next element of the cascade after leaving state |I4〉.
The assumption that the detuning between |I4〉 and |I1〉 of two adjacent elements
is small justifies the omission of the contribution mentioned above. The emerging
second order expectation value for the exchange of energy between the mode and
the structure follows

d
dt 〈aσUL〉 = −g

((
1 +

〈
a†a

〉)
〈U〉 −

〈
a†a

〉
〈L〉

)
−
(
κ+ γ1n1

2 + γ2 (2n2 + 1)
2 + γ3 (n3 + 1)

2 + i∆′m − i∆′u
)
〈aσUL〉 ,

(6.2.12)

while the equation for the photon number in the cavity is given by

d
dt
〈
a†a

〉
= −g

(
〈aσUL〉+

〈
a†σLU

〉)
− 2κ

〈
a†a

〉
+ 2κn2 . (6.2.13)

The equations are integrated numerically to determine the steady state. In Fig. 6.3
the steady state photon number in the cavity, which is proportional to the emitted
intensity, is depicted as a function of the external voltage and the temperature. The
sudden drop in

〈
a†a

〉
st
for low temperatures is a result of the carrier injection. Only

for an appropriate voltage we find resonant injection, described in our model by the
function rin (Vext). In Fig. 6.1 the external electric field is indicated by the overall
slope of the quantum wells. For Vext = Vres the slope is such that resonant tunneling
of carriers is possible, which is realized in the model by a peak in rin (Vext). For
∆′u = ∆′m the photon number in the cavity reaches a maximum. Further increase of
Vext causes the lasing activity to cease because cavity and medium are shifted out
of resonance. This is certainly a very crude approximation for the carrier dynamics,
which in principle requires self-consistent solutions. Nevertheless the solutions mimic
the observed behavior surprisingly well [6.6].

This simplified model allows to simulate the lasing activity of a single QC laser
operated at different temperatures. With increasing temperature the output power
is reduced dramatically which is in accordance with experimental results [6.6]. In
the next section we intend to study coupled QC lasers, where each laser is modeled

118



6. Introduction to quantum cascade lasers

0.5

1

1.5

2

2.5

3 2000 4000 6000 8000 10000 12000

0

2

4

6

8

10

〈
a†a

〉
st

T [K]

Vext

〈
a†a

〉
st

0
1
2
3
4
5
6
7
8
9
10

Figure 6.3.: Steady state number of photons in the cavity for different temperatures and applied
voltages. The parameters were chosen to κ = 2π × 10 Hz, g = κ/3, γ1 = 0.4κ, γ2 = 0.1κ,
γ3 = γ4 = γ5 = 0.8κ, J = κ/(2π), ∆u = −14κ, Vres = 8000, wres = 2000, rmax = 25κ, α = 12κ/Vres,
β = 0.1κ.

as described in this section plus an appropriate coupling term.

6.3. Coupled QC lasers

QC lasers can be coupled by placing them in close proximity of each other, so that
the evanescent field of one laser overlaps with the microdisc of the second laser
and vice versa. Photons in one mode can therefore switch over to the mode of
the second laser. In experiments the emission from each lasers depends on whether
the second laser is in the active voltage region or not, thereby exhibiting mutual
blocking behavior [6.5]. Here we intend to check whether an extended version of
the simplified model introduced for the description of a single laser is capable of
reproducing the mutual blocking found in experiments. The Hamiltonian describing
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Figure 6.4.: Sketch of the two microdiscs on the ground plane. Each of the discs is etched from
the repetitive heterostructure. The strength of the coupling between the QC lasers scales with the
distance between the microdiscs. Photons can leave one laser mode and enter the mode of the other
laser.

the coupled system reads

H = H1 + H2 + Hcoupling (6.3.1)

where H1 and H2 are defined analogously to Eq. (6.2.1),

H1 = ~ωm,1a†1a1 + ~ωu,1 |U1〉 〈U1|+ ~ωl,1 |L1〉 〈L1|+
4∑
j=1

~ωj,1 |Ij,1〉 〈Ij,1|

+ i~g1
(
aσUL − a†σLU

)
+ i~ (J1σ14 − J∗1σ41) (6.3.2)

and

H2 = ~ωm,2a†2a2 + ~ωu,2 |U2〉 〈U2|+ ~ωl,2 |L2〉 〈L2|+
4∑
j=1

~ωj,2 |Ij,2〉 〈Ij,2|

+ i~g2
(
aπUL − a†πLU

)
+ i~ (J2π14 − J∗2π41) , (6.3.3)

and moreover contains the coupling

Hcoupling = ~ε
(
a†1a2 + a†2a1

)
. (6.3.4)
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The mutual coupling rate between the modes ε depends on the distance between
the micro-resonators. The term ∝ a†1a2 describes a photon leaving the mode of the
second laser and entering the mode of the first laser. In Eq. (6.3.3) we introduced
the abbreviation πij = |i2〉 〈j2|. We assume here both QC lasers to be identical, i.e.
ωm,1 = ωm,2 = ωm etc. for all involved frequencies, g1 = g2 = g, and J1 = J2 = J .
We again define all frequencies with respect to ωl and transform to a frame rotating
with ωm, introducing the detunings ∆u = ωu−ωm, ∆j = ωj −ωm with j = 1, . . . , 4.
The voltage applied to each QC laser can be adjusted individually, leading to the
detunings ∆′u,1 = ∆u + αVext,1 and ∆′u,2 = ∆u + αVext,2. The carrier induced mode
shift gives ∆′m,1 = β (〈L1〉 − 〈U1〉) and ∆′m,2 = β (〈L2〉 − 〈U2〉).

The Liouvillian describing dissipative processes in the second QC laser is defined
analogously to Eq. (6.2.3). Thermal photons in the mode of the second micro cavity
are denoted by mj , the decay rates are denoted by µj , j = 1, . . . , 5. The equations
describing the first QC laser are

d
dt 〈U1〉 =g1

(〈
a†1σLU

〉
+ 〈a1σUL〉

)
+ γ1 (n1 + 1) 〈I1,1〉

− (γ1n1 + γ2 (n2 + 1)) 〈U1〉+ γ2n2 〈L1〉 , (6.3.5)
d
dt 〈L1〉 =− g1

(〈
a†1σLU

〉
+ 〈a1σUL〉

)
+ γ2 (n2 + 1) 〈U1〉

− (γ2n2 + γ3 (n3 + 1)) 〈L1〉+ γ3n3 〈I2,1〉 , (6.3.6)
d
dt 〈I1,1〉 =J∗1 〈σ41〉+ J1 〈σ14〉 − γ1 (n1 + 1) 〈I1,1〉+ γ1n1 〈U1〉+ rin,1 , (6.3.7)
d
dt 〈I2,1〉 =− (γ3n3 + γ4 (n4 + 1)) 〈I2,1〉+ γ4n4 〈I3,1〉+ γ3 (n3 + 1) 〈L1〉 , (6.3.8)
d
dt 〈I3,1〉 =− (γ4n4 + γ5 (n5 + 1)) 〈I3,1〉+ γ5n5 〈I4,1〉+ γ4 (n4 + 1) 〈I2,1〉

− rout,1 〈I3,1〉 , (6.3.9)
d
dt 〈I4,1〉 =− J1 〈σ14〉 − J∗1 〈σ41〉+ γ5 (n5 + 1) 〈I3,1〉 − γ5n5 〈I4,1〉 , (6.3.10)

d
dt 〈σ14〉 =J∗1 (〈I4,1〉 − 〈I1,1〉)−

γ1 (n1 + 1)
2 〈σ14〉 , (6.3.11)

and the second order terms

d
dt 〈a1σUL〉 =− g1

(〈
a1a
†
1

〉
〈U1〉 −

〈
a†1a1

〉
〈L1〉

)
+ i∆′u,1 〈a1σUL〉

−
(
κ1 + γ1n1

2 + γ2 (2n2 + 1)
2 + γ3 (n3 + 1)

2 + i∆′m,1
)
〈a1σUL〉

− iε 〈a2σUL〉 , (6.3.12)
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and

d
dt
〈
a†1a1

〉
=− g1

(
〈a1σUL〉+

〈
a†1σLU

〉)
− 2κ1

〈
a†1a1

〉
+ 2κ1n2

+ iε
(〈
a1a
†
2

〉
−
〈
a†1a2

〉)
. (6.3.13)

The emission from each laser is proportional to the number of photons in the each
mode.

The coupling to the second QC laser becomes apparent in Eq. (6.3.12) and Eq. (6.3.13).
Equations for the quantities that emerge from the coupling are calculated below. The
equations for the second QC laser are

d
dt 〈U2〉 = g2

(〈
a†2πLU

〉
+ 〈a2πUL〉

)
+ µ1 (m1 + 1) 〈I1,2〉

− (µ1m1 + µ2 (m2 + 1)) 〈U2〉+ µ2m2 〈L2〉 , (6.3.14)
d
dt 〈L2〉 = −g2

(〈
a†2πLU

〉
+ 〈a2πUL〉

)
+ µ2 (m2 + 1) 〈U2〉

− (µ2m2 + µ3 (m3 + 1)) 〈L2〉+ µ3m3 〈I2,2〉 , (6.3.15)
d
dt 〈I1,2〉 = J∗2 〈π41〉+ J2 〈π14〉 − µ1 (m1 + 1) 〈I1,2〉+ µ1m1 〈U2〉+ rin,2 , (6.3.16)
d
dt 〈I2,2〉 = − (µ3m3 + µ4 (m4 + 1)) 〈I2,2〉+ µ4m4 〈I3,2〉+ µ3 (m3 + 1) 〈L2〉 ,

(6.3.17)
d
dt 〈I3,2〉 = − (µ4m4 + µ5 (m5 + 1)) 〈I3,2〉+ µ5m5 〈I4,2〉+ µ4 (m4 + 1) 〈I2,2〉

− rout,2 〈I3,2〉 , (6.3.18)

d
dt 〈I4,2〉 = −J2 〈π14〉 − J∗2 〈π41〉+ µ5 (m5 + 1) 〈I3,2〉 − µ5m5 〈I4,2〉 , (6.3.19)

d
dt 〈π14〉 = J∗2 (〈I4,2〉 − 〈I1,2〉)−

µ1 (m1 + 1)
2 〈π14〉 , (6.3.20)

with the second order terms

d
dt 〈a2πUL〉 = −g2

(〈
a2a
†
2

〉
〈U2〉 −

〈
a†2a2

〉
〈L2〉

)
+ i∆′u,2 〈a2πUL〉

−
(
κ2 + µ1m1

2 + µ2 (2m2 + 1)
2 + µ3 (m3 + 1)

2 + i∆′m,2
)
〈a2πUL〉

− iε 〈a1πUL〉 , (6.3.21)
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and

d
dt
〈
a†2a2

〉
= −g2

(
〈a2πUL〉+

〈
a†2πLU

〉)
− 2κ2

〈
a†2a2

〉
+ 2κ2m2

− iε
(〈
a1a
†
2

〉
−
〈
a†1a2

〉)
. (6.3.22)

The coupling requires the introduction of the equation for
〈
a†1a2

〉
which reads

d
dt
〈
a†1a2

〉
= −g1 〈a2σUL〉 − g2

〈
a†1πLU

〉
−
(
i∆′m,2 − i∆′m,1 + κ1 + κ2

) 〈
a†1a2

〉
+ iε

(〈
a1a
†
1a
†
2a2
〉
−
〈
a†1a1a2a

†
2

〉)
︸ ︷︷ ︸(〈

a†2a2
〉
−
〈
a†1a1

〉) , (6.3.23)

which quantifies the exchange of photons between the modes. Photons can also be
emitted by one structure and directly enter the cavity of the second structure. This
processes are described by

d
dt 〈a2σUL〉 = −

(
i∆′m,2 − i∆′u,1

)
〈a2σUL〉

−
(
κ2 + γ1n1

2 + γ2 (2n2 + 1)
2 + γ3 (n3 + 1)

2

)
〈a2σUL〉

− g2 〈σULπLU 〉 − g1 (〈U1〉 − 〈L1〉)
〈
a†1a2

〉
− iε 〈a1σUL〉 (6.3.24)

and

d
dt 〈a1πUL〉 = −

(
i∆′m,1 − i∆′u,2

)
〈a1πUL〉

−
(
κ1 + µ1m1

2 + µ2 (2m2 + 1)
2 + µ3 (m3 + 1)

2

)
〈a1πUL〉

− g1 〈πULσLU 〉 − g2 (〈U2〉 − 〈L2〉)
〈
a†2a1

〉
− iε 〈a2πUL〉 . (6.3.25)

Correlations between the structures 〈σULπLU 〉 emerge as a result of the interaction.
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Figure 6.5.: Sum of the steady state photon number in both modes
〈
a†1a1

〉
st

+
〈
a†2a2

〉
st

as a
function of the individual pumping rates Vext,1, and Vext,2 at T = 0.1 K. In (a) the two lasers are
uncoupled as ε = 0, resulting in the mere addition of both emission patterns. In (b) the coupling is
set to ε = 4κ. The coupled lasers show mutual blockade: To obtain a significant number of photons
both lasers must be in their working voltage range, which corresponds to a logical AND operation.
The parameters for each laser are chosen as in Fig. 6.3.

This equation

d
dt 〈σULπLU 〉 = −g1 (〈U1〉 − 〈L1〉)

〈
a†1πLU

〉
− g2 (〈U2〉 − 〈L2〉) 〈a2σUL〉

+ i
(
∆′u,1 −∆′u,2

)
〈σULπLU 〉 −

(
γ1n1

2 + γ2 (2n2 + 1)
2 + γ3 (n3 + 1)

2

+µ1m1
2 + µ2 (2m2 + 1)

2 + µ3 (m3 + 1)
2

)
〈σULπLU 〉 , (6.3.26)

is the last necessary to obtain a closed set because all expectation values in Eq. (6.3.26)
are already collected. Numerical integration yields the steady state behavior of the
coupled QC lasers. To be consistent with the experiment we assume that the de-
tected emission cannot be assigned to a single laser but is proportional to the sum〈
a†1a1

〉
st

+
〈
a†2a2

〉
st
.

With increasing strength ε of the mutual coupling the emission pattern of the QC
lasers changes. In Fig. 6.5 the number of photons in both modes is depicted for the
case of uncoupled lasers (a) and for the coupling rate ε = 4κ (b). For the uncoupled
lasers the photon number is simply added. The lasing regions of both lasers are
visible as vertical and horizontal features that cross for Vext,1 = Vext,2 = 8000. The
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Figure 6.6.: Sum of the steady state photon number in both modes
〈
a†1a1

〉
st

+
〈
a†2a2

〉
st

as a
function of the individual pumping rates Vext,1, and Vext,2 at a significantly higher temperature
T = 1 K. The overall emission is reduced but the blocking mechanism is still present.

emission profile of each laser corresponds to a section across Fig. 6.3 at T = 0.1 K.
For the coupled lasers the common lasing region is restricted to the area where both
lasers are active. This corresponds to a logical AND operation, and has also been
demonstrated experimentally [6.5].

For T = 1 K the emission profile of each laser is deformed and the output power is
reduced, as already visible in Fig. 6.3. However, the behavior of mutual blockade
is preserved. In conclusion we find that the simplified model we developed for the
description of single and coupled cascade lasers is able to simulate some aspects of
the behavior found in experiments.

In the following section we study how the temperature of the environment can be
employed as part of the structure design.

125



6. Introduction to quantum cascade lasers
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Figure 6.7.: Schematic representation a quantum well structure with absorptive steps in the
injector region. The injector region contains several energy levels which are arranged such that
several phonons must be absorbed in order to pass the structure. The absorption processes are
indicated by black arrows.

6.4. Suppression of heating and alternative pumping
schemes

So far the inversion necessary for laser action has been accomplished by electrical
pumping of the semiconductor structure. The emission of photons is proportional
to the current that runs through the material. Reverting this process naturally
gives rise to a so-called intersubband photo detector. A photon excites an electron
that can tunnel into the next well from where it relaxes predominantly into the
next active region of the structure, leading to a measurable photo current. The
interesting point of such detectors is that they could allow for fast photo detection
in frequency ranges where no suitable intraband semiconductor photo detectors are
available [6.7].

Following this idea, a modified design for QC lasers can be envisaged which to some
extend reduces the problem of heating in conventional QC lasers. Phonon emission
during the passage of carriers through the injector region causes heating of the
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device. Finally the QC laser ceases to work due to the heating. In a modified scheme,
depicted in Fig. 6.7, the injector region could be designed to contain absorptive
steps, leading to a situation where the absorption of a phonon (or several phonons)
is required in each quantum well structure. The resulting design is therefore a
combination between cascade lasers studied in Sec. 6.2 and the above described
intersubband photo detector. Due to the absorptive steps a minimal temperature
is required to allow for the transfer through the injector. There is still an upper
temperature limit above which lasing is impossible. However, if heating is suppressed
during operation, higher currents and therefore higher output powers should be
possible before the heating becomes detrimental.

Elaborating on this basic idea of absorptive steps we propose a model in which
thermal intersubband excitations are employed as a pump mechanism. A sustained
spatial temperature gradient across a quantum well structure takes the role that
spectral shaping plays in conventional lasers. The efficiency of such systems, where
lasing and pumping transition are kept at different temperatures, has been widely
studied [6.8, 6.9]. In Sec. 7 the basic principles of the temperature gradient pumping
scheme are introduced. The model is then extended to include an extra absorptive
step in the cold region of the device to demonstrate the above discussed suppression
of heating.
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A laser can be understood as thermodynamic engine converting heat to a coherent single mode
field close to Carnot efficiency. To achieve lasing, spectral shaping of the excitation light is used
to generate a higher effective temperature on the pump than on the gain transition. Here, using
a toy model of a quantum well structure with two suitably designed tunnel-coupled wells kept
at different temperature, we predict that lasing can also occur on an actual spatial temperature
gradient between pump and gain region. Gain and narrow band laser emission require a sufficiently
large temperature gradient and resonator quality. Lasing appears concurrent with amplified heat
flow between the reservoirs and points to a new form of stimulated solid state cooling. In addition,
such a mechanism could reduce intrinsic heating and thus extend the operating regime of quantum
cascade lasers by substituting phonon emission driven injection by a phonon absorption step.

PACS numbers: 42.50.Pq,42.55.Sa,42.55.Ah

Lasing occurs for sufficient gain within an optical resonator, which for stimulated
emission based amplification requires an inverted populations between the ampli-
fier levels [7.1]. In theoretical models pumping to generate inversion is described
by coupling reservoirs of different temperature to pump, injection and lasing tran-
sitions [7.2–7.5]. Practical implementation requires precise spectral design of the
pump radiation to overlap well with the pump transition with strong suppression
of thermal radiation on lasing and injection transitions. At optical frequencies with
† The author of the present thesis performed all of the calculations in this preprint.
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almost no thermal photons present, filtering of the pump light is sufficient to achieve
this. However, spectral shaping in the far infrared or even THz regime is practically
hampered by ubiquitous thermal quanta, which create strong restrictions on the
laser operating temperature [7.6].

In this paper we exhibit possible routes to directly use spatial temperature gradients
instead of spectral pump design to generate inversion and facilitate gain and lasing.
While we mostly concentrate on basic principles and mechanisms, we also discuss a
possible real world implementation based on designed quantum well structures. Here
the optical properties and level structures in the far infrared or even THz regime can
be precisely engineered. While such a temperature gradient laser at first seems more
of conceptual than of practical importance, the underlying principle can exploited
by adding an extra pump step to a conventional semiconductor laser setup. Adding
thermal or phonon absorption based injection steps before the gain transition leads
to a useful modification of the thermal operation conditions. Lasing then can be
tied to heat absorption or directional energy flow to reduce excess heating and steer
heat flow [7.7]. As prove of principle we study a simple structure of two tunnel
coupled quantum wells at different temperature as sketched in Fig. 7.1. A single
high Q cavity mode is coupled to a gain transition in the right well kept at low
temperature. A model Hamiltonian H = H0 + HI for a system of N parallel two-well
structures and a single mode reads

H0 = ~ωma†a+ ~
N∑
j=1

[
ωu |uj〉 〈uj |+ ωl |lj〉 〈lj |+

4∑
k=1

ωIk |Ik,j〉 〈Ik,j |
]

(7.0.1)

and

HI = ~g
N∑
j=1

(
aσ+

j + a†σ−j

)
+ ~

N∑
j=1

(J1 |I4,j〉 〈I3,j |+ J2 |I2,j〉 〈I1,j |+ h.c.) , (7.0.2)

where σ+
j = |uj〉 〈lj |. The energy eigenstates are denoted by |I1,j〉 , . . . , |I4,j〉, |uj〉

and |lj〉 with the energies ~ωI1 , . . . , ~ωI4 , ~ωu and ~ωl . a† is the creation operator
for a cavity photon at frequency ωm. Note that the structures do not form a cascade
and interact only via the common cavity mode. The coupling between the u → l
transition and the mode is described by the coupling rate g. Tunneling between
the states |I1,j〉 and |I2,j〉 and the states |I3,j〉 and |I4,j〉 is described by the matrix
elements J1 and J2. For the forthcoming analysis we define all frequencies relative
to ωl and switch to a frame rotating with ωm with detuning ∆u = ωu − ωm. The
dynamics of the reduced density matrix is described by the master equation d

dtρ =
(i/~) [ρ,H] + L [ρ], including the coupling to the environment at finite temperature
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Figure 7.1.: (Color online) Sketch of the two-well structure and the energy levels. The wave
functions are assumed to be well localized in each well while the coupling is described by the
tunneling constants J1 and J2. An alternative design including an absorptive step between |I4〉 and
|u′〉 is indicated in green.

(see supplementary material). The decay rate of the cavity is denoted by κ and the
spontaneous emission rates are denoted by γ1, . . . , γ4. The thermal photon number
at the transition frequencies ω1 = ωu − ωl, ω2 = ωI3 − ωI2 , ω3 = ωI4 − ωu and
ω4 = ωl − ωI1 at temperature T is denoted by ni (T ) (i = 1, . . . , 4).

We assume to have a sustained temperature difference between the two wells with
T1 > T2. As T1 6= 0 electrons will be thermally excited to state |I3〉 and tunnel
to state |I4〉, which couples radiatively or via phonons to the upper laser level |u〉.
Eventually a photon is created in the cavity by a transition to the lower laser level |g〉
and the cycle then ends with the tunneling from state |I1〉 to |I2〉. For appropriate
parameters this cycle creates gain and lasing.

Mathematically we use the master equation to get equations for the population
expectation values in each state and the quantities they couple to [7.8], which we
truncate to include only second order correlation functions. For the central quantity
of the number of photons this gives

d
dt
〈
a†a

〉
= −2κ

〈
a†a

〉
+ 2κn1 − igN

(〈
a†σ−j

〉
−
〈
aσ+

j

〉)
,

which contains the intuitive expected loss term, a heating term from thermal photons
and the stimulated emission term to provide gain. The latter has to be determined
from:

d
dt
〈
aσ+

j

〉
= i∆u

〈
aσ+

j

〉
− ig (N − 1)

〈
σ−j σ

+
k

〉
− ig

([
1 +

〈
a†a

〉]
〈|uj〉 〈uj |〉 −

〈
a†a

〉
〈|lj〉 〈lj |〉

)
− (κ+ γ1 (2n1 + 1) + γ3n3 + γ4 (n4 + 1))

〈
aσ+

j

〉
, (7.0.3)
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Figure 7.2.: (Color online) (a) Numerical solution for the steady state number of photons
〈
a†a
〉
st

in the cavity as a function of T1 and T2 for N = 107. The dashed line indicates a minimum T1,th for
cooperative behavior (valid for T2 small enough to set n1 = n3 = n4 = 0). (b)

〈
a†a
〉
st
as a function

of T1 and N (T2 = 0.1 K). The analytical solution gives Nth (T1) (dashed line) and reliably predicts
the onset of cooperative behavior and a significant increase in

〈
a†a
〉
st
.

which describes the rate at which excitations are transferred between the cavity and
the structure. Fortunately, global phase invariance (〈a〉 =

〈
σ+
j

〉
= 0) can be used to

simplify third order expectation values [7.9, 7.10]. In the second term of Eq. (7.0.3)
we see, that cooperative effects emerge as a result of common interaction with the
cavity mode. Explicitly we find

d
dt
〈
σ−j σ

+
k

〉
= − (2γ1 (2n1 + 1) + 2γ3n3 + 2γ4 (n4 + 1))

〈
σ−j σ

+
k

〉
− ig

[(〈
a†σ−j

〉
−
〈
aσ+

j

〉)
(〈|uj〉 〈uj |〉 − 〈|lj〉 〈lj |〉)

]
. (7.0.4)

To complete a selfcontained set we still need equations for the populations and
polarizations: 〈|uj〉 〈uj |〉, 〈|lj〉 〈lj |〉, 〈|Ii,j〉 〈Ii,j |〉 (i = 1, 2, 3, 4), 〈|I1,j〉 〈I2,j |〉 and
〈|I3,j〉 〈I4,j |〉. This nonlinear set of equations can be solved numerically for the
steady state properties of our laser as shown in the following figures. In addition,
under the assumption of very small T2, so that n1 = n3 = n4 ≈ 0 and resonance
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Figure 7.3.: Occupation ratio in the first quantum well for the coupled and uncoupled case
versus T2. The temperature of the hot part T1 is fixed to 400 K. For T2 < 9 K we see a reduction
of 〈|I3,j〉 〈I3,j |〉 / 〈|I2,j〉 〈I2,j |〉 (solid line) compared to the uncoupled case (dashed line).

∆u = 0, an approximate analytical solution can be found to give extra insight into
the central mechanisms present [7.10]. In the bad cavity regime, keeping only the de-
cay term proportional to κ and the second term of Eq. (7.0.3), where we approximate
N−1 ≈ N , we obtain the steady-state

〈
aσ+

j

〉
st

= − igN
κ

〈
σ−j σ

+
k

〉
st
. Actually for large

longitudinal mode spacing of tiny cavities as often used in cascade lasers even a high
finesse still gives a larger decay rate κ as compared to optical transition rates in the
wells. Using the approximate solution for

〈
aσ+

j

〉
st
, an approximate steady state for

the whole set can be found. Here the steady state correlation between the structures〈
σ−j σ

+
k

〉
st

is of particular interest. It shows for which parameters the formation of
cooperative interaction with the mode is possible [7.10]. For a given number of struc-
tures N we can calculate the critical temperature T1,th that is necessary to meet this
condition: (

〈
σ−j σ

+
k

〉
st
> 0). Analogously, T1 determines the threshold number Nth

of structures necessary for lasing as shown in the supplementary material.

The equations can also solved numerically for the steady state and compared to our
approximate solutions. The parameters κ = 2π× 5× 105 Hz (i.e. FWHM linewidth
of 1 MHz), g = (κ/3)×10−3, ∆u = 0 ,γ1 = 2π×4×102 Hz, γ2 = γ3 = γ4 = γ1×102,
ω1 = 2π × 7.9 THz, ω2 = 2π × 9 THz, ω3 = 2π × 0.1 THz, ω4 = 2π × 1 THz
remain fixed for the forthcoming calculations, while N , T1 and T2 are varied. The
number of photons as a function of T1 and T2 for N = 107 is shown in Fig. 7.2(a).
The occupation of the cavity mode strongly depends on the temperature gradient
between the wells. The approximative analytical treatment for small T2 gives the
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threshold temperature T1,th that signals the onset of cooperative behavior. For
T2 > 1 K the approximative solutions break down. In Fig. 7.2(b) we show

〈
a†a

〉
st

as a function of T1 and N for fixed T2 = 0.1 K. Here, the approximative analytical
solutions give a reliable result for which parameters to expect a high number of
photons in the cavity. The numerical solutions show that the number of photons in
the cavity increases rapidly as soon as we exceed Nth for a given value of T1.

We have seen that a sufficient temperature difference between the layers results in a
high population of the cavity mode and eventually lasing. Thus photons are emitted
from the cavity at rate 2κ

〈
a†a

〉
and energy is extracted from the system. From a

different viewpoint this suggests that the cavity can serve as a channel for cooling.
To show this we compare the level excitation ratio in the hot well with and without
the cavity/laser present. Without lasing and tunneling J1 = J2 = 0 we find that the
ratio between the upper level I3 and the lower energy level I2 in the first well to be
n2/(1 + n2). In the presence of the second well and in the lasing regime this ratio
will be significantly reduced, indicating a lower effective temperature and enhanced
heat flow. Figure 7.3 shows how the ratio 〈|I3,j〉 〈I3,j |〉 / 〈|I2,j〉 〈I2,j |〉 changes with
T2 while T1 = 400 K, and hence n2, remains fixed. While T2 remains low enough
to ensure a significant number of photons in the cavity, and hence a considerable
dissipation via the cavity mirrors, the occupation ratio in the first well is reduced.
This corresponds to an effectively lower temperature of the first well. Note that we
have neglected other forms of heat flow in the system which could be significant but
here would only change the reference point of the curves.

As we have seen, we obtain a large number of photons in the cavity for N > Nth (T1)
and an appropriate temperature gradient T1 < T2, which can therefore be seen as an
effective pump. To show that we indeed have lasing we still need to characterize the
emission spectrum of the cavity output field and in particular its linewidth. Using
the quantum regression theorem we obtain the differential equation for the first or-
der correlation function

〈
a† (t+ τ) a (t)

〉
and

〈
σ+
j (t+ τ) a (t)

〉
, see supplementary

material. To find the spectrum we calculate the Laplace transform of the coupled
equations [7.11]. The steady state values of the involved quantities are obtained
numerically. In Fig. 7.4 the linewidth (FWHM) of the cavity output spectrum is
depicted. With the onset of cooperative behavior the linewidth is reduced dramat-
ically, which is a clear signature of sustained coherent oscillation. Similar behavior
is found for fixed T2 and varying T1 and N . Using some algebra the laser linewidth
above threshold can be analytically approximated by

∆f = κΓ
κ+ Γ

[
1− g2N

κΓ D

]
, (7.0.5)
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Figure 7.4.: (Color online) Linewidth of the cavity output spectrum for varying T1 and T2 with
N = 107 (plotted on a logarithmic scale). The linewidth (FWHM) of the empty cavity 2 κ

2π = 1 MHz
corresponds to the dark red color (upper boundary of the scale). The linewidth ∆f falls slightly
below that limit with increasing T1 until it finally drops off dramatically as the cooperative effects
emerge. For small T2 the onset of cooperative behavior is marked by T1,th.

with the abbreviations

D =
(
〈|uj〉 〈uj |〉st − 〈|lj〉 〈lj |〉st

)
,

and
Γ = γ3n3 (T2) + γ1 (2n1 (T2) + 1) + γ4 (n4 (T2) + 1) .

The prefactor nicely exhibits the two limits of a good cavity or bad cavity configu-
ration, where the linewidth is fixed by the less damped oscillator, while the second
term shows lasing and gain induced linewidth narrowing.

The two-well system discussed above clearly exhibits the essential physical mecha-
nism of heat to coherent light conversion. In the following we show that the very
same principle can be extended to a multi step excitation processes, where a heat
absorbing step leads to operation at higher emission frequencies and counteracts
the heating processes. Replacing one of the absorbing steps by conventional pump-
ing should reduce the temperature gradient requirements, but we refrain from a
discussion of this mixed model here.

Formally a reduction of heating can be easily facilitated by incorporating an absorp-
tive step in the second well and choosing ω′u > ωI4 . We indicated this possibility
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Figure 7.5.: (Color online) (a) Number of photons in the mode versus T1 and T2. For T2 > T2,th
we find a sudden increase in

〈
a†a
〉
st
, and in (b) a corresponding drop in the linewidth of the cavity

emission. This is due to the absorptive step in the revised model where ω′u = ωu + 2π × 0.05 THz.
The remaining parameters are unchanged except for γ3 = γ1 = 2π × 4× 102 Hz.

(extra level |u′〉 in green) in Fig. 7.1. In the dissipative model dynamics we then
simply have to exchange the rates γ3n3 (T2) ↔ γ3 (n3 (T2) + 1). Physically, this
means that in each pump and stimulated emission cycle the absorption of an extra
thermal photon or phonon with frequency ω′u − ωI4 is necessary. On the one hand
this implies that we find a minimal temperature below which not enough phonons
are present to close the pump cycle and generate gain. On the other hand las-
ing is tied to heat absorption. In general one could of course consider a balanced
combination of thermally assisted and externally driven excitation steps to optimize
the operation regime. We will refrain from this here to keep the complexity of the
model limited. Let us look at the results now. The temperature range for which〈
a†a

〉
st

becomes significant is depicted in Fig. 7.5(a). The dashed line marks the
critical temperature necessary for cooperative behavior for similar approximations
as described above. The linewidth of the emission in Fig. 7.5(b) shows distinctive
narrowing in the lasing region. Extra phonon absorbing steps could be also added to
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conventional quantum well lasers, which generate intrinsic heating during operation
to counteract the heating process.

Our theoretical calculations exhibit the possibility to use a spatial temperature gra-
dient in a suitable active medium to induce optical gain and lasing. While not very
practicable in the visible regime, a semiconductor heterostructure can be envisaged
to generate narrow bandwidth emission through a resonant cavity mode in the THz
regime, where the coherent emission of photons is sustained by a spatial tempera-
ture gradient. The effective extraction of thermal energy from the system in parallel
provides for stimulated cooling of the first, hot quantum well. To use a similar idea
at higher frequencies without too high temperatures, a multi step excitation process
can be envisaged, where some steps could also invoke optical pumping or current
injection. In general, introducing an absorptive step well before carrier injection to
the upper laser level relies on absorption of thermal quanta and therefore counteracts
heating during operation. While we here only worked with an oversimplified generic
model, the physical principles behind should stay valid for more realistic and thus
more complex descriptions. In addition, transverse spatial temperature gradients or
even spatially separated structures connected by conducting wires might provide for
alternative configurations at greater length scales.

K.S. was supported by the DOC-fFORTE doctoral program of the ÖAW. H.R. ac-
knowledges support from the Austrian Science Fund FWF grant S4013.

Supplementary material

Liouvillian

The Liouvillian that describes dissipative processes, including the coupling of the
cavity and the structures to the environment at finite temperature, reads

L [ρ] = κ (n1 (T2) + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κn1 (T2)

(
2a†ρa− aa†ρ− ρaa†

)
+ γ1 (n1 (T2) + 1)

∑
j

(
2σ−j ρσ+

j − |uj〉 〈uj | ρ− ρ |uj〉 〈uj |)
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+ γ1n1 (T2)
∑
j

(
2σ+

j ρσ
−
j − |lj〉 〈lj | ρ− ρ |lj〉 〈lj |)

+ γ2 (n2 (T1) + 1)
∑
j

(2 |I2,j〉 〈I3,j | ρ |I3,j〉 〈I2,j | − |I3,j〉 〈I3,j | ρ− ρ |I3,j〉 〈I3,j |)

+ γ2n2 (T1)
∑
j

(2 |I3,j〉 〈I2,j | ρ |I2,j〉 〈I3,j | − |I2,j〉 〈I2,j | ρ− ρ |I2,j〉 〈I2,j |)

+ γ3 (n3 (T2) + 1)
∑
j

(2 |uj〉 〈I4,j | ρ |I4,j〉 〈uj | − |I4,j〉 〈I4,j | ρ− ρ |I4,j〉 〈I4,j |)

+ γ3n3 (T2)
∑
j

(2 |I4,j〉 〈uj | ρ |uj〉 〈I4,j | − |uj〉 〈uj | ρ− ρ |uj〉 〈uj |)

+ γ4 (n4 (T2) + 1)
∑
j

(2 |I1,j〉 〈lj | ρ |lj〉 〈I1,j | − |lj〉 〈lj | ρ− ρ |lj〉 〈lj |)

+ γ4n4 (T2)
∑
j

(2 |lj〉 〈I1,j | ρ |I1,j〉 〈lj | − |I1,j〉 〈I1,j | ρ− ρ |I1,j〉 〈I1,j |) . (7.0.6)

Approximate Analytical Solutions

For T2 small enough we can neglect n1, n3 and n4. Inserting the steady state
solutions for

〈
aσ+

j

〉
st
, 〈|uj〉 〈uj |〉st and 〈|lj〉 〈lj |〉st into the equation for

〈
σ−j σ

+
k

〉
we

obtain

2
〈
σ−j σ

+
k

〉
st

[
γ1 + γ4 +

(
g4N2 |J2|2

〈
σ−j σ

+
k

〉
st

(2 + 3n2)γ2γ3(γ2 + n2γ2 + γ3)γ4

+ |J1|2
(
g4N2

〈
σ−j σ

+
k

〉
st
n2

2γ
2
2γ3γ4 + |J2|2

(
2g4N2

〈
σ−j σ

+
k

〉
st

((γ2 + γ3)γ4 + n2γ2(γ3 + 2γ4)) + g2Nn2γ2γ3(γ1 − γ4)κ+ n2γ2γ3(γ2
4 − γ2

1)κ2)))

/

(
γ1κ

2
(
|J2|2 (2 + 3n2)γ2γ3(γ2 + n2γ2 + γ3)γ4

+ |J1|2
(
n2

2γ
2
2γ3γ4 + 2 |J2|2 ((γ2 + γ3)γ4 + n2γ2(γ3 + 2γ4))

)))]
= 0 (7.0.7)
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for the quantity
〈
σ−j σ

+
k

〉
st

describing cooperative behavior between the structures.
The stable solution is obtained from the part of Eq. (7.0.7) which is enclosed by
the rectangular brackets. To find the number of structures necessary for reaching
the onset of cooperative behavior Nth (T1) for a given temperature T1 we solve〈
σ−j σ

+
k

〉
st

= 0 to find

Nth (T1) = γ4κ

g2 + α (T1) γ1 +O
(
γ2

1

)
(7.0.8)

for small γ1, where

α (T1) = A

n2
+B + Cn2 . (7.0.9)

The first term causes the divergence of Nth for small T1 in Fig. 2(b) (dashed
line). The coefficients are A = (2γ4κ(γ2 + γ3)(γ2γ3 + |J1|2))/(g2γ2γ2 |J2|2), B =
(κ[γ3γ4(5γ2 + 3γ3) + |J1|2 (3γ3 + 4γ4)])/(g2γ3 |J1|2), and C = (γ2γ4κ[3/ |J1|2 +
1/ |J2|2])/g2.

For the thermal photon number

n2 =
√

2 |J2|
√
γ2 + γ3

√
γ2γ3 + |J1|2√

γ2
2γ3

(
|J1|2 + 3 |J2|2

) (7.0.10)

we find a minimum of Nth (T1). Similar calculations give the critical temperature
T1,th for given N , see Fig. 2(a).

Calculation of the spectrum

Using the quantum regression theorem we obtain
〈
a† (t+ τ) a (t)

〉
which couples to〈

σ+
j (t+ τ) a (t)

〉
. For t→∞ using stationarity we can write

d
dτ

〈a† (τ) a (0)
〉〈

σ+
j (τ) a (0)

〉 =
(
−κ igN
−igD i∆u − Γ

)
×

〈a† (τ) a (0)
〉〈

σ+
j (τ) a (0)

〉 (7.0.11)

with
D =

(
〈|uj〉 〈uj |〉st − 〈|lj〉 〈lj |〉st

)
,
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and
Γ = γ3n3 (T2) + γ1 (2n1 (T2) + 1) + γ4 (n4 (T2) + 1) .

The Laplace transformation yields

〈
a†a

〉
(s) =

〈
a†a

〉
st

(s− i∆u + Γ) + igN
〈
σ+
j a
〉
st

(s+ κ) (s− i∆u + Γ)− g2ND
(7.0.12)

which allows to calculate the spectrum [7.11]. An approximation for the linewidth
is found by expanding the denominator for small s.
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