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Abstract

Quantum emitters are systems with discrete energy levels, such as atoms or molecules,
which exhibit a nonvanishing dipole coupling to the electromagnetic field. The electro-
magnetic field is in turn modified by this coupling. One quantum emitter therefore feels
the presence of others in a common radiation field. The behavior of multiple emitters
placed close to one another thus changes drastically as they begin to act as a collective.
Consequently, radiative processes and noise are of collective nature as well. This fact
has to be taken into account in order to capture the full physical picture of a dense
ensemble of quantum emitters.

A striking example for these interactions is spontaneous emission: The spontaneous
decay of an excited emitter is induced by vacuum fluctuations of the electromagnetic
field. In a compact collection of emitters, though, the radiated fields interfere with
one another. This interference effect leads to modified spontaneous emission rates as
well as energetic shifts of the emitters’ energy levels. On the one hand, constructive
interference can cause a substantial decrease in the lifetime of a collective excitation — a
phenomenon known as superradiance. On the other hand, imprinting a certain phase
difference between the emitters can lead to destructive interference of the radiated
fields thereby inhibiting the spontaneous decay. Understanding the details behind this
effect, which we call subradiance, enables us to greatly extend the lifetime of collectively
excited states.

The preparation of subradiant states is not trivial and is investigated at length
within the scope of this thesis. We show that, employing a magnetic field gradient, the
phase differences required to suppress spontaneous emission are introduced in chains
of quantum emitters. Furthermore, it turns out that the states prepared in this way
feature high quantum correlations that are also robust.

More generally, collective decoherence can not only stem from the vacuum-mediated
interactions. In laser spectroscopy, an ensemble of quantum emitters is addressed by a
laser, which exhibits noise due to its fluctuating phase and amplitude. This noise is
inevitably imprinted on the quantum emitters subsequently leading to effects such as
dephasing. We investigate collective laser noise and ways to circumvent it in quantum
metrological applications.

It is possible to use an optical cavity in order to enhance coherent light-matter
interactions when addressing an ensemble of quantum emitters. Coupling dipole-dipole
interacting quantum emitters to a single resonant mode enables us to observe the
collective resonances featuring the modified linewidths and energies in the transmission
spectrum of the cavity. Selecting subradiant states via the cavity mode profile, these
resonance lines can be extremely narrow and entail a significant phase shift of the
transmitted field. All those phenomena can be understood as a consequence of largely



increased light-matter interactions due to the collective subradiant dipole preferentially
radiating into the cavity instead of the surrounding free space.

The dipole-dipole interactions between emitters are greatly enhanced at nanoscale
separations. In addition, quantum emitters forming rings display guided quasi-modes
reminiscent of optical fibers. Combining these two facts, we investigate the properties
of nanorings. It is shown that the spontaneous decay of a single ring decreases exponen-
tially with its size. Consequently, almost lossless transport of excitations between two
neighboring rings can occur.

The methods used to conduct the research presented in this thesis involve analytical,
but also numerical techniques. The effort to implement the latter can be largely reduced
by the use of a dedicated framework in the form of a toolbox, which contains predefined
sets of functions specifically tailored towards the numerical simulation of open quantum
systems. Such a toolbox, which was developed further by the author of this thesis,
is presented in the following. It is built in the Julia programming language offering
usability as well as performance.
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Zusammenfassung

Quantenemitter sind Systeme mit diskreten Energieniveaus, wie etwa Atome oder Mo-
lekiile, die eine nichtverschwindende Dipolkopplung an das elektromagnetische Feld
aufweisen. Das elektromagnetische Feld wird seinerseits durch diese Kopplung modifiziert.
Ein Emitter fiihlt daher die N&he anderer, sofern sich diese im selben Strahlungsfeld
befinden. Dadurch dndert sich das Verhalten von Quantenemittern, die sich in unmittel-
barer Ndhe zueinander befinden, drastisch, da sie sich wie ein kollektives Quantensystem
verhalten. Daraus folgt, dass Strahlungsprozesse und Rauschen kollektiver Natur sind.
Diese Tatsache muss in Betracht gezogen werden, um das volle physikalische Bild einer
dichten Ansammlung von Quantenemittern einzufangen.

FEin einschlédgiges Beispiel von solchen Wechselwirkungen sind spontane Emissions-
prozesse. Im Allgemeinen wird spontaner Zerfall eines angeregten Emitters durch
Vakuumfluktuationen des elektromagnetischen Feldes hervorgerufen. In einem kompak-
ten Ensemble von Emittern interferieren die abgestrahlten Felder allerdings miteinander.
Dieser Interfernzeffekt fithrt zu modifizierten spontanen Zerfallsraten sowie energetischen
Verschiebungen der Energieniveaus der Emitter. Einerseits kann konstruktive Interferenz
eine substantielle Verringerung der Lebensdauer einer kollektiven Anregung verursa-
chen — ein Phdnomen, welches gemeinhin als Superradianz bekannt ist. Andererseits
kann ein Phasenunterschied zwischen nédchsten Emittern zu destruktiver Interferenz der
abgestrahlten Felder und somit zu einer Unterdriickung des spontanen Zerfalls fithren.
Ein detailliertes Verstédndnis dieses Effekts, den wir Subradianz nennen, erlaubt es uns,
die Lebensdauer eines kollektiv angeregten Zustandes in groffem Mafle zu verlédngern.

Die Préparation eines solchen subradianten Zustandes ist nicht trivial und wird daher
im Rahmen dieser Dissertation ausfiihrlich behandelt. Es wird im Folgenden gezeigt, dass
man mithilfe eines Magnetfeldgradienten die fiir die Reduktion der spontanen Emission
erforderlichen Phasendifferenzen in einer Kette von Quantenemittern einfithren kann.
Weiters stellt sich heraus, dass die auf diese Weise erzielten Zustidnde ein hohes Maf3 an
Verschrankung aufweisen und diese ebenfalls robust gegeniiber spontanem Zerfall ist.

Im Allgemeinen muss kollektive Dekohérenz allerdings nicht von den vom Vakuumfeld
vermittelten Wechselwirkungen stammen. Bei Laserspektroskopie wird ein Ensemble von
Quantenemittern von einem Laser adressiert, welcher unweigerlich jedwede Fluktuatio-
nen seiner Phase oder Amplitude auf die Emitter iibertragt, was folglich zu Effekten wie
Dephasierung fithrt. Wir untersuchen die Wirkung von solch kollektivem Laserrauschen
und moégliche Arten es zu vermeiden im Zusammenhang mit quantenmetrologischen
Anwendungen.

Unter Verwendung eines optischen Resonators ist es moglich kohdrente Licht-Materie-
Wechselwirkungen bei der Adressierung eines Ensembles bestehend aus Quantenemittern
zu verstiarken. Koppelt man Dipol-Dipol-wechselwirkende Quantenemitter an eine einzel-
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ne, resonante Mode, so ist es moglich die kollektiven Resonanzen und deren modifizierte
Linienbreiten und Energien im Transmissionsspektrum des Resonatorfeldes zu beob-
achten. Selektiert man mittels des Modenprofils des Resonators subradiante Zusténde,
koénnen diese Resonanzlinien extrem schmal sein und einen signifikanten Phasenversatz
des transmittierten Feldes mit sich bringen. Diese Phdnomene lassen sich als eine natiir-
liche Konsequenz von verstiarkten Licht-Materie Wechselwirkungen verstehen, da ein
kollektiver, subradianter Dipol bevorzugt in den optischen Resonator strahlt, anstatt in
den freien Raum.

Dipol-Dipol-Wechselwirkung wird bei einer Separation zwischen Emittern auf der
Nanoskala in grofem Mafle verstirkt. Zusétzlich zeigen Ringe bestehend aus Quanten-
emittern gefiihrte Quasimoden, dhnlich wie in optischen Fasern. Kombiniert man diese
beiden Tatsachen, fiihrt das zur Untersuchung von Nano-Ringen von Quantenemittern.
Es wird gezeigt, dass die spontane Emission eines einzelnen Rings exponentiell mit
dessen Grofle abnimmt und aus Folge daraus praktisch verlustloser Transport von
Anregungen zwischen zwei benachbarten Ringen stattfinden kann.

Die Methoden, welche in den wissenschaftlichen Untersuchungen in dieser Dissertation
Anwendung finden, beinhalten sowohl analytische wie auch numerische Verfahren. Der
Aufwand fiir Letztere ldsst sich zu einem grofien Teil verringern, indem man sich ein
dediziertes Framework in Form einer Toolbox zunutze macht, die vordefinierte Funk-
tionen speziell fiir die numerische Simulation von offenen Quantensystemen beinhaltet.
Eine Toolbox dieser Art, die vom Autor dieser Arbeit weiterentwickelt wurde, wird
im Folgenden prasentiert und ist in der Programmiersprache Julia verfasst, sodass sie
sowohl einfache Nutzbarkeit als auch Effizienz bietet.
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1 Introduction

It was in 1916 that Einstein introduced three fundamental interaction processes of light
and matter [1.1]. In his seminal work, he described the processes of absorption and
spontaneous emission, as well as the novel phenomenon of stimulated emission. To arrive
at a proper theory, Einstein did not only describe the internal degrees of freedom of a
molecule, but also the surrounding radiation field in a quantum mechanical sense; i.e.,
the exchange of energy between the electromagnetic field and a molecule was postulated
to occur at discrete values only. The corresponding rates associated with these processes
were only hypothesized by Einstein and left undetermined. To actually find the correct
expressions of these rates, specifically the one at which spontaneous emission occurs,
a full quantum mechanical derivation was required. This was first accomplished by
Dirac [1.2] in 1927, when he derived Einstein’s coefficients from first principles.

The considerations by Einstein and Dirac were aimed at gaining insight into the
processes of emission and absorption of radiation by matter, which had remained largely
inexplicable up until then. They sufficed to explain these phenomena for single quantum
emitters (atoms or molecules) or, equivalently, for many independent quantum emitters.
In the case of the latter one makes what is known as the independent bath assumption,
in which each quantum emitter interacts with an independent set of thermal radiation
modes. A natural question that still remained unanswered was how precisely atoms
or molecules within a cloud behaved taking into account that each particle interacts
with the same radiation field modes, such that the correlation length of the vacuum
fluctuations is nonnegligible.

1.1 Interacting quantum emitters

In 1954, Dicke [1.3] considered the limiting case of a gas with such a high density, that the
separation between particles was much less than the wavelength of the radiation field they
were emitting. This renders the particles within the gas effectively indistinguishable and
led Dicke to the description of the collection of emitters as a single point-like quantum
system. The most prominent result of Dicke’s work is superradiance. As he showed,
a dense gas consisting of emitters that are initially in the upper level of an electronic
transition, emits a short but intense pulse of light. In fact, the peak intensity of such a
superradiant pulse of a gas consisting of N emitters is proportional to N2, whereas its
duration reduces with 1/N. Numerous studies focused on superradiance [1.4], but it
was not until the 1970s that it was observed experimentally [1.5]. This is a prominent
example, where emitters behave like a single entity since they cannot be distinguished
from one another by the surrounding light field. There are other cases, in which the
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independent bath assumption fails to capture the physics, and decoherence and noise
have to be treated collectively (see, for example, chapter 4).

Moving away from the limiting case of negligible separations between particles to
a configuration where they remain distinguishable but nevertheless interact with a
common radiation field, required some more careful considerations. A basic theoretical
description was developed by Lehmberg [1.6] in 1970, and is described at length within
this thesis (see chapter 2).

1.2 Why bother with dense ensembles?

Interactions between quantum emitters, such as the ones discussed above, occur at high
densities; i.e., when the separation between particles is small compared to a characteristic
length scale. For example, note that the coherence length (inverse bandwidth) of a
spontaneously emitted photon is given by the lifetime of the transition multiplied with
the speed of light, and thus is much larger than its wavelength. Naturally, we may now
ask why it is even of interest to look at ensembles of emitters with high densities. After
all, what is keeping us from creating sufficiently dilute gases such that the particles
within are essentially independent of one another?

For one, there is a number of reasons why maximizing the density of emitters is
beneficial. In quantum metrological applications, such as optical atomic clocks [1.7],
the fundamental shot noise is proportional to 1/ V/N, with N being the number of
emitters involved in the measurement. Furthermore, two-level quantum emitters are
frequently employed in quantum computation as the quantum equivalent of bits - also
called qubits - and, clearly, the amount of information that can be processed or stored
is limited by the number of emitters involved. Additionally, interfaces between light
and matter are vital tools for quantum computation and communication [1.8-1.10]. To
minimize computational errors, faithful coherent interactions between the light and
emitters are desirable. In cavity quantumelectrodynamics (CQED) applications [1.11], it
is well-known that this coherent coupling is enhanced with the number of emitters [1.10].
Secondly, the characteristic length scale that governs the interactions may simply be too
large, such that sufficiently separating the quantum emitters is not feasible. Consider,
for example, that interactions mediated by optical fibers [1.12] or a standing wave cavity
mode [1.13] are essentially of infinite range.

A theoretical understanding of the radiative interactions between densely packed quan-
tum emitters is therefore crucial for the highly precise control required in applications
such as the ones mentioned above.

1.3 Collective decoherence and how to avoid it

In ensembles of quantum emitters superradiant spontaneous emission can compensate
for, or even surpass any collective enhancement of coherent processes, ultimately making
matters worse. Thus, collectively enhanced decay can be a highly undesirable effect.
One way to deal with this issue is to make use of the much less known phenomenon of



1.4 Outline of this thesis

subradiance [1.14]. Imprinting phases on the emitters such that their radiated fields
interfere destructively leads to a collective decrease of the spontaneous emission rather
than an increase. It is therefore possible to not only avoid superradiant decay, but
even prolong the lifetime of excitations of the emitters in order to allow for longer
interrogation times. An inherent property of this class of subradiant states is that
they exhibit slow decay since they hardly couple to the environment. Consequently,
not only spontaneous emission, but also addressing these states is inhibited. This is
why subradiant states and their preparation are subject to on-going research (see, for
example, chapter 3).

While at high densities collective spontaneous emission occurs, it is still governed
by the natural linewidth of the employed quantum emitters. As such, it may not be
the actual limiting factor in an application. For example, the world’s currently most
precise clock [1.15, 1.16] uses fermionic strontium isotopes (37Sr), which feature an
extremely narrow transition line. Other, more dominant noise sources are present,
though. Depending on the inter-particle distance and the precise nature of the noise,
these may also be collective noise processes. When a noisy laser is employed to address
an ensemble of emitters, it imprints its own noise on the emitters which can dominate
spontaneous emission processes. Even though lasers are often theoretically modeled as
perfectly monochromatic light sources, this is of course not the case in reality. Rather, a
laser exhibits fluctuations — albeit small ones — in its phase as well as its intensity. Given
that many quantum emitters are placed within a space that is much smaller than the
laser’s coherence length, this phase and amplitude noise are of collective nature; i.e., all
quantum emitters experience the same fluctuations by the laser instantaneously. Because
the noise is collective, it is possible to engineer states within the emitter ensemble that
renders them insensitive to this noise (see chapter 4).

1.4 Qutline of this thesis

The collective behavior of an ensemble of quantum emitters that experience the same
radiation field fluctuations forms the central theme of this thesis. Specifically, we aim
to not only understand collective noise and decoherence, but find ways in which their
effects can be suppressed or even exploited. To this end, we start out by highlighting
the basic theoretical tools required to describe the phenomena we are interested in in
chapter 2. The following chapters then contain the publications forming the main part
of this thesis.

Previous research [1.17, 1.18] has shown the usefulness of subradiance in quantum
metrological applications, specifically atomic clocks. Finding ways in which subradiant
states can be addressed is therefore of interest. An approach that employs a magnetic
field gradient along a chain of quantum emitters is investigated in chapter 3. Going
further into the direction of collective noise reduction in metrological applications,
we investigate the effects of laser phase and amplitude noise on Ramsey and Rabi
spectroscopy in chapter 4.

In chapter 5 we show another way in which subradiance can be useful. We combine
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collective spontaneous emission and CQED in order to investigate enhanced light-
matter interactions accompanied by extremely narrow antiresonance lines in the cavity
transmission spectrum due to subradiance. These investigations are taken further in
chapter 6, where we assess the quantum mechanical aspects of the problem raised in
chapter 5 in great detail. Specifically, we highlight the application of quantum Langevin
equations to ensembles of dipole-dipole interacting quantum emitters. This approach
is then employed to find the quantum noise in the detection signal of the subradiant
antiresonance lines.

Next, we move on to systems of emitters consisting of nanorings in chapter 7. As we
show there, subradiant states play a crucial role in the efficient transport of excitations
from one ring to another.

Finally, we take a methodological detour in chapter 8, in which we highlight a
toolbox partially developed within the scope of this thesis. It is written in the Julia
language [1.19] and allows for numerical simulations of open quantum systems in a
straightforward yet efficient way.

After concluding remarks in chapter 9, we present an additional publication in
chapter 10. This publication does not fall within the main part of the thesis, since the
contribution by the author of the thesis was theoretical support for the implementation
and interpretation of an experiment performed in Innsbruck.



2 Fundamental concepts of quantum optics

The aim of this chapter is to give a succinct description of the fundamental theoretical
tools that are employed in the subsequent publications. As most basic principles can be
found in a number of well-established textbooks [2.1-2.3], these will be introduced in
scarce detail only.

2.1 Quantum mechanics of electric dipole transitions

Collective interactions of quantum emitters, specifically those considered here, stem
from the interaction of the particles with a common radiation field. The very basis
for these kinds of interactions is the coupling of each emitter to the electromagnetic
field via a dipole transition. The considered quantum emitters feature a certain charge
distribution, such that a single bound charge (electron) can interact with the electric
field. More precisely, even though the eigenstates of an emitter do not have a dipole
moment, the charge distribution of a superposition of two states of the emitter possesses
a dipole, which oscillates at a frequency determined by the energy difference of the
states.

The Hamiltonian function describing the energy of a single charge e at position r in
an electric field written in the Coulomb gauge is [2.2]

(P — cA(r, 1)

H =
2m

+eo(r) + Hr, (2.1)
where A and ¢ are the vector and scalar potential of the electromagnetic field, respec-
tively, m is the mass of the charge and p its momentum. The Hamiltonian Hr accounts
for the energy of the free electromagnetic field and is not relevant for now. Assuming
that the quantum emitter is much smaller than the typical wavelength of the fields it
interacts with, we may perform the so-called dipole approximation [2.2] which amounts
to setting A(r,t) ~ A(0,t), where we chose our emitter to be located at the origin.

We now use the gauge invariance of the fields and perform a gauge transformation
with the field —r - A(r,t), such that

A(r,t) > A(r,t) =V (r-A(r,t)) =0, (2.2a)

¢(r) = o(r) + % (r-A(r,t)) = ¢(r) —r-E(r,1), (2.2b)

where in the latter relation we excluded the electric field that stems from the static
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scalar potential. The Hamiltonian then becomes
H = Hy + Hiy + Hr, (2.3)

where the first term includes the kinetic and potential energy of the charge, respectively,
Hy := p?/(2m) + e¢(r). The second term describes the interaction between the electric
field and the transition dipole of the quantum emitter. With the definition of the electric
dipole moment d := —er, we can write the interaction term as

Hi = d - E(0,1). (2.4)

So far we did not specify the quantum nature of the interaction process. This is taken
into account by considering the position r and subsequently d to be operators. In
reality, we would have to account for all possible transitions. However, if we assume
one specific transition of interest to be energetically separated far from all others, we
can truncate the quantum emitter Hilbert space at the two levels which correspond to
this transition. Thus, without further specifying the precise wave functions, consider
only two states of the emitter labeled by |g) and |e), which span our reduced Hilbert
space. Furthermore, they are eigenstates of the Hamiltonian describing the energy of
the quantum emitter with corresponding eigenvalues E, and E, respectively. The free
energy part of the Hamiltonian is then

2
Hy = o+ e(r) ~ Ee |e) (¢l + By lg) (9] (2.5)
Note that we will from now on refer to |e) as the excited and |g) as the ground state.
Accordingly, we choose E. > Eg, i.e. the excited state is higher in energy.

If the potential ¢ has even parity with respect to the position r (such as the Coulomb
potential of the nucleus in the case of an atom) then the Hamiltonian Hy has even parity
as well. Therefore, Hy commutes with the parity transformation operator P, which has
the property PrP" = —r. This means that Hy and P have the same eigenstates, with
a parity determined by the eigenvalues of the parity operator (4+1). Since the dipole
moment operator, on the other hand, has odd parity in r, its diagonal elements vanish
and we have

d = deg le) (9] +deg |9) (el (2.6)

where d4 is the nonzero dipole matrix element associated with the transition. A more
convenient notation allows us to write the interaction Hamiltonian as

Hiw = 1 (of + o) - E(0,1), (2.7)

where p = deg is assumed to be real without loss of generality. The operator o is given
by

0 :=|g) (el (2.8)



2.1 Quantum mechanics of electric dipole transitions

and corresponds to the transition from the excited to the ground state. This operator
can be expressed in terms of the well-known Pauli operators by substituting o = o, —ioy,
and 200 = o, + 1. We can also write the free energy Hamiltonian in terms of these
operators,

Ho = hLUoO'TO', (29)
where wg = E./h is the transition resonance frequency and we chose E4 = 0.

The description up to now takes the quantum mechanics of the internal degrees of
freedom of the emitter into account. However, we also require a quantized formulation
of the electric field in order to arrive at a full quantum mechanical model. It is
generally convenient to separate the electric field into forward and backward propagating
terms [2.1]; i.e.,

E(r,t) =E"(r,t) + E (r,1), (2.10)

where E™ (r,t) = (E*(r, t))T. Choosing an arbitrary region in space of volume V = L3
[see Fig. 2.1(a)] that does not contain external sources and invoking periodic boundary
conditions, we can write the free electric field in a mode expansion [2.1] as

Ef(r,t)=3 /5 ;emelk arA(t). (2.11)
ko | <0

Each mode with wave vector k features two different polarizations A = 1, 2. The respec-
tive polarization unit vectors ey  span a plane that is orthogonal to the propagation
direction given by the wave vector. The frequency of each mode is wy = c|k|. If the
electric field is classical, then the time-dependent amplitudes ax ) are merely complex
numbers. In the quantum mechanical description, though, these amplitudes are har-
monic oscillator annihilation operators. As such, they fulfill the canonical commutation
relation

[ak)\a aL/7)\/:| = 5k,k/5)\,>\/ ]l (212)

The energy of the electromagnetic field can, accordingly, be written as the sum of
number operators for each mode [2.1],

Hy =Y hwpal, yax . (2.13)
k)

Therefore, the full Hamiltonian of a quantum emitter interacting with a free electric
field reads

H = hwyolo + Z hwkaL)\ak,)\ + Z hgx (O’T + 0) (aL)\ + ak,A> , (2.14)
KA KA
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Figure 2.1: Collective radiation of two-level quantum emitters. (a) An ensemble of quantum
emitters within the same quantization volume V = L3. Each one of them ex-
periences the fields emitted by all other present emitters leading to interference
effects. (b) Two identical quantum emitters featuring an electric dipole transition
with resonance energy hAwg. The respective dipole moments associated with the
transition are of the same magnitude but have arbitrary orientations. The emitters
couple via the electric field emitted by each of them [Eq(r)]. Additionally, they
are subject to the input by the free electric field [Ei,(r)].

where the strength of the dipole coupling is given by the frequency

Wi
= - L. 2.1
I\ = 4/ Shegy A M (2.15)

We proceed by making one final simplification, the so-called rotating-wave approxima-
tion (RWA). The Heisenberg equations for the operators of the emitter and the modes
are given by the commutator with H. The solutions are dominated by oscillatory terms
with the frequencies wg and wyg, respectively. Since these are optical frequencies, the
products of these operators give rise to two greatly different timescales: The product
aL 4o oscillates in time with wy — wo, whereas ay o oscillates with wy, + wp. The latter
therefore oscillates on a much faster timescale, such that we can disregard those terms.

The final form of the Hamiltonian is

H = hwoolo + 3 hwgal yan + 3 hgior (0T aor + af o) - (2.16)
kA kA

The above describes absorption and emission phenomena of a single quantum emitter
in free space. However, this model also keeps track of the, in principle, infinite degrees
of freedom of the surrounding field modes. It is therefore not a practical approach to
use this Hamiltonian directly. Rather, in the following sections, we will show how the
emitted field can be expressed in terms of emitter operators. This yields an effective
description of the emitter as an open system taking loss to the environment into account.
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2.2 Collectively emitted electric field

While the previously derived Hamiltonian in Eq. (2.16) suffices to investigate the field
that is radiated by a single quantum emitter, we want to have something more general.
Namely, we want to describe an ensemble of emitters that is dense, i.e. the emitters are
sufficiently close to one another such that each of them experiences the field radiated by
all others [see, for example, the schematic illustration of two coupled quantum emitters
shown in Fig. 2.1(b)]. The aim of this section is to derive the electric field radiated by
the entirety of the emitter ensemble where interference effects are taken into account.
To this end, we follow a procedure similar to the one in Ref. [2.4].

First, we write the Hamiltonian of IV identical emitters located at positions r; (where
j=1,...,N) interacting with a common radiation field. It is obtained by superimposing
the Hamiltonian in Eq. (2.16) for each emitter,

H = hWOZO' JJ+Zhwkak)\ak)\+ZZhg (O‘ ak,\elkrﬂ —|—CLT Aaje ik~rj)‘
kA J
(2.17)

Here, the coupling strength of the electric field to the transition dipole p; of the jth
emitter is given by

() _ Wk 1. 2.18
gk,)\ 2h60Vek’A I'l’j ( : )

Note that, while the orientation of the dipoles is arbitrary, since the emitters are identical
they are of the same magnitude, i.e. [u;| = . The Heisenberg equation for the photon
annihilation operator of a specific mode is

ak,\ = ﬁ[H’ ak)\] = —Wgak )\ — ngl(g\e ZerO'j. (2.19)
J

Integrating the above leads to

a\(t) = ax ) (0)e ! Zng e Zkr]/ dt'o(t')e ") (2.20)

As we can see, the field operator at time ¢ depends on the emitter operators at previous
times t’. Since the emitter operators in turn depend on the field modes, it is not possible
to solve the time integral exactly. Recall from the RWA, though, that the dominating
time dependence of the emitters is governed by an oscillation with their resonance
frequency,

oj(t) o< o (0)e ™ot (2.21)
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Thus, if we define an operator
si(t) == o (t)e™°" < 0;(0), (2.22)

we can expect this to vary only slowly in time (compared to the timescale given by
1/wg). We can therefore approximate a time integration that involves this new operator
replacing t' by t. With the above definition, we write

t : ’
/ dt'o;(t’ / dt's;(t')e o ~ s, / dt'e™ 0! — () / dt'e= o '=1) (2.93)
0

This is the so-called Markov approximation [2.4], which is commonly used in the
description of open quantum systems. Our ultimate goal in this section is to obtain
an expression of the emitted electric field that is fully determined by the emitters.
Substituting Eq. (2.20) into the free electric field, Eq. (2.11), we can separate the total
electric field into two terms,

E't(r,t) = E{ (r,t) + EJ (r,1). (2.24)
The first term is just the free evolution of the initial electric field,

E; (r,t) Z 5 VekA ax A (0)ewrteikr, (2.25)

In the following, we will consider the initial field to be in a vacuum state, such that
(Ei(r,t)) = 0. Even though it is tempting to argue that we can then neglect this term
since it does not contribute to averages, this would not be entirely accurate. Specifically,
as we will show in Sec. 2.3.1, the input field will give rise to quantum noise. For now,
though, we will not bother with any further discussion of this term.

The field emitted by the ensemble, on the other hand, can be simplified further and,
using Eq. (2.23), it reads

_—122 o V k/\gﬁlelk (r— rj / dt'e i(wg—wo) (' —t) (226)
J

We proceed with solving the sum over polarizations. The polarization unit vectors ey
are orthogonal on k as well as mutually so. Therefore, together with the unit wave
vector k they form an orthonormal basis. This means their projectors add up to the
three-dimensional identity matrix, or inversely

Zek,\g \/%6 VZ ek 0 ek ) - Hj 2he§V (11 —EoR) C Ly, (2.27)

where o denotes the dyadic product. Since the density of modes in free space is high,

10



2.2 Collectively emitted electric field

we can replace the sum over wave vectors by an integral. Using this and substituting
Eq. (2.27), the electric field becomes

+ 1 i(wg—wo) (' —t
Bg (r,t) = 2¢0( 27TC3ZGJ /dwkwk/ et

X /ko 1- (kok)) e, (2.28)

In order to solve the solid-angle integral, we rewrite the exponential in terms of the
spatial gradient as

A~ A . 1 .
(kok) el = 13 (Voo V) 0, (2.29)

and exchange the order of integration and derivatives. The task of integrating over the
solid angle reduces to taking second-order derivatives of the simple integral

sin (k|r — ;)

/ Ay, ) = or / df sin Pe™FIF il o8O — g (2.30)
0

Elr — ;|

While tedious, the ensuing calculation of derivatives is straightforward and results in
the electric field

+ i(wg—wo) (t' —t
E;(r,t) 471'26360 E o;(t /dwkwk/ dt' @01 (G (k,r —1r;)} - T2
(2.31)

where, with © being the position unit vector, we defined

Gk, r) 1= et [(klr + (];)2 _ (1;)3) 1 (Fof) (]:T + (;’7;2 - (ki)?'ﬂ C(232)

The above expression corresponds to Green’s tensor for a (classical) oscillating dipole
source [2.5]. Using this definition will later prove convenient, as it will enable us to
express the radiated electric field in terms of this propagator even though our calculation
remains fully quantum mechanical.

Finally, we apply the Sokhotski-Plemelj formula [2.6] to the time integral,

/dwk/ dt/ i(wi—wo)(t'~1) /dwk < +7r5(wk — WO)> s (2.33)
WE — Wo

where P denotes the principal value. The part of the remaining integral proportional to
the 0 function is not difficult to solve, whereas solving the principal value integrals is
a bit more involved. Nevertheless, standard methods of complex contour integration
apply [2.4]. We will simply state the result here and refer to Ref. [2.7] for a more

11
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Figure 2.2: Radial intensity profile of coupled dipole transitions. The intensity I(r) emitted by
(a) a single quantum emitter, and by two quantum emitters in (b) a superradiant
and (c) a subradiant state, respectively. The two emitters are separated by a
fraction of the transition wavelength |r; — ra| = 0.1\g along the axis of their
dipoles. The arrows schematically depict the transition dipole moment of each
emitter. The intensities are calculated at a fixed distance r = Ay and are plotted
as a function of the angle § around the emitter(s) in the same plane in which the
dipole moments lie. The intensity lines in (a) and (b) are to scale, whereas in (c)
the subradiant state radiates so weakly that the intensity had to be scaled up by
the factor indicated in the graph in order to be visible on the same scale.

rigorous treatment. In fact, the principal value integral yields precisely the real part of
the tensor G defined in Eq. (2.32), such that the electric field radiated by an ensemble
of quantum emitters becomes

h
Ef(r,t) = Ef(r 372% G(ko,r — ;) - fu. (2.34)

Above, we have implicitly defined the transition wave number ky = wp/c as well as
the rate v = wiu?/(3nc3eph), which, as we will also confirm later, is the spontaneous
emission rate of a single quantum emitter. Let us again stress, that the emitted electric
field under the assumptions made during the derivation is completely determined by
the behavior of the quantum emitters. If the input field does not contribute (e.g. when
computing average values), the degrees of freedom in the system are thus greatly reduced
and further investigations are possible.

To gain some more insight into the physics, we can compute the radiated intensity,

I(r,t) := (E (r,t) - ET(r,1)). (2.35)

In Fig. 2.2, we plot the instantaneous (¢ = 0) intensity profile in the radial direction for a
single and two closely spaced quantum emitters. We always consider a single excitation

12
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in a state |¢) as specified in Fig. 2.2. As we can see, even though we keep the number
of excitations in the system constant, the intensity in Fig. 2.2(b) is substantially larger.
This is due to superradiance [2.8, 2.9] and we will later show the behavior of this effect
when increasing the number of emitters further. On the other hand, in Fig. 2.2(c), we
observe that the field profile is changed: For the antisymmetric superposition, the dipole
radiation is suppressed and the system exhibits an extremely weak quadrupole. This
contrary effect is called subradiance and comprises a large part of the investigations
shown in the subsequent chapters.

The intensity as calculated above is also used in chapter 6 and chapter 7, respectively,
to calculate the radiation patterns of ensembles of quantum emitters in different states.

2.3 Dipole-dipole interactions

The electric field derived in the previous section contains all the dynamics of an ensemble
of dipole coupled quantum emitters. However, the field itself is often of little interest
and it is more convenient to eliminate it completely. In the following we will develop
such a description using the field from Eq. (2.34). The resulting effective dynamics
forms the basis for many further investigations, which are the subject of the following
chapters.

2.3.1 Quantum Langevin equations for dipole coupled quantum emitters

One possible way of solving for the dynamics of an ensemble of emitters is to work
in the Heisenberg picture. While this approach is rather straightforward for energy-
conserving systems, an effective description of open systems is generally a bit more
involved. Specifically, we must account for quantum noise to avoid violating fundamental
conservation laws, such as the canonical commutation relations. The emerging equation
is known as the quantum Langevin equation (QLE) and is a well-known tool in quantum
optics [2.10]. The peculiarity here is that the input noise features spatial correlations
due to the dipole-dipole interactions of the quantum emitters.

We start by writing down the interaction Hamiltonian as given in Eq. (2.7) for many
emitters,

Hiw =3 d;-B(rj) = Y [0} (1 B wy) + (1 B (x))) 0] (2.36)
J

J

where in the second step we performed the RWA. Now, let O be an arbitrary emitter
operator, i.e. it commutes with the field operators at equal time. Its Heisenberg equation
is

'

o h[Ho,OH;g([om(uj-E+<rj>)+(uj-E<rj>)[aj70}), (2.37)

where Ho = hwo }_; J}Uj is the free energy Hamiltonian. Using the expression for the

13
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electric field emitted by the ensemble, Eq. (2.34), we obtain after some manipulation

O = 5o, 0) - 5 S lolon, 0 (3 Re (Gt} i)
+Z ( (ny - By, 0)) + %’YZ (i - 1m {G (Ko, vj0)} - iy ak> (2.38)
k

—|—Z (; (p,j- L.t ) — %Z( ~Im {G(ko, rjk)} - sz) T) [0, Ol.
7 k

Here, we used the fact that the Green tensor has even parity in r and defined rj;, := r;—ry.
Note that the second term in the first line of Eq. (2.38) takes the form of a commutator
and can thus be written as an additional term in the Hamiltonian. Physically, this
corresponds to the process of coherent energy exchange between the coupled dipoles.
Finally, we need to consider the input fields. To this end, we define the operator

§;(t) := n(rs,t) ) —ngA ax(0)ertetrs, (2.39)

i (P

which we identify as quantum noise operator. Assuming, as before, that the surrounding
field is in a vacuum state, it is clear that the average of £;(t) vanishes. A more interesting
quantity for the noise, though, is its correlation function or, equivalently, the canonical
commutation relation. We consider the latter and with the definition of the free electric
field from Eq. (2.25) write

w —iwg (t—t') ik
[€m () E18)] = 30 5 (- ex) (- g e eterm, o (2.40)
k,\

where we already used the canonical commutator, Eq. (2.12), to resolve one of the
arising sums. We use the relation from Eq. (2.27) to solve for the polarizations and
proceed by replacing the sum over wave vectors by an integral. This leads to an integral
over the solid angle, which has exactly the same form as before. Using the solution
from Eq. (2.31) we can thus write
iwy (t—t") wl%
[, 610)] = [ due™ = B (G} e (240)

Since we are only interested in relevant frequencies, i.e. where wy ~ wp, we may evaluate
the argument in the Fourier transform above at this point [2.10], which leads to

[6n(0),€10)] =~ 260~ ) fi - T {G ko, )} - (2.42)

From this commutation relation it is clear that the quantum noise for dipole coupled
quantum emitters is spatially correlated white noise (uncorrelated in time).

14
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The quantum Langevin equation for dipole coupled quantum emitters is

0= %[HO + Haip, O] + Z[U;’O] ( Sie/7E5(t) + MU )
Z ( S/ TEN (1) WUL) [0, 0], (2.43)

where we defined the Hamiltonian describing the coherent excitation exchange as

Hgip := Z hﬂjka;[ak. (2.44)
Jik

Furthermore, we defined the coherent coupling and collective decay rates,

3y . N
Qij = ==L ;- Re{Gko,ry)} - i, (2.45a)

3 N
Yig = i Im {G(ko,ri5)} - [t (2.45Db)

respectively. Note that the shifts €);; diverge at zero distance. Because of this, self-
interaction terms are neglected, i.e. we set €2;; = 0. In other words, we disregard the
interaction of an emitter with itself.

The behavior of the rates defined above in the limits where 7;; < Ag (the so-called
Dicke limit) and r;; > Ao is of interest as well. In the first case, the interaction range
is much larger than the separation such that it is effectively infinite. The coherent
shifts then diverge, whereas 7;; — <. In the second case, on the other hand, the
separation between the emitters is so large that they become independent, i.e. £2;; — 0
and v;; — 0;57.

Note that in terms of the collective decay rates the input noise correlations (and,
similarly, their commutation relations) take the simple form

<@mdw»=%%a—w. (2.46)

The QLE as given in Eq. (2.43) allows for a number of analytical calculations in
an approximate regime. Interesting quantities such as higher order correlations and
frequency spectra can be directly calculated. This approach is thoroughly treated and
used in chapter 6.

2.3.2 Collective input-output relation

It is possible to cast the QLE into an alternative form. To this end recall that when
integrating the Heisenberg equation for the field operators ayx ) in Eq. (2.20), we chose
the initial condition at time 0. However, it is also possible to use a boundary value at a
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time t; > ¢ [2.10]. The field operator is then given by
. . ) t1 S
QA (t) = ak7,\(t1)eiwk(tit1) +1 Zgl(jz\eflk'rj / dtlaj (t/)ewk(t -, (2.47)
: ’ t
J

Proceeding as before by substituting this into the electric field, the arising calculation
is mostly the same and we obtain

ET(r,t) = Egy(r.t) — Em Zoj(t)g(ko, r—r;)" 1. (2.48)
J
Here, we defined the output field as
out Z ekj)\akj)\(tl)e_iwk(t_tl)eik'r. (2.49)

Of course the free electric field ET at time ¢ must be the same regardless of whether
we express it in terms of the input field E;" or the output field E} ;. Equating Eq. (2.34)
with Eq. (2.48), we can therefore deduce the relation between the input and output
field,

3ihy

Bl(rt) = Bir.1) =~ 50 S oy (0m{Glho.x — 1)}y (250)
J

Using the definitions of the input noise operators &;(t) [Eq. (2.39)] and defining according
output operators,

gfut( ) . < j Ejut(rbt)) ) (2.51)

NG

S

we further derive
s k
2ut(t) } j = (2.52)

The above equation constitutes a generalized input-output relation for dipole coupled
quantum emitters. It is useful when one is interested in the output of a system, as is the
case, for example, in chapter 6. Furthermore, it is often vital for calculations to know
the precise commutation relations between input noise operators and system operators.
Arguing with causality, the input-output relation can be used to derive these [2.10] (see
also Sec. 6.7).

2.3.3 Master equation for dipole coupled quantum emitters

If it is not feasible to directly use QLEs, e.g. if they are not soluble, there is another fun-
damental equation we can use, the so-called master equation. Basically, this description
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is equivalent to the QLE approach, but instead of working in the Heisenberg picture
(time-dependent operators), we switch to the Schrédinger picture (time-dependent
states).

We will now sketch how to find an equation for the density operator p(t) which
describes the state of the emitters. To this end, we start at the very beginning treating
the full system consisting of the quantum emitters as well as the surrounding electric field
modes. Assuming that at t = 0 there are no correlations between the electromagnetic
field and the quantum emitters, the initial state is given by p(0) ® pr(0). Here, pr is
the density matrix describing the state of the electromagnetic field. The time evolution
of the composite density operator is determined by the unitary evolution operator
U(t) = exp(—iHt/h) with the Hamiltonian H from Eq. (2.17). Therefore, the state of
the quantum emitters at time ¢ is given by

p(t) = tre (U()p(0) @ pr(0)UT (1)) , (2.53)
where trp denotes the partial trace over the electromagnetic field.

The expectation value of an arbitrary emitter operator O behaves in time according
to

(O)) = tr (O()p(0) @ pr) = tr (O(0)p(t)) , (2.54)

where we used the cyclic property of the trace to switch from the Heisenberg to the
Schrodinger picture. In the last step we also used the fact that O(0) acts only on the
emitter Hilbert space allowing us to trace out the state of the electromagnetic field.
Taking the derivative of the above equation, we find

tr (O(1)p(0) @ pr(0)) = tr (O(0)p(1)) (2.55)

Now, we insert the QLE for the operator O, Eq. (2.43), on the left-hand side and again
utilize the cyclic property of the trace,

7

tr(O(H)p(0)@pr(0)) = tr{cv( ~[Ho + Haip, p(1)

Vik
+ Zk % (Qij(t)U,t — ;akp(t) - p(t)a}ak) )} (2.56)
Jy

Here, we used the fact that the surrounding field is in a vacuum state, and thus

&(t)pr(0) = pr(0)El (1) =0, (2.57)

so all terms proportional to the input noise vanish. Comparing Eq. (2.56) with Eq. (2.55)
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Figure 2.3: Superradiant pulse of a dense ensemble. (a) The intensity of the electric field
emitted by a fully inverted ensemble consisting of N = 25 quantum emitters in the
Dicke limit is shown as a function of time. After an initial build-up of coherences
it reaches a maximum. The duration of this pulse is given by the half-width 7y,
(at half the maximum intensity). (b) The maximal intensity emitted scales with
N2, whereas the duration of the pulse is inversely proportional to the number
of emitters, 75, o 1/N. In both graphs, the intensity was computed at a fixed
distance from the emitter ensemble.

leads to the equation for the emitter density operator,

. 7
P = _%[Ho—i_Hdipvp] +‘C[p]7 (258)
where

ik
Llp] = Z 5 (2‘7ijch — a}akp - pa}ak) , (2.59)
g,k

is the Liouville operator in standard Lindblad form. Eq. (2.58) is the master equation
for dipole-dipole interacting two-level emitters, as originally derived in Ref. [2.4] or later
in e.g. Ref. [2.11]. The master equation is more convenient for numerical treatments
(see also Sec. 2.6). As such it forms the basis of many theoretical investigations. For
example, chapter 3 and chapter 7 are based on Eq. (2.58).

As an illustration of the master equation’s versatility, we take a closer look at the
Dicke limit [2.8]. In this limit, the density of the emitter ensemble is so high, that
for any photon interacting with the emitters they appear to be located at the same
point in space. If all dipoles have the same orientation, p; = p, the emitters behave
identically and thus become completely indistinguishable. The interaction of any pair
of emitters is then equal to all others (note that because of this we neglect the shifts as
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2.4 Cavity QED with an ensemble of emitters

Q45 = Q4 = 0), such that the Liouvillian in the master equation becomes
L) = % (25pst — 51Sp - ps's). (2.60)

In the above, we defined the collective emitter lowering operator S := 3, 0;. We can
see that decay only occurs in a subspace of the collective state space where all states
are invariant under particle exchange. Equivalently, we can say that for each number of
excitations there is only one state that still couples to the environment, which exhibits
maximal superradiance. All other states are completely decoupled, i.e. they are perfectly
subradiant. This symmetrization of states also has the practical advantage that it
reduces the size of the Hilbert space from 2V states to N + 1 relevant states.

The emitted electric field can also be expressed by the collective operators

Ef(r,t) = ———G(ko,r — r;) - 1 S(t). (2.61)

We can therefore compute the field in the reduced Hilbert space, also called the
Dicke basis, as well. Using the master equation, we obtain the time evolution of the
density operator and subsequently evaluate the expectation value for the intensity from
Eq. (2.35). If we start with an ensemble that is initially in the fully inverted state, i.e.
|e>®N, we can observe a strong but short superradiant pulse. The pulse occurs after some
initial build-up time [see Fig. 2.3(a)], which stems from the fact that an inverted emitter
has no dipole moment. Thus, some time is required for the cumulation of a collective
dipole, which then leads to a spontaneous emission cascade. The duration and maximal
intensity of the pulse exhibit distinct scalings with the number of emitters, which is
depicted in Fig. 2.3(b). The behavior shown in Fig. 2.3 is a well-known characteristic
of superradiance [2.12].

2.4 Cavity QED with an ensemble of emitters

Ensembles of quantum emitters already exhibit rich phenomena on their own. However,
coupling light to emitters in free space such that it faithfully interacts with them can
be challenging. A well-established tool in quantum optics used to enhance coherent
light-matter interactions is an optical cavity or optical resonator [2.13]. Such a cavity
consists of two mirrors separated by a distance L. (see Fig. 2.4). Due to the phase
condition upon reflection from the mirrors, this creates a standing wave mode in the
direction of the cavity axis. The only modes supported by the cavity are the ones with
wave vectors k = 2mnz/L., where n € N and we chose the axis of the cavity to be
the z axis. Assuming that these modes are far separated in terms of their respective
resonance frequencies, we can consider only a single mode to be of significance. The
mirrors of the cavity are not perfect, but allow for some leakage into and out of the
cavity. These effects are taken into account by an appropriate coupling term.

In the following we make two fundamental approximations: First, we assume that the
cavity mode predominantly couples to modes which have wave vectors that are closely
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2 Fundamental concepts of quantum optics

Figure 2.4: Collective light scattering inside a Fabry-Pérot optical cavity. An ensemble of
interacting quantum emitters placed inside an optical cavity collectively emits
light into but also out of the cavity. The cavity is driven coherently with an
amplitude 7 and decays with the damping rate k. In the bad-cavity (g,v < k)
and weak-driving (7 < k) limit, the scattered amplitude |s|? remains small. The
phase of the scattered field is maximal around the resonance point.

aligned with the cavity axis such that we can neglect any wave vectors that are not
parallel to the z axis. This reduces the entire problem to one dimension. Secondly, we
assume the free space modes that do couple to the cavity mode to do so equally with a
constant rate v; i.e., the mirror properties are frequency independent. Combining these
assumptions, the Hamiltonian of an empty cavity coupling to the outside field reads

H = hweafa+ Y hugb] \bix + hw > (b ya + b n ) (2.62)
EA kA

where w,. is the resonance frequency of the cavity mode with the bosonic annihilation
(creation) operator a (a'). The last term of the Hamiltonian describes the interaction
between the cavity and the surrounding modes with the bath operators by . The
coupling to the environment is included via the process of destroying one photon in
the cavity and creating one in a mode with wave number £ and polarization A, and
vice-versa. The basic idea and method with which to continue is the exact same as
before. Namely, we eliminate the bath operators by  in order to obtain an effective
equation for the cavity mode only. The integrals that arise when solving the Heisenberg
equation of motion for the bath operators are considerably simpler. We therefore merely
state the result.

The QLE for any cavity operator A, which commutes with the bath operators at

equal times, is

0

A= [He Al + [l A (V2haw(®) + ka) — (V2ral, (1) + ra') [a, 4], (2.63)
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2.4 Cavity QED with an ensemble of emitters

where H, := hweala. The damping rate x is connected to the mirror coupling by
K := 2L /c. Note that here L is the length of the quantization volume (L3 = V) from
before. The input noise operator is given by the free part of the time evolution of the
environment,

. —i ] E —iwpt
ain(t) z,/2Lk§;bk7,\(0)e : (2.64)

We can follow the procedure shown in Sec. 2.3.2 and define a corresponding output
operator, subsequently leading to the input-output relation

Aout (t) — ain(t) = V2ka(t). (2.65)

The above equation can be used to investigate experimentally observable quantities
such as the transmission and/or reflection of the cavity.

For our purposes, an empty cavity is of little interest. Consider, therefore, N quantum
emitters that couple to the cavity via their transition dipoles. The interaction then
takes the same form as in Eq. (2.7), where we described the coupling to many modes,
just that now we only consider one specific (our cavity) mode. It reads

Hyg = Z hg(r;) (aTaj + J;[a) , (2.66)
J

where g(r;) is the dipole-interaction strength as given in Eq. (2.18) (substituting the
cavity mode volume instead of the quantization volume) at the position of the jth emit-
ter. This Hamiltonian corresponds to the well-known Jaynes-Cummings Hamiltonian
describing the dipole-coupling of a standing-wave electric field and a single quantum
emitter [2.14]. The generalization to N emitters, as in Eq. (2.66), is commonly known
as the Tavis-Cummings (TC) Hamiltonian [2.15]. Note, that the coupling strength in
Eq. (2.66) takes into account the standing wave as well as the transverse pattern of the
cavity mode. The fact that the transverse mode profile can take very different shapes
exhibiting phase shifts within a small area is used in chapter 5 in order to couple a
cavity to subradiant states.

While the coherent coupling between quantum emitters and a cavity mode is quite
intuitive, accounting for the precise system-bath coupling here is challenging. However, if
we assume that the solid angle in which the emitters spontaneously decay into the cavity
mode is small, we can neglect this part of the emitted field. Equivalently, we can say
that the cavity mode does not significantly modify the bath for the quantum emitters,
such that the baths for the cavity and the emitters can be considered independent.
Thus, the respective bath operators ay ) and by » commute. This means, that we can
separate the problems of describing the coupling to the environment for the cavity and
the quantum emitters, respectively. Superimposing the results we obtained before then
yields the proper QLE or master equation. Doing so enables a manifold of investigations.
This very approach is studied in chapter 5 as well as more extensively in chapter 6.

As an example that showcases part of the rich physics, we can calculate the amplitude
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2 Fundamental concepts of quantum optics

and phase of the field that is scattered out of the cavity by the emitters, when the
cavity is driven. We add a cavity drive by including a coherent excitation in one mode,
ain(t) = Ain(t) = ain(t) +n//re" ™ (see also Sec. 2.5). The portion of the incident
field that is scattered into free space by the emitters can then be computed by making
use of the input-output relation, Eq. (2.52). It is defined as the sum over all emitter
outputs normalized to the nonzero-average input,

@) Rk,
)= 2 Gy = 25 o) 2.67)

J
The scattered field intensity coefficient is |s|? and the phase of the field is given by

¢s(t) = arctan (W) . (2.68)
While these expressions hold for any number of emitters, we only consider a single
emitter in the following for simplicity. We would now proceed by using the emitter
QLE, Eq. (2.43), to obtain an equation for the average of o(t). This couples to both the
cavity annihilation operator as well as o,. For the latter, we make the approximation
of a bad cavity (¢g(r),y < ) and a weak drive (n < ). This leads to (o,) ~ —1. As
for the cavity annihilation operator, we make use of Eq. (2.63) taking into account the
coupling Hamiltonian, Eq. (2.66), in order to obtain an equation for its average. Under
these conditions we find for the steady state,

S =

—ig\/KY
(k—iA) (3 —iA) + g2’ (2.69)

where A = wy — w, and w. = wp. In the above calculation we omitted most details since
they are presented at length in chapter 6. Specifically, we substitute Eq. (6.13b) into
Eq. (2.67) in order to obtain the above result.

The normalized intensity and the phase of the field are depicted in Fig. 2.4. This
rather simple illustration suffices to highlight an important physical aspect. Namely, the
phase of the field is +7/2 in the limit A — 0%; i.e., the emitter induces a maximal phase
shift around the resonance point. The same effect is responsible for the existence of
so-called antiresonances: The phase shift induced by the emitter on the field inside the
cavity causes partial destructive interference in the forward scattered part of the field.
The transmission around the resonance is suppressed such that the emitter transition
line is visible in the transmission spectrum of the cavity.

For many emitters, the linewidth of the collective transition is modified due to
their mutual interactions. Very broad (superradiant) as well as sharp (subradiant)
antiresonances can then be observed (see chapter 5 and chapter 6).
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2.5 Collective laser spectroscopy

2.5 Collective laser spectroscopy

Many applications are based on addressing quantum emitters with laser light of a well-
defined (single) frequency. Laser spectroscopy addresses the quantum emitters near their
resonance frequency. A simplified model is this: Consider the free input electric field
from Eq. (2.25). Now, let the mode with wave vector k,; and one specific polarization be
the only one to significantly occupy a coherent state. Since the output of a phase-locked
laser corresponds to a coherent state, we may replace the bosonic operators by classical
complex amplitudes, ay(t) — a(t) = apexp (—iwet). The interaction Hamiltonian
describing the addressing with the electric field generated by the laser after making the
RWA is

Hy = hz (ne_i“"fteike'rjag + n*eiwfte_ikf'rjaj) . (2.70)
J

Here, n := \/w/(2heoV ) ey and we assumed all dipoles to be aligned with the polar-
ization of the laser. Furthermore, we assumed |ag| > 1 such that the coupling to all
other modes which are not driven by the laser is negligible.

The above Hamiltonian is conventionally used when modeling a coherent laser drive.
It is based on the assumption that the laser mode is perfectly monochromatic and
always supplies the exact same amount of photons. In reality, however, lasers have
a finite linewidth and thus occupy more than a single mode [2.16]. Furthermore, the
photon flux can fluctuate. The latter can quite intuitively be included in the model by
introducing a random noise variable €(t) which corresponds to a noisy laser amplitude, i.e.
n — 1+ €(t). The amplitude noise here is white noise, so it has zero mean, {e(t)}¢ = 0,
and is ¢ correlated, {e*(t)e(t')}e = Tad(t — t'). Here, {-}o denotes the average over
infinitely many stochastic trajectories, and I', is a frequency describing the characteristic
magnitude of the amplitude noise.

The fact that a laser has a finite linewidth requires a more sophisticated description
of Hy. Consider that the spectrum of a laser has a Lorentzian shape [2.16], as depicted
in Fig. 2.5(a). Thus, the first-order coherence function — which is the inverse Fourier
transform of the spectrum — exhibits an exponential decay [see Fig. 2.5(b)],

g(7) = (ah(t + T)ar(t)) = |af?e 71T, (2.71)

where I is the linewidth (half-width at half the maximum) of the laser. We will now show
that this linewidth can be modeled by a noisy phase of the laser. Instead of replacing
the operator a; by a constant complex amplitude rotating at the laser frequency, we
now make the Ansatz

ag — at) = age Wttt (2.72)

where ¢(t) accounts for the phase fluctuations of the laser. It is clear that to obtain
the classical equivalent of the amplitude correlation in Eq. (2.71), it is not sufficient to
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2 Fundamental concepts of quantum optics

Figure 2.5: Properties of the electric field radiated by a laser source. (a) The Lorentzian
spectrum of a laser with a half-width of zero (red) and I' (blue). (b) The cor-
responding first-order coherence function of the perfectly monochromatic (red)
and the imperfect laser (blue), respectively. While the coherence function of the
zero-width laser is constant, i.e. it has infinite coherence time, the latter exhibits an
exponentially decaying coherence function governed by its linewidth. (c¢) A single
trajectory of the real electric field amplitude over multiple oscillation periods with
frequency wy. The finite linewidth (blue) leads to a fluctuating phase determined
by its white-noise derivative.

describe ¢(t) as a white-noise process. However, if its derivative is [2.10, 2.17, 2.18],

{6(1),6()} =2r8(t— 1), (2.73)

we can show that the above indeed leads to the correct amplitude correlation. The
coherence function is

{a*(t+ 1))} = |aol? {6i(¢(t+ﬂ_¢(t>) }cl = |ao|” Z % { (/tT dt/d.)(t,)>m}c1 '
" (2.74)

Since {¢}q = 0, odd terms of the sum vanish. Using Isserlis’ theorem [2.19], we can
expand the correlation function of a product consisting of 2m terms into (2m — 1)!!
two-point correlations. All remaining two-point correlations are equal, so we find

= ; (;!12): < /t T /t e {é(t/)qB(t’/)}d>m —e 7. (2.75)

In the last step, we used the white-noise correlation from Eq. (2.73). Substituting
this result back into the amplitude correlation function, Eq. (2.74), we see that the
fluctuating phase determined by its white-noise derivative perfectly models the finite
linewidth of the laser,

eron=o))

cl

{o*(t+T1)a(t) }y = lag|2e 717 (2.76)
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The effect of such a fluctuating phase on the oscillation of the field is shown in Fig. 2.5(c).

The laser imprints its noise on a quantum emitter it drives. As such, the laser noise
processes can be mapped to emitter decoherence. More precisely, for a single emitter,
the amplitude noise is described by a Liouville operator in standard Lindblad form
with the damping operator o, and the rate I',. Similarly, phase noise occurs with the
damping operator o, at a rate I'. These decoherence processes are also known as parallel
and transverse noise, respectively. For more details on how this mapping is performed
we refer to Sec. 4.7.

If the addressed ensemble of emitters is dense then all of the emitters experience the
same amplitude and phase fluctuations, respectively. The noise processes derived here
can then be described as collective noise of the quantum emitters. This is shown in
chapter 4, where an effective model is derived and possible ways of making an ensemble
insensitive to these noise processes are explored.

2.6 Numerical methods

Let us now, in the final part of this chapter, discuss some methodological aspects.
Specifically, as the dynamics is nonlinear analytical solutions of quantum Langevin or
master equations are often difficult to find, even in approximate regimes. Therefore,
one has to resort to numerical solution methods. In general, we are interested in the
dynamical behavior of a system, i.e. its time evolution, and the averages of observables.
Since all average values can be obtained from a state vector or density matrix, the most
practical approach is to work in the Schrédinger picture. Therefore, we aim to solve the
master equation. Choosing an appropriate basis of the Hilbert space, we can work with
the direct matrix representations of the operators. The numerical task at hand is then
the solution of a system of first order ordinary differential equations.

As long as the considered quantum system obeys a master equation in standard
Lindblad form, we simply have to implement the proper Hamiltonian and Liouvillian
operators in order to solve for the dynamics. Additionally, the building blocks one uses
(e.g. an optical cavity, two-level systems, etc.) often remain the same. Since composite
systems are described by the product basis of the respective subspace bases, it makes
sense, and is immensely useful, to predefine these fundamental building blocks as well
as the algorithm which solves the master equation given the correct operators. This
allows for comparably simple programs and is helpful in avoiding erroneous numerical
calculations.

Toolboxes, which contain the according predefinitions, have a bit of a history. The
first one that was widely successful was written in MATLAB [2.20]. A discussion of
this toolbox and some of its successors [2.21, 2.22] can be found in the introduction of
chapter 8. There, we also present a modernized version of such a toolbox, written in the
Julia language [2.23, 2.24], which was developed further during the research conducted
in the scope of this thesis.

It can be used to implement and simulate standard configurations in just a few lines
of code. Consider, for example, the field scattered by a single quantum emitter placed
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2 Fundamental concepts of quantum optics

inside an optical cavity, as shown in Fig. 2.4. While previously we provided an analytical
treatment by assuming a weak drive and a bad cavity, using QuantumOptics.jl it is
straightforward to numerically simulate the full system. This is shown in code sample 2.1,
where we compute the steady state of the system without any approximations besides
choosing a finite cutoff in the cavity photon number and the RWA. One can then use
the input-output relation [Eq. (2.52)] to compute the scattered field amplitude. More
examples such as code sample 2.1 are shown in chapter 8.

mnn

Version info:
* Julia v1.1.0
* QuantumOptics.jl v0.6.5

mnn

using QuantumOptics

# Parameters

Nc = 4

K=1.0

n=0.01

y =0.1

g = 0.05

A = range(-3,stop=3, length=301)

# Hilbert space and operators
bf = FockBasis(Nc)

be = SpinBasis(1//2)

a = destroy(bf) ® one(be)

6 = one(bf) ® sigmam(be)

# Hamiltonian and damping operators
HO = -dagger(a)*a - dagger(c)*c # « A
H int = g*(dagger(a)*o + dagger(c)*a)
H p = 1.0im*n*(a - dagger(a))

J = [a, o]

# Calculate B=(oc) for each A

B =11

for Al=A
H = A1*HO + H int + H p
t, p = steadystate.master(H, J; rates=[2k, y], tol=le-5)
push! (B, expect(o, pl[end]))

end

# Calculate s from input-output relation
s = sqrt(k*y)/n .* B

Code sample 2.1: Calculating the steady-state scattered field of a single quantum emitter inside
a driven cavity. This bit of code produces the data behind the plots shown in Fig. 2.4.

The main limitation of any numerical investigation of quantum physical models is
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2.6 Numerical methods

the dimension of the Hilbert space under consideration. Consider, for example, our
ensemble of NV two-level quantum emitters. The corresponding number of possible states
which span the Hilbert space is 2. Therefore, the matrices representing the emitter
operators on this Hilbert space have 4" complex elements. Obviously, this number
becomes huge for even moderate numbers of emitters and the matrices are subsequently
difficult to store due to the finite amount of memory available. Toolboxes such as the
one presented in chapter 8 are therefore well suited to treat systems of sufficiently small
size.

Another useful approach to treat Hilbert spaces of higher dimensions is the so-called
Monte-Carlo wave function (MCWF) method [2.25, 2.26]. There, a time evolution
according to a Schrédinger equation with a non-Hermitian Hamiltonian is performed.
This results in a state described by a vector, whose norm decreases over time. With
the decreasing norm, the probability that a quantum jump occurs increases. Once a
quantum jump is performed, the state is renormalized. This leads to a stochastic wave
function trajectory of the time evolution. Averaging over many such trajectories results
in the same density operator as one obtains from a master equation. The big advantage
here is that the state is at all times given by a vector. In the case of our quantum
emitter ensemble, this would reduce the memory needed to store a state to 2. Even
though this is a substantial reduction of the problem size, the memory remains the
limiting factor here.

Another thing that one can exploit is the fact that strong quantum correlations
(entanglement) are very fragile when incoherent processes are present. These processes
can never be fully avoided in open quantum systems and coupling to the environment
is always finite in reality. It can therefore be practical to truncate the Hilbert space
to states with small quantum correlations between the subsystems. To lowest order,
this is generally known as mean-field approach. It is often convenient to perform the
truncation of the state space in the Heisenberg picture, i.e. by finding the correct
QLEs for operators and expanding products of operators to low orders of quantum
correlations. The resulting equations for the averages of (higher order) products or
single operators can then be solved numerically or sometimes even analytically. This
method is thoroughly discussed and used in chapter 6.

27






3 Publication

SCIENTIFIC REPORTS 5, 16231 (2015)

Selective protected state preparation of coupled
dissipative quantum emitterst

D. Plankensteiner!, L. Ostermann', H. Ritsch! and C. Genes!

Institut fiir Theoretische Physik, Universitit Innsbruck,
Technikerstrafie 21a, A-6020 Innsbruck, Austria

Inherent binary or collective interactions in ensembles of quantum emitters
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entangled collective states with minimal decay can be found, which possess
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storage. We show that for a specific choice of laser frequency, power and
geometry or a suitable configuration of control fields one can efficiently
prepare these states. We demonstrate this by studying preparation schemes
for strongly subradiant entangled states of a chain of dipole-dipole coupled
emitters. The prepared state fidelity and its entanglement depth is further
improved via spatial excitation phase engineering or tailored magnetic fields.
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3 Publication: Selective protected state preparation

3.1 Introduction

Ensembles of effective two-level quantum emitters consisting of single atoms, ions, or
defects in solids are employed ubiquitously in quantum optics and quantum informa-
tion [3.1]. They are the basis for precision spectroscopy or atomic clock setups, as well
as for experiments testing fundamental concepts of quantum physics or implementations
of the strong coupling cavity QED (quantum electrodynamics) regime [3.2, 3.3]. In the
absence of direct particle-particle interactions, larger ensembles allow for faster, more
precise measurements [3.4] via a scaling of the effective single photon to matter coupling
strength g by a factor v/ N (with system size N) and a reduction of the quantum
projection noise (by 1/v/N) [3.5, 3.6].

For any precise measurement one has to externally prepare, control and measure
the particle dynamics. Hence, the emitters are almost unavoidably coupled to their
environment. A suitable theoretical framework to model such experiments is open system
dynamics with a coupling to a fluctuating thermal bath. At optical frequencies this
can often be approximated by the zero effective temperature electromagnetic vacuum
field [3.7, 3.8]. Still, extra perturbations by a thermal environment and background gas
collisions cannot be avoided.

In a laboratory experiment the particles need to be confined in a finite spatial volume

that can be addressed by laser beams. Thus, increasing particle numbers will lead to
higher densities, where direct particle-particle interactions as well as environmentally
induced collective decoherence can no longer be neglected. For optical transition
frequencies a critical density is conventionally assumed at the point where the average
particle separation is of the order of an optical wavelength [3.9]. Above this limit
vacuum fluctuations tend to become uncorrelated and decay becomes independent.
However, recent calculations have shown that collective states can exhibit superradiance
and subradiance even at much larger distances [3.10] as long as the bandwidth of the
emission is small enough.
In many typical configurations and in optical lattices in particular, the particle-particle
interaction is dominated by binary dipole-dipole couplings, with its real part inducing
energy shifts and its imaginary part being responsible for collective decay [3.11, 3.12].
Generally, this interaction is associated with dephasing and decay. However, recently it
has been found that under special conditions also the opposite can be the case and these
interactions can lead to a synchronization [3.13] or even a blockade of the decay [3.14].
Oftentimes it is assumed that while such states exist, they cannot be prepared by
lasers as they are strongly decoupled from the radiation fields. However, it was recently
proposed that individual instead of overall addressing of the atoms can push the many
particle system to evolve towards subspaces protected from decay or dephasing [3.15].
When applied to Ramsey spectroscopy such states have been shown to exhibit frequency
sensitivities superior even to those obtained from non-interacting ensembles [3.16].
However, apart from special cases with an optimal lattice size and excitation angle, it is
not so obvious how to implement such precise a control.

In this work we highlight the surprising fact that interaction induced level shifts can
be used to aid in preparing such states. In many cases the magnitude of the shifts a
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Figure 3.1: Selective state preparation procedure. a) A chain of N closely spaced quantum
emitters (separation a with ka < 1, k being the laser wave number) are individually
driven with a set of pumps {n"}. b) The lasers are turned on for a time 7', optimized
such that an effective 7w-pulse into the desired subradiant target state is achieved.
c) Level structure for the N systems where the CV-fold degeneracy of a given
n-excitation manifold is lifted by the dipole-dipole interactions. The target states
are then reached by energy resolution (adjusting the laser frequency) and symmetry
(choosing the proper m). d) Scaling of the decay rates of energetically ordered
collective states starting from the ground state (state index 1) up to the single-
and double-excitation manifolds for 6 particles at a distance of a = 0.02 \g. The
arrows identify the decay rates for the lowest energy states in the single (A) and
double (B) excitation manifolds. e) Numerical results of the time evolution of the
target state population for N = 6 and a = 0.02 Ay during and after the excitation
pulse. Near unity population is achieved for both example states A (where we used
n = 0.53T") and B (for n = 2.44T) followed by a subradiant evolution after the
pulse time T shown in contrast to the independent decay with a rate I' (dashed
line).

state experiences and its lifetime are tightly connected allowing one to identify and
address interesting states via energy resolution. As a generic ensemble we particularize
to a 1D regular chain of quantum emitters coupled by dipole-dipole interactions with
a tunable magnitude (by varying the interparticle separation). Collective coupling to
the vacuum leads to the occurrence of subradiant as well as superradiant excitonic
states [3.10]. In particular, the subradiant states should prove extremely useful for
quantum information as well as metrology applications as they exhibit robust, multi-
partite quantum correlations. As mentioned above, the atoms’ interactions provide a
first handle for target state selection as they lead to energy resolved collective states.
Furthermore, using a narrow bandwidth laser excitation matched to the target states
both in energy and symmetry allows for a selective population transfer from the ground
state via an effective Rabi m-pulse.

In many cases, however, the required phase structure of the target state is not compatible
with the excitation laser phase so that only a very weak coupling can be achieved. On
the other hand, increasing the laser power reduces spectral selectivity by an unwanted
addressing of off-resonant but strongly coupled states. Hence, to address a larger range
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of states of practical interest, we also propose and analytically study new methods
of phase imprinting via a weak spatial magnetic field gradient. The small relative
phase shifts increase the effective coupling to groups of emitters via a nonuniform phase
distribution. With this method any state may acquire a finite laser coupling to the
ground state via the magnetically induced level shifts resulting in an efficient population
transfer with a minimal compromise on lifetime.

The considered setup is a chain (see Fig. 3.1a) of N identical two-level systems
(TLS) with levels |g) and |e) separated by a frequency of wy (transition wavelength
Ao) in a geometry defined by the position vectors {r;} for i = 1,...N. For each i,
operations on the corresponding two-dimensional Hilbert space are written in terms of
the Pauli matrices ;¥ and raising/lowering operators O'ii connected via o} = Uf +o;,

J * +‘7¢_ —o; aj . The complete Hamiltonian describing the

o} = —i(o;” —o0; ) and 0} = 0;

coherent dynamics is

H:Ho—FHdipZWOZO';FJ;‘FZQijU;rU;a (3.1)
{ i#]

where Hy is the free Hamiltonian and has degenerate energy levels (degeneracy C =
N!/(N — n)!n! for level n) ranging from 0 for the ground state to Nwy for the highest
excited state. The second term Hg;;, describes interactions between pairs of TLS which
can be induced either by an engineered bath (such as a common, fast evolving optical
cavity field) or by the inherent electromagnetic vacuum. We denote the couplings
between emitters ¢ and j by €);; and particularize to the case of a free-space one
dimensional equidistant chain of TLS with small interparticle distances a such that
a < Ao (as depicted in Fig. 3.1a).

For the sake of simplicity, we use dipole moments perpendicular to the chain for
all numerical computations. To a good approximation, in the limit of kga < 1, the
nearest-neighbor (NN) assumption can be used (such that €;; = d;;41) and exact
solutions in the single-excitation manifold can be found [3.17]. Within this subspace
and approximation, the Hamiltonian assumes the form of a tridiagonal symmetric
Toeplitz matrix with wg on the diagonal and €2 above and below the diagonal. The
solutions are readily available [3.18] with eigenvalues wg + €, for an index m running
from 1 to N, where €, = 2Q cos [rm/(N + 1)] are the dipole-induced energy shifts. The
corresponding eigenstates of the Hamiltonian are then

. 2 . ™myj
N gt m_
Im) = E fi"o; |G), with f; NS (N+1>’ (3.2)

J

where we used |G) = [¢)®".

Spontaneous decay via a coupling to the free radiation modes in the evolution of the
system can be included in a generalized Lindblad form [3.8],

1 B B B
Llp) = 5> (207 pof —ofayp—pofor), (3.3)
Z7]
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where the v;; denote collective damping rates arising from the coupling to a common
radiation field. These rates also strongly depend on the atomic distances a with
two prominent limiting cases of 7;;(a — 00) = I'd;; (independent emitters limit) and
vij(@ — 0) =T (the Dicke limit [3.19]). In general, one can perform a transformation
of the Liouvillian into a new basis by diagonalizing the 7;; matrix. This procedure
leads to a decomposition into N independent decay channels with both superradiant
(>T') and subradiant (robust) decay rates (< I') [3.16]. Note, however, that the states
corresponding to these channels generally do not coincide with energy eigenstates of the
Hamiltonian, so that we cannot reduce the system dynamics to simple rate equations.

3.2 Results

3.2.1 Selective state preparation

Tailored coherent excitation. As mentioned above, our dipole coupled systems
possess states with a large range of radiative lifetimes and energy shifts. Depending on
the desired application particular states can be highly preferable over others. In a first
straightforward approach we now illustrate that in principle it is possible to access a
desired collective state simply by a selective coherent driving with a properly chosen
amplitude and phase for each TLS. This is described by the Hamiltonian

H,, = Zn;-”(aje_iw’t + Jj_ei‘”lt), (3.4)
J

with a suitably chosen set of n7". For a targeted eigenstate in the single-excitation
manifold, some analytical insight on how to choose these amplitudes can be gathered
from the state’s symmetry. For energy eigenstates this can be found quite reliably within
the NN approximation [3.20]. In an equidistant finite chain our calculation suggests the
following choice of driving fields at laser frequency wy,

m_ ™myj
n; —7751H(N+1>, (3.5)

chosen to fit the symmetry of a target state |m).

The selectivity of the excitation process can be further improved by an energetically
resolved excitation of a given state |m) by a proper choice of the laser frequency
w; = wo + €, and its bandwidth. This is possible due to the interaction induced level
splitting from Hyg;, (as depicted in Fig. 3.1c). Indeed, in perturbation theory and in a
frame rotating at w; the evolution of the system starting from the ground state up to a
normalization factor leads to

e Hmt |QY ~ |G) — it |m) . (3.6)

The success of the corresponding process is illustrated in the sequence of plots in Fig. 3.1,
where the |m = N) state with n = 1 is considered (target state A) and accessed via the
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combination njv of pumps lasting for a duration 7.

Numerical simulations were performed on a six-atom chain with driving strength
n = 0.531 at an interatomic separation of ¢ = 0.02 A\g. The time for which the pumps
are switched on is T = 1.58 '~! which is considerably shorter than the time scale
governed by the decay rate of 0.00091" of the target state. The resulting dynamic is an
effective m-pulse (efficiency of 99.94%) flipping the population into the state |m = N)
followed by an extremely slow decay, indicating the robustness of the target state (as
seen in curve A of Fig. 3.1e).

It is, of course, desirable to target higher excitation manifolds as well. In the absence
of analytical expressions or good approximations for the target states, we employ
phases that yield maximal asymmetry, i.e. 7; = n(—1)’ for any j = 1,..., N. Such a
driving can be expected to address collective states, where the fields emitted by any two
neighboring particles interfere destructively [3.14] (similar to a previously investigated
mechanism [3.15]). Numerical simulations show that the resulting collective states
indeed exhibit the lowest energy shifts of the targeted manifold and can be expected
to be long lived. The resonance condition for a specific state |¢)) within the manifold
n is nw; = nwo + dwy, where dwy = (| Hyip [1). As an illustration, the curve B in
Fig. 3.1e shows an almost perfect efficiency (98.36%) two-photon 7-pulse allowing for a
population transfer to the longest-lived collective state in the second excitation manifold
of N = 6 emitters separated by a = 0.02 A\g. The chain was driven with a strength of
n = 2.44T for a time T = 3.44T !, which again is significantly shorter than the natural
time scale given by the target state decay rate of 0.0402T.

Let us add a comment on the practical implementation of such an addressing. In
typical current experimental configurations for clocks based on 1D magic wavelength
lattices [3.21, 3.22] the atoms are very close and hardly allow for an individual direct
particle addressing. One is largely limited by a quasi plane wave driving, which typically
addresses all particles with equal intensity. If the pump light is applied perpendicularly
to the trap, the evolution is governed by a symmetric Hamiltonian Hgy,,, obtained
from equation (3.4) with an equal pump amplitude ny* = n for any m and j. A
laser excitation from the ground state into the state |m) is connected to the coupling
amplitude X, = (m| Hgym |G) = n>"; £, which yields

0 if m is even,
Xm (3.7)

on c mr . . .
V2ot ( ) if m is odd

NA1 2N 42

We will refer to states with even m as dark states as they cannot be accessed by the
laser excitation and call the remaining ones bright states [3.14]. In the limit of large
atom numbers N > 1, it is of interest to investigate the two cases, where m < N and
m ~ N, for states at the top/bottom of the manifold. In the first case, the function for
the driving yields x.m ~ nvV8N /mm, whereas in the other case we have x,, ~ 0.

Note, that sometimes geometry can change this behavior. For a 1D string of equidistant
emitters illumination at a chosen angle of incidence and polarization leads to a designable
phase gradient of the excitation amplitudes. The situation becomes even more complex
for a 3D cubic lattice, where the phases also differ in the different lattice planes. As a
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lucky coincidence, a perpendicular plane illumination at the clock frequency in a magic
lattice for Strontium (Sr) targets an almost dark state. This leads to subradiance and
in principle allows for a spectral resolution better than the natural linewidth [3.23]. In
not so favorable cases one could also think of a specific lattice design to facilitate a
tailored dark state excitation.

Radiative properties. In order to be useful resources for quantum information
applications, target states should exhibit robustness with respect to the environmental
decoherence. To identify states of minimum decay rate, we scan through the eigenstates
|r) of the Hamiltonian H = Hy + Hg;, (for k =1, ..., 2V) and compute their decay
rates I'y, (see section Methods below). We find that generally, for a given manifold, the
energetic ranking of the states closely indicates their robustness to decay (as illustrated
by the color-coding in Fig. 3.1¢) ranging from blue for subradiant states to red for
superradiant states. This is due to the fact that both radiation and energetic shifts
are strongly dependent on the symmetry of the states. In Fig. 3.1d, for N = 6, we
plot the decay rates of the collective states in the first (n = 1) and second (n = 2)
excitation manifold arranged as a function of their increasing energy corresponding
to the level structure of Fig. 3.1c. Superradiant states are found at the upper sides
of the manifolds while the ideal robust states lie at the bottom. In Fig. 3.1d, the
arrows indicate the optimal decay rates in the single- (0.0009T") and double-excitation
manifolds (0.0402T") corresponding to target states A and B whose population evolution
is depicted in Fig. 3.1e.

Within the single-excitation manifold, an analytical expression for the decay rate of
a state [m) can be found as I'y, = 37, ;i f" f]. For small distances the state m = 1
(upper state) is superradiant, whereas states at the bottom of the manifold m ~ N
exhibit subradiant properties. In the Dicke limit where a = 0 we have 7;; = I" for
any i and j, and we can compute I',, = 2T cot? [mm/(2N + 2)]/(N + 1) for m odd and
I',, = 0 for m even. Note, that in this particular limit, these are the same conditions as
for the darkness and brightness of a state. For large numbers of emitters, we recover
the expected superradiant scaling with N for the state with m = 1, i.e. I'; ~ 8 N/x2.
On the other hand, large m yield a decay rate of I';;, = 0 (perfect subradiance) in the
same limit.

There are two important conclusions from these results: i) since in the considered
limit the decay rate of the superradiant state |[m = 1) scales with I'; o« N, whereas its
driving is x1 « VN, driving this state becomes more difficult with increasing atom
number due to the reduced time-scale and ii) if the number of atoms is not too large, xm,
will remain finite, while I';, already indicates vast subradiance due to its scaling-down
with N. Hence, there are robust states that remain bright, i.e. they can be driven
directly even though the driving is not matched to their symmetry.

3.2.2 Accessing dark states via magnetic field gradients

The direct symmetric driving with H,y,, allows access to bright states only. Given
that nearby dark states can conceivably be more robust, we now employ a progressive
level shifting mechanism that allows for a coupling between bright and dark states.
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Figure 3.2: Coupling to dark states via a magnetic field gradient. a) Linearly increasing level
shifts along the chain occuring in the presence of the magnetic field gradient. b)
Ilustration of the level structure and indirect dark state access for two coupled
emitters. While symmetry selects the state |.S), off-resonant addressing combined
with bright-dark state coupling of strength Ap allows for a near-unity population
transfer into the state |A). ¢) Dynamics in the single-excitation manifold of N
coupled emitters where symmetric driving reaches the bright states with amplitudes
Xm while the magnetic field couples neighboring dark and bright states. d) Plot
of the asymmetric state population for the two-atom case as a function of the
increasing magnetic field (solid line) compared to the steady-state approximation
(dashed line) at numerically optimized time 7' = 16.19T~!, with parameters n = T
and a = 0.05)\g. e) For a chain of N = 4 emitters, a 91%-efficient 7-pulse to the
most robust state can be achieved as demonstrated in the population evolution
plot. The separation is chosen to be a = 0.025 )y, while = 40" and numerical
optimization is employed to find Ag = 0.98T.

This is achieved by subjecting the ensemble to a magnetic field with a positive spatial
gradient along the chain’s direction. The increasing energy shift of the upper atomic
levels (as depicted in Fig. 3.2a) plays a role similar to the individual phase imprinting
mechanism described previously. For each particle the shift of the excited level induces
a time-dependent phase proportional to the value of the magnetic field at its position.
We demonstrate the mechanism for a particular two-atom example, where indirect near
unity access to the dark subradiant asymmetric collective state is proven and extend it
to the single-excitation manifold of N atoms.

Two-atom case. The eigenstates of the Hamiltonian Hy + Hg;, are |E) = |ee),
|G) = |gg) and in the single-excitation subspace |S) = (|eg) + |ge))/Vv/2 and |A) =
(leg) — |ge))/v/2. The symmetric state |S) is superradiant (I's = I'y = T + v12)
and bright, directly accessible via symmetric driving with strength x; = v/27. The
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asymmetric state |A), on the other hand, is subradiant (I'y = T's = T" — ~12) and dark.
Indirect access can be achieved by shifting the second atom’s excited state by 2Ap
(see schematics in Fig. 3.2b), where Ap is tunable and quantifies the per-emitter shift
for a given magnetic field amplitude. We first analyze the dynamics in the absence of
decay by solving the time-dependent Schrédinger equation governed by the Hamiltonian
H = Hy + Hgy;p + Hgypy + Hp, where Hp = QABO';_O'Q_. We reduce the dynamics to
three states, and assume a quasi-resonant Raman-like scheme where the population of
|E) is at all times negligible. An effective two-level system arises (between the ground
state and the asymmetric state; see section Methods below) and the resonance condition
can be identified as

AP = —Ap /AL + Q2 - 22, (3.8)
with an effective Rabi frequency of

L) _ V2nAg

_ . (3.9)
Q-+ /A% + 02 — 22

To fulfill |cs|?> < 1, we need to restrict the driving to a parameter regime where
n,Ap < Q. A scan over the magnetic field is performed and the exact numerical results
for the asymmetric state population are plotted in Fig. 3.2d against the adiabatic solution
showing near unity population transfer for an optimized Ap. Further restrictions are
imposed when decay is considered. These stem from the fact that the coherent process
described by vg should be faster than the incoherent one characterized by I'4. For close
particles, the ability to tune the distance ensures that the scaling down of I"4 is very
fast and the above conditions are readily fulfilled. For the particular example illustrated
in Fig. 3.2d we chose a = 0.05 \g, resulting in 2 = 23.08T', 'y = 0.019T. The 0.994
population is reached at 7' = 16.19 !, which is very close to the theoretical estimate
of T'=m/ QVg) =16.179 ! obtained from the adiabatic solution under the assumption
of a m-pulse transferring the population to the target state.

Many-atom case. For a chain of N atoms, we consider the progressive shifting of
excited levels along the chain depicted in Fig. 3.2a. This is realized by the application
of a magnetic field with a constant gradient and is described by the Hamiltonian
Hp =2ApY (i — 1)of o; . Let us consider a dark state |d) (d even) and the bright
state |b = d — 1) immediately above. Their coupling via Hp is quantified by Ag, =
2Ap Y (i — 1) fA£?, as shown in Fig. 3.2c.

We develop a protocol where direct off-resonant driving into the bright state (amplitude
X») combined with a coupling between the bright and dark states via the magnetic field
leads to an almost unity population transfer into the dark state. Given a sufficient energy
separation, the problem can be reduced to solving the time-dependent Schrodinger
equation for the three coupled state amplitudes ¢, c¢g and cg. Following the same
adiabatic approximation as in the two-atom case we reduce the general dynamics to
an effective two-level system between the states meant to be connected by an effective
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m-pulse, i.e. |d) and |G). The generalized resonance condition (with ez = €4 — €;,) reads

€4+ € €
AN = _Ap(N—1)- & 5 4 AL X3 (3.10)

and was obtained in the limit where the coupling of the dark state to the other adjacent
bright state |d + 1) was neglected owing to the relation x4_1 > xq+1- The effective
transition rate between the ground state and the state |d) is

(N) Xol Aap|
= e AN T (3.11)

The addition of decay imposes a new constraint on the timescale of the process, i.e.
VJ(QN) > I'y, required to ensure near unity population in the dark state. The fulfillment of
this condition depends on the individual system under consideration. As an illustration
of the procedure, Fig. 3.2e presents the targeting of a robust dark state in the single
excitation manifold of four particles. Note, that the numerical results are performed in
an exact regime beyond the NN approximation and are in excellent agreement with our
conclusions obtained from the NN treatment.

3.3 Discussions

3.3.1 Entanglement properties
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Figure 3.3: Entanglement properties. a) Comparison of the numerically computed von Neu-
mann entropy (empty circles) of the reduced density matrix of the chain minimized
over the atom index and the analytical expression for the entropy of the Dicke
state (green circles), both for excitations n = 1 and n = | N/2] as a function of the
atom number N at distance a = 0.1)g. b) Depth of entanglement of the subradiant
four-atom state (blue dot) prepared by the magnetic field gradient scheme (see Fig.
3.2e). It clearly lies above the k = 3 boundary indicating four-atom entanglement.
The k-atom entanglement boundaries of the target state population P; as a function
of the ground state population Ps have been computed for the corresponding
target state of a four-atom chain at distance a = 0.025 .

To justify the usefulness of collective states for quantum information purposes, we
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employ the von Neumann entropy to analyze their entanglement properties. More
specifically, we compute the von Neumann entropy of the reduced density matrix ps of a
single two-level emitter (showing the degree of its bipartite entanglement with the rest of
the system) defined by S(ps) = — >_; \ilogy A;, where )\; is the i-th eigenvalue of ps and
0log, 0 = 0. We furthermore minimize the set of values for all atoms to obtain a lower
bound on the entanglement contained in the system. We compare the numerical results
to the single-atom entropy of the symmetric Dicke state |[-N/2, —N/2 + n) [3.19]. For
these particular states the entropy is maximized if the number of excitations in the state
is n = N/2. Tt follows that it is highly desirable to drive the system into robust states
as close as possible to n = | N/2] excitations (where | N/2] is the largest integer smaller
or equal to N/2), since this manifold contains the most entangled state. A comparison
of the exact numerical data and the analytical expression for the entropy is shown in
Fig. 3.3a.

Another way to characterize the entanglement of the prepared state is to investigate
their depth of entanglement [3.24, 3.25], which does not quantify the entanglement
itself but rather shows how many atoms of an ensemble are involved in the present
entanglement. This measure has been used in recent experiments [3.25, 3.26] since it is
a readily measurable quantity. The depth of entanglement is computed as follows: given
an N-atom target state in which an arbitrary number of said N atoms is entangled,
we compute the limit of how much population one can drive into this state such that
the resulting density matrix p remains separable into a subset of density matrices
that exhibit no more than k-atom entanglement (1 < k < N). This may be done by
numerically maximizing the target state population P, as a function of the ground state
population Pg for different k. The boundaries themselves indicate how many atoms
need to be entangled in order to prepare the pure target state, i.e. the boundary where
the target state population is maximized to 1 corresponds to the number of atoms
entangled in the (pure) target state. If a general prepared state has a target and ground
state population such that the corresponding data point lies on or above the k-atom
boundary, more than k atoms are entangled.

Obviously, for the pure target states considered in the above computation all atoms
contribute to the entanglement, since otherwise the minimal von Neumann entropy as
shown in Fig. 3.3a would be zero. For a more interesting result, we can compute the
depth of entanglement in order to demonstrate the efficiency of the driving procedure
using a magnetic field gradient as in Fig. 3.2e. From Fig. 3.3b, where all boundaries
have been plotted for the considered subradiant four-atom state, it is clear that the
prepared state shows all-atom entanglement as the corresponding data point lies far
above the boundary for three-atom entanglement.

3.3.2 Implementation considerations

The proof-of-principle technique presented above has been particularized on a specific
generic system of emitters in an equidistant chain. The choice is natural since the
electromagnetic vacuum provides a simple example for both collective dispersive and
dissipative dynamics. To exemplify a possible realization we consider a particular
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system [3.27] where bosonic Sr atoms are trapped in a magic wavelength optical lattice
at separations of a = 206.4nm. The working transition is at A\g = 2.6um, between the
3Py and 3Dy electronic states. This amounts to a ratio of a/Ag &~ 1/13 which allows
for an operation in the regime targeted by our scheme. The corresponding single atom
decay rate is at the order of I' = 0.3 MHz and circularly polarized light can allow for
transitions between states with a difference of 1 in magnetic quantum number. We
have numerically investigated a system of 4 atoms in such a configuration and found a
sizeable 73% target state population for 7 = 2T and Ag = 0.5T", under the conditions
of a relatively small level shift between the dark and bright state around 6" which
does not allow for large driving powers. For further optimization of the efficiency of
the target state preparation one could envision a modified setup where a trapping
transition of smaller wavelength can be chosen that would most importantly allow for
better state separation (owing to larger dipole shifts). The corresponding magnetic
field gradient required to produce the considerable Ap = 0.5 shift on a distance of
a = 206 nm is around 5.2 - 10° G /m, not far from state-of-the-art values achievable in
high magnetic field gradient magneto-optical trap experiments [3.28, 3.29]. Of course,
there are many detrimental practical effects that can seriously limit the above technique
such as light-assisted collision loss. We envision the extension of the described technique
to systems where both the coherent and dissipative particle-particle interactions can be
suitably tailored. For example, the same kind of dipole-dipole Hamiltonians can occur
in 3D lattices of polar molecules [3.30] or between two different color NV centers in
diamonds [3.31].

3.3.3 Conclusions

Direct particle interactions are typically detrimental and limiting in precision measure-
ment applications. Here, we have presented some specific opposite examples, where the
collective nature of the decoherence combined with the coherent binary dipole-dipole
interactions is used as a new resource for the controlled and efficient preparation of
specially selected states. The excitation scheme can be tailored to address target
states exhibiting both entanglement as well as robustness against decay. As a generic
example we studied the case of a one-dimensional system of tightly spaced equidistant
quantum emitters. Already the inherent dipole-dipole coupling allows for a targeted
state preparation technique via energy selection. The performance of the excitation
can be enhanced additionally via the continuous application of a spatially increasing
magnetic field. The general principle of such a phase imprinting technique is potentially
applicable in many specific environments such as optical lattices or atoms and ions
localized within one or more common optical cavity modes [3.32, 3.33], NV-centers or
superconducting qubits coupled to CPW transmission lines or resonators [3.34, 3.35].
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3.4 Methods

3.4.1 Decay rate of the states

In order to arrive at an analytical expression for the decay rate of an eigenstate |¢y) of
the Hamiltonian in equation (3.1), we consider the homogeneous part of the differential
equation of the corresponding density matrix element that arises from the master
equation. The solution of this differential equation yields an exponential decay. The
rate at which the state population decays may be written as

Ly, = — Wkl L [[0r) (rl] k) =D vij Wkl of o [r) - (3.12)

i?j

Note, that this is true only for states that contain one specific number of excitations, i.e.
they are eigenstates of the operator ), o7. Obviously, this is fulfilled for eigenstates of
the considered Hamiltonian. Equation (3.12) was used in order to compute the rates
depicted in Fig. 3.1d and throughout the manuscript. For example, we used it in order
to compute the decay rate of the eigenstates in the NN approximation I';,.

3.4.2 Subradiance and disorder

Figure 3.4: Subradiance and disorder. a) Plot of the logarithm of the minimal eigenvalue of
the decay rate matrix (matrix with entries -;;) as a function of N at a distance
of a = 0.4\ for increasing levels of disorder (s = 0,0.2,0.4). b) Decay of the
|m = N) state as a function of time. In the presence of disorder (s = 0.2,0.4) the
short time and long time behaviors are fundamentally different. At short times,
disorder can push the state towards faster decaying channels while decay inhibition
due to disorder occurs at larger times.

Let us consider the influence of positioning disorder on subradiant properties of the
target states. To mimic disorder we perturb an equidistant chain of N emitters (average
separation a) by introducing an uncertainty in each emitter position quantified by a
defect parameter s (normal distribution of variance sa). We then write the randomized
matrix of decay rates and find the minimum decay channel without as well as in
the presence of disorder of s = 20% and s = 40%. For the s = 0% case, it has been
shown [3.16] that the minimum decay rate scales exponentially with N even for distances
up to 0.4)\g, while the linear scaling with N typical for superradiance is reached for
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a < Ag only. After averaging over 100 random configurations, we plot the logarithm of
the minimal rates as a function of increasing N in Fig. 3.4a.

As a somewhat surprising result, subradiance scales even better with N as the disorder
increases. This might be understood as a destructive interference effect brought on by
the cancelation of emitted photons stemming from the random positioning. As pointed
out in previous investigations [3.16], the states of low symmetry (as, for example, the
m = N state) possess decay rates closest to the analytically derived minimal rate. We
analyze the respective sensitivity of the state subradiance to disorder by initializing
the system of N emitters in the m = N state and allow it to decay. The outcome is
plotted in Fig. 3.4b and shows remarkable robustness of the disordered systems on
a long time-scale. While on a short time-scale disorder pushes the considered state
into faster decaying channels, the long time limit shows that the remaining population
accumulates in the disorder-enhanced robust states.

For short time-scales, the state still decays slowly (subradiantly), however, the decay
rate increases with growing disorder (s = 40%). More remarkable, though, is the
behavior the decaying states show for long time-scales, as the states subject to larger
disorder become more robust than the unperturbed system. This is due to the fact that
all population in the m = N state that decays through more radiative channels have
decayed at that point and only the most subradiant channel (minimal eigenvalue of the
decay rate matrix) remains. As seen in Fig. 3.4a, this eigenvalue is even further reduced
by disorder which explains the long time-scale behavior in Fig. 3.4b.

3.4.3 Coherent dynamics with a magnetic field gradient

Two-atom case. To find the expressions in equation (3.8) and equation (3.9) we solve
three coupled differential equations neglecting the population of the fully inverted state
|E) as far off-resonant for all times. In the collective basis, where any state may then
be written as [¢)) = cg |S) 4+ ca|A) + ca |G), the equations are

ics = (A+ A+ Q)cg —ABCA—F\EUCG, (3.13)
ica=(A+Ap—Q)cqg — Apcs, (3.14)
icq = ncs, (3.15)

where 2 = Q45 is the coherent interaction between the atoms and A is the detuning
between the atomic resonance frequency and the driving laser. For an efficient driving
of |A) the population of the state |S) needs to be negligible which allows us to set a
steady-state condition, namely ¢g = 0 yielding the desired effective two-level system
between |G) and |A).

Many-atom case. The same approach as in the two-atom case may be used to describe
the dynamics in the single-excitation manifold for an arbitrary number of atoms in a
chain. Given sufficient energy separation we may neglect all states but the ones we aim
to address. We can indirectly address a dark state |d) by driving the bright state |b)
immediately above, which is coupled to the dark state by a magnetic field gradient.
Neglecting all populations but ¢, ¢4, and cg and their respective couplings via the
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magnetic field gradient, the investigation reduces to the equations

icy = [A+ e+ Ap(N —1)] ep + Agpcq + Xpca, (3.16)
itqg =[A+ e+ Ap(N —1)] cqg + Agycs, (3.17)
iCG = XbCh- (3.18)

For an efficient driving of the dark state we may again invoke a steady-state condition
on the bright state population ¢, = 0. This, again, yields an effective two-level system
between the ground and the dark state with resonance condition and Rabi frequency as
displayed in equation (3.10) and equation (3.11), respectively.

3.4.4 Von Neumann entropy

For a Dicke state an analytical expression for the von Neumann entropy of the reduced
density matrix can be obtained. First, note that, since Dicke states are invariant under
a permutation of the atoms, all reduced density matrices are identical. Hence, they all
share the same von Neumann entropy for a given number of excitations n. We may
choose to reduce the full density operator p to the density matrix of the first atom in
the ensemble, i.e. pl = ps = tra n(p) which yields a von Neumann entropy of

S(ps) = % log, @7) <1 - N) log, (1 - ;) (3.19)

For the actual eigenstates of the Hamiltonian in equation (3.1) this computation needs
to be done numerically. Furthermore, these states are not invariant under permutation
of atoms and hence it is required to minimize the entropy with respect to the atomic
chain index in order to find the lower bound.

3.4.5 Depth of entanglement

The boundaries depicted in Fig. 3.3b were found by maximizing the target state
population with the condition on the density matrix of the prepared state to contain no
more than k-atom entanglement, i.e. p =), pf" with k; < k and at least one k; = k.
To compute the boundaries we generalized the algorithm that was previously used solely
for the W-state [3.25] to arbitrary states in the single-excitation manifold. For the
computation of all boundaries we need to distinguish the two cases where Pz = 0 and
Pg > 0. Considering a separable state (k = 1), the boundary for Pg > 0 is found to be

Z|CZ‘ 2

, (3.20)

max(F;) = max

H o =VPg
where a; € [0,1] and ¢; are the coefficients of the target state. For Pg = 0 the

maximization is much simpler, i.e. max(P,) = max|c¢]|?, which is found by setting
one a; = 0 and the remaining coefficients aj; = 1. Note, that for both these and all

43



3 Publication: Selective protected state preparation

following computations we neglect the symmetry of the state, i.e. the phases of the
coefficients ¢; by using |¢;|. This is valid due to the invariance of entanglement under

local unitary operations and necessary if we restrict the coefficients «; in the way we
did.

For multiple-atom entanglement (k > 1) the matter of finding the corresponding
boundary is no longer so simple. In order to find the maximum population, we assume
maximally allowed entanglement in the prepared state. We split the prepared state
into M = [N/k] sets, where M — 1 sets are k-atom entangled and the remaining one
is k' = N — k(M — 1)-atom entangled. To find the maximum, one has to consider all
possible positions of the k’-entangled state. If, for example, the k’-entangled state is at
the last position, the population of the target state |t) in the prepared state reads

2

P, = : (3.21)

M—-1 ,
(t] l(@ |¢i~“>> ® k)
=1

where

k
|0F) = i |Gy) + /1 = af Y No/ |Gy) (3.22)
r=1

is a general non-separable state of k£ atoms in the single-excitation manifold. The state
|G}) is the k-atom ground state and the coefficients A% € [0, 1] have to be normalized,
ie. 3, (\9)? =1V i. One then has to maximize the target state population with respect
to the coefficients a; € [0,1] and A% with the condition [ a5 = v/Pg. The number of
these coefficients, however, grows vastly with the number of atoms, hence numerical
computations are limited. For Py = 0 one can again choose one o; = 0 and all aj; = 1.

Note, that all boundaries computed via this maximization only hold for pure states.
In order to find the boundaries for mixed states we need to compute the convex hulls
of the respective boundaries [3.25]. The k& = N boundary is found when a perfect
superposition between the ground and target state is reached.

In this work we considered the specific case of an exciton state of a four-atom
chain. In that case, when investigating two-atom entanglement the permutation of the
k’-entangled state is rendered unnecessary since k' = k = 2. Unfortunately, this is no
longer true for k = 3, where we did have to account for all permutations.
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4.1 Introduction

Ultracold atoms in optical lattices [4.1, 4.2] can nowadays be almost perfectly controlled
on the quantum level of motion and internal degrees of freedom. Using special magic
wavelength configurations for alkaline earth atoms, the lattice introduces only minimal
perturbations of the transition frequency [4.3]. Such systems are perfectly suited
candidates for state-of-the-art precision measurements. Optical lattice atomic clocks
as cutting edge time standards are the most famous example of such exceedingly high
resolution experiments [4.4]. Recent endeavors have found what is yet the most accurate
determination of time with a fractional uncertainty of 2 x 10718 [4.5]. To achieve such
a small total measurement error known noise sources (e.g. atomic collisions) had to be
eliminated or corrected for by proper calibration. One remaining class of imprecisions
is tied to the fairly high density of the atomic ensemble, which leads to radiative long
range atom-atom interactions like collective decay (super-radiance [4.6]) and dipole-
dipole shifts [4.7]. As they cannot be totally avoided, recent calculations targeted
the suppression of atomic interactions [4.8-4.10] via optimized lattice geometries and
symmetries.

A different but important uncertainty contribution for the clock is the finite linewidth
of the reference laser used to interrogate the atomic ensemble. Despite tremendous
efforts to construct ultra-stable reference cavities resulting in sub-Hertz oscillators, the
randomly fluctuating phase of the laser still contributes significantly to the uncertainty
budget in experiments [4.5]. This phase noise acts identically on all atoms and hence adds
to the collective atomic dipole. Therefore the effect cannot be canceled by increasing the
size of the ensemble. Mathematically, the effect of a noisy laser addressing the atomic
ensemble leads to an exponential dephasing of the collective atomic dipole reducing the
amount of information about the phase state of the atoms. Over the course of multiple
measurements the phase noise aliases (Dick effect [4.11]) and degrades the stability of
the clock.

First studies of the effects of laser noise on spectroscopy have been put forward
already decades ago almost in parallel with the successful development of high resolution
laser spectroscopy [4.12]. Fluctuations in the laser phase and intensity lead to atomic
population fluctuations limiting the spectroscopic resolution [4.13, 4.14]. With the fast
improvements in laser technology the linewidth of lasers soon became so small, that
this effect could be largely ignored in typical setups. Only in the ultimate limit of
clock transitions the linewidth is significantly smaller than available lasers. In this
case the remaining fast fluctuations can be traced to thermal fluctuations in the mirror
coatings while slow changes in the cavity length lead to a drift of the average oscillation
frequency [4.4].

Numerous studies have analytically and numerically treated the effect of both phase
and amplitude noise. These studies have been mostly focused on deriving spectroscopic
precision limits for the case of multipartite entangled input states [4.15-4.21]. Most of
these approaches aimed to compute bounds for noisy metrology beyond the standard
quantum limit. While it has generally been assumed that laser noise is especially
detrimental to the typically fragile multipartite entangled states, significant limitations
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may occur already for ’classical’ product input states.

In this paper we restrict our calculations to such product states in order to address
current limitations of standard setups used in high-precision frequency detection. We
derive scaling laws for the frequency sensitivity of both Ramsey and Rabi spectroscopy
in the presence of collective laser noise. We map the stochastic laser-induced dynamics
into an atomic master equation and show that amplitude noise has little impact on the
precision. However, collective laser phase noise can lead to a complete saturation of the
frequency sensitivity with the atom number (as shown for entangled states in Ref. [4.21]).
We apply the proposal from Ref. [4.21], which uses decoherence free subspaces for the
efficient suppression of phase noise. This is also reminiscent of the mechanism of
quantum noise cancelation in atomic or optomechanical systems [4.22-4.30]. Our
scheme is analogous to the negative mass oscillator employed in the aforementioned
optomechenical investigations. The suppression can be achieved by splitting the atomic
ensemble into two sub-ensembles: the incident laser beam is also split and manipulated
such that one sub-ensemble experiences the exact negative detuning (between the laser
and the atomic transition frequency) of the other.

4.2 Master equation for atomic dynamics in a noisy laser

We consider an ensemble of identical two-level atoms with a transition frequency wp. In
a frame rotating with the laser frequency w; the ensemble is following free dynamics
under the Hamiltonian (h = 1)

Hy = Q8. (4.1)

where S, = Zj U]Z-/Q, o is the z Pauli operator of the j-th atom and Q = wy — w; is
the detuning between the atomic transition and the laser frequency. The Hamiltonian
describing optical excitation of this ensemble reads

H; = 215, (4.2)

where 7 is the coherent pump strength and S; =3, o7 /2. We assume that all atoms
instantaneously feel any change of the laser phase, which is justified given that typical
setups are of much smaller length than the coherence length of a standard laser [4.31].
Furthermore, assuming white noise (i.e. no correlations in time) we may describe the
phase noise of a laser as collective dephasing of the atoms via the Lindblad term

Vd
Lalp] = 5 (25:0. = S20 - pS2). (4.3)
Here, 7,4 is the strength of the dephasing at which the off-diagonal density matrix

elements are damped out. The time dynamics for the atomic density matrix p including
laser phase noise are then described by the master equation

p=ilp, H] + Lalpl, (4.4)
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where H = Hy + H;. For details of the derivation of this master equation see Ref. [4.21]
or Appendix A.

Analogously, if the laser has a noisy amplitude given by another white noise process
and any change of amplitude instantly affects all atoms, we may describe the dynamics
of the atomic ensemble by replacing the Lindblad term in the above master equation
with (see also Appendix A)

Lalp] = 290 (2598, — S2p = pS2) , (4.5)

where 7, governs the magnitude of the noise. Hence, amplitude noise can be interpreted
as collective energy redistribution within the atomic ensemble.

Note, that one key point of this model is that all noise processes are of collective
nature. This allows for simplified analytical and numerical treatment since the evolution
described by the master equation takes place on the surface of the collective Bloch
sphere, in a Hilbert space of dimension N + 1.

4.3 Effects of laser noise in Ramsey spectroscopy

Ramsey spectroscopy [4.32] consists of two consecutive 7/2-pulses applied to an atomic
ensemble initially in the ground state. In between the two pulses the atoms are subjected
to a period of free time evolution for a time 7. After the second pulse the total population
inversion of the atomic ensemble, which is proportional to the expectation value (S.),
is measured. This process is repeated for different laser frequencies (detunings) to
retrieve the excitation as a function of the delay time and the detuning, (S,) (2, 7). The
m/2-pulses are assumed to be much faster than characteristic dephasing times and are
therefore well approximated by rotations of the collective Bloch vector of the atoms
about the y-axis of the Bloch sphere by an angle of /2 (at exact resonance).

A figure of merit for the total frequency measurement precision is the so-called signal
sensitivity 02 [4.33],

o0 :min[

y AS,(Q,7) }

90 (52 (. 7) (4.6)

This quantity characterizes the minimal distinguishable frequency shift in the setup
and thus gives the fundamental limit of accuracy with which one can match the laser
frequency to the atomic transition frequency. The optimal operation points are those
where the signal is most sensitive to changes in the detuning 2 while the signal quantum

standard deviation AS, = 1/(S2) — (S.)? is minimized.

4.3.1 Phase noise

Let us first estimate the effect of the collective phase noise on the signal sensitivity
obtained by interrogating an ensemble of N atoms with a laser exhibiting phase noise.
As previously mentioned, due to the collective nature of the Hamiltonian and the
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Figure 4.1: Effects of phase noise. (a) The phase noise limited (red line) signal sensitivity
is compared to the quantum projection limit (black dashed line) of a Ramsey
measurement on N = 10 atoms as a function of the interrogation time. The
optimal time is Top: & 2/74. (b) The optimal signal sensitivity in the presence
of phase noise saturates quickly with increasing N approaching the lower bound
(blue dots). This is compared to the projection noise limited curve scaling with
1/V/'N (for a fixed interrogation time 7,,;) on a double-logarithmic scale.

Liouvillian, all system dynamics take place in the symmetric subspace, i.e. the Dicke
basis. The density matrix in this basis is

p(t) = Y pauar(t)|S, M) (S, M'], (4.7)
MM’

where S = N/2 and M, M’ = —S,—S + 1, ..., S. Substituting Eq. (4.7) into the master
equation, i.e. Eq. (4.4), we find differential equations for all density matrix elements of
the form

. . d
priar = {ZQ(M/ — M) — %(M/ — M)?| para- (4.8)
Since the derivative of each density matrix element is proportional to the matrix element

itself, an integration of the equation above is straightforward. The initial state for the
free time evolution (the state after the first 7/2-pulse) is described by the density matrix
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TR o

Using the resulting solutions, we find that the expectation value (S,) after the second
7 /2-pulse is

with the elements

N
(S,) = 56_7”/2 cos (Q7). (4.10)
A somewhat more involved but nevertheless straightforward computation delivers the
expression of the variance, which is proportional to the expectation value of the squared
signal operator (for details see Appendix B),

(82 = %e*%” [N sinh(v47) 4 cosh(yq7)] . (4.11)

Now the minimization with respect to 2 in Eq. (4.6) can be carried out. The minimum
is found where the derivative of the signal dg (S,) is extremal, i.e. |sin(27)| = 1. The
final expression of the signal sensitivity for a standard Ramsey experiment is

V/N sinh(y47) 4 cosh(y47)

o) = .
N

(4.12)

An illustration of the temporal behavior of the sensitivity for 10 atoms is given
in Fig. 4.1(a). In the absence of phase noise (74 = 0) we recover the quantum projection
noise limit. The most prominent characteristic is that already for a small number of
atoms the sensitivity saturates, i.e. it omits its scaling with the atom number. The
value which it saturates to is found by taking the limit N > 1:

50 ~ VSR0T). (4.13)
T

The optimization over 7 leads to a transcendental equation tanh(y47/2) = ~47/2 which
can be numerically solved to indicate that the optimal sensitivity is simply limited by
the bandwidth of the noise,

mTin[(SQ] ~ 0.9517,. (4.14)

This behavior is depicted in Fig. 4.1(b), where the signal sensitivity optimized with
respect to the interrogation time asymptotically approaches this lower bound. A similar
bound that shows a saturation with the atom number N was derived for GHZ-states in
Ref. [4.21].
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Figure 4.2: Effects of amplitude noise. (a) In order to illustrate the scaling with the interro-
gation time we have numerically computed the signal sensitivity in a standard
Ramsey measurement performed on N = 10 atoms. As can be seen in the double-
logarithmic plot, the sensitivity scales like the quantum projection noise 1/7 at
short times and it transitions to a scaling with 1/./7 for larger time scales. (b)
The amplitude noise limit exhibits a scaling law of 1/ VN with the atom number.

4.3.2 Amplitude noise

We now analyze the dynamics described by Eq. (4.5) which includes the effects of
amplitude noise. Using standard numerical methods, we can immediately uncover a
particular limitation introduced by amplitude noise. The scaling of the sensitivity is
modified from the typical 1/7 to 1/y/7. This is illustrated in Fig. 4.2(a) where the
sensitivities obtained in both the degradation-free regime (v, = 0) and for -, > 0 are
compared. The crossover between the two scaling regimes is reached at around the
inverse of the amplitude noise bandwidth 7 ~ 1/~,.

We now fix a duration of the free time evolution 7. > v, ! deep inside the 1/\/7
scaling regime and investigate the scaling of the sensitivity with increasing N. Numerical
simulations [see Fig. 4.2(b)] carried up to a fairly large number of atoms N = 70 suggest
that amplitude noise does not modify the scaling of the sensitivity with IV,

1
x .
™y VTN

Under typical experimental conditions amplitude noise is orders of magnitude smaller

50 (4.15)

53



4 Publication: Laser noise imposed limitations of ensemble quantum metrology

than the phase noise, i.e. 7, < 4. Therefore, as suggested by the analysis above, the
first signature of laser noise is the saturation of the sensitivity with an increasing atom
number occurring at times much smaller than the times where amplitude noise becomes
important.

Let us note that this result agrees with the conclusion of Ref. [4.17] where uncorrelated
perpendicular noise (equivalent to independent amplitude noise) is shown to be far
less detrimental than parallel noise (phase noise) for the spectroscopic resolution with
entangled initial states.

4.4 Circumventing the phase noise induced saturation via twin
beam interrogation

To overcome the saturation effect introduced by the noise associated with laser phase
and frequency fluctuations, we employ a twin interrogation technique as in Ref. [4.21].
This assumes the division of the N-atom ensemble into two separately addressable
sub-ensembles of N/2 atoms each (with NV even and S§1’2) the corresponding population
difference operators). Moreover, we set the detunings of the two ensembles opposite to

each other leading to the Hamiltonian
Hy = QS —qs®), (4.16)

as a replacement of the free evolution Hamiltonian in the standard Ramsey method.
This constitutes an effective time-reversal operation as the sub-ensembles’ associated
dipoles rotate opposite to each other in time under the action of the same Hamiltonian.
This cannot be simply realized by shifting the frequency of each ensemble upwards and
downwards compared to the laser frequency but rather involves changing the sign of
the laser frequency.

The key point of this mechanism is that, while the systems evolve freely with .S §1) =S 9’,

the noise retains its collective nature Sg) + S,g?) according to Eq. (4.3). In a first step we
notice that the difference in detunings in Eq. (4.16) breaks the symmetry such that the
complete Hilbert space can no longer be described by a Dicke basis. Fach sub-ensemble
in itself though is restricted to its symmetric subspace, such that we can describe each
ensemble with a Dicke basis. The complete basis is then just the product basis of the
subspaces. We may write the total atomic density matrix as

p(t) = > pmimi(t) |s,mi,ma) (s,my,mb], (4.17)

mi,m2
I/
ml,m2

where s = N/4 and each sum runs from —s to s. The differential equations for the
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Figure 4.3: The signal and its quantum standard deviation as a function of the detuning.
The central Ramsey fringe (a) and its standard deviation (b), for N = 100 and
interrogation time 7 = 0.5/74. The deviation is significantly reduced at the steepest
parts of the signal when using opposite detunings which allows for a more precise
measurement of frequency.

density matrix elements we obtain from the master equation now read

pintom = (162 (mf = ma) =i (mhy —ma) = 2L (mi +mh — (ma +m2))” } Pt m3-
(4.18)

Their integration is straightforward and the density matrix at time 7 can be derived
(for details see Appendix B) for the initial conditions

2 (0) = 2LN [(:jl) (ii) (;‘Z) (i‘i)] By (4.19)

As a first result we find that the signal (S) is identical to the one in Eq. (4.10). On
the other hand, the standard deviation of the signal is drastically changed: at the point
where the signal vanishes (optimal detection point) the variance is

N
(82%) = ZeiWT cosh(vy47). (4.20)
The significant reduction in the detection quantum noise is immediately apparent by
comparing the result’s scaling with N to the one in Eq. (4.11). Furthermore, Fig. 4.3(b)

clearly shows how the noise cancelation mechanism leads to an extremely reduced
quantum noise exactly at the points of maximum signal slope where previously the
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noise was maximized. The frequency detection sensitivity is subsequently enhanced

cosh(v47)

VN

The optimal interrogation time is as before around 7, =~ 2/74. However, the result is
remarkable in that the optimal sensitivity recovers the 1/ VN scaling as in the case of
the noise-free Ramsey procedure. After numerical minimization with respect to 7, the
optimal sensitivity is

5Q = (4.21)

0.969
\/N Yd-

Note, that the result obtained above can be exactly reproduced by inverting the sign of
the phase instead of the detuning in one of the arms of the twin beam interrogation
scheme (see Appendix B). This leaves the free Hamiltonian unchanged but yields a
modified dissipator describing collective dephasing with the operator Sgl) — 9), which
is the approach used in Ref. [4.21].

mTin[éQ] ~ (4.22)

4.5 Noise induced limits in Rabi spectroscopy

Another method routinely used in quantum metrology is Rabi spectroscopy where the
population excited during an attempted m-pulse is monitored against the atom-laser
detuning. To model this procedure we introduce a coherent driving laser described
by the Hamiltonian from Eq. (4.2). The reversible dynamics of the system are then
subject to both the free Hamiltonian Hy and H;. The condition for a perfect population
inversion pulse on resonance is that the pulse area equals m which requires a pulse
duration of 7 = 7/2n. The frequency sensitivity is then extracted from the detected
population signal at the points of the steepest signal to the left and to the right of the
resonance.

We proceed with numerical investigations focused on describing and overcoming the
effect of phase noise during the Rabi procedure. The system Hamiltonian for standard
Rabi spectroscopy reads

Ho+ H; =QS, 4+ 2nS,, (423)

while for the suppression of noise we will employ the asymmetric free Hamiltonian
H; defined in Eq. (4.16). Similarly to the case of Ramsey spectroscopy, we have
illustrated an example of the signal and its standard deviation in Fig. 4.4; the effect
of noise reduction occurs again at the optimal operation point where the change of
the signal with the detuning is maximal. We quantify the enhancement by using the
definition of the signal sensitivity from Eq. (4.6) as a figure of merit for the frequency
detection sensitivity. The red dots in Fig. 4.5 convey the message that phase noise again
leads to a saturation effect when the atom number is increased. The blue dots instead
approximately show the recovery of the 1/v/N scaling.
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Figure 4.4: Rabi signal and its quantum standard deviation. (a) The resonance curve (signal)
and (b) the standard deviation which is again exhibiting a significant reduction at
the steepest parts to the left and to the right of the resonance when addressing a
split ensemble with opposite detunings. The ensemble size is N = 10 and we chose
a sufficiently small driving of n = 0.2, in order to minimize power broadening
effects.

4.6 Conclusions

We have investigated the effects of both laser phase and amplitude noise on the sensitive
detection of frequencies via the Ramsey and Rabi technique. For Ramsey spectroscopy
we have found analytical expressions showing a saturation of the minimum sensitivity
with the increasing atom number under the action of phase noise. To counteract this
effect, we have used an approach which involves the separate interrogation of two
sub-ensembles leading to the recovery of the typical standard quantum limited scaling
with 1/v/N. This setup is closely related to the one illustrated in Ref. [4.21], but is
also reminiscent of techniques used in recent proposals for counteracting the effect of
noise [4.23-4.28, 4.30] in quantum force detection setups: we describe an ’anti-noise’
path obtained via the inclusion of a negatively detuned sub-ensemble playing the role of
a negative mass oscillator. For amplitude noise, we have also numerically uncovered a
particular scaling of the Ramsey sensitivity with 1/,/7 at times larger than the inverse
of the amplitude noise characteristic rate 7, *. Numerical investigations suggest that
similar results hold for Rabi spectroscopy.
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4.7 Appendix

Derivation of the master equation
Von Neumann equation with a noisy laser

The Hamiltonian of a perfectly coherent laser source in a frame at rest is

H, = nz (ajeiiwlt + Uj_ei“”t> , (4.24)
J

where U;[ is the raising and lowering operator of the j-th atom, respectively, and

oj = o*j-r + 0, . We may now include a noisy phase ¢(t) modelled via the standard phase
diffusion theory [4.35] and amplitude noise €(t) by replacing

wit — wit + o(t), (4.25)
n — n+e(t), (4.26)

respectively. Going into the frame rotating with w;, we see that the noisy phase ¢(t) is
equivalent to a noisy frequency ¢(t), since then the substitution in Eq. (4.25) becomes

Q — Q+9(), (4.27)
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while the noise term in the amplitude remains unchanged. We assume both ¢(t) and
€(t) to be white noise processes, i.e.

(GO = vad(t 1), (4.28)
(e()e(t)) = 7ad(t — ). (4.29)

Hence, when writing the respective von Neumann equations for the density matrix p,

p = —i[H, p] +id(t)[S-, pl, (4.30)
p = —ilH, p] + 2¢(t)[Sz, pl, (4.31)

we can interpret each of them as a Stratonovich multiplicative stochastic differential
equation [4.21, 4.36].

Transformation between Stratonovich and It6 stochastic differential equations

Let us now more generally consider a differential equation for a stochastic process in
one variable,

%w(t) — a(a(t), ) + ba(t), D), (4.32)

where £(t) is a white noise process. Interpreting this equation as a Stratonovich (S)
differential equation, it can be transformed into It6 (I) form, where it follows different
rules of calculus. The transformation relation between the two formalisms is [4.36]

(S) da(t) = a(a(t), t)dt + b(a(t), t)dW () (4.33)
(1) da(t) = a(x(t),t)—i—%b(m(t),t)@zb(:c(t),t) dt + b(x(t), t)dW (¢), (4.34)

where dW (t) = £(t)dt is the Wiener increment of the stochastic variable £(t).
For the specific form of a multiplicative stochastic differential equation in the
Stratonovich formalism,

(S) dx(t) = apx(t)dt + box(t)dW (t), (4.35)
where ag and by are constants, the transformation into the It6 form yields

(1) dx(t) = [aoaﬁ(t) + ;ng(t)} dt 4 box(t)dW (t). (4.36)

If z(t) is a Markov process it is non-anticipating, so it holds that the average (zdW) = 0.
Hence, when performing the average over the above equation, we find

d{a(t)) = <a0 + bf) (x(t)) dt. (4.37)

99



4 Publication: Laser noise imposed limitations of ensemble quantum metrology

This relation is all we need to derive our master equation.

Master equation

Writing the von Neumann equation for our density matrix subject to an arbitrary
multiplicative white noise £(¢), we have

plt) = (Lo + a&(t)Ly) p(t), (4.38)

where the linear operator Ly corresponds to the deterministic part of the process, while
L, describes the action of the noise process on the density matrix. We interpret the
differential equation as a Stratonovich stochastic differential equation. Using the identity
for multiplicative linear white noise in Eq. (4.37) we have

dp(t) = (Lodt + ;agLfdt) p(t), (4.39)

where we used the fact that p(t) is Markovian and remains approximately unchanged
when averaging over the noise time scale. Therefore Eq. (4.39) yields our respective
master equations by identifying the terms from the von Neumann equations

and, for phase noise

Llﬂ = 2[527/)]7
a =/ (4.41)

For amplitude noise, on the other hand, we have

LlP = Z[Saivp]a
a = 2\/7,. (4.42)

Sensitivity of Ramsey spectroscopy subjected to phase noise

The details of the calculations performed for Ramsey spectroscopy when only considering
phase noise will be illustrated here. To this end we will perform a general calculation
for a split ensemble addressed with two different detunings 21 and {2, respectively.
We then recover the standard case by setting €2 = €21 = (29 or the enhanced case by
setting 2 = 21 = —y. As we have shown in the paper, the derivative of each density
matrix element is only proportional to the density matrix element, such that we find
the general solutions

M,y (t) _ mf,my (O)eiQ1t(m’1—ml)ez‘ﬂgt(m;—mg)e—’mtﬂ (m'1+m'2—(M1+M2))2_ (4_43)
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In order to compute the signals, we will first consider the following: the prefect 7 /2-pulses
can be modeled as rotations of the collective Bloch vector about the y-axis. The Pauli
spin operators are generators of such rotations such that we can write them as

R, = /2, (4.44)

where S, = Y, 07/2. The final state after the second 7/2-pulse after a free time
evolution for a period 7 is then described by the density operator py = Ryp(T)R;. The
expectation value of the population inversion at this point is

(S:)y = tr (Szpp) = tr (RS- Ryp(r)) = (S5)... (4.45)

where we used the invariance of the trace under cyclic permutations. The signal after
the second 7/2-pulse is hence equal to the expectation value of the operator S, after
the free time evolution. The same holds for the operator squared, i.e. (S2) F= (82) .
We can write the S, operator as

Sy = % ($T+57) = % (SF+8f +57+57), (4.46)

where S* = 2 O’;t are the collective atomic raising and lowering operators. The action
of the raising and lowering operators for each of the atomic ensembles on a state is

ST |s,m1, m9) = \/s(s +1)—mi(my £1)|s,m1 £ 1,ma), (4.47)

and analogously for S;E. Using these matrix elements of the raising and lowering
operators, we can compute the expectation values (S;). and (S%)_. In order to solve
the arising sums we also need to use the initial conditions of these expectation values
(S;) (0) = N/2, and (S2) (0) = N?/4, respectively. We then acquire the expression for
the signal

N N
(S2)p = Ze_%” (cos(217) + cos(227)) = Ee_%ﬁ cos(Q27), (4.48)

where in the second line we used the fact that the signal is identical for both cases. The
expectation value of the operator squared reads

e—2’yd7
<S§)f = % [ 5 ((J;f — 1) (cos(2Q17) 4 cos(2Q27)) + N cos((21 + QQ)T))

+ ol (cos((21 —Q2)7)+1)+1

5 . (4.49)

At this point we will make the distinction between the two cases of identical and
opposite detunings. For simplicity, we will already use the fact that the signal sensitivity
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is minimal where the signal vanishes but its derivative
N _ T/2 L
9o (Sz)p = —Toe V4T/2 8in(Q) (4.50)
is extremal, i.e. where
T
Qr = (2n+ 1)5, n € 2. (4.51)

When setting ; = Qs =  and using the minimization condition from Eq. (4.51), the
variance becomes

<S§)f = % (6727"”— (-N+1)+N+ 1) = ge”ﬁ” (N sinh(v47) + cosh(yq7)) . (4.52)

Substituting this and the derivative of the signal into the definition of the signal
sensitivity, we find our expression

/N sinh(y47) + cosh(y47)

0 = . 4.53
TV N ( )
On the other hand, when we set ; = —Q9 = Q, Eq. (4.49) becomes
N N
2 _ —2v4T e
(52 = 3 (e d +1) = 47 cosh(y4T1), (4.54)

which of course yields the expression for the significantly reduced signal sensitivity,

cosh(v47)
VN

which scales down more favorably with the number of atoms.

50 = (4.55)

Equivalence to phase conjugation

The process used to achieve the gain in measurement precision in Ref. [4.21] was phase
conjugation on one of the sub-ensembles. Conjugating the phase changes the sign of
the noise in one of the sub-ensembles, such that we find a Lindblad operator

Llp) =5 (57082 — (S2)%0 = 0(S2)7). (4:56)

where S = Sgl) — SQ). The Hamiltonian, on the other hand, remains unchanged.
Following the above calculation with this model yields the slightly different general
solutions for the density matrix elements,

2
Pt = s (0) A a0t/ 2(mf (s =) (457)
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With these solutions one can show that we find the same signal as before and the
increased sensitivity from Eq. (4.55).
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An array of N closely spaced dipole coupled quantum emitters exhibits super-
and subradiance with characteristic tailorable spatial radiation patterns. Op-
timizing the emitter geometry and distance with respect to the spatial profile
of a near resonant optical cavity mode allows us to increase the ratio between
light scattering into the cavity mode and free space emission by several
orders of magnitude. This leads to distinct scaling of the collective coherent
emitter-field coupling versus the free space decay as a function of the emitter
number. In particular, for subradiant states, the effective cooperativity
increases much faster than the typical linear o« NV scaling for independent
emitters. This extraordinary collective enhancement is manifested both
in the amplitude and the phase profile of narrow collective antiresonances
appearing at the cavity output port in transmission spectroscopy.

doi: 10.1103/PhysRevLett.119.093601

tThe author of the present thesis performed all analytical and numerical calculations. C. Sommer
provided essential insights leading to the investigations of the phase of the transmitted field, which
constitutes a crucial part of the paper.
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The confinement of atoms and photons in small volumes with very low loss has been
a renowned success [5.1-5.3] as it allows for tests of light-matter interactions where the
quantum nature of both comes into play. In a cavity quantum electrodynamics setup,
the photon-emitter interaction strength g; o« p&€ for an emitter with a dipole moment
1 is strongly enhanced by decreasing the field mode volume and, thus, increasing the
local field per photon £. In a standard Fabry-Pérot cavity geometry, this is achieved by
closely surrounding the emitter with two high-reflectivity mirrors. The atom-photon
interaction time is then enhanced by a factor roughly proportional to the cavity finesse
characterizing the number of round trips a photon can make before escaping to the
environment at a rate k. At the single quantum emitter level, this has facilitated
experimental progress towards strong coupling allowing the study of single photon
nonlinear effects, such as the photon blockade regime [5.4], of vacuum Rabi splittings
and other tests of fundamental quantum optics effects [5.5, 5.6].

The single emitter cooperativity C1 = ¢?/(k7y) (where v is the rate of spontaneous
decay into free space) is a well established measure for strong light-matter interaction
when C7 > 1. Since, for a single two-level emitter, the dipole matrix element u appears
both in g1 o< p and v o< p?, the cooperativity C is merely a geometric factor independent
of p [5.7]. This means that cavity design (increasing the finesse and decreasing the
transverse mode area) is the central aspect for reaching high single emitter cooperativity.
In the parameter regime of large x, one often targets a large effective cooperativity
by coupling N emitters simultaneously to the same cavity mode. For distant fully
independent emitters, the effective cooperativity then scales like Cog = C1N, as the
emitter-cavity coupling gy = ¢1V/N increases proportionally to v/N, while the free
space emission rate v stays constant. However, especially for small emitter-emitter
separations, their coupling to the vacuum modes is inherently collective generating states
with superradiant and subradiant decay [5.8], which invalidates the above simple scaling
law. Such decay processes have recently attracted interest in 1D and 2D subwavelength
spaced atomic arrays used in topological quantum optics, high extinction media or
photon storage [5.9-5.14].

We introduce an alternative, improved path, towards reaching a high cooperativity
based on collective dissipative effects. The mechanism involves the separate optimization
of the coherent coupling of the emitters to the cavity mode and of the incoherent emitter-
vacuum coupling. For a configuration of N closely spaced emitters (separation less than
the transition wavelength Ae), the coupling to free space vacuum modes can be strongly
suppressed [5.8, 5.15, 5.16]. At the same time, a periodic arrangement of emitters in a
rigid geometry (for example implanted inside a solid-state matrix), transversely placed
inside a single cavity mode can lead to optimized collective coupling [5.17]. The upshot
is that Ceg scales strongly in a nonlinear fashion with IV, as the effective collective
free space decay rate 7. can be dramatically suppressed. We propose an example for
the implementation of phase imprinting using higher order transverse cavity modes
leading to the preferential excitation of subradiant collective states. The effect is directly
observable by homodyne detection of the cavity output, displayed both in amplitude
and phase antiresonant behavior [5.18, 5.19]. As opposed to the strong coupling regime
exploited in [5.18], this paper considers the bad cavity regime x > g;v/N where one
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Figure 5.1: System setup. (a) Optical cavity supporting (b) different transverse modes coupled
to (¢) a rigid array of dipole-dipole interacting quantum emitters. (d) Light-matter
interaction creates an antiresonance dip and a fast phase switch around the emitter
resonance in the cavity transmission spectrum as shown on the right for a single
emitter with g; = /10 = 2.

typically expects modest antiresonance phase shifts. Because of the collectively increased
effective cooperativity, very narrow antiresonances occur accompanied by extremely
fast and large phase shift switches rendering such a system perfect for high resolution
spectroscopy.

5.1 Model

Let us consider an ordered ensemble of quantum emitters modeled as two-level systems
with ground state |g), and an excited state |e), (split by frequency we) located at r;
(for i =1,...,N) (see Fig. 5.1). The levels are connected by individual Pauli raising and
lowering operators o with of = o;" + 0, , 0! = —i(o;” —0; ), and 07 = 0;70; —0; 0.
The emitters are embedded in a static 2D support, transversely placed in the center
plane of a single higher order transverse electromagnetic (TEM) mode at frequency we
(see Fig. 5.1). At position (r, z) along the cavity axis z, the electric field operator is
proportional to a cos(kz)f(r)e,, where a is the annihilation operator of the cavity mode,
k =wc/c, f(r) is the transverse spatial mode profile, and €, denotes linear polarization
in the y direction. The cavity is laser driven at frequency w; with power P through one

mirror. In a frame rotating at w;, the dynamics of the mode of interest is described by
H. = hAcala + ihn (a* - a) , (5.1)

where A, = we. — wy and n = /2Pk/(hw). Cavity damping with decay rate k occurs
via the collapse operator a.

At dense spacing (|r; — ri+1]| < Ae), one has to account for the direct emitter-emitter
interactions via the transition dipole moments p,;. The collective dynamics is governed
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by the free Hamiltonian H,. and the collective part Hg;p,

H. + Hgip = hA. Za;'ai_ + A Z Qijajaj_, (5.2)

i gt
where Ay = we — wy, and Q;; is the strength of the coherent dipole-dipole interac-
tion between emitters i and j (see Appendix). Moreover, the incoherent collective

dynamics leads to mutual decay rates 7;; that can be accounted for with the Lindblad
superoperator [5.20]

Lolpl = > i (207 pof —of oy p—pofay ). (5.3)
i

In the single cavity mode limit, the interaction is described by the Tavis-Cummings
Hamiltonian

Hip = thi (aTai_ + aaf) , (5.4)

where the coupling strength g; of an emitter at position (r;,z;) is proportional to
cos(kz;) f(xi, yi)€y - py.

The complete dynamics of the system with density matrix p are then described by
the master equation

5= +lo, H + Lelpl + Ll (5.5)

where H = H. + He + Hgip + Hing and Le[p] = K (ZapaT —atap — paTa). Equivalently,
the dynamics can be described via quantum Langevin equations (QLE) [5.21] (see
Appendix).

5.2 Single emitter antiresonance

We consider a reference system with a single emitter in the low excitation limit (07) ~ —1
where a linear coupled set of QLEs can be derived. For a resonant interaction (i.e.
A=A, = A.), this leads to the following mean field equations:

(@) = =(k +iA)(a) +n—1ig{0), (5.6)

(67) = —(y+iA) (o7) —ig (a). (5.7)

These equations exhibit the phenomenon of atomic antiresonances [5.18, 5.22], where
the resonantly driven atomic dipole oscillates in a way to counteract the cavity drive

and leads to a minimum of transmission [5.23]. We analyze its dependence on ~ by
studying the steady-state amplitude transmission ¢, which is proportional to the output
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field amplitude t = & (a) /1. It reads

K
t= . 5.8
iIA+ K+ g2 /(IA +7) (5.8)

The transmitted intensity is 7' = |¢|?> and the relative phase shift caused by the emitter
is ¢ — ¢c, where ¢ = Arg(t) = arctan (3{t}/R{t}) and ¢. = —arctan (A./k) is the
phase shift of the bare cavity. The detection of the relative phase shift can be done
by homodyne detection and analysis of the output field quadratures. Scanning the
laser frequency (A), we find that the coherent transmitted intensity through the cavity
contains an antiresonance dip around A = 0 with a corresponding jump in the phase
shift (see Fig. 5.1). Fitting the antiresonance with a Lorentzian (see Appendix), we find
a depth of 1 —T(A = 0) = C1(C1 +2)/(C1 +1)%, and a width that can be approximated
by v(C1 + 1) = ¢?/k + 7 (for a regime where both g1,v < k). An almost vanishing
transmission is, then, a signature of reaching a regime of strong cooperativity (C; > 1).

5.3 Collective antiresonance of emitter arrays

As (1 is independent of p, an emitter with a larger dipole moment will only broaden the
antiresonance. For coupled emitter arrays, this is, however, no longer valid, and one can
design the radiative properties of the ensemble. For collective subradiant resonances of
an array the free space emission is suppressed, while we still can optimize the coupling to
the cavity mode. This generates extremely sharp and deep antiresonances accompanied
by a fast and large phase change within a narrow frequency range. The immediate
upshot of this regime is a dramatically enhanced effective cooperativity, which renders
it an ideal configuration for high resolution spectroscopy.

The set of coupled QLEs for many emitters can be cast in vector form

(a) = —iA (a) + 71— iGT (o) — K (a), (5.9)
(o) = —iA¢ (o) — i (o) — iG (a) — T (o), (5.10)

where, now, o and G are column vectors with entries o;” and g;. The matrices {2 and
I' have the elements €);; and ~;;. In steady state the transmission coefficient for the
cavity amplitude reads

K

t =
iAc + K+ GTG/[iAeH(Ae) + ’Veff(Ae)] ’

(5.11)

where the effective A.-dependent collective energy shifts and linewidths are derived
from the matrix

M(Ae) = iAe +iQ + T (5.12)
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as real and imaginary parts

Acii(Ae) =S {GTM(i?A)G} : (5.13)
Yett(Qe) = R {GrTl\/ICiTl?Ae)G} . (5.14)

In analogy to the single emitter case, we can define an effective N-emitter cooperativity
by

Cenle) = == 3. (5.15)

This equation provides a main message of the paper, as it shows that the numerator
and denominator no longer share the same dependency on u. As v.g is not a natural
constant of the ensemble, but strongly dependent on the relative positioning and phase
of individual emitters, one can reach subradiant states with v.g < . By proper design
of the cavity transverse field amplitude profile, the numerator can, at the same time, be
maximized, resulting in a scaling up of Ceg well above the independent emitter case

Ngi/ (k7).

5.4 Two emitters

Let us elucidate the mechanism in the two emitter case, with adjustable separation
d = |r1 —r3|. We distinguish two fundamentally different cases: (i) uniform coupling G =
(g, )T and (ii) opposite coupling G = (g, —g)T, resulting in GTG = 2¢? for both cases.
The matrix of interactions can be diagonalized with eigenvalues i(Ae £ Q12) + (v £ 712),
signaling the presence of collective super- and subradiant states (v & 712) shifted by
+0;9 from the emitter resonance we (the positive sign corresponds to uniform coupling).

In the extreme case, where d < A, the mutual decay approaches vi2 — 7, and the
effective cooperativity reaches (i) Cog — ¢2/(7) and (ii) Ceg — 00, respectively. To
account for dipole-dipole energy shifts, we impose Aqg(d) = 0 and, subsequently, tune
the cavity such that w. = we — §; i.e. we match the cavity to the shifted collective
emitter resonance. For two emitters, the imposed resonance condition yields § = 4+)o.
The resulting depth and width of each antiresonance is Cog(Ceg + 2)/(Ceogr + 1)? and
Yett(Cott + 1), respectively. Hence, for d — 0, we have (i) an antiresonance depth as
for the single emitter but twice the width (superradiance), and (ii) an antiresonance
that has a depth of 1 and a width of 2¢g?/k (subradiance). While the width of the
antiresonance is still limited by g, the phase switch bandwidth is independent of g. This
is a direct measure of the subradiance as the slope of the phase switch in this limit is
1/7%er (see Appendix). The result is reminiscent of the one in [5.18], however, in a very
different and less stringent regime, where only weak coupling is required and where
usually moderate phase shifts are expected; in contrast, for v.¢ — 0, the phase even
exhibits a m phase change within an extremely narrow frequency range, since in this
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Figure 5.2: Targeting antiresonances. (a), (c), and (e) show the cavity intensity transmission
and (b), (d), and (f) the corresponding phase for a scan of the laser frequency.
The upper row corresponds to w. = w, and asymmetric coupling g; = (—1)g;
the middle row illustrates frequency selection as w. ~ wp—n. Finally, we also
match the symmetry to the state corresponding to the subradiant antiresonance
(see Appendix). The parameters are N = 10, g = /50, v = /40 with a chain
separation of d = 0.08).

regime, lima_,g+ (¢ — ¢c) = £7/2.

5.5 Addressing collective subradiant states

The above results can be generalized to N emitters in an equidistant chain configuration
(d = |rix1 — r4]). Analytical considerations can be made under a nearest neighbor
approximation for Hy;, in the single-excitation regime, very well justified at small
interemitter distances and weak driving. Diagonalization of Hg;, gives rise to an
N-band problem with energies wy, = we + 2012 cos[mn /(N + 1)] for m running from 1
to N. The Lindblad term then shows a ranking of levels from superradiant (m = 1)
to very subradiant (m = N) for d < A¢/2 [5.8]. Moreover, the eigenvectors |m) =
V2/(N +1) 3, sin[mgjn /(N + 1)]0;r 19)®Y have a specific geometry with almost full
symmetry (m = 1) to almost full asymmetry (m = N). The two distinct cases involving
uniform G = (g, g¢,...)7 and opposite couplings G = (g, —g, ...)T then almost perfectly
address these fully symmetric |m = 1) and asymmetric |m = N) states.

Mlustrated in Figs. 5.2(a) and 5.2(b) is a scan of the collective resonances of a
ten-emitter chain with g; = (—1)’¢g and w. = w,. Both the dip and phase show an
off-resonant selection of collective subradiant states. We then selectively target a given
state by fitting the cavity resonance to its energy as shown in Figs. 5.2(c) and 5.2(d). To
achieve this, we focus around the state |m = N) with energy wy—n and we recalculate
the state’s energy by imposing Aqg(d) = 0 after which we set w. = we —d. We note that,
as opposed to the two-emitter case, we cannot find an analytical value for § but solve
for it numerically. It corresponds to a value close to wy—N — we. Finally, we compare
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Figure 5.3: Scaling of effective cooperativity. Ceg for N = 10 as a function of d/A.. The
effective cooperativity (blue, solid curve) is compared to an idealized case of perfect
subradiance (yellow, dashed curve). We used A. = Ae = 0, ¢ = k/30, and
~v = k/40.

the results to an ideal procedure where the components of G are chosen such that they
match the geometry of the target state [Figs. 5.2(e) and 5.2(f)].

The characteristics of the antiresonances can be quantified by Ceg (see Fig. 5.3). As
above, we assume the asymmetric cavity field profile with G = (g, —g, ...)T and make a
reference plot Copt as a function of d. The optimal cooperativity Cqpt is obtained from
Eq. (5.15) by substituting the decay rate with the minimal eigenvalue of T' [5.24]. In
reality, owing to imperfect phase matching to the most subradiant state as well as to
the inherent level shifts brought on by the dipole-dipole interactions, the effective gain
is more modest. Nevertheless, as suggested by the blue (solid) curve in Fig. 5.3, for
d < 0.5\ the enhancement is considerably larger than in the noninteracting quantum
emitters case.

5.6 Subradiance using transverse phase gradients

While, in practice, individual phase imprinting on the subwavelength scale is not a
trivial task, we present a theoretical illustration using 1D or 2D ensembles transversely
placed in the center of a cavity, in the focal point of a higher order TEM mode. In
the plane of the emitters, the field profile of a Gaussian-Hermite mode of order m, n is
f(x,y) = AmnHnm (\@m/w) H, (\@y/w) e~ @ +v")/w* Here, H,(z) is the nth Hermite
polynomial, w is the waist of the beam in the center of the cavity assuming a perfectly

symmetric cavity and Ay, = \/ 2/(m2(m+n)mlnl). Higher order TEM modes exhibit
multiple extrema of opposite signs in the transverse profile. For a sufficiently small w
(of the order of \¢), adjacent extrema can be closely spaced (for a TEM,p mode around
w/+/m) resulting in the desired coupling asymmetry. Note that, in reality, owing to
the diffraction limit, optical cavities might not be stable under high transverse mode
operation, in which case, an alternative stability regime has to be found.

We illustrate the phase imprinting mechanism for a chain illuminated by a TEM,q
mode with increasing m in Fig. 5.4(a), where now g is the coupling strength in the center
of the TEMyy mode. While, for small m, the effective cooperativity decreases (owing
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Figure 5.4: Targeting subradiance via transverse mode driving. (a) Effective cooperativity
as a function of m for N = 10 and under illumination with TEM,,g mode. The
inset shows a decrease in cavity coupling |G|. (b),(c) Comparison of antiresonance
signatures for TEM(o addressing (red, dashed line) vs TEM,,o addressing (blue,
solid line) with m = 21, corresponding to the point enclosed in the red box in
(a). The parameters are d = 0.2Xe, w = Ae, g = £/30, 7 = /40, and Aeg = 0 at
A.=0.

to a decrease in |G|), at higher m the alternating field phases are partially addressing
asymmetric collective states of high robustness resulting in a considerably enhanced
effective cooperativity. The very sharp cavity response for a fixed mode m = 21 is
shown in Figs. 5.4(b) and 5.4(c) in comparison to the modest results expected for a
TEM illumination. Moreover, we have numerically investigated 2D geometries as well
and found, for example, in the case of a 3 x 3 square array with d = 0.2\, = w and
g = k/20 = 2v (as depicted in Fig. 5.1), an enhancement of effective cooperativity from
the bare value Ng?/(k7vy) = 0.9 to Ceg ~ 80.1.

5.7 Conclusions

Tailoring the collective dissipative dynamics of N dipole coupled emitters can lead to high
effective cooperativity even in the regime Ng?/(kv) < 1. The immediate consequence
is the occurrence of a narrow antiresonance dip with fast spectral phase switching
without the need of strong individual coupling as in Ref. [5.18]. As it applies to narrow
atomic transitions, it hints towards applications for precision spectroscopy and quantum
network characterization. As opposed to using a lossy cavity field as an engineered bath
leading to superradiance as in Ref. [5.25], we only considered the naturally occurring
environment provided by the free space radiation modes. The regime treated here is
perturbative; i.e. the emitters do not modify the bare mode functions of the cavity mode.
Increasing the collective scattering rate close to unity [5.9-5.12, 5.26, 5.27] should result
in an interesting regime of cavity QED where the cavity mode functions are strongly
modified by a relatively modest number of emitters. A dynamical regime can occur and
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be exploited for hybrid optomechanical applications [5.28, 5.29] with emitters implanted
on vibrating membranes. Stronger phonon-photon interactions could be designed that
benefit from narrow collective resonances [5.29]. Similar considerations can be used to
analyze metamaterial arrays, where classical analogues of subradiant states are also
experimentally seen [5.30].
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5.8 Appendix

Vacuum mediated coherent and incoherent dynamics

For a collection of emitters at positions r; the collective spontaneous emission rates and
the coherent dipole-dipole interaction strengths are [5.20]

3y

vij = 5 Fke - 1i5), (5.16)
3

Qij = _%G(ke “Tij), (5.17)

respectively. Here, v is the single emitter free space decay rate, k. is the transition
wave vector and r;; := r; —r;. The functions F' and G are defined as

Flo) = (1 — cos2 8 sinx 1 29 <cosa:sinx) 1
(z) ( cos ) . + ( 3 cos ) 2 3 ) (5.18)
cos T sinz = sinz
= —(1— cos® 1— 2 ) 1
G(x) ( cos 9) . —i—( 3 cos 0) < 2 + 5 ) (5.19)

where 6 is the angle drawn by the dipole moment p and the separation vector r;;. Note,
that for all computations in the paper we assumed the dipoles to be oriented along the
y-direction.

Cavity input-output relations

Consider a cavity with two mirrors A and B. We drive the cavity through the mirror
B and measure the output at the opposite mirror A. Furthermore, we assume that
both mirrors have identical losses of /2. The input-output relations of the total input
and output operators (i.e. the input white noise on top of the classical input) for both
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mirrors are

Bin + Bout - \/Ea, (520)
Ain + Ague = vRa. (5.21)

Taking the classical average of the above equations, and assuming the drive through B
at amplitude (Bj,) = n//k,

% + (Bous) = vk (a), (5.22)
(Aout) = V5 (a) . (5.23)

Hence, we find that the output at port A reflects the cavity field according to (5.23).

Emitter input noise in the QLE

Writing the input noise in the QLEs for the emitter ensemble is not straightforward as
the decay is not diagonal. We first note that for a diagonal Lindblad term describing
the damping of a system via multiple damping channels with operators c¢; and rates v;,
the QLE [5.21] of an arbitrary system operator A is

A=i[H, A] - Z[A, c;] (V;c + \/Ichin> + Z (I;ch + \/FjCjn> [A, ], (5.24)
j

J

where ¢, is the uncorrelated white input noise (cin (£)cl (¢)) = 6(t — t').

For correlated emitters, it is possible to diagonalize the Lindblad term such that each
decay channel is described by a damping operator which is a linear combination of
all 0. We may perform the transformation back to the original non-diagonal form
in order to find the input noise terms. To this end, let T be the real and orthogonal
(T~! = TT) matrix which diagonalizes the matrix T' as

diag (A1, ..., \y) = T7IT'T, (5.25)

where ); is the jth eigenvalue of the decay matrix. Defining a set of damping operators

+ . -1 +
I o= zk: (T )jk o, (5.26)
we may write [5.24]
Ao B _
Lelpl = 30 5 (2007 pIL; — T TL p — pIIILT ). (5.27)

%

Obviously, this Lindblad term is diagonal and hence the QLE may be cast into the
form given by Eq. (5.24). The input noise terms of the emitter operators a;fin follow
the transformation rules given by Eq. (5.26). Transforming the QLE for any emitter

75



5 Publication: Cavity antiresonance spectroscopy of dipole coupled subradiant arrays

operator A back into the non-diagonal form gives the usual terms for the deterministic
parts. For the noise terms, however, we have

S oIATIT N MGin = ZA.7150), (5.28)
SA L ¢7mm: 4,07 1€l (8), (5.29)

where we have implicitly defined our correlated emitter noise terms ¢; as

ZTW 0 - (5.30)
Hence, the QLE for any emitter operator A is
{ — 4 +1 (Vi Yij + T _
Az[H,A]—iZj[A,ai](;a +a0) + Z( Lot el0) o) (63

with the spatially correlated white noise &. From the definition of the noise it is
straightforward to show that

(GOE)) = 8(t — 1), (5.32)

Lorentzian shape of the antiresonance

We verify the Lorentzian profile of the antiresonance for a single emitter interacting
with a single cavity mode by fitting

2 2

K K

BA)=|——]| — 5.33
(&) iA+ K iIA+k+g2/(IA+7)| (5.33)
with a Lorentzian
Bs |?
5.34
iIA+ ( )
where 3 gives the linewidth while s gives the height. We compute immediately
SR (5.35)
T Tt o '
and from
2B(0)
B=.|% (5.36)
o (0)
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we obtain

5= \/ K2(9° + K7)*(9% + 2K7) (5.37)

g% + 49tk + 2r37 (K2 4+ Ky 4+ 292) + g2 (k1 + 6K292)

In the limit that both ,g < x when only keeping terms of O(k*) and higher, this
reduces to 5~ v(1 + C).

The results obtained above are valid for two emitters with the replacements v — g,
C — Cog and the detuning A, = Agg = A.

Characterizing the phase of the field

In order to describe the phase analytically, consider that for the single emitter transmis-
sion coefficient with A, = A = A, we have
S{t} _ A(" A%+
Rit} ~ r (12 + A7)+ g7

(5.38)

The phase of the field is then given by the arctangent of the above expression. For
sufficiently small phase shifts (C' < 1), the phase is well approximated by the argument
of the arctangent, such that

9 Or(e+y) (P4 CO) - A%
2 T G E

(5.39)

Finding the roots of this expression yields the detuning at which the phase shift of the
emitter is maximal (positive A) or minimal (negative A), respectively,

A=xy/1+C. (5.40)

We note, that for large cooperativity the approximation of the phase does no longer
hold, however, given that g,y < k the position of the maximum and minimum are well
approximated by the above detuning even if C' > 1, such that

max [0 — ¢c] = max [¢] ~ arctan < (5.41)

C
2v/1+ C) '
Here we wrote down the maximum of the phase and note that the minimum only differs
from this expression with a negative sign. Now, depending on the sign of A, taking the
limit of v — 0, the phase either goes to 7/2 or —7/2, while A — 0, i.e.

s
lim ¢ = 4= 5.42
A ? = %5 (5.42)

This means that the phase exhibits a jump of magnitude m when crossing the resonance,
which can also be seen when computing the slope. To this end, consider the fact that
close to the resonance where |A| < &, the phase is small such that the approximation
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—— n=10"1k
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Figure 5.5: Comparison of analytics with exact numerics. We compare the full numerics,
i.e. without using (o7) ~ —1, to the analytical result in an extremely subradiant
regime for a 4 emitter chain with opposite coupling and without dipole-dipole
shifts (€;; = 0). The inset is zoomed in on the antiresonance to emphasize the
agreement. The parameters are d = 0.02\., g = £/20 = 27y and A, = 0.

in Eq. (5.39) is valid again. In the limit of |A| < 7,9 < & but large cooperativity
g% > k7 and hence g > v, this expression becomes

b—gompn 2 (5.43)
v
We conclude that the slope at the resonance (where the phase changes sign) is propor-
tional to 1/ and hence diverges for v — 0, which is in agreement with the previous
result where the phase shift is maximal or minimal at A — 0 depending on whether
one takes the left-sided or right-sided limit.
Finally, we note that the above discussion is also applicable to two emitters when
replacing v — Yefr, C — Cogt, and setting A, = Agg = A.

Matching frequency and symmetry of antiresonances
For Fig. 5.2(e),(f) we set
G ~(0.72,—1.44,2.03, —2.46, 2.68, —2.68, 2.46, —2.03, 1.44, —0.72)T x 1072k, (5.44)

which corresponds to the coefficients of the eigenvector of €2 that had the largest
overlap with the eigenvector of I' corresponding to the smallest eigenvalue and therefore
the smallest decay rate [5.24]. The frequency was matched by numerically solving
Aeg(0) = 0, which lead to 0 ~ 0.234k, and setting A, = A, — 4.
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Comparison to exact numerics

Let us now comment on the accuracy of the linearization used to obtain the form of
egs. (5.6),(5.7) and (5.9),(5.10). From Fig. 5.5, it is clear that as long as we keep
the driving strength n weak enough, the requirements for the low-excitation limit are
fulfilled rendering the analytics exact (cf. red dots and dark blue line in Fig. 5.5). If
the driving becomes too strong, the excitation of the emitters is no longer negligible
resulting in a discrepancy between the full numerics and the analytics (cf. dashed, light
blue line in Fig. 5.5). Nevertheless, this does not change the results qualitatively, i.e.
there still is a subradiant antiresonance.
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Cavity-embedded quantum emitters show strong modifications of free space
radiation properties such as an enhanced decay known as the Purcell effect.
The central parameter is the cooperativity C, the ratio of the square of the
coherent cavity coupling strength over the product of cavity and emitter
decay rates. For a single emitter, C' is independent of the transition dipole
moment and dictated by geometric cavity properties such as finesse and
mode waist. In a recent work [Phys. Rev. Lett. 119, 093601 (2017)] we
have shown that collective excitations in ensembles of dipole-dipole coupled
quantum emitters show a disentanglement between the coherent coupling to
the cavity mode and spontaneous free space decay. This leads to a strong
enhancement of the cavity cooperativity around certain collective subradiant
antiresonances. Here, we present a quantum Langevin equations approach
aimed at providing results beyond the classical coupled dipoles model. We
show that the subradiantly enhanced cooperativity imprints its effects onto
the cavity output field quantum correlations while also strongly increasing
the cavity-emitter system’s collective Kerr nonlinear effect.

10.1103/PhysRevA.99.043843

fThe author of the present thesis performed most analytical and numerical calculations in this paper,
with support and vital input from all other authors. The calculations concerning the nonlinear behavior
of the system were conducted by C. Sommer. M. Reitz focused on the single-emitter antiresonance and
investigated the strong-coupling regime.
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6.1 Introduction

The decay rate of a quantum emitter placed in an optical resonator can be strongly
modified from its bare free space value. The effect stems from the cavity-induced
modification of the optical density of states around the emitter’s transition frequency.
This was predicted by Purcell in 1946 [6.1] and measured in various systems employing
Fabry-Perot optical cavities, plasmonic modes, microwave cavities, etc. [6.2—6.4]. This
indicates the possibility of modifying other properties of materials by dressing them with
strongly confined resonant optical fields. For example, at the level of single molecules, the
Purcell effect has been employed to controllably tailor the ratio of radiative decay rates
from excited zero-phonon electronic states to different ground-state vibrational sublevels,
thus enhancing the quantum efficiency [6.5]. Experimental and theoretical efforts on
the collective strong coupling with organic molecules have shown strong modifications
of energy and charge transport [6.6-6.10], Forster resonance energy transfer [6.11, 6.12],
chemical reaction rates [6.13, 6.14], etc.

It has been recently predicted [6.15] that the collective dynamics of N interacting
quantum emitters in the bad cavity regime exhibits a scaling of the cooperativity with
the emitter number N beyond the expected linear one. Such a behavior can be tested
by scanning a probe laser around the common resonance of the cavity mode and a
single collective state of the coupled emitters. A “hole-burning” effect occurs around
the common resonance with a frequency window characterized by the collective Purcell-
modified emitter decay rate; i.e., the emitters shut off transmission around this frequency.
At the single-particle level, such an antiresonance behavior has been experimentally
and theoretically discussed [6.16-6.18]. At the many-particle level, the key point is
that closely spaced quantum emitters are subject to intense dipole-dipole interactions
leading to collective scattering, as observed experimentally [6.19] and theoretically
discussed mostly in one- and two-dimensional geometries [6.19-6.24]. Assuming uniform
illumination of the dense ensemble (characterized by particle separations smaller than
the wavelength of incoming light), carefully chosen lattice constants can ensure that
collective subradiant states are addressed that can efficiently reflect light. Theoreti-
cal proposals have been directed towards engineering metamaterials with controlled
transparency [6.25], the study of collective motion of atomically thin metamaterials and
their interactions with light (optonanomechanics) [6.26-6.28], or the enhancement of
nonlinear effects [6.29, 6.30]. Engineered interactions via common coupling of emitters
to guided modes of a two-dimensional photonic crystal allowed for the theoretical study
of topological quantum optics [6.24]. In one and two dimensions, collective subradiant
states have also been studied for the possibility of robust light-storage devices [6.31, 6.32].

One of the widely used theoretical approaches (including in Ref. [6.15]) to describe the
response of the quantum emitter ensemble to a driving light field is based on a mapping
to a classical problem of coupled dipoles. The simplifying assumption is that in the weak
excitation regime the emitters behave as classical oscillators. Collective effects such
as superradiance and subradiance are indeed recovered in such an approach. For the
treatment in Ref. [6.15], this approach sufficed to give rise to a semianalytical expression
of the transmission of light through a cavity containing a collection of interacting
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emitters; the results indicated a strong modification of the cavity cooperativity around
collective antiresonances associated with collective subradiant states. However, questions
regarding the quantum effect of subradiance imprinted on the cavity outgoing light
were left open. This paper provides an extension to the quantum problem: We focus
here on describing the quantum properties of the output cavity fields (transmitted
and reflected) as well as of the detected signal. Linearizing the quantum fluctuations
around the classical problem allows us to identify regimes of cooperative enhancement
of quadrature squeezing and strongly modified signatures in the second-order correlation
functions. The treatment of the classical problem beyond the weak excitation regime
also allows an analysis of the collective Kerr effect: Around subradiant antiresonances,
the third-order nonlinear response of the system is greatly enhanced even for limited
numbers of emitters.

The paper is organized as follows: In Sec. 6.2, we introduce the full model of N
quantum emitters interacting with a cavity field both within the master equation
formalism as well as quantum Langevin equations (QLEs). We proceed by justifying
the linear approximation and deriving coupled equations of motion for classical averages
as well as fluctuation operators. In Sec. 6.3, we quickly review fundamentals of cavity
quantum electrodynamics (cavity QED) with a single emitter such as occurrence of
strong coupling, the Purcell effect, and antiresonances. We then derive the classical
response in reflection and transmission for two-sided cavities. We introduce operators
for the detected signal and provide a formalism for computing variances and correlations
for intracavity, outgoing, and detected fields. In Sec. 6.4, we describe some fundamental
aspects of vacuum-coupled quantum emitter ensembles exhibiting subradiance and
superradiance and investigate some of their entanglement properties. Finally, in Sec. 6.5,
we present the dynamics of coupled emitter ensembles inside a common cavity mode,
exhibiting a modified collective Purcell effect, and analytically derive cavity transmission
properties, equations of motion for the fluctuation operators, and the modification of
the collective third-order nonlinearity.

6.2 Cavity dynamics of coupled quantum emitters

We consider an ensemble of N quantum emitters each with a ground state |g) ; and an
excited state |e) j (resonance frequency w.) located at r;. The corresponding raising
and lowering operators are denoted by 5’; and S'j, respectively. The emitters are placed
within a plane orthogonal to the cavity axis and inside the waist of a cavity mode
at frequency w. (see Fig. 6.1). The cavity is laser driven at frequency w; with power
‘P through the left mirror. The coherent cavity mode dynamics are described by the
Hamiltonian (in a frame rotating at wy),

Heay = ~hAATA + il (AT - 4), (6.1)
where Ay = wy—we and n = +/2Pka /(hwy). The cavity damping rate is k = (kp+#r4)/2

(encompassing losses via both left and right mirrors) and occurs via the collapse operator
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Ain )
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-« ° :) Q ij
Aout ¢
Vij A

Figure 6.1: Model schematic. Optical cavity containing N coupled, closely spaced quantum
emitters. The vacuum modes (not supported by the cavity) mediate dipole-dipole
interactions with strength €;; and induce collective decay with ;;. Losses through
the mirrors occur at rates ks (left mirror) and kg (right mirror). The cavity is
pumped through the left mirror with nonzero amplitude Ay, while zero-average
noise is entering via the right mirror as bin. Transmission and reflection are
measured by detecting outgoing nonzero-average operators flout and Eout.

A contained in the Lindblad term, L.[p] = & (2flpfﬂ — AtAp — pfﬁfl).

In the single-mode limit, the emitter-cavity interaction is described by the Tavis-
Cummings Hamiltonian

Hint = hzg]’ (/A“gj =+ A A;r) , (62)
J

where each of the emitters couples to the cavity mode with a distinct rate g; which
depends on the emitter positions as well as the cavity mode profile. At dense spacing
(d :=|rj —rj41| < Xe), one has to account for the vacuum-mediated emitter-emitter
interactions via the fields they emit due to their transition dipole moments p (assuming
all dipole moments to be identical). The total emitter Hamiltonian includes a free part
plus the collective coherent dipole-dipole interactions

He=~hY>" ASIS; + 1Y Q8;8], (6.3)
J J#k

where A, = wy — we. The dipole-dipole interactions governed by the frequencies 2;;

are derived by eliminating the degrees of freedom for the surrounding vacuum modes

excluding the single mode supported by the cavity (see Appendix 6.7). Doing so

additionally leads to dissipation of the emitters in the form of collective decay with rates

vij = Yhij (where h;; is maximally unity for ¢ = j) that are described by the Lindblad
term [6.33]

Lelo) =S vhy (zﬁjpé,i — 8184p — ijSk) . (6.4)
7.k
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While full numerical simulations for moderate numbers of quantum emitters can be
carried out based on the master equation description, d;p(t) = i[p(t), H]/h+ L[p(t)], we
move to an equivalent quantum Langevin approach (see Appendix 6.7), which allows
for the derivation of analytical results,

A= —(k—iA)A =i g;S; + 1+ /Radin + /EBbin, (6.5a)
J
Sj = —(y —i0e)S; +ig; AS: + > (i + i) 57 Sk — V27€; (1), (6.5b)
k#j
87 = —2y(8; +1) +2ig; (AT5; — SIA) — 3" 2951 (818k + 818,) + v ().
k#j
(6.5¢)

The convention in this paper is that nonzero-average operators are denoted by capital
letters while lowercase letters denote fluctuation operators. The left mirror allows for a
nonzero-average input Ay = n/+/KEA+Gin With the zero-average white-noise term fulfilling
(&in(t)dgn(t’ )) = 0(t — t') (while all other correlations vanish). The right mirror allows
for white noise only with all correlations vanishing except for (b, (£)b] (') = 8(t — /).
One can also define an effective input operator,

Cin = \/HiAAm + UKiBBiny (6.6)
KA + KB KA + KB

in terms of which the QLE for the cavity field shows a single compound input noise added
as ¢, with <éin(t)é;fn(t’)> = 0(t—t') and &, = Cin —n/v/2k. On the quantum emitter side,
we have defined effective noise operators affecting the emitters (see Appendix 6.7 for more
details) &;(t) = S7¢;(t) and & (1) = 2 (S;rfj(t) + f;-(t)Sj). In the absence of classical
drive terms for the quantum emitters, the noises are zero-average and ¢ correlated in
time; however, as the emitters are placed in the near field of their neighbors, spatial
correlations are included in the pairwise decay terms, i.e., <§i(t)fj-(t’ )) = hijo(t—1t'). A
linearization procedure can be applied around the average values (o = (4), ; = (S;)
and z; = (5%)), introducing zero-average fluctuation operators @ = A — «, 6; = S; — 3j,

and 0} = gjz — zj, respectively. We then proceed by neglecting products of fluctuation
operators. This allows us to derive two distinct sets of equations, one for the classical
averages (which still includes nonlinear behavior as long as we keep the equation for

the population inversion) and one set for the fluctuation operators (linearized). For the

85



7 Publication: Enhanced collective Purcell effect of coupled quantum emitter systems

classical averages, we find

q=—(k—iA)a—iY _ g;B;+n, (6.7a)
J
Bj = —(y —ile)B; +igjazj + Z (4% + Vjk) 2j Bk (6.7b)
k#j
2j = =27 (% + 1) + 2ig; (a*ﬁj — ﬂ;a) — 42 vk {5;5/%:} : (6.7¢)
k#j

Note that, in this limit, we can express the inversion average as z; = (21;”;5'] —1) =
2|3;|? — 1 as a second-order perturbation in 7. Next-order terms, stemming from two
fluctuation operators averages such as (&;@-), are already fourth-order corrections in 7.
We can then write QLEs for the quantum fluctuations of all operators,

a=—(k—iA)a— iZgjé'j + /FAbin + v/RBbin, (6.8a)
J

é’j = — (’y —iAe) 0j +ig; (Zjd + a&j) + Z (ink + ’ij) (Zj&k + 5]4%5) — \/275j(t),
k#j
(6.8b)

;j; = —2767 + 2ig; (a*ﬁj + g;al — oz&j- - ﬁ;d) -2 Z Vik (5;5/% + Bk(}; + H.C.) +
k#j
+ \/ZWEj(t). (6.8¢)
Let us now discuss the correlations of the emitter noise terms. Assuming the environment

for the emitter input noise to be in a vacuum state, the effective noise terms are also of
zero average. However, they have the following nonvanishing correlations,

e [, it j =k
<a]<t>§k<t>>—{hjkzjzm(t_t,% o (6.92)
(20 )=, =k
<sj<t>5k<t>>—{4hjk5;ﬁk5(tt,)’ o (6.9)
st ) 2656t 1), it j=k
<5j<t>fk<t>>—{thk;kﬁﬁ(tt,)’ o (6.9¢)

*

and (£(t)E (1)) = (EE(¢)E](¢))
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Figure 6.2: Single emitter cavity mode hybridization. Plot of hybrid cavity-emitter decay rates
(a) and frequencies (b) when sweeping the coupling g past the strong coupling
onset point of g = |(k —)/2| (in the resonant case). The grey region shows the
weak coupling but strong cooperativity regime where the Purcell effect shows up
as a modification of the emitter’s radiative rate. (¢) Standard picture of avoided
resonances in the strong-coupling regime when the cavity detuning is scanned. (d)
Intensity of transmitted, reflected, and scattered fields of an emitter-cavity system
in the Purcell regime (antiresonance regime) for a laser scan around the resonance.
The parameters are g = x/5, v = £/20. (e) Cavity phase shift and emitter-only
induced phase shift in the same regime. (f) Cavity response in transmission and
reflection as well as scattered field showing the signature of polaritons in the strong
coupling regime (g = 2k).

6.3 Single-emitter antiresonance spectroscopy

Let us first fully analyze the emitter-cavity mode hybridization by solving Eqs. (6.5)
for a single emitter. Steady-state solutions for the operator averages already suffice to
provide an overview of effects such as cavity strong coupling (occurrence of polaritons),
antiresonances, and the Purcell modification of the emitter’s decay rate. We then
make the connection between the intra-cavity dynamics and the amplitude and phase
transmission/reflection for asymmetric two-sided cavities. In the next step, we describe
the quantum properties of the field inside the cavity and of the output fields (in
transmission /reflection). By assuming a particular detection scheme which allows us
to define nondimensional operators for the detected field, we analyze the connection
between the detected signal and the continuous output fields. Finally, we compute the
next-order correction to the steady-state solution to derive the scaling of the system’s
Kerr nonlinearity.
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6.3.1 Regimes of interaction

The classical equations of motion for the cavity field amplitude and the dipole of the
quantum emitter are sufficient to characterize the different regimes of interaction inside
the optical cavity,

a=—(k—1iA:)a—igB+n, (6.10a)
B =—(y—ilA)B —iga. (6.10D)

We denoted by « the effective decay rate via both mirrors k = (ka4 + £p)/2. The
diagonalization of the above equations (under resonance conditions, i.e., fixed A, =
Ae = 0) leads to the hybridized decay rates and frequencies,

N2
Fi:"‘;”ﬂ%{ ("27> —gZ}, (6.11a)

wi:i%{ (”;7>2g2}. (6.11b)

The threshold g > |(k —+)/2| indicates the onset of the strong coupling regime where the
two frequencies combine into distinct polariton branches. Far above this threshold the
polaritons are symmetrically displaced by 4+¢ from the original energies [see Fig. 6.2(b)].
The decay rates show a different behavior as they already hybridize before the onset of
strong coupling and ultimately reach the algebraic average (k +)/2. We will be mostly
interested in the weak coupling regime, highlighted in grey in Figs. 6.2(a) and 7.2(b),
where for v < k, a strong modification of the emitter bare decay rate by a factor 1+ C
occurs [where C' is the cooperativity defined as C' = g?/(k7)]. This is the Purcell effect
and one can cast the Purcell factor [6.1] given by F, = 6mc3Q/(w3V) in terms of the
cooperativity parameter. Using the definition of the quality factor Q = w./k, the dipole
coupling strength g = p11/w./(2e0hV) and the free space decay rate v = w2pu?/(3whc3eq),
we can express the Purcell factor as F}, = 4C.

6.3.2 Antiresonance: Transmission, reflection, and absorption

Assuming steady state, we set the derivatives to zero in Eqgs. (6.10) and obtain

—1g98+n
=7 7 A2
Ry (6.12a)
—igQ
=—\ 6.12b
5= (6.12b)

Under the considered approximations, the dipole responds linearly to the intracavity
field; the cavity field in turn is the result of interference between the pump signal and
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the dipole re-radiated amplitude. Solving the above equations, we find

_ n(y —iAe)
= A (- A T g (6.132)
5= —ign

(k —iAc) (v —iAe) + g%

(6.13b)

The cavity output signal consists of three parts: The reflected (r¢), transmitted (t.),
and scattered (s.) field. The latter is the field leaking out of the sides of the cavity due
to spontaneous decay of the emitter. In order to investigate these three parts, we make
use of the input-output relations written separately at both left and right mirrors,

Ain + Aout =/ HAA, (614&)
(A)in + Bout = HBA- (614b)

A

As specified above, driving is done through the left mirror such that (A;,) = n//ka.
Averaging of the equations above thus leads to

(Bout) = vkBQ, (6.15a)
/R + (Aows) = Viac. (6.15b)

The amplitude transmission coefficient t. and the reflection coefficient r, respectively,
are then given by

B /
t, = Bow) _ VFARE (6.16a)

<Ain> n ’
AOU

po = WAout) _FAL gy R (6.16Db)
<Ain> n KB

While generally the cavity properties strongly depend on the mirror asymmetry, let
us focus on a perfectly balanced cavity where kK = ko = kg and express the complex
transmission amplitude as

K
te = ) 6.17
k=il + g%/ (7 — i) (6.17)
while the reflectivity is immediately derived as r = —1 + ¢. This expression already

contains the phenomenon of emitter antiresonances [6.15, 6.17, 6.34], where the reso-
nantly driven dipole oscillates in a way to counteract the cavity drive leading to a local
minimum of transmission [6.35].

The respective intensities are given by the absolute squares of the complex coefficients.
We note, that it is possible to write down a similar input-output relation for the scattered
field in the linearized regime. However, for more general purposes, one can use the fact
that the sum of all the intensities has to be conserved, namely |re|? + [te|? + |s¢|? = 1.
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This gives the scattered intensity |sc[? = 1 — [tc — 1|2 — [tc|> = 2 (R {tc} — [tc]?). At
resonance (A, = A, = 0), we can express all the intensities in terms of the cooperativity,

1

te]? = ——, 6.18

12 110 (6.18a)
02

= —, 6.18b

el 110 ( )
2

|sc|? = 702 (6.18¢)

(1+0C)

An interesting point here is the scaling of the scattered field with the cooperativity.
Namely, not only does it vanish for small cooperativity (where the emitter is simply
never excited and thus cannot scatter), but also for C' > 1 the radiation to the side is
suppressed. Since the transmission vanishes as well in this regime, the entire input field
is reflected [see Fig. 6.2(f)].

The phase shift of the field that passes through the cavity is given by the transmission
coeflicient as

S{tc} >
Ritct/)
While this corresponds to the phase shift caused by the hybrid system, in the resonant

case one can approximate the phase shift caused only by the emitter by subtracting the
empty-cavity response ¢, = arctan (A./k) [see Fig. 6.2(e)].

¢ = Arg(t.) = arctan < (6.19)

6.3.3 Intracavity steady state

In a first step, we will write the QLEs in the single emitter case and solve for the
intra-cavity fluctuation operators in steady state. For N = 1, Egs. (6.8) reduce to

G =—(k— i) & — igd + /R (t) + Vb (1), (6.20a)
b= —(y—il) 6 +ig (ad” + za) — V/29E(t), (6.20b)

6% = —2v67 + 2ig (a*?f + Bat — ast — B*&) + V/29E5(t).
The correlation functions for the single-emitter input noise are derived from

Eqgs. (6.9a)-(6.9c) for N = 1. We proceed by casting the above set of equations in a
more convenient matrix form with the following definitions:
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Ain
a al,
at bin
vi= |6 |, vin:i=|bl |- (6.21)
ot ¢
57 et
gz

The system dynamics can then be written as a matrix-vector differential equation,
v =Mv + Nviy(t). (6.22)

The matrix M is a drift matrix that is completely determined by steady-state expectation
values,

— (kK —1A.) 0 —ig 0 0
0 — (k4 iAc) 0 ig 0
M = igz 0 — (v —iAe) 0 iga | . (6.23)
0 —igz 0 — (v +iAe) —iga*
—2igB* 2igf3 2iga’* —2iga —2v

The input noise terms are multiplied with the matrix N, which is given by the decay
rates for each dissipation channel,

JE 0 Ve 0 0 0 0

0 V& 0 & 0 0 0
N=|0o 0o 0 0 —y&y o0 0 (6.24)

0O 0 0 O 0 -2y 0

O 0 0 0 0 0 v
Formal integration of the fluctuation operators’ QLEs, Eq. (6.22), leads to
t /
v(t) = Miv(0) + / At MU N, (1), (6.25)
0

where the first term is the transient solution. Assuming that the system is stable, i.e.,
all the eigenvalues of the drift matrix have negative real parts, this solution vanishes
at large times and the system reaches a unique steady state independent of the initial
conditions. One can then fully analyze the properties of the system in steady state
by looking at the fluctuation correlation matrix V = (v(t)v'(¢)). The correlations of
all input noises can be jointly written as (vin(t)v;l (¢')) = §(t — t')C, where the noise
correlation matrix is
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01000 O 0
00000 O 0
00010 0 0
C=|00000 0 0 (6.26)
00000 1 —28
00000 0 0
0000 0 —28 2(1+2)

A diffusion matrix can afterwards be constructed D = NCN ' and a simplified equation
involving only the correlation and the diffusion matrix can be obtained (see details in
Appendix 6.7),

MV +VM' = —D. (6.27)

This is known as the Lyapunov equation and it allows one to derive all two-point
operator correlations for the system in the long-time limit (steady-state condition).

6.3.4 Output fields

To derive quantum properties of the field exiting the cavity, we use the input-output
relations such as the ones in Eq. (6.14). All input-output relations combined into a
convenient vector form read

Vour (t) = NTv(t) — vin(t). (6.28)

In the time domain, the output field is not § correlated, which makes calculations more
cumbersome. However, a transformation to the Fourier domain provides an immediate
simplification as the output is obtained as a matrix multiplication of the input, ensuring
that the 0 correlations in the frequency domain are still valid. First, we express the
output Fourier components in terms of input noise,

Vout(w) = F(w)vin(w), (6.29)
where F(w) := [NT (iwl — M) ' N — 1]. This allows one to compute any correlations
(Vout (W) Vau (W) = Sout (w)d(w +w'), (6.30)

contained in the frequency spectrum matrix Sy, compactly expressed as
Sout(w) = F(w)CF T (—w). (6.31)

As we will see in the following, the output spectrum matrix contains all the information
required to compute quantum properties such as squeezing of the output field, or of the
detected field, or the variance of the detected photon number.
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Figure 6.3: Detected signal with a single emitter. Plots of quadrature squeezing [(a),(d)],
average photon number and variance (shaded area) [(b),(e)], and the photon
correlation function ¢ (0) [(c),(f)] for a laser scan around the resonance (a)-
(c) in the Purcell regime (g = 0.2x) and (d)—(f) in the strong-coupling regime
(9 = 2k), respectively. The remaining parameters here are v = /20, n = /20, and
T =103+"1. In (c) and (f), the effect of increasing integration time on bunching
and antibunching is illustrated.

6.3.5 Time-integrated signal detection

We define detected field operators at some time ¢ (chosen already after reaching steady
state) by integrating over the continuous output fields during the detection window
t —T tot+T. While in Ref. [6.15] we have analyzed the antiresonance behavior in
terms of the classical average of the intracavity field amplitude, we can here compute
expectation values of the detected field photon number operator and its variance. We
provide analytical expressions for these quantities as well as for the quadrature variances
and the second-order correlation function at zero time g(*(0).

Classical signal

The classical detected signal is defined as the time integral (over the detection window
2T") of the continuous output field amplitude expectation value. The reflected signal is

~ t+T ~
<Adet(t)> = \/;—T /t; dt’ <Aout(t/)> = \/@ﬂ;, (632)

while in transmission one detects

2T?
.. (6.33)

N 1 t+T .
(Baolt)) = o [t (Bow(t)) =
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The definition of the operators above fulfills the canonical commutation relations
[/idet, /Alllet] =1 and [édet, Bget] = 1. The transmission of the cavity shows the signature
of the antiresonance (both in amplitude as a dip and in phase as a rapid phase switch
when the laser is swept across the common emitter-field resonance) as it is simply
proportional to the cavity transmission function derived in Ref. [6.15]. Notice that for
weak pumping, especially around the resonance dip, the integration time has to be large
in order to distinguish the classical signal from shot noise.

Fluctuation correlation matrix of the detected field

According to the approach we employed to obtain higher order correlations of the output,
let us define a vector of detected zero-average operators,

1 t+T
vaalt) = o /FT dt’ Vou (t'). (6.34)

Note, that the component v}, (t) = aqet(t) is the detected signal fluctuation operator in
reflection, and similarly v3. () = baet (t) is the detected signal fluctuation operator in
transmission. Two-point correlations are needed in order to find the expectation value
of the photon number. Therefore, one has to relate the correlation matrix of the output
fields with the intra-cavity correlations. As a general formulation, we write the whole
correlation matrix of the detected quantities as

1 =T / =T " / T
Vial) = 5= /t_T dt /t_T dt" (Vous (') Vour ()T (6.35)

We now use the Fourier transformation of the output operators (see Appendix 6.7) to
relate the detected correlation matrix to the spectrum matrix of output operators,

e} s.2
Vaa = [ o [Smw;”T] Sout (). (6.36)
In general, one can already compute the correlation matrix from this expression. However,
for long integration times (longer than the inverse of the characteristic linewidth of
the spectrum), the sinc function inside the integral picks out only frequencies close to
zero (around the laser frequency). This allows one to replace the sinc function with a §
function and the detected correlation matrix is given by the simple expression

Vet = Sout(0). (6.37)

We will use this result in the following subsections to derive expressions in terms of matrix
elements of 84,4(0) for the variance in quadratures, photon number expectation value
and variance, and the second-order correlation function. The detected time-integrated
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quadratures in transmission are

. 1 /- .
i =5 (Baet + Blay) » (6.38a)
A —1 A /\T

Yaet = 7 (Bdet - Bdet) ; (6.38Db)

with similar expressions for the reflected field. With the help of the above expressions
for the correlation matrix one can compute their respective variances as

1

AXGo = 5+ Son(0) + R [S2,0)] (6.300)
1

Adeet =3 + Ségt(o) - % [Sgﬁt(())} . (6.39b)

In Fig. 6.3(a) the detected quadrature variances are shown around the cavity resonance
(by scanning the laser frequency around it) exhibiting small squeezing properties around
the antiresonance dip. While the squeezing in the strong coupling regime depicted in
Fig. 6.3(d) is approximately of the same magnitude, it is shifted by +¢ from the cavity
and emitter resonance, i.e., the squeezing occurs at the polariton resonances.

Photon number and its variance.

The detected photon number operator for the transmission is

R 1 t+T t+T R R
Naet () = — dt' dt" Bl (t") Bow ("), (6.40)
2T Ji—r t—T
with an expectation value
Naet = (Naer(t)) = [(Baee(£)* + (Blieybaet)- (6.41)

Notice that in the absence of any nonlinear terms in the evolution, the detected photon
number would be simply given by the absolute square of the classical amplitude as is
characteristic for coherent states. However, the second term in Eq. (6.41) is nonzero
and can again be expressed in terms of the output as <B$etgdet> = §23.(0). We can
then analyze the behavior of the photon number at the detector which is plotted for
variable laser drive frequency (around the antiresonance) in Fig. 6.3(b) and for the
strong coupling regime in Fig. 6.3(e). The behavior, as expected, mimics the cavity
transmission profile. More interesting aspects emerge when one analyzes the variance of
the photon number around the average; to this end, we explicitly write the expression
for the variance,

~ ~ ~ ~ ~ ~ 2 N ~ ~
[ANdet(t)]2 = <b$etbdetbgetbdet> - <bzletbdet> + |<Bdet>‘2 [1 + 2<b$etbdet>}

(Bt (Beq) + (Baet) ((Bhe)?)- (6.42)
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The two—operator averages emerge immediately from the spectrum matrix as <3§et> =
833,(0) and ((bdet) ) = 844 (0). The task of evaluating four-point correlations is a bit
more cumbersome. However, we can apply Isserlis’ theorem to the output (see Appendix
6.7) to express any four-operator correlations as sums over all permutations of two
operator correlations. After time integration, one derives an according expansion for
four detected operator correlations. This allows one to compute quantities such as

<Biletgdetgzleti)det> Sout( )Sout( ) Sout( )Sout( ) Sout( )Sout( ) (643)

Finally, the expression for the detected photon number variance after replacement of
two- and four-operator correlations in Eq. (6.42) becomes

[ANdet( )]

SO + 1(Baea) PI1 + 255, (0))
+ 20 {{Baw) SH(0)} + 855 (0)S30). (6.44)

The result is illustrated in Fig. 6.3(b) (in the antiresonance regime) and in Fig. 6.3(e)
(in the strong coupling regime). The variance is included as a shaded region around the
mean photon number. Owing to the weak coupling and large integration time, the result
corresponds to the standard shot noise of a detected coherent state. The contribution
from the two-photon terms S33 and S*, while showing up as quadrature squeezing,
have little effect on the photon number variance.

Second-order correlation function of the photon number

In order to understand the photon statistics of the transmitted light from the cavity,
we calculate the second-order correlation function [6.36] at zero delay ¢(®(0) defined by

<Bget‘é£etgdet‘édet>

(2) _
97(0) = R
<B(];ethet>2

(6.45)

Note, that for a coherent state ¢g(®(0) = 1, which is characteristic for Poissonian
light. However, terms in the output spectrum such as S2 (0) denote the presence of
photon-photon correlations coming from non-vanishing expectation values of <b(1.ietbjiet>'
After evaluating the different terms in the expression above and rewriting all occurring
four-point correlations as before (see Appendix 6.7), one finds

9?(0) = (6.46)
Bct) -+ 41 Bact) PSE(0) + 20 (Bao 2S24,0)} + 524, (0) + 2525,(0)25,(0)
|<Bdet>‘4 + 2|<Bdet>’2 out( ) Sout( )Sout(o) .

For different detection time windows, the behavior of the second-order correlation
function is shown in Fig. 6.3(c) (for the antiresonance regime) and in Fig. 6.3(f) (for
the strong coupling regime). Longer detection times have the tendency of washing out

96



6.3 Single-emitter antiresonance spectroscopy

(b) (c)
° high

(d)

I(z,y)

low

Figure 6.4: Free space radiation patterns of exciton states. The spatial intensity profile of the
emitted field is plotted in arbitrary units but to scale. (a) For a single emitter,
we observe the standard dipole radiation. (b) For two emitters placed far apart
(d > Ae), they hardly interact and the chosen state therefore has little effect on the
emitted field. (¢) When the two emitters are placed much closer (d = 0.3).) than
a single wavelength, the interactions become very strong, leading to superradiant
loss (m = 1) and subradiance (m = 2), where the emitted field is predominantly
radiated into the axis along which the emitters are placed. (d)—(f) The same effect
is even more distinct for a closely spaced (d = 0.3\,) equidistant chain of emitters
(here N = 6). With increasing phase asymmetry (increasing m) there are more
and more field nodes. Note that some of the shown field intensities had to be
scaled since they are orders of magnitude smaller than the superradiant field of
the chain. This is indicated (where needed) by the scaling factor in the bottom
right. The dipole moments have been chosen along the y axis and the profile in
the z-y plane is observed at a transverse distance z = 2.

the photon bunching and antibunching effects.

6.3.6 Nonlinear effects

A single quantum emitter is a nonlinear object as its response (the amplitude of the
stimulated transition dipole moment) is not only proportional to the driving field
amplitude. In the next order of approximation, a small component emerges from the
AC Stark shift of the excited state level proportional to the field intensity, the so-called
Kerr effect. At the macroscopic level, this effect is seen as a modification of the index
of refraction with increasing light field intensities. For the hybrid cavity-emitter system,
we analyze the response of the transition dipole moment to the driving laser amplitude
1. As opposed to the bare free space nonlinearity expected from a two-level system,
the cavity can lead to a modified ”vacuum-dressed emitter” nonlinearity. Inside the
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cavity, we analytically derive this small correction by assuming that z = (2|3]?> — 1) and
obtaining the new steady-state solution from

0=—(k—iAc)a+n—1igps, (6.47a)
0= —(y—iA)B +iga(2|B]* — 1). (6.47b)

We can find a solution for 8 = () + 863) where the linear term () is the previously
derived response of the emitter’s dipole in Eq. (6.13b) proportional to 1. The next order
correction is

ga:_gmnwmp<y_fﬁm>‘ (6.48)

The Kerr nonlinearity is proportional to the field intensity n? (we considered the field
amplitude real) and leads to a modification of the cavity transmission function from
the computed t(!) expression in Eq. (6.17),

207 [80] [1 — i(g /)8
(’7 - 7;Ae)(’% - Z‘Ac)

te =t | 1+ (6.49)

Notice that the nonlinearity matches the behavior of the linear response in that it
is largest around the antiresonance. Maximal nonlinear response occurs when the
linear one is maximal as well. We can then find a simple and instructive expression
BI(A = 0) = —iC/(1 + C)n/g, which shows that an increase in the cooperativity
(by, for example, suppressing the radiative rate while keeping g constant) brings the
nonlinearity to a saturation value.

6.4 Free space collective dynamics: super- and subradiant
states

Before analyzing the physics of a cavity mode interacting with an ensemble of coupled
quantum emitters, let us briefly review some properties of the bare coupled emitter
ensemble (in free space). In general, it is not possible to diagonalize the Hamiltonian
including dipole-dipole interactions. However, a common approach is to truncate the
Hilbert space at small or even single excitations [6.31, 6.37]. Then, at extremely small
distances, one can use the fact that ;41| > |Qi12| to make the nearest-neighbor
(NN) approximation. The full Hamiltonian then becomes a tridiagonal symmetric
To6plitz matrix, which can be analytically diagonalized. The resulting set of eigenstates
{Im)}N_, is given by

2 . ™mj \ .
lm) = Vi Zsm (N n 1) 0';_ 19 &V (6.50)
J
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They correspond to collective excitations of different symmetries with corresponding
energies

Wy = We + 2019 COS (Z\?Tl) , (6.51)
ranging from —2€2;5 to 2§25 around the bare noninteracting energy w.. These expressions
illustrate what is required to faithfully excite a specific collective state: One needs to
match both the local phases given by the coefficients of the states as well as the shifted
resonance energies. While the latter is quite straightforward, addressing an ensemble of
emitters with large local phase differences within a small volume can be challenging. A
number of proposals on how this could be achieved have been brought forward in recent
studies. The suggested schemes involve among others a magnetic field gradient [6.31] or
light that imprints the phases due to a polarization gradient [6.15, 6.38].

The reason for these extensive studies of preparation schemes is that large phase
differences cause the emitter dipole fields to interfere destructively [see Fig. 6.4(f)],
thus yielding an extremely small total field. Thereby, the lifetime of states with large
phase differences (subradiant states) is vastly enhanced, making them ideal candidates
for precision spectroscopy or quantum memories. This gain in lifetime becomes even
more significant when considering the fact that symmetric excitation in dense emitter
ensembles leads to superradiance [6.39], which in the limit of vanishing separation leads
to a factor N enhancement in spontaneous emission.

This behavior due to phase (a-)symmetry can be investigated by computing the field
radiated by the dipoles of the emitters taking into account the fact that they interfere
with one another. Namely, the free electric field is just

B, t) = B (r,) + He., (6.52)
where
& (+) heoy, A ikr
E = — A . .
(r,t) kEA SegV o ka(t)e (6.53)

Because of the dipole coupling of all emitters to the field, the photon annihilation
operators simply follow the emitter coherence operators,

A

A (t) = —iger > Sj(t)e*™s eilwn—we)t (6.54)
J

Resolving the sum over wave vectors as an integral (due to the density of modes) and
in addition making the Markov approximation allows one to find an expression for the
electric field containing only emitter operators and geometric factors (see Appendix 6.7
for details).

The intensity of the resulting field is illustrated in Fig. 6.4 for a single emitter, two
emitters, and a chain of emitters. While for a single emitter we observe dipole radiation
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Figure 6.5: Entanglement of emitters in a free space chain in a subradiant state. A six-emitter
equidistant chain with a separation of d = 0.1) is initialized in the state |m = N)
and left to evolve freely. We plot the logarithmic negativity of each emitter with
respect to the N — 1 remaining emitters in the chain at different point in times
(the left-most bar for each site corresponds to vyt = 0).

[see Fig. 6.4(a)], interference occurs when more than one emitter is present. If the
separation between emitters is large, there are no substantial interactions enhancing or
suppressing radiation. As illustrated in Fig. 6.4(b), the radiated field is then independent
of the chosen state. As soon as the emitters are close (separation smaller than half a
wavelength), the state in which they are prepared has a significant effect on the field.
The radiated intensity is either enhanced due to constructive interference (superradiance)
or suppressed due to destructive interference (subradiance).

These phenomena are even more dominant for more emitters. In Figs. 6.4(d)-6.4(f),
we see the radiated intensity for different choices of m for an equidistant chain of N =6
emitters. While the field is quite large in the symmetric case (m = 1), we can see
that for other choices of m, destructive interference occurs. Namely, for the smallest
asymmetric choice of states, m = 2, there is only one change in sign of the phase which
occurs in the middle of the chain. It is clear that at this point the fields radiated by
each half of the chain cancel each other. For m = N this effect culminates in maximal
destructive interference, which widely inhibits spontaneous emission from the chain.

Another property of these collective states (both super- and subradiant ones) is that
they commonly feature high degrees of entanglement [6.31, 6.40]. As such, they form
an interesting resource for quantum information processing, where highly subradiant
states are even more useful due to the increased lifetime of correlations.

Even though subradiant systems show only moderate two-pair correlations, the overall
entanglement is large. Specifically, each of the emitters is highly entangled with all the
other emitters. In order to illustrate this point, we plot the logarithmic negativity [6.41],
which is an entanglement monotone. For a bipartite system consisting of the subsystems
A and B, it is defined as

Ex(p) = logs (1o™1) (6.55)
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where pT4 denotes the partial transpose with respect to the subsystem A and | - | is the
trace norm. In Fig. 6.5, we initialize a chain of emitters in the state with the highest
phase difference (m = N) and let it evolve freely over time. At distinct time points,
we compute the logarithmic negativity for each emitter (i.e., we choose our bipartite
system to consist of the ith emitter and the rest of the chain). One can see that the
amount of entanglement is even in the initial state significantly larger in the center of
the chain. Over time, this behavior is retained, and correlation is only slowly lost due to
excitation loss of the chain. Even at ¢t = 100y~!, there still is considerable entanglement
in the system.

6.5 Spectroscopy of the collective Purcell effect

We now generalize the formalism developed for the single quantum emitter case to many
coupled quantum emitters with special focus on addressing collective subradiant states.
In a first step, we derive the cavity transmission function in the linear regime showing
the occurrence of collective resonances of different radiative natures (subradiant and
superradiant) and the scaling of the cooperativity when proper illumination techniques
(matching phase and energy of the collective subradiant resonances) are employed. We
then look at collective cooperative effects on output field squeezing, photon-photon
correlations, and the enhancement of the overall ensemble Kerr nonlinearity. We
find that in all these investigations, enhancement is always reached in the cooperative
collective regime (where the interacting ensemble shows a much higher cooperativity
than a noninteracting ensemble).

6.5.1 Subradiant enhancement of cavity-emitter cooperativity

In order to perform a classical analysis of the response of a cavity weakly coupled to N
interacting quantum emitters (deriving the amplitude transmission), it suffices to solve
the coupled equations of motion for classical averages. In a compact matrix form, this
is written as the following equations of motions [6.15],

a=—(k—iA)a+n—1iG- B, (6.56a)

B =1Ap —i28 —iGa —T'f3, (6.56b)

where now 8 and G are column vectors with entries 5; and g;. The matrices 2 and T’
have the elements 2;; and ~;;, respectively. In steady state, the transmission coefficient
for the cavity amplitude reads

K

te =
—iAc+ K+ GTG/[—iAeﬂT(Ae) + ’Veff(Ae)]

: (6.57)
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Figure 6.6: Scaling of the effective cooperativity with the number of emitters in an equidistant
chain. Strong collective effects are present when the emitters are closely spaced at
d = 0.1\, leading to distinct scalings of the cooperativity. As a reference, we plot
the cooperativity for independent emitters, which scales linearly with the number
of emitters. The dashed line indicates the scaling of the subradiant case with N*
(note that a simple polynomial fit returns a scaling of approximately N3-81+0-01)
The super- and subradiance is caused by symmetric (g; = ¢g) and asymmetric
[9; = (—1)%g] coupling, respectively. We chose the parameters v = /20 = 5g such
that for all NV we are in the regime where NC' <« 1.

where the effective Ao-dependent collective energy shifts and linewidths are given by

G'G
Aug(A) = S , 6.58
a(8e) J{GT(—iAe]H—i(H—I‘)_lG} (6.58)

G'G
oi(Ae) = R
tenr{Ae) {GT(—iAeJ1+m+r)—1G}

(6.58b)

In analogy to the single-emitter case, we can define an effective N-emitter cooperativity
by

]
Con(Ae) = mGH(i) (6.59)

The message of the above equation is that the numerator and denominator no longer
share the same dependency on the individual emitter properties (such as the dipole
moment). Thus, a much larger effective cooperativity can be reached if one manages to
excite a subradiant collective state for which the effective decay rate is small.

Note that, as mentioned before, in addition to matching the symmetry of the collective
state one wants to address, one also has to match the state’s energy. The cavity has to be
tuned to fulfill the condition Aeg(we —we) = 0, such that at the point of resonance where
we = wy the collective state is also resonant. This is straightforward to do numerically.
The distinct scaling of the cooperativity is shown in Fig. 6.6. It can be seen that the
subradiant enhancement of the effective cooperativity shows a beneficial scaling with
the number of emitters with approximately N4. It has been shown that the lowest decay
rate theoretically possible reduces exponentially with the number of emitters [6.42].
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The most robust states that can be reached in reality, though, scale with N =3 [6.43].
This, combined with the collective enhancement of the coupling to the cavity mode with
N, yields the scaling observed in Fig. 6.6. Deviations from the N* scaling are due to
imperfect addressing of subradiant states as well as to finite-size effects.

On the other hand, the superradiant decay almost compensates the enhancement of
the coupling with N for small numbers of emitters, since in that case also the decay
rate scales approximately linear. This keeps the effective cooperativity constant at the
value for a single emitter. Again, due to imperfect resonance matching and finite-size
effects, the decay rate does not show perfect linear scaling and saturates at some point.
The enhanced coupling is therefore no longer perfectly compensated for larger N and
we again observe a linear enhancement of the cooperativity. However, the effective
cooperativity affected by superradiance can never surpass the cooperativity of the same
number of independent emitters.

Besides the number of quantum emitters, another parameter on which the collec-
tive modification of the cooperativity strongly depends is the distance between the
emitters. It governs the strength of the dipole-dipole interactions and subsequently
any enhancement or reduction of the light-emitter interactions. Systematic investi-
gations of the dependence of super- and subradiance on the emitter separation have
been performed [6.42, 6.43]. At sufficiently small distances — which is the regime we
consider here — the collective decay has been shown to be a monotonous function of the
particle-particle separation [6.42]; i.e., collective effects increase as the distance between
emitters decreases. Furthermore, disorder in the emitter positions only marginally
affects subradiance and can even lead to more long-lived states [6.31].

6.5.2 Nonclassical collective effects in detected fields

We can follow the same procedure as for a single emitter to investigate the squeezing
at the output port. From Eq. (6.22), we obtain the vector equations for the quantum
fluctuations in the form

b= —(k—iA¢)d —iG - & + v/Rain + /b, (6.60a)
6 =Aé6+B6%+iG.a— ¢, (6.60b)
& = -296° + K& + K61 +2iGgal — 2iGha + 2€. (6.60c)

We have defined the modified coupling vectors G, = (2191, ...,zNgN)T and Gg =
(191, .-, Bnvgn) T. The coupling matrices are given by

Aj = — (v — i) 6 + (1= 051) (% + i) 2j, (6.61a)

Bjw = 6 (igja+ > (i +v;1) B), (6.61b)
7]

K = (2igje — 2 vinB) 8k — 2 (1 — 85x) i35 (6.61c)
I#j
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Figure 6.7: Cooperative effects of four coupled emitters. Plots of (a) the variance of the detected
z-quadrature, (b) the g (0) function, and (c) the photon number with its variance
for four coupled emitters around the antiresonance for subradiant/superradiant
and independent cases. The parameters are ¢ = 2y = /10, n = x/100, and
T =2 x 10+, with the emitter dipoles oriented perpendicular to the cavity axis
and a separation of the emitters of 0.3 ).

We can now express Egs. (6.60) in vector form, v = Mv + Nvj,, in analogy with the
single-emitter case, with the proper matrix definitions. The drift matrix is given by

— (K —iAe) 0 —iG"T o7 of
0 —k—iA, 0" iGT of
M = iG, 0 A 0 B |, (6.62)
0 —iG, 0 A*  B*
—2iG} 2iG g K K' -2v1

where 0 is a vector containing N zeros and 0 is a N x N matrix with only zero elements.
The matrix multiplying the input noise operators is

OT
o |. (6.63)
0
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Finally, the input noise correlation matrix in the many emitter case is

0100 0 o of
00000 o of
000 1 o o of

c=|00 00 0" o o], (6.64)
0 00 0 0 Cpgg Cg,
0000 O0O O O
0000 0 C,, cC.

where Cgg is the correlation matrix whose elements are given by Eq. (6.9a), and
analogous for the other indexed C matrices (see Appendix 6.7). Note that Cg, = Ciﬁ'

With the help of these matrix definitions, it is straightforward to compute all figures
of interest. All expressions for the field operators and variances are the same as for
the single-emitter case; we merely have to insert the corresponding output spectrum
matrix elements obtained for the many emitter case. The output spectrum matrix can
be computed with the matrices above using Eq. (6.31).

The resulting higher order averages are shown in Fig. 6.7. There, we compare
four independent, subradiant [asymmetric coupling, g; = (—1)%g] and superradiant
(symmetric coupling, g; = g) emitters. Note that, as in the discussion of the effective
cooperativity, we match the cavity to the addressed collective state by choosing the
cavity resonance such that Agg(we —we) = 0.

The detected photon number and its standard deviation is depicted in Fig. 6.7(c)
and, as in the single-emitter case, it exhibits the same behavior as the transmission
obtained from the average amplitude [6.15]. The superradiance broadens and lessens
the antiresonance, while the subradiant emitters lead to a very deep but narrow
antiresonance.

As for the quadrature variance and second-order coherence function shown in
Figs. 6.7(a) and 6.7(b), the clear overall point here is this: Compared to independent
emitters, superradiance (slightly) diminishes all nonlinear effects (see insets), while
subradiance offers enhancements by orders of magnitude. Squeezing and antibunching
both occur around the resonance (as for the single emitter in the weak coupling regime).
However, both effects are distinctly larger in a frequency range much smaller than the
cavity linewidth when the emitters are in a subradiant state. This enhancement is a
signature of the counterintuitive effect that subradiant systems exhibit stronger classical
dipoles: The stationary excited state population and thus the stationary magnitude of
the induced dipole moment are inversely proportional to the spontaneous decay rate of
the considered state. Therefore, as we see in Fig. 6.7, nonlinear effects such as squeezing
and antibunching increase in consequence of the inhibited decay of a subradiant
state. In contrast to this, superradiant states exhibit smaller stationary values for
their collective dipole moments. However, the broadening of the effective linewidth
due to superradiance is less prominent compared to the suppression of the decay in
subradiant states. Going from the independent emitter to the superradiant case, there
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Figure 6.8: Kerr nonlinearity for coupled quantum emitters. Plot of transmission functions in
the linear and nonlinear approximations for (a) symmetric and (b) asymmetric
excitation of four equally spaced emitters at distance d = 0.07\.. The corresponding
nonlinearity is plotted in (c¢) for symmetric and (d) for asymmetric addressing
compared to the independent emitter case (dashed line obtained setting d >> A.).
The remaining parameters here are g = x/10, v = k/20, and 1 = x/100. Note that
no frequency matching was assumed, such that w, = w. and a scan of the laser
frequency will consequently hit all the collective states (A, = A, = A), producing
a set of four antiresonances.

is thus a decrease in these quantum effects. Compared to the large enhancement due to
subradiance, however, this reduction is somewhat less significant.
6.5.3 Collective nonlinear effects

The vector of individual classical dipoles can be expressed in steady state as
BY = —in[(k —iA) (I +T —iA.1) + GGG, (6.65)

We then find the next order correction, similarly to the single-emitter case, by writing
B~ BM 4+ BB (see Appendix 6.7 for details) and obtain a compact expression

2in ", P,8VBM P,
(k —iA)(IQ + T — A1) + GG '

x (G ~ :7 (5 —iA) (2 +T) + GG B(”) :

BB = (6.66)

where I' = T' — 41 and P; is the projector on the jth unit vector. This describes
the collective cooperative Kerr effect where the induced nonlinear polarization of each
emitter in the ensemble depends on the collective response of all the other emitters.
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6.5 Spectroscopy of the collective Purcell effect

As a basis for comparison, we estimate that for independent emitters, illuminated
symmetrically, the maximum linear response per emitter (they all respond equally to
the excitation) is B](-l)(A =0) =iCet/(1 4+ Cegr)n/(Ng). In particular, for N = 1, one
would have f()(A = 0) = iC/(1 4+ C)n/g. Notice that an increase in N leads to an
increase in the cooperativity such that the factor Ceg/(1 + Cog) increases but eventually
saturates at unity. The other factor decreases with NV such that, in the many-emitter
limit, the per-emitter nonlinearity decreases. Emitter-emitter coupling, on the other
hand, can strongly modify the width of the antiresonance and consequently strongly
enhance the overall nonlinearity.

This is illustrated in Fig. 6.8. We consider a system of four coupled emitters exhibiting
four collective states with energies approximately given by Eq. (6.51). Three of these
states are subradiant while the superradiant state is energetically located at the frequency
we + 2015 cos(m/5) on the right of the cavity resonance. We drive the system either
symmetrically with G = (g,9,9,9)" or asymmetrically with G = (g, —g,9,—¢)". On
the left side, in Figs. 6.8(a) and 6.8(c), the symmetric addressing partially overlaps with
one subradiant state and one superradiant state. The coupling to the other two states is
negligible. At the point where the laser fits the displaced collective states, the collective
nonlinearity (shown as the norm of the B3 vector) exhibits a large enhancement. The
superradiant antiresonance, on the other hand, shows a decrease from the independent
emitter’s maximum nonlinearity (dashed line evaluated at the origin). Notice that in
the independent case the four collective states have the same degenerate energy equal
to we. For asymmetric driving, the laser encounters two subradiant collective states and
shows the corresponding enhancement in the nonlinearity.

In order to further investigate the physics here, we can look at two special cases.
First, consider an ensemble of independent emitters all of which couple equally to the
cavity mode. At resonance, we find that the magnitude of the Kerr nonlinearity is

G a v 20 (NC)3
1B(A=0)| = N\/VS(HNc)gﬁg- (6.67)

In the limit of many emitters, N > 1, one can see that the nonlinearity at resonance
scales as 1/v/N7. This is expected as in this limit the ensemble of emitters more and
more closely resembles a harmonic oscillator making the entire system linear. The
situation is much less trivial for coupled emitters. The scaling of the collective Kerr
nonlinearity with the number of emitters is shown in Fig. 6.9(a). There, it can be seen
that depending on the symmetry of the coupling to the cavity mode, the scaling down
with N is drastically different. Namely, we find that even under symmetric addressing
which leads to superradiance, the nonlinearity is larger than for uncoupled emitters.
As shown below, this is due to the presence of collective shifts. Eventually, though,
the nonlinearity attains a scaling close to the independent case in the limit of many
emitters. Asymmetric addressing, on the other hand, leads to a completely different
behavior. Since not only collective shifts are present, but also the linewidth is reduced
due to subradiance, the resulting Kerr nonlinearity is much more robust; i.e., it scales
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Figure 6.9: Behavior of the Kerr nonlinearity. (a) The nonlinearity as a function of N for
a chain with separation d = 0.07)\.. We observe different scaling laws in the
limit where N > 1. While for independent emitters the nonlinearity attains the
scaling with 1/v/N7, in the case of asymmetric driving (subradiance) a much more
robust scaling with 1/v/N is found. Even for symmetrically coupled emitters
(superradiance) the nonlinearity remains larger due to the presence of collective
shifts. (b) The two-emitter nonlinearity as a function of the inter-particle distance
d. The light blue area highlights where the nonlinearity for asymmetric addressing
(blue, solid line) is larger than for symmetric addressing (red, dash-dotted line).
The orange region highlights the opposite case. The regions coincide with v15 > 0
(blue) and 12 < 0 (orange, 0.5A. < d < A.). Note that at extremely small distances
the energetic shift 15 is so dominant that even under symmetric addressing the
nonlinearity surpasses the independent one, despite the emitters being almost
perfectly superradiant. Note, that we chose a small driving strength, n = 10~ %, in
order to ensure that the excited state population remains sufficiently small. This
is why at a first glance the nonlinearity appears to be a lot smaller than the one
shown in Fig. 6.8. The remaining parameters were v = k/20, g = k/10.

down with 1/ V/N.

The second special case we want to look at is the smallest collective system, which
consists of two emitters only. If we consider symmetric (4) and asymmetric (—)
addressing, i.e., G = (g,4g)7, the collective shifts amount to +Q15. Matching the
cavity frequency to this collective resonance, we find the Kerr nonlinearity at resonance

(A = Ac = Ae:FQlQ)

1y (72 + Q1)
A+ Ce)” i (L4 Cen) P

1B8%)(A =0)| = (6.68)

The first term above is the same as in 8(). The second term, on the other hand,
exhibits some peculiarities. Specifically, while it is inversely proportional to the width
of the antiresonance Yog(1 + Cefr), it also depends on the collective shifts 215. Making
use of subradiance can significantly decrease the antiresonance width. However, it is
eventually limited by the decay channel constituted by the cavity with the rate Ng?/x.
The shifts, though, can still compensate the broadening by the cavity and increase
the nonlinearity above the one exhibited by decoupled emitters. At extremely small
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distances, where the shifts start to diverge, this effect is so predominant that it can even
compensate for an additional broadening of the antiresonance due to superradiance.
This can be seen in Fig. 6.9(b), where the behavior of the two-emitter nonlinearity
as a function of the inter-particle distance is depicted. Since the shifts also increase
with the number of emitters, the same argument applies to the fact that the symmetric
nonlinearity surpasses the independent one in Fig. 6.9(a). At moderate particle-particle
separation, the shifts are not too large, such that the nonlinearity is essentially governed
by the collective decay [see Fig. 6.9(b)]. As the mutual decay rate 12 changes sign,
symmetric addressing and asymmetric addressing switch roles, such that the system
becomes subradiant under symmetric addressing and subsequently is more nonlinear.

6.6 Conclusions

We have followed a quantum Langevin equations approach to the input-output problem of
an optical cavity containing an ensemble of NV coupled quantum emitters. Linearization
of operators around steady-state values in the weak excitation regime allows one to
compactly write the evolution of quantum fluctuations and derive expectation values not
only for two-operator products but products of any number of operators. In particular,
we focused on describing the properties of the reflected and transmitted output field
as well as of the detected fields (assuming a flat-window time integration). We have
developed the formalism first for the case of a single quantum emitter coupled to an
optical cavity applicable both in the Purcell and strong coupling regimes. We have
then extended this formalism to the case of many emitters where numerical simulations
become difficult and found the signature of collective cooperative behavior: N emitters
do not only imprint an N times larger effect on the cavity field but far beyond this
linear scaling. The results originally shown in Ref. [6.15] were extended. There, the
cooperativity was shown to increase drastically with N when asymmetric, energetically
matched excitation schemes were employed to prepare collective subradiant states.
The formalism developed allows one to go beyond the classical problem and describe
quantum properties of the output field. Moreover, the same cooperative collective effects,
stemming from the coupling among emitters, lead to a strong enhancement of the
nonlinear response of the cavity-embedded ensemble around specific antiresonances. A
more detailed study of such effects (which are promising for nonlinear quantum optics
applications) will be tackled in a future publication aiming at deriving precise conditions
for the antiresonance points where the effect could be optimized even for distances
achievable by optical lattice trapping techniques.
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6.7 Appendix

Collective noise in quantum Langevin equations

For a system operator O, for each individual Lindblad collapse operator ¢ acting at
rate 7. and with associated input noise ¢, one can derive the QLE including the noise
terms as [6.46]

0 = +[H,0] - (0,8 {7eé + v2retn} + {ec! + v2red], } 0. (6.69)

However, collective incoherent dynamics represented by nondiagonal Liouvillian terms
cannot be directly cast into Langevin equations. One instead has to first write the
total decay term as a sum of independent decay channels. This is achieved by a basis
transformation with the matrix T (such that T~! = T ") that diagonalizes the decay
rate matrix T,

diag (A1, ..., \y) = TTI'T, (6.70)
where ); is the jth eigenvalue of the decay matrix. Defining a set of damping operators
. T N
I, = zk: (T )jk 3, (6.71)
we may write [6.42]
i
Obviously, this Lindblad term is diagonal and hence the QLE may be cast into the
form given by Eq. (6.69). The input noise terms of the emitter operators &; i, follow
the transformation rules given by Eq. (6.71). Transforming the QLE for any emitter

operator O back into the non-diagonal form gives the usual terms for the deterministic
parts. For the noise terms, however, we have

>_[0.11] \/711]111 = fZO STg; () (6.73)
]
]y AT [O Silel ), (6.74)
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where we have implicitly defined our correlated emitter noise terms &; as
)\k -1 ~—
&) =Y /=T i(T b5 (6.75)
ki VY
Hence, the QLE for any emitter operator O is

)

O =i[H,0] - > 10, 8]] ('Yijgj + 5ijm5i(t)) + Z (%‘jgj + 51']'\/%53(75)) [0, 5],
(6.76)

with the spatially correlated white noise &. From the definition of the noise it is
straightforward to show that

[€:(t), (1)) = hajo(t —t'). (6.77)

In order to evaluate the correlation functions of the modified collective input noise
terms,

& = 53 (00, (6.75)
&) =2 (SI05 O +E®S1), (6.78b)
we need to consider the commutation relations of the system operators with the input

noise terms &;(t). To this end, we write the collective input-output relation [6.46] which
is straightforward from the diagonal form of the QLEs,

T in () + L out(t) = 1/20115(2). (6.79)

Because of causality, it is clear that for any system operator 0,

A A

O, ()] =0, ¢ >t (6.80)

i.e., the system does not depend on future input noise. For the output, we can invert
this reasoning such that II; oy () commutes with O(¢) if ¢’ < ¢. Using these findings in
combination with the input-output relation from Eq. (6.79), we obtain [6.46]

[O(1), ()] = O(t — '),/22,[0(1), 11 (), (6.81)

where we defined © as the step function with the half-maximum convention, i.e.,
©(0) = 1/2. Using the transformation between the diagonal operators and the correlated

noise operators, i (t) =3 ; W/Aj/'ka.jﬂjjin(t), we find the commutation relations of a
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system operator with the correlated input noise,

[O(1), & ()] = ©(t — 1) thz (). (6.82)

Using this, we can compute the correlation functions of the modified input noise
operators,

(E(ELE) = hyd(t — ) (SFE)SE) + (SF(R)ELE)E () SE(E) (6.83)

where we used the commutation relation from Eq. (6.77). Using the commutation rules
from Eq. (6.82), one can show that the second term is proportional to ©(t — ¢')O(t' —t).
Thus, it is only finite if £ = ¢’ and does not contribute as a distribution. In other words,
an integral over any time interval (such as our detection window) of this term vanishes.
We can therefore neglect this term and arrive at

(&G = hard(t — ) (S5 (1) SE(1)) (6.84)

which in the linearized regime yields Eq. (6.9a).
Proceeding, we have

(&G E)) =4[t — ) (SHOSKE)) + (SIBEL NGB SE) ] (6:85)

Since &;(t) and Si(t') commute if ¢ > ' and &;(t) applied to the right vanishes, the
second term in the above expression is zero for t > t/. The same reasoning applies to
f;i(t’) and S]T-(t) for ¢ <, such that we have

(& (E() = 4hgrd(t — ) (ST () Sk(F), (6.86)

which after linearizing gives the expression in Eq. (6.9b). Finally, we can use the same
line of argument to derive the correlation function (&;(¢)&7(t')) in Eq. (6.9¢).

Steady-state Lyapunov equation

The general solution for a system of IV linearly coupled QLEs with constant coefficients
reads

v(t) = )+ / dt' M Ny (). (6.87)

When the real part of all eigenvalues of the drift matrix M are negative, the system is
stable and goes towards a steady state where eM? vanishes and the transient solution
(containing information about the initial state) plays no role. In such a case, for
times t large enough such that steady state is already reached, one can define (a time-
independent) correlation matrix V = (v(t)v'(t)) that is easily constructed with the
steady-state solution only,
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V= / t dt! M) p M (=) (6.88)
0

where we have use (vi,(#)vin(t”)") = C6(t' — ") and defined the diffusion matrix as
D = NCN7”. The expression for C can be computed from the input correlations and
the results is listed in the main text as Eq. (6.26). We can then derive a Lyuapunov
equation for the covariance matrix using integration by parts

MV + VM = / ' A MMM (=) LT =
0

’ / t
— M-t)pMT (1) T VM’ +VM' = -D (6.89)

Notice that one can write a similar equation for the symmetrized covariance matrix
defined as Vi; = ((vjv) + (vjv;)) /2, by a simple replacement of the diffusion matrix
with the symmetrized one D = N (C + CT) NT/2.

Fourier analysis of the output and the detected signal
Output spectrum

We define the Fourier transform for an arbitrary operator O(t) as

A

O(t) = j?? [ O:O due“ O (w), (6.90)

which we employ to transform the linear set of differential equations to a set of coupled
equations,

iwv(w) = Mv(w) + Nvip(w). (6.91)

This allows us to express the intra-cavity quantum fluctuations in terms of the input
noise as

v(w) = (iwl — M)~ Nviy (w), (6.92)
Furthermore, using input-output relations in the time domain
Vout (t) = NTv(t) = vin(t). (6.93)
allows us to connect the output to the input as a simple matrix multiplication,

Vout(w) = F(w)vip(w), (6.94)
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where F(w) = [NT (iwl — M)"' N — 1]. In the frequency space, the response of the
system ensures the preservation of § correlations,

(Vout (z,u)v;rut (W) = Sout(W)d(w + ). (6.95)

The system response for two-operator correlations is completely encoded in the spectrum
matrix given by

Sout(w) = F(w)CF ' (-w). (6.96)

Time-integrated correlations

The output can be used directly to compute correlations for time-integrated operators
at equal times,

1 tH+T / =T 17 / INT
Vial) = 5= /t e /t Lt Vo) Voue ()T (6.97)

We then expand operators in terms of their Fourier components and use the § correlations
in the frequency space. This leads to the evaluation of the following integral:

T T o [2sinwT)?
/t_T dt’ /t_T dt" et e=it” = {Sm“] . (6.98)

w

For sufficiently long detection times (much longer than the characteristic bandwidth of
the spectrum matrix), the sinc function picks only the zero-frequency component (since
we are in a rotating frame, this corresponds to the laser frequency),

Vae = — / [Sm ‘*’T] Sout(w) ~ Sout (0). (6.99)

Resolving four-point correlations

Let us generally write expectation values for any combinations of detected operators as
Rivigizgia = (Vi Vit Ui Vit ) - We then connect these expectations values to the output
operators combinations for which Isserlis’ theorem applies, allowing one to express any
product of operators in sums of all different products of two-point correlations as

(Vo (1) Ve (w2) Vgt (W3) V5 (W) = Sobif (w1) S (W)8(w1 + w2)d (w3 + wa)
+ S (w1) S (w2) 6 (w1 + w3)d (w2 + wy) (6.100)
+ Soutt (W1)Serf (wa)d(wi + wa)d(wa + ws)-

The integration over the detection time window will, of course, again give rise to the
sinc functions in the integrand; in the long detection time limit, we then write the
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general expression
Ririzisis = Sout (0)Sout (0) + Squf (0)Sgt (0) + Sei (0)Send (0), (6.101)

which we can make use of to evaluate any four-point operator correlations. For example,
we can evaluate the first term in the left-hand side of Eq. (6.42) as

<b£et~, bdet bilet bdet> Sout( )Sout( ) Sout( )Sout( ) + Sout( )Sout( ) (6 102)

Free space spatial field distribution

In order to express the electric field amplitude as function of the emitter operators S'i,
we follow an approach along the lines of Ref. [6.33]. Recall that the Heisenberg equation
for the photon annihilation operator of a mode with wave vector k and polarization A
coupled to N identical quantum emitters is

A

A () = —igicr Y Gj(t)eKraeilonmee)t, (6.103)

Here, gk x = v/wi/(2hegV ek - p is the dipole interaction between the mode and the
emitter with dipole moment p. Note that the equation above is already written in a
frame rotating at wy — we. The formal solution of the above equation is

A A t A - : ’
Ak)\(t) — Ak)\ (O) _ igk,A Z/O dt/Sj (t/)e—zkrj el(wk—We)t .
J

The initial value above corresponds to the input of the mode. Assuming that the modes
surrounding the emitters are in vacuum, this term does not contribute to any averages.
We therefore drop it in the following calculation.

Performing the Markov approximation, we can already see that it is possible to
express the field annihilation operators at any time directly by the emitter operator at
equal time.

Inserting the expression obtained for flk, A results in the electric field amplitude

A t . 7
t)=—i> 8;(t) f(k) /0 dt e Hwr—we) (=t (6.104)
i k

where

hoy, —r; w -k ik-(r—r;
f(k) :Z ¢ ng,\ ex e ) = 260kv (u— Mk2 k) ek (r=r5), (6.105)

In the last step, we exploited the liberty of choosing p to lie in the plane spanned by k
and ey to resolve the sum over the polarization A = 1, 2.
Since the set of free space modes is continuous, we can replace the sum over wave
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vectors by an integral

14 2

where we have already written the integral in spherical coordinates in k space. The
part of the expression that has an angular dependence can be separated and the solid
angle integral can be solved (for arbitrary r and k),

.k . .V Q ,
/ A, (u — “kQ k) e*r =2r (u - (“kz‘")vr) / df sin O™ % (6.107)
0
Here, we already solved the polar angle integral obtaining 27 and written the products
with k as derivatives of the exponential function. The remaining integral is straightfor-

ward to solve and the problem of solving the solid angle integral surmounts to applying
the Nabla operator.

Inserting the result back into the electric field, we obtain
o\ _ T & 3
E (I’,t) = W ;S](t)/dewkx

t , ,
/ T GG N S oY R P | (6.108)
0 ie{x,y,z}

where e, . is the respective unit vector in Cartesian coordinates and

F,(kr) = —cosfsinf cos ¢ (sink(rkr) + 3?:5?? - 3?2%?) , (6.109a)
Fy(kr) = —cosfsinfsin ¢ (sink(fr) + 30(()25137? — 3?25};?) , (6.109b)
F,(kr) = sin’ esin]sf” +(1-3cos?0) (C((’ij;g ) _ Sagz» . (6.109¢)
In order to solve the time integral, we make use of the Sokhotski formula,
/ dwpw /0 t dt' e~ we) ) B (k) = (6.110)

1
= /dwkw,i’ (—iPWk — + 7 (wy, — we)) Fi(kr),

where P denotes the principal value. The integral proportional to the ¢ distribution is
straightforward to solve, while the principal value integrals require some more elaborate
(yet standard) methods of complex contour integration.
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6.7 Appendix

Finally, the resulting electric field is given by

B ) =i S50 Y (Falkelr—x) = Gulkel —xi]), (6110
J

me{x,y,z}
with
B ) cos(kr) sin(kr) cos(kr) )
G (kr) = —cosfsinf cos ¢ < o 3 (or)? 3 G ) (6.112a)
B o cos(kr) sin(kr) cos(k:r))
Gy(kr) = —cos@sinfsin ¢ < o ()2 (or)? (6.112b)

G (kr) = sin® QCOSkEfT) - (1 — 3 cos? 9) (s,l(r;(?nl;:;“) + C?Zg;?) . (6.112c)

Note, that one can easily calculate the dipole interaction with the field given by
Eq. (6.111). This selects the component parallel to the dipole moment p (the z
component) and we obtain the effective emitter dipole-dipole interactions [6.33],

3
Qij = —%Gz (Kelri —xj]) (6.113a)

3
Yij = Yhij = ng (Kelr; —xj]). (6.113b)

The intensity shown in Fig. 6.4 is the average intensity at ¢ = 0 given by

I(r) = (B(r) - B(r)) = (B (r)- B"(r)). (6.114)

Correlation matrix for many emitters

The definition of the many-emitter autocorrelation matrix as given in Eq. (6.64) is rather
condensed. Hence, here we specify once again what the matrix elements required to write
this matrix down are. In essence, it boils down to the noise correlation functions given in
Egs. (6.9). In particular, the N x N matrices used to define the overall autocorrelation
matrix C have the matrix elements

(& (L) = Chya(t 1), (6.1152)
(& WE X)) = Clot - 1), (6.115b)
(EBEL) = Clhot—1), (6.115¢)
(& (DG (H) = ClLo(t — ), (6.115d)
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Nonlinear correction

Starting from the QLEs for N emitters which are given by

d=—(k—iA)a+n—iG'p, (6.116)

8= ((me — 1 + 2(iQ + f)) B +izGa, (6.117)

where we define I' = T' — ~1, z = E;-Vzl 2jPj, and P; = ejejT (ej being a Cartesian

basis vector). By employing the relation z; &~ 2|3;|> — 1, we obtain the equations
a=—(k—iA)a+n—iG'p, (6.118)
B=—(Q+T —iA)B —iGa+ 2|82 +T)B +i2|8*Ga, (6.119)

with the matrix |3]? = Zé\;l P,;BB'P;. For the steady-state scenario with & = 0, we
obtain o = (1 — iG'B)/(k — iA.). Substituting this into the steady-state equation

(B =0) of Eq. (6.119) results in
0= [(~idc + k)(=iAcl + i +T) + GG | B~ iGn
+32|8[°Gn + 2|8 [ (1A + 1) (12 4+ T) + GG | 8. (6.120)

With the linear solution being
a _ . . . . 7171
BY = —in[(x - iA) (2 + T —iA1) + GGT] G, (6.121)

the next order of correction can be found by introducing the perturbative ansatz
B~ BY + BB into Eq. (6.120) which leads to

N
BB =2 [(n — A+ T —iA) + GGT] - (Z Pjﬂﬂ),@(lﬁpj) (6.122)

x (G + [(k — iAc) (12 + T) + GG T]BY).

Here, we have ignored all terms with O(n?). The term BB) describes the collective
Kerr nonlinearity of the N-emitter system. For N = 1, this simplifies to ) =
~28M 18D (1 = i(g/m)BD).

The modified transmission amplitude can be obtained from the relation ¢t = (k —
i(k/m)GT(BY + BB)))/(k —iA.). For a single emitter, we have

te =tW (14 29" (6.123)
o (v = ile)(k = iAc) + ) |(v — iAe) (k= iAc) + %7 ) '
where t{) = & Jl(k —iAc) + g% /(v —iA¢)] is the result for the transmission in the linear

case.
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A ring of sub-wavelength spaced dipole-coupled quantum emitters possesses
only few radiant but many extraordinarily subradiant collective modes.
These exhibit a 3D-confined spatial radiation field pattern forming a nano-
scale high-Q optical resonator. We show that tailoring the geometry, orien-
tation and distance between two such rings allows for increasing the ratio of
coherent ring-to-ring coupling versus free-space emission by several orders
of magnitude. In particular we find that subradiant excitations, when delo-
calized over several ring sites, are effectively transported between the rings
with a high fidelity.
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7.1 Introduction

An efficient and controllable energy transfer is significant for a wide variety of applica-
tions, ranging from solar energy conversion, near-field communication protocols, and
photosynthetic processes, to quantum communication, just to name a few. In all these
processes it is crucial to find mechanisms that allow for a minimization of the energy
loss. A concrete example is the coupling between two or more conventional optical ring
resonators, which can be used for the realization of switches, high-order optical filters
or mechanical sensors. This coupling relies on the evanescent field extending outside
the waveguide modes, and it can be enhanced by reducing the distance between them,
increasing the coupling length or modifying their refractive indices. In a very different
context, in light-harvesting complexes such as LHC-II, an intriguing question is whether
nature chooses a particular configuration to minimize the energy loss in the transport
of the absorbed photon.

In this work, we will focus on excitation transport between two independent chains
formed by regularly arranged atom-like emitters and show how subradiance can aid this
process. In particular, we will show that chains of atoms forming two rings can reduce
the energy loss and enhance the fidelity in the excitation transport between them.

Spontaneous photon emission from a single excited atom in free space is strongly
modified by identical emitters in the ground state nearby. Dipole-dipole coupling leads
to the appearance of fast decay via superradiant states as well as long-lived subradiant
behavior [7.1-7.5]. Energy shifts originating from coherent dipole-dipole coupling [7.6]
lead to a broadening of the collective energy spectrum strongly growing with smaller
atomic distances [7.7]. The properties of these collective states strongly depend on
the geometry of the dipole arrays [7.1, 7.8, 7.9]. While superradiance is a well-known
experimental phenomenon, subradiance is much more elusive [7.10].

As shown before, excitons become perfectly dark in an infinite chain of sub-wavelength
spaced dipoles [7.11] when their wave-vector surpasses the free-space photon wave-vector.
For a finite chain of emitters the maximal excited state lifetime grows with the third
power of the atom number N as photon emission only occurs at its ends [7.4, 7.7]. As
excitations are efficiently guided without dissipation as in a thin optical fiber [7.12, 7.13]
this should have useful applications for efficient optical photon storage [7.4]. Low loss
guiding studies have also been performed for chains of gold nano-particles [7.14].

As a central new phenomenon, we study the excitation transfer between two separate
dipole arrays. Although the strong transverse field confinement of subradiant states
leads to an exponential suppression with distance between two parallel chains, energy
eventually is still transferred between them with an almost negligible loss [7.12]. Here,
we focus on chains folded into rings, which as shown and discussed in Ref. [7.4] exhibit
extraordinarily long exciton lifetimes with very special radiative properties. A ring of
dipoles at small distances in this sense implements a minimalist form of an optical ring
resonator as depicted in Fig. 7.1, which, in principle, can exchange energy with a second
nearby ring.

As with conventional fiber-optical ring resonators we study how two such rings can
be coupled via their mode overlap at a minimal free-space radiation loss. Efficient
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7.2 System

Figure 7.1: Schematics of the system setup. (a) A single ring with inter-particle distance
d and radius R. The red arrows denote arbitrary dipole orientations. (b) and
(c) A single excitation is transferred between two in-plane rings separated by the
distance z. (b) and (c) correspond to the site-site and site-edge configurations,
respectively.

coherent coupling between two long-lived states is one of the central ingredients needed
in distributed quantum computing [7.15]. Surprisingly, the subradiant states of indi-
vidual rings feature a slower but much more efficient ring-to-ring energy transfer than
superradiant states.

Note, that many light-harvesting complexes such as LHC-II in biological systems
exhibit a structure made out of coupled dipole rings [7.16-7.18]. While modeling them
realistically certainly requires a much more detailed and sophisticated description, a
corresponding simplistic model of eight outer rings commonly coupled to an inner
ring [7.19] shows a wealth of complex and nontrivial dynamics with evidence of coherent
excitation propagation already [7.19, 7.20]. In our toy model inspired by this geometry,
dark states play an essential role in the coupled dynamics and energy transfer between
the rings.

7.2 System

Let us consider N identical two-level quantum emitters with given dipole orientations
(denoted by ¢,, i =1,..., N) positioned in a regular ring with inter-particle distance d
[see Fig. 7.1(a)]. The emitters can be excited by an external field, and we assume that
they have a significant optical response in a narrow bandwidth around their resonance
frequency wp only. Integrating out the photonic degrees of freedom, and in the Born-
Markov approximation, the internal dynamics of the atoms are governed by the master
equation p = —i[H,p] + L[p]. The Hamiltonian in a frame rotating at the atomic
transition frequency wg reads

H = Z Qija'?ea';g, (71)
ijsiAi
and the Lindblad operator is
1
Llp] = 3 ZFU (QUfepajg — 0707 p — pafgage) . (7.2)

i3

121



8 Preprint: Extraordinary subradiance in coupled nano-rings of quantum emitters

The dipole interaction and collective decay matrices with elements €2;; and I';;, respec-
tively, are given by

37TFO ~ % 5 N .
Qij = — ko Re{@i -G(7; — Tj,wo) : Koj}, (7.3)
67TFO ~ % . . R

where G(7,wq) is Green’s tensor in free space, which acts on an oscillating unit dipole
according to

- . eik‘o?" . ) .
G(rwo) - o = —[(Fx o) x T+ (7.5)
1 1 A N
(2~ 1y ) (5 8) — @)

Here, © = 7/|7] is the position unit-vector, ky = wp/c is the wavenumber associated
with the atomic transition, and Ty = |g|® k3 /3mhe is the spontaneous emission rate of
a single emitter with dipole moment strength .

After solving for the atomic density matrix the quantum fields can be obtained from a
generalized input-output relation [7.4, 7.21], which in absence of an external field reads:

k2
B () = ‘“”00 S G 7ywo) - i, (7.6)

In the following, we will consider the single-excitation manifold to be significantly
occupied only. In this case, for the observables of interest (such as the fields generated
by the ring or the excited state population) we can neglect the recycling term (first
term in the Lindblad expression). This term accounts for the change in the ground
state population, which does not modify said observables. Then, the system can be
fully understood from the properties of the eigenstates of an effective Hamiltonian
(containing the other two terms of the Lindblad expression only). It reads

How — B Fzg eg _ge
off = Z <QU — 22) 0,0} (7.7)
ij
with €;; = 0, as all the emitters are identical and a finite value would represent a global
energy shift in the Hamiltonian only.

7.3 Collective excitations and radiative properties of a single
ring

We start by analyzing a single ring of N dipole-coupled quantum emitters. The
eigenstates of Hog define a set of collective modes with associated complex eigenvalues,
whose real and imaginary parts correspond to the collective frequency shifts and decay
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7.3 Collective excitations and radiative properties of a single ring

(@)

Figure 7.2: Single ring properties. (a) Collective decay rates I'y, (in units of T'y) as a function
of \/d, for a ring of N = 8 emitters with transverse polarization and a single
excitation. In the Dicke limit, A/d — oo, only a single bright mode with a decay
rate on the order of NT is present, and N — 1 modes are dark. (b) Identical
setup as in (a) but for tangential polarization. Two bright modes arise in the
Dicke limit at m = +1. (c) I';, (in units of I'y) for a ring of fixed radius with
transverse polarization when increasing the density of emitters. For the bright
mode, I' ~ NT. (d) Decay rate (log scale) of the most subradiant eigenmode
versus the atom number, for a ring (blue circles) and an open linear chain (red
circles), both with A = 3d. The lifetime of the most subradiant mode increases
exponentially with the atom number.

rates, respectively.

For a symmetric ring, where the dipole orientations preserve the rotational symmetry
(e.g. if the dipoles are oriented perpendicularly to the plane of the ring, or tangentially
to the ring), the collective modes in the single-excitation manifold are perfect spin waves
given by [¢m) = 7 |g), with

G =N"12% " emligss, (7.8)

This is contrary to the case of a finite one-dimensional open chain, where the spin wave
approximates the exact solution only [7.4]. Here, §; = 27(j—1)/N is the angle associated
with position j (j = 1,---, N, see Fig. 7.1), and m = 0,+1,4+2,--- | [£(N — 1)/2]
corresponds to the angular momentum of the mode. In these states the single excitation
is completely delocalized over all sites, and its angular momentum is well defined. The
corresponding eigenvalues are

_ 30 S~ im(0,-6;) ¢
Ay = Vo %:e DGy (7.9)

Here, G, = gf);‘ - G(Tj — Ty, wo) - ¢ includes the dispersive as well as the dissipative
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coupling of sites j and £. Note that, due to the rotational symmetry, the coupling is
invariant under a translation along the ring, i.e., Gj; = Gjt1¢+1. The real and imaginary
parts of these eigenvalues define the collective frequency shifts and emission rates of
the mode J,,, = Re{\,,} and I';, = —2Im{ )\, }, respectively. It is easy to see that the
spectrum will be symmetric under m <> —m, that is, A, = A_,,. We note that the
mode m = 0 is always non-degenerate, whereas the eigenstates with a maximum value
of m will be doubly-degenerate if IV is odd.

Intuitively, as we decrease the inter-particle distance d with respect to the light
wavelength A = 27 /kg, we expect to approach the Dicke limit [7.22]. In this limit the
emitters are so close that the range of the interaction is effectively infinite, yielding
a single bright mode decaying at rate I' = NIy, and N — 1 perfectly dark modes.
This is indeed the case if the polarization is transverse, as it is shown in Fig. 7.2(a),
where we have plotted the collective decay rates as a function of the decreasing particle
separation. For tangential polarization, on the other hand, there are two bright modes
corresponding to m = +1 with a decay rate I' = NTy/2, while m = 0 is dark by
symmetry [see Fig. 7.2(b)].

We can observe this linear scaling of the decay of the most radiant mode with
the number of emitters by gradually increasing the density of a ring of constant
size. This is shown in Fig. 7.2(c) for transverse polarization. In addition, the covered
frequency spectrum becomes increasingly larger as the ring gets denser. The polarization
orientation will determine whether the dark or bright modes are lower or higher in
energy. For instance, for transverse polarization, bright modes are lower in energy,
whereas for tangential polarization (closer to a head-tail configuration of the dipoles)
bright modes are higher in energy.

Moreover, the modes of the ring feature extraordinary radiative properties in contrast
to an open linear chain. In particular, for a large enough number of emitters there exist
subradiant modes whose emission is strongly suppressed. Indeed, if we increase the
number of emitters while keeping \/d constant, the system will start to locally resemble
an infinite chain. The radiative properties of the infinite chain have been studied in
detail in [7.4]. Interestingly, dark modes in an infinite chain correspond to spin waves
characterized by a wavevector along the chain which is larger than ky. In this case the
eigenmode generates an evanescent field transversally to the chain and therefore the
emitters can guide light perfectly, as if they were a real fiber. For the finite chain, these
modes retain a small decay rate since a photon can still scatter off the ends of the chain.
However, by bending and closing the chain to form a ring, an increased lifetime of the
excitation can be achieved. As observed in Ref. [7.4], for a large enough ring, there is
an exponential suppression of the decay rate with the number of emitters, in contrast to
the polynomial suppression (~ N~3) observed for the open linear chain. A comparison
of how the smallest decay rate scales with the atom number in the two cases is shown
in Fig. 7.2(d).

Next, we show that the electromagnetic fields generated by a superradiant or a
subradiant eigenmode can be radically different. Using Eq. (7.6) we evaluate the fields
in Fig. 7.3 in real space for a ring with tangential polarization. The fields of the most
subradiant (left column) and a radiant eigenmode (right column) are depicted. In
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7.4 Tailored collective coupling of two rings

low high

Figure 7.3: Ring radiation patterns. The field intensity generated by a single ring with a
single excitation and tangential polarization, in the most subradiant mode with
m = |N/2] [(a), (c)] and in the radiant mode with m = 0 [(b), (d)]. The top
panels [(a), (b)] show the field in the xy-plane at fixed z = 1.5R. The bottom
panels [(c), (d)] show the field in the xz-plane at fixed y = 1.5R. The white circles
denote the position of the emitters. The field pattern is remarkably different in
the two cases: for the subradiant mode it is evanescent transversally to the ring,
and it vanishes at the center of the ring. (N = 10, d/A = 0.4).

addition to the difference in the magnitude of the fields, we find a remarkably distinct
radiation pattern. In the case of a subradiant mode, the field is evanescent transversally
to the plane that contains the ring, and moreover, it vanishes at the center of the ring.
The radiant state, on the other hand, causes strong emission in the transverse direction,
and shows an interference maximum at the center of the ring.

7.4 Tailored collective coupling of two rings

As previously discussed in Ref. [7.4] and presented in more detail above, single rings
have very intriguing radiative properties. We will, however, now continue with the
study of two coupled rings which lie in the same plane and are separated by a distance
x [see Fig. 7.1(b),(c)]. In particular, we study how excitations are transferred from
one ring to another with minimal loss. While superradiant states possess the strongest
dipole moments and thus couple strongly to neighboring dipoles, they also feature a
much faster decay. The effective Hamiltonian, Eq. (7.7), can be rewritten as the sum of
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m,/N x/\

Figure 7.4: Ring-to-ring coupling. (a) Absolute values of the dispersive Jp,, m,, (b) dissipative
Iy m, couplings and (c) the ratio 7, .m, on a logarithmic scale. We consider
two rings in spin-wave states with well-defined angular momenta m; and msy. The
rings are contained in the same plane and separated by the distance z = 0.15), in
the configuration shown in Fig. 7.1(b). The dashed white line denotes the light
line, beyond which the modes are mainly subradiant. Subradiant states primarily
couple dispersively to subradiant states. Moreover, n is maximal for subradiant
states with an opposite value of angular momentum. (d) The maximum value
of N, m, Obtained with m; = mg = N/2, as a function of the ring separation z.
(N =10,d/A=0.1).

intra-ring and ring-ring coupling terms,

Heg = Z iLiJ + Z ?Li,j + Z }Alid', (710)

i,jER1 i,jE€R2 i€R1,

JER2
with iL” = hmafgafe and h;; = —(370g/ko)Gij. As a shorthand notation, we defined
two sets of indices, one for the sites in the first ring, R; = {1,2,..., N}, and one for the
sites in the second ring, Ry = {N +1,...,2N}, respectively. The last term describes the
coupling between the two rings, and it can be written in the angular momentum basis,

~ T
. s 1,M2 eg ge
Z hm - Z <Jm1,m2 ? 2 Um1,10m2,27

i€R1, mi,ma
JER2

where Jy, mo = Re{A\p, m, } is the dispersive and Iy, 1, = —2Im{ A, m, } the dissipa-
tive coupling, and

1 .
Amyma = 73 D i jeltmibimmati), (7.11)
i €R1,
ZJ'ERlz
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7.5 Efficient excitation transfer between two rings

In Fig. 7.4(a),(b), we show the dispersive and dissipative couplings as a function of
the angular momentum of the two rings m; and msy. We use the configuration shown
in Fig. 7.1(b) with a fixed separation between the two rings x = \/2 and tangential
polarization. The white dashed line in Fig. 7.4(a)-(c) represents the light line beyond
which the states are predominantly subradiant. We observe that subradiant states
mainly couple dispersively to other subradiant states, whereas radiant states couple to
other radiant states with large dissipation. Furthermore in Fig. 7.4(c) we show the ratio
Nmama = Iy g /A%, iy +max{T2, T2 Y], with Ay my = [Jimy — Jim,|. This is a
figure of merit that quantifies how efficiently two modes in the two rings are coupled,
and thus, how efficiently an excitation can be transferred between them. Remarkably,
we find that in the subradiant sector, 7 is non-negligible for states where m; = +my
only. Moreover, it is several orders of magnitude larger for m; = —msy, that is, for
two guided modes that propagate in opposite directions in the two rings. This result
indicates that in the subradiant regime the physics is well captured by a two-mode
model consisting of the two states with m and —m.

We also note that the efficiency in the coupling strongly depends on the particular
configuration of the dipoles. As the separation between the rings increases, the maximum
value of n displays oscillations with an overall decay. This is shown in Fig. 7.4(d), where
we have evaluated ™ = n,, _n/2 m,—n/2 for N = 10 as a function of the rings’
separation x. Interestingly, a different configuration such as the site-edge arrangement
illustrated in Fig. 7.1(c) can yield a dramatically different result. In this case, it is easy
to see that due to symmetry, the fields created by the two rings in the m = N/2 mode
completely destructively interfere yielding a coupling which is exactly zero.

7.5 Efficient excitation transfer between two rings

According to the previous results for the couplings, we might expect that if one of the
rings is initially prepared in a very subradiant state, the excitation oscillates between
the two rings for a very long time before it finally decays.

Up to now we have considered eigenstates of the system which are fully delocalized in
space. This gives more insight into the native behavior of the system than investigating
single excited sites. However, excitations in reality will often be partially (de-)localized
only. This leads to the natural question whether it is still possible to achieve an efficient
excitation transport between the two rings for a multi-mode wave packet. In the
following, we investigate the dynamics of a wave function initially prepared in the form

|7 =7k

1 I L A
Vi) = = 3 eimeTm@a ot | g). (7.12)
JER;

This corresponds to a wave packet with a Gaussian population distribution centered
at site k in the ith ring with an angular spread Af (wave packet width R - Af) and
central momentum m. The constant n accounts for the normalization. An infinitely
wide wave packet of this form represents the eigenstate given by m. On the other hand,
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if the wave packet is of zero spread, only the atom at the site given by the index k is
excited.

For a mode guided by the first ring with momentum m, it is only natural that it will
invert its direction upon being transported to the second ring. This is a more intuitive
picture of the previous result that the coupling is optimal between modes with opposite
m. Thus, for a finite width wave packet, we expect that it is transferred into a wave
packet with the same shape but central momentum —m. Therefore, we evaluate the
fidelity F(t) of creating this wave packet in the second ring as

F(t) = max {tworle)}, (7.13)

where we maximize over the site index k in the second ring since we do not know the
(center) position of the wave packet created there at all times. The wave function |¥(t))
is given by the time evolution with Hes with the initial condition [¥(0)) = [¥7).

In Fig. 7.5(a) we show the maximal fidelity during time evolution as a function of
the ring separation as well as of the width of the initial wave packet for two rings with
N = 20. We start out with a wave packet centered at the site that is farthest from the
second ring. The momentum is chosen to be m = | N/4| such that all modes the packet
is made up of have momenta of the same sign. As one can see, the fidelity is rather
low as long as the width is small, i.e., the excitation is localized at one site almost
perfectly. However, for a comparably small width in real space already, the wave packet
is sufficiently localized in momentum space to exhibit coherent transport. The fidelity
grows to values larger than 90% quickly as the width increases, indicating a reliable
transport of a subradiant wave packet from the first ring to the next. Moreover, the
transport is best if the separation between the rings is comparable to the inter-particle
distance. This is due to the change of the energetic shifts of neighboring atoms with
their separation: if the atoms at the points where the rings are closest are too far (or
too close) to one another, the shifts vary greatly, effectively detuning these atoms far
from the rest. Excitations can then no longer propagate.

In Fig. 7.5(b) we plot the fidelity of the same wave packet being transported as a
function of time. The wave packet oscillates between the two rings with the same period
for both finite and infinite width. The amplitude, however, damps out considerably
faster for the case of a finite width. Nevertheless, a large fidelity is achieved even when
the initial state is not a perfect eigenstate of the system.

7.6 Conclusions

We started off by showing that a single ring of dipole-dipole coupled emitters exhibits
peculiar radiative properties. Specifically, the lifetime of subradiant states prepared in
such a ring increases exponentially with a growing number of atoms. Accordingly, the
intensity emitted from a ring when a subradiant state is prepared is largely diminished
compared to a superradiant state.

We then showed that if another ring is present, optimal coupling occurs between
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Figure 7.5: Fidelity of wave packet transport between two rings. (a) A scan of the maximal
fidelity (over time) as a function of the ring separation and the wave packet width
for two rings consisting of N = 20 atoms. For a sufficiently large width and
a separation comparable to the inter-particle distance d = 0.1\, the fidelity is
almost unity. (b) The larger the width in real space, the more the wave packet
is localized in momentum space thus showing better transport behavior. The
separation between the rings was x = 0.15\. For both (a) and (b) the dipoles were
oriented tangentially.

subradiant states of each ring. An excitation that is sufficiently delocalized and moving
with a velocity along one ring that closely corresponds to the momentum of an eigenstate
that is subradiant can be transported to another ring with a large fidelity. This reliable
coherent transport takes place for a comparably small delocalization already and
culminates in damped Rabi-like oscillations between the rings once the excitation is
spread over the entire first ring.

Note that beyond the two-level approximation analogous bright and dark states also
appear in more complex level structures with several decay channels [7.23]. Hence much
of the physics discussed here should also hold in rings of particles with a more complex
internal structure.
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8.1 Introduction

Numerical simulations of open quantum systems are essential to research fields like
quantum optics or quantum information as the number of analytically solvable systems
is quite limited. Due to the usefulness of such numerical calculations to study systems
and phenomena otherwise only accessible through elaborate experimental tests, it is
of interest to make said numerical calculations as approachable as possible to a wide
audience without compromising too much on their efficiency. In this form they can also
be a useful tool in teaching. An early, greatly successful attempt in this direction has been
the Quantum Optics (QO) Toolbox in Matlab [8.1], which dates back almost two decades.
Other approaches [8.2, 8.3] have mostly focused on efficiency, thus sacrificing accessibility
by employing lower level languages like C++ and template metaprogramming. None of
these, however, have managed to gain a popularity comparable to the QO Toolbox.

It was not until recent years, that a toolbox similar to the one in Matlab called
QuTiP (Quantum Toolbox in Python) has been developed [8.4, 8.5], which in some
sense superseded the QO Toolbox. QuTiP’s wide adaptation can be traced back to a
couple of advantageous properties: QuTiP as well as its underlying language, Python,
are both open source, a fact that is greatly appreciated in the scientific community.
When compared to the QO Toolbox, which runs on the proprietary Matlab, QuTiP is
equally convenient to use and switching to it requires very little effort. Additionally, due
to its open development approach the project has acquired many active contributors
since its debut and as a consequence it contains many features that go beyond QO
Toolbox’s capabilities. Another outstanding feature is QuTiP’s extensive documentation
and the considerable amount of available examples. One downside, however, is the fact,
that any time-critical calculations need to be outsourced via Cython [8.6] or performed
by external libraries written in e.g. C, C+4 or Fortran. This not only applies to the
framework itself, but is also a concern for any user. If some code provided by the user
happens to be time-critical, he or she then has to port it to a low-level programming
language.

The programming language Julia [8.7, 8.8] avoids this problem by offering a clean
and convenient syntax typically associated with dynamic languages while at the same
time providing speed comparable to compiled languages due to its just in time (JIT)
compilation. For this reason, it has been gaining a lot of momentum in the community of
scientific programming already, even though it is still under active development. While
Python packages like PyPy [8.9] or Numba [8.10] will also allow for JIT compilation
in the same fashion as Julia, with the later even relying on the same LLVM compiler,
Python was designed to be an interpreted language and thus only a subset of functions
will benefit from the JIT functionality. In contrast, Julia was created with the JIT
paradigm in mind and no extra effort by the user is required.

Taking full advantage of its easy-to-read syntax and its efficiency, we built a new open
source framework, QuantumOptics.jl, written entirely in Julia. It is specifically geared
towards the efficient and easy numerical simulation of open quantum systems. In this
paper, we demonstrate the capabilities of our toolbox in its current version v0.4.1. We
show that it offers speed in numerical calculations, while at the same time the source
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code remains intuitive and easily accessible.

Our framework can be installed very straight-forwardly: after having setup Julia
itself, where detailed instructions can be found on the Julia website [8.11], one can make
use of Julias’s package manager and simply execute the following command:

Pkg.add(”QuantumOptics”)

To obtain a first impression of QuantumOptics.jl consider code sample 8.2, which
simulates the well-known Jaynes-Cummings model. A two-level atom with a transition
frequency w,, modeled as a spin-1/2 particle, coherently couples to a cavity mode of
frequency we. Initially, the particle is in the ground state and the field mode is prepared
in a coherent state |«). The time evolution of the system is governed by the Schrodinger
equation

% = Hyew, (8.1)

where the Hamiltonian, given in a suitable reference frame reads (A = 1)
Hyjc=Ad'a+g (aTaf + aa+) . (8.2)

Here, A = w. — w, and g is the coupling strength between the atom and the cavity.
Furthermore, a (a') is the photon annihilation (creation) operator of the cavity and o~
(o) denotes the atomic dipole’s lowering (raising) operator. As one can see from code

1.0
0.8 9
T\ 0.6
~ 0.4

0.2 1

0.0 1

0 5 10 15 20 25 30 35
gt

Figure 8.1: Jaynes-Cummings model: atomic population dynamics. The plot was created with
the results from code sample 8.2.

sample 8.2, the framework predefines all the necessary operators, which enables one to
implement the above model in a few simple lines of code.

using QuantumOptics

# Define required parameters
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g 1.0
A= -0.1
o 4.0

# Define bases for cavity (Fock) and atom (Spin-1/2)
bc = FockBasis(40)
ba = SpinBasis(1//2)

# Construct operators
a = destroy(bc) ® one(ba)
6~ = one(bc) ® sigmam(ba)

# Construct Hamiltonian
H = A*dagger(a)*a + g*(dagger(a)*o- + a*dagger(c-))

# Define initial state
Yo = coherentstate(bc, a) ® spindown(ba)

# Define list of time steps
T=1[0:0.01:35;]

# Evolve in time according to Schrédinger's equation
tout, y: = timeevolution.schroedinger(T, wo, H)

# Calculate atomic excitation
excitation = expect(dagger(c-)*oc-, yt)

Code sample 8.2: Jaynes-Cummings model.

The resulting atomic dynamics is depicted in Fig. 8.1, where we show the energy
stored in the atom as function of time. We clearly see the well-known collapse and
revival of coherent oscillations of the energy between atom and the cavity [8.12]. This
is a well studied and numerically nontrivial phenomenon for which no simple analytic
solution exists.

8.2 Framework design

QuantumOptics.jl’s design, and especially its interface, closely resembles QuTiP’s
successful architecture and shows a lot of similarities to the QO Toolbox, yet features a
few fundamental differences. First and foremost, QuantumOptics.jl distinguishes itself
in the way it treats quantum objects, such as states, operators and super-operators.
In QuTiP, quantum objects are more or less equal to their numerical coefficients with
regards to a chosen basis. This is a practical and reasonable approach, as, in the end,
the aim is to perform numerical calculations with these objects. However, in order to
faithfully represent an abstract state in a Hilbert space, one has to keep track of the
choice of basis that was made as well. Thus, in QuantumOptics.jl we explicitly track
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the basis for every quantum object (see Fig. 8.2a). From the relation

(W) = (u| ) |ug) = Z‘I’z |ui) (8.3)

i

it is evident that a state is defined completely by specifying the coefficients ¥; and
a basis {|u;)}. For operators, however, it makes sense to allow for more than one
basis, since an operator is, in general, a mapping from one Hilbert space into another.
Therefore, it is associated with two bases — one for the domain and another one for the
co-domain. The following equation formalizes this idea as

A= (il Alvg) ) (vl = D Aug us) (v (8.4)
ij ij
where we call {|u;)} the left basis and {|v;)} the right basis. The generalization to
superoperators is straightforward and culminates in storing four different bases.

Introducing this notion of bases has several advantages. On one hand, it adds an
additional layer of safety, as for any operation (e.g. for a multiplication) we check
whether or not the bases of the two objects involved are compatible. Without this
information about the basis the only thing that can be checked is if the Hilbert space
dimensions match. On the other hand, the use of bases arguably improves the code’s
readability. This is of course a subjective assessment but using a basis as a parameter
when creating operators, instead of specifying the Hilbert space’s dimension only, leads
to more understandable code. Additionally, the possibility of dispatching a function
like e.g. momentum() on a PositionBasis as well as on a MomentumBasis and obtaining
the correct result in both cases, allows for very elegant coding.

Besides the conceptional differences in the understanding of quantum objects, a more
tangible distinction to QuTiP and the QO Toolbox is QuantumOptics.jl’s choice of the
internal representation of their numerical data. While QuTiP and the QO Toolbox both
use sparse matrices as their underlying data structure, QuantumOptics.jl takes a more
general approach. It defines an abstract operator interface which is implemented by
specialized operator types. At this point, primarily dense and sparse matrices are used
but there are additional possibilities, as depicted in Fig. 8.2b. The existence of different
data types for operators is mostly transparent to the user as suitable choices are made
automatically. Nevertheless, it is always possible to specify the desired operator type
explicitly. Admittedly, the increased complexity that comes from this approach can
be an additional burden on the user. However, in our opinion, this disadvantage is far
outweighed by the improved versatility (see for example Sec. 8.4.3) and a huge boost in
speed in many cases. A more detailed discussion of this claim is provided in Sec. 8.5.

8.3 Development philosophy

To ensure the quality as well as the usability of our code we adhere to a certain set of
self imposed rules:
Open source - Access to the underlying code is a fundamental necessity in any scientific
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a) Quantum Systems

Quantum Objects
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Figure 8.2: [llustration of the framework’s design. a) Quantum systems provide functions
that allow for an effortless construction of typical quantum objects. b) Quantum
objects, i.e. states, operators and superoperators, constitute the fundamental
building blocks of QuantumOptics.jl. They are defined as abstract interfaces which
are then realized by several specialized types. This makes it possible to choose an
implementation that is most favorable for the investigated problem. c) Finally,
these quantum objects can be used as an input for various time evolutions as well
as other operations.

endeavor. This is why our code is open source. Additionally, it can be modified since it
is published under the MIT license.

Open development model - Framework development takes place transparently using
the convenient GitHub platform [8.13]. Anybody who is interested and motivated can
join discussions effortlessly and submit patches. Every single patch is reviewed by at
least one person besides its author to ensure high code quality.

FExtensive testing - Rigorous testing is a core requirement for our code. It enables
us to perform restructuring and redesigning while being confident that our code will
remain functional. Every function that is part of the public interface is unit-tested. The
test suite is run against every single change before it is incorporated into the framework
ensuring that even the newest features can be used reliably. Additional high-level tests
compare the numerical results against known analytical solutions.

Documentation - From a user’s point of view undocumented code is equal to nonex-
isting code. Thus, every function of the public interface is documented directly in the
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code via docstrings, which can be accessed easily from the command line. High-level
documentation [8.14] can be found on our website [8.15], which not only references these
docstrings but also provides various examples that cover a wide variety of quantum
mechanical systems and can be used as a convenient starting point for more specialized
investigations. Every single code snippet in the documentation is executed during the
build process to guarantee that it is functional and always up to date.

Benchmarking - An extensive benchmark suite allows us to detect and therefore avoid
any speed regressions [8.16]. It also includes benchmarks for other quantum simulation
frameworks, at the moment for QuTiP and the QO Toolbox, which can be used to
identify areas that should be optimized in our own code. A few selected examples are
presented in Sec. 8.5.

8.4 Examples

In this section we demonstrate the versatility of our framework by simulating a few
well-known quantum systems using models and techniques of increasing complexity. As
is already discernible from code sample 8.2, each script roughly follows a simple scheme:

1. Define the required physical parameters (frequencies, decay rates, etc.) as numeri-
cal constants.

2. Specify the bases of the respective Hilbert spaces (Fig. 8.2a).

3. Construct the corresponding operators, the Hamiltonian, jump operators and
states (Fig. 8.2b).

4. Use operations such as a time evolution, expectation values, etc. to obtain physical
results (Fig. 8.2¢).

8.4.1 Lossy Jaynes-Cummings model

First, let us extend the example of the Jaynes-Cummings model from code sample 8.2
to an open system. When the cavity mode is coupled to a thermal bath with a mean
photon number ngy,, photons can leak out of the cavity at a rate (ng, + 1)k and enter
the cavity at a rate nyyk. Similarly, the atom can lose energy via spontaneous emission
at a rate v as it interacts with the electromagnetic vacuum field. These dynamics are
modeled by a master equation for the system density operator p [8.17],

p=ilp, Hycl + Lp. (8.5)
Here, £ is the Liouvillian which includes the various dissipation channels,

Lp = (nu+1) Dlalp + nuwwD [a'] o+ 7D [07] p. (8.6)
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Figure 8.3: Jaynes-Cummings model with damping: comparison of full master equation dy-
namics (orange, dashed) and a single noisy MCWEF trajectory (blue, solid). The
plot was created with the results from code sample 8.3 and code sample 8.4.

where
1
D{Alp = ApAT - 3 (ATAp + pATA) . (8.7)

The framework is built in such a way that one can easily extend the code from the
unitary evolution in code sample 8.2 to dissipative dynamics. This is shown in code
sample 8.3, where instead of a Schrodinger equation for a pure quantum state we solve
the master equation, which inherently requires the use of a density matrix to represent
the resulting mixed state.

# Decay rates

K = 0.01

y = 0.01

n th = 0.75

R = [(n_th + 1)*k, n_th*k, y]

# Jump operators
J = [a, dagger(a), o]

# Time evolution according to master equation
tout, pt = timeevolution.master(T, weo, H, J; rates=R)

# Caclulate atomic excitation
excitation = expect(dagger(c-)*c~, pt)

Code sample 8.3: Jaynes-Cummings model including decay (requires code sample 8.2).
As one can see in Fig. 8.3, even though we chose small damping rates, k,vy < g, they
already suppress the revival of the atomic excitation.

As an alternative to the master equation one can resort to a stochastic time evolution
via the Monte Carlo wave-function (MCWF) method [8.18]. Since for a single trajectory
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the state of the system is defined completely by a ket |¢)) rather than a density operator
p it is easier to simulate. However, this gain comes at the expense of requiring time
consuming stochastic averaging. Essentially, the MCWEF method evolves the state
according to a Schrédinger equation with a non-Hermitian Hamiltonian

N i
HY = Hyo — 3 Z ridl s, (8.8)

with randomly occurring quantum jumps connected to the jump operators .J; €
{a,a’,0~} and the corresponding rates r; € {(ng, + 1)K, ngnk, v}

Once again, it is straightforward to implement this time evolution with our framework.
To this end, let us extend the Jaynes-Cummings model from code sample 8.2 and code
sample 8.3 further. In code sample 8.4 we show how to calculate a single MCWF
trajectory.

# Calculate single MCWF trajectory
tout, y: = timeevolution.mcwf(T, ye, H, J; rates=R, seed=2)

excitation = expect(dagger(c-)*oc~, yt)

Code sample 8.4: Monte Carlo wave-function method for the lossy Jaynes-Cummings model
(requires code sample 8.2 and code sample 8.3).

In contrast to the average over infinitely many trajectories (result from the master
equation approach), single MCWF trajectories still exhibit a revival in the atomic
excitation (see Fig. 8.3) but with different phase and timing.

8.4.2 Time-dependent Jaynes-Cummings model

Very often the Hamiltonian of a problem contains an explicit time-dependent term,
modeling e.g. a controlled change of operating parameters or a pulsed excitation. Let
us thus demonstrate how to solve such a time-dependent problem in our framework.
Consider the Hamiltonian of the Jaynes-Cummings model. In Eq. (8.2) it is written in
a frame rotating at the atomic frequency w,, resulting in the term Aafa. To eliminate
this term as well we change into a frame rotating at the detuning A. The Hamiltonian
then becomes time-dependent,

Hyc=g (aTa_eiAt + a0+e_mt) . (8.9)

In order to solve the time evolution with a time-dependent Hamiltonian, we need to
write a small function that updates the Hamiltonian at every time step and returns
the result. In addition, let us also include the decay processes as used in the master
equation (see code sample 8.3). The code required to solve this problem is shown in
code sample 8.5 and we obtain the same results as in code sample 8.3.

# Separate time-dependent terms of H
H1 = g*dagger(a)*o-
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H> = dagger(H1)

# Calculate the Hermitian conjugate for the jump operators
Jdagger = dagger.(J)

function H«(t, p) # time-dependent Hamiltonian
H = exp(lim*A*t)*H: + exp(-lim*A*t)*H>
return H, J, Jdagger

end

tout, p: = timeevolution.master dynamic(T, yo, H:; rates=R)
excitation = expect(dagger(c-)*c-, pt)

Code sample 8.5: Time evolution of the Jaynes-Cummings model with a time-dependent
Hamiltonian (requires code sample 8.2 and code sample 8.3).

8.4.3 Gross-Pitaevskii equation

In addition to the implementation of time-dependent Hamiltonians, the framework also
allows for state-dependent effective Hamiltonians. This enables one to, for example, quite
easily simulate the Gross-Pitaevskii equation [8.19]. For a one-dimensional Bose-Einstein
condensate (BEC) in free space described by (x,t), the equation reads

W(%t) = HGPE¢(xat)7 (810)

where the Hamiltonian is

2

Hepe = 5 — + gl (e, t)]”. (8.11)
Here, x and p are the position and momentum operators, respectively, and m is the
mass. The parameter g governs whether the interaction is attractive (¢ < 0) or repulsive
(g > 0). The equation has the form of a Schrédinger equation, but with the state-
dependent term g[t|? in the Hamiltonian. The implementation of this equation is
shown in code sample 8.6. In our example, the condensate is in a superposition of two
counter-propagating wave-packets initially. These collide after some time as depicted in
Fig. 8.4, where the probability density of the BEC | (z,)|? is plotted as a function of
space and time.

using QuantumOptics

X min = -10

X _max = 10

x_steps = 300

dx = (x max - x min)/x_steps

m=1
Xeo = 2T
g = -3.33
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b x = PositionBasis(x min, X max, X steps)
b p = MomentumBasis(b x)
Tpx = transform(b p, b x)
Txp = transform(b x, b p)

p = momentum(b _p)

Hkin = LazyProduct(Txp, p~2/2m, Tpx)

Hy = diagonaloperator(b x, Ket(b x).data) # « |y|"2
He = LazySum(Hkin, Hy)

function H(t, y) # Update state-dependent term in H
Hy.data.nzval .= g/dx*abs2.(y.data)

return Ho
end
po = 2
oc=1.5
Y1 = gaussianstate(b x, -xo, pe, 0)
Y2 = gaussianstate(b x, xo, -pe, 0)
Yo = normalize(y: + y2)

T=1[0:0.01:6;]
tout, y: = timeevolution.schroedinger dynamic(T, we, H)

density = [abs2(y.data[j]) for y=y:, j=1l:x steps]

Code sample 8.6: Gross-Pitaevskii equation.
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Figure 8.4: Nonlinear Schroedinger equation: collision of two soliton like wave-packets. The
plot was created with the results from code sample 8.6 and z is a characteristic
length scale.

Besides the state-dependent Hamiltonian this example showcases a few additional fea-

tures which are unique to QuantumOptics.jl. For performance reasons it is advantageous
to continuously switch between position and momentum space since some operators
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are sparse in one but not in the other basis. The transformation operators Txp and Tpx
are of a special type, which adheres to the general operator interface, and implicitly
performs fast Fourier transformations (FFTs) when multiplied with a state. Since these
FFT operators cannot be combined with sparse or dense operators in a meaningful way
without losing their advantage, QuantumOptics.jl provides the concept of lazy operators
which can be used to delay evaluation until the operator has been applied to a state.
For example, instead of adding two operators first and multiplying them with a state
afterwards, lazy operators make it possible to first separately multiply the two operators
with the state and then sum up the two results.

8.4.4 Semi-classical model of cavity cooling

When a physical system has too many degrees of freedom for an efficient full quantum
solution, it is often convenient to approximate a part of the dynamics classically,
while other quantum degrees of freedom are kept. Our framework easily allows for
implementations of simulating such semi-classical dynamics.

Let us demonstrate this at the example of a two-level atom moving in the field of a
coherently driven cavity mode along the cavity axis. The cavity has a mode function
cos(kz), where k is the cavity mode wave number and x represents the position of the
atom. The full quantum system can be described by the Hamiltonian [8.20]

Ekin/’f

z/A

0 20 40 60 80 100
Kt

Figure 8.5: Cavity cooling of a two-level atom. The plot was created from the results in code
sample 8.7. One can see the cooling process in terms of the decrease of the kinetic
energy Eyin, = p?/2m and the localization in z (where A = 27 /k is the cavity
wavelength). Additionally, the cavity photon number n saturates.

p2

Heooling = —Acata— Ajoto™ + n (aT + a) + g cos(kx) (aTo* + aa*) + o

(8.12)
Here, A; = wp, —w; is the detuning from the pump laser with frequency wy, and amplitude

7. The coupling strength between the atom and the cavity is ¢ and p is the momentum
of the atom. The atom is subject to spontaneous emission with a rate v and the cavity
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is damped with a rate x, which we include by the Liouvillian
L[p] = kDlalp +~vD [0 ] p. (8.13)

Describing the field, atomic motion and internal atomic dynamics quantum mechanically
creates a very large Hilbert space for realistic photon numbers and velocities. However,
if the atom has a kinetic energy that is far above the recoil limit, it is well justified to
approximate the atomic motion by classical Newtonian mechanics and variables, i.e.
and p are merely numbers instead of operators. This is the case for cavity cooling. The
force exerted on the atom is then

P = =0z (Heooling) = 29k sin(kz)Re {<CITO'_>} , (8.14)

and the velocity is given by & = p/m. Tuning the cavity to a frequency lower than the
atomic transition frequency, the atom loses kinetic energy upon absorbing a photon
from the cavity. It therefore experiences friction and its motion is cooled.

The above model can be simulated in a straightforward fashion using the implemented
semi-classical functions, as demonstrated in code sample 8.7. The resulting cooling
process is depicted in Fig. 8.5.

using QuantumOptics

K=1.0

n=10

g=0.5

Yy = 2.0

Ac = 0.0

Aa = -1.0

m= 3.33

bc = FockBasis(16)

ba = SpinBasis(1//2)

a = destroy(bc) ® one(ba)

o~ one(bc) ® sigmam(ba)

Hc = -Ac*dagger(a)*a + n*(a + dagger(a))

Hat = -Aa*dagger(o-)*o-

He = Hc + Hat # Position-independent part

Hx = g*(a*dagger(o-) + dagger(a)*o-) # « cos(x)

rates = [k, Y]
J = [a, o07]
Jdagger = dagger.(J)

function f q(t, w, u) # Quantum part

x = real(u[l])

return He + Hx*cos(x), J, Jdagger, rates
end
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atsm = dagger(a)*o- # Compute a priori for efficiency
function f cl(t, y, u, du) # Classical part
X, p = real(u)

du[1l] = p/m
du[2] = 2g*sin(x)*real(expect(atsm, y))
end
Xo = -2T
po = 2m
uo = Complex128([xe, pol
yo = fockstate(bc, 0) ® spindown(ba)

ysc = semiclassical.State(ye, uo)

T=1[0:0.1:100;]
tout, pt = semiclassical.master dynamic(T, ysc, f q, f cl)

x = [r.classical[l] for r=pt]
p = [r.classical[2] for r=p«]
n = expect(dagger(a)*a, pt)

Code sample 8.7: Semi-classical model of cavity cooling.

8.5 Performance
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Figure 8.6: Benchmarks measuring the time elapsed when performing a time-evolution accord-

—+— QuTiP-4.2.0

—— QuantumOptics.jl

—=— QO-Toolbox

ing to a master equation. Three different systems exhibiting different sparseness
properties are investigated: a) a pumped cavity with photon decay (sparse Hamil-
tonian and dense density operator), b) the Jaynes-Cummings model including
particle as well as cavity decay (sparse Hamiltonian and sparse density operator),
¢) a particle trapped in a harmonic potential (dense Hamiltonian and dense density
operator). Depending on the sparseness of the system, QuantumOptics.jl's flexible
operator types can lead to considerable speed-ups compared to the purely sparse

matrix approach in QuTiP and the QO Toolbox.

Besides the correctness of the numerical results, providing an adequate performance
is one of our main goals. An extensive benchmark-suite [8.16] allows us to detect and
therefore avoid speed regressions from one version to the next. Additionally, since these
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Figure 8.7: Benchmarks measuring the time elapsed when performing a time-evolution according
to a master equation with time-dependent Hamiltonians. The same systems
as in Fig. 8.6 are depicted in the same order. QuTiP provides two different
implementations - a Cython and a pure Python based approach. Both, the
compilation time of Julia and the Cython approach are not included in the above
time measurements. Note, though, that in general the GCC compiler used by
Cython gives it a certain advantage over Julia (see Sec. 8.6)

benchmarks contain respective tests for QuTiP and the QO Toolbox as well, it helps us
to identify areas in our code that should be optimized further.

In principle, there are two intrinsic aspects that should give us an advantage in
terms of speed. The first one is the fact that the internal layout of operators can be
chosen according to the investigated problem. This means that one can choose to work
with dense or sparse matrices or even more specialized operators. Note, that at the
moment the time-evolution methods in our framework require density operators to be
represented as dense operators. There is no fundamental reason for this limitation and
a future implementation of time evolutions with sparse density operators is part of our
roadmap. The positive effect of having a choice between dense and sparse operators can
be seen best in the benchmarks in Fig. 8.6 which compare the different frameworks by
performing a time-evolution according to a master equation for three different physical
examples. Here, the cavity example exhibits a sparse Hamiltonian and a dense density
operator, the Jaynes-Cummings model features a sparse Hamiltonian and a relatively
sparse density operator, while the particle example demonstrates a completely dense
Hamiltonian as well as a dense density operator. The more sparseness the whole system
entails the closer the benchmark results are to each other. Contrastingly, for the low
sparsity case huge speed improvements are observable.

The second aspect is Julia’s natural speed advantage in comparison to Python and
Matlab. While code written in Julia can achieve the speed of C or Fortran, in interpreted
languages the philosophy is to rewrite speed-critical parts in a fast compiled language.
However, this comes at the cost of flexibility, which manifests itself, e.g. when simulating
time- or especially state-dependent problems. The simplest way for the user would be to
define an arbitrary function directly within Python or Matlab. However, this function
is most likely critical for performance, which means it should be compiled. QuTiP uses
Cython [8.6] to achieve this and, as can be seen in the time-dependent benchmarks in
Fig. 8.7, quite successfully so. This again comes at the cost of accessibility, though.
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While in this publication we focus on the speed of performing various time-evolutions,
our benchmarks cover a greater variety of calculations. This is especially important
when investigating more involved examples, e.g. when treating a system semi-classically
as in the example in Sec. 8.4.4, where in every step of the time evolution expectation
values have to be calculated.

Finally, let us provide a few more details on how these benchmarks were carried out:
the data shown in this paper was obtained on a single core of an Intel(R) Core(TM)
i7-5960X CPU running at 3.00GHz under Linux and Julias’s compile time is neglected
in the results as we focus on the speed of the actual calculations. Furthermore, we
tested QuTiP and QuantumOptics.jl on other hardware and different operating systems
obtaining qualitatively similar results.

8.6 Disadvantages

While QuantumOptics.jl relies on Julia and embraces many of its modern features,
we have to acknowledge the fact that Julia is still a very young language and not yet
completely stable. The very same is true for the framework itself, which will continue to
grow and future changes to the interface might very well be in its path. This, however,
implies that code written for the current release of QuantumOptics.jl, namely v0.4.1,
might have to be adopted to its future versions, if they include changes in the interface.

Another consequence of the framework being very young is the fact that Quantu-
mOptics.jl is clearly not as feature-rich as other well-established frameworks such as
QuTiP. We are confident, though, that over time the framework will continue to grow
and eventually reach a comparable versatility.

A clear disadvantage when comparing Julia to Cython is the compilation time. We
want to point out that Julia uses the noticeably slower LLVM compiler, while Cython
relies on GCC making it advantageous at short running times. When going to longer
times, however, this difference in compilation time becomes a negligible constant offset.

Another noteworthy issue lies with the Julia language itself. As of the writing of this
manuscript, Julia has quite a large memory footprint. Hence, so does our framework in
its current form. This may be an issue especially for users running many simultaneous
instances of Julia (e.g. when performing calculations on a cluster or server). We hope
that this issue will be addressed in the future of Julia’s development.

8.7 Conclusions & Outlook

We have presented a new computational framework for the efficient numerical inves-
tigation of open quantum systems, demonstrated its capabilities and highlighted its
performance.

In its current version (v0.4.1), QuantumOptics.jl is a very young framework and, as
mentioned above, still under active development. We strongly encourage community
contributions in the form of additions to the framework itself or even separate exten-
sions based on QuantumOptics.jl, like our own Correlation Expansion Package [8.21],
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which allows for simulating larger systems by specifying which quantum correlations
should be included or neglected, respectively, or the CollectiveSpins library [8.22],
providing more specialized building blocks for the investigation of dipole-dipole cou-
pled two-level systems in various approximations. Planned short term improvements
include the addition of stochastic Schréodinger and master equations as well as adopting
DifferentialEquations.jl [8.23] for the time evolution functions.
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At the beginning, we provided a succinct introduction to the theoretical tools and
models required to follow the research presented in the subsequent publications. We
presented a number of studies on the precise dynamics of interacting quantum emitters.

First, we focused on the usefulness and properties of subradiant states in chains of
quantum emitters. Employing a magnetic field gradient we were able to efficiently address
subradiant states even if they are otherwise fully decoupled from the environment.

Moving forward, the collective nature of noise, which stemmed from a laser interacting
with an ensemble of quantum emitters rather than from the emitters themselves, was
modeled. Its effects on metrological applications were discussed followed by a proposal on
how to suppress the noise by addressing parts of the ensemble with opposite detunings.

Next, we found that otherwise weak light-matter interactions could greatly profit
from coupling an optical cavity mode to a subradiant state of an emitter ensemble. The
subradiant lines caused a large inhibition of transmission and were therefore observable
in the cavity spectrum. Furthermore, they caused a large phase shift in the transmitted
field in an extremely narrow frequency range. While these central results were found
already in a classical description of the problem, we proceeded by studying the quantum
mechanical aspects of this system in great detail. To this end, we developed and discussed
a quantum-Langevin approach for interacting quantum emitters. We showed that the
quantum noise in the detection signal is inhibited around subradiant antiresonances
as well. The subradiantly enhanced light-matter interactions also lead to a significant
increase in the quadrature squeezing of the cavity field. These effects are accompanied
by characteristic nonlinear behavior.

Interesting physics also arose in a different system, consisting of nanorings in free
space. This model was to some extent inspired by the fundamental biological building
blocks responsible for light harvesting in plants. A single such ring already features
strongly suppressed spontaneous emission due to subradiance. We were further able
to show that, due to this subradiant coupling, highly efficient transport of excitations
between two nanorings can occur.

In summary, we showed that, performing clever manipulations of ensembles of quantum
emitters, collective interactions can be used to extend the excitation lifetime, reduce
collective laser noise, or enhance light-matter interactions. Furthermore, efficient and
lossless excitation transport is made possible.

Finally, we presented the QuantumOptics.jl framework and showed how one can
efficiently solve problems in quantum optics in a straightforward fashion.

These studies motivate further investigations in many directions. For one, the
phenomenon of collective radiation of quantum emitters inside an optical cavity makes
for an interesting lasing setup, a so-called superradiant laser. Research focusing on such
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a laser, which does not require a large intensity to exhibit a narrow linewidth, has been
gaining a lot of momentum in recent years.

Treating the motional degree of freedom of quantum emitters that also interact via
dipole-dipole interactions could be interesting. One could aim at exotic phenomena in
terms of cooling as well as including motional effects in laser models.

The model of dipole-coupled nanorings can also be further developed, such that it
eventually resembles the biological counterpart it was originally inspired by.

Considerable effort will go towards the further development of the QuantumOptics.jl
framework. It already offers a manifold of essential routines useful in research applica-
tions. The aim here is to not only optimize those existing features, but to also add new
solution methods and algorithms for the problems encountered during future research.
The modular concept of the framework in combination with Julia’s inherent ease of use
allows us to continuously extend its versatility.
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We dispersively couple a single trapped ion to an optical cavity to extract
information about the cavity photon-number distribution in a nondestructive
way. The photon-number-dependent ac Stark shift experienced by the ion
is measured via Ramsey spectroscopy. We use these measurements first to
obtain the ion-cavity interaction strength. Next, we reconstruct the cavity
photon-number distribution for coherent states and for a state with mixed
thermal-coherent statistics, finding overlaps above 99% with the calibrated
states.

doi: 10.1103/PhysRevLett.122.153603

tTogether with V. Torggler, the main contribution of the author of this thesis were frequent
discussions on the theoretical aspects of the experiment presented in the paper as well as some
calculations.
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Cavity quantum electrodynamics (cavity QED) provides a conceptually simple and
powerful platform for probing the quantized interaction between light and matter [10.1].
Early experiments opened a window into the dynamics of coherent atom—photon in-
teractions, first through observations of collective Rabi oscillations and vacuum Rabi
splittings [10.2-10.5] and later at the single-atom level [10.6-10.11]. More recently,
building on measurements of the cavity field via the atomic phase [10.12, 10.13], cavity
photon statistics have been analyzed in experiments with Rydberg atoms or supercon-
ducting qubits in microwave resonators [10.14-10.17], culminating in the generation and
stabilization of nonclassical cavity field states [10.18-10.24]. These experiments operate
in a dispersive regime, in which information about the cavity field can be extracted via
the qubits with minimal disturbance to the field [10.1].

Dispersive experiments often operate in a regime in which one photon induces
a significant atomic phase shift, the so-called strong pull regime [10.25]. However,
interesting physical phenomena have also been explored with microwave cavities in the
weak-pull regime, in which the small phase shift allows partial information about the
atomic state to be acquired without collapse onto an eigenstate. Examples include the
observation of quantum trajectories [10.26], the stabilization of Rabi oscillations via
quantum feedback [10.27], and the entanglement of remote qubits [10.28].

In parallel, it was pointed out that the Jaynes-Cummings Hamiltonian that describes
cavity QED also describes the interaction of light and ions in a harmonic trapping
potential [10.29]. This interaction underpins the generation of nonclassical states of
motion [10.30-10.33] and the implementation of gates between trapped ions [10.34]. In
analogy to the phase shifts experienced by qubits due to the cavity field, ions experience
quantized ac Stark shifts due to their coupling to the harmonic trap potential [10.35].
These shifts have been characterized using techniques similar to those introduced in
Ref. [10.12]. Here, we have transferred the principle of dispersive measurement to an
ion qubit coupled to a cavity. In contrast to experiments with flying Rydberg atoms,
the ion is strongly confined; in contrast to both Rydberg and superconducting-qubit
experiments, our cavity operates in the optical regime.

We employ a single trapped *°Ca® ion as a quantum sensor [10.36] to extract
information about cavity photons without destroying them. Via Ramsey spectroscopy
of the ion, we measure the phase shift and dephasing of the ion’s state, both of which
result from the interaction of the ion with the cavity field. The mean phase shift is
proportional to the mean cavity photon occupation number, due to the ac Stark effect,
and the dephasing is due to the cavity photon state not being a pure number state.
Reconstructing the cavity photon-number distribution from these measurements allows
us to determine the mean and the width of the distribution and thus to distinguish
between states with coherent photon statistics and mixed thermal-coherent statistics.

The ion is modelled as a three-level system in which two states, |S) =
14281 )9, my = 41/2) and |D) = |3’Dj/5,m; =+1/2), comprise a qubit (Fig. 1).
The cavity is dispersively coupled to the transition between |D) and the third state,
|P) = |42P3/2, myj = +1/2), with a detuning A = 27 x 125 MHz. The quantization axis
is defined by a magnetic field of 4.06 G in the plane perpendicular to the cavity axis.
The relevant ion-cavity parameters are given by (g, k,7y) = 27x(0.968, 0.068, 11.5) MHz,

152



10.0

(a) lon trap Ramsey
spectroscopy
Cavity -
drive o =
z <~ SPCM
; y
T
2)
(b) |P') [~
E 0)
4Py A X
866 nm -
32Da s we ~ wL
- 0

Figure 10.1: (a) Experimental set-up. A single ion is coupled to the cavity, which is driven by a
weak laser field (cavity drive). The cavity drive laser (along §) is polarized parallel
to the quantization axis, in the direction Z 4 2. The Ramsey spectroscopy laser
propagates along —(g+2). Cavity output photons are detected by a single-photon-
counting module (SPCM). (b) Energy level diagram of *°Ca® with the relevant
levels |S), |D), |P), |D') = [3°Ds o, my = +3/2) and |P') = [4*P3 /5, m; = +3/2)
of the ion. The 4°P; /5 and 3*Dj » manifolds are used for ion cooling and detection.
(¢) Levels | D), |P), |D’), and |P’) experience photon-number-dependent ac Stark
shifts due to the cavity field, indicated in grey. The frequencies of the bare cavity
and the drive laser are wg and wy,, respectively, and A is the difference between
we and the transition frequency from |D) to |P).

where g is the ion-cavity coupling strength calculated from the cavity properties and
the atomic transition, « is the cavity field decay rate, and -y is the atomic decay rate of
state | P). Here, we assume that the ion is positioned at the waist and in an antinode of
a TEMgo mode of the cavity [10.37, 10.38]. The expected frequency shift of the cavity
resonance induced by the dispersively coupled ion is g?/A = 27 x 7.50 kHz, which is
much smaller than «, such that we operate in the weak-pull regime [10.25, 10.26]; see
appendix for further discussion of the choice of A. In this regime, the drive laser can be
considered to be resonant with the cavity, irrespective of the state of the qubit.

In order to probe the cavity field, the ion is first Doppler-cooled and optically pumped
to |S). As the first part of a Ramsey measurement, the qubit is then initialized in a
superposition of |\S) and |D) by a 7/2-pulse of the Ramsey spectroscopy laser at 729 nm.
Next, we drive the cavity with a weak laser field with wavelength A\;, = 854 nm for
T = 50 us. Note that the interaction time 7' is much larger than the cavity photon
lifetime of 7c = 1/(2k) = 1.2 pus, such that for a mean intracavity photon number of
(n), (n)T/7c photons on average successively interact with the ion. Note also that T'
is much shorter than the coherence time of 950 ps on the |S)—|D) transition [10.39].
The independently calibrated mean photon number (n) of the cavity field is set to a
value between 0 and 1.6(3), and the drive laser frequency wr, = 2wc/ AL, is resonant with
the cavity frequency we + (op)g?/A, where wc is the cavity resonance frequency when
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Figure 10.2: (a) Ramsey fringes for mean photon numbers (n) = 0 (black squares), 0.8(2)
(purple circles), and 1.6(3) (blue triangles). The solid lines are sinusoidal fits (see
appendix) and error bars denote quantum projection noise. (b) The phase shift
of the Ramsey fringes as a function of (n) for the transition |D) — |P). Squares
are experimental data, while the solid line shows the theoretical model using
the calculated coupling strength g. The dashed line is a linear fit to the data,
from which gexp is extracted (see main text). (c) Ramsey fringe phase shift as
a function of (n) for the transition |D’) — |P’) with ¢’ = 0.82¢. (d) Contrast of
the Ramsey fringes as a function of (n) for the transition |D) — |P). The shaded
area shows the contrast expected from the theoretical model with gexp, as input,
including its uncertainty. (e) Contrast vs. (n) for the transition |D’) — |P’). For
(b)-(e), the plotted uncertainties in (n) are statistical and systematic uncertainties
from the calibration of the photon number. Systematic uncertainties in (n) are
20%. Error bars of fringe shift and contrast are uncertainties of the fits to the
Ramsey fringes.

no ion is coupled to the cavity, and op is the operator for the ion population in |D).
Finally, a second 7 /2-pulse with variable phase ¢ completes the Ramsey measurement,
after which the qubit state is detected using laser fields at 397 nm and 866 nm [10.39].
The measurement is repeated 250 times for each phase to obtain the ion population in
|D).

The mean population in |D) as a function of the phase ¢ is plotted in Fig. 10.2(a)
for three values of (n). As (n) is increased, two features emerge: the Ramsey fringe is
shifted, and its contrast is reduced. The phase shift is directly proportional to (n), as
shown in Fig. 10.2(b), with proportionality factor T'g?/A. For (n) = 0.8(2) and 1.6(3),
the phase of the qubit is shifted by 0.57(3)m and 1.12(7)7, respectively. A single photon
only interacts with the ion during its time in the cavity, which has a mean value 7¢,
corresponding to a phase shift of the ion by 7¢ g?/A = 0.0187. The accumulated effect
of all successive photons injected into the cavity accounts for the total phase shift of
the qubit.
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The measured phase shift as a function of (n) can be used to determine the ion-cavity
coupling strength. This method is independent of the single-atom cooperativity and
thus is valid also for systems in intermediate and even weak coupling regimes. In
such regimes, observing the vacuum Rabi splitting is not possible, making it difficult
to measure the coupling strength directly. As we have independently determined all
ion-cavity parameters and calibrated the photo-detection efficiency, we fit a theoretical
model to the data with the coupling strength as the only free parameter. In this way,
we extract the experimental value of gexp, = 27 x 0.96(4) MHz from the data displayed
in Fig. 10.2(b), in agreement with the theoretical value of g = 27 x 0.968 MHz. We
performed the same set of measurements on another °Cat transition, using the states
|S), |D') = |3°D5/9,my = +3/2), and |P') = [4*P3/5,m; = +3/2) (Fig. 10.2(c)); the
coherence time for the transition |S) — |D’) is 510 us. For the transition |D’) — |P’),
we expect ¢’ = 27 x 0.790 MHz and extract gg,, = 27 x 0.77(4) MHz. From the
two independent measurements on two transitions, we thus see that this new method
determines the atom-cavity coupling strength in agreement with theory.

In Fig. 10.2(d), the fringe contrast, defined as the peak-to-peak value of the fringe
divided by twice the fringe offset, is plotted as a function of (n) for the transition
|D) — |P) and in Fig. 10.2(e) for the transition |D’) — |P’). This definition of the
contrast takes into account that the midpoint of the fringe is not necessarily 0.5, due
to spontaneous emission (see appendix). For |D) — |P), the contrast decreases from
0.99(2) to 0.46(3) as (n) increases from 0 to 1.6. This reduction reflects the fact
that the intracavity photon number is inherently probabilistic, and in this case, for a
coherent drive, follows a Poissonian distribution. The corresponding photon-number
fluctuations in the cavity field lead to fluctuations of the qubit transition frequency
through the photon-number-dependent ac Stark shift. Note that the observed reduction
of contrast can, equivalently, be interpreted as a consequence of the qubit state being
measured by the cavity field [10.14, 10.25]: Intracavity photons interact dispersively
with the qubit before leaking to the environment. The phase of the output photons thus
carries information about the qubit state that could be accessed, e.g., with homodyne
or heterodyne detection. All such quantum measurements imply some amount of
backaction [10.25], which in our case takes the form of qubit decoherence. Note that in
the absence of a cavity, photons would also induce an ac Stark shift of the ion’s states,
but due to the weakness of the free-space interaction, the effect would be too small to
be measured at the single-photon level.

Spontaneous emission contributes to decoherence for both the cavity-drive measure-
ment of Fig. 10.2 and free-space measurements. We quantify this effect in a reference
measurement using an “ion-drive” configuration: The cavity is translated by a few mm
along % in order to decouple it from the ion. The ion is driven with a laser beam with
frequency wy, = wg. We perform Ramsey measurements with the cavity interaction
replaced by the interaction of the ion with this ion-drive laser. The Ramsey fringe
contrast is reduced due to off-resonant excitation of the population from |D) to |P),
followed by spontaneous emission. Fig. 10.3 compares the Ramsey fringe contrast as
a function of the phase shift for both the ion-drive and cavity-drive measurements. A
given phase shift corresponds to the same ac Stark shift at the ion in both measurements.
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Figure 10.3: Ramsey fringe contrast as a function of phase shift for ion-drive (orange circles) and
cavity-drive (black squares; same data as in Fig. 10.2(b) and (d)) measurements
on the |D)—|P) transition. The lines are theory curves, using gexp for the cavity-
drive data. The inset shows the ion-drive beam, which propagates along & — 2
and is polarized along & + 2, along with the Ramsey spectroscopy beam. The ion
is decoupled from the cavity for the ion-drive measurement.

The contrast of the cavity-drive data is smaller than that of the ion-drive data because
in the former case, both spontaneous emission and decoherence induced by the cavity
photons play a role. We therefore conclude from this reference measurement that deco-
herence is not just caused by spontaneous emission; rather, a significant contribution
to decoherence of the ion qubit stems from interaction with the cavity field via the
backaction of the cavity photons on the ion.

Next, we reconstruct the cavity photon number distribution with a maximum likeli-
hood algorithm (see appendix). This algorithm finds the photon number distribution
that is most likely to have interacted with the ion. It is based on a model, in which
the coherent cavity drive with mean photon number n.., is described by an amplitude
1 = Ky/Mcoh, and additional number fluctuations are described by a thermal bath
with mean photon number n, corresponding to an incoherent contribution to the driv-
ing [10.40]. The photon number distribution of the intracavity field is then determined by
the two parameters n and nty,. The result of the reconstruction is shown in Fig. 10.4. For
the three Ramsey fringes measured on the |D) — | P) transition, displayed in Fig. 10.2(a),

2
the reconstruction yields a squared statistical overlap (SSO) (Zn v/ prec(n)pcal(n))
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Figure 10.4: Photon number distributions reconstructed from the measured Ramsey fringes for
intracavity mean photon numbers of (a) 0, (b) 0.8(2), and (c) 1.6(3) (blue bars),
and the expected distributions (pink bars). The reconstructed distributions yield
mean photon numbers of 0.017055, 0.84(8), and 1497593, (d) Reconstructed
distribution when the cavity is driven with light of mixed coherent-thermal
statistics with mean photon number (n) = 1.05707, yielding a reconstructed
mean photon number of (n) = 1.127512. The squared statistical overlap between
the reconstructed distributions and the expected distributions is higher than 0.99
for (a)-(d).

between the reconstructed distribution prec(n) and the independently calibrated input
state distribution peq(n) above 99% (Figs. 10.4(a)-(c)). The reconstructed state shown
in Fig. 10.4(a) corresponds to the vacuum state, and the states in Fig 10.4(b) and (c)
are coherent states, with Mandel () parameters @ = (<n2> — <n>2> n) —1 of 0.00790%,
—0.03(7), and 0.04(5), respectively [10.41]. The uncertainty of the reconstructed dis-
tribution is dominated by quantum projection noise in the Ramsey measurement (see
appendix).

This reconstruction method is also applied to a fourth state which is generated by
applying amplitude noise to the cavity drive laser via an acousto-optic modulator. The
noise has a bandwidth of 10 MHz > 2« and can therefore be considered as white noise.
The reconstructed state, shown in Fig. 10.4(d), can be described by mixed coherent and
thermal statistics: From the calibration of the added noise (see appendix), a value of
Q = 0.64(6) is expected, while the reconstruction yields Q = 0.70707. The result thus
shows super-Poissonian intracavity photon statistics caused by the added thermal noise
and is clearly distinct from the statistics of a coherent state. Note that our sensing
technique is nondestructive because the dispersive interaction with the ion does not
annihilate the measured intracavity photons.

An extension of this work would be to reconstruct the full density matrix of arbitrary
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states of the cavity field. For this purpose, we require a displacement operation of the
cavity field, as has been demonstrated in microwave cavities [10.18]. With the target
field to be measured populating the cavity, a second field as a local oscillator would
be sent to the cavity. The total field interacting with the ion would be the sum of the
known (local oscillator) and unknown (target) fields, and by varying the known field
and measuring the state of the ion, one would be able to extract the full target field
density matrix.

We have focused here on measuring the ion’s state to extract information about
the cavity field. However, the scenario can be reversed: quantum nondemolition
measurements of the ion’s state become possible in our setup via heterodyne measurement
of the cavity output field, allowing single quantum trajectories of the ion’s electronic
state to be monitored and the qubit state to be stabilized, as demonstrated with
superconducting qubits [10.26, 10.27]. Furthermore, the strong-pull regime (g%/A > k)
would be accessible with a higher finesse cavity [10.25, 10.26]. In this regime, the qubit
spectrum splits into several lines, each corresponding to a different photon-number
component [10.15, 10.42], providing a route to engineer nonclassical cavity-field states
in the optical domain. Other possible extensions include increasing the sensitivity of
the measurement by using several ions via their collective coupling to the cavity [10.43]
or via their entanglement [10.44].

In summary, we have implemented an ion-based analyzer for the statistics of optical
photons that does not destroy the photons. Information about the intracavity photon
number is imprinted onto the state of an ion qubit via a dispersive interaction. Ramsey
spectroscopy and the maximum likelihood method are used to reconstruct the intracavity
photon statistics, yielding results in excellent agreement with the expected distributions.
Our work represents the first such nondestructive probing of cavity photon distributions
in the optical domain, providing tools for the generation of nonclassical optical states.
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Appendix

Modelling the system
Atomic levels

In order to calculate the theory lines in Fig. 2(b)-(e) in the main text, we consider the
following atomic basis states: |S) = [42S; 5, mj = +1/2), |D) = ]32D5/2,mj =+1/2),
|P) = [4°P3/9,my = +1/2), and |S’) (see Fig. 10.5), where |S’) is a dark state, which
collects spontaneous emission from |P) to the second ground state |42S; s2:my = —1/2),
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Figure 10.5: Definition of the involved levels and transitions. (a) Levels and decay channels
considered in the model. Note that decay to 42S; /2 from 32D; /2 is not included,
since the lifetime of the latter level of 1 s is much longer than the duration of one
experimental cycle. (b) Definition of the levels, energies, detunings and decay
constants in the model. Note that the decay from |P) to |S”) combines decay
channels ending in 4281/2, 32D5/2, and 32D3/2.

as well as to the states |32D5/2, my=—1/2), \32D5/2, myj = +3/2), and the states in the
32Dy /2 manifold. [S’) does not participate in the ion-cavity interaction and is not coupled
to the Ramsey spectroscopy laser. The manifolds involved in the process are displayed in
Fig. 10.5(a). The total decay rate of state |P) is['p = Ips+Ipp+IpPD,,, = 2mx23 MHz,
with values I'pg = 27 x 21.4 MHz for decay from 42P3/2 to 4281/2, I'pp = 27 x 1.34 MHz
for decay from 42P3/2 to 32D3/2, and I'pp, , = 27 x 0.152 MHz for decay from 42P3/2
to 32Dy /2. Taking into account the Clebsch-Gordan coefficients, the decay rates are
P\S) =2/3Tpg = 27 x 14.3 MHz from |P) to |5), F|S’> = 1/3FPS+3/5FPD+FPD3/2 =
21 x 8.1 MHz from |P) to |S"), and I'\py = 2/5Tpp = 27 x 0.54 MHz from |P) to |D).

Hamiltonian

The Hamiltonian of the system is given by
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Hs/h =wpop + (wp + wp) op + weala+ g (ocppa+h.c.)+
+ (naTe_i“’Lt + h.c.) + (QUSDe_i‘“Rt + h.c.) . (10.1)

Here, wp corresponds to the energy of the level |D), wp to that of |P), opp) is
the projection operator onto the state |D) (|P)), wc is the cavity frequency, a is
the annihilation operator of the cavity mode, g is the ion-cavity coupling strength,
opp = U}BP is the transition operator between states |P) and |D), n is the amplitude of
the drive laser in the cavity drive term, wy, is the frequency of the cavity drive laser,
Q2 is the Rabi frequency of the laser on the |S)—|D) qubit transition, ogp = 0})3 is
the transition operator between states |S) and |D), and wg is the frequency of the
Ramsey spectroscopy laser. The energy of the ground state |S) is chosen as the energy
reference. Fig. 10.5(b) shows the relevant states, frequencies and decay channels. This
Hamiltonian is transformed into a rotating frame via

H; =ihUU" + UHgU",
with a unitary operator
U = exp [z (wRaD + (ws +wp)op + wpaTa) t} )
We thus obtain the Hamiltonian in the interaction picture as

H]/ﬁ =Aprop + (Apr, + Acr, + Apr)op + Agsios + AcL aTa—l—
+Q(UPDCL+UDPCLT) +n(a+a’)+Q(osp+ops) - (10.2)

Here, Apr = wp — wr is the detuning between the Ramsey spectroscopy laser and the
|D)-|S) transition, Ap;, = wp — wy, is the detuning between the cavity drive laser and
the |P)—|D) transition, Ac, = we — wy, is the detuning between the cavity drive laser
and the cavity mode, and Agg is the detuning between state |.S) and the dark state |S”).
In the cavity drive term, the drive amplitude 7 for coherent driving on resonance, i.e., for
Act, = 0, is given by 7 = Ky/Ncon With neon the mean photon number and 2x the decay
rate of the cavity photons. This relation can be derived from the Heisenberg-Langevin
equation for the cavity field a in steady state (cf. section I.C). The value of 7 used in
the simulation stems from the calibration of the mean photon number.

In the dispersive regime Apr, > g, the Hamiltonian can be approximated: Using the
transformation

U= eTPL (UPDG—GTUDP)

and the Baker-Campbell-Hausdorff formula, and truncating the series at first order in
g/Apr,, one finds the transformed Hamiltonian
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The first two lines of this equation describe the ac Stark shift of the states |D) and
|P), with the magnitude of the shift dependent on the dispersive shift per photon
g%/Apr, and the photon number operator afa. The energy shift of the state | D), when
time-integrated during the interaction time, leads to the phase shift of the Ramsey
fringe. The detuning between cavity and atom Apr, is denoted by A in the main text
and the remainder of the appendix.

Master equation

The system evolution is calculated by numerically integrating the following master
equation in Python, using QuTiP [10.45, 10.46]. The master equation consists of
four terms, describing unitary evolution, atomic decay, cavity decay with rate k, and
incoherent cavity driving, derived from a stochastic drive term [10.40, 10.47]:

dp

i ;p,HI 1+ Z (20 po; —pofo; —ofo; p>+ (10.3)

i=D,S,S’

+ g (2apaT — pata — aTap) +on ([[a,p] ,aq + HaT,p} ,aD
The photons are described by a Fock state basis, truncated at n = 9. This number is
sufficient, since for the measured coherent states the mean photon number is below two,
which would correspond to a population of below 2 - 10~ for the Fock state |n = 9). In
the experiment, the incoherent drive is implemented by adding white amplitude noise
to the RF-amplitude for the acousto-optic modulator of the cavity drive beam. The
bandwidth of the frequency generator used for generating the noise reaches from DC
to 10 MHz. Since the full cavity linewidth is only 2k = 27 x 136 kHz, this can be
considered white noise.

Expanding the last term of Eq. 10.3 and combining it with the cavity-decay term, we
get:

K+ on
2

(2apaT — pa'a — aan> + (%n (2ana — paa’ — aan) )

which corresponds to thermal driving of the cavity [10.48] with a thermal bath with
mean photon number ny, = 0n/k. Since the coherent and incoherent drive do not
interfere, the total mean photon number is given by the sum of the coherent and
incoherent contributions as (n) = neon + Nth-
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Second transition |D’)—|P’)

For simulating the second transition, (data in Fig. 2(c) and (e) of the main text), the
following parameters need to be changed: ¢ is replaced by ¢/, and due to the different
Clebsch-Gordan coefficients, only the following decay channels exist: I'|g/ = 11/15Tpp
for decay from |P’) to the dark state |S"), and T'|gy = I'pg for decay from |P’) to |S).
[ |py is replaced with I'|py = 4/15Tpp for decay from |P’) to |D'). Note that for this
transition, |P’) has no allowed decay to the second ground state [42S; 5, m; = —1/2).
In Eq. 10.2, D is replaced by D’ and P by P’. Note also that the photon polarization is
the same for both transitions |D)—|P) and |D")—|P’).

Reconstruction algorithm

In order to reconstruct the photon number distribution in the cavity (Fig. 4 in the main
text), we first define a likelihood function [10.49] as

N
L(n,dn) = H Py, (n,6n)] T [1 — Py (n,0n)] 1=k % const.

In this formula, N = 51 is the number of points per Ramsey fringe, f; is the measured
probability to find the ion in |D) for point & in the fringe, Py is the excitation probability
expected from solving the master equation with the cavity drive parameters n and én as
input, and const is a scaling factor. The quantity L describes the likelihood to observe
the measured result (given by fi) for certain parameters (n,dn), based on the model
of the system (given by Py(n,0n)). The parameters that best describe the data are
obtained by maximizing the likelihood or its logarithm

N

log [L (n,dn)] =Y (filog [Py, (n,6n)] + (1 — fi)log [L — Py (1,6n)]) + const.  (10.4)
k=1

In order to obtain P}, for a given set (7, dn), we numerically integrate the master equation
Eq. 10.3. The number N was chosen such that there are a sufficient number of points
for the sinusoidal fits to the Ramsey fringes.

The iterative algorithm for maximizing the likelihood function runs as follows:

1. Integrate Eq. 10.3 for given values of n and dn.
2. Calculate the likelihood function using Eq. 10.4.
3. Change n and dn and repeat.

This sequence is iterated until the maximum value of the likelihood has been found in a
Nelder-Mead simplex optimization. The corresponding values of 7,p; and dngpt are the
most likely ones to explain the measured data, and the reconstructed photon number
distribution is given by the corresponding diagonal elements p(n) of the cavity density
matrix obtained from integrating the master equation with nop¢ and dnept as input.

162



10.0

Photon number calibration

We independently calibrated the intracavity mean photon number to be able to compare
the reconstructed photon number distribution with the expected values. Given the
probability for a photon to leave the cavity through the output mirror of poy = 11(2)%,
which corresponds to a total photon detection efficiency € = pout X ¢ = 4(1)% (including
detector efficiency and optical loss in the path efficiency (), we calculate an expected
count rate of 2k X pouy X ¢ = 38(8) kHz for the single-photon counting module (SPCM)
at the cavity output for a mean photon number of (n) = 1 in the cavity. This rate
corresponds to an expected number of counts of Cy = 475(100) during the interaction
time of 7 = 50 us. We take the cavity field build-up time into account by including a
correction factor ¢ = 0.922, extracted from a simulation, and accordingly get a number
of counts of Cy = Cp/c = 515(108) for the calibration. By measuring the output counts
C, we are thus able to calibrate the mean photon number in the cavity field for a given
input power as (n) = C/Cj.

Fit model
For analyzing the Ramsey fringes, we use a fit model of the following form:

E(¢) = B+ A-cos(m (¢ — ¢o))

Here, E(¢) stands for the excitation of the ion to the state |D) (or |D’)), ¢ for the phase
of the second Ramsey pulse with respect to the first one, A is the amplitude of the
fringe, ¢¢ the fringe shift, and B is the offset of the fringe. The contrast is calculated as
2A/(2B), with 2A the peak-to-peak value of the fringe and 2B the maximum possible
peak-to-peak value. This definition takes into account that spontaneous emission reduces
the fringe offset to B < 0.5, leading to a maximum possible peak-to-peak value of the
fringe of 2B, as the minimum value is zero and the midpoint of the fringe is B. We
include the spontaneous emission from the excited state |P) by making the offset B
dependent on the off-resonant excitation to state |P) (or |P’)). B therefore has to be
recalculated for each value of (n) as

B = B<n>=0 - eXp <_F|S’>pp(’) <n> ’T)

Here, ppoy = 2g%(n)/ (F‘QD<,)> + A2> is the probability to off-resonantly excite the
ion from |D) (|D')) to state |P) (|P')), and B,y—y = 0.4915 is the maximum offset
achievable for the given coherence time and (n) = 0. This number is half of the
maximum achievable excitation of a single Doppler-cooled ion.

The phase offset of —0.12(1)7 for (n) = 0, obtained from the fit, is due to an ac Stark
shift of the ion levels, caused by the non-zero spatial overlap of the ion wave packet and
a laser field at 783 nm used to actively stabilize the cavity length; this field populates a
TEMjp; cavity mode [10.50].
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voltage (a.u.)
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Ramsey phase ()

Figure 10.6: Ramsey fringe when the cavity is driven with a coherent field with additional

white noise. The black circles are data points and the red line is a sinusoidal
fit to the data. From the fit, a phase shift of 0.71(2)7 and a contrast of 0.57(3)
are extracted. The error bars are quantum projection noise. (inset) Photodiode
measurement of the cavity input field.

Uncertainty analysis of the reconstructed photon statistics

The uncertainties of the reconstructed photon number distributions are determined by
quantum projection noise [10.51] in the Ramsey measurement. The following method is
used to estimate the uncertainties of the reconstructed states shown in Fig. 4 of the
main text.
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. For a given Ramsey fringe, the maximum likelihood method returns the parameter

set (opt, ONopt), which determines the corresponding photon number distribution.

. A Monte-Carlo simulation is executed to obtain a random Ramsey fringe which

takes into account the quantum projection noise: The ion populations of this
fringe are based on the measured ion populations with additional noise following
a binomial distribution with 250 cycles used in the experiment.

We reconstruct (n;, dn;) from the Ramsey fringe obtained in Step 2. The index i
indicates the iteration number in the Monte Carlo simulation.

Steps 2 and 3 are repeated until the standard deviations of all calculated numbers
(ni, 0n;) have converged according to the criterion that the standard deviation
as a function of the number of samples varies less than 5%. The uncertainties
(An, Adn) are then set to the values of the standard deviations. The mean of the
obtained 7; and dn; is Nopr and dnept.

The upper limit of the reconstructed distribution is given by (n + An, dn + Adn),
and the lower limit by (n — An, dn — Adn). The uncertainties of the mean photon
numbers (n) and Mandel ) parameters are calculated by propagating these values.
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Driving the cavity with additional amplitude noise

We estimate the intracavity field from a calibration measurement of the cavity drive
beam (inset of Fig. 10.6) with a photodiode. In the photodiode signal, there is a
contribution from the coherent statistics, which is calibrated independently (see Sec. 10),
and a noise contribution with thermal statistics. The coherent statistics is determined
by the coherent amplitude 7, while the thermal part is described via the mean thermal
photon number ny, = dn/k. By dividing the voltage on the photodiode into the offset
part (coherent statistics) and oscillations on top (thermal part), we can calibrate én
as a function of the amplitude V¢ of the oscillations: we first extract the conversion
factor Sy between photodiode voltage and SPCM counts, as C' = Sy - Vpc, where C
is the number of measured counts in the SPCM and Vp¢ is the voltage measured on
the photodiode for coherent driving. Next, we can calculate the noise contribution via
on = kSyVac/C1, using the fact that the number of SPCM counts originating from the
thermal part is proportional to Vac. In this way, we calculate the mean coherent and
thermal photon numbers of the expected as neon = 0.64(14) and ny, = 0.44(9), both of
which agree with the reconstructed values neoh, rec = 0.68(16) and np yec = 0.47(15).

Phase resolution of the Ramsey measurements

The phase resolution d¢ of our Ramsey measurement is limited by quantum projection
noise [10.51] in the measurement of the ion’s state. In order to estimate d¢, we start
by simulating a single reference fringe for a mean photon number (n) = 1 with N
phase values, by numerically solving the master equation Eq. 10.3. Using the excitation
probability @) for a given phase ¢ in this fringe, we draw a random sample my with a
probability I given by the binomial distribution

Iy (my) = (::i) QM (1 — Q)M ™,

where M = 250 is the number of repetitions for measuring the ion excitation and mj
is the number of times that the ion is found in the excited state |D) out of M trials.
The excitation of the ion to state |D) is then calculated as py = my/M (corresponding
to the values f; in Eq. 10.4). This is repeated for all N phase values ¢y used in the
real measurement. Next, we extract the phase shift of this simulated fringe, by fitting a
sinusoidal function to the simulated data pj vs. ¢x. This procedure is repeated 50,000
times and we obtain a distribution of extracted phase values with a standard deviation
o4. We define the phase resolution as d¢ = 204, since this is the minimum distance
between two phase distributions that are distinguishable. A value of d¢p = 0.011 7 is
found. Translating this result into a resolution of the mean photon number via

2
5 = mesﬁ,

165



10 Publication: Ion-based quantum sensor for optical cavity photon numbers

we find values of dnpp = 0.013(5) for the |D)—|P) transition and dnppr = 0.020(8) for
the |D’)~|P’) transition. In other words, it is possible to distinguish the phase shift of
the qubit Bloch vector for cavity field states, whose mean photon number is different by
just dnpp or dnpps, respectively.

Choice of experiment parameters

The detuning A and interaction time 7 are chosen in the following way:

1. First, 7 is fixed. We require 7 to be short enough that the measured Ramsey fringe
contrast is not significantly reduced due to noise sources that become significant
on this time scale, but long enough that we can consider the cavity field to be in
steady state, that is, longer than the build-up time of the cavity field. In our case,
7 = 50 us is chosen to be much shorter than the coherence time of 950 us of the
ion qubit (due to magnetic field fluctuations) and much longer than the cavity
build-up time of 1.7 us, extracted from a numerical simulation of our cavity. For
this value of 7, we observe a Ramsey fringe contrast of 99(2)% with no photons in
the cavity.

2. Next, the maximum intracavity photon number (n)m,a.x is chosen for the planned
set of measurements. Here, we wanted to observe the contrast reduction and
phase shift at the single-photon level up to values beyond (n) = 1, so we chose

(NYmax = 1.5.

3. Finally, A is fixed. For a given value of (n), as A is reduced, the Ramsey
fringe contrast is also reduced due to the increased rates of measurement-induced
dephasing and spontaneous emission. If A is too small, it will not be possible
to distinguish the contrast for (n)max from noise. On the other hand, increasing
A extends the range of observable photon numbers, but at the cost of reduced
sensitivity to changes in contrast and phase as a function of photon number. We
chose the detuning A = 27 - 125 MHz, corresponding to a contrast of 0.5 for

(N)max = 1.5.

Note that in our experiment, uncertainties in the measured Ramsey fringe contrasts
and phase shifts stem from quantum projection noise [10.51]. For each phase in the
Ramsey fringe of Fig. 2(a) in the main text, the measurement was repeated 250 times,
corresponding to a total data acquisition time of several hours. With these statistics,
the signal-to-noise ratio (SNR) of the Ramsey fringe, defined as the ratio of the root-
mean-square of the ion excitation data in the fringe to the mean quantum projection
noise, decreases from 30 for the fringe with (n) = 0 to 16 for the fringe with (n) = 1.6.
Our choice of a contrast of 0.5 for the maximum mean photon number was therefore
conservative: We could have chosen a lower value for A and accepted a lower SNR.
Also, acquiring more data to reduce the statistical uncertainty would have given us even
more room to reduce A. However, this approach becomes more challenging for longer
measurement times in view of experimental drifts.
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It is also worth noting that the ratio of the spontaneous emission rate s, = v(n) g%/ A?
and the rate of measurement-induced dephasing in the weak-pull regime [10.25] vy,
(n)g*/(kA?) is independent of A and proportional only to the mean photon number
and the cooperativity: vm/vsp  (n)g?/(k7). For this reason, increasing A does not
enhance the relative strength of the measurement-induced dephasing effect with respect
to the contrast reduction due to spontaneous emission.

Strong-pull regime in an optical cavity

We estimate that it would be possible to reach the strong-pull regime (g2/A > &) in
the optical domain with state-of-the-art mirrors. Ref. [10.52] reports a measurement of
high-reflectivity mirrors with transmission 7" =5 - 1077 and scattering and absorption
loss of A = 1.1-107% per mirror for wavelengths near 850 nm, corresponding to a
finesse of 2 - 105, For a cavity with such mirrors and the length of our cavity of
19.98 mm, a photon lifetime of 7. = 42 us is expected, while the one-sided output
coupling T'/(2T + 2A) = 16% is comparable to that of our cavity.

In this regime, we would need to modify the procedure of Sec. 10 because our
experimental goal would be different. The goal of the measurements presented in the
main text is to observe the evolution of the Ramsey fringe contrast and phase shift
over a range of intracavity photon numbers. In contrast, the strong pull regime offers a
setting in which one could resolve a splitting of the qubit transition corresponding to
the different photon number states in the cavity field [10.25]. In this way, it would be
possible to project the cavity field onto a particular number state via measurement of
the ion state.

The question then becomes: For given values of g and k corresponding to a particular
experimental implementation, what values of A satisfy the strong-pull condition while
allowing the dispersive frequency shift x = g2/A to be resolved via qubit spectroscopy
within the cavity lifetime?

We consider that an ion is initially prepared in |S) and is coupled to the cavity field
on the |P) —|D) transition for an interval 71. During this interval, the ion is driven by a
classical laser field (which we refer to as a spectroscopy laser) on the |S) —|D) transition.
Subsequently, for an interval 7o, state detection with 397 nm and 866 nm laser fields
is used to determine whether the ion is in |S) or |D). Performing this measurement
for different detunings of the spectroscopy laser would allow one to resolve the photon
number-state splitting.

For a projective measurement that collapses the cavity field onto a nonclassical state,
the total interval 71 + 70 must be shorter than the cavity lifetime. As an initial estimate,
we neglect 75 and choose the longest possible interval for the ion interaction with the
cavity field, that is, by setting 71 = 7. = 42 us. The frequency resolution of the
spectroscopy laser is then given by 27/ = 27 - 24 kHz. This frequency resolution must
be narrower than y, thus constraining our choice of A: A < g;%. A second bound

corresponds to the strong-pull condition: A < %.
Table 10.1 lists values for g corresponding to both the 4°Ca* transition used in the
main text and to the D2 line in neutral 133Cs. In 133Cs, the qubit would be comprised of
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Table 10.1: Estimation for the strong-pull regime in atom-cavity systems. For 4°Cat, the
|D) — |P) transition from the main text was considered, while for 33Cs we
considered the transition [62S /2, F = 4, mp = 4) — |6°Py o, F/ = 5,m/z = 5).

Species 0yt 133Cs
Wavelength (nm) 854 852
g/2m (MHz) 0.968 2.0
~ /27 (MHz) 11.5 2.6
k/2m (kHz) 1.9 1.9
A/2r (MHz) 39 164

the states |6281/2, F =3,mp =3) and |6281/2, F =4, mp = 4), and a microwave field
or an optical Raman transition would be used to probe the qubit transition. Here, we
assume that the cavity lifetime is 7. and that the mirror radii of curvature are identical
to those of our current cavity, yielding the same mode volume. We see that the first
bound corresponds to A < 27 - 39 MHz for °°Ca™ and to A < 27 - 164 MHz for 133Cs.
The second bound corresponds to A < 27 -490 MHz for “°Ca™t and to A < 27-2 GHz for
133Cs. In both cases, the first bound is the infimum and thus the relevant bound. This
bound also corresponds to an optimum point for experiments, since decreasing A further
will increase the effective spontaneous emission rate, broadening the spectroscopic signal.
Note that g can be further enhanced by taking advantage of collective atom-cavity
coupling.

Finally, we return to the question of ion state detection in the interval 7. Detecting
the state of the ion was achieved with current technology in 10.5 us with 99% readout
fidelity [10.53, 10.54]; the detection time can be made faster or slower depending on the
fidelity requirement. We thus see that including realistic values for 7 in the estimate
above will lower the upper bound on A by about 25%.
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