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Zusammenfassung

Die Entwicklung neuer Technologien, welche die Manipulation atomarer Gase mit
Hilfe von Laserlicht ermdoglichen, bereitete den Weg fiir eine neue interdisziplinire
Ara der Physik. Diese neuen Techniken verbesserten die Kiihlung von Atomwolken
signifikant, was zu der experimentellen Realisierung von Bose-Einstein-Kondensation
fihrte. Plaziert man diese ultrakalten Quantengase in optischen Gittern, ergibt sich
ein System, welches viele Eigenschaften komplexer Festkorpersysteme abdeckt. Somit
sind diese Systeme eine ideale Plattform fiir die Quantensimulation von Festkorpern. In
diesen “traditionellen” Quantensimulationssystemen generieren die Lichtfelder allerdings
ein extern vorgegebenes Potenzial fiir die Atome.

Das dndert sich, wenn die Atomwolke mit den Moden eines optischen Resonators
wechselwirkt. Die Wechselwirkung zwischen der atomaren Bewegung und den Resona-
tormoden fiihrt zu einem dynamischen optischen Potenzial, welches zusatzlich lang-
oder unendlich reichweitige Wechselwirkungen zwischen den Atomen induziert. Die
resultierenden kollektiven Instabilitdten ermoglichen die Simulation neuer, faszinierender
Quantenphasen. Das diesbeziiglich prominenteste Beispiel ist die Selbstorganisation
von Atomen in einem Stehwellenresonator, wobei die superradiante Phase des Quanten-
Dicke-Hamiltonians realisiert wird. Der Phaseniibergang von homogener zu periodischer
Dichte, welcher bei einer kritschen Lichtintensitdt auftritt, bricht die diskrete Symmetrie
des entsprechenden Hamiltonians. Inspiriert durch Effekte aus der Festkorperphysik lag
der Forschungsschwerpunkt der letzten Jahre auf neuen Systemen, in welchen jeweils
Phaseniibergéinge mit kontinuierlicher Symmetriebrechung auftreten.

Die vorliegende Arbeit ist eine Zusammenfassung meiner Beitrige zu diesem For-
schungsfeld. In einem ersten Ansatz studieren wir lichtinduzierte Instabilititen von
kalten, thermischen Gasen und Bose-Einstein-Kondensaten in verschiedenen Modenkon-
figurationen eines Ringresonators. Die fundamentalen Moden dieser Resonatorgeometrie
sind ebene Wellen mit einer kontinuierlichen Translationssymmetrie. Die spontane Bre-
chung dieser kontinuierlichen Symmetrie bei einer kritischen Laserintensiat resultiert in
neuen emergenten Quantenphasen. Zunéchst analysieren wir die verschiedenen Phasen
eines kalten thermischen Gases in einem Ringresonator, welcher durch die Spiegel mit
zwei nichtinterferierenden, gegenlaufigen Lichtfeldern gepumpt wird. Abhénging vom
Verhéltnis zwischen den Intensitdten der zwei Pumpfelder realisiert dieses System zwei
unterschiedliche Phasen — einerseits einen kollektiven Atomlaser und andererseits einen
verallgemeinerten, selbstorganisierten Zustand. Weiters demonstrieren wir, dass der
selbstgeordnete Zustand eines Bose-Einstein-Kondensats in einem transversal gepump-
ten Ringresonator eine suprasolide Phase realisiert. In einem weiteren Schritt werden
durch die Erweiterung dieser Systeme auf Spinor-Bose-Einstein-Kondensate auch Spin
Freiheitsgrade inkludiert. In diesem Fall konnen Spinsysteme mit langreichweitigen
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Wechselwirkungen, welche in topologisch nicht trivialen Spinzustinden resultieren,
simuliert werden.

Ein alternativer Ansatz, in welchem ein Bose-Einstein-Kondensat mit zwei nicht
interferierenden, gegenldufigen Strahlen im freien Raum wechselwirkt, fithrt zu noch
komplexeren Phdnomenen. Wéahrend optische Resonatoren immer einen diskreten Satz
an Moden auswéhlen, setzen sich Lichtfelder im freien Raum aus einem ganzen Mo-
denkontinuum zusammen. Fir hinreichend grofle Lichtintensitiaten zeigt dieses System
daher eine periodische Dichteverteilung mit kristallinen Eigenschaften, wie zum Beispiel
langreichweitiger Phonon-Dynamik. Der so erhaltene Zustand erméglicht somit die Si-
mulation eines synthetischen Kristalls, welcher durch Licht iibertragene, langreichweitige
Wechselwirkungen aufweist, in einer kontrollierten Umgebung.



Abstract

The development of new techniques to manipulate atomic gases with laser light intro-
duced a new era of interdisciplinary physics. These new tools improved the cooling
of atom clouds significantly, resulting in the experimental realization of Bose-Einstein
condensation. Placing these ultracold quantum gases in optical lattices generates an
ideal platform for quantum simulation, since these systems capture many properties of
complex condensed matter systems. In these “traditional” quantum simulation setups,
however, the laser fields create an externally prescribed potential for the condensate.

This changes if the atom cloud is manipulated via the modes of an optical resonator.
In this case the direct back-action of the atomic motion onto the resonator modes results
in a dynamic optical potential, which mediates long or infinite range interactions between
the atoms. The resulting collective instabilities allow the simulation of new intriguing
quantum phases. The most prominent example is the self-organization of atoms in a
standing wave resonator, which realizes the superradiant phase of the quantum Dicke
Hamiltonian. This system undergoes a phase transition from a homogeneous to a
periodic state beyond a critical light intensity breaking the discrete symmetry of the
corresponding Hamiltonian. Inspired by condensed matter systems the focus of recent
research has been the study of new setups where the phase transition breaks a continuous
Symmetry.

The present work summarizes my contribution to these efforts. In a first approach,
we study light-induced instabilities of both, cold thermal atoms and Bose-Einstein
condensates, in different mode configurations of a ring resonator. The plane wave modes
of this resonator geometry possess a continuous translational symmetry. We show that
this symmetry is spontaneously broken beyond a critical pump strength, resulting in
new types of emergent quantum phases. Initially, we analyze the different phases of
a cold thermal gas in a ring resonator, which is pumped through the cavity mirrors
with two non-interfering counterpropagating light fields. Depending on the relative
ratio between the two beam intensities, this system realizes two different phases, the
so-called collective atomic recoil laser (CARL) and a generalized self-ordered phase.
We then demonstrate that the self-ordered state of a Bose-Einstein condensate inside
a transversally pumped ring resonator realizes the peculiar phase of a supersolid. In
a further step, a generalization of this system to include spin degrees of freedom by
using a spinor Bose-Einstein condensate yields new intriguing phenomena. In this case
spin-systems with long-range interactions leading to topologically non-trivial spin states
can be simulated by tuning easily accessible cavity parameters.

An alternative approach, where a Bose-Einstein condensate acts back on two non-
interfering counterpropagating beams in free space, reveals even more complex physics.
Whereas optical resonators always select a discrete set of modes, light fields in free space
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consist of a whole continuum of modes. As a result, for sufficiently large light intensities
this system exhibits a phase transition from homogeneous to periodic order with
crystalline properties such as long-range phonon dynamics. Hence, the resulting state
allows the simulation of a synthetic crystal with light mediated long-range interactions
in a well-controllable environment.

iv



Danksagung

Zu allererst gilt Univ.-Prof. Dr. Helmut Ritsch ein Dank fiir die professionelle Betreuung
meiner Dissertation. Seine vielen Ideen und seine physikalische Intuition lenkten diese
Arbeit in die richtigen Bahnen. Die vorgelebte, unermiidliche Faszination fiir wissen-
schaftliche Themen, welche weit iiber sein Fachgebiet hinaus reichen, war mir stets eine
willkommene Quelle der Motivation. Auch die von ihm zur Verfiigung gestellten techni-
schen Spielzeuge und Knobeleien waren immer wieder eine erfrischende Abwechslung im
beruflichen Alltag. An dieser Stelle seinen auch die regelméfiigen Gruppenaktivititen
in der Tiroler Bergwelt erwahnt, welche zu einer sehr angenehmen und entspannten
Arbeitsatmosphére in der Arbeitsgruppe Ritsch beitrugen.

Des weiteren mochte ich mich auch bei meinen direkten Kollaborationspartnern
Tobias Griefler, Francesco Piazza und Farokh Mivehvar bedanken. Ihre Erfahrung, ihr
wissenschaftlicher Sachverstand und ihre Geduld in unzdhligen Diskussionen waren
ein essenzieller Bestandteil fiir die Entstehung dieser Arbeit. Allen ehemaligen und
aktuellen Mitarbeitern der Ritsch-Gruppe, Elvia Colella, Claudiu Genes, Raphael
Holzinger, Daniela Holzmann, Christoph Hotter, Arthur Jungkind, Sebastian Kramer,
Thomas Maier, Wolfgang Niedenzu, Laurin Ostermann, David Plankensteiner, Katrin
Sandner, Raimar Sandner, Matthias Sonnleitner, Valentin Torggler, Prasanna Venkatesh,
Dominik Winterauer, Hashem Zoubi sowie unserem Langzeitgast Karol Gietka sei fiir
die freundschaftliche und unterstiitzende Zusammenarbeit in den letzten Jahren gedankt.
Christiane Ebongue, Daniela Holzmann und Hon-Wai Lau danke ich fiir die produktive
Arbeit an den gemeinsamen Publikationen.

Auch dem Sekretariat des Instituts fiir Theoretische Physik, Nicole Jorda, Birgit
Laimer, Elke Stenico und Elke Wolflmaier gilt ein grofies Dankeschon fiir die stets
unkomplizierte und schnelle Abwicklung biirokratischer Angelegenheiten. Hans Embacher
danke ich fiir die professionelle Wartung unsere Computersysteme.

Bedanken mdéchte ich mich neben dem akademischen Umfeld auch bei all meinen
Freunden auflerhalb der Welt der Physik, welche zweifelsohne einen wichtigen Beitrag
zur Fertigstellung dieser Arbeit leisteten. Bei verschiedensten Freizeitaktivitdten halfen
sie mir immer wieder meinen Kopf frei zu bekommen und gewéhrleisteten den zeitweise
notwendigen Abstand von der wissenschaftlichen Arbeit. Bei jedem einzelnen, welcher
Teil des einen oder anderen Abenteuers war, sei es beim Schifahren, Mountainbiken,
Bergsteigen, Volleyball oder auf Reisen, méchte ich mich an dieser Stelle bedanken.

Ein grofler Dank gilt auch dem erweiterten Kreis meiner Familie fiir den stetigen
Riickhalt. Insbesondere meinen Eltern Elisabeth und Rudi danke ich von ganzem Herzen
fiir die vielseitige Unterstiitzung tiber die letzten Jahre und dafiir, dass sie mich stets
ermutigten den eingeschlagenen Weg fortzusetzen. Meiner Schwester Verena und meinem
Bruder Raphael danke ich fir die vielen lustigen Stunden.



Danksagung

Die letzten Jahre, welche ich der Arbeit an dieser Dissertation widmete, wiren nur
halb so schon gewesen, hétte ich sie nicht mit der liebenswertesten und besten Frau an
meiner Seite verbracht. Mein aufrichtiger Dank an Carmen fiir die uneingeschriankte
Unterstiitzung in allen Belangen!

Die Liste wichtiger Personen liefle sich beliebig erweitern. All jenen, welche direkt
oder indirekt zum Entstehen dieser Dissertation beigetragen haben, jedoch an dieser
Stelle nicht explizit erwidhnt werden, sei an dieser Stelle ein herzliches Dankeschon
ausgesprochen.

vi



Contents

Introduction

1.1 Manipulating Cold Atoms with Laser Light . . . . ... ... ... ...
1.2 Quantum Simulation with Atoms in Optical Lattices . . . . . . . . . ..
1.3 Generalized Quantum Simulation . . . . . ... ... .. ... ......
1.4 Outline of the Thesis . . . . . . . .. ... .. ... ... . ... .....

Theoretical Background

2.1 Electromagnetic Fields in Dielectric Media . . . . . . . ... .. .. ...

2.2 Optical Resonators . . . . . . .. .. .. .
2.2.1 Standing Wave Resonators . . . .. ... ... ... ... ....
2.2.2 Ring Resonators . . . ... .. ... ... oL

2.3 Light-Matter Interaction . . . . . . . . . ... ... ... ...,
2.3.1 Interaction with a Classical Field . . . . . .. ... ... ... ..
2.3.2 Interaction with a Quantum Field . .. ... .. ... ... ...

2.4 Vlasov Model for Thermal Gas Dynamics . . . .. ... ... ... ...

2.5 Bose-Einstein Condensates . . . . . . . . .. ... ... ..
2.5.1 Critical Temperature . . . . . . . . .. ... ... ... ......
2.5.2  Gross-Pitaevskii Equation . . . . . ... ... o000
2.5.3 Elementary Excitations . . . .. ... ... ... ... ... ..

Light-Induced Instabilities of Atom Clouds
3.1 Collective Atomic Recoil Lasing (CARL) . . . . .. ... .. ... ....
3.2 Self-organization in a Standing Wave Cavity . . . . . . . ... ... ...

Publication: Atomic Self-Ordering in a Ring-Cavity with Counterpropaga-
ting Pump Fields

4.1 Introduction . . . . . . . . . . . . e
4.2 Model . . . . . . e
4.3 Stability Analysis . . . . . ...
4.4 Numerical Simulation . . . . ... .. ... ... ... .. ... ...
4.5 BGK Waves . . . . . . . . . . e
4.6 Conclusions and Outlook . . . . . . . ... ... ... ... ... ... .

Publication: Spontaneous Crystallization of Light and Ultracold Atoms

5.1 Introduction . . . . . . . . .. .
5.2 Model . . . ..
5.3 Dynamical Instability towards Crystallisation . . . . . . ... ... ...
5.4 Crystal of Light and Atoms . . . . .. ... ... ... .. ........

=W W e

25
25
29

33
34
34
36
38
39
41

43
44
45
47
50

vii



Contents

viii

5.5 Excitations of the Crystal: Phonons . . . . . .. ... ... ... .. ..
5.6 Crystallisation Dynamics after a Quench . . . . . .. .. ... ... ...
5.7 Experimental Implementation with Ultracold Bosons . . . . . . . .. ..
5.8 Conclusions and Outlook . . . . .. .. ... ... .. ... .......
5.9 Appendix: Calculation of Excitation Spectra . . . . . .. ... .. ...

5.9.1 Collective Spectrum in the Homogeneous Phase . . . . . . .. ..

5.9.2 Collective Spectrum Above Threshold . . . . .. ... ... ...
5.10 Appendix: Numerical Methods . . . . . . . ... ... .. ... .....

Publication: Probing and Characterizing the Growth of a Crystal of Ultra-
cold Bosons and Light
6.1 Introduction . . . . . . . . . ...
6.2 Model . . . . . .
6.3 Real-Time Observation of Spontaneous Crystallization via the Back-
Scattered Light Fields . . . . . ... .. ... ... ... ... .. ...,
6.4 Time Evolution of Atomic Momenta from Bragg Diffraction . . . . . . .
6.5 Scaling of the Collective Dynamics . . . . . .. ... .. ... ... ...
6.6 Crystal Formation via a Slow Ramp Across the Phase Transition . . . .
6.7 Crystallization Versus Matter-Wave Superradiance . . . . . .. ... ..
6.8 Conclusions . . . . . . .. L

Publication: Driven-Dissipative Supersolid in a Ring-Cavity
7.1 Introduction . . . . . . . . . ..
7.2 Model . . . .
7.3 Mean-Field Approach and Continuous Symmetry Breaking . . . . . ..
7.4 Collective Excitations and the Goldstone Mode . . . . . . . . ... ...
7.5 Experimental Detection of the Supersolid State . . . . . .. . ... ...
7.6 Outlook . . . . . . . e
7.7 Supplemental Material . . . . . . ... ... 0oL
7.7.1 Mean-Field Equations . . . . . ... ... ... ... ... ...
7.7.2 Linearized Equations . . . . . . . . ... ... .. .. ... ...
7.7.3 The Threshold Pump Strength . . . . ... ... ... ... ...

Preprint: Cavity-Induced Emergent Topological Spin-Textures in a Bose-
Einstein Condensate
8.1 Introduction . . . . . . .. .. L
8.2 Model . . . . .
8.3 Mean-Field Results . . . . . . .. .. .. . L
8.3.1 Atomic Phase Diagram . . . .. .. ... ... ..........
8.3.2 Cavity-Field Phase Diagram . . . . . . . ... ... ... .....
8.3.3 Atomic Momentum Distributions and Cavity-Induced Spin-Orbit
Coupling . . . . . . . e
8.4 Collective Excitations . . . . .. .. .. .. L
8.5 Conclusion and Outlook . . . . . .. .. ... ... ... ... ...,



Contents

8.6 Appendix: Adiabatic Elimination of the Excited State . . . .. . .. .. 119
8.7 Appendix: Linearized Equations . . . . ... .. ... ... .. ..... 121
9 Conclusions and Outlook 123

10 Publication: Generating a Stationary Infinite Range Tractor Force via a

Multimode Optical Fibre 125
10.1 Introduction . . . . . . . .. Lo 126
10.2 Model . . . . . . e 127
10.3 Forces for Two Forward Propagating Modes . . . . . .. ... ... ... 129
10.3.1 Single Particle . . . . . ... ..o 129

10.3.2 Two Particles . . . . . . . . . . . . . .. 131

10.4 Four Mode Model Including Backscattering . . . . . .. ... ... ... 134
10.4.1 Single Particle . . . . . . ... . o oo 135

10.4.2 Two Particles . . . . . . . . . .. 135

10.5 Conclusions and Outlook . . . . . . ... .. .. ... ... ....... 138
10.6 Appendix . . . . . . .. 138
Bibliography 143
List of Publications 169

ix






1 Introduction

The early twentieth century brought up one of the most remarkable revolutions in
modern science leading to a completely new understanding of nature on the atomic
scale. The related theory based on these new insights is commonly known as quantum
theory and has proven to be a successful tool to describe and explain many properties
of the microscopic world. The starting point for the development of quantum theory is
Max Planck’s work on black-body radiation in 1900 where he assumed that a body at
a certain temperature can only emit and absorb radiation energy in discrete portions.
Consequently, he could derive the emission spectrum for black-body radiation [1.1, 1.2].
In his work explaining the photoelectric effect [1.3] in 1905, Albert Einstein elaborated
a physical interpretation for this initially peculiar assumption of quantized energies. He
introduced the notion of particles of light — now often referred to as photons — carrying
a well-defined amount of energy and momentum. Einstein’s finding of the quantized
character of light lies at the heart of quantum theory and it resulted in a whole series of
new interpretations and developments in the following decades. In particular, the insight
of Louis de Broglie in 1923 that not only light can have the characteristics of a particle
but also microscopic particles can have wave-like properties [1.4] lead to the notion of
quantum matter which has fundamentally different properties compared to classical
matter. Following this insight Erwin Schrodinger showed in 1926 that the dynamics
of a quantum system can be described by a wave equation [1.5] and a year later Paul
Dirac introduced the first formalism to describe the interaction between quantized light
and quantized matter [1.6]. This led to the first rigorous quantum theory of radiation
developed by Encrico Fermi in 1932 [1.7] which established the basis of modern quantum
electrodynamics (QED) as it was formulated by Richard Feynman in 1950 [1.8].

1.1 Manipulating Cold Atoms with Laser Light

Einstein’s hypothesis revealed that light can impose forces on neutral atoms. This is a
direct result of the imposed recoil kick on the atom due to the emission and absorption
of light, i.e. of a photon. This hypothesis was experimentally proven by Otto Robert
Frisch in 1933 when he showed that a beam of neutral sodium atoms can be deflected
by a near resonant emission lamp [1.9]. After this first experimental evidence it took
until 1960 for the first realization of a laser by Theodore H. Maiman [1.10] based on a
theoretical work by Charles Hard Townes and Arthur Leonard Schawlow [1.11]. This
motivated an in depth study of light matter interactions. The particular properties
of laser light (monochromatic, spatially coherent, high intensity, etc.) and the good
controllability of the laser parameters made it the ideal light source for the purpose of
studying and analyzing radiation force effects on neutral atoms. This revealed that the
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radiation force acting on an atom in a coherent light field (e.g. a laser field) consists of
two fundamentally different parts, the radiation pressure force and the dipole force [1.12].

The radiation pressure force is related to the absorption of a photon followed by
spontaneous emission to free space. In contrast to the incoming light beam, the
spontaneous emission process has no directional preference and hence the recoil kicks
in different spatial directions average out. This results in a net momentum transfer
parallel to the incoming laser beam. Therefore, the radiation pressure force always
pushes the particle away from the light source. The strength of the radiation pressure
depends on the spontaneous emission rate of the atom which can be tuned by changing
the laser frequency. The dissipative nature of this force plays an important role in the
most prominent cooling schemes for atom clouds, especially for the Doppler cooling
method [1.13, 1.14]. In this case, the atoms are illuminated by two counterpropagating
beams with frequencies close to the atomic transition frequency resulting in a velocity
dependent friction force. The ability to cool single atoms, ions or molecules and
even atomic gases to very low temperatures increased the controllability of these
systems significantly. Modifications of the fundamental Doppler cooling scheme to
reach even lower temperatures [1.15] together with some additional evaporative cooling
methods resulted in the first experimental realization of Bose-Einstein condensation in
1995 [1.16, 1.17]. In this peculiar phase of quantum matter all particles of an ultracold
atomic cloud behave like a single matter wave which is a direct result of a macroscopic
population of the lowest energy state. Bose-Einstein condensates have proven to be
a valuable tool for many experimental implementations studying some of the most
puzzling features of quantum mechanics.

In contrast to the radiation pressure force, which is mainly used to manipulate
the momentum degrees of freedom of the particles, the dipole force can be used to
manipulate the particles’ positions. This implies that cold atomic gases and Bose-
Einstein condensates can be efficiently trapped in an optical potential [1.18], which
in the simplest possible way is generated by two counterpropagating interfering laser
beams. The coherent scattering of photons from one beam to the other results in a
conservative potential for the atoms. A particularly important application of these light
generated potentials are optical tweezers developed by Arthur Ashkin in the 1980s who
received the Nobel Prize in physics in 2018 for his research in this direction [1.19]. The
dipole force can be either attractive or repulsive depending on the difference between
the laser frequency and the internal atomic transition frequency. If the frequency of the
incoming laser beams is smaller than the atomic transition frequency (red detuning)
the particles are dragged to the intensity maxima, whereas in the case where the laser
frequency is bigger than the atomic frequency (blue detuning) the particles are pushed
to the intensity minima. The spatial dependence of the resulting optical potential is
given by the light intensity gradient. For example in the setup of two running waves
with opposite direction the resulting periodic intensity pattern leads to a periodic optical
lattice for the atoms. Optical lattices together with the cooling methods described
above became an important tool in different fields of physics ranging from quantum
computing [1.20, 1.21] to precise time measurements with optical lattice clocks [1.22].
The controlled manipulation of single atoms or atomic clouds by light became a major
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research direction in the past decades, which is commonly known as quantum optics.

1.2 Quantum Simulation with Atoms in Optical Lattices

The idea of quantum simulation was first proposed by R. Feynman in 1982 [1.23]. The
basic principle is to simulate complex quantum mechanical systems by experimentally
implementing systems with similar properties which are easier to control and analyze.
Cold (bosonic or fermionic) atomic gases trapped in optical lattices have proven to be
a valuable setup to simulate otherwise inaccessible condensed matter and solid state
systems. The most prominent example is a dilute atomic gas trapped in an optical
lattice, which under some conditions can be readily described by a Bose-Hubbard
model [1.24]. The Bose-Hubbard model originates from solid-state physics and it
describes the physics of spinless bosons on a lattice [1.25]. The model predicts a
quantum phase transition between a superfluid state and a Mott-insulator state [1.26]
which was first experimentally realized with a Bose-Einstein condensate in an optical
lattice in 2002 [1.27]. Since then many other systems were analyzed by the means of
quantum simulation based on ultracold quantum gases in optical lattices [1.28] and
there is a lot of ongoing research in this field until today [1.29-1.32].

However, most quantum simulation setups based on optical lattices cannot account
for long-range interaction between particles, which plays an important role in many
condensed matter systems. In most systems the lattice is assumed to be deep such
that the tight-binding approximation leading to Bose-Hubbard type of Hamiltonians
holds. This results in local contact interaction between the particles but the long range
interaction via the light field is suppressed. Due to the high photon numbers the optical
potential plays the role of a classical static potential for the atoms. In a well known
approach, long-range interactions between the atoms trapped in the optical lattice
can be included by using Rydberg states of atoms [1.33] or condensates of magnetic
atoms [1.34]. Nevertheless, the optical lattice acts as an externally fixed and prescribed
potential and the back-action of the atom dynamics on the potential may be neglected.
This changes if the atoms are coupled to the modes of an optical resonator or any
other system which increases the interaction between the atoms and the light fields
significantly.

1.3 Generalized Quantum Simulation

The great success of quantum simulation in classical static optical lattices led to the
search for new types of setups where the back action of the atom dynamics on the light
fields is no longer negligible. The most prominent setup which fulfills this criterion are
cold atoms coupled to the mode of an optical resonator. In an optical resonator the
photons are reflected back and forth many times between two parallel mirrors before
they leak out through one of the mirrors [1.35]. This results in long photon storage
times in such a device which implied the commonly used notion optical cavity. The
related research direction is known as cavity quantum electrodynamics (cavity QED).
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The strong interaction between the atoms and single cavity photons which is a direct
result of the long photon storage time results in a significant back action of the atomic
motion on the cavity field. This leads to complex coupled non-linear dynamics resulting
in a broad variety of effects [1.36]. In particular, the generalization of the Bose-Hubbard
model for atomic gases in conventional optical lattices to resonator generated optical
lattices [1.37] revealed that the resonator generated long-range interactions lead to
remarkable modifications of the phase diagram [1.38-1.40].

The light induced interaction between atoms leads to non-trivial collective effects and
the most prominent effect in the context of quantum simulation is the self-organization of
atoms in an optical cavity. Theoretically predicted in 2002 [1.41] and first experimentally
realized with cold thermal atoms in 2003 [1.42], self-organization arises if a cold gas
of atoms is placed inside a standing wave resonator and is illuminated from the side.
For small laser intensities the atomic density distribution stays homogeneous and no
light is scattered into the cavity mode. If the laser intensity, however, exceeds a certain
threshold a light-induced collective instability occurs and the particles start to scatter in
phase and the cavity mode gets populated resulting in a periodic dipole potential for the
atoms. Thus, the particles are trapped in their self-generated optical potential leading
to a periodic density pattern. The mechanism governing the generation of the optical
potential and the nature of the phase transition from homogeneous to periodic order is
fundamentally different to the case of optical lattices where the potential is prescribed
externally and the particles are trapped in this prescribed geometry. Hence, the setup of
a transversally pumped standing wave resonator allows the simulation of different types
of phase transitions compared to traditional quantum simulation setups with optical
lattices. The realization of self-organization with a Bose-Einstein condensate at ETH
Zurich revealed, that the phase transition from homogeneous to periodic order realizes
the Dicke quantum phase transition [1.43], which was already predicted in 1953 [1.44].
This paved the way for new systems allowing quantum simulation of different types
of problems by the means of this highly non-linear quantum optical setups. In the
past decade many new setups which aim for the generalization of this fundamental
self-organization setup by including additional degrees of freedom to the system were
proposed and realized. In this case the cavity geometries are modified or the atoms
are coupled to other non-linear optical devices such as optical nano-fibres or photonic
crystal fibres. This then leads to richer dynamics and the ability to trigger even more
complex types of phase transitions [1.45-1.50].

1.4 OQOutline of the Thesis

The articles contained in the present thesis contribute to the search for novel geometries
allowing to simulate more complex effects and phase transitions in ultracold quantum
gases by the means of light induced collective instabilities. The fundamental principle
in all works presented in the following is the analysis of new systems with continuous
symmetries and photon mediated long-range interactions. The spontaneous breaking of
continuous symmetries is a fundamental mechanism in different fields of physics ranging
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from condensed matter theory to elementary particle physics. Thus, light induced
continuous symmetry breaking opens up the opportunity to simulate such mechanisms
in a well-controllable environment. The main part of this thesis is made up by four
published articles and one preprint. They contain analytical and numerical studies on
the physics of modified cavity geometries as well as a generalization of the concept of
self-ordering to free space. This thesis is organized as follows:

In chapter 2 an elementary introduction to the basic concepts and models, which are
contained in the publications of this thesis, is provided. Starting from the description of
classical electromagnetic fields, the basic properties of optical resonators are introduced
and different relevant resonator geometries are discussed. After a short description of
the quantization of the resonator light fields the interaction between light and matter is
discussed for classical and quantized light fields. The last two sections in this chapter are
devoted to the various types of studied atomic media. First, an overview over relevant
quantities for thermal gases is given, and a method to study the dynamics of a classical
thermal gas coupled to laser light fields based on the Vlasov equation is introduced.
Second, the effect of Bose-Einstein condensation is discussed briefly. In addition, an
overview of different methods to analyze the properties of Bose-Einstein condensates is
presented.

In chapter 3 two most prominent examples of light induced instabilities of atom clouds
coupled to resonator modes are discussed. These two instabilities form the basis for
many discussions and interpretations of the results gained for generalized systems in
the following works. First the instability leading to Collective Atomic Recoil Lasing
(CARL) in the classical Vlasov picture is examined. Second, in section 3.2, the effect of
self-organization of a BEC in a standing wave resonator is described and analyzed in a
fully quantum mechanical description.

The following chapters contain the publications making up the main part of the thesis.
In the publication contained in chapter 4 [1.51] we study a generalized ring cavity setup
where a classical thermal gas is coupled to two counterpropagating, non-interfering
cavity modes. This system with an a priori continuous translational symmetry can
be related to a generalized CARL instability as well as to the case of a transversally
pumped ring-cavity depending on the imbalance between the two pump intensities.

In chapter 5 a similar type of geometry for a BEC in free space is proposed [1.52].
We show that under certain conditions a collective instability can be induced even
without an optical resonator. This results in spontaneous crystallization of the light
fields together with the atoms. As a consequence the system breaks its continuous
translational symmetry. The publication presented in chapter 6 [1.53] contains an in
depth analysis of this transition, particularly taking into account important quantities
for experimental implementations of the studied setup. At this point it should be
mentioned that a first experimental evidence of the proposed phase transition has been
published recently [1.54].

In the publication contained in chapter 7 [1.55] we show that the continuous symmetry
breaking of a Bose-Einstein condensate in a transversally pumped ring-cavity realizes
the peculiar phase of a supersolid. This unique phase of quantum matter which
is characterized by a gapless Goldstone mode shows features of both a solid and a
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superfluid.

In chapter 8 the ring cavity setup studied on a classical level in chapter 4 is extended
to account for the simulation of non-trivial spin dynamics [1.56]. This can be achieved
by coupling a spinor condensate to the non-interfering pumped modes of the cavity.
We show that a topological phase transition from a topologically trivial state to a
topologially non-trivial spin state characterized by a global topological invariant can be
simulated efficiently in the presented setup.

The concluding remarks on this thesis are presented in chapter 9. After this an
additional publication on light forces near optical fibres [1.57] with major contributions
of the author of the present thesis, which does not lie exactly in the research field
covered of the other publications contained in the thesis is presented.
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In this chapter we give an overview of the physical systems and theoretical frameworks
which are used in the publications contained in this thesis. As it was already mentioned
in the previous chapter the essential concept of cavity quantum electrodynamics is
the manipulation of atomic positions and momenta with light fields. The light fields
can be either classical or quantum. Therefore, we first discuss the physics of classical
electromagnetic fields in dielectric media. Based on this we describe the properties of
different optical resonator geometries which play a crucial role in the setups studied in
the following publications. We then focus on the different radiation forces, which can be
imposed on atoms, and introduce the concept of the AC-Stark shift providing an optical
potential for the atoms in classical light fields. The generalization to the interaction
of atoms with quantized light fields leads to the Jaynes-Cummings model which is
understood to be the most simple model to describe the interaction between quantum
matter and quantized light fields. The last two sections introduce two important
methods to describe the atomic ensembles studied throughout this thesis. First, we give
an overview of the basic properties of a classical thermal gas coupled to laser light fields
where the dynamics can be readily described by a Vlasov equation. The last chapter
gives an introduction on Bose-Einstein condensation and we introduce some important
methods to describe and understand important properties of a condensate.

2.1 Electromagnetic Fields in Dielectric Media

The dynamics of electromagnetic fields is described by Maxwell’s equations

V.-D =p, (2.1a)
V.-B=0, (2.1b)
VxE+ 9B =0, (2.1c)
VxH-D=j (2.1d)

with the electric and magnetic fields E and B. The charge density is denoted as p and
the current density as j. The properties of the dispersive material are included via the
electric displacement D = ¢E = ¢gE + P where € (g) is the permittivity (in free space)
and P is the polarization density of the material. The magnetic field in a medium with
permeability j is defined via H = B/ = B/uo + M. Here, g is the permittivity of the
vaccum and M is the magnetization density. For the sake of simplicity let us first focus
on non-dispersive and isotropic media which implies that the permittivity is a space
and frequency independent quantity. In the following we will always assume no charge
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densities or currents inside the medium, i.e. p = 0 and j = 0. The latter assumption
results in no magnetization of the medium (M = 0) resulting in H = poB.

Calculating the curl of Eq. (2.1¢), i.e. VX V x E+ 9;(V x B) = 0 by using the other
three equations results in the inhomogeneous wave equation for electric fields inside a
dielectric medium

1
AE(x,t) — c—QﬁfE(x,t) = ud?P(x,1), (2.2)

where the speed of light in vacuum is defined as ¢ := 1/, /Eop0.
Assuming monochromatic waves E(x,t) = Re[€(x)e™!] results in the inhomogeneous

Helmholtz equation
2

AE(x) + %5(@ = — WP (x), (2.3)

describing the spatial shape of the field amplitudes. In the present work we will only
deal with linear media which means that the polarization density depends linearly on the
electric field via the relation P(x) = egx&(x) where x denotes the electric susceptibility
of the medium. The susceptibility is zero in vacuum and it takes non-zero values for
any dielectric medium. For linear media the Helmholtz equation can, therefore, be
simplified to

AEX)+ K (1+x)EX) =0, (2.4)

where we introduced the wavenumber k := w/c = 2w /\. The coefficient in the second
term of Eq. (2.4) can be understood as the modified wavenumber due to the presence
of the medium k = kv/T+ x = kn with the refractive index n.

The discussion up to now was based on a non-dispersive and isotropic medium. In the
case of dispersive and anisotropic media the Maxwell equations (2.1) are still applicable.
Therefore, the easiest generalization of the model described above to dispersive and
anisotropic media may be performed by making the susceptiblility space and frequency
dependent x — x(w,z) in Eq. (2.4). The resulting Helmholtz equation will play an
important role in the model presented in the chapters 5 and 6.

2.2 Optical Resonators

Due to their specific properties optical resonators have become an important tool in
quantum optics. They have a broad range of applications ranging from spectral analysis
of light, as optical filters and as resonators for many different types of lasers. Due
to the strong improvement of optical resonators in the past decades they now can be
used to store single photons for sufficiently long times [2.1] (several microseconds in the
optical regime and hundreds of milliseconds in the microwave regime). Therefore, the
interaction between a photon which is reflected back and forth many times inside the
resonator and an atom or ion placed inside the resonator can be enhanced significantly.
The fact that optical resonators can be used as containers for photons resulted in the
term optical cavity which will be used as a synonym for optical resonator throughout
this thesis.
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Figure 2.1: Schematic drawing of a Fabry-Pérot resonator. The light field is reflected
back and forth between the resonator mirrors and it leaks out after N
runs. The mirrors are separated by a length L and have a reflectivity r
and a transmittance ¢.

Since the models in the following publications use classical and quantized electromag-
netic fields, we will discuss both cases. In addition, we will first discuss the simplest
resonator geometry which is the Fabry-Pérot resonator (often also referred to as standing
wave cavity). Hereby we introduce some important quantities characterizing the most
important features of a resonator. In the following section we then introduce the ring
resonator geometry which plays an important role in some of the systems studied in
this thesis.

2.2.1 Standing Wave Resonators

An ideal standing wave or Fabry-Pérot resonator consists of two transmitting, plane,
parallel mirrors at a distance L with a reflection coefficient r and a transmission coefficient
t as it is shown in Fig. 2.1. In the following we will always assume non-absorbing mirrors
which results in real valued reflection- and transmission coefficients.

Classical Electromagnetic Field

First we focus on classical light fields which later will be generalized to quantized fields.
We will restrict the discussion to one dimension along the resonator axis (z-direction).
The fundamental modes of an empty (x = 0) standing wave resonator are solutions of
the one-dimensional Helmholtz equation

(0% + E>)f(z) = 0, (2.5)

which fulfill the boundary condition that the electric field has to vanish at the mirror

positions. This condition is fulfilled for eigenmodes of the form
fo (1) = ey cos(knz) with &y, = % for neN and oe{1,2}.  (2.6)

The two polarization vectors ej > are orthogonal to each other and the wavevector
k, = kye, defines the propagation direction of the field. Real polarization vectors
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correspond to linear field polarizations whereas complex vectors describe circular or
elliptical polarizations [2.2]. Any arbitrary field inside the resonator can be written as
the superposition of the fundamental resonator modes with amplitudes ¢, o

E(x) = Z foo(x) = Z €5Cn o Cos(kpx). (2.7)

n,o

The eigenfrequencies associated with the fundamental modes (2.6) are defined as
Wy, = Ckp,.

Let us now briefly summarize the most important quantities characterizing a standing
wave resonator. The distance between two resonator eigenfrequencies w,, = ck,, defines
the free spectral range of the resonator

™

WFSR — Wp+1 — Wy = ZC. (28)

One of the fundamental properties of an optical resonator is the filtering of all frequencies
which do not coincide with these eigenfrequencies. The quality of this filtering mechanism
is mainly governed by the reflectivity r of the resonator mirrors. As it can be seen from
the schematic drawing in Fig. 2.1 the transmitted light field passing the resonator can
be written as

1

Et = E()t2 (]. -+ 7'2672“6[/ + 7’4674ikL 4+ .. ) = Eotzm. (29)
The transmitted light intensity which is related to the light field via the relation

I = (ceo/2)|E|? normalized to the incoming intensity is then given as

L (1—1r%)2 B 1 (2.10)
I (1 —7r2)2 4+ 4r2sin?(kL) 14 Fsin?(wL/c)’ '
2
where we defined F := (137712> and used the energy conservation condition ¢ =

1 — 72 [2.3]. An exemplary plot of the cavity transmission spectrum (2.10) is shown
in Fig. 2.2. It reaches its maximum at the mode eigenfrequencies w,,. However, for finite
values of F' some frequencies around w,, have a non-zero transmittance. This leads to an
important quantity related to the quality of an optical resonator, the so-called linewidth.
It is defined as the full-width-half-maximum (FWHM) of the transmittance (2.10) and
it measures how narrow the peaks of the transmittance are around w,, (see Fig. 2.2). It
is easy to see that Eq. (2.10) reaches a value of 1/2 if the condition

1 1
kL = arcsin () ~—, 2.11

VE) = VF (2.11)
is fulfilled. The last approximation holds if F' > 1 which is typically the case for optical
resonators. Therefore, the frequency at which the transmittance is half is given as
wijp =c/ (LVF) = wpsr/(7V/F) resulting in the cavity linewidth

2
Aw = —2F5R (2.12)

m™F

10
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Figure 2.2: Frequency dependence of the transmitted light intensity through a Fabry-
Pérot resonator (2.10) with highly reflecting mirrors (r = 0.99). The
maximal intensity is transmitted at the resonance frequencies w,, which are
separated by the free spectral range wpgr. The linewidth Aw is defined as
the FWHM of the intensity peaks.

Based on this quantity one can define the Q-factor of the cavity which is defined
as the ratio between the resonance frequency and the cavity linewidth; Q := wp/Aw.
Another important measure for the quality of an optical cavity is the finesse defined as

]___LUFSR_’/T\/F_ W’T‘
O Aw 21—

(2.13)

which solely depends on the reflectivity of the mirrors. The last important quantity
which has to be mentioned at this stage is the cavity decay rate defined as

Aw  wrsr

T T E

(2.14)

It describes the rate at which light leaks out of the resonator and it decreases with
decreasing (increasing) linewith (finesse). A small decay rate leads to long light storage
times. The decay rate is significantly small in high-Q cavities with narrow linewidth
resulting in storage times much longer than the optical period of the light field.

As a final remark it should be mentioned that in experiments the resonators are not
built up by two planar mirrors as in the Fabry-Pérot case, but by two mirrors with
curved surfaces leading to a 3 dimensional Gaussian beam shape. Nevertheless, the
quantities defined above are still a good approximation if one assumes one dimensional
motion along the center of the cavity axis as it will be the case in the following works. A
generalization of the discussion above to three dimensions and for curved cavity mirrors
can be found in corresponding literature, e.g. [2.3, 2.4].

11
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Figure 2.3: Different ring cavity schemes. a) Ring resonator consisting of three mirrors.
This is the minimal amount of mirrors needed to generate running wave
modes. b) Four mirror geometry and c¢) Bow-tie geometry.

Quantization of the Electromagnetic Field

Up to now we were solely discussing classical light fields. At this point we would like
to give a very short introduction, how these fields can be quantized. The basic idea
behind the quantization of the electromagnetic field is that every field mode behaves as a
quantized harmonic oscillator. Therefore we introduce the bosonic creation (annihilation)
operator &};70 (Gp,o) which creates (destroys) a photon in the n-th resonator mode with

polarization o. These operators fulfill the bosonic commutation relation [dn,a; &2,7 J,} =
Onn'ds0 - Based on this one finds that the light field inside an optical resonator given
in Eq. (2.7) can be quantized by performing the replacement ¢, » — \/fuw./(26L )y &
and, in addition, making the resulting field operator hermitian [2.5]. This results in the
quantized electromagnetic field of a standing wave resonator (in one dimension)

& . m‘-}c A * A
E(x) =iy/ Seol g{; cos(knx) (egama — egaLp) , (2.15)

with the cavity resonance frequency w. = w1 = cky.

2.2.2 Ring Resonators

The standing wave resonator geometry discussed in the previous section plays an
important role in many different fields of quantum optics. However, the resonator
geometry which will be the focus in several publications contained in this thesis is the
so-called ring resonator, often also referred to as running-wave resonator. In such a
resonator geometry the fundamental modes consist of running waves travelling along a
closed path in one direction without reversing their propagation direction. In Fig. 2.3
the most prominent ring resonator geometries are depicted. The ring cavity again
supports only a discrete set of single frequencies due to its large free spectral range.
The fundamental modes of a ring cavity, however, consist of plane waves propagating in
opposite directions

f,fg(x) = eoieﬂk”“ with k&, = % and o € {1,2}, (2.16)

12



2.3 Light-Matter Interaction

where L is the total propagation path length in the resonator. Again any field inside a
ring resonator can be written as a superposition of the fundamental modes

E(x) = Z (e*c+ ekn® e e e*ik"m) . (2.17)

o “no o “no
n,o

To clarify to the difference between a ring resonator and a standing wave resonator let us

consider a special case. We define the complex mode amplitude as cia = ]cial exp(+ig)
and assume ¢ | = |c,.| = |cno| together with ef = e;. In this case the field

given in Eq. (2.17) reduces to £(x) = >, , €s|cno| cos(knz + ¢). This resulting mode
decomposition strongly reminds us of the electric field of a standing wave resonator as
it was introduced in the previous section. However, the major difference between a ring
resonator and a Fabry-Pérot resonator is that the latter requires a vanishing electric
field at the mirror surfaces. Thus in the case of a spatially modulated light field the
phase ¢ can take arbitrary values in a ring cavity geometry. In the case of a standing
wave resonator the phase ¢ could only take discrete values which fulfill the boundary
condition of a vanishing field at the mirror surface. This also implies that any spatial
translation of the field inside of a ring cavity is allowed which is directly related to the
continuous translational symmetry of the ring cavity geometry playing an important
role in the works in the chapters 4, 7 and 8.

The electric field of a ring resonator (2.17) can be quantized following the same
procedure as discussed in the previous section resulting in

. | hw e I
E(x) =1 2502 nZ; (ej‘a:;,e’ "+ e dy,e T — h.c.) . (2.18)

2.3 Light-Matter Interaction

The manipulation of atoms with laser light fields is the fundamental concept in quantum
optics. This opens up the possibility to trap particles in potentials generated by laser
light. Here the fundamental principles about the interaction of atoms with laser light
are recast in a compressed form.

The interaction between neutral atoms and light is dominated by two fundamentally
different processes which lead to different forces on the atom. In the following discussion
the atoms are always assumed as two level atoms with a ground state |g) and an excited
state |e). The two states are separated by an energy fuv., where wey is the atomic
transition or resonance frequency. Let us shortly give a phenomenological description
of the processes in the photon picture leading to the radiation forces before we turn
to a more quantitative analysis. The first process which can occur if a two level atom
is coupled to a light field is the absorption of a photon followed by its spontaneous
emission in all spatial directions. The recoil kicks due to these spontaneous emission
processes average to zero whereas the momentum of the incoming photons always points
along the laser beam, see Fig. 2.4a). The induced net force due to this dissipative
process is called radiation pressure and it always points in the direction of the incoming

13
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Figure 2.4: a) Schematic picture describing the physics behind the dissipative radiation
pressure force Fy, for a single atom. The incident photons are absorbed
and spontaneously emitted into arbitrary directions in space resulting in a
net force pointing in the direction of the incident laser beam. b) Schematic
picture for to the dispersive dipole force Fg;,. The force is a result of
redistribution of photons between the two counterpropagating incoming
laser beams. For red detuning wy, —wey < 0 the force points to the maxima
of the intensity, i.e. to positions with high photon densities.

laser beam. For a plane wave it simplifies to F,, = I's,hk where I, is the spontaneous
decay rate and k is the wave vector of the incoming laser beam defining the propagation
direction. Due to its dissipative nature the radiation pressure force plays an important
role in many laser cooling mechanisms. However, this force only contributes if the
laser frequency is close to the atomic resonance frequency. If the frequency of the laser
photons hwy, is sufficiently off-resonant with the atomic transition frequency wey the
population of the excited state will remain small and the radiation pressure force may
be neglected due to the negligible spontaneous decay rate in this case. But there is
a second process which gets more relevant in this far off-resonant parameter regime.
The simplest phenomenological description is found by considering an atom between
two counterpropagating interfering light beams. In this case a photon is absorbed
and again emitted via stimulated emission [see Fig. 2.4b)]. This energy conserving
scattering process between the two fields with opposite propagation directions results
in the conservative dipole force resulting in a potential for the atoms. The spatial
shape of the potential depends on the phase gradient of the total electromagnetic field.
Throughout this thesis we assume to be in the so-called red-detuned regime, i.e. the
photon frequency is smaller than the atomic transition frequency wy, — wey < 0. In this
case the dipole force attracts the atoms to the field maxima. Let us now turn to a more
quantitative analysis of the effects leading to this light generated potential of the atoms.

14
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2.3.1 Interaction with a Classical Field

Consider a classical standing wave laser light field E(x,t) = e (x) (e_ith_w(x) + c.c)
interacting with a two level atom with groundstate |g) and excited state |e) separated
by an energy fusey. The Hamiltonian in the dipole approximation reads (we set wg = 0
without loss of generality)

A2
H = Hyy + Hyy = 2an + Tiweg l€) (e| — d - B(%, ¢), (2.19)

where p = AV is the momentum operator, m is the atomic mass and d is the dipole
operator. An atom has no permanent dipole which could interact with the light field, i. e.
(g|d|g) = (e|d|e) = 0, but the laser field itself can induce an atomic dipole by changing
the internal state of the atom. Therefore, the dipole operator can be written as
d = dé, + d*6_ with the reduced dipole d = (e|d |¢g) and the transition operators

64 =|e) (gl and 6_ = |g) (e|. In this case the interaction Hamiltonian Hiy = —d-E(X, t)
reduces to

N hOQ(X . N . N

Aoy = — 2(") [ementto, 4 oirtto®g ] 4, (2.20)

where we introduced the Rabi frequency Q(x) = £.(X) (e|d - e|g). Changing into a
frame rotating at the laser frequency via an unitary transformation U = ewrtle)lel and
performing the so-called rotating-wave approximation [2.6], i.e. neglecting fast rotating
terms o< 2wt results in the modified interaction Hamiltonian

hQT (%)

HEWA — _ps |e> <e| — €_i¢(§()0+ — Teiqﬁ(&)a_, (2-21)

int

hQ(X)
2

where § = wy, — wey denotes the detuning of the light field from the atomic resonance
frequency. The eigenenergies of this Hamiltonian are

By = —%‘5 L g,/(s? 02 (2.22)

For sufficiently large detuning 6 > we, the population of the excited state and, as a
result, the saturation s ~ [Q(x)|?/(262) will be small. Thus, the eigenvalues simplify to

RS hS 1Q(x)?

The second term in the braket corresponds to a shift of the eigenenergies due to the
interaction with the light fields and is called AC-Stark shift. The shifted ground state
can be interpreted as the relevant potential for the motion of atoms [2.7]. Therefore,
the light induced dipole potential due to the conservative interaction between light and
matter is given as

_ HQx)P?

V(x) BY;

(2.24)
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A spatially inhomogeneous field like the standing wave we assumed in the above
treatment can, therefore, lead to a space dependent ground-state potential in which the
atom can be trapped. The localization of the potential minima depends on the sign
of the detuning ¢. If the laser frequency wy is smaller than the transition frequency
weg Which corresponds to red detuning with respect to the transition frequency (6 < 0)
the potential minima coincide with the maxima of the light intensity. As a result the
particles are trapped in the maxima of the intensity distribution and are called high-field
seekers. In the case of positive (or blue) detuning § > 0 the potential minima lie at
the regions with low intensity. Particles in this regime are called low-field seekers. For
most practical purposes the light fields are chosen to be red detuned with respect to
the atomic transition frequency.

2.3.2 Interaction with a Quantum Field

The description of the interaction between a single atom fixed at a certain position x
and a quantized standing wave light field follows the same principle method as for a
classical field. The electric field in the interaction Hamiltonian has to be replaced by
its corresponding field operator which has been introduced in section 2.2. For the sake
of simplicity we restrict our discussion to one dimension. This leads to an interaction
Hamiltonian of the form

A A A, . hw
Oy =—d E(x) =i ngLL

cos(kz) (doy +d*5) (ea — e*al). (2.25)

The Hamiltonian of the uncoupled system is given as
Hy = hwpala 4 hweg le) (e] . (2.26)
The interaction Hamiltonian (2.25) can be transformed to the interaction picture via

HL (1) = efot/hf,  e~iHlot/h (2.27)

int

resulting in the following relations for the single terms in Eq. (2.25)

(64a); = 6 paeWr—we)t (2.28)
(6_a); = 6_ae Wrtwet (2.29)
(644" = 6 atelwrtwedt (2.30)
(6_ah); = 6_atemi-wrtwe)t, (2.31)

Again the rotating wave approximation amounts to neglecting fast rotating terms with
frequencies o< wy, + wey leading to the interaction Hamiltonian in the rotating wave
approximation in the interaction picture

HI —

int —

= cos(kx) (6pad - ee W)t g _afd* - efe i CRiten)t) - (2.39)
280
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Figure 2.5: Maxwell-Boltzmann distribution (2.35) for different thermal velocities,
vy = 1.0 (solid blue), vp = 2.0 (dashed red) and vy = 5.0 (dash-dotted
green)

Transforming this Hamiltonian back into the Schrédinger picture and adding the
Hamiltonians of the uncoupled systems (2.26) leads to the famous Jaynes-Cummings
Hamiltonian [2.§]

H = hwpala + hweyo 6+ hg(2) (610 +5-a') (2.33)
with the coupling g(z) := i, /752 cos(kz) (e| d-e |g) where d-e is made purely imaginary

by specific phase choice for |g) and |e).

The Jaynes-Cummings model is the simplest possible model to describe the interaction
between quantum matter with quantized light fields. It can be solved analytically and
contains the main physics which is relevant in many experimental setups. Similar
Hamiltonians for generalized geometries also including particle motion will be used in
the works contained in the chapters 7 and 8.

2.4 Vlasov Model for Thermal Gas Dynamics

In the previous section we showed that the interaction of a single two-level atom with
laser light fields yields a potential which allows to trap the atom. The present thesis,
however, focuses on the dynamics of whole clouds of atoms in different laser light
geometries. In this case treating the ensemble of atoms in a full quantum manner
restricts the number of atoms which can be simulated significantly. However, there are
several different methods to describe and characterize the dynamics of such systems
efficiently. If one is particularly interested in the spatial and momentum distributions
of the particles moving in a specific laser light geometry the atoms can be treated
as classical point particles, i.e. a gas of particles in thermal equilibrium at a certain
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temperature 7T'. In this case the probability distribution to find a particle at velocity v
for a given temperature 7' is Gaussian

2
L (=
Fip(v) = (Vror)E© ( T) ; (2.34)
2
where we introduced the thermal velocity % = kpT associated with a certain

temperature T (kp is the Boltzmann constant). The probability density related to
the distribution (2.34) can be found by calculating the integral over the probabil-
ity distribution in spherical coordinates, i.e. [ps dvF3p(v) = 47 [° dvv? F3p(v) with

v = |v| = /vZ 4+ v2 +vZ. This leads to the Maxwell-Boltzmann probability density

()
F) = ——v?e \'T 2.35
)= Tmus (2:35)
which is shown in Fig. 2.5 for different values of vr. Note that for a one-dimensional
system the velocity distribution (2.34) reduces to Fip(v) = ;UT exp[—(v/vr)?].

The Vlasov equation, which will be introduced in the following, originates from plasma
physics. However, it can also be used to describe the dynamics of classical particles
interacting via laser light fields. The Vlasov equation describes the dynamics of the
phase-space distribution function f(x,v,t) of a cloud of particles experiencing a certain

force F = —V¢(x). Using Liouville’s theorem, stating that (for a Hamiltonian system)

the phase-space distribution function does not change in time, i.e. w = 0 one finds
the Vlasov equation for particles moving in a given potential ¢(x)
dlxvit) _0f | Ofox | 0f oy 2.36)
d¢ ot 0xot Ovot '
of  of of
_ 97 A A 2.
N + \pw Vo (x) v 0 (2.37)

In the case of plasma theory the potential ¢(x) corresponds to the Coulomb interactions
between the charged plasma particles. In the present case, however, the potential will be
the light generated potential given in Eq. (2.24). In this case the dynamics of the gas can,
for sufficiently short times, be reliably approximated by a Vlasov equation [2.9, 2.10].
Therefore, the Vlasov equation (2.37) is a versatile tool to study the dynamics of a gas
coupled to laser light fields in the classical limit. In chapter 3 we will give a minimal
example how the Vlasov equation can be used to describe the instability leading to
collective atomic recoil lasing. Furthermore, the approach will be used to analyze the
system studied in the publication in chapter 4.

2.5 Bose-Einstein Condensates

The first experimental realization of a Bose-Einstein condensate (BEC) in 1995 [2.11,
2.12] was the starting point of a new area of interdisciplinary physics. BECs became the
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major ingredient in many setups for quantum simulation of condensed matter systems.
In particular Bose-Einstein condensates (BECs) interacting with laser light — as they
are studied in the present thesis — became a prominent research direction. The effect of
Bose-Einstein condensation was predicted by Satyendra Nath Bose and Albert Einstein
in 1924 as a result of the derivation of Planck’s quantum radiation law from a purely
quantum mechanical system [2.13, 2.14]. Heuristically, a BEC is a state of matter where
all atoms in the Bose gas condense in the lowest accessible quantum state if the gas is
cooled down below a certain critical temperature. In other words, all Bosons occupy
the same motional ground state and form one giant matter wave. In the following we
give a short summary of important features of a Bose-Einstein condensate and present
some basic methods and tools which will play an important role in some of the following
chapters. For a detailed discussion of the broad field of Bose-Einstein condensation we
refer to relevant literature [2.15, 2.16].

2.5.1 Critical Temperature

The Hamiltonian for N non-interacting particles in an external potential V' (x) reads

N N
A p N
H = L+ V(X)) 2.38
> | »] (239)
with the position operators X; and the mometum operators p; = —ihV;. The corre-

sponding many-body Hamiltonian in second-quantization is given as
. . —h? A
= / dx [ﬂﬁ(x) <2v2 + V(X)) @Z)(x)] , (2.39)
m

where the particle creation and annihilation operators fulfill the bosonic commutation
relation [&(X), Ot (x/)} = 0(x — x’). This Hamiltonian can be transformed into momen-
tum space via 1(x) = 1/vV >_p p exp(ip - x/h) where we assumed a box with a volume
V leading to discrete momenta. For the moment we will neglect the external potential
V(x) = 0. The resulting Hamiltonian in second quantization in momentum space for
an ideal non-interacting Bose gas reads

=3 i, (2.40)
1

where the creation (annihilation) operators create (destroy) a particle in the state with
momentum p and fulfill the bosonic commutation relation [Bp, IA)L,} = 0ppr- For a given
temperature 1" the momentum states are occupied following a Bose-Einstein statistics,
meaning that the average occupation number of the energy state with momentum p is
given by

(2.41)
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with the energy E, = p?/(2m) and the chemical potential y which fixes the total

particle number
1
p

P e kBT — 1]

Note that the chemical potential has to fulfill the constraint u < Fy, otherwise Eq. (2.41)
would result in negative occupation numbers. If the chemical potential approaches Ejy
the occupation number of the p = 0 state becomes increasingly large which results in the
formation of a BEC. Hence, the critical temperature for Bose-Einstein condensation is
defined as the temperature at which a macroscopic number of particles starts occupying
the lowest energy level at p = 0 for u = Ej.

From this condition the critical density for Bose-Einstein condensation can be calcu-
lated via

e )4
ne v (2nh)? 6% . (2.43)
Here we performed the replacement Y-, —V [ d*p/ (27h)? which is valid in the case of
a large volume V where the momentum becomes a continuous variable. Eq. (2.43) is the
critical density where all particles are occupying excited single particle states but not the
p = 0 state in the case of u = Ey (we can choose = Ey = 0 without loss of generality).
As soon as this critical density is exceeded particles start to occupy the lowest energy
state and the condensate fraction starts to grow. The integral in Eq. (2.43) can be
calculated as

2

p? o om2p3 4

e2mkpT _ 1

Ar /Oood P2 (2mkpT)? <3) JT (2.44)

ne = (2wh)3 -

with the Riemann (-function; ¢ (3/2) ~ 2.6124. From this critical density one can find
the critical temperature for Bose-Einstein condensation for an ideal gas of Bosons for a
given particle density n as

2
orh? [ 1 ’ h2
Te = 78 (S)n ~3.31——n3. (2.45)
¢

mkp (§ mkp

For temperatures below this critical temperatures particles start forming a conden-
sate, 1. e. a macroscopic fraction of the particles occupying the lowest motional quantum
state. The total number of particles is, therefore given as the sum of condensed particles
and the atoms are still in a thermal state N = Npgc(7T) + Ny. From this one can
calculate the fraction of condensed particles as

Njw

Nppc(T) = N [1 - (;;)

For the limiting case of T' = 0 all particles are condensed.

] . (2.46)
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2.5 Bose-Einstein Condensates

2.5.2 Gross-Pitaevskii Equation

It turns out that particle-particle interactions which were neglected in the treatment

above play an important role to describe some of the fundamental properties of a BEC.

Interactions can be added to the theory by adding an interaction potential of the form
Vint = Vo Zz’;ﬁj d(xi — x5).

The Hamiltonian for NV interacting quantum particles then reads

A N

H=Y"

i=1

A2
P; A A N
% + V(Xl) + W E (5(Xz — Xj). (2.47)

i#]

Assuming only low energy collisions to be relevant the interaction between particles
is dominated by s-wave collisions and the interaction Hamiltonian reduces to Hiy =
g8(x — x') with g = (4wh?a)/(2m) where a is the s-wave scattering length. The
many-body Hamiltonian in second-quantization reads

N N —h2 9 o g~ N N o
H= / dx [w* (x) (mv + V(x)) V(x) + ST ()T (x)w<x>¢<x)] . (249)

The particle creation and annihilation operators again fulfill the bosonic commutation
relation W(x)ﬂ[ﬂ(x’ )} = d(x — x). To find the explicit time dependence of these
operators one has to solve the Heisenberg equation of motion

. . . —h? . . .

o, 1) = [90x,), 7] = (mw FV()+ g¢*<x,t>w<x,t>> oot (249)
The simplest version of (2.49) is obtained in the mean field limit where the field operators
are replaced by their corresponding expectation values 9 (x) — (¢ (x)) = ¥ (x,t). This
leads to the time-dependent Gross-Pitaevskii equation

L0 [ 2
zhaw(x,t) = [—MV + V(x) + gl(x,t)] ] P(x,t). (2.50)

The related stationary Gross-Piteaevski equation can now be found by inserting the
ansatz ¥(x,t) = (x)e /" into BEq. (2.50) which leads to

2
[_;nvz +V(x)+ g\w(x)d P(x) = pp(x). (2.51)

This equation describes the spatial distribution of a BEC in an external potential V' (x)
including particle interactions.

Another way to derive the stationary GP equation is performing the Hartree-Fock
ansatz for the wave function

U(Xy,...,XN) = H o(x:), (2.52)
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2 Theoretical Background

where the single particle wavefunctions ¢(x) are normalized as [ |¢(x)[*> = 1. By
introducing the mean-field wavefunction ¢ (x) = v/ N¢(x) one can write the mean field
energy functional of the Hamiltonian (2.47) as

E= /dx [¢*(x) (—;;V2 + V(X)) P(x) + ‘g|1j)(x)|4] : (2.53)

Minimizing this energy functional under the additional condition that the particle
number is conserved, i.e. minimizing £ — u/N with the chemical potential u leads to
the stationary Gross-Pitaevskii equation given in Eq. (2.51)

The description of a BEC in the mean-field limit via the GP equation works extremely
well for many practical purposes. Possible scenarios where the mean-field treatment
breaks down might be systems with strong interactions, low-dimensional systems or the
dynamics close to critical points. The Gross-Pitaevskii equation plays an important
role in the models presented in the chapters 5 and 6.

2.5.3 Elementary Excitations

Some important features of a BEC are revealed by performing Bogoliubov theory to
calculate the elementary excitation spectra of the condensate [2.15]. The heart of this
theory is the linearization of the Gross-Pitaevskii equation which in a more complex
form will appear on several stages in this thesis. This method gives a lot of insights
of the physics of the condensate such as dynamical instabilities, stability of stationary
states and many more. Therefore, we would like to explain the derivation for the
simplest case of a homogeneous condensate in free space and discuss some important
features of a BEC.

To calculate the elementary excitations above a stationary mean field solution y(x)
perturbations around this solution are include by expanding the wave function as
Y(x,t) = o(x) + 09 (x,t)e”#/. Linearizing the GP-equation (2.50) with respect to
01 results in

h2
ihd0ah(x) = <—2mv2 +V(x) - M) 51(x) (2.54)

T g [[9oPGOPU(0) + do(x) (Wo(x)08" (x) + U5 (x)Fw(x)] . (2.55)
Performing a Bogoliubov transformation
S(x,t) = u(x)e™ ™t 4 v* (x)e™?t (2.56)

results in a pair of coupled equations for u(x) and v(x)

2
eou(x) = (—;jnw +V(x) - u) u(x) + 2g|t0[2u(x) + gotou(x) (2.57)
2 *
huw(x) = — (—fmw +V(x) - u) v(x) - 2g|vo20(x) - gUiUu(x).  (258)
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2.5 Bose-Einstein Condensates

Figure 2.6: Comparison between the Bogoliubov spectrum of a BEC (solid blue
line) (2.60) and the linear linear phonon spectrum (dashed red) and
the quadratic dispersion relation of a non-interacting BEC (dash dotted
green). The vertical black dotted line marks the critical wavenumber for
superfluidity.

If we now assume a homogeneous BEC in real space, i.e. ¥9 = v/N and V(x) = 0, we
find via Eq. (2.51) that the chemical potential in this case is given as u = gN. In the
case of a homogeneous system u and v are plane waves u(x) = @e™®*, v(x) = 9e™**. In
this case the set of equations (2.57) and (2.57) takes the matrix form

21.2
heo _ ﬁzi +gN gN
- —aN —h2k2 N
g 2m g

Diagonalizing the 2x2 matrix in Eq. (2.59) leads to the famous Bogoliubov dispersion
relation for a BEC

B2k2 [ h2k2 h2 k2 N
o % (B o) :hkﬁ. (2.60)
2m 2m 2m m

One realizes that for sufficiently small values of k the dispersion is linear Ey ~ hk+\/gN/m
(see Fig. 2.6). In this case the elementary excitations are sound waves with a sound-
velocity ¢g = y/gN/m. This linear behaviour for small values of & is in contrast to the
case of a non-interacting BEC where the dispersion relation is quadratic oc k2. This
implies that the propagating sound-wave (often also referred to as phonon-mode) is due
to the collective motion of the BEC atoms.

Based on the model of an interacting BEC discussed above one can also describe the
effect of superfluidity of a condensate. The Landau critical velocity for a flowing liquid
to experience superfluidity is given as

. (Ex
= — . 2.61
Ve = min (hk) (2.61)

< £
<

3

) . (2.59)
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2 Theoretical Background

If the velocity exceeds this critical value the flowing condensate will experience friction.
In a non-interacting condensate with a quadratic dispersion relation o k2 the critical
velocity is zero, implying that in this case the BEC cannot be superfluid. In the case
of an interacting BEC, however, the critical velocity for the Bogoliubov dispersion
relation Eq. (2.60) is the sound velocity v. = ¢g = /gN/m # 0. Hence, for sufficiently
small velocities the BEC is superfluid. The corresponding critical wavenumber in the
dispersion is found as k. = v/mgN /h (vertical dotted line in Fig. 2.6).

The method of linearizing the system’s equations of motion will appear on several
stages in the publications in this thesis. It is a versatile tool to analyze and understand
the fundamental physics of a system and to calculate critical points at which the system
gets dynamically unstable.
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3 Light-Induced Instabilities of Atom
Clouds

After this short introduction of the basic theoretical models and tools, which will be
relevant for the rest of the thesis, the following chapter introduces two well-established
geometries which were subject to detailed theoretical as well as experimental studies
in the past decades. The fundamental results obtained with these types of setups
motivate the extension of theses systems to account for more general scenarios and
symmetries. The underlying principle in all of these systems are induced instabilities
of atom clouds by coupling them to light fields. In the following two fundamental
instabilities in different resonator geometries will be introduced. We will start with the
historically first related instability, which was established in this context the so-called
collective recoil laser. This run-away process is a good example how tiny modulations
in an initially homogeneous cloud can be exponentially amplified if the atoms interact
with light fields via the processes described in section 2.3. In the second chapter we
will introduce the concept of self-organization in a standing wave cavity, which paved
the way to study induced instabilities in more complex geometries as it is done in this
thesis. In particular, we will discuss the discrete symmetry breaking occurring in this
setup. This then motivates the search for more general setups which break a continuous
symmetry as they are studied in the papers contained in this thesis. In the following
discussion we will only point out the fundamental physical mechanisms, which are
important to understand the basic properties of the systems. A much more detailed
discussion of the related physics can be found in [3.1].

3.1 Collective Atomic Recoil Lasing (CARL)

The concept of a novel tunable laser geometry called Collective Atomic Recoil Laser
(CARL) was postulated in 1994 [3.2, 3.3] in close analogy to the free-electron laser [3.4].
Collective atomic recoil lasing occurs if a cold or ultracold atomic gas is put into a
strong light field propagating in one direction. In this case a collective instability (the
so-called CARL instability) leads to transient bunching of the atoms and as a result
to coherent backscattering of radiation. The most straightforward way to understand
and realize the CARL instability is the case of a cold atomic gas coupled to the modes
of an unidirectionally pumped ring-cavity; see Fig. 3.1. The atoms are assumed to be
two level atoms dispersively interacting with the cavity fields. One fundamental cavity
mode (o) is pumped through the cavity mirrors with a pump strength n whereas
the second counterpropagating mode (a_) is solely populated by the field which is
reflected from the atomic ensemble. The frequencies of the cavity modes are chosen

25



3 Light-Induced Instabilities of Atom Clouds

Figure 3.1: Typical setup leading to Collective Atomic Recoil Lasing (CARL). An
initially homogeneous cloud of atoms is put into one branch of a ring-cavity
which is pumped from one side with a pump strength n. The mode a4
is populated via the pump fields whereas a._ is solely populated by fields
which are reflected from the atomic density. The cavity decay rate is
denotes as K

far off resonant with respect to the internal atomic transition leading to a dispersive
potential for the atoms due to the AC-Stark shift (see section 2.3). In contrast to
some other light induced instabilities, which may occur in Bose-Einstein condensates, in
particular, superradiant Rayleigh scattering [3.5] where the coherence of the quantum
gas plays an important role, the CARL instability is much less sensitive to the thermal
motion of the atoms. Therefore, it can also be realized with thermal atoms [3.6] since
the coherence in the case of CARL is stored in the light field of the cavity [3.7].

This implies that the Vlasov equation approach which was discussed in section 2.4
applies to describe the dynamics of the CARL system [3.8]. We restrict our discussion
to one dimension along x. In this case the dynamics of the phase-space density f(x,v,t)
is governed by the one-dimensional Vlasov equation (2.37)

of of d ., of

— t U= - —— (x)%—

ot Oor dx 0. (3.1)

The total electric field inside the ring cavity is given as E(x) = e(a. (t)e?** +a_ (t)e~%?)
and the explicit time dependence of the mode amplitudes which is a direct result of the
back-action of the atom-cloud density p(z,t) = [ dvf(x,v,t) to the mode amplitudes is

governed by the two coupled differential equations

a4 (t) =[i(A. — NUy) — k] ay — iUpOa_ + n, (3.2)
a_(t) = [i(A. — NUy) — k| a— —iUgO%a, (3.3)

with the cavity detuning A, := w), — w, defined as the difference between the pump field
frequency w, and the cavity resonance frequency w.. Uy denotes the optical potential
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Figure 3.2: Time evolution of a) the absolute value of the bunching parameter, b) the
mean-velocity, ¢) the pumped mode intensity and d) the unpumped mode
intensity for a CARL geometry. The solid blue curves (dashed red curves)
correspond to n = 2.0, (n = 1.8n.). The other parameters are N = 10°,
kvp = 1.5k, Ac — NUy = —k and Uy = 1/N.

depth per photon in the cavity as well as the cavity mode frequency shift per particle.
The particle number is denoted as N and k is the cavity decay rate. The bunching
parameter © := [ dxp(z,t)e 2" couples the two differential equations. It measures the
magnitude of density modulations in the atom cloud. As long as the atomic density is
homogeneous the bunching parameter is equal to zero resulting in a—(t) = 0 since only
the a4 mode is pumped with a pump strength n. Due to the light induced long-range
interactions a collective instability (CARL instability) can be triggered for sufficiently
large light intensities. In this case small density fluctuations in the nearly homogeneous
atomic gas are exponentially amplified leading to bunching of the atoms, resulting in
coherent backscattering of photons into the a— mode. This results in the build up of a
self-consistent optical lattice due to the interference between the two counterpropagating
modes. This potential can be calculated via (2.24) and reads

o(z) = Al (]a+|2 + la_|* + aia_ezikx + a+ai62ik‘r> ) (3.4)

It is the non-trivial interplay between the light mode dynamics (3.3) and the atomic
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Figure 3.3: Typical time evolution of the phase space density for a CARL instability
far beyond threshold, n = 2.0n.. a) Spatially homogeneous density at
t = 0rx~!, b) the CARL instability leads to atomic bunching (t = 10x~1)
which results in a run away process c) t = 155~ 1.

dynamics (3.1) which leads to this complex behaviour characteristic for collective atomic
recoil lasing. Analyzing this set of differential equations with focus on collective dynamic
instabilities [3.8] reveals the threshold formula for the critical pump strength

2(kpT)3/? k(k? + 62)
2 c

(3.5)

For pump intensities beyond this threshold the initially homogeneous atomic distribution
gets unstable. The atomic bunching is exponentially growing which in turn results in a
gain in the light intensities of the cavity modes as it can be seen in Figs. 3.2a), 3.2c)
and 3.2d). In particular, the unpumped mode a_ is getting populated due to the
collective scattering of light resulting in a coherent light pulse. Fig. 3.2b) shows the
time evolution of the center of mass velocity (v) = [dvv [dxf(x,v,t). Its increasing
behaviour for all times shows that the CARL instability is a run-away process. The
bunched atoms are accelerated along the propagation direction of the pump beam.
As a result CARL constitutes a real dynamical instability of the system and it never
reaches a steady-state. In Fig. 3.3 a typical time evolution of the phase-space density
f(x,v,t) is shown. As an initial condition we choose a spatially homogeneous thermal
gas with a thermal distribution Fyp(v) = 1/(y/mvr) exp[— (v/vr)?]; [see Fig. 3.3a)]. The
instability leads to atom bunching in a self-consistent optical lattice with \/2-periodicity
[see Eq. (3.4)] which is moving in the direction of the cavity pump beam. The atoms
start to bunch at the potential minima (which correspond to the field intensity maxima
if we assume red detuning with respect to the atomic transition frequencies, i.e. Uy < 0)
and are accelerated in the propagation direction of the pump mode (z-direction).

The reason for this run away process is the continuous symmetry of the chosen
setup. The boundary conditions for the fields in a ring-cavity allow any arbitrary
phase for the light fields (see section 2.2.2). Therefore, any spatial translation of the
atomic cloud x — = 4+ Az can be compensated by a phase change of the cavity modes
oy — a+eT%/2 The atomic bunching of atoms for light intensities beyond threshold
breaks this continuous symmetry. Hence, the CARL setup is an example how the
continuous symmetry of a system can be broken via light induced instabilities. Finally it
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should be remarked that even though we restricted the treatment to a classical thermal
gas in classical light fields, the CARL instability was also observed with quantum
gases [3.7] which results in similar effects as the ones described above.

3.2 Self-organization in a Standing Wave Cavity

Another important geometry when talking about light induced instabilities of atom
clouds is the self-organization of atoms in a transversally pumped standing wave cavity.
In this case a cloud of atoms is placed inside a standing wave resonator and illuminated
from the side with a standing wave laser field as it is schematically depicted in Fig. 3.4a).
The atoms are assumed to be two-level atoms coupling to a single cavity mode with
a resonance frequency w. far off resonant from the internal atomic transition. The
pump mode frequency is w, and the pump strength is denoted as 7 and the cavity
mode is subject to decay at a rate k. In general, the atoms can be a classical thermal
gas [3.9, 3.10] or a quantum gas [3.11] and the dynamics of the atomic density as well
as the nature of the phase transition is qualitatively the same. However, the realization
of self-organization with a BEC, which led to the first realization of the Dicke-phase
transition [3.12], has generated widespread interest from different field of physics. Thus,
we will focus on the case of self-ordering of a BEC coupled to a quantized cavity mode
in the following.
The many-body Hamiltonian in second quantization of the composite system

H=Hs+ He+ Hac, (3.6)

is made up of the single Hamiltonians [3.1]

m

A A 2 A~ A A

fa= [ dxif(x) (;’ + Vet () + S (xm(x)) (), (3.7a)

He = —hAafa, (3.7b)
fac = / @ (x) (WUo cos (ka)ata + huycos(ha) cos(k2)(a' +a)) d(x),  (3.7c)

where the first line corresponds to the bare atomic Hamiltonian including particle-
particle interactions with an interaction strength g and the second line amounts for the
single cavity mode where A. = w, — w, is the detuning of the pump field frequency
wp with respect to the cavity resonance frequency w.. The creation (annihilation)
operator a' (@) creates (destroys) a photon in the cavity mode. The first term in
the third line o cos?(kx) describes the cavity generated periodic potential along the
cavity axis with a potential depth Uy. In the following we will always assume high-field
seeking particles, i. e. red-detuning of the pump field with respect to the internal atomic
frequency (Up < 0). The second term o cos(kz) cos(kz) describes the scattering process
between the pump mode in z-direction and the cavity mode in z-direction. In the
following discussion we will omit the external potential Vex(x) in Eq. (3.7a) which
usually is present due to the confinement of the BEC via some external trap but it is
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Figure 3.4: Schematic picture for self-organization in a transversally pumped single
mode standing wave cavity. a) Below threshold 1 < 7. the BEC density is
homogeneous along the cavity axis (z-direction) and the cavity mode is
empty. b) For n > 7. the system’s Zs symmetry is broken and the BEC
self-organizes in one of the two possible configurations (solid grey circles
or dashed empty circles)

a

not important for the discussion of the fundamental physics leading to self-organization.

The dynamics of the coupled atom cavity system is governed by the Heisenberg
equations of motion ihd;p = [1h, H] and ihdya = [a, H] — ihka where in the latter
equation cavity losses at a rate x were included phenomenologically. Performing a linear
stability analysis of the mean field steady state solutions in close analogy to the method
presented in section 2.5.3 shows that the system undergoes a phase transition from
homogeneous to periodic order if the cavity pump strength exceeds a critical value [3.11]

5 [(Ac— NUy)? + k2] (wreec + 2Ng)

77c - —2N(Ac _ NU()) ’ (38)

where N is the particle number of the BEC and wye := hk?/(2m) is the recoil frequency.

Let us discuss the symmetries of the single Hamiltonians in (3.7). H4 and Hg
are invariant under any spatial translation x — x + Ax thus they have a continuous
translational symmetry (for Vig(x) = 0). In addition, Ho has a continuous U(1)
symmetry since it is invariant under any phase rotation @ — ae®. The coupling
Hamlitonian H ¢, however, has only a discrete symmetry. Performing the spatial
translation x — x + A/2 results in a minus sign in the second term in Eq. (3.7¢), i.e.
cos(kx) cos(kz)(al 4+ @) — — cos(kz) cos(kz)(a’ + a). However, the minus sign can
be compensated by a phase rotation A¢ = 7 of the cavity mode a. Therefore, the
total Hamiltonian H is invariant under the symmetry transformations  — & + A /2
and @ — ae'™. The first term oc cos?(kz) in Eq. (3.7c) is A\/2-periodic along the
cavity axis whereas the second term o cos(kz) cos(kz) is only A-periodic. Hence, the
Hamiltonian (3.6) has a global A periodicity. As a result the self-organized steady
state solutions above threshold (3.8) will be A periodic. There are two possible ways
to realize a A-periodic density grating in the \/2-periodic cavity generated potential
as it is schematically shown in Fig. 3.4b). The groundstate for the perfect quantum
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3.2 Self-organization in a Standing Wave Cavity

system examined here will always be a superposition of the two possible patterns. In
experiments, however, small fluctuations of external parameters will always result in a
spontaneous choice between the two possible phases. Hence, the particles spontaneously
choose even- or odd sights of the resulting potential. Thus, at the phase transition from
a homogeneous BEC in z-direction [see Fig. 3.4a)] to a A-periodic density grating the
system randomly chooses between the two possible configurations [see Fig. 3.4b)]. This
amounts to a breaking of the so-called discrete Zs symmetry of the Hamiltonian.

The first realization of self-organization with a BEC has sparkled widespread interest
from different fields in physics, since the system allows the simulation of a phase transition
breaking a discrete symmetry in a well-controllable environment. In particular, in the
case of self-ordering of a BEC the Hamiltonian (3.6) can be mapped to the Dicke-
Model [3.13] often also referred to as Tavis-Cummings model [3.14]. The system of
a transversally driven BEC in a cavity is equivalent to this model if the electronic
atomic states are replaced by a pair of motional atomic states [3.12, 3.15]. Therefore,
the realization of self-organization in a standing wave cavity was the first experimental
realization of the Dicke phase transition. In this case the system undergoes a transition
from a normal to a superradiant phase. The latter is characterized by a macroscopic
occupation of the cavity mode a.

The two examples given in this chapter show that light induced instabilities of
atom clouds coupled to different dynamic laser light geometries are a valuable tool
to simulate phase transitions known from other fields of physics. This opens up a
rather different approach to quantum simulation where the non-trivial interplay between
the dynamic field amplitudes and their back action on the atomic dynamics leads
to symmetry breaking and complex dynamics in the initially homogeneous system.
This resulted in a strong research direction to generalize the setup discussed above to
account for more complex and general situations. In particular, the generalization to
continuous symmetries [3.16-3.18] and inducing tunable interactions between different
lattice sites [3.19, 3.20] in the symmetry broken state is still focus of ongoing research.
The publications presented in the following chapters are important steps in this research
direction.
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4 Publication

EuropHYSICS LETTERS 109, 43001 (2015)

Atomic Self-Ordering in a Ring-Cavity with
Counterpropagating Pump Fieldst

S. Ostermann', T. Griefler’ and H.Ritsch'

Unstitut fiir Theoretische Physik, Universitit Innsbruck,
Technikerstrafie 25, A-6020 Innsbruck, Austria

The collective dynamics of mobile scatterers and light in optical resonators
generates complex behaviour. For strong transverse illumination a phase tran-
sition from homogeneous to crystalline particle order appears. In contrast,
cold particles inside a single-side pumped ring cavity exhibit an instability
towards bunching and collective acceleration called collective atomic recoil
lasing (CARL). We demonstrate that by driving two orthogonally polarized
counter propagating modes of a ring resonator one realises both cases within
one system. As a function of the two pump intensities the corresponding
phase diagram exhibits regions in which either a generalized form of self-
ordering towards a travelling density wave with constant centre-of-mass
velocity or a CARL instability is formed. Time dependent control of the
cavity driving then allows to accelerate or slow down and trap a sufficiently
dense beam of linearly polarizable particles.

doi: 10.1209/0295-5075/109/43001

TThe author of the present thesis performed all the calculations and numerical simulations in this
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4.1 Introduction

Ultracold particles in an optical resonator interact non-locally via collective scattering of
photons in and out of the cavity modes. Under suitable conditions this induces collective
instabilities [4.1] or even crystallisation of the particles [4.2-4.4]. One of the earliest
examples of such an instability, developed in close analogy to free electron lasers [4.5],
was studied in the so called collective atomic recoil lasing (CARL) [4.1, 4.6, 4.7]. This
type of instability can be realised in a single side pumped ring cavity and it reveals a
transient bunching concurrent with coherent collective backscattering of pump light for
an ensemble of fast particles counterpropagating the pump field of the cavity. In an
alternative geometry, considering cold particles with transverse pump in a standing wave
cavity, a phase transition from homogeneous to crystalline order was predicted [4.8] and
experimentally verified [4.9, 4.10]. Later this was identified and as well confirmed as a
quantum phase transition also occurring at zero temperature [4.3, 4.11].

In this paper we show that in a generalized geometry using two counter propagating
pump fields of orthogonal polarization, a very similar type of phase transition appears,
where the system breaks its translational symmetry and transforms into periodic order.
The geometry is related to the configuration studied in [4.12], where no cavity was
present. It is important to note that the pump fields injected from two sides into the
ring cavity do not interfere and hence do not form a prescribed optical lattice, as they
have orthogonal polarization. A lattice only appears through interference of pump and
backscattered light. The two fields of orthogonal polarization interact only indirectly by
scattering from the same atomic density distribution [4.12].

This work is organized as follows: After a short presentation of the model, we study
general properties of the system and exhibit its relation to known models. In particular
using a Vlasov-type approach we study the stability boundary of the homogeneous
distribution. To understand the system’s behaviour in more detail, we perform specific
numerical simulations in part two. We reveal that selfordered solutions with a constant
centre of mass velocity can be realised. In addition we show that the system allows for
slowing down a fast atomic or molecular beam. In the last part we derive expressions
which enable to state whether our configuration settles in a selfordered phase or a CARL
instability depending on the pump parameters.

4.2 Model

Let us consider a large ensemble of IV polarizable particles within a ring cavity supporting
pairs of orthogonally polarized counterpropagating modes. For simplicity, we assume
them to be confined along the cavity axis and linearly polarizable with a real scalar
polarizability, i.e. atoms with a ground state with zero total angular momentum F' = 0.
For optically polarized atoms with tensor polarizabilities, the equations below would have
to be adapted accordingly. In addition, for sufficiently large detuning from any optical
resonance we can largely neglect mode mixing due to spontaneous Raman transitions
to other Zeeman levels and thus we simply end up with an effective polarizability for
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Figure 4.1: Schematic picture of the considered setup.

each field mode.

Note that this description explicitly excludes optical pumping and polarization gradient
cooling as in optical molasses. When enhanced by cavity feedback this tends to localize
the particles in space as shown in some earlier work [4.13]. While this is certainly an
interesting generalization of our model, such ordering is a single-particle effect an thus
fundamentally different from the collective selfordering dynamics into a lattice structure
studied in our present work below.

In a semiclassical point particle description the time evolution of the mode amplitudes
an of the intra cavity field E(x) := Y, anf,(x) is governed by the equations [4.14]

an(t) = (iA. — 1UOZE )£ (x5) + 0 (4.1)

where 2x is the cavity linewidth and A, := w, — w. denotes the detuning between the
pump field (w,) and the cavity modes (w.) and Uy determines the interaction strength.
Physically, Uy represents the optical potential depth per photon in the cavity as well as
the cavity mode frequency shift per particle. In general, Uy can be complex but we will
restrict our treatment to real Uy, meaning that we only consider dispersive atom-light
interactions.

We approximate the mode functions f, in the interaction zone as plane waves, so
that their polarization is constant. In the following we will only consider four different
modes, hence we will change notation from {ai,as,as,as} — {ay,a—, 5+, 5-} and
{fl,fQ,fg, f4} — {er, fa ,f+ ,57}? where

fiﬁ (x) = exp(tik-x) ey 3 (4.2)

and the polarization vectors fulfil the orthogonality relation e, - eg = d,,3. Two coun-
terpropagating, orthogonally polarized modes f and f; are pumped with amplitudes

m = n4 and n4 = n—, while the other two modes f; and fﬂJr are only populated by
scattered photons. This configuration represents only a slight change as compared to
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standard ring cavity cooling scheme [4.15-4.17], but constitutes a very different situation
physically. As the two counterpropagating pump fields do not interfere, no prescribed
optical lattice is formed and the system is inherently translation invariant. Note that
imperfect mirrors in principle could lead to scattering between the two polarizations.
Fortunately in a three mirror ring cavity the two orthogonal polarization modes are
sufficiently frequency shifted due to the polarization dependent mirror reflection, so
that no resonant scattering between the modes will occur.

The force on a particle within the cavity field is given by the gradient of the optical
dipole potential ¢(x) = hUy|E(x)|? associated with the local field intensity, hence
mx; = —V¢(x;) with particle mass m. We restrict our treatment to the one dimensional
motion along the cavity axis, so that x; is replaced by x;. Under these assumptions
egs. (4.1) and (4.2) lead to:

ap = (i0 — k)ay —iNUpQa— +n4 (4.3a)
a_ = (i0 — k)a_ —iNUp 0" oy (4.3b)
By = (i6 — k)By —iNUo 0 B (4.3¢)
B = (0 — k)B_ —iNUy 0" B4 +1_, (4.3d)

where § = 1/N Y, e=2*%j defines the orderparameter and 6 := A, — NUj is the effective
cavity detuning. These eqs. (4.3) describe two independent CARL geometries with
different propagation directions (cf. Fig. 4.1) which interact via the atomic density
inhomogeneities. It should be mentioned that the detuning § and the cavity decay rate
k are in general different for the two counterpropagating modes. However, this does not
influence the basic physics discussed in this work and would add unnecessary complexity.
Therefore we assume equal detuning and decay rate for all modes in the following.
The light induced optical potential explicitly reads:

b= hUO(a+ai621ka: + Oéj_Oé_e_Qilm + B+5i62ﬂm + ﬁiﬁ_e—%km)_ (4‘4)

For very large particle numbers the numerical simulation of equations of motion
can be achieved only at large computational cost. However, in the limit N — oo the
dynamics of the gas can, for sufficiently short times be reliably approximated by a
Vlasov equation (in 1D) [4.18, 4.19]

af n of 1090f

for the corresponding one-body phase space distribution function f(z,v,t). Such a
treatment misses, however, correlations in the density and field fluctuations which
lead to cooling and heating on longer time scales [4.20]. Assuming periodic boundary
conditions allows to restrict our treatment to the truncated phase space with = € (0, A).

4.3 Stability Analysis

Let us now investigate the coupled dynamics of the field modes and particles as
described by eqs. (4.3)—(4.5). For a spatially homogeneous distribution the system
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is fully translation invariant and thus § = 0. For this reason the state defined by,
al = 53 =0 as well as

fl@ot) = A F@), of =T g0 = (4.6)

Kk —1i6’ K —id

constitutes a stationary solution of the system (4.3)-(4.5), regardless of the velocity
distribution F'(v). Note that in the following we only consider thermal (i.e. Maxwell-
Boltzmann) velocity distributions

2
)
F(v) = ﬁvTe . (4.7)
Here we introduced the thermal velocity vt which is connected to the temperature via
mv3 /2 = kgT.

In this stationary state only forward scattering occurs without photon redistribution
between the modes and thus there are no forces on the particles. Only deviations
from perfect spatial homogeneity can lead to backscattering and the build-up of an
optical lattice. To find out under which conditions such deviations are amplified and a
subsequent phase transition to an ordered phase can occur, we perform a linear stability
analysis following Landau [4.21]. As a result we find that the steady state (4.6) is
unstable if and only if the dispersion relation D(s) has at least one zero with a positive
real part, where

D(s) =0+ (s +r)* + [(s + k) A —i6S] I(s). (4.8)

In (4.8) we defined the total pump parameter S and the pump asymmetry A according
to
Sim 2+ I A= g2 — [ (4.9)

Furthermore,

2 %) /
J@p:ﬁﬁwg/ Fv)

K2 402 J_o s+ 2ikv
with the recoil velocity vg = 2iik/m. One finds that for every given pump asymmetry
there exists a critical total pump parameter S. such that the homogeneous state is
unstable for S > S. and stable otherwise.

For equal pump intensities, i.e. A =0 , we recognize that (4.8) is almost exactly the
same dispersion relation as one obtains for a transversally pumped ring-cavity. The
only difference is that the wavenumber is multiplied by a factor 2 and the transversal
pump-intensity is replaced by the sum of the two pump intensities S [4.18]. Obviously
there exists a close analogy between the present setup with equal pump strengths and a
transversally pumped ring-cavity. As in the latter case there appear stable selforganized
solutions beyond an instability threshold [4.18], which is given by

(4.10)

¢ T NUZ  hd]

(4.11)
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Figure 4.2: Evolution of the centre of mass velocity for the same parameters as
in Fig. 4.3. Sufficiently small A/S = 0.3 (dashed blue) leads to a selforga-
nized solution with a constant centre of mass velocity whereas for large
A/S = 0.8 (dash dotted black) the CARL phase is realised which results
in an indefinitely increasing centre of mass velocity. The solid red curve
shows the evolution of the mean velocity for a initial distribution with
initially <v># 0 and A = 0.

The other extreme case, A = £S5, corresponds to a pure CARL instability [4.18] in
which case no selforganization can take place as shown in sec.4 of [4.18].

While the dependence of the critical pump parameter on the pump asymmetry can
not be found in closed form, solving D(0+iw) = 0 for A(w) and S(w) yields the stability
boundary using w € R as parameter, cf. Fig. 4.5. The central question in the following
is whether and under which conditions there occurs selforganization for nonzero pump
asymimetries.

4.4 Numerical Simulation

To gain deeper insight into the systems behaviour we have numerically solved the
Maxwell-Vlasov equations (4.3)—(4.5) for an initial condition close to homogeneous in
space and a negative effective detuning §. These simulations confirm our predictions
for the A = 0 case. Furthermore they reveal that for sufficiently small A and above
threshold the system does evolve into a selfordered state, albeit one in which the gas
possesses a non vanishing centre of mass velocity vy}, constant in time. In the process
of forming such a travelling wave the continuous translation symmetry is broken. As a
matter of fact, the gas moves in the direction of the stronger pump beam. However,
we find that, for a given S, as soon as A exceeds a certain value, there still occurs a
CARL instability resulting in a runaway centre of mass velocity. For an illustration of
these processe see figs. 4.2 - 4.4. Movies of typical phase space evolutions are available
in the online supplemental material (asym03.mp4 and asym08.mp4 ).

While we have started from a particle ensemble at rest up to now and found a moving
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4.5 BGK Waves
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Figure 4.3: Snapshots from the time evolution of the phase space density for a relative
pump asymmetry A/S = 0.3 (the full movie of the time evolution can be
found on-line, 396.5kB, asym03.mp4). The parameters are chosen to be:
kvr = 1.5k, N = 2-10°, the effective cavity detuning is set to § = —&
and Uy = —1/N. a) Spatially homogeneous distribution at t+ = 0x L.
b) During the ordering process at ¢t = 1557%. ¢) Selfordered state at
t = 32k~ 1. If one compares figs. b) and c) one finds that the spatially
periodic distribution is shifted in space. This implies that the system
exhibits a certain constant (see Fig. 4.2) center of mass velocity.

gas in a steady state, one can turn the idea around and use this setup to efficiently
slowing down a cold atomic or molecular beam by collective scattering, improving a
similar approach which has already been presented in [4.16] (see the red curve in Fig. 4.2).

4.5 BGK Waves

As we have seen above, in the case of instability and depending on the pump asymmetry,
the gas either enters the CARL regime, in which the centre of mass is accelerated
indefinitely, or it settles in a selfordered, travelling-wave state with a constant phase
velocity (i.e. centre of mass velocity). Let us therefore investigate this latter type of
solution more closely. From equation (4.5) one deduces that any nonlinear wave with
phase velocity vp, must be of the BGK (Bernstein-Greene-Kruskal) form [4.22]

m(v — vph)2

flz,v,t) =G (2 + qb(a:,t)) , (4.12)

where G(.) is an arbitrary function. Furthermore, ¢(x,t) may depend on (z,t) only
through x — vput, which implies that a_e Hhvmt 3 e2kvpnt a5 well as o, S all be
independent of time. To actually find the phase velocity from the equations of motion
we require G(.), which is obtained as the solution of an initial value problem and thus
in general out of reach. Nevertheless it is possible to deduce a relationship between
the phase velocity, the order parameter and the relative pump asymmetry in the form
(© = No))

A —45(k? + 0% — U3O0?)kvpn (4.13)
S 4(k?+ 02) kvl + (K2 + 6% — UF0?%)% + (26U 0)? '
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Figure 4.4: Snapshots from the time evolution of the phase space density for a relative
pump asymmetry A/S = 0.8 (the full movie of the time evolution can
be found on-line 412.6kB, asym08.mp4 ). The rest of the parameters are
chosen to be equal to the ones chosen in Fig. 4.3. a) Spatially homogeneous
distribution at t = Ox~!. b) CARL instability at t = 10s~! and ¢) CARL
instability at t = 20k~

v/vr
v/vr
v/vr

fulfilled by any nonlinear wave solution. From (4.13) we find that for § < 0 the wave
travels in the direction of the stronger pump beam, as long as N|Uy| < VK2 + 62,
As soon as the inequality is violated, waves with sufficiently large order parameters
propagate in the opposite direction. As such waves have never been observed numerically
we have reason to expect them to be dynamically unstable. Hence we stipulate that
the order parameter satisfies the bound N|Upl||f| < VK2 + 2. Furthermore, eqn. (4.13)
allows to conclude that if

1o

S VK2 462

there exists no BGK-wave solution at all. This implies that if the homogeneous solution
is unstable and the asymmetry exceeds the bound (4.14), the gas will necessarily enter
the CARL regime.

Eqn. (4.13) can also be viewed as determining the necessary relative pump asymmetry
A/S, which is needed to generate a wave with a prescribed phase velocity vp, and order
|0|. Notice, however, that the necessary total pump strength S can not be inferred. In
particular, in order to stop a beam (i.e. to achieve vy, = 0) the pump asymmetry has
to be equal to zero.

(4.14)

The foregoing statements exhaust the characterization of the BGK solutions in absence
of knowing G(.). Without going into details we state that for gas with temperature
kvp > k, one finds that a BGK-wave will develop as soon as S > Spagk, where

_ rA  NUZ O\
S = 545011 —0
BGK c [ + <2kBT 52—1—52)

. (4.15)

The results of the stability analysis and the discussion above are summarized in Fig. 4.5.
Obviously there seems to be a sharp transition from the BGK phase to the CARL phase.
This fact has also been proven to be right in numerical tests.
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4.6 Conclusions and Outlook

selfordered BGK phase
0.2

Figure 4.5: Phase diagramm. The blue regions correspond to a stable homogeneous
gas for different temperatures. From dark to light blue we have chosen
kvp = 1.5, 50, 100 k. The dark grey region, bounded by (4.15), marks the
parameter regime where a warm gas transitions to a BGK state (4.12).
The dashed black line corresponds to the bound (4.14).

4.6 Conclusions and Outlook

We demonstrated that utilizing orthogonally polarized counter propagating modes the
physics of light induced selfordering is observable, similarly to the case of a transversely
pumped ring resonator. In the case of no pump asymmetry the two setups are fully
equivalent [4.18]. However, the system considered in this work is more versatile, because,
in principle, by the choice of the pump asymmetry, ordered particle distributions with
any prescribed centre of mass velocity can be generated. Therefore the control of the
pump intensity allows for controlling the motion of gas particles inside the ring cavity.
As a consequence, a particle beam can be effectively slowed down and trapped. Note
that a different loss rate for the two polarization modes, as it often appears in practice,
can be easily compensated by a correspondingly enlarged pump.

Analogous physics should be present at zero temperature allowing to control and
study degenerate quantum gases. For example a similar behaviour of a superfluid gas
inside a transversally pumped cavity has been experimentally observed recently [4.23].
Interesting effects can also be expected in the case of particles in optical lattices. Here
collective scattering from orthogonally polarized modes can be used to gain insight into
the particle quantum statistics at minimal perturbation or to induce tailored long-range
interactions.
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Coherent scattering of light from ultracold atoms involves an exchange
of energy and momentum introducing a wealth of nonlinear dynamical
phenomena. As a prominent example particles can spontaneously form
stationary periodic configurations which simultaneously maximize the light
scattering and minimize the atomic potential energy in the emerging optical
lattice. Such self-ordering effects resulting in periodic lattices via bimodal
symmetry breaking have been experimentally observed with cold gases and
Bose-Einstein condensates (BECs) inside an optical resonator. Here, we
study a new regime of periodic pattern formation for an atomic BEC in
free space, driven by far off-resonant counterpropagating and noninterfering
lasers of orthogonal polarization. In contrast to previous works, no spatial
light modes are preselected by any boundary conditions and the transition
from homogeneous to periodic order amounts to a crystallization of both light
and ultracold atoms breaking a continuous translational symmetry. In the
crystallized state the BEC acquires a phase similar to a supersolid with an
emergent intrinsic length scale whereas the light-field forms an optical lattice
allowing phononic excitations via collective backscattering, which are gapped
due to the infinte-range interactions. The system we study constitutes a
novel configuration allowing the simulation of synthetic solid-state systems
with ultracold atoms including long-range phonon dynamics.

doi: 10.1103/PhysRevX.6.021026

TThe author of the present thesis performed all the calculations and numerical simulations in this
publication. For all other aspects of this work F. Piazza contributed in an intensive advisory role.

43


https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevX.6.021026

5 Publication: Spontaneous Crystallization of Light and Ultracold Atoms

5.1 Introduction

For a gas of pointlike particles off resonantly illuminated by coherent light, the individual
dipoles oscillate in phase, each emitting radiation in a characteristic pattern. When
several particles contribute to the scattering, the corresponding amplitudes interfere,
which leads to a strongly angle-dependent scattering distribution [5.1, 5.1-5.3]. In
addition, if the motional degree of freedom is relevant on the considered time scales,
any high field seeking particle will be drawn towards the corresponding local light
field maxima, where in turn light scattering is enhanced. This directional energy and
momentum transfer between the gas and the field leads to an instability resulting in
density fluctuations and potentially also in the formation of an ordered pattern. While
for a room temperature gas this typically occurs only at very high pump powers [5.4-5.6],
it can become important for very strong scatterers as larger nano- or microparticles [5.7—
5.13]. The stringent threshold conditions can be relaxed by laser cooling the gas to
temperatures well below the mK-range as well as by recycling the scattered light in
optical resonators. In this case much weaker forces and thus lower light power is needed
to a create substantial back-action effect of the scattered light onto the particles. This
back-action was predicted to lead to roton-like instabilities and spatial bunching even
at moderate pump powers, as observed in several configurations [5.14-5.25].

A relevant question is thus whether these instabilities can in some cases lead to the
formation of a stable crystalline phase in the steady state of such driven, dissipative
systems. The first and simplest instance of such crystals is the self-ordered phase of
transversally driven atoms in optical resonators [5.26-5.29], with the corresponding
transition observable also as a quantum phase transition at zero temperature [5.30, 5.31].
It has been shown recently that a similar phase is also realizable in longitudinally
pumped ring-cavities [5.32].

While this self-ordered phase shows some aspects shared by standard crystals like a
roton-like mode [5.33], other characteristic features like the breaking of a continuous
translational symmetry and a crystal spacing which is not externally fixed are both
missing, since the resonator mirrors select a single electromagnetic mode. In order to
include such features one necessarily needs to couple the particles to several electromag-
netic modes, ideally a continuum. This is the case in one-dimensional tapered optical
nanofibers [5.34, 5.35] or confocal cavities [5.36], where transversally driven atoms are
predicted to spontaneously break the continuous symmetry into a crystal phase. The
existence of a continuum of electromagnetic modes opens up the possibility for photons
to crystallize, as it was studied with light propagating under electromagnetically induced
transparency conditions through a nonlinear medium [5.37, 5.38].

In this work, we propose and characterise a novel crystalline phase of light and
ultracold atoms. We consider a mirror symmetric and translation invariant setup as
it is depicted in Fig. 5.1. It involves an elongated Bose-Einstein condensate (BEC)
longitudinally illuminated by two counter propagating Gaussian beams far detuned from
any atomic resonance. The beams have either orthogonal polarization or a sufficiently
large frequency difference to suppress any interference effects. Above a finite driving
intensity both atoms and light break a continuous translational symmetry leading
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\f«

Figure 5.1: Schematic representation of the considered setup. An elongated BEC
interacting with two counterpropagating, noninterfering laser beams of
orthogonal polarization. The two beams are far detuned from any atomic
resonance in order to avoid mixing between the two polarizations. Both
polarizations are assumed to be equivalent with respect to the considered
atomic transition, the latter thus involving a spherically (or at least cylin-
drically) symmetric ground-state. Alternatively to the use of two different
polarizations, sufficiently different frequencies of the two counterpropagat-
ing lasers can be chosen.

to pattern formation with an intrinsically defined lattice spacing determined by the
polarizability and density of the gas. The resulting state corresponds to a supersolid BEC
trapped in an emerging optical lattice, the latter showing collective phononic excitations.
The appearance of an emergent length scale in combination with lattice phonons — i.e.
the appearance of a crystal of light — is a crucial difference to configurations where the
drive is transverse to the direction in which the system organises [5.34-5.36].

A useful property of the chosen geometry is that ample information about the
coupled system dynamics can be retrieved from the reflected light fields in a completely
noninvasive manner. The present study opens a new direction in (ultra)cold atom-
lattice physics, naturally including long-range phonon-type interactions and real-time
nondestructive monitoring.

5.2 Model

We consider a trapped atomic BEC interacting with the electromagnetic (EM) field
driven by two far off-resonant, counterpropagating, orthogonally polarized laser beams,
as depicted in Fig. 5.1. In the dispersive regime considered below, the EM field provides
an optical potential for the BEC [see Eq. (5.1)], while the BEC significantly modifies
the refractive index [see Eq. (5.3)], thus both field and matter are dynamical quantities.

The BEC is treated within the Gross-Pitaevskii (GP) mean-field approximation [5.39],
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whereby the condensate wave function satisfies the equation
—h? 02
2m dx2
where m denotes the particle’s mass, g. is the effective s-wave atom-atom interaction
strength, and N is the atom number . For computational simplicity we assume the
BEC to be confined by an extra transverse trapping potential Viyap (2, ¥y, 2) such that
the dynamics along the y and z axis is negligible. Therefore, the BEC wave function
1 is assumed to be in the ground state of the transverse trap with characteristic
size dy = d, = \/Z, where A denotes the BEC cross section. Such a quasi one-
dimensional treatment is eligible if the BEC’s chemical potential y is much smaller than
the characteristic transverse trap frequency: u < hwy .. The wavefunction satisfies the
normalization condition: [ dz|¢y(z,t)|? = 1.
The total optical potential for the BEC has two contributions:

V() = Virap () + Vopt (2), (5.2)

representing the static trapping potential Virap and the longitudinal (along x) optical
potential V¢ determined by the dynamical part of the injected and scattered EM
field [see Eq. (5.5)]. The latter consists of two far off-resonant fields with orthogonal
polarizations driven from the left (L) and right (R) side of the BEC as depicted in Fig. 5.1.
The two polarization components of the field satisfy the Helmholtz Eq. (5.3).

The atoms inside the BEC are described as linearly polarizable particles with a
scalar polarizability a where the imaginary part is negligibly small, i. e. spontaneous
emission of the atoms is neglected. This corresponds to the assumption that the driving
laser frequency wj is sufficiently far detuned form any atomic resonance to prevent
substantial internal excitation. This avoids spontaneous emission and thus mixing of
the two counterpropagating EM components via Raman scattering as it is used for near
resonant polarization gradient cooling may be neglected.

While for spin-polarized atoms the polarizability is field direction dependent in general,
we assume the same polarizability for both polarizations orthogonal to the laser axis
being the quantization axis. This corresponds to transitions from a spherically (or at
least cylindrically) symmetric atomic ground-state. The impinging laser fields from
left and right are approximated by plane waves so that we can write the EM field
components as Ep, g (z,t) = (ELr(z)e™!’ + c.c.) e g with the orthogonality condition
er, - eg = 0. As the light transit time through the sample is negligible compared to all
other time scales, the propagation delay of the EM field is adiabatically eliminated and
the two field envelops (L for the field from left and R for the field from right) satisfy
the Helmholtz equations

2
S Bun(e) + R+ x(@) B (e) = 0 (53)
with the wavenumber kg of the incoming beams and the susceptibility x(x) of the BEC.
This susceptibility depends on the condensate’s density and is given by

- j‘oﬁwmﬁ (5.4)

e 9eN
Zﬁal/}(l’at) = l + V(x)‘| ¢(»’Uat) + A |¢(x7t)’21/)($7t)7 (51)

x(z)
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where 1(x,t) is the solution of Eq. (5.1). The directionality of the field propagation in
the Helmholtz equations [Eq (5.3)] is defined by the boundary conditions, according to
which the L-component has a finite imposed amplitude on the left end of the system
and the R-component has such on the right end (see also Appendix 5.10).

As soon as one knows the spatial distribution of the electric fields, one can calculate
the optical potential for the atoms via

Vopt () = =5 (|BL (@) + | Br(2)[?) . (55)

o
A
Inserting the optical potential Eq. (5.5) into Eq. (5.1) leaves us with the set of three
coupled differential equations: the GP Eq. (5.1) and the two Helmholtz equations [Eq
(5.3)], describing the nonlinear dynamics of our system. The degree of nonlinearity
resulting from the atom-light coupling is quantified by the dimensionless constant ¢
defined as

¢:= oN__ gn£ , (5.6)

60)\014 €0 )\0

where n = N/AL is the three-dimensional density of the homogeneous BEC with L its
characteristic extension along x. Due to the adiabatic approximation involved in the
Helmholtz equation, the EM fields depend only parametrically on time through the
dynamical refractive index set by the BEC density.

Due to the orthogonality of the two chosen polarizations there is no interference
between the two counterpropagating components of the EM fields. Therefore, the
optical potential (5.5) only depends on the absolute value squared of the fields. This
important feature guarantees the translation invariance of the setup along the x direction
nevertheless maintaining a mirror symmetric setup. Indeed, since we are driving with
plane-wave lasers, as long as the BEC density is homogeneous, the EM fields Ey, g (z) in
Eq. (5.3) are also plane waves, leading to a translation invariant optical potential (5.5).
This invariance with respect to continuous translations is spontaneously broken above a
finite driving intensity, as discussed in section 5.3. In the resulting crystalline phase,
the lattice constant is intrinsically established as it is discussed in section 5.4. This is
due to the fact that no specific modes are selected and the fields can counterpropagate
independently.

5.3 Dynamical Instability towards Crystallisation

As already mentioned above, due to the orthogonality of the polarizations of the two
injected counter-propagating laser fields the particles do not feel any longitudinal optical
forces. Naively, one could thus expect the BEC to remain unperturbed independently of
the pump intensity. In this section we show that this is actually not the case, as above
a particular threshold driving strength small density fluctuations lead to backscattering
of light which in turn amplifies these fluctuations. This leads to an instability towards
crystallization in the longitudinal direction. The latter can be described by considering
the collective excitation spectrum of the system for a spatially homogeneous density
distribution of the BEC tg(x,t) = 1/v/L with the corresponding propagating field
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Figure 5.2: Excitation spectrum (5.8) in the homogeneous phase for different field
intensities 177 = 2.0 (red), I*® = 20.0 (green) and I = 60.0 (blue)
(¢ =0.1, L =100\g, g:N/AXNg = Erec)-

solution of Eq. (5.3). These are plane waves of the form EI(J(?I){ = C exp(Likegz), with
the modified wavenumber

27 27 Q
kot = X 1+ COrolwol2 = 25, 14+ S, 5.7
= + CAoltol YT (5.7)

where C' is a real number fixed by the driving strength.
The spectrum is obtained by linearizing the coupled equations [Egs. (5.1) and(5.3)]
with the ansatz ¢ = (Yo + 6¢)e " and B g = Eg]}% + 0Er r. Here 0t and 0E are
(0

small deviations from the stationary solutions g or E L}% and p is the BEC chemical
potential (see Appendix 5.9 for details). This yields

B R2q? [h2q? 5 64m2 AC? 1 JLR]

R202 — .
07 om [om T TN @2 — 4k (5.8)

q

Here I denotes the intensity (in W/m?) of the incoming light which we have chosen
to be equal from left and right.

The above analytical expression Eq. (5.8) is very useful to understand some essential
features of the atom-light interaction in the present setup and in particular the nature
of the crystallisation transition. Apart from the last term, we recognize the known form
of the Bogoliubov spectrum of interacting BECs [5.39], with the linear-in-¢ behavior
corresponding to phononic excitations at low ¢q. The last term on the other hand is
the only one resulting from the atom-light interactions. The first thing to note is that
its denominator vanishes at ¢ = +2keg, which tells immediately that the modified
wavenumber (5.7) sets the favoured momentum for the appearance of the instability.
However, the vanishing of the denominator is compensated by the diverging BEC length
L, at every finite atom number N (note that ( ~ N). The limit L — oo of Eq. (5.8)
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Figure 5.3: { dependence of the critical intensity. The solid blue line depicts the
analytical result defined by Eq. (5.9) whereas the red dots depict numer-
ical threshold estimations for large system sizes (L = 120)g) (¢ = 0.1,
ch/A)\O = Erec)‘

actually has to be taken, since the stationary plane-wave solution E(L?%{ ~ exp(tikes)
about which we linearized only makes sense for a homogeneous and infinite atomic
medium, so that the edges may be neglected. This indeed allows us to neglect the
reflection of the incident wave by the change in refractive index at the BEC edges. Such
finite-size effects, included in the numerical solutions described in section 5.4, become
irrelevant for large systems, as we demonstrate below.

One way to obtain the proper result for Eq. (5.8) in the limit L — oo is to consider
that for any finite L the allowed momenta ¢ take only quantized values as multiples of
27 /L. Before taking the limit L — oo it is instructive to compute the spectrum (5.8)
for fixed finite L, as it is shown in Fig. 5.2 for different values of I“%. One recognizes
a gap opening at q = 2keg for any finite I™f, i.e. any finite driving strength. The
spectrum develops a minimum at the finite momentum ¢ = 2keg + (27)/L, which
corresponds to a roton minimum in the language commonly adopted for standard crystal
formation [5.40]. It constitutes a generalization to continuous-symmetry breaking of the
roton-like instability observed with a BEC in an optical cavity [5.33]. In a similar manner
as in standard crystals, the crystallisation threshold can be calculated by finding the
drive intensity at which the roton energy approaches zero. This leads to the threshold-
condition way . 1 (2r)/ = 0. We are now in the position to take the limit L — oco. In
doing this we note that we have to keep the atom number N constant in order to get a
finite critical drive strength. Otherwise, if we perform the standard thermodynamic
limit N/L = const., the energy of the system diverges and the crystallisation threshold
vanishes. This divergence is an artefact of our model in which the light-mediated
atom-atom interaction is of infinite range since the EM field is adiabatically adapting
to the BEC configuration. The inclusion of the dynamics of the EM field (retardation
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Figure 5.4: Dependence of the reflection coefficient of the BEC on the incoming field
amplitudes for different atom-field couplings ¢ = 0.1 (dashed red) and
¢ = 0.2 (solid blue). The remaining parameters are the same as in Fig. 5.2.

effects) would introduce a finite range and thus eliminate the divergence in the energy.
Still, the resulting range is expected to be larger than the typical BEC size L so than
our calculation should be valid for any realistic system size. Taking the L — oo limit
we thus get the critical driving intensity

JuR _ CEreeN 1 5 1 Ao

c oA @ CBreean o

(5.9)

where we introduced the recoil energy Eiee := hwree = h2k3/(2m). Note that in the
L — oo limit with constant N the BEC becomes more and more dilute, which renders
the direct atom-atom coupling ~ g. eventually irrelevant. In Fig. 5.3 the analytical
expression (5.9) is compared with numerically estimated thresholds for large system sizes
(see section 5.4). We find full agreement between the linear instability threshold and
the numerical threshold found by studying the imaginary time evolution of eqns. (5.1)
and (5.3). This numerical approach to finite-sized systems is described next.

5.4 Crystal of Light and Atoms

After showing that the homogeneous system is unstable above a certain driving intensity,
we are going to show that a stable crystalline phase is reached and study its properties
by numerically solving the coupled GP [Eq. (5.1)] and Helmholtz [Eq. (5.3)] equations.
We perform an imaginary time evolution of the system Egs. (5.1)—(5.3), i.e. replace
t — iT, which yields the ground state of the system for long enough evolution times.
For a detailed description of the numerical methods, see Appendix 5.10.

To determine the crystal transition point as a function of driving intensity we compute
the total reflectivity of the BEC with respect to the intensity of either one of the incident
beams, which we again take to be equal. For large enough system sizes, a clear threshold
behavior is visible at a critical driving intensity, whereby the reflectivity grows from
essentially zero with almost infinite slope, cf. Fig. 5.4. The hereby found critical
intensity is in perfect agreement with the analytical result(see Fig. 5.3). As mentioned
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Figure 5.5: (a) Crystal ground state for ¢ = 0.1, I; = I, = 200 and (b) corresponding
intensity distribution for the field from left (green) and right (red). The
solid blue line depicts the sum of both intensities. A zoom into the yellow
shaded region can be found in Fig. 5.8. The remaining parameters are
ch/A)\O = Erec and L = 10)\0.
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already in the previous section, finite-size effects manifest due to the presence of the
edges of the BEC. In the calculations described in this section and in section 5.6, there
is no further trapping potential along  and the BEC is confined within a box of size
L, so that the BEC has sharp edges for the light impinging at z = 0 and x = L (see
Appendix 5.10 for more details). In section 5.7 we add an harmonic trap along x and
show that the qualitative behavior is the same as described here. The BEC edges create
a quick increase of the refractive index which induces a small amount of reflection of the
incoming beam. As apparent from Fig. 5.4 this reflection is irrelevant for large system
sizes compared to the reflection present in the crystalline phase.

The large light reflection above threshold is due to the appearance of a large spatial
modulation of the BEC, forming the density grating shown in Fig. 5.5(a). This cor-
responds to a continuous symmetry breaking at the threshold leading to a crystalline
phase which for the phase-coherent BEC implies supersolid order. Each peak in the
density grating reflects the incoming light, resulting in a damped modulation of the
intensity of each polarization component across the condensate, as shown in Fig. 5.5(b).
While the modulation of each component’s intensity ™ is damped across the system,
the modulation of the total intensity I*°* = I™ + I® is not damped, resulting in a
periodic optical-lattice potential for the BEC which matches its density grating.

An important feature of the optical lattice emerging in the crystalline phase is the
intrinsic character of the lattice spacing, which is not fixed externally but rather set by
the BEC density and atom polarizability. This is a clear difference with respect to the
self-ordering in optical resonators where the spacing is externally fixed by the cavity
mirrors [5.26]; and also to the case of self-ordering of transversally driven atoms coupled
to the continuum of modes of optical fibers, where the spacing is fixed by the driving
frequency and fiber dispersion [5.34, 5.35]. As anticipated in section 5.3, the appearance
of the roton-like instability at the characteristic momentum 2k.g leads to the following
prediction for the emergent lattice spacing;:

_ Ao (5.10)

T

Kett 2,/1_1_% 2 /1+%n-
The emergent spacing is always smaller than the one in vacuum \g/2. This feature can
be qualitatively reproduced also within a toy-model where the medium is approximated
by a set of beam splitters [5.41]. This typically small but nonetheless crucial effect is also
present when using counterpropagating beams with equal polarization and is essential
for atom trapping in optical lattices [5.42]. Would the atoms indeed be trapped with
the vacuum spacing \g/2, the EM field would be perfectly reflected and no standing
wave could actually be formed and thus no trapping be possible. It is only through the
slight renormalization d < \g/2 that perfect reflection is avoided. What our scheme
with orthogonally polarized counterpropagating beams allows is to make the small
renormalization of d coincide with the appearance of a large density modulation out of
a homogeneous phase, i.e. a crystallisation.

The existence of an intrinsic lattice spacing in the crystalline phase implies as well
the presence of phononic excitations of the the lattice, as discussed in the next section.

d
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Figure 5.6: Excitation spectrum of the atom-light crystal. The blue points are the

eigenvalues of the GP and Helmholtz equations linearized about the crys-
talline stationary state (see Appendix 5.9). The numerical diagonalization
is performed with a momentum-space discretization dg = 27w /L. The
parameters are the same as in Fig. 5.2 except for L = 50 and a fixed
drive intensity I™f = 50 (slightly above threshold). guax is the momen-
tum corresponding to the largest component of the eigenvector of each
eigenvalue. The insets show examples of eigenvectors (unormalized proba-
bility in momentum space) for three different eigenvalues representative
of each region of the spectrum, from left to right: Aggmax = 1.38 < Agkest,
Aoket < AoGmax = 11.9 < 2Xgkesr, and AgGmax = 12.7 > 2Agkeg. The
latter region corresponds to lattice phonons, characterized by a two sym-
metric pairs of peaks about a finite momentum. This phononic branch:
Gmax > 2keg has a gap Apy. Its analytical estimate in Eq. (5.11) yelds
App ~ 2V/2E,., in reasonable agreement with the numerical data.
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5.5 Excitations of the Crystal: Phonons

Further insight in the properties of the atom-light crystal is provided by analyzing
its excitation spectrum. As done in Section 5.3, we linearize the coupled system of
Eqgs. (5.1),(5.3). However, now the perturbation is performed around the symmetry-
broken stationary solution. The result is presented in Fig. 5.6 for a driving intensity
slightly above threshold. Details of the calculation are given in the Appendix 5.9.
Since translation-invariance is broken, the matrices describing the linear system are
not diagonal in momentum space requiring a discretization of the position(momentum)
continuum. Moreover, while the total light intensity and atom density are periodic, the
intensity of each polarization component is not, due to accumulated reflection along the
density grating, introducing the decaying evelope shown in Fig. 5.5(b). This prevents
the use of the quasi-momentum to label the excitation modes.

In Fig. 5.6 we labelled the eigenvalues based on their dominant momentum component
(max, €xtracted from the corresponding eigenvector. This allows to split the spectrum
into three regions separated by gaps at gmax = keff and gmax = 2kes.

The gap at gmax = ket opens up for 1% > IXR due to the appearance of an optical
lattice potential for the atoms with a 7 /keg periodicity. It separates the two bands which,
slightly above threshold, are characterized by eigenvectors with a clearly dominant
momentum component (see left and middle inset in Fig. 5.6).

On the other hand, the gap at 2k.g is the same one appearing in the homogeneous
phase (see Fig. 5.2). As discussed in Section 5.3, at the critical drive intensity I the
gap is such that the energy of the mode with momentum ¢ = 2keg + 27/L (momentum
is still a good quantum number for I*# < I%F) vanishes. Out of this zero-energy mode
at 2keg (not resolved with the discretization of Fig. 5.6), and beyond the critical point:
J LS ICL’R, the lattice phonon branch develops for ¢umax > 2keg. The momentum
distribution of the lattice-phonon eigenvectors is characterized by the splitting of the
single peak at 2keg into two neighbouring peaks (see rightmost inset of Fig. 5.6). The
phonon wavelength is set by the distance between the two nearby maxima appearing in
the momentum distribution. This generates the slow beating in coordinate space. With
a finite system size L, the longest wavelength is of the order of L.

Moreover, the lattice-phonon branch is gapped, in the sense that its lowest energy
mode at gmax slightly above 2k.s has a finite energy, as visible in Fig. 5.6. More
importantly, this gap remains finite in the thermodynamic limit L — oco. We can
estimate the size of the lattice-phonon gap close to threshold by using Eq. (5.8) and
computing the energy of the mode next to the zero-energy mode. This yelds

2m 2m

R2k2e (. h2k2
A2 o~ g——off <2ef’f + gn) , (5.11)

which takes the value Agh ~ 8F2

~ . in the thermodynamic limit L — oo with N = const..

As discussed in section 5.3, in this limit [ CL’R remains finite while n — 0 and keg — ko.
Another choice of thermodynamic limit is possible: L, N — oo with n = const., where
IB® — 0 and the gap is still given by (5.11). The existence of an energy gap for
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lattice phonons is due to the long-range nature of the interactions, as it can be already
predicted within a classical model of interacting point-like particles [5.43]. From a more
general field-theoretical perspective, some of the gapless Goldstone modes expected
from the continuous-symmetry breaking can indeed disappear (i.e. become gapped)
due to the long range of the interactions, as it for instance happens to the longitudinal
phonons of a three-dimensional Wigner crystal [5.44]. As long as retardation effects can
be neglected our interactions will be infinite-ranged, the lattice-phonons gapped, and
thus quantum/thermal fluctuations will not destroy crystalline order even in truly one
dimension [5.45].

The existence of lattice phonons among the collective excitations is confirmed by
numerical simulations of the real-time dynamics of the system, as it is described in the
next section.

5.6 Crystallisation Dynamics after a Quench

In this section we investigate the real-time dynamics of the system by directly solving
eqns. (5.1) and (5.3). This allows us to analyse the crystallization dynamics after a
sudden turn on (quench) of the pump laser strength from zero to a value above threshold
at t = 0. The corresponding time evolution of the BEC reflectivity, kinetic energy, as
well as the evolution of the BEC density and total light intensity are shown in Figs. 5.7
and 5.9.

As apparent from the behavior of the reflectivity and kinetic energy Fyin(t) =
[ dxh?|0,|%/2m, the crystalline order is reached after a few inverse recoil frequencies,
after which both quantities perform oscillations about a finite value. These residual
oscillations are triggered by the energy gained by the system upon forming the density
grating together with the optical lattice. The reason why this effect takes in a prominent
role in the studied case is found by looking at Fig. 5.8, which shows the zoom into
two peaks of the intensity distribution of the crystal. One recognizes that the maxima
of the intensity distributions of the two fields coming from left and right (blue dots
in Fig. 5.8) do not coincide with the maximum of the total intensity distribution (black
dot in Fig. 5.8) at which the atoms are trapped. Therefore, the trapped atoms feel a
strong field gradient for each single component because they do not sit at the maxima
of the two counterpropagating fields, as it would be for example the case in optical
lattices. This leads to a large coupling between the two counterpropagating fields and
the atoms, leading to strong long-range interactions inducing collective excitations.

The corresponding dynamics of the BEC density and the total light intensity is shown
in Fig. 5.9. As one can see from the solid lines marking the evolution of the intensity
maxima, they start at a lattice spacing of A\¢/2 and move closer together in time reaching
the emergent spacing d. In addition, we see the presence of residual oscillations about
the crystalline order. In particular, the light intensity shows both compression modes,
modulating the amplitude of the optical lattice in time, and phonons, modulating the
spacing. The latter are clearly visible from the dynamics of the intensity maxima
shown in Fig. 5.10. Since we are neglecting retardation of the fields, the energy can
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Figure 5.7: (a) Real-time evolution of the kinetic energy for ( = 0.1, I; = I, = 100,
gcIN = 1. (b) Real-time evolution of the reflection coefficient for the same
parameters as in figure (a). The solid black line shows the mean value of
the corresponding functions.
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Figure 5.8: Zoom into the yellow shaded region of Fig. 5.5. The blue dots mark the
maxima of the field from left (green) and right (red) whereas the black
dot marks the maximum of the total field intensity (blue). The red dot
shows the actual position of the particles.
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Figure 5.9: Real-time dynamics of the (a) BEC density distribution and b) the total

light intensity for the same parameters as in Fig. 5.5. The solid black lines
in figure (b) show the time evolution of the intensity maxima.

be redistributed among the collective degrees of freedom but not dissipated. Initially,
for wrect ~ 1, mostly compression modes are excited. Subsequently part of the energy
stored in compression modes is transferred to lattice phonons for wye.t 2 5. In Fig. 5.10
we see a single-frequency oscillation of the intensity maxima, the latter moving almost
in phase. This indeed corresponds to a low-wavelength lattice phonon, which becomes
occupied for long enough times. As discussed in section 5.5, the longest wavelength is
of the order of the system size L, consistently with the almost in-phase oscillations of
Fig. 5.10.

As discussed in the previous section, lattice-phonons have a finite gap. They can
efficently be excited in a quench experiment provided the energy available for collective
excitations is large enough compared to Apy [see Eq. (5.11]).
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Figure 5.10: Real-time evolution of the maxima of the intensity distribution as it is
shown in Fig. 5.9. To simplify the comparison between the single curves
the maxima positions were shifted so that they all start at x = 0. Fig. (a)
shows the total time evolution where one can clearly recognize collective
phononlike excitations of the lattice after wye.t 2 5. Fig. (b) shows the
zoom into the yellow marked area in fig.(a) in order to demonstrate the
slight dephasing between the oscillations of the maxima. All parameters
are chosen as in Fig. 5.5.

5.7 Experimental Implementation with Ultracold Bosons

BECs with high densities and a controlled shape trapped in optical dipole traps are
currently available in many laboratories. In principle, the setups normally employed are
already very close to the one needed to study the crystallization effects presented in
this work. In the following, we will discuss the conditions needed to study our model in
realistic experimental conditions, as well as the required parameter regime for observing
the crystallization. Let us remark that the basic physics underlying the crystallization
transition discussed here does not rely on the atoms being Bose-condensed. This
phenomenon could in principle also be observed with thermal clouds or fermionic gases.
Apart from the fundamentally very interesting feature of supersolidity, the practical
advantage of a BEC with respect to a thermal cloud resides in its high density and
low temperature, both decreasing the required laser power. On the other hand, for
degenerate fermi gases, one could expect a strong dependence on the ratio between
Fermi momentum and lattice constant [5.46-5.49].

We start by noting that using single beam optical traps can also lead to heating
instabilities but never generate a stationary lattice [5.17]. Similarly, operating very
close to an atomic resonance has been shown to generate instabilities and a short
time formation of an optical lattice structures via so called end-fire modes [5.16]. As
this requires significant atomic excitation, it involves fast transverse acceleration with
heating and destruction of the BEC. This is prevented in our model by an improved
geometry and much larger atom-field detuning.

Our model (5.1)—(5.3) is essentially 1D, which relies on the assumption that both,
the atoms and the light move and propagate essentially unidirectionally along z. In
practice this can be implemented by using a transverse trapping of the atoms tight
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enough to freeze out the dynamics along y, z. With harmonic trapping potentials this
amounts to the requirement that w{}f’z is sufficiently larger than the BEC chemical
potential p. Here we still describe the one-dimensional BEC using the GP equation,
which requires the atom density to be large enough to be in the mean-field regime [5.39].
The enforcement of unidirectional propagation of light is more demanding since an
appreciable amount of diffraction out of the BEC axis would be present inducing
propagation also perpendicular to . Apart from the use of hollow-core optical fibers
around the BEC [5.50], one option available in many laboratories today is using a
two-dimensional array of tubes with spacing comparable with the wavelength of the
light. This arrangement would generically produce destructive interference between
the transverse field components diffracted from different tubes, so that if the latter are
long enough only the forward propagation along the tube axis would remain. In this
configuration, each tube will act equally while the field propagates inside a medium
with a refractive index given by the sum of the contributions from each tube. Indeed,
since all tubes share the same backreflected field there is a natural synchronization of
the different tube lattices.

In any experimental realization a trap to confine the BEC along x will also be present.
In addition, the two laser intensities might differ to some extend due to experimental
inaccuracies. As an exemplary case we study the crystallization as in section 5.4 but add
a harmonic trapping potential Voy () = %xz / )\% and chose different pump intensities
I; # I.. Tt can be seen from Fig. 5.11 that the qualitative features of the crystalline
phase remain the same as in the homogeneous case. The only difference is the parabolic
envelope for the density as well as for the light intensity distribution and the shift of
the distribution towards the direction of the higher intensity. The threshold behaviour
remains similar to the one presented in Fig. 5.4 with the only difference being an increase
of the threshold intensity. A useful feature of the considered configuration is that the
crystallization process can be observed in real-time by looking at the amount of reflected
light, since the transmitted part of the counterpropagating beam can be separated from
the reflected part having orthogonal polarization.

In order to choose the most suitable atomic transition, pump detuning and power,
as well as BEC parameters like density and extension, one must consider the following
constraints: we need to have i) a low enough critical driving strength (5.9), which
depends on the detuning A, and spontaneous emission v through the real part of
polarizability Rea ~ v/A,, reading

I~ E A5 X (5.12)
c rec 72 nA bl .
and at the same time ii) a low enough BEC heating rate, which at the critical power
reads

2
1_‘heat ~ IgJ’RLZ ~ Erec& ; (513)
A2 nA

with ng = N/A being the surface density of the medium with respect to the light
propagation. From Egs. (5.12) and (5.13) one sees that the crystallisation is easier
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Figure 5.11: a) Crystal ground state for and b) corresponding intensity distribution
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for the field from left (green) and right (red) for the same parameters
as in Fig. 5.5 with an additional external potential Vix(z) = %azg oY
with Firap = 1.0Ee. and for different pump intensities from left and
right I; = 200 and I, = 150. The solid blue line depicts the sum of both
intensities.



5.8 Conclusions and Outlook

achieved before the BEC is heated up if we increase the BEC surface density n 4. There
is no favorable scaling neither with detuning A, nor with the linewidth -, since both
heating rate (5.13) and critical power (5.12) scale with 42/A2. For commonly employed
transitions like the Rb or Cs D lines, the required laser power is easily achieved, but the
heating rate can become a problem at too low densities due to the required laser powers
and detunings. For instance, taking N = 10° atoms confined over a transverse cross
section A ~ 5 x 5um? and A\g ~ um, we estimate a required power I, ~ W/cm? with a
heating rate I'eas ~ 10 Hz for the Rubidium 780nm line with a detuning A, = 100GHz
as well as for the Cesium D2 line with a detuning A, = 20GHz. Such a heating rate
would still allow to observe the crystal fromation since, as we see in Fig. 5.9, this process
takes place on the inverse recoil time scale, which is of the order of milliseconds.

5.8 Conclusions and QOutlook

We predict that in suitable geometries roton instabilities originating from nonlinear
free-space atom light interactions can be tailored to generate stationary crystalline
states. They involve an optical lattice showing an emergent spacing and phononic
excitations, trapping the atoms at the intensity maxima.

The required translation invariant, mirror symmetric geometry can be realized using
two orthogonal polarization degrees of freedom or frequency shifted counterpropagating
beams. We estimate that the dynamics studied in this work should be accessible
in already existing experimental setups on large quasi-1D Bose-Einstein condensates.
Actually, in comparison with standard crossed beam dipole traps, one simply has to
adapt and control the polarizations of the trapping lasers and choose suitable detunings.
The ordering process should be easily observable not only by measuring the atomic
distributions but directly by looking at the reflected light from the condensate. This
nondestructive measurement allows for a real-time monitoring of the dynamics.

Our results open up an intriguing new direction in quantum simulations with ultracold
atoms in optical lattices, where the latter are enriched by the presence of collective
phononic excitations resulting from the spontaneous crystallisation of light. In this spirit,
the application of our approach to two dimensions and the inclusions of retardation
effects as well as quantum fluctuations constitute the natural extension of this study.
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5.9 Appendix: Calculation of Excitation Spectra

Here, we describe in detail how the linearization of the Helmholtz and the GP equation
leads to the collective excitation spectra below [see Eq. (5.8)] and above the threshold
(see Fig. 5.6).

It is convenient to slightly re-write the equations presented in section 5.2. Therefore,
we define the relevant parameters of the system and useful units. We introduce the
recoil energy Erec = hwree = h2kZ/(2m) relative to the wave number kg = 27/A\g
of the incoming lasers in vacuum. The dimensionless time is defined through the
recoil frequency: ¢ := wyect. The dimensionless space variable is given in units of the
incoming laser wavelength & := x/)\g. We also rescale the fields to have units of energy:
EL,R = vVaFELR/ VA and the atom-atom s-wave coupling to have units of energy times
length: g. := g./A. The GP equation [Eq. (5.1)] then reads

0 - - 1 2
ngw(w,t) = - (271’)2 '%2w(l',t)
Vext 7, ~ 1 . -
@D = 5 (IB@F + 1 B(@)) (3,1
+ N 5@ P, D) (5.14)

and the Helmholtz equations [Eq. (5.3)] become

2
S s Bur(®) + (2n)” [+ (I, 0] Brp(@) = 0. (5.15)

Let us first consider the linearization of the Helmholtz equation (5.15). Inserting
the ansatz already presented in section 5.3 namely ¢ = (1o + d¢)e”* and ELr =

E; (0 ) g +0Er R into (5.15) and neglecting terms of second order leads to

O Bt (2m)? [1 4 Cluo?] B (5.16)
+0220 Ep, g +(2m)% |1+ Clo[*] 0B, R (5.17)
+(2m)%C [odt™ + S4g) EX) = 0. (5.18)

The first line (5.16) corresponds to the Helmholtz equation for the steady state EIE%{ an

therefore it is equal to zero. The second line (5.17) is the Helmholtz equation for the
field perturbation whereas the third line (5.18) describes the linear coupling between
the field and the BEC.

This equation can be rewritten in the following form

(M + KZ;) - 0Brn = —(2m)%CES - (U0 - 59" + hoc.) (5.19)
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where we defined the matrices

M(z,2") i= 0zz0(z — 2') (5.20)
K2 (z,2') := (2m)? [1 + Cno(z)] 6(z — 2') (5.21)
EN (2, 2') == B gz — ') (5.22)
Wo(, 2') 1= thod(x — o) (5.23)
and the scalar product

Mof= / da' M (2, ') f (). (5.24)

The formal solution of the linearized Helmholtz equation (5.19) is
SBLg = —(2m)2C(M + K2%) " €9 - (T - 4" + h.c.). (5.25)

)

The linearization of the Gross-Pitaevski equation (5.14) follows a similar procedure
as presented above. Performing the same ansatz and neglecting the second order terms
leads to

1 1

1010 + poyp = — W@c:ﬁ"‘ﬂ T B

CN * *
+ 60 (1B + 1BR ) ] + 5= [[vol*5w + o (v50w + vod™)]

1 1
- wON - Wazxwo - @

(o (B 0L + EY 0B + c.c.)

0 0 geN
do (IBLP +1ER1?) + E=Twolvo.
rec
(5.26)
The last line of equation (5.26) corresponds to the stationary GP equation and therefore

it vanishe, as it defines how the chemical potential is related to the field amplitude and
the particle particle interaction g., namely via

0
_ g.N 20BiRP

— 5.27
F e 1B FEre (5:27)

Inserting the formal solution (5.25) into the linearized GP equation (5.26) and performing
a Fourier Transform via f(x) = ﬁ Sk €% f(k) and

]. 5 1.
M(LU,JI/) — Z Zezkwelkw M(k}, k/)
k,k/
gives
10,19 = (—u]l +T+ AL+ A+ A+ Ap + Loy + 2y0)¢
—+ (AL —+ AL —+ AR —+ AR + I/o)P’l/)* (5.28)
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where 1 denotes the identity matrix and P is the parity operator, i.e. Py (k) = ¢(—k).
We defined the following matrices:

/6‘2
Tk, k') = G0k - k) (5.29)
1
Itot(ky k/) = —mltot(k — k/) (530)
N
vo(k, k') = Eg ol = k) (5.31)
rec
Apr(k, K == (5.32)
EC 7 S W R k) Q7 (K, o) Vi g (2, k) (5.33)
rect b ks
ALgr(k, k) == (5.34)
EC 7 3" Vir(k kD)Q (hy, ko) VT (o, ) (5.35)
rec k k2

where Iiot(k) and ng(k) are the Fourier transforms of the total intensity distribu-
tion and the BEC density Besides we defined the additional matrices Vi, gr(k, k') :=
> Uh(k ) LR(k +k— k) and Q(k, k') := —k26(k — k') + 1/V/Lk%:(k — k'), where
kZ;(k) is the Fourier transform of (2m)? [1 + (no(z)]. In the following we will call the
sum of the A-matrices A(k, k") := Ap(k, k') + Ap(k, k') + Ag(k, k') + Ar(k, k')

Let us now define the spinor ¥(q) := (¥(q),%*(q))’ where 1(q) defines a single
momentum component of ¢ from (5.28). This definition allows us to write the GP
equation in the form i0,¥(q) = >, R(q,q')¥(¢') where the matrix R is defined as
follows
Rla.d) = (—w(q — ) + Gh0(a — @) Too(a — ) + Ala.q) w(a. ) + Alg:q) ) .

~10(a.¢) = Al~¢.~7) = [Fu8la = ¢) + pdla — ) Totla — @) + Alg. )]
(5.36)
This equation now enables us to calculate the excitation spectrum of the considered
system for any arbitrary intensity and BEC density distribution by calculating the
eigenvalues of the matrix R.

5.9.1 Collective Spectrum in the Homogeneous Phase

If we now use the ansatz already presented in section 5.3 namely v (z,t) = 1/v/L and
E£O%{ = Cexp(Fikegx) we can calculate the excitation spectrum below threshold. This

ansatz implies Iiot(z) = |E |2 + |E |2 = 2|C|? and ng(z) = 1/L which results in

Tn(h) = =S 501 (5.37)
vo(k) = gfLa(k). (5.38)
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In addition the matrices (Q and V amount to

Q(k) = (kg — K*)o(k) (5.39)
VL(k) = CVLS(k + kegr), (5.40)
resulting in
¢ [CP@em)? 1
Erec L q2 + 2keﬂq

ALr(g,q) =— 6(q—1q). (5.41)

Note that in this special case Ay, g = A, . If one now calculates the matrix R via (5.36)
and solves det [R(q — ¢') — wl] = 0 one gets

o @ |4, 9N _ 8C|CPEm? 1
(27'[')2 2m ErecL Erec L q2 - 4k(§ff

= 0. (5.42)

Transforming this equation back into the original units leads to the excitation spec-
trum (5.8) presented in section 5.3.

5.9.2 Collective Spectrum Above Threshold

Let us now move on to the calculation of the collective excitation spectrum above
threshold as it is presented in section 5.5. In this case an analytical answer like the one
presented in the previous section is not possible, since the translation-invariance is broken
so that the matrices describing the linear system are not diagonal in momentum space.
Therefore, a numerical approach is required, involving in general the discretization of
the position(momentum) continuum.

The matrices defined in Eqns. (5.29)—(5.35) can be calculated by numerically finding
the fourier transforms of the stationary states found via complex time evolution in
section 5.4. The resulting total matrix R can then be diagonalized numerically.

A further difficulty arising in our setup is that in the stationary crystalline solution,
the total light intensity and atom density are periodi, whereas the intensity of each
polarization component is not. This originates from the repeated reflection from the
density grating, introducing the decaying evelope shown in Fig.(5b) of the main text.
This prevents the use of the quasi-momentum to label the excitation modes. Therefore
we use the momentum corresponding to the largest component of the eigenvector in
order to order the eigenvalues in Fig. 5.6.

5.10 Appendix: Numerical Methods

The model described in section 5.2 constitutes a scoupled system of equations[Egs. (5.1)
and (5.3)]. In this appendix we will shortly discuss the numerical methods we used to
simulate the time evolution of the studied system as it is used in sections 5.4-5.7.
The algorithm consists of two parts. First we need to solve the Helmholtz equation (5.3)
for a given space dependent susceptibility (5.4). This corresponds to a initial value
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problem with the boundary conditions

E(a:: —L/Q)ZAL—I-BL, (5.43)
0 E(x = —L/2) =iko(ArL — BL). (5.44)

Here Ap and By, define the incoming (A7) and outgoing (Br) field amplitudes at the
left side of the BEC. They are related to the amplitudes on the right side via

B, = RA; +TDpg (5.45)
Cr=TApL+ RDp (5.46)

with the system’s reflection and transmission coefficients R and T'. Of course, these
reflection and transmission coefficients depend on the system’s susceptibility. They can
easily be estimated by solving the HH equation for an arbitrary initial condition (5.43)
and (5.44), leading to well defined fields at the boundaries allowing for an estimation of
the right hand amplitudes Cr and Dg. Hence, R and T can be calculated via (5.45)
and (5.46). As soon as we know the initial conditions we can find the solution of the
Helmholtz equation via spatial integration performed by a fourth order Runge-Kutta
solver.

The solution of the HH equation is then used to calculate the optical potential (5.5).
The time evolution of the GP equation with the newly found potential is then calculated
by using a split step method. Note that the HH equation has to be solved within each
time step resulting in a modified potential for the next time step in the GP equation.
The time evolution is finished as soon as the system is found in a stationary state.
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The non-linear coupled particle light dynamics of an ultracold gas in the
field of two independent counter-propagating laser beams can lead to the
dynamical formation of a self-ordered lattice structure as presented in (2016)
Phys. Rev. X 6 021026. Here we present new numerical studies on experi-
mentally observable signatures to monitor the growth and properties of such
a crystal in real time. While, at least theoretically, optimal non-destructive
observation of the growth dynamics and the hallmarks of the crystalline
phase can be performed by analyzing the scattered light, monitoring the
evolution of the particle’s momentum distribution via time-of-flight probing
is an experimentally more accessible choice. In this work we show that both
approaches allow to unambiguously distinguish the crystal from indepen-
dent collective scattering as it occurs in matter wave super-radiance. As a
clear crystallization signature we identify spatial locking between the two
emerging standing laser waves, together creating the crystal potential. For
sufficiently large systems, the system allows reversible adiabatic ramping
into the crystalline phase as an alternative to a quench across the phase
transition and growth from fluctuations.
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6.1 Introduction

A dilute cold atomic gas illuminated by a laser far off any optical resonance experiences
an optical potential with the particles drawn to high or low intensity regions depending
on the sign of their linear polarizability. The induced forces on the particles are
accompanied by a forward scattering phase shift of the laser beams as well as coherent
Rayleigh scattering of light. In the ultracold regime of a BEC, atoms and photons are
completely delocalized and the interaction is a collective process from the photon as well
as from the atom point of view [6.1-6.3]. It turns out that for a cold and large enough
sample of atoms the coupled effective mean field equations for the bosonic atoms and the
light are well suited to correctly capture the essence of this complex collective non-linear
dynamics [6.4, 6.5]. In particular the Gross-Pitaevski (GP) equation for the atomic
quantum gas and the Helmholtz equation for the photons can be used to efficiently
describe the coupled nonlinear time evolution in the system. Within this approximation
the atoms simply form a dynamic refractive index for the light proportional to their
density, while the light creates a dynamic optical potential proportional to the local light
intensity guiding the particles. Note that these mean field descriptions of atoms and
fields automatically account for collective enhancement of coherent atomic scattering
(Bose enhancement), which has been studied in depth in a series of experiments and
theoretical models for of single laser excitation from one side. The same is true for
stimulated light scattering. As has been known for quite a while now, even for single
side illumination by strong enough laser light the system has an instability leading to
growing density fluctuations, acceleration and heating [6.3, 6.6-6.9].

In a recent work [6.4] we studied a refined setup using a new symmetric and translation
invariant geometry of an elongated large cloud of atoms in the field of two counter-
propagating independent lasers. To prevent the a priori appearance of an optical lattice,
we assume that the two lasers have either orthogonal polarization or sufficiently different
frequency to prevent interference and coherent light scattering between the two injected
fields. Interestingly, we found that despite the fact that a priori no laser intensity or
atomic density modulation is present, above a certain pump intensity threshold, the
system spontaneously enters an ordered crystalline phase. In this limit the particles form
a periodic density grating and the two laser fields develop into two standing waves, which
are coupled and synchronized by the atoms. This can be viewed as crystallization of the
particles from homogeneous to periodic order together with the light field. Obviously in
this phase transition the system has to choose an effective wave vector and break its
continuous translational symmetry. Due to the fact that no mode selective boundaries
are present, a continuum of field modes have to be taken into account allowing for the
emerging wave-vector, which governs the spatial modulation of the light intensities and
the properties of collective excitations in the form of phonon wave packets propagating
through the crystal. This distinguishes this crystallization from related cavity based
effects as collective atomic recoil lasing [6.8, 6.10-6.13] or transverse self-structuring by
a reflecting mirror where the Talbot length determines the ordering length scale [6.14].

The focus of [6.4] was to present the basic physical mechanisms leading to this
type of crystallization instability. However, many important questions concerning the
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experimental observability of the crystal phase and the connection to matter wave super-
radiance were missing in [6.4]. This questions are addressed in the following. Therefore,
we present new results to study the onset of crystallization and the characteristics of
the buildup of the crystal. We perform detailed simulations and modify our model
to contain relevant features for present experimental setups. Thereby we work out
common and distinct features to conventional matter wave super-radiance [6.6]. One
particular goal is of course to identify and study clearly distinguishing experimental
signatures of crystal formation. Such signatures can be found from direct time dependent
measurements of the scattered or transmitted light on the one hand or by analyzing
the particle’s momentum distribution via time of flight studies on the other hand. A
extented characterization of properties of the crystalline phase is another central aim
of this work. From a practical point of view it seems that many of those features are
not so easy to observe as current experiments are limited in particle number. While
in principle for any particle number an instability and ordering threshold exists, the
necessary power to reach the ordering instability at sufficiently large detuning is very
high and simultaneously leads to heating and fast particle loss. This strongly limits the
observation time and accuracy of the scattered field measurements. In order get some
estimates of these perturbations we phenomenologically introduce particle loss in our
model equation [6.4] so that its effect on the real time dynamics can be predicted.

In particular, during the initial time evolution of the system, where only weak light
back scattering occurs, the fields act rather independently and the predicted signals
and atomic momentum distributions are very similar to matter wave superradiance [6.2,
6.5, 6.6]. One possible signature includes a careful analysis of the instability threshold
of a homogeneous density for single side versus symmetric pumping. In this respect,
we perform very detailed studies of the the short time dynamics, varying the pump
geometry from symmetric pumping for ideal crystallization via asymmetric pumping
towards the single side pump case as the standard configuration where matter wave
super-radiance is usually observed. Such detailed predictions should be valuable to
distinguish the processes even at current experimental limitations. Indeed the onset of
the predicted crystal phase could be observed in a recent experiment which implements
the proposed geometry [6.15].

As the atom-field crystal corresponds to an at least metastable ground state of the
system one aim is certainly to prepare it as good as possible. Since a sudden quench
leaves much entropy in the final crystal, an alternative approach is the controlled
adiabatic ramp into the crystalline phase. Varying the switch time from a sudden
quench across threshold to slow almost adiabatic ramp, we can address the created
entropy via the reversibility of the ordering dynamics. Of course, a very slow ramp
increases the effect of background heating which again increases the final entropy in the
crystal. In fact, the best way to reach a clean crystal would be using a time dependent
laser field found by optimal control algorithms [6.16, 6.17]. This is certainly interesting
but goes beyond the scope of this work.
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Figure 6.1: Schematic view of the setup. An elongated BEC interacts with two
counterpropagating plane waves of orthogonal polarization. The beams
are assumed to be far off-resonant from the atomic transition to avoid
polarization mixing.

6.2 Model

As a basis of our analysis we use the effective mean field model introduced in our
previous work in [6.4]. Here we will only briefly describe its main properties to give a
self contained basis for our following detailed studies. For the detailed description and
derivation we refer to section two in [6.4].

An extended atomic BEC interacting with two off-resonant and counter-propagating
independent electromagnetic plane waves injected from two opposite sides (see figure 6.1)
is studied. The two electromagnetic fields Stark shift the atomic ground state and create
an optical potential for the BEC atoms, which in turn modify the field propagation as
they constitute an effective density dependent index of refraction. The dynamics of this
setup can be efficiently described by a coupled system of mean field equations. The
BEC dynamics is well approximated by the Gross-Pitaevski (GP) meanfield regime,
where the condensate wavefunction ¢ (z,t) satisfies the equation:

—h2 82
2m 9z

o (e, 1) = [ + voptm] 9 0) + EN P . (6)
Here m denotes the particle mass, g. is the effective atom-atom interaction strength, N
denotes the atom number, A is the transversal BEC cross section and Vopi(x) stands
for the optical potential generated by the electromagnetic fields. The treatment of the
dynamics is restricted to one dimension, i.e. we assume the dynamics in the y and
z directions is frozen due to the transverse confinement of the BEC by an external
trapping potential. Actually the Gaussian pump laser beams could in principle provide
such a potential, but we refrain from this complication in our model and assume laser
beams much broader than the BEC. Such an one dimensional treatment is only valid if
the BEC’s chemical potential y is much smaller than the characteristic trap frequency
<< hwy, .

Within this limit the optical potential, which determines the BEC dynamics in the x
direction can be written as

Vopt () = = [|BL(2)* + | Er(@) ] + Vs (6.2)

where « denotes the atomic polarizability. The first term corresponds to an optical
dipole potential in the low-saturation regime where Ey, p(z) are the two field envelopes
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of the electromagnetic fields Ep p(z,t) = [EL g(x)e™t! + c.c.] er p (with er, - eg = 0)
which satisfy the Helmholtz equations

2
@EL’R(@ + k%(l + X(I))EL,R(QZ) =0 (6.3)
with the wavenumber kg of the incoming beams and the BEC’s susceptibility x(x). The
susceptibility depends again on the condensate’s density via

(@) = )P, (6.4)

where ¢ (x,t) is the solution of equation (6.1) and £y denotes the free space permit-
tivity. Vit is an externally prescribed potential chosen as a square box potential for
computational convenience.

Again, the constant « in equations (6.3) and (6.4) denotes the absolute value of the
real part of the atomic polarizability. Hence, the absolute minus sign in equation (6.3)
indicates (far off-resonant) red-detuning from any atomic transition, i.e. high field
seeking atoms. In addition, this impies that the potential depth is proportional to |I'/d]
where I' is the spontaneous decay rate and § the detuning relative to the internal atomic
transition. As a result, the potential depth scales with |§|~!. In the following we will
use the dimensionless quantity

alN a L

¢ = chA 20 o (6.5)

to quantify the light matter interaction where A\ is the wavelength of the incoming laser
beams and the three-dimensional density n of the homogeneous BEC which is supposed
to have length L in the x direction.

The system described by the set of equations (6.1)—(6.4) is, apart from V., a
priori translation invariant. If one simulates the dynamics described by this set of
equations in a self-consistent manner, i.e. updating the electric field distribution for
the corresponding BEC density within each timestep of the GPE solution, one finds
the following remarkable behaviour. As long as the BEC density is homogeneous the
light fields propagate through the sample without any spatial modulation. However,
we have shown that when the pump light intensity exceeds a certain critical value, the
light spontaneously crystallizes together with the atoms by breaking the translation
invariance. For a detailed description of the numerical methods used in this context we
refer to Appendix B of [6.4].

6.3 Real-Time Observation of Spontaneous Crystallization via
the Back-Scattered Light Fields

When the driving intensity exceeds a certain critical value, small fluctuations will
grow and break the translation invariance. Performing a linear stability analysis of
equations (6.1)—(6.4) as it is presented in [6.4] leads to a critical intensity value (in the
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limit L — oo and N = const.) which depends inversely on the particle number in the

form: )
L,R . CET@C 1 o 60 ]. )\0
Ic = )\OA N? = CETEC?EI. (66)

Here we introduced the recoil energy Eye. := h?k3/(2m). In the following we will use
the quantity Iy := cEyec/(MpA) as the natural unit for intensities.

We see that threshold (6.6) scales with the inverse square of the atomic polarizability
a2 « 62 and hence grows approximately with the square of the laser detuning from
resonance. Qualitatively this behavior can be traced back to the non-linear nature of
the interactions of the considered system. Initially, for the homogeneous system, the
backscattered field amplitude is proportional to «. This coherently backscattered field
interferes with the incoming laser leading to an initial potential modulation proportional
to «, which then translates into an a? term originating from the non-linearity of
the refractive index term in the Helmholtz equation. Note that also the heating via
spontaneous scattering exhibits the same detuning scaling the essential route to small
heating at threshold is a large particle number.

For intensities above threshold a periodic modulation of the optical potential for
the atoms is formed spontaneously and the atoms crystallize into a periodic structure
together with the light fields. Since we consider the full electromagnetic field in our
model (see equation (6.3)) all possible modes can be addressed in general. Therefore,
the lattice spacing is emergent and the the new solutions of (6.3) are plane waves of
the form Ep, g = Cexp(+ikeg) propagating with a modified wavenumber

kot = iz 1+ %n (6.7)
which is a result of the modified BEC density n. Examplary solutions for the system’s
ground state of the coupled set of equations (6.1)—(6.4) for the density and the fields
are shown in figure 6.2. A box potential is included in the GPE equation in order to
simulate the system boundaries. Obviously, the density stays homogeneous (up to small
modulations which are finite size effects) for intensities below threshold and so does
the intensity distribution (see figure 6.2(a) and (b)). Above threshold the continuous
translational symmetry is broken and a periodic optical potential is generated for the
atoms. This spontaneous crystallization relies on the fact that a counter propagating
field component with the same polarization is generated from the BEC which acts as a
Bragg mirror for the fields. In the limit of deep local traps the behavior resembles very
closely the case of an array of mobile beam splitters which can be used as toy model to
understand optical lattice dynamics as shown in fig.5 of ref. [6.18]. Hence, we expect
the complete system’s reflectivity to grow drastically as soon as the intensity of the
incoming light fields lies above the threshold value. Indeed, both the absolute value
and the phase of the reflection and transmission coefficient show this expected behavior
(see figure 6.3). The change of the phase of the transmission spectrum at threshold
also implies that the threshold could also be measured by phase-contrast imaging of
the BEC [6.1, 6.19]. This process leads to the fact that the field amplitudes outside
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Steady state atomic density and light intensity as function of position
along the axis for effective coupling strength ¢ = 0.2 and a calculation box
length of L = 30Ag which is significantly larger than the external deep
trapping potential wells starting at * = —12)\g and ending at x = 12).
The intensity threshold for this regime lies at I = I = 12.51, (see also
figure 6.3). (a) The particle density, and (b) the light intensity below
threshold for an incoming light intensity I, l?r = 10Jy. The y-axis is rescaled
with respect to this incoming light intensity. The inlay zooms to values
close to I;/I? = I,/I? = 1.0 showing that only a small part of the light
is reflected. (c) and (d) show the same densities for Il(?r = 2001y, i.e.
far above threshold where about half of the incoming intensity is back
reflected by the self formed lattice.
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Figure 6.3: Dependence of the total reflection coefficient r on the pump intensity: (a)

shows the absolute value squared, (b) the phase of the reflection coefficient
(c) the phase of the transmission coefficient for L = 100y and all other
parameters are chosen as in figure 6.2).
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Figure 6.4: Relative fraction of the intensity transmitted through the whole atomic
crystal as shown in figure 6.2(d) for different values of the effective coupling
parameter ¢ with all other parameters are chosen as in figure 6.2(d).

the system boundaries lie far below the initial incoming laser intensity in figure 6.2(d).
In this case it is of specific interest if there is a certain upper boundary value for the
index of refraction. In figure 6.4 we plot the value of the constant intensity part outside
the BEC for different light interaction strengths (. Obviously, this value decreases
drastically with increasing . However, due to the interaction of the two light fields via
the BEC atoms the intensity pattern always adjusts in a way that the envelope of the
total intensity is not modulated at all. This "phase-locking" of the intensity patterns
will be studied in more detail below.

The system’s properties described above lead to the fact that the phase transition
from a homogeneous BEC to a spontaneously formed crystal can be non-destructively
observed by measuring the light reflected from the atomic cloud. In fact, the whole
time-dynamics of the system can be mapped out by measuring these properties of the
light fields.

Let us now turn to a closer analysis of the light intensity distributions. If one zooms
into the region around zero in figure 6.2(d) one finds that the intensity distributions
of the field coming from the right side and the field coming from left are not in phase
(see figure 6.5(a)). This feature of the solution of the Helmholtz equation (6.3) is a
fundamental feature of the crystal phase. The fact that the maxima of the single
light fields do not coincide leads to a strong coupling of the atoms to the fields due
to the large intensity gradient which is felt from each individual light field. This is
a fundamental difference to for example standard optical lattices. Interestingly, the
dynamics of the full system again leads to a potential which in total results in an overall
homogeneous density modulation. The question one can address in this context is the
intensity dependence of the dephasing A¢ as it is defined in figure 6.5(a). As one can
see from figure 6.5(b), this dephasing is getting smaller for growing intensities until it
reaches a certain constant value.
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Figure 6.6: Momentum distribution (Bragg diffraction pattern) for the system ground
state obtained via for imaginary time evolution for different pump intensi-
ties. (a) I = 10Ip, (b) I =100y and (c) I = 2001y. The chosen system
parameters are: ( = 0.1, L = 100\, g.N = 1.0F,.¢. with the height of the
k = 0 peak normalized to 1.

6.4 Time Evolution of Atomic Momenta from Bragg
Diffraction

Even though the non-destructive measurement of the properties of the coupled BEC-light
crystal via the reflected light fields is a special feature of the studied system, it is of
specific interest how the crystallization process and its properties can be observed with
a standard experimental technique like TOF measurement. It consists in releasing the
external trapping potential and letting the BEC expand ballistically. After a certain time
of flight (typically a few ms) a laser pulse is imposed from the side and the absorption
image generated by the BEC is then captured on a CCD camera. If the far-field regime
is reached for long enough time evolution, the absorption image corresponds to the BEC
momentum distribution. Therefore, the corresponding TOF measurement outcome for
a specific solution of equations (6.1)—(6.3) can be easily obtained by calculating the
Fourier transform of the BEC wave function. In figure 6.6 a typical example of such a
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Figure 6.7: Intensity dependence of the ratio n of the height of the central peak and
versus the 2k.g peak (solid blue, left axis). One recognizes good agreement
of the growth point of this ratio with the threshold estimation via the
reflected light (dashed red, right axis). The parameters are the same as in
figure 6.6.

momentum space distribution at different intensities of the crystallization procedure is
shown.

Of course, the homogeneous BEC contains only the ik = 0 momentum component (see
figure 6.6(a). However, for intensities above threshold the £2hk and higher momentum
components are getting populated (see figure 6.6(b)—(c). This is a clear indication for
an emerging periodic structure. If it is possible to verify that no interference is possible
between the two counterpropagating light fields this measure can be used as a clear
indication for an emerging crystal. As a matter of fact, the £2hk g peak dominates
among the higher momentum peaks which are present but small. This happens even at
strong intensities, indicating that the emerging modulation is mostly sinusoidal.

Another important observation is that the height of the 2hk.s peak relative to the
central peak behaves as the system’s reflectivity. This means that the value of the ratio

_ W)(k = 2keff)|2

(k=0 (©68)

where 9(k) = 1 [ dze™ () is the Fourier transform of the BEC wavefunction can be
used to measure the crystallization threshold (6.6). In this case the TOF measurement
has to be performed for several different pump intensities and the ratio n has to be
estimated for each measurement. The resulting threshold estimation is in good agreement
with the one via the system’s reflectivity |r|? (see figure 6.7). As a result, the parameter
7 is an easy to access quantity to measure the physical properties of the system directly
via the TOF image.
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Figure 6.8: Particle number scaling of the reflection coefficient. The particle number
of the dashed red curve is a factor of 1.5 larger and the one for the dash
dotted green curve is a factor 2.0 bigger than the one of the solid blue
curve. Note that the axes have been rescaled by the corresponding critical
intensities. (¢ = 0.1, L = 100X\, g.N = 1.0E,..). The inset shows the
linear dependence of the reflectivity on the particle number.

6.5 Scaling of the Collective Dynamics

One centrally important feature of the crystallization process is its collective nature.
Since all atoms in the BEC interact synchronously via the scattered light field we expect
a strong particle number dependence of the crystallization process. In particular the
more particles the less the threshold power and saturation of the atomic transition. The
collective nature of the scattering remains also in the ordered phase above threshold,
which can be directly verified from the reflectivity for different particle numbers N.
Indeed, the total system’s reflectivity above threshold increases with the particle number
(see figure 6.8) until a saturated value is reached where most of the light is reflected. It
is an interesting question here, what one could expect in the thermodynamic infinite
particle number limit. Is there an instability when all the light from one side is reflected
and the system acts as a perfect mirror. What is the dynamics of the transition
region here. For a transversely pumped case we previously found a fractioning of the
system [6.20] . Unfortunately the required system sizes are too big for a straightforward
analysis here.

For current realistic experimental setups the particle number is limited to well below
108 so that the ordering threshold occurs at rather high saturation parameters. To
better understand what is going on in this case particle loss has to be included into
the model. This allows how long the coherent collective growth of the reflection signal
persists against the reduction of reflection due to particle particle loss. In any case
only a transient signal can be expected. Since a full treatment of particle loss via the
spontaneous emission heating rates would be very demanding, we simple introduce a
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Figure 6.9: Time evolution of the particle number for different choices of the intensity
dependent particle loss rate v as defined in (6.9). v = 0.001 (solid blue),
~v = 0.01 (dashed red). The dotted black line corresponds to v = 0. Other
parameters: I} = I, = 1001y, L = 10\g, g.N = 1.0FE,. and ¢ = 0.1.

phenomenological toy loss mechanisms to study the effect.

For this purpose, we include a loss term to the GP equation that in this case takes
the form

N |
0 = Hop + 2[00 — iy (|EL (@) + | Er(@)?) (6.9)

where v is a phenomenological parameter corresponding to the particle loss rate. In
figure 6.9 the effect of different choices of v on the total particle number is shown. Note
that the introduced type of loss term takes into account that more particles are lost at
higher field intensities than at lower ones. This is due to the fact that in this regions
the spontaneous decay rate leading to recoil momenta which kick the particles out of
the condensate is larger.

Simulating the real time dynamics of (6.9) and looking at the dynamics of the system’s
reflectivity shows a clear damping of the dynamics in time. However, the crystallization
still takes place as one can see on the exponential growth of |r|? at short times in
figure 6.10.

Finally, the particle number dependence of the index of refraction is an interesting
property as well. For this purpose we fix the loss parameter v and calculate the time
evolution of the index of refraction. From the green dash dotted line in figure 6.10 one
can see that the dynamics is getting faster for higher particle numbers which is another
indication for the collectivity of the effect mentioned above. In addition, it should be
mentioned that the particle number dependence of the effect can already be observed in
the short time regime without waiting for the crystal to fully form and stabilize. Similar
curves as the ones presented in figure 6.10 have also been observed experimentally in a
first implementation of the phase transition [6.15].
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Figure 6.10: Real-time dynamics of the reflection probability for different particle loss
rates and particle numbers. v = 0.0 (dotted black), v = 0.001 (solid
blue) and v = 0.01 (dashed red). The dash dotted green curve shows the
dynamics for a BEC with a particle number which is a factor 1.5 bigger
than for the other curves and v = 0.01. All other parameters are as in
figure 6.9.

6.6 Crystal Formation via a Slow Ramp Across the Phase
Transition

A routine path to study quantum phase transitions in ultracold gas experiments is
an adiabatic ramping of the parameters (fields) between two points in the phase
diagram [6.21]. If enough time is given this process is quasi-adiabatic and reversible.
As due to losses time was limited in our setup, we introduced a sudden switch of the
laser and the resulting quench dynamics of the crystallization process has been studied
in detail in [6.4]. In a quench a lot of interesting physics is going on at the same time,
from density fluctuations to phonon excitations of the atom-light crystal. Nevertheless,
the process introduces entropy and does not lead to the systems ground state.

As an alternative it is thus of specific interest, under which conditions the system’s
stationary ground state can be reached by performing a sufficiently slow adiabatic
passage. For this, one has to ensure that no higher motional states are excited when
crossing the threshold, which implies sufficiently large ramping times for the system
to remain in its ground state during the whole crystallization procedure. Actually as
some of our excitations are gapped due to the long range interactions this might be less
critical than expected. To determine suitable ramping times the real time evolution for
simple linear intensity ramps is numerically evaluated. Please note that no damping is
taken into account in this case. The corresponding results are presented in figure 6.11.
Most likely better ramping functions exist and one could even think of optimal control
to improve the results.

The reflection coefficients again give valuable real time information on the dynamics
and one sees how different ramping times affect the dynamics. We see that for ramping
times more than twenty times the inverse recoil frequency only little noise is left and
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Figure 6.12: Time averaged variance of the time dependent reflection probability for
a real-time evolution simulation in the stationary lattice regime during
last 50 time steps for different ramping times as a quantitative measure
of adiabaticity. The parameters are the same as in figure 6.11

an almost perfect adiabatic passage can be realized (see figure 6.11). To quantify the
quality of the adiabaticity and the number of phonon like excitations left, we calculate
the variance of the reflectivity around it’s mean value for the last 50 time steps and
plot it as a function of the ramping time. This variance tends to be close to zero for
ramping times tramp > 60 wree (see figure 6.12.)

Another measure of the introduced heating and entropy through the ramp can be
derived from the reversibility of the ramping process without any cooling invoked. For
this purpose, one has to look at a ramp realizing a transition from homogeneous order
to crystalline order and back (see figure 6.13(a)). For an ideal ramping procedure
one should end back in a perfect BEC in the end. In figure 6.13(b) the space-time
density plot for |1 (z,t)|? is shown. The BEC performs the transition from homogeneous
to periodic order as expected. After ramping down the laser intensity again one can
recognize that the BEC is not perfectly homogeneous but some density and phase
fluctuations are left. This could come as simple fluctuations or even lead to formation
of vortex pairs [6.22]. Nevertheless, the periodic order is completely lost and only some
higher excitations remain. It can be claimed that for increasing ramping times this
higher excitations will get smaller and smaller. To quantify the energy remaining in the
system we calculate at the dynamics of the kinetic energy

1
Fiin = — 210,1]2. 1
n = 5 [ doh®lo, (6.10)

The result is shown in figure 6.14. Of course, the kinetic energy initially follows the
ramping procedure. The important question is how small it is in presence of higher
excitations after the ramping process. Figure 6.14 shows that for ¢ > 100wye. the kinetic
energy is very small (but not zero). This implies that the heating imposed by the
ramping process is small and that despite the small excitations the BEC can be restored.
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Figure 6.14: Time evolution of the system’s kinetic energy during the ramping proce-
dure shown in figure 6.13(a).

This is very similar to the physics observed in the superfluid to Mott insulator transition
in a BEC. In summary, it can be posed that the spontaneous crystallization process can
be reversed if the ramping times are sufficiently large.

6.7 Crystallization Versus Matter-Wave Superradiance

Laser induced instabilities of Bose-Einstein condensates have been found and studied
for more than a decades now, starting with seminal experiments at MIT [6.2]. Already
soon after the early experiments with BECs it became obvious that not only the Bose
enhancement from the BEC but also stimulated light emission interpreted as self-
stimulated Kapitza-Dirac scattering, was a key mechanism behind these observations
[6.3, 6.6]. In these experiments, the BEC was driven from a single direction and above a
certain pump threshold an instability towards a density modulation was found, which in
turn enhanced the light scattering in analogy to collective atomic recoil lasing CARL [6.3].
This effect is known as Superradiant Rayleigh scattering (SRS). As single side pumping

82



6.7 Crystallization Versus Matter-Wave Superradiance

breaks mirror symmetry and momentum is injected only from one side, obviously no
stable final state could exist. Using cavity enhancement allows better control of these
scattering processes [6.13] and one can even use them for cooling [6.23]. This directly
connects to cavity based selfordering phenomena for standing wave pumping [6.24].

In our configuration of symmetric counter-propagating pumping along the longitudinal
BEC direction, mirror and translational symmetry is kept, but the fundamental micro-
scopic light matter interaction parameters are rather similar. It is therefore natural to
ask what is the relation between spontaneous crystallization, matterwave superradiance
and collective atomic recoil lasing. In particular the initial phase of the self-ordering
process, where all fields act independently should bear some similarities.

Apart from the obvious fact that a one-sided setup cannot lead to a steady-state,
there seem to be deeper differences between the two phenomena. In fact, spontaneous
crystallization can be understood using only optical potentials and dipole forces. Apart
from creating initial fluctuations no spontaneous scattering is needed. Both, the light
field and the atoms are dynamic mean fields, which exchange energy and momentum
in the dispersive regime. Indeed, even though the crystallization threshold (6.6) is
proportional to the Rayleigh scattering rate scaling with 1/6% as it is the case for
matter wave super-radiance, the full dynamics of crystallization actually depends on
the effective dipole-potential depth proportional to 1/§. The quadratic dependence of
I. on ¢ is only due to the non-linearity of the model, as explained in section 6.3.

Nevertheless, when applied to the case of single-side driving also the dispersive model
shows a modulation instability qualitatively similar to the one observed in [6.2]. In
figure 6.15 two representative examples are shown.

One clearly recognizes a certain directionality in the Bragg-diffraction pattern, but
in general both positive- and negative-momentum peaks are present. In addition, a
high initial peak of the reflection coefficient in time shows that at the point where
the atomic bunching occurs a light flash can be observed. The effect is getting more
prominent if the atom-light interaction strength (i. e. the optical density of the medium)
is high. We also note that the pump threshold for the instability differs from the one
for symmetric driving given in equation (6.6) only by a geometrical pre-factor of order
one. The corresponding phase diagram is shown in figure 6.16 where we defined the
beam asymmetry
. Il - Ir

A= .
IZ+I7'

(6.11)

Even though the momentum distribution of the gas and the amount of reflected
light behave qualitatively similar to the SRS experiment of [6.2], there is an important
quantitative difference which is an evidence for the different physical origin. The time
scale over which the instability appears in our model is of the order of one inverse
recoil frequency 1/wre. or shorter, while in the SRS experiment of [6.2] the instability
grows on time scale much longer than inverse recoil. The difference in the nature of the
instability between long and short time scales was experimentally investigated in [6.6].
A more recent experiment [6.5] showing qualitatively similar results as the one presented
in this work and shown in figure 6.15 has been performed in the short-pulse regime.
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6.8 Conclusions

The comparison of our prediction with the experiments of [6.6] and [6.5] suggests that
the model described in 6.2 and the physics of superradiant modulational instabilities
induced by dispersive forces and not by Rayleigh scattering should be relevant in the
short-pulse regime.

6.8 Conclusions

Our numerical simulations illustrate that real monitoring the backscattered light as well
as TOF studies of the atomic momentum distribution contain all the essential signatures
to demonstrate the concept of spontaneous atom-field crystallization introduced in [6.4].
While the initial growth of the momentum distributions, apart from a threshold shift,
strongly resembles single beam matter wave superradiance, the subsequent locking of
the two standing waves is a unanimous sign of long range order in this translation and
mirror symmetric configuration. Measuring the particle number dependent stationary
reflection coefficient clearly can can be traced back to a collective effect. Additional
signatures are contained in shifts and oscillations of the atomic center of mass which
can be observed also via the time dependence of the atomic momentum distributions.

As our model includes atomic self-interaction, a quasi-stationary crystal will even
form by a quench type sudden laser turn on, but to obtain a low entropy ordered phase
a slower close to adiabatic ramping over the phase transition is required. We have
seen that varying the ramping procedure presented in section 6 gives insight in the
entropy generation during the crystallization process and shows that crystallization is
reversible even at rather fast ramp speeds. We also see that symmetric pumping reduces
the instability threshold as compared to single side super-radiance and there is strong
indication for a maximum possible value of of the pump asymmetry, under which an
order state is at least metastable.

Interestingly there appears no obvious size limit on the crystal and for large enough
effective particle number almost a 100% of the light of both lasers will be reflected without
the crystal becoming unstable as, for example, for the transverse pump case [6.20].
Outside the transition region where all the reflection happens one simple gets an ordinary
atomic lattice from the atom-reflected beams.

At this point the central experimental challenge is preparation of a BEC with large
enough particle numbers. In fact, the available observation time until heating sets in is
short in general as an estimation in table I of [6.25] shows. However, the observation
time increases at least linearly with the particle number which leads to the conclusion
that for typical atomic configurations about 10° particles would be needed for clear
signatures of stable order. When the system size is further increased by one or two
orders of magnitude the formation of a stable crystal with signatures of a gapped phonon
spectrum should be possible.
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Supersolids are characterized by the counterintuitive coexistence of super-
fluid and crystalline order. Here we study a supersolid phase emerging in
the steady state of a driven-dissipative system. We consider a transversely
pumped Bose-Einstein condensate trapped along the axis of a ring cavity and
coherently coupled to a pair of degenerate counterpropagating cavity modes.
Above a threshold pump strength the interference of photons scattered into
the two cavity modes results in an emergent superradiant lattice, which
spontaneously breaks the continuous translational symmetry towards a peri-
odic atomic pattern. The crystalline steady state inherits the superfluidity
of the Bose-Einstein condensate, thus exhibiting genuine properties of a
supersolid. A gapless collective Goldstone mode correspondingly appears
in the superradiant phase, which can be nondestructively monitored via
the relative phase of the two cavity modes on the cavity output. Despite
cavity-photon losses the Goldstone mode remains undamped, indicating the
robustness of the supersolid phase.
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Figure 7.1: Schematic sketch of a BEC inside a ring cavity. An internal atomic
transition |g) <> |e) is off-resonantly driven by a transverse plane-wave
laser with Rabi frequency €. This transition is also off-resonantly coupled
to a pair of degenerate, counterpropagating cavity modes G4+ with coupling
strength ¢ (z) = GeTiker,

7.1 Introduction

A supersolid behaves as both a crystalline solid and a superfluid. It spontaneously breaks
two continuous symmetries, namely the external spatial translation invariance and the
internal superfluid gauge invariance. That is, it simultaneously possesses diagonal (i.e.,
density) and off-diagonal (i.e., superfluid) long-range orders [7.1]. This paradoxical state
of matter has been predicted almost 50 years ago to exist in solid helium-4 [7.2-7.6].
Despite intensive experimental efforts [7.7, 7.8], supersolidity has not been conclusively
observed in solid helium-4 yet [7.9-7.11].

In a different direction, very recently clear signatures of supersolidity have been
observed in weakly interacting ultracold atomic systems. At MIT, synthetic spin-orbit
coupling was induced in a multi-component Bose-Einstein condensate (BEC) [7.12]. The
ground state of the system spontaneously breaks the continuous translational symmetry
and forms a density modulated stripe pattern, while maintaining superfluidity of the
BEC. At ETH, a transversally driven BEC was symmetrically coupled to two modes
of two crossed linear cavities [7.13]. Interference of pump-laser photons and photons
scattered into the cavity modes yields an emergent superradiant optical lattice for
the BEC, which spontaneously breaks the continuous translational invariance towards
a density-modulated superfluid state. In another experiment at MIT [7.14], a BEC
illuminated by two noninterfering counterpropagating lasers exhibited collective Rayleigh
scattering, resulting in spontaneous crystallization of both matter and light [7.15, 7.16].
However, the potential appearance of supersolidity in this system has not been thoroughly
investigated yet.

Based on the state of the art in experimental quantum-gas cavity QED [7.17-7.22],
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we propose a novel scheme to experimentally realize and study supersolidity in a BEC
trapped within a ring resonator [7.23-7.27]. The BEC, which is transversely illuminated
by a standing-wave laser, is trapped along the cavity axis in a quasi one-dimensional
geometry and dispersively coupled to a pair of degenerate counterpropagating field
modes as depicted in Fig. 7.1. This comprises an intrinsically driven-dissipative system
due to the pump laser and cavity-photon losses [7.28]. Therefore, the emergent supersolid
is the steady-state of the system. The interesting questions which arise are if and how
the supersolid features are modified with respect to thermal equilibrium.

Above a critical laser intensity, the collective constructive scattering of pump-laser
photons into the cavity modes results in an emergent superradiant optical lattice. In
contrast to the standing-wave linear cavity [7.29], the running-wave ring cavity respects
the continuous spatial translational symmetry. Hence, the location of the emerging
optical lattice is not pre-determined by the cavity mirrors and spontaneously breaks
the continuous translational symmetry, similar to the emergent optical lattice in the
crossed-cavity experiment [7.13]. Nevertheless, in the latter the continuous symmetry
is merely an approximate and fine-tuned symmetry [7.30-7.32]. A similar continuous
symmetry breaking can also occur for atoms trapped close to optical fibers [7.33, 7.34].

The emergent superradiant lattice drives the BEC into a density modulated state
— i.e., a crystalline phase — with the spontaneously broken continuous translational
symmetry [see Fig. 7.2(b)]. It, nevertheless, inherits superfluidity of the BEC with a
long-range phase coherence. Therefore, the resultant steady state in the superradiant
phase is a supersolid. As the cavity comprises an open system, the continuous symmetry
breaking can be monitored nondestructively in real time via the cavity output, namely
via the relative phase of the two cavity modes [7.17, 7.18]. In particular, the relative
phase takes a random value between 0 and 27 in the superradiant phase, spontaneously
breaking the continuous U(1) symmetry [see the inset of Fig. 7.2(b)]. In fact, at the onset
of superradiance a superposition of field amplitudes with different phases correlated
with density fluctuations emerges, forming a highly entangled atom-field state. This
state subsequently collapses to a state with a certain random relative phase via quantum
jumps induced by cavity photon losses [7.35-7.37].

Analysis of collective excitations confirms the supersolidity of the superradiant steady
state. At the onset of the superradiant phase transition, where the continuous U (1)
symmetry is spontaneously broken, a gapless Goldstone mode appears in the spectrum
of collective excitations. Unlike all other collective modes, the Goldstone mode remains
undamped despite cavity losses (see Fig. 7.3). This is due to the fact that photon
losses do not affect the relative phase and preserve the U(1) symmetry. This is in sharp
contrast to the supersolid realized in the crossed-cavity setup, where the origin of the
U(1) symmetry is different and associated with the freedom of the photon redistribution
between the two cavity modes [7.13]. Therefore, photon losses do not respect the U(1)
symmetry and should result in damping of the Goldstone mode [7.38].
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7.2 Model

Consider bosonic two-level atoms trapped along the axis of a ring resonator by a tight
confining potential along the transverse directions. The atoms are illuminated from the
side by an off-resonant, standing-wave external pump laser as depicted in Fig. 7.1, which
induces the transition |g) <> |e) with the Rabi frequency Q. Furthermore, the transition
lg) <> |e) is also off-resonantly coupled to a pair of degenerate, counterpropagating cavity
modes d., with coupling strength & (z) = %et*®. The cavity modes are initially in
the vacuum state. The pump and cavity frequencies, respectively, w, and w. = ck. are
assumed to be near resonant with each other, but far-red detuned with respect to the
atomic frequency wy.

In the dispersive regime |Ay| = |wp — we| > {Q, %}, the atomic excited state |e)
reaches quickly to a steady state with a negligible population and its dynamics can
be adiabatically eliminated [7.28]. This yields an effective Hamiltonian for the atomic
ground state and the cavity modes, Heg = [ &T(x)?[gf)&(az)dx - hAC(dL&+ +ala),
with the effective single-particle atomic Hamiltonian density:

h? 82 .
Hgf) =553 + hU(dL&Jr +ata_+ @La_e—mkcx
alape?™er) 4 hm(ase™ +a_em ™t He), (7.1)

Here, qﬁ(x) is the bosonic annihilation field operator for the atomic ground state. We have
introduced the cavity detuning with respect to the pump A. = w, — w,, the maximum
depth of the optical potential per photon due to two-photon scattering between cavity
modes AU = h¥Z /A, and the maximum depth of the optical potential per photon due to
the two-photon scattering between pump and cavity modes (or the effective cavity-pump
strength) An = h%,Q2/A,. Although finite atom-atom interactions are needed to ensure
the superfluidity of the BEC, we have assumed them to be negligibly small with respect
to the cavity-mediated interactions. This is quantitatively a good approximation for
typical cavity-QED experiments, including the recent observation of the supersolid [7.13].
Finally, the cavity-photon losses with rate s are included via Lindblad operators in the
master equation for the density matrix p: Lo =K, _ (2&gp&; — {&};&4, p}) .

The system possesses a continuous U (1) symmetry, as the effective Hamiltonian Heg
and the Lindblad operators are invariant under the simultaneous spatial translation
r — Txx = x + X and cavity-phase rotations - — Uxa+ = areT® X  This U(1)
symmetry is spontaneously broken in the superradiant phase, as illustrated in the inset
of Fig. 7.2(b), where (G4) acquire nonzero values with arbitrary phases.

7.3 Mean-Field Approach and Continuous Symmetry Breaking
In the thermodynamic limit, where the mean-field approximation becomes accurate [7.39],

the system is described by a set of three coupled mean-field (Heisenberg) equations for
the cavity-field amplitudes (G+(t)) = as(t) = |ax(t)[e’*+® and the atomic condensate
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Figure 7.2: Dicke superradiant phase transition and atomic self-organization. (a) The
absolute values of the rescaled cavity-field amplitudes |a|/v/N (black
solid and grey dashed curves, respectively) are shown as a function of the
rescaled effective cavity-pump strength v/N7/w,. The superradiant phase
transition occurs at the critical pump strength v N7, ~ 1.36w,, where
|ay| = |a—| > 0. The inset shows the absolute values of the quantities
INL1| (the solid black curve) and [Nio| (the dashed gray curve) as a
function of v/ Nn/w,. (b) A typical self-ordered atomic density profile
is shown for vNn = 2.5w, with A¢ ~ 1.717 and ® ~ 0.097, where A¢
fixes the position of the density maximum z,, ~ —0.35\.. The inset
illustrates the distribution of A¢ for 200 numerical runs for v N7 = 2.5w,,
exhibiting the continuous U(1) symmetry breaking. The parameters are
set to (Ac, U, k) = (=8, —1,2)w,.
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wavefunction ({(z,t)) = ¥(z,t) = /n(a, H)e?®

0 .
iy 0t = (—=Ac+ UN —ik) ax + UNisaz + nNiq,

9
it = 1, (7.2)

where N = [n(x)dz is the number of the particles. See Supplemental Material in
section 7.7 for the details of the derivation of the mean-field equations, the linearized equa-
tions, and the threshold pump strength. One can identify
Np=J n(m)ejFikC“dx as the atomic order parameters, dual to the cavity order parame-
ters a4, which characterize the probability of the photon scattering between the pump
and cavity modes with Fhk, momentum transfer to the atoms along the cavity axis x.
Whereas, Nio = [ n(z)eT?*®dx quantifies the probability of the photon redistribution
between the two cavity modes with F2hk. momentum transfer to the atoms in the x
direction.

We self-consistently find the steady-state solutions of Eq. (7.2) by setting d,ax =0
and ih0p = wp, with p being the chemical potential. Figure 7.2(a) shows the absolute
values of the rescaled cavity-mode amplitudes |a|/vN (black solid and grey dashed
curves, respectively) as a function of the rescaled effective pump strength v N7 /w,,
with w, = hk2/2m being the recoil frequency. Below the threshold pump strength
VN1, ~ 1.36w,, the cavity modes are empty and the BEC is uniform. By increasing the
pump strength above 7. the system undergoes a superradiant phase transition, where
the cavity amplitudes acquire nonzero values |a4| = |a_| = |a].

In the superradiant state, the relative phase A¢p = (¢4 — ¢—)/2 of the two cavity
modes is fixed in an arbitrary value between 0 and 27 and the continuous U (1) symmetry
is, therefore, spontaneously broken. This is illustrated in the inset of Fig. 7.2(b), where
the distribution of A¢ is shown for 200 numerical runs for a pump strength v N7 = 2.5w,
[indicated by the arrow in Fig. 7.2(a)]. The emergent superradiant lattice has the form
Vsr (7) = 2U||? cos(2kex + 2A¢) + 4n|a cos(kex + Ag) cos(®), with & = (¢4 + ¢_)/2
being the total phase. The spontaneously chosen value of A¢ fixes the position of
the lattice minima and thus of the BEC density modulation, spontaneously breaking
the continuous translational invariance and resulting in a supersolid state. A typical
self-ordered, A.-periodic atomic density profile is shown in Fig. 7.2(b) for v Nn = 2.5w,
with A¢ ~ 1.717 [the pronounced black dot indicated by the arrow in the inset of
Fig. 7.2(b)] and ® ~ 0.097.

The total phase ® solely modifies the lattice amplitude, except the special case of
® = 7/2 where the lattice spacing is reduced from A, to A./2. Note that & is not
random as it is invariant under the U(1) phase rotation ay — ayeT®eX  The total
phase ® solely depends on k, while the relative phase A¢ is independent of x. This is
becuasse photon losses induce equal extra phase shifts for both cavity-field amplitudes.
Therefore, the spontaneous U(1)-symmetry breaking and thus the supersolid order
persist even in the presence of dissipation.
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7.4 Collective Excitations and the Goldstone Mode

Let us now turn our attention to elementary excitations of the system, which include
quantum fluctuations of both condensate wavefunction dip(z,t) = dip(H) (z)e ™t +
(09 (2)]*e™"t and cavity-field amplitudes day (t) = sal et + [sal)]*e™ "t above
the mean-field solutions ¢y(x) and ap+ (with the corresponding chemical potential 1).

Linearizing Eq. (7.2) yields Bogoliubov-type equations for the quantum fluctuations
7.24, 7.40, 7.41],

i%&xi =(-A.+UN —ir)day + UNi%)5a¥

+ / AL (Y560 + oy )dz,
NG SOWEY
i 00 =5 (’Heﬁ - NO) 53
+ 1o (AL 0oy + A% da_ +H.c.), (7.3)

where Nj(to) = [ng(x)eT?*<*dr and we have defined A4 (x) = U (oc()i + Ozo;eﬂikcm) +

neTi*e® for shorthands. The Bogoliubov equations (7.3) can be recast in a matrix form,

wf = MBf, (74)

where f = (5a(j), (5045:), 5a(_+), 50z(__), 6 69NT and My is a Hermitian matrix; see
Supplemental Material in section 7.7. The eigenvalues w of the Bogoliubov equations (7.4)
yield collective excitation spectrum of the system. We numerically solve Eq. (7.4) in
one unit cell (of length A.) with periodic boundary conditions to obtain the collective
excitations w.

Figure 7.3 shows the real part of the six lowest-lying excitation frequencies as a
function of the effective cavity-pump strength v/N7/w,. At small pump strengths, the
excitation spectra are weakly dependent on n and each branch is doubly degenerate.
The lowest four collective excitations at frequencies ~ w, (solid blue and dashed red
curves) and ~ 4w, (dotted orange and dashed-dotted brown curves) correspond to
mainly atomic fluctuations with momenta +hk. and +2hk,., respectively. The highest
two modes (dashed-dashed-dotted black and dotted-dotted-dashed gray curves) at
frequencies ~ —A. 4+ UN = Tw, are mostly photon-like fluctuations.

By increasing n the collective modes are increasingly mixed with each other and begin
to split up. In particular, the lowest excitation softens and the excitation gap closes
at the pump strength v Nng ~ 1.37w,. By increasing pump strength beyond 7, the
lowest excitation splits into two branches. The lower one (solid blue curve) remains
pinned at zero energy, signaling that it is a gapless Goldstone mode corresponding
to the spontaneously broken continuous U (1) symmetry. The gapped branch instead
corresponds to a Higgs amplitude mode. These are reminiscent of the recently observed
Goldstone and Higgs modes in the crossed-cavity experiment [7.38]. The Goldstone
mode in the crossed-cavity experiment, however, should have a small gap of a few w,
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Figure 7.3: Low-lying collective excitations. The real part of the six lowest-lying
excitation spectra are shown as a function of the rescaled effective cavity-
pump strength v/ Nn/w,. By increasing v Nn/w, from zero the lowest
excitation, corresponding mainly to the atomic condensate fluctuations
with momenta =7k, softens and the excitation gap closes at vV Nng ~
1.37w,. By further increasing v/ N n/wr, a gap does not open in the first
excitation band (the solid blue curve), indicating that this is a gapless
Goldstone mode corresponding to the spontaneously broken continuous
U(1) symmetry. The inset shows the imaginary part of the Goldstone
mode. The parameters are the same as Fig. 7.2.

due to the fact that the continuous U(1) symmetry is an approximate symmetry [7.30].
Note that these are in sharp contrast to the self-organization in a linear cavity, where
only a discrete Zs symmetry is spontaneously broken and the first excitation gap closes
at the critical pump strength but then re-opens again [7.24, 7.40, 7.42].

Due to a nonzero cavity-field decay rate xk # 0 the excitation frequencies can acquire
imaginary parts, which would indicate the damping of the excitations [7.24, 7.40]. This
would in turn result in friction forces on the atoms. Above the critical pump strength
7e, all the collective excitations except the gapless Goldstone mode acquire imaginary
parts. This is illustrated in the inset of Fig. 7.3, which shows the imaginary part of the
lowest mode as a function of v N7 Jwy. Although it is damped for small pump strengths,
it vanishes at the critical pump strength v/ N7, =~ 1.38w, (recall that the corresponding
real part vanishes at the slightly lower pump strength 7nq, where the damping reaches
its maximum value), in agreement with the mean-field results [see Fig. 7.2(a)]. This
means that the center of mass of the entire modulated BEC can move freely along the
cavity axis without experiencing any friction, once again illustrating the supersolidity of
the system. The fact that supersolidity survives even in presence of dissipation is due
to the fact that the corresponding Lindblad operators respect the U(1)-symmetry of the
system. This is in contrast to the supersolid realized in the crossed-cavity setup, where
the Goldstone mode involves photon-number redistribution between the two cavities
and should therefore be damped by photon losses.

94



7.5 Experimental Detection of the Supersolid State

Around the critical point 7., the atomic momentum states +hk. are the dominant
atomic fluctuations coupled to the cavity fluctuations. This can be seen from the inset
of Fig. 7.2(a), where the quantities |[N4;| with j = 1,2 are shown as a function of
VN1 /w,. For n > 1., Ni1 (the black solid curve) are the dominant quantities. It is,
therefore, a good approximation to restrict atomic fluctuations to the momentum states
+hk.. Using the homogeneous solution (i.e., the solution below the Dicke transition)
ap+r = 0 and ¥y = \/N/\., one can diagonalize Eq. (7.4) in this restricted subspace.
The zero frequency w = 0 solution yields the critical pump strength,

(A +UN)? 4 K2 N
VN7 = \/ A 1 UN) Var & 1.37w,, (7.5)

which is in full agreement with the numerical results.

7.5 Experimental Detection of the Supersolid State

As discussed earlier, in our system the spontaneous breaking of the continuous transla-
tional symmetry corresponds to fixing the value of the relative phase of the two cavity
modes. This can be monitored nondestructively by recombining the cavity outputs
through a beam spitter. In particular, the system can be in real time repeatedly driven
across the superradiant phase transition by sweeping the pump strength across the
threshold to verify the uniform distribution of the relative phase in the interval 0 — 27,
similar to experiments with linear cavities [7.13, 7.42]. Experimental setups coupling
a BEC into fields of a ring cavity already exist for almost a decade now [7.19-7.22].
Therefore, the discussed phenomena could be observed with only minimal changes to
current state-of-the-art experiments.

7.6 Outlook

Our driven-dissipative supersolid is essentially different than other proposed driven-
dissipative supersolid states in Jaynes-Cummings-Hubbard lattices [7.43, 7.44], in that
the latter ones are only the lattice supersolid with a broken discrete symmetry and
no gapless Goldstone mode [7.45]. Crucially due to the genuine supersolidity and
existence of the undamped gapless Goldstone mode, our proposal may have applications
in precision measurements. By monitoring the relative phase between the cavity modes
one can nondestructively follow the displacement of the BEC in real time. However,
there is no back-action of the light field onto the BEC motion (apart from the one
induced by the measurement of the phase) due to the existence of the undamped
gapless Goldstone mode. Therefore, it could be used as a free-falling zero temperature
mass for gravitational acceleration measurements, as an alternative to the atomic
fountains [7.46-7.49]. We defer the investigation of the performance of such a device to
a future work.

95



7 Publication: Driven-Dissipative Supersolid in a Ring-Cavity

Acknowledgements

FM is grateful to Tobias Donner and Manuele Landini for fruitful discussions. We
acknowledge support by the Austrian Science Fund FWF through the projects SFB
FoQuS P13 and 11697-N27.

7.7 Supplemental Material

Here we present the details of the derivation of the mean-field equations [Eq. (2) in
the main text|, the linearized equations [Eqgs. (3) and (4) in the main text], and the
threshold pump strength [Eq. (5) in the main text].

7.7.1 Mean-Field Equations

The Heisenberg equations of motion of the photonic and atomic field operators can be
obtained using the many-body effective Hamiltonian H.g, given in the manuscript, as

5 A X R
ihadi = |4, Heg] = 1 (—Ac +UN — m) a+ + hWUN a5 + ANy,
9. ;

i) = (i), Hor) = H, (7.:6)

where N = [t (2)d(x)dx, Niy = [F(2)eFFery)(z)dz, and

Nip = /W(az)eﬁikc:‘iﬁ(:p)d:p.

Here we have added field damping terms proportional to the cavity decay rate k. By
replace the photonic and atomic field operators with their corresponding quantum
averages, a+(t) = (ax(t)) = ax(t) = |ax(t)[e+® and (x,t) = (@, 1)) = P(z,t) =
vn(z, t)ew(t), respectively, one obtains the three mean-field coupled equations (2) in
the manuscript.

7.7.2 Linearized Equations

Assuming o (x,t) = e~ [)hg(z) + d1p(x,t)] and a(t) = agr + da (t), where 1o (z)
and o+ are the mean-field stationary-state solutions of Eq. (2) in the main text with
the chemical potential p, linearizing Eq. (2) yields

9
00 = (~Ac+ UN — i) bai + UN{S b0 + / AL (369 + Yody*)da,
1

B
0% =7 (M = 10) 00+ o (A%das + Aydal + A da_ + A da’),  (7.7)

where ./\/j(to) = [ng(x)eT?*<*dr and we have defined Ay (x) = U (040i + aoerﬁ““Cg”) +

neTke for shorthands. Since the linearized equations (7.7) couple d¢ and da to their
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complex conjugates, we make the ansitze di(x,t) = 60 (z)e= @t + [69p() (z)]* e
and da (t) = dae @t 1 [5a7]"e™™ for the quantum fluctuations. Substituting
these ansitze in Eq. (7.7) and setting the coefficients of e=™* and €™t separately
to zero yields a set of six coupled Bogoliubov-type equations for the positive- and
negative-frequency components of the quantum fluctuations,

wial? = (~Bc+ UN = iw) 80l + UN{0alt) + [ As (0560 + posv )] do,
wial) = = (~Ac+ UN —in)* 60l — UN ) — [ 4% [060) +4isv )] do,

1 _ _
wop™) = [H — o] 69+ [470047 + A 600 + 4750 + 4 600]

1 _ _
wip) = -5 (MG — o] 59— (45007 + 460l + 470D + 4 60
(7.8)
We recast these equations in a matrix form
wf = Mpf, (7.9)
where f = (5agr+),5a(_),504(_+),5a(__),5¢(+),6w(*))T and
5. 0 UN'Y 0 Tow T,
0 —57 0 —UNY" ~T* ~T%,
UNY) 0 5. 0 7. 7
Mg = ()« )
0o —UNYT 0 5 1 17,
WAL oAy oAt oAl (HY — po)/n 0
—UAL —UEAL —UEAL A 0 —(H{ = o) /h
(7.10)
with 6. = —A. 4+ UN — ix. Here we have introduced the integral operators,
Zut = [ Asta)bola)éds,
Tonb— / As (2)05 () éd. (7.11)

We find eigenvalues w of Eq. (7.9) by numerically diagonalizing the Bogoliubov ma-
trix (7.10) on one unit cell (of length A.) with a periodic boundary condition. We
discretize the space and replace the kinetic energy term —(h2/2m)d2 and the integral
operators {Zy,Z+,} with the corresponding finite-difference terms.

7.7.3 The Threshold Pump Strength

In order to find an analytical equation for the critical threshold, we analyze the stability
of the the trivial solution (i.e., the solution below the Dicke transition) aptr = 0 and
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o = V N/ with pg = 0, by restricting the atomic fluctuations to the momentum states
+hk,. Using this trivial solution and the ansatz 6y (z) = (Wft)eikc‘r + 51#(})6*““69”
for the positive- and negative-frequency condensate fluctuations with momenta +hk.,
the Bogoliubov matrix (7.10) takes the following form,

S 0 0 0 NX.n VNl 0 0

0 5 0 0 0 0 VN —VNAg

0 0 Oc 0 0 0 VN VN
Mo — 0 0 0 -6 —vVNAn —V/NAm 0 0
B= 1 V/N/am 0 0 VNI W, 0 0 0
—v/ N/ 0 0 —V/N/Aen 0 —wy 0 0
0 VN/Aen VN/Aen 0 0 0 Wy 0

0 —VN/Acn —v/N/An 0 0 0 0 —W
(7.12)

The eigenvalues w of Mp is obtained via the eighth-order characteristic equation

Det(MB - wfgxg) =0
[(w? = w?)(w — 0)(w + 67) + ANn?w. (A, — UN)2 = 0. (7.13)

The solution of the characteristic equation (7.13) yields the spectra w of the atomic
and photonic excitations, which below the threshold 7. are in excellent agreement
with the first and last excitation bands of Fig. 3 in the manuscript obtained from
the full numerical calculations. Above 7. the solutions of Eq. (7.13) develop positive
imaginary parts, signaling that the trivial solution cgr = 0 and 19 = /N/\. is unstable
towards the superradiant phase. The zero-frequency solution w = 0 of the characteristic
equation (7.13) yields the self-ordering threshold,

VN = ¢ e (714)
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The coupled nonlinear dynamics of ultracold quantum matter and electro-
magnetic field modes in an optical resonator exhibits a wealth of intriguing
collective phenomena. Here we study a A-type, three-component Bose-
Einstein condensate coupled to four dynamical running-wave modes of a ring
cavity, where only two of the modes are externally pumped. However, the
unpumped modes play a crucial role in the dynamics of the system due to
coherent back-scattering of photons. On a mean- field level we identify three
fundamentally different steady-state phases with distinct characteristics in
the density and spatial spin textures: a combined density and spin wave,
a continuous spin spiral with a homogeneous density, and a spin spiral
with a modulated density. The spin-spiral states, which are topological, are
intimately related to cavity-induced spin-orbit coupling emerging beyond a
critical pump power. The topologically trivial density-wave—spin-wave state
has the characteristics of a supersolid with two broken continuous symme-
tries. The transitions between different phases are either simultaneously
topological and first order, or second order. The proposed setup allows the
simulation of intriguing many-body quantum phenomena by solely tuning
the pump amplitudes and frequencies, with the cavity output fields serving
as a built-in nondestructive observation tool.
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8.1 Introduction

The experimental progresses in reaching the quantum degeneracy limit in atomic gases
paved the way for the realization of quantum many-body phenomena in these highly
tunable systems [8.1, 8.2]. Some of the most remarkable examples include the realization
of the superfluid to Mott-insulator quantum phase transition [8.3], quantum magnetism
and magnetic orderings [8.4-8.8], synthetic magnetic fields (i.e., Abelian gauge poten-
tials) [8.9-8.11], and spin-orbit coupling (i.e., non-Abelian gauge potentails) [8.12-8.14]
in ultracold quantum gases. While the first generation of experiments was limited
to static lattices and local contact interactions, the study of highly nonlinear optical
systems, where the back-action of the matter on the radiation fields is not negligible, has
opened up new frontiers towards dynamical optical potentials, long-range atom-atom
interactions, and exotic collective phenomena [8.15-8.18]. The most prominent examples
include the coupling of ultracold atoms to dynamic quantized radiation fields of high-
quality cavities [8.19-8.21], leading to the realization of the Dicke superradiance phase
transition [8.22, 8.23], atomic recoil lasing [8.24-8.26], and the quantum phase transition
between superfluid, supersolid, Mott-insulator, and density-wave phases [8.27, 8.28].
Almost all experimental works and most theoretical studies of coupled atom-cavity
systems in the past were limited to systems where either the atomic internal states [8.29—
8.32] or the atomic external degrees of freedom [8.33-8.44] are taken into account. Only
recently theoretical investigations towards including both atomic internal and external
degrees of freedom in cavity QED have been conducted. These systems exhibit many

7]+

Figure 8.1: Sketch of the system. A spin-1 BEC is tightly confined along one leg
of a longitudinally pumped ring cavity with four nearly resonant modes
{aret™®* bieFh2} The modes a1 (b+) induce the transitions ||) < |e)
(IT) « |e)) with a coupling strength G| (Gy). The modes a4 and b_ are
pumped by external lasers with strengths 74 and n_, respectively.
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more interesting phenomena, including the emergence of synthetic strong magnetic fields
and spin-orbit coupling [8.45-8.48], disorder-driven density and spin self-ordering [8.49],
topological states [8.50, 8.51], and a variety of magnetic orders [8.52, 8.53]. Very
recently, the first experimental implementation with a spin-1 BEC inside a linear cavity
revealed spontaneous self-ordering of the atoms into a crystalline structure with an
antiferromagnetic order [8.54].

In this work we study a novel type of hybrid atom-cavity system, where A-type
spin-1 ultracold bosons are confined into quasi one dimension along one leg of a ring
cavity with two “pairs” of nearly resonant modes [8.55, 8.56]. Each pair consists of
two counterpropagating modes with the same polarization which is orthogonal to the
polarization of the other pair. In contrast to Ref. [8.57], each pair of modes only couples
to one of the transitions in the A scheme, where the atoms are assumed to posses two
ground states (e.g., two different Zeeman sublevels) and an electronic excited state; see
Fig. 8.1. The adiabatic elimination of the upper atomic electronic state as well as of other
Zeeman sublevels results in an effective two-component pseudospin model. We consider
a case where two counterpropagating modes of orthogonal polarizations are externally
pumped by lasers through the cavity mirrors as depicted in Fig. 8.1. These two modes
do not interfere with one another and the system is, therefore, initially homogeneous.
This is reminiscent of the scheme for generating equal Rashba-Dresselhaus synthetic
spin-orbit coupled for neutral atoms in free space [8.12].

That said, in the present case the cavity modes are dynamic and affected by the
atomic dynamics as well as by photon losses through the cavity mirrors. Crucially, the
unpumped modes are “dynamically” populated by coherently scattered photons and,
therefore, couple to the pumped modes and the atomic internal and external degrees
of freedom. As an important consequence, the cavity-induced spin-orbit coupling for
the atoms only emerges above a critical pump power, which in turn gives rise to novel
nonequilibrium quantum phases and quantum phase transitions of various natures in
our system. It is this dynamical population of the unpumped cavity modes and its
nontrivial interplay with the other degrees of freedom which marks a sharp contrast to
the free-space spin-orbit coupling [8.12-8.14, 8.58, 8.59] as well as all other previous
cavity-based spin-orbit coupling schemes [8.45-8.47, 8.50].

As the frequency and the strength of the pump lasers are varied, in the mean-
field regime the system displays three fundamentally different phases with distinct
characteristics in density and spatial spin texture as shown in Fig. 8.2. The first phase
is the density-wave—spin-wave (DW-SW) state, where the density has a crystalline
structure and the pseudospin exhibits a spatial spin-wave texture along the cavity axis;
see Fig. 8.4(a). The second phase is the plane-wave—spin-spiral (PW-SS) state, where the
density is homogeneous while the pseudospin exhibits a spin-spiral texture as illustrated
in Fig. 8.4(b). The third phase is the density-wave—spin-spiral (DW-SS) state, where a
crystalline-ordered density is accompanied with a spin-spiral pseudospin texture; see
Fig. 8.4(c). The latter two states with the spin-spiral texture have a Skyrmionic nature
with a nontrivial topology [8.60, 8.61], and are intimately related to the emergence
of cavity-induced spin-orbit coupling. The topologically trivial DW-SW state, on the
other hand, breaks the continuous screw-like symmetry of the system, resulting in the
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Figure 8.2: The mean-field atomic phase diagram in the rescaled parameter space
{V/ N1 /wree, AJwrec }. Tt displays three distinct phases: density-wave-spin-
wave (DW-SW), plane-wave—spin-spiral (PW-SS), and density-wave-spin-
spiral (DW-SS) states. The color coding shows the absolute values of the
density-wave order parameters, |[N|| = |[N4|. The solid red curve marks
the onset of the topological phase transition. The dashed yellow curve
indicates the boundary of the second-order phase transition and the green
dot indicates the tricritical point. The unstable parameter regions are
marked by the hased pattern. The inset illustrates the cavity-field phase
diagram in the same parameter space, where the color coding shows the
absolute values of the cavity-field order parameters, |o_|v/N = |34 |/VN.
It coincides precisely with the atomic phase diagram. The other parameters
are set to (Upy, Qor, k) = (=1, —1, 1)wrec.

appearance of a gapless Goldstone mode in addition to the phonon sound mode, a
characteristic of a supersolid with two broken continuous symmetries [8.14, 8.28, 8.44].
The topological phase transitions between the DW-SW and the spin-spiral states, which
is a direct consequence of the emergence of cavity-induced spin-orbit coupling, exhibit
first-order characteristics, while the quantum phase transition between the two spin-
spiral states are second order. Remarkably, all the quantum phase transitions can be
monitored in situ through the cavity output, as can be seen from the inset of Fig. 8.2.
The paper is organized as follows. We introduce the model in Sec. 8.2 and then
derive the effective Hamiltonian and the Heisenberg equations of motion. We then
find the steady-state solutions of the equations of motion in the mean-field limit in
Sec. 8.3. In this section we discuss the atomic phase diagram (Sec. 8.3.1), the cavity-
field phase diagram (Sec. 8.3.2), and the effect of cavity-induced emergent spin-orbit
coupling (Sec. 8.3.3). Section 8.4 is devoted to the elementary excitations and the
(broken) symmetries of the system. We present the concluding remarks in Sec. 8.5.
Appendices 8.6 and 8.7 show the details of the adiabatic elimination of the atomic
excited state and linearization of the Heisenberg equations of motion, respectively.
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8.2 Model

Consider a A-type spin-1 BEC tightly confined into quasi-one dimension along one leg of
a ring cavity in z direction as depicted in Fig. 8.1. The internal atomic states of interest
consist of two pseudospin ground states, designated by |]) and |1), and an electronic
excited state |e) with energies {fwv, fwy, hwe}. The transition |]) < |e) (1) < |e))
couples to a pair of degenerate, counterpropagating electromagnetic modes a4 e*"a*
(be**02) of the ring cavity as shown in Fig. 8.1. The operator é_. /- (b, /—) annihilates
a forward /backward moving photon in the first (second) pair of ring-cavity modes with
a wave vector k, = w,/c = 21/ Aq (ky = wp/c = 27w/ N\p). For our desired system, the
condition |w, — wpl|/ Wa(p) < 1 holds in general. Therefore, the assumptions k = k, ~ ky,
and A = A\, = )\ are legitimate and will be used throughout this work. Each pair of
modes (i.e., a4 or Ei) has the same polarization, which is orthogonal to the polarization
of the other pair; e.g., {e4,e_}. The mode a4 (IAL) is driven by an external pump laser
through the cavity mirror with a frequency @, (@) and an amplitude 74 (n-).

The single-particle Hamiltonian density of the system in the dipole and rotating-wave
approximation reads

H= HO,at + HO,cav + Hac + Hpumpa (81)

with
ﬁQ
HO,at = 27 +h § WrOrr,
m
T=],Te

H07cav =h Z (wa&;[dj + wbl;;l;j> ,
J=4+,—

Hae = h{ [g\L (ez’k‘szr + 6—1'1@2&7) 5%
+G; (eikzl;+ + e_ikzlA)_) &eT} + H.c.},
Hpump = th (n+&ie_iw“t bl et H.c.) . (8.2)

Here m is the atomic mass, p = ihd, is the atomic momentum operator and 6, = |7) (7’|
are the atomic transition operators. The atom-photon coupling for the transition |]) <>
le) (|T) < |e)) is denoted as G| (Gy) and H.c. stands for the Hermitian conjugate. Ho at
and Hg cav are the bare atomic Hamiltonian density and the cavity-field Hamiltonian,
respectively. H,. represents the coupling between the atom and the cavity fields, and
Hyymp accounts for the pumping of the cavity fields.

The corresponding many-body Hamiltonian is obtained as

H= / B (2)(Hont + Hao)V(2)d2 (8.3)
+ HO,cav + Hpump + Hinta

where U = (%Z;e, TZJTa @%)T is the three-component atomic field operator which satisfies
the bosonic commutation relation [@Zf(z),ﬁi,(z’ )] = 6(z — 2')6, . The Hamiltonian

103



8 Preprint: Cavity-Induced Emergent Topological Spin-Textures in a BEC

Hiyt accounts for two-body contact interactions between the atoms, and ensures the
thermalization and relaxation of the BEC. However, we assume that the two-body contact
interactions are negligibly small compared to cavity-mediated long-range interactions,
which is a good approximation for typical cavity-QED experiments [8.28, 8.62]. Therefore,
we will not explicitly include two-body contact interactions in our model.

The dynamics of the system is governed by the Heisenberg equations of motion of
the atomic field operators ih@t@/}T = [@T, H], and the photonic field operators ihdia+ =
[+, H]—ilikas and ihdybs = [by, H]—ihkby. The decay (i.e., leakage) of cavity photons
is included phenomenologically by adding the terms proportional to « in the latter
equations for the photonic-field operators. If the relative atomic detunings with respect
to the pump lasers A4y = Qq) — [we — wy ()] are large compared to the two-photon
detuning ¢ := Ay — A} and the atom-photon couplings {G|,G;}, the atomic excited
state reaches a steady-state on a short time scale and its dynamics can be adiabatically
eliminated. This results in a set of six coupled effective Heisenberg equations for the
atomic pseudospin and photonic field operators

e Wby

A— | " | = s 8.4

"o <w¢> Ha (% ’ (840)
Q. at N+

L0 |a- a_ . 0

’Lha B+ = Heav B+ +ih N (8.4b)
b_ b_ n—

The details are presented in Appendix 8.6.

Now Hat and Heay are the “effective” atomic and cavity-field Hamiltonian densities,
respectively, which contain the couplings between all atomic and photonic degrees of
freedom. The effective atomic Hamiltonian density has the matrix form

o Ly, (z) - 12 EOR(2) -
o KOL A g b ) (8:5)
r(%) g T hU(2) + 5

A

+ (/i.i‘_&, + e_%kzdla, + eQikz&T_&Jr)’
Uy(2) = U (b by + 010 + e 2%2p1 b 4 2k2pl ), (8.6)
and the two-photon Raman coupling operator

Or(2) = Qor (@l by +al b + e 27208 b 4?24l b)), (8.7)

Here we have introduced the maximum depth of the optical potential per photon
Uor = 2|G->/(A; + A4) and the maximum two-photon Raman transition frequency
Qor = 2G]G/(A|+A4). The former potential depth results from two-photon scatterings
between cavity modes with the same polarization without changing the atomic internal
state, whereas the latter frequency g is due to two-photon scatterings between
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Figure 8.3: Schematic visualization of the two-photon Raman processes. The coherent
scattering of a photon from a mode into itself (a) and into the correspond-
ing degenerate counterpropagating mode with the same polarization (b)
without changing the atomic internal state result in position-independent
and position-dependent potential terms in UT(Z). The coherent scattering
of a photon from a mode into another mode with an orthogonal polarization
propagating in the same (c) and opposite (d) direction, accompanied with
the atomic pseudospin flip [{) <+ |1), gives rise to position-independent
and position-dependent Raman coupling terms in QR(Z), respectively.

cavity modes with orthogonal polarizations accompanied by an atomic pseudospin flip

) < 1)

The coherent scattering of photons from a mode back into itself results in the position-
independent energy shifts (i.e. , the terms &l&i and IA)]_:EIA)i) in the potential operators
U, (z), while the scattering of photons from a mode (say, a,) into its degenerate
counterpropagating mode (i.e., a_) results in the position-dependent terms proportional
to e*2*% in the potential operators. The former photon scatterings do not transfer
any momentum to the atom, while the latter scatterings lead to +2hk momentum
kicks to the atom. These particular processes are schematically shown in Fig. 8.3(a)

and Fig. 8.3(b), respectively.

The photon scattering between modes with orthogonal polarizations and the same
propagation direction (that is, between a+ and Bi) gives rise to the position-independent
Raman coupling terms (i.e., the terms dLIA)Jr and a' b_) in Qg(z), while scattering
between modes with orthogonal polarizations and opposite propagation directions
(that is, between G+ and IA):F) results in the position-dependent Raman coupling terms
proportional to e*2%% in the two-photon Raman coupling operator. These two-photon
Raman processes are illustrated in Fig. 8.3(c) and Fig. 8.3(d). While the atomic
pseudospin is flipped in both Raman processes, there is no net momentum transfer to
the atom in the former processes, whereas the latter processes impart a £2hk momentum
to the atom. These latter Raman transition processes with +2hk momentum kicks can
induce a synthetic spin-orbit coupling for the atom.
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The effective cavity-field Hamiltonian “density” in matrix form is given by

A, UgN,  QrS- Qrs”

Uy N —A, QorS™ Qurs_
Heav = I " Ai a(—) ORN . ~ (8'8)
WrSt YUrSy  —A Unhs
QGrSY YRSy U] A

where we have introduced the effective cavity detunings Aa(b) = (Aq)+ik) —Uoyp) N )
with the relative cavity detunings with respect to the pump frequencies A4 =
Wa(h) — Wa(p) and the particle number operators

N = [04(2)5, (). (8.9)
The off-diagonal coupling operators are given by
Ky = [ 20t )i (), (8.10a)
S =g = / Ol ()01 (2)dz, (8.10D)
8% = (8 = / 2= () (2)dz, (8.10¢)

where S, (5_) is the collective atomic spin raising (lowering) operator. The operators

N, and SA'(f) are the density- (for pseudospin 7) and spin-wave operators, respectively.

The matrix elements of the effective cavity-field Hamiltonian density Hcav give
the strengths of the two-photon processes depicted in Fig. 8.3. The diagonal terms
proportional to N, correspond to the processes illustrated in Fig. 8.3(a) and result in the
dispersive shifts Uo-N; of the cavity frequencies. Terms proportional to N, (and their
Hermitian conjugates) correspond to the processes shown in Fig. 8.3(b) and provide the
couplings between degenerate counterpropagating modes with the same polarization.
Finally, the matrix elements proportional to Sy and Sf) correspond to the pseudospin
flipping processes depicted in Fig. 8.3(c) and Fig. 8.3(d), respectively, and yield the
nontrivial couplings between modes with orthogonal polarizations.

The system possesses a screw-like continuous symmetry. It is manifested in the invari-
ance of the total effective Hamiltonian corresponding to Egs. (8.4) under a simultaneous
spatial translation z — z+ Az, phase rotations of the unpumped photonic field operators
a_ — a_e* 2% and 5+ — l;+e_2ikAZ, and phase rotations of the atomic field operators
1[@ — 1[@6_“@2 and T;T — @Te”km’. Note that the phases of the pumped cavity modes
a4 and b_ are fixed by the cavity pumps 7. The phase rotation of G_ and 13+ results in
a shift of the potential minima in Eq. (8.6), defining the position of the atomic-density
maxima. On the other hand, the phase shift of the atomic field operators leads to
rotations of the spin operators: §+ — S'+e_2“€AZ and ‘SA‘(f) — SA(f)e_%kAz. Hence, a
translation in space is tied to a corresponding rotation of the atomic spin, where the
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Figure 8.4: Spin textures along the cavity axis z in one unit cell of length A/2 in
different phases. The local atomic pseudospin vector s(z) is shown in
the DW-SW phase for the parameters (A, v/ N7) = (=20, 20)wrec (a), the
PW-SS phase for (A, vVNn) = (=20, 30)wrec (b), and the DW-SS phase for
(A, V' Nn) = (—20,50)wrec (c). The small circles in the lower right corners
display the projection of the spin textures in the z-y plane, where the
grey regions indicate the angles swept by the pseudospin vector over a A/2
distance. The other parameters are the same as Fig. 8.2.

rotation angle directly depends on the length of the spatial translation Az. This leads
to a screw-like continuous symmetry.

The system is highly nonlinear. The effective atomic Hamiltonian density depends on
the cavity fields through the potential Uy (z) and the Raman operators (g (z), while the
effective cavity-field Hamiltonian density depends on the atomic fields via the atomic
number NT, the density-wave J\7}, the collective atomic spin S’i, and the spin-wave 3(;)
operators. It is this nonlinear dynamics and the nontrivial interplay between various
degrees of freedom which give rise to intriguing phenomena in our system, as it will
be discussed in the subsequent sections. These nonlinear dynamics and the nontrivial
interplay between the cavity modes survive even in the strong pumping limit 7+ > wyec,
with wree == hk?/2m being the recoil frequency. Although in the strong pumping limit
the pumped cavity fields {ELJF,IA),} behave as classical fields, the unpumped modes
{a_, B+} still retain their quantum nature and behave as dynamical fields.

8.3 Mean-Field Results

In the following, we restrict our analysis to red-detuned pump lasers with respect to
both bare atomic and cavity frequencies, i.e., {A} +, Ay} < 0. The atoms are therefore
attracted to the intensity maxima of the light fields, while experiencing cavity cooling. In
order to reduce the number of free parameters and capture the fundamental physics, we
further focus on the special case of a completely symmetric configuration: A == A, = Ay,
n=mn4+ =1n-,0=0,and G| = Gy which results in Uy := Uy = Uy = Qor. Despite these
simplifying assumptions, the system is still very complex and gives rise to intriguing
phenomena.

We find the stationary states of the system by self-consistently solving Eqgs. (8.4)—
(8.10) in the mean-field regime in the parameter space {n, A}. This amounts to
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omitting quantum fluctuations and replacing the atomic and cavity field operators
by their corresponding quantum averages: ¥, — b, = <1ﬁ7.>, a; — o = (a;), and
Ej — B = <3]> The parameters n and A are related, respectively, to the intensity and
the frequency of the external pump lasers and can be readily tuned in experiment.

The effective atomic Hamiltonian density (8.5) is A/2 periodic. Nonetheless, solving
the equations for different numbers of unit cells (of length \/2) reveals that the atomic
condensate wave functions 1 (z) are A periodic in parameter regimes possessing cavity-
induced spin-orbit coupling. Therefore, we always solve the mean-field equations
corresponding to Eqgs. (8.4)—(8.10) in two unit cells of total length A with periodic
boundary conditions. The relation between cavity-induced spin-orbit coupling and the
doubling of the periodicity of the condensate wave functions will be discussed in more
details in Sec. 8.3.3.

8.3.1 Atomic Phase Diagram

The mean-field density-wave order parameters N, = (N), cf. Eq. (8.10a), can be used to
characterize the density structure of each BEC component. They quantify the magnitude
of the density modulations of each BEC component, where a zero density-wave order
parameter corresponds to a homogenous density distribution. Because of the symmetric
choice of the parameters as described above, we always find that the absolute values of
the two density-wave order parameters are equal to one another, |N|| = [N;].

On the other hand, the mean-field local pseudospin vector

5(2) = (s2(2), 8y(2), 52(2)) = (Yert (2)] 0 Vet (2))

where [the(2)) = (¥1(2),%,(2))" and & = (04,0,,0,) is the vector of the Pauli
matrices, can be used to illustrate the spatial spin texture of the steady-states. The z
component of the local pseudospin s.(z) = [[1+(2)|* — |1, (2)[*]/2 is zero everywhere
in all parameter regimes due to the symmetric choice of the parameters. Therefore,
the local pseudospin vector always lies in the z-y plane. We find that the transverse
local pseudospin vector varies in space in all parameter regimes. In some regimes s(z)
exhibits a A/2-periodic “spin wave” of ferromagnetic-magnon nature, meaning that the
spin angle ¢(z) := arctan(s,(z)/sz(z)) only sweeps a small sector within the interval
[0,7/2] over a A\/2 distance. While for other parameter regimes, ¢(z) sweeps a full 27
angle in the z-y plane over a A/2 distance, leading to a A/2-periodic “spin spiral” of
topological Skyrmionic nature [8.60, 8.61]. As a result, the mean-field collective atomic
pseudospins Sy = (S1) = [[s4(2) + is,(2)]dz and the spin-wave order parameters
S = (8H)y = [ et2kz[5, (2) kisy(2)]dz, of. Eqs. (8.10b) and (8.10c), exhibit different
behaviors in the spin-wave and the spin-spiral states.

The spin-wave and spin-spiral states can be quantitatively distinguished by their
distinct topological structures via an appropriate topological invariant. The relevant
topological invariant to characterize the spin texture of the system is the winding
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Figure 8.5: The absolute values of the collective atomic spins |S+| (blue solid curve)
and the spin-wave order parameters |Sf)\ (red dashed curve) as a func-
tion of the rescaled pump strength v N7/wree for A = —10wree (a) and
A = —20wyec (b). The collective atomic spins Sy are the dominant param-

eters in the DW-SW phase, while the spin-wave order parameters Sj([i) are

dominant in the PW-SS and DW-SS phases. Both parameters {Si,Sf)}
exhibit first-order (second-order) characteristics across the phase transi-
tions between the DW-SW and the DW-SS/PW-SS (between the PW-SS
and the DW-SS). The other parameters are the same as Fig. 8.2.

number [8.63, 8.64]

“or o ’

W L /()A/2[6z¢(z)]dz = 9(A/2) = ¢(0) (8.11)

where ¢(z) defines the direction of the local pseudospin vector s(z) in the z-y plane.
Note that the angle ¢(z) is tied to the relative phase between the two condensate wave
functions 1| (2) and 14(z). The winding number essentially counts the number of full
rotations of the local pseudospin vector s(z) around the origin in one unit cell. Zero
winding number corresponds to the topologically trivial spin-wave state, while a nonzero
winding number (i.e., WW = +1) indicates the topological spin-spiral state.

The atomic phase diagram of the system in the rescaled parameter space
{VN1/wree, A Jwree } is shown in Fig. 8.2 and displays three fundamentally different
phases. In the first phase, which corresponds to the region below the solid red curve
in the phase diagram, the density order parameters are nonzero, |N;| # 0, while the
winding number is zero, YW = 0. This implies that the atomic density distribution
n,(2) = |, (2)|> has a (\/2-periodic) crystalline order and the local pseudospin s(z)
exhibits a (also A\/2-periodic) spin-wave texture. Hence, we refer to this phase as the
density-wave-spin-wave (DW-SW) state. Recall that |N|| = |[N;| due to the symmetric
choice of parameters. The amplitude of the density modulations increases with increasing
7, indicated by the increasing density-wave order parameters |N;|. Because of the direct
pumping of two of the cavity modes and the presence of two-photon Raman processes
which scatter photons into the unpumped modes without transfering momentum to the
atoms as shown in Fig. 8.3(c), there is no threshold behavior for the onset of the density
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waves. This is in contrast to transversally pumped ring cavities [8.35, 8.44] and to the
case where both pairs of modes {é,b+} couple to the same atomic transition [8.57].
The angle in the z-y plane which is sweeped by the local pseudospin vector s(z) over
a distance of A\/2, is always restricted to the interval [0, 7/2] for the entire parameter
regime of the DW-SW phase. Hence, the spin-wave oscillations remain small in this
phase. A typical spin-wave texture in the DW-SW phase is illustrated in Fig. 8.4(a),
where the local pseudospin vector s(z) exhibits small oscillations in the z-y plane. The
change in the length of the local pseudospin vector is due to the density modulations of
the condensates. Note that the local pseudospin vector s(z) always lies in the z-y plane,
as s;(z) = 0 owing to the symmetric choice of the parameters.

The second phase, corresponding to the uniform black region in the phase diagram
of Fig. 8.2, is the plane-wave—spin-spiral (PW-SS) state. In this regime the density-wave
order parameters are identically zero, |[N;| = 0, while the winding number is nonzero,
W = 1. Therefore, the condensate densities are homogeneous in this phase, while the
local pseudospin exhibits a spin-spiral texture. Figure 8.4(b) depicts a representative
spin-spiral state in this phase. As indicated by the winding number W = 1, the local
pseudospin vector s(z) sweeps a full 27 angle over a A\/2 distance. The length of the
local pseudospin vector is constant in space due to the uniform condensate densities in
this phase. Note that again the local pseudospin vector has no z component, s,(z) = 0.

In the third phase, both the density order parameters and the winding number are
nonzero, {|N;| # 0,W = 1}. This implies that the density wave and the spin-spiral
coexist in this phase, hence the name density-wave—spin-spiral (DW-SS) state. The
BEC densities exhibit strong modulations in this phase. The local pseudospin vector
s(z), therefore, inherits this and its length changes drastically in space, while again
sweeping a full 27 angle over a A\/2 distance as shown in Fig. 8.4(c). As for the other
two phases, the local pseudospin vector lies in the z-y plane in the DW-SS phase.

For small cavity detuning, A < —9wyec, the system becomes unstable (hashed region
in Fig. 8.2). This is due to the fact that the effective relative cavity detuning, i.e.,
the dispersively shifted bare relative cavity detuning due to the presence of the atoms,
becomes positive (i.e., blue detuned) resulting in cavity heating. In contrast to a single
component BEC in a cavity where the dispersive shift is solely given by the factor UgN,
an analytical expression for the dispersive shift of the cavity detuning in our model
is nontrivial due to the various dispersive terms and coupling terms in the effective

cavity-field Hamiltonian density (8.8).

The collective atomic spins S+ and the spin-wave order parameters Sf) exhibit

distinct behaviors in these three phases. Figures 8.5(a) and 8.5(b) show the absolute
values of Sy (solid blue curves) and Sj(ci) (dashed red curves) as a function of the
rescaled pump strength v N 1/wrec for constant cavity detunings A/wec = —10 and
—20, respectively. By increasing the pump strength n from zero, for A = —10wyec in
Fig. 8.5(a) the system undergoes a phase transition from the DW-SW state to the DW-
SS state, while for A = —20wy. in Fig. 8.5(b) the phase transition from the DW-SW to
the DW-SS occurs indirectly via the intermediate PW-SS state (cf. Fig. 8.2). While the
collective atomic spins S1 are nonzero in both DW-SW and DW-SS phases, it vanishes
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in the PW-SS phase. The latter can be understood by the fact that the local pseudospin
vector s(z) has a constant length over space in the PW-SS phase and it does a full 27
rotation uniformly over one unit cell, resulting in S = [ s,(2)dz £ [isy(2)dz = 0. On

the other hand the spin-wave order parameters S(f) are nonzero in all three phases,
indicating spin modulations in all regimes.

The winding number W jumps from zero to one across the phase transitions from the
DW-SW to the PW-SS/DW-SS, signaling that these are topological phase transitions
(the red solid curve in the phase diagram in Fig. 8.2, which is somewhat ragged due
to the extremely slow convergence of numerics around these phase boundaries). In
addition, the density-wave order parameters N, the collective atomic spins S, and
the spin-wave order parameters Sf) exhibit discontinuous behaviors on the onset of
these phase transitions (see Figs. 8.2 and 8.5). This indicates that the topological phase
transitions from the DW-SW state to the PW-SS/DW-SS states also have first-order
characteristics.

Although the atomic parameters { N, S, S(f)} change continuously across the PW-
SS to DW-SS phase transition [see Figs. 8.2 and 8.5(b)], they exhibit nonanalytical
behavior, a characteristic of a second-order phase transition. Therefore, the phase
transition from the PW-SS to the DW-SS is second order (yellow dashed curve in the
phase diagram in Fig. 8.2). Note that the winding number W is one in both phases,
and therefore it does not change across this phase transition.

The phase boundary between the DW-SW and PW-SS phases is linear, whereas
the other phase boundaries show more complex behaviors. All phase boundaries with
different natures (i.e., topological first-order, and topologically trivial second-order
phase transitions) meet at a single tricritical point, denoted by a green dot in the phase
diagram in Fig. 8.2.

8.3.2 Cavity-Field Phase Diagram

The mean-field amplitudes of the unpumped cavity modes a_ and 3 can be exploited as
the cavity-field order parameters to further characterize the system. The inset of Fig. 8.2
shows the absolute values of the rescaled unpumped modes |a_|/vV/N = |3, |/v/N in the
rescaled parameter space {\/N N/ Wrec; AJwrec }. The absolute values of the unpumped
modes are equal to each other once again due to the symmetric choice of the parameters.
The cavity-field phase diagram has a similar form as the atomic phase diagram. In
particular, the field phase boundaries coincide precisely with the atomic phase boundaries.
The field order parameters {«_, f+} are nonzero in the DW-SW and DW-SS phases and
increase monotonically by increasing pump strength. However, they are identically zero
in the entire PW-SS phase. This can be understood by noting that the density-order
parameters A, and the collective spins S+ are zero in this regime as discussed above.
The dynamics of the two umpumped modes {a_, 54} then decouple completely from
the pumped ones {a4, 8-} [see Eq. (8.8)], and, therefore, no photons are scattered into
these unpumped modes in this phase. This leads to uniform potentials and Raman
coupling [see Egs. (8.6) and (8.7)], which in turn results in homogeneous condensate
densities in a self-consistent manner. This signifies the nonlinear dynamical nature of
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Figure 8.6: The absolute values of the cavity-field order parameters |a_|/vV/N =
|B_|/V/N (blue solid curve) an the winding number W (red dashed curve)
as a function of the rescaled pump strength VN N/ wWree for A = —10wyec (a)
and A = —20wyec (b). The cavity-field order parameters display first-order
(second-order) characteristics across the phase transitions from the DW-SW
to the PW-SS/DW-SS (from the PW-SS to the DW-SS). The first-order
phase transition coincides with the topological phase transition, where the
winding number W jumps from zero to one. The other parameters are the
same as Fig. 8.2.

the system.

Figures 8.6(a) and 8.6(b) show cuts through the field phase diagram along the rescaled
pump strength /N7 /wree at constant cavity detunings A /wye. = —10 and —20, together
with the corresponding winding numbers W. The field-order parameters {a_, 5;}
exhibit similar behavior as the atomic parameters {N;, Sy, S(f)}. They display first-
order (second-order) characteristics across the phase transitions from the DW-SW
state to the PW-SS/DW-SS states (from the PW-SS state to the DW-SS phase), in
accordance with the atomic phase transitions. Likewise, the first-oder phase transition
coincides with the topological phase transition, where the winding W jumps from zero
to one. Therefore, there is a one to one correspondence between the atomic parameters
{N-, 54, S(f)} on the one hand and the cavity-field order parameters {a_, 54} on the
other hand. As a consequence, all the quantum phase transitions (and their natures)
can be mapped out nondestructively through the cavity outputs. This is an important
and distinct feature of the system.

8.3.3 Atomic Momentum Distributions and Cavity-Induced Spin-Orbit
Coupling

The discrete momentum exchange between the atoms and the light fields allows the de-
composition of the condensate wave functions into plane waves ¥;(z) = 372 ¢r, jelihz,
The absolute values of the probability amplitudes c¢;; of the lowest six momentum
states j € {0,41,42, +3} in the rescaled parameter space {vV/ N1 /wrec, A/wrec} for each
condensate component 7 are shown in Fig. 8.7. Note that the even and odd momentum
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Figure 8.7: The absolute values of the probability amplitudes c; ; of the lowest six
momentum states j € {0, £1,+2,+3} for each condensate component 7
in the parameter space {VN1/wrec, A/wrec}. For the the sake of clarity,
vertical cuts of these diagrams for fixed A = —20wy. are presented
in Fig. 8.8. The other parameters are the same as Fig. 8.2.

states do not coexist together. The boundary separating even and odd momenta coin-
cides precisely with the topological phase boundary between the DW-SW state and the
PW-SS/DW-SS states, illustrated in Fig. 8.2. The region where even (odd) momenta are
occupied corresponds to the DW-SW (PW-SS or DW-SS) phase. In the DW-SW phase
the zero momentum c; g is the dominant state for both condensates and the nonzero
higher momenta result in density modulations. In the PW-SS phase, the condensate
wave functions are solely composed of one momentum component |c; 1| = |cr—1| = 1/v/2,
as expected for a homogeneous condensate. While in the DW-SS phase, higher odd
momenta are also populated, leading to density modulations. For the sake of clarity,
vertical cuts along the rescaled pump strength /N 1 /wrec for constant cavity detuning
A = —20wyec of these momentum phase diagrams are also shown in Fig. 8.8.

The phase boundaries where the even momenta completely deplete and the odd
momenta are populated coincide exactly with the first-order topological phase transitions
from the DW-SW state to the PW-SS/DW-SS state. That is, the onset of the occupation
of the odd momenta marks the appearance of spin spirals and the discrete jump of the
winding number W from zero to one; cf. Figs. 8.5(b), 8.6(b) and 8.8. This is intimately
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connected to the emergence of cavity-induced spin-orbit coupling for the atoms. The
transition from the even to the odd momenta can be triggered and relaxed by (even very
weak) two-body contact interactions, which are not included explicitly in our model.
The emergence of cavity-induced spin-orbit coupling can be most easily seen in the
PW-SS phase, where the umpumped cavity modes {a_, 54} are zero. The effective
atomic Hamiltonian density (8.5) in the mean-field approximation then simplifies to

1 RU,
Hsoc = — (plaxa — ko) + —2(lay|? — |B_[)o
2m 2

+ "R (0 B0yt + ay floyy), (8.12)

after applying a unitary transformation [8.45]. Here Isy2 is the identity matrix in
the pseudospin space, o is the third Pauli matrix and o4+ and o4 are the transition
matrices in the pseudospin basis. The Hamiltonian (8.12) has exactly the form of an
equal Rashba-Dresselhaus spin-orbit coupled Hamiltonian, saving that the the Raman
coupling now depends on the cavity fields {a, -} and is determined self-consistently.
This Hamiltonian has been studied before in Refs. [8.45, 8.46, 8.48] and indeed exhibits
characteristics of spin-orbit coupled quantum gases, with extra features resulting from
the dynamical nature of the synthetic spin-orbit coupling.

The effect of the spin-orbit coupling can be seen in the momentum distributions of
the condensate wavefuctions in the PW-SS phase, where different pseudospin states are
coupled to different momentum states. That is, the pseudospin down is solely coupled
to the +hk momentum (recall that in the PW-SS phase |c; 1| = 1/v/2), while the the
pseudospin up is only coupled to the —hk momentum (|ey_1| = 1/+/2). Since the
PW-SS phase sets in at large pump strengths 7, the effective Raman transition rate
Qora’ B is, therefore, always large. Hence, the single-particle energy dispersion of the
spin-orbit coupled Hamiltonian (8.12) possesses a single minimum at p = 0, as expected
for large Raman transition rates [8.12]. This is also the reason that both condensates
have equal particle numbers, |c| 1| = |ey_1]| = 1/1/2, as the state at p = 0 has an equal
contribution from the up and down components due to the symmetric choice of the
parameters.

Despite of the fact that in the DW-SS phase the effective atomic Hamiltonian
density (8.5) cannot be recast in the usual form of the equal Rashba-Dresselhaus
spin-orbit-coupled Hamiltonian (8.12), the cavity-induced synthetic spin-orbit coupling
still manifests itself in the momentum distributions of the condensate wave functions.
Although higher odd momenta are also populated, the Ak momenta are still the
dominant states, and different pseudospin states are strongly coupled to solely one of
them, [c; 1] = |ey,—1] < 1/+/2. This is in sharp contrast to the DW-SW phase, where
both pseudospin states couple to the same zero momentum state, |c| o| = |ero] < 1/V/2,
resulting in no cavity-induced spin-orbit coupling.

The period doubling of the condensate wave functions in the spin-orbit coupled
PW-SS and DW-SS regimes, as it was mentioned at the beginning of Sec. 8.3, can
be understood through the momentum decomposition of the wave functions in these
phases. In these spin-orbit coupled states, the condensate wave functions ¥, (z) =
Z;’i_oo CT72j+1€i(2j+l)kz are composed of solely odd momenta and are, therefore, A
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Figure 8.8: The absolute values of the probability amplitudes c; ; of the lowest six
momentum states j € {0, 41, 2, 4+3} for each condensate component 7
as a function of VN n/wrec for a constant A = —20wye.. The even and
odd momenta do not coexist. In the onset of the first-order topological
phase transition from the DW-SW state to the PW-SS phase, the even
momenta completely deplete and give way to the odd momenta. The other
parameters are the same as Fig. 8.2.

periodic. This is in contrast to the A\/2 periodicity of the condensate wave functions
Vr(2) = 352 cr2j€%9% in the DW-SW state (which are comprised of only even
momenta) and the Hamiltonian density (8.5).

The unpumped cavity modes {a_, lA)Jr} play an important role in the emergence of
cavity-induced spin-orbit coupling beyond a threshold for the pump-strength. This
can be understood by re-examining the possible spin flipping processes in the system
(see Fig. 8.3). The essential photon-scattering processes for the spin-orbit coupling
are the ones depicted in Fig. 8.3(d), where photons are scattered between the modes
d+ ¢ bz (via the atomic pseudospin flipping ||} < [1)) and a 4+2hk momentum is
transferred to the atom. Whereas the scattering processes shown in Fig. 8.3(c), where
photons are scattered between the modes a1 < by (again via the atomic pseudospin
flipping [{) <> |1)) without any momentum kick to the atom, are not vital for the spin-
orbit coupling. However, triggering the former processes costs more energy than the
latter ones due to the atomic kinetic energy gain. Therefore, for lower pump strengths
(i.e., in the DW-SW phase) the spin flipping processes with no momentum kick to
the atoms are energetically favored and are the dominant processes. The essential
spin-orbit coupling processes become energetically favored and dominant beyond the
pump-strength threshold on the onset of the PW-SS and DW-SS states, where the sum
of the kinetic energies of the odd momenta becomes less than the corresponding even
ones.

The interplay between spin flipping processes with and without momentum transfer
to the atom can be seen by comparing the collective atomic spins S+ and the spin-wave
order parameters S(f). Recall that S+ (Sj([i)) quantifies the spin flipping processes

without (with +2Ak) momentum kick to the atom. As can be seen from Fig. 8.5,
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Figure 8.9: Real part of the five lowest-lying collective excitations of the system for
A = —20wyec as a function of the rescaled pump strength v N7 /wrec. The
other parameters are the same as Fig. 8.2.

the collective spins Si are the dominant quantities in the DW-SW phase, while the
spin-wave order parameters SS_Li) become dominant only in the PW-SS and DW-SS
phases. Consequently, cavity-induced spin-orbit coupling emerges only in the PW-SS
and DW-SS regimes. This is in sharp contrast to the free space spin-orbit-coupled BEC,
where spin-orbit coupling emerges at an infinitesimal Raman frequency [8.12].

8.4 Collective Excitations

In order to check the stability of our mean-field results and to obtain a deeper under-
standing of the system, we calculate the collective excitations of the system above
the mean-field steady-states. To this end, we linearize the Heisenberg equations
of motion (8.4) for quantum fluctuations of both atomic condensate wave functions
0 (z,t) = 52/)§+) (x)e ™t 4 [5¢$_)(x)]*eiw*t, and field mode fluctuations day(t) =
(S(Jz(f)e*i‘*”e + [5042;)]*6”” and 0(4(t) = (5ﬁ£_f)e*i“t + [5,B§E_)]*ei‘”*t around the mean-field
stationary solutions {9y (), o+, fo+ }. The linearized equations can be recast in matrix
form,

wf = Mgf (8.13)

where f is a vector composed of the atomic condensate and the field-mode fluctuations
{&p@, 5af), 6ﬁf)} and Mp is a (nonhermitian) Bogoliubov matrix. We relegate the
details to Appendix 8.7.

We numerically diagonalize the Bogoliubov matrix Mp as a function of the pump
strength to obtain the collective excitation spectrum w(n). Figure 8.9 shows the real
part of the five lowest lying positive-frequency excitations of the system as a function of
the rescaled pump strength v N 1/wrec at a fixed cavity detuning A = —20wyec.

In the DW-SW regime corresponding to VN7 < 27wyec, there exists a gapless
Goldstone mode, i.e. Re(w) = 0. This is associated with the spontaneously broken
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continuous screw-like symmetry of the system in this regime. This symmetry breaking is
a consequence of the occupation of the even (in particular, the zero) momentum states
in this phase, which leads to wave functions of the form 1 (2) = (cr0+ ¢y +2e™2H2 .. ).
A spatial translation of the wave functions 1-(z) — 1,(z + Az) cannot be compensated
by the phase rotation of the condensate wave functions ¢, — Qme*ikAz and 4 —
1/1¢eikAz, because of the occupation of the zero momentum state c;o # 0. Hence,
the condensate wave functions in the DW-SW regime are not invariant under the
continuous symmetry group of the Hamiltonian and, therefore, they spontaneously
break the continuous symmetry of the system. The appearance of this extra gapless
Goldstone mode, in addition to the gapless phonon mode resulting from the spontaneous
breaking of the internal gauge symmetry which is not shown here, indicates that the
DW-SW state is a supersolid, i. e. a state with two spontaneously broken continuous
symmetries [8.14, 8.28, 8.44]. A supersolid has the characteristics of both a crystal and
a superfluid, that is, it is a state with a long-range periodic density order which can
flow without experiencing any friction force.

For infinitely small values of 7, the collective excitations at frequencies ~ wyec are
fourfold degenerate. These excitations correspond to condensate fluctuations of both
BEC components at momenta +hk. With increasing 7, one of these branches approaches
the zero energy. The point where this excitation branch touches zero coincides exactly
with the mean-field critical pump strength for the phase transition from the DW-SW
state to the PW-SS phase (dashed line in Fig. 8.9). As soon as the gap of the lowest
+hk branch closes, the odd momenta become the lower energy states and the synthetic
spin-orbit coupling emerges. Hence, it is the interplay between the two lowest even and
odd excitation branches (solid red and dotted blue in Fig. 8.9) that leads to emergent
spin-orbit coupling in this system.

In the PW-SS regime all excitation branches are doubly degenerate and gapped,
indicating that the continuous symmetry of the system is not broken. This is intuitively
obvious since the spin spiral with no density modulation perfectly respects the screw-
like symmetry of the system. This can be seen most readily by the fact that the
condensate wave functions 1 (z) = c| 1% and ¥4 (z) = ¢ _1e7™?
the screw-like symmetry transformation: v (2) — ¥ (2 + Az)e %22 = ¢ (2) and
Pr(2) = r(z + Az)es = yy ().

With further increasing pump strength 7 the degenerate branches start to split up at
the value of n which perfectly coincides with the mean-field critical pump strength for
the phase transition from the PW-SS state to the DW-SS regime (horizontal dash dotted
line). One of the excitation branches (dashed black curve) exhibits an exotic “quasi"
gapless-mode behavior in large pump strengths. This can be understood by examining
the condensate wave functions in this regime. For the sake of simplicity we restrict
our argument to one pseudospin, say, 1| (z) = (¢ 1€ + ¢| _1e7** 4 ¢| 3e3** + . ..).
In general, this state is not invariant under the screw-like symmetry transformation
Vi (2) = Yy (2 + Az)e A% £ ) (2). That said, at the onset of the DW-SS state c| 1
is the dominant probability amplitude in this expansion as can be seen from Fig. 8.7,
ie., lepa] > {lej—1l,lepal,- -+ }. Therefore, this wave function can be approximated
as P (z) ~ cmeikz , which approximately preserves the screw-like symmetry of the

are invariant under
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system. For larger pump strengths, however, the higher momentum-state coefficients
are not negligible anymore, resulting in a state which breaks the screw-like symmetry of
the system. This leads to the appearance of a quasi gapless mode ~ Owyec at large 7,
which never reaches the zero energy exactly because c| 1 remains dominant throughout
the entire regime. This is in stark contrast to the DW-SW state, where even in the
onset of this phase at very small pump strengths the screw-like symmetry is broken
completely. This is due to the dominant population of the zero momentum state
lerol > {lcr 42, [cr44l, - - - } in this entire regime (recall that the zero momentum state
is the one that breaks the screw-like symmetry of the system in the DW-SW state).

It should be mentioned that imaginary parts of the collective excitations remain
remarkably small for a dissipative system, i.e. k # 0. This is a hint for the dynamical
stability of the phases which is also confirmed by performing a real time evolution of
the stationary state solutions.

8.5 Conclusion and Outlook

We theoretically studied an effective two-component BEC inside a ring cavity, which
possesses two pairs of nearly resonant running-wave modes with orthogonal polarizations.
Our proposed model takes into account both atomic internal and external degrees of
freedom, as well as the field amplitude and polarizations degrees of freedom. We predict
that even in the simplest symmetric choice of parameters, the interplay between various
degrees of freedom already results in novel phases and exotic quantum phase transitions
of different natures. All the phases and the quantum phase transitions between them
can be readily realized by solely tuning the frequencies and powers of the pump lasers,
relevant parameters in cavity-QED experiments [8.26, 8.27, 8.62]. Remarkably, all the
quantum phase transitions, including the topological one, can be monitored directly
through the cavity outputs. Our proposal can be implemented with minor modifications
to state-of-the-art experiments in cavity QED [8.19, 8.20, 8.25, 8.26, 8.62, 8.65-8.67] and
it may open a new direction for studying topological effects in ultracold atoms via in
situ monitoring. Additional physics may arise for asymmetric choices of the parameters
as well as the inclusion of large two-body contact interactions. However, we leave the
investigation of these interesting issues for future works.
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8.6 Appendix: Adiabatic Elimination of the Excited State

Here we demonstrate how the model given in Eq. (8.4) can be obtained from the single-
particle Hamiltonian density (8.1). The single-particle Hamiltonian density (8.1) can be
transferred into the rotating frame of the pump lasers through H = UHUT + ik(OU)UT
and exploiting the unitary transformation

The corresponding many-body Hamiltonian expressed in the formalism of second
quantization then reads,

H= / B ME Y (Agala; + AT
=t
+ih [m&l +_ bt — H.c.} , (8.14)

A~ A~

where \il(z) = (Vy(2),¥1(2)

<=
o
w
N
_
o
=)
o

¥ 0 my
M= 0 r4n . Mo ; (8.15)
M Mgy L — LA +Ay)

with the elements

M3z = /\/l];g = hg, (eiszur + e_ikzd,) ,
Mgy = My = hGy (e**hy + e ) . (8.16)

The constant term [(w] +@,)/2+ (wy+@p)/2]I3x3 is omitted. The dynamics of the atomic
and cavity field operators can be determined by simultaneously solving the following
Heisenberg equations of motion ihd;, = [, H] and ihdsa; /bj = [aj/b;, H] — ihka; /b;.
Substituting the Hamiltonian (8.14) leads to the following set of coupled differential
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equations
L0 - ﬁz h n % [ —ikzat ikzAt \ 7
zha¢¢: <2m_25> ¥ + hGY (e a, +e a,) Ye,
L0 - ]52 h 7 x ( —ikz7T ikz7t n
Zha¢»r = (27’)’1, + 26) w/r + hgT (6 b+ +e bi) @be,
0 DA
iy = —h(Ag +iR)iy + 1G] / dze= =1, + ity
L0 S\ A * ikz, 71,7
zhaa_ = —h(Ag +ik)a- + hG] /dze F 1/’11%7
ihby = (A + in)bs + hG; / dze=H= g1,
O - ~ ar A
ihbe = ~h(Ay + iR)b- + hg; / dze I, + it (8.17)

If the relative atomic detunings Ay and A are large compared to the two-photon
detuning 0 and the atom-photon couplings Gy and G|, the atomic excited state reaches a
steady-state on a short time scale and its dynamics can be eliminated adiabatically. By
setting dibe = 0 in the Heisenberg equation of motion for Ve and omitting the kinetic
energy compared to the term proportional to (A + A}), we obtain the steady-state
field operator of the atomic excited state

~ 2 ) . N
$S 0y = ikz A —ikz A
i _(Ai_’_AT)[gi(e ay +e a,>¢¢
+Gr (e™2by + e7®b) oy. (8.18)
This steady-state field operator can be substituted into the Heisenberg equations of

motion (8.17) resulting in a set of six coupled nonlinear equations for {@ 1s 1,/%, a+, Bi}
given in Eq. (8.4).
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8.7 Appendix: Linearized Equations

In this appendix we describe the calculations leading to the collective excitation spectrum
presented in section 8.4 in more detail. Plugging the ansatz - (z,t) = ¥o-(x) + d9(x, t),
at(t) = ato+ dax(t) and Bi(t) = Bro + IS+ () into the mean field version of Eq. (8.4)
and performing the Bogoliubov transformation as it is already discussed in section 8.4
leads to the following linearized equations for the modes

wia' = —A,60") + Uy N 60l + QorS_5817 + Qers/? 55

+ Upp AL, 00" + Ug AL o0 + QorBYLowl T + QorBLoy (),
wial) = Atsaly) — Up N6 — Qp57680) — Qs 6p)

— Up AL00 | — U AT 6w " — Qi BEsuy™ — QB su (™,
wia™ = —A,60M) 4 Uy N7 sal + QorS_687 + QrsP s

+ Upp AL, 00" + Ugp AR 60 + QorBY 60" + QorBT oy,
wia™) = Arsa™) — Ug Nsal) — Qfp 57680 — 5@ s

— Upp AV o0l — Upp AP sl — s BYawl ) — Bl 6y,
woB) = —A,5807 + U N6 + Q5% 60l + QprsP* 0™

+ Uy BL,005") + UnBLowt ™ + Qg Al swl™ + Qipab oy,
wip\) = Azspl) — UnN78T) — QurS_sal) — Qurs®sa”)

— U BLLows™) = UnBY 50" — Qor AL, 00 — Qo AL 57,
wiB™ = A58 + UpNF B + Qg 5760 + 05850l

+ Ut BLL0u ") + U Bl swl ™) + Qg Al oy + gp At o,
wsBT) = Ar68T) — UpN:68Y) — QurS_da'™) — QrsMsal”

— UptBTo0l ™) — U B 0wl — QoA 07 — Qordt oy, (8.19)

where we introduced the following shorthand notations
alfe: = [ adleas,
Al = [ allede,
Bil¢: = [ B¢z,

Bile: = [ Biledz, (8.20)
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with
AiT = é’T (Ozoj: + €$2ik2a0:':> s
Af* _ 8T* (a(]i + e;QikzaOI) :
BiT — w(i]T (60:|: + e:F2ikzI80:F) ,
BY, =™ (Box + €742z (8.21)

The linearized equations for the atomic degrees of freedom read in

woy (" [Du — 1] 80 + hOg (2) oy

+ Usy (Af,80(7 + A% 60 + 44 504&‘) + 4t sal)

+ QOR (Bloal + Bloal”) + alrapl” + alnapt)

woy(”) = —ﬁ (D1 — pl" 60 — hQ% (2)d0) )

— Upy (A4.004 + 45,6017 4+ AlalH + at50))

_ QoR (Blroal” + Bl*6a™ + Al 057 + AL 6p)),
woylt [DT 2 — p o) + R (2) 0y

+ UOT (Bl.op" + BIop™) + B] 55“ +BL50))

+ Qi (Bioal” + Bsal™) 4+ Lol + atesl)),

_ 1 .o (= _
wipl™) = = [Dyo — " 04 — hOg(2)00]

h
— Uy (BLop\) + BLop") + Blop(") + Blop™)
— Qor (Bi*aai )+ B 50T 4 AtspY) 4 Ai*dﬁ&”) : (8.22)
where we introduce the shorthand notation Dy ; := —% + AU (2) + (—1)"% and p

denotes the chemical potential.

The set of equations (8.19) and (8.22) can be written in matrix form which results
in Eq. (8.13). Since we do not have an analytical steady-state solution for the condensate
wave functions and the cavity modes, we numerically diagonalize the Bogoliubov matrix
for a numerically determined steady-state solution to obtain the collective excitation
spectrum presented in Fig. 8.9.
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O Conclusions and Outlook

The publications presented above advance the growing field of research aiming for novel
many-body cavity QED setups to simulate new types of emergent quantum phenomena.

To present the research articles in a consistent manner, the necessary theoretical
background, which is needed to understand the studied systems and models, was
provided. The different methods and concepts covering the interaction of classical or
quantized matter with light fields in free space or inside resonators were then applied
to specific problems. Since the focus of the present thesis was to study systems with
continuous symmetries and light induced long-range interactions, we studied systems
where ultracold atom clouds are coupled to the plane wave modes of a ring resonator or
to two non-interfering light fields in free space.

The initially posed question whether the self-ordering phase transition in systems
with continuous symmetries leads to phases with new intruiging properties was answered
in several steps. To get a basic understanding of the underlying physics, we first studied
a classical model of a ring cavity with non-interfering pump fields. It revealed that
the system’s continuous symmetry can be broken for sufficiently large light intensities.
Tuning the relative intensity ratio between the two pump lasers allows the realization of
either a collective atomic recoil laser (CARL) or a self-ordered state with a constant
center-of-mass velocity.

This collective instability leading to a self-ordered state in a longitudinally pumped
ring cavity raised the question whether a similar effect could be obtained in free space.
In this case, the whole continuum of electromagnetic modes can be accessed, which
resulted in the prediction of the effect of spontaneous crystallization of ultracold atoms
in an optical lattice with emergent lattice spacing. This system allows the efficient
simulation of crystal-like structures with dynamic long-range interactions.

In a later work we again focused on ring cavities and showed that the self-ordered
state of a BEC in a transversally pumped ring cavity realizes a supersolid, which is a
direct result of the continuous translational symmetry of the system.

A particularly interesting direction in quantum gas cavity QED is the inclusion of
spin degrees of freedom. Thus, in a final step, we calculated the phase diagram for a
Spinor-Bose gas coupled to the counterpropagating modes of a ring cavity. This reveals
different non-trivial spin phases ranging from spin-waves with supersolid features to
topologically non-trivial states. In particular, the possibility to trigger a topological
phase transition by tuning the cavity pump parameters is a prominent feature of this
setup.

In conclusion, the present thesis shows, that light-induced collective instabilities in
systems with continuous symmetries allow the simulation of new non-trivial phases of
quantum matter. The light mediated long-range interactions result in emergent optical
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9 Conclusions and Outlook

lattices for the atoms which exhibit different properties compared to the externally
prescribed lattices in conventional quantum simulation setups. This makes these systems
an ideal tool to simulate new types of synthetic solid-state systems with ultracold atoms.

The findings of this thesis motivate the future study of related systems in a more gener-
alized context. Possible objectives and extensions would, for example, be generalizations
to higher dimensions and the analysis of the influence of quantum fluctuations on the
predicted quantum phase transitions. The extension of the spontaneous crystallization
effect in free space to spin degrees of freedom is expected to result in the emergence
of non-trivial spin-states. Furthermore, the study of similar setups for fermions are a
promising research direction. Another idea would be including atomic dipole-dipole
interactions to these models. In this case, long-range interactions with competing length
scales can lead to effects like frustration or the appearance of superlattices. In addition,
the supersolid features of the self-ordered phases imply that they could be used as
free-falling zero temperature masses for gravitational acceleration sensors.

Finally, it should be remarked that first experimental evidences of spontaneous
crystallization for a Bose-Einstein condensate in free space and the growing number of
experiments, which are closely related to the setups studied in this thesis, promise the
experimental realization of the proposed effects in the near future.
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Optical fibres confine and guide light almost unattenuated and thus convey
light forces to polarizable nano-particles over very long distances. Radiation
pressure forces arise from scattering of guided photons into free space while
gradient forces are based on coherent scattering between different fibre
modes or propagation directions. Interestingly, even scattering between co-
propagating modes induces longitudinal forces as the transverse confinement
of the light modes creates mode dependent longitudinal wave-vectors and
photon momenta. We generalize a proven scattering matrix based approach
to calculate single as well as inter-particle forces to include several forward
and backward propagating modes. We show that an injection of the higher
order mode only in a two mode fibre will induce a stationary tractor force
against the injection direction, when the mode coupling to the lower order
mode dominates against backscattering and free space losses. Generically
this arises for non-absorbing particles at the centre of a waveguide. The
model also gives improved predictions for inter-particle forces in evanescent
nanofibre fields as experimentally observed recently. Surprisingly strong
tractor forces can also act on whole optically bound arrays.

doi: 10.1088/2040-8986 /aa69{2
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10.1 Introduction

In an optical fibre, light is transversely confined and transmitted over very long distances
without attenuation. The field can be well decomposed in transverse modes, each of
them associated with a specific transverse field pattern and a corresponding longitudinal
propagation wave vector. For specially designed fibres as optical nano-fibres or hollow
core fibres a significant fraction of the light intensity is propagating in free space outside
the actual fibre material and can interact with particles in this region [10.1, 10.2]. Such
a geometry can either be realized by placing the particles inside a multi-mode hollow
core fibre [10.3, 10.4] or trap them close to the surface of a tapered nanofibre with
strong evanescent field components [10.5].

If one places a nanoscopic particle or even a single atom into the fibre fields, it will
significantly perturb the light propagation and redistribute the field among different
modes and propagation directions. As the light carries momentum, the corresponding
photon redistribution leads to a net optical force [10.5]. The magnitude and direction
of this force strongly depends on the fibre and particle geometry and the properties
of the injected field. For several particles coupled to the same fibre, collective scatter-
ing enhances these forces and creates strong inter-particle forces depending on their
relative distance. This leads to optical binding, selfordering and non-linear motional
dynamics [10.6-10.8].

In some recent work we exhibited that important properties of these forces can be
well understood from a generalized beam splitter approach involving only two fibre
modes and an additional free space loss mode [10.5]. Surprisingly this model also allows
to identify a parameter regime, where the total force on a particle points against the
wave-vector of the impinging light, i.e. we get a tractor beam force [10.9]. This feature
even persists for arrays of several bound particles.

Physically the tractor beam phenomenon is tight to the fact, that scattering from a
higher order to a lower order mode requires a momentum contribution from the particle
along the field propagation. Thus due to momentum conservation the particle is thus
pushed in the opposite direction. The momentum exchange is, however, smaller than
for backscattering a photon into the opposite direction. Hence for a more realistic
calculation one needs to include the backscattered fields and absorption as competing
processes.

Note that injecting phase coherent superpositions of light simultaneously into two
transverse modes can create 3D optical trapping positions along the fibre [10.10].
Particles in these traps can be moved along the fibre in any direction by moving the
traps via a relative phase control of the two modes in time [10.11]. This is different
from our tractor beam mechanism, which is independent of position along the fibre and
does not require external phase control.

Here we will investigate the properties and limitations of implementing such a generic
tractor beam mechanism for small beads trapped in the field of an optical two-mode
nanofibre. While a full numerical calculation using 3D finite element software is
possible [10.12], it does not allow to scan large parameter and size ranges. Hence it
is difficult to get good qualitative understanding and the whole range of possibilities
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Figure 10.1: Schematic picture of two micro-spheres trapped close to an optical two
mode fibre. In the presented model the spheres are approximated as
beam splitters and the fields are determined by the incoming and out-
going amplitudes. The red arrows denote the amplitudes for the first
(fundamental) mode and blue arrows characterize the second (higher
order) mode. The first index for the amplitudes defines the mode number
whereas the second index stands for the particle number. An analogous
picture holds for a particle in the field of a hollow waveguide [10.13, 10.14].

offered by such a system.

Hence to better get the central idea, we will first study a rather idealized two mode
model including only for forward scattering and some general absorption losses to
identify the key parameter region for the appearance of tractor forces. In a second step
we will generalize to a more realistic description including the backscattered fields and
loss to free space. While it seems difficult to find realistic favourable parameters for a
tractor forces in multi mode nanofibres, hollow core fibres seem much more promising.
Finally we go beyond the case of single particles and study how ordering and optical
binding can be combined with tractor forces.

10.2 Model

We consider N polarizable spherical particles within the field of a multimode optical
waveguide [10.13-10.15]. The beads in the field are modelled as effective beam-splitters
as shown in Fig. 10.1, which couple the local field mode amplitudes left and right of the
beam splitter. These mode amplitudes are connected via an effective scattering matrix
representing the underlying microscopic scattering processes integrated over the bead
volume. As the bead only interacts with a spatial fraction of the mode, this matrix
on the one hand includes forward and backward scattering of photons into the same
transverse fibre mode as well as on the other hand it allows cross-coupling between the
fundamental and the higher order transverse modes.

As depicted in Fig. 10.2 the amplitudes 0 < ¢;; < 1 describe forward scattering
processes (into the same mode for ¢ = j and into any other mode for i # j) the
reflection coefficients 0 < r;; < 1 describe reflections into the same mode as well as mode
mixing reflections into the other transverse mode (cf. Fig. 10.2). In principle all these
coefficients have to be derived from solving the corresponding Helmholtz equations for

127



10 Publication: Generating a Stationary Tractor Force via a Multimode Fibre

I =0

5%2]4— 199 {12 )

12 )Tzz

)

Figure 10.2: The fundamental processes which are described by the presented model.
All reflection processes are shown on the left side of the beam-splitter
and all transmission processes are shown towards the right side of the
beam-splitter. Of course, all processes are mirror symmetric and can also
occur into the opposite direction.

any specific implementation and boundary conditions. This has to be done numerically
or by fitting experimental results [10.5]. We will stay with a general approach for the
moment and only give some estimates for specific examples in Appendix A.

At this point we thus end up with four independent mode amplitudes connected via a
four-port beam splitter matrix. The most general matrix, which describes the occurring
processes as they are depicted in Fig. 10.2 takes the form

tneliﬁbu t2leli¢21 ruel:wu 7"216%)21
t1261¢12 t22€l¢22 leewu 7«22621/122

M4p = »,«Heiwu rmeiwm t116i¢11 t21€i¢>21 (10'1)
rwei%z T22€i7¢)22 t12€i¢12 t22ei¢22
It connects the four input and output fields of the jth particle via
Ch Ay
Cyj As
’ M 7 10.2
Bl,J v DLJ ( )
By Dy,

Due to the fact that photon losses are neglected within our treatment the matrix (10.1)
has to fulfil the unitary condition MlpM4p = 1. This ensures that the number of
photons is conserved. A generalization to include some internal loss or scattering to
other modes is straightforward and certainly helps to quantitatively model a specific
experiment, but will not give qualitatively new insights.

In order to make statements about a tractor beam behaviour of the injected light
fields, we need to calculate the light induced force onto the particles. This can be done
by following proven recipes [10.5, 10.6]. We calculate the forces acting on the particle
via a Maxwell stress tensor based approach. In the effective 1D geometry of a fibre, it
suffices to consider the Minkwoski’s photon momenta P inside a medium with refractive
index n

P = nhk. (10.3)
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The total momentum of the light propagating in the ith (i € {1,2}) mode at the left
and right side of the jth bead can be expressed in terms of the propagating photon
numbers

cne

Nij=—— (14052 + 1Bi4?) (10.4)
cne

= — (!Ci,j|2 + |Di,j|2> (10.5)

at each side of the bead. The momentum left and right of the beads then reads

Pl = Ny jhky + Ny hks, (10.6)
PR, = N{'hky + Ny'ihks. (10.7)

The force on the jth bead thus can be simply found from the missing momentum which
results in

Fj = hky(N{'; — N{%) + hka(Ng:; — Noy). (10.8)
Hence, the force onto the jth beam-splitter in terms of the amplitudes is given as

cnegh
Fj=— (k1(|Av % + |Buj|* = [Cujl* — |D1jl?)

+ko(|Azj|” + | Bajl? — |Caj” — [D2 ). (10.9)

For the remainder of this work we will always set | D; ;|* = 0 because only co-propagating
beams imposed from the left side are studied.

The presented model allows us to efficiently calculate the force onto N beads for
several different parameters. However, a full analytic treatment is rather tedious and
we will focus on some special cases of reduced complexity before including all possible
processes in the following. A concrete generic example can be found in Appendix A.

10.3 Forces for Two Forward Propagating Modes

While for very small point like scatterers there is a symmetry between forward and
backward scattered light [10.6], for larger or thicker objects forward scattering is usually
dominant with respect to reflection [10.5, 10.16] and the coupling between modes of
the same propagation direction dominates (see e.g. Appendix A). Therefore we first
consider larger particles of lower contrast and restrict our treatment to two different
transverse forward propagating modes and injection from a single side. This already
will show the essential physics without requiring a too complex analytic form.

10.3.1 Single Particle

To study the fundamental effects of transverse forward mode coupling, we first investigate
only a single particle in the fibre field, which will introduce coherent coupling between
the two propagating modes. In this special case the non-trivial part of the four port
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matrix (10.1) reduces to a two port matrix and the amplitudes left and right of the
beam splitter are connected via the following matrix

Gy Ay el tgei®) (A
=M = . . 10.1
<C2> 2 <A2 t12€'?12  tgpe’®22 | \ Ay )7 (10.10)
where we chose A1 = Ay 1, Ay = Az 1, C1 = C1,1 and Cy = Cy 1. The scattering process
changes the relative mode amplitudes and adds a light phase via e'?4. Here we can
choose ¢11 = 0 without any restriction and for a single particle also ¢2o will not change
the force expression.

The unitarity condition Mgp My, = I then reduces the number of physically relevant
parameters to

lin =t =1, (10.11)
ty = ta1 = V1 — £, (10.12)
12 =—¢n+(2n+1)T=¢, n €N, (10.13)

which finally leads to a much simpler form of the scattering matrix

, ( t _e—wm) |

T — ’ (10.14)

As a result the output amplitudes are connected with the input amplitudes via

C1 =tA; +€®V/1 — 124y, (10.15)
Cy = —e V1 — 124, +tA,. (10.16)

To calculate the force we insert this result into (10.9) which leads to the force onto a
single particle in two forward propagating modes

F2 = POy ) (2~ 1) (141 | 40P)
+V/T =12 (€0 A} Ay + 70 A, 47) ). (10.17)

The two wavenumbers (kp for the fundamental and ks for the higher order mode) differ
in general and fulfil the condition ki > ko.

Let us now look at the special translation invariant case, where only one of the two
modes is pumped and the other mode is only populated by scattered photons. There
are two possible cases to consider. On the one hand only the fundamental mode can be
pumped (A; # 0, A, = 0) and on the other hand only the higher order mode can be
injected (A; = 0, Ay # 0). The corresponding forces are shown in Fig. 10.3. One finds
that the force on the particle is always negative, if the higher order mode is chosen as
the input field. The negative force implies that for this configuration the particle is
pulled in the direction against the incoming beam. It is fundamental to state that due
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Figure 10.3: Force on a single particle in only forward propagating modes considering
only the fundamental (dashed line) or the higher order mode field (solid
line) as input. The blue line corresponds to ko = 0.9 k1, the red line to
ko = 0.8 k1 and the green line to ko = 0.7 k.

to translation symmetry of the system, this force is the same anywhere along the fibre
and the particle will be continuously pulled towards the source over very long distances.

Mathematically this behavior gets obvious, if one looks at the analytic expression for
the force (10.18). Assuming only a higher order mode input field (A; = 0, As # 0) the
force simplifies to

cneph

2

F2|a,—0 = (k1 = ko) (#2 = 1) |4 (10.18)
As mentioned above the conditions 0 <t < 1 and ko < k1 have to hold. Consequently,
the force is always negative in this case. Following the same procedure but using
the fundamental mode field as the input beam, leads to a positive force as depicted
in Fig. 10.3 following the conventional expectation.

Lets now discuss the essential physics leading to this somewhat counter intuitive result.
Due to the fact that the higher order mode contains a higher amount of transverse
momentum and thus less longitudinal momentum than the fundamental mode, the
scattering process between those modes (with amplitude t12) is generally suppressed.
Only some additional momentum provided by the bead closes this momentum gap and
allows for scattering between the two modes. This is quite analogous to the case of
Bessel tractor beams [10.17], but due to the presence of a light confining geometry the
range of the effect is infinite in the studied case.

10.3.2 Two Particles

As it has been seen and experimentally demonstrated in previous work [10.5] the two
mode forward scattering model also well describes the long range inter-particle forces
in this system. In the simplified case with no backscattering, however, the fields and
the force on the first particle cannot be affected by a second one downstream the mode.
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Figure 10.4: Force on the first (blue) and second particle (red) as a function of the
inter-particle distance d in only forward propagating modes. Only the
higher order mode field is considered as input field and ko = 0.9 k1. The
solid line corresponds to ¢ = 0.95, thus Eq. (10.12) implies t15 = 0.31.
The dashed line shows the results for t = 0.84 and t15 = 0.54. The black
circles indicate stable distances.

Nevertheless, the field impinging on the second particle is the result of the mode mixing
by the first and thus significantly depends on the relative distance allowing for stable
configurations. Using the scattering matrix approach the outgoing amplitudes after the
second particle can be calculated in the following manner:

CLQ o 1 . / Al,l
(05) v, (1) o

with A; ; and C; ; being the input and output fields with mode ¢ at the jth particle. In
addition, the free field propagation over a distance d (i.e. the propagation face shift) is
included via a transfer matrix which connects the amplitudes on the right hand side of
the first and the left side of the second beam-splitter

eilﬁd 0

Here we assume identical particles for simplicity so that the scattering process is the
same for both particles. Of course, the presented scheme can be generalized to more
particles in a straightforward manner. The force on the jth particle is then again defined
by Eq. (10.9).

To keep the discussion compact, we will restrict our treatment here to the two particle
case. Due to the fact that the analytical expression of the forces is rather lengthy, it
will be omitted here but the spatial dependence of the forces is presented in Fig. 10.4.
Interestingly, one finds that for certain distances between the two particles, both particles
can experience a negative or tractor force. Obviously as a next step one can ask for
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Figure 10.5: Optical binding distances d as a function of the transmission coefficient
t for two particles in forward propagating modes considering only the
higher order mode field as input. The blue line corresponds to ks = 0.9 k1,
the red line to k2 = 0.8 k1 and the green line to ko = 0.7 k7.

stable configurations of the two particles, i.e. configurations in which the particle’s
distance d remains constant and locked against small perturbations. Similar effects
have already been observed experimentally in free-space geometries [10.9]. This requires
both forces to have the same value (F; — F» = 0) and at the same time the conditions
% > 0 and % < 0 have to be fulfilled. These conditions imply that a restoring force
is acting if the particles deviate from their equilibrium position.

As an example we again choose the higher order mode as the input field (4; = 0,
As # 0). Interestingly, here stable distance configurations with a negative force on
both particles can be found for the chosen parameters. Therefore, the particles are
commonly attracted towards the beam source while they stay at a constant distance.
This corresponds to a stable collective tractor beam configuration for the particles.
Another interesting fact, which can be seen in Fig. 10.4 is that for certain distances
beyond the stable point, the tractor force on the second particle can even be stronger
than the one on a single particle. Hence the mode phase lock introduced by the first
particle creates an even stronger trap than on itself.

Note the lower cutoff of the distances in Fig. 10.5, which reflects the fact that stable
tractor beam configurations cannot be found for values of ¢ below certain values. In
particular the transmission ¢ by the first particle has to exceed a certain threshold value
in order to find a stationary two particle configuration. This is due to the fact that if
too much light is scattered to the fundamental mode by the first particle, the relative
mode amplitude ratio in the fibre between the two particles will be rather small and
the tractor force on the second particle will always be too small to follow the first one
against the beam propagation direction at a constant distance. Note that the particle
force can also be seen as the simplest possible form of optical binding as the scattering
of the first particle creates a series of dipole traps for the second one.
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10.4 Four Mode Model Including Backscattering

Lets now turn to a more realistic model. While the relative magnitude of backward
versus forward scattering can be small for large particles at low index contrast, it will of
course never be exactly zero [10.5]. As the momentum transfer per photon in reflection
is much larger than for forward mode mixing even a small amplitude could induce some
changes. In this section we will thus treat the whole 4-mode model as already described
above and investigate, how much even small backscattering at the particles position
can induce substantial force contributions. The scattering processes in this case are
described by the general 4-port matrix (10.1). Losses to other modes or absorption also
can be included by modifying the diagonal of this matrix.

Obviously the set of available parameters is rather large in this case and hardly can
be exhaustively treated. Nevertheless, at least in principle for any concrete bead size,
position, shape and mode geometry, they could be at least numerically calculated from
a generalized Helmholtz equation. Here we will use a different approach and look at
physically interesting parameter ranges. Once interesting parameters are found, one
could look for geometries, where one could implement such scattering properties. In
order to reduce the complexity we will first assume that both modes experience the same
forward scattering amplitudes and phase shifts with negligible backscattering into the
very same mode. This allows us to concentrate on the effects of mode cross-scattering
processes which are at the origin of interesting multi-mode physics. A concrete example
is presented in the appendix.

Based on the above arguments we first set:

tir =t22 =1, (10.21)
T =1z =0. (10.22)

We again also set the reference phases to zero (¢11 = ¢22 = 0). The unitary condition
for the full coupling matrix then again gives the following set of necessary conditions

tiz = to1, (10.23)
T12 = T21, (10.24)
tio = /1 — 12— 1%, (10.25)
$21 = —¢+ (2m — )m, (10.26)
Yo1 = —¢—(n+1/2)m, (10.27)
Yo =¢+ (n—1/2)7t, m,n €N, (10.28)
where we defined ¢ = ¢19. In this case the scattering matrix simplifies to
'¢t —e "o ';) ie”riy
i i
M, = e 0t12 Z'e—zférw ie 757“12 _6_(3¢t12 (10.29)
ie'rg 0 ety t

Of course the two-port system as it has been investigated in the previous section can be
reproduced by setting rio = 0.
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Figure 10.6: Force on a single particle including back-reflection and considering only
the higher order mode field as input field and ko = 0.9 k1. The blue line
corresponds to 12 = 0.95 and the red line to t12 = 0.8. The dashed line
illustrates the threshold on the reflection r12 defined by Eq. (10.25).

10.4.1 Single Particle

We again start with investigating the forces acting on a single particle along the fibre.
We follow the same procedure as presented above but with more amplitudes coupled by
a larger matrix. Using (10.9) in order to calculate the force leads to

cneoh

— (\A1|2 <k1 (7‘%2 + t%Q) + ko (7’%2 — t%Q))
HAf? (k1 (13 — ) + ko (v + 1))

+t12t (k)l — kg) (A1A§€i¢ + ATAQGfid))) . (10.30)

dp _
Fep =

For injection of only a higher order mode field (A; = 0) this reduces to

Fgp = —5 [tfz (ky — k1) + iy (k1 + kz)} | A2, (10.31)
which can be negative as long as the parameters fulfil the following condition:

2
T ki —k
12 1 2

t%z - /ﬁ—{—kg.

(10.32)

Fig. 10.6 shows an example how the backscattering process gives a negative force on
the particle as long as r12 is not too large. Note that as the two momenta are usually not
too different the condition on the smallness of back-reflection can be rather stringent.

10.4.2 Two Particles

As the scattering matrix (10.29) expresses the outgoing fields in terms of the incoming
fields the expression for the fields generated by two beads formally looks similar to the
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Figure 10.7: Force on two particles including back-reflection and considering only the
higher order mode field as input field and k2 = 0.9 k1. The blue line
corresponds to the force on the first and the red line to the force on the
second particle. Here, we chose t15 = 0.54 and r15 = 0.12. Black circles
indicate stable points.

case above. However, to find the amplitudes on two beads, the total transfer matrix
Mryr has to be found in accordance with the prescribed boundary conditions. Here
one immediately gets an infinite series of reflections and back reflections. As shown in
previous work [10.18] this can be efficiently calculated by rearranging the terms of the
matrix in a form which connects the amplitudes to the left and to the right of a particle
in the form

t ir1ot12 _t12€7i¢ _iT12t€7i¢
177"%2 171%2 171%2 1,,%
ir12tia t irjote ¢ t1oe~"
= 1-rf 1-ri, 1-rf, 1-r3,
MTF - t1oe _iei‘z’rlgt t __iriatis ) (1033)
2 2 P] 5
.1_T12 1_T1% 1'_7’12 1=riy
irppte’®  _ tige’ __iriatyo t
L=ris 1=ri, 1—rf, 1-r2,
so that
C12 A1
D12 Bia
“ | =Mgp-Py(d) -Mrp | 00|, (10.34)
Ca2 Ay
Da2 Bz
where P4(d) is the 4 mode generalized propagation matrix for the fields:
6ik1d 0 0 0
0 efikjd 0 0
Py(d) = ~ 10.35
4( ) 0 0 eszd 0 ( )
0 0 0 e*led

In this rearranged form, the amplitudes on the particles can be found by solving these
four equations for the required input and output fields. As the analytical expression even
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Figure 10.8: The minimal possible force at a stable point plotted for different values
of 712 and t12. The yellow dashed line marks the zero line. In the grey
region no stable solution exists at all and the black dashed line shows
the threshold for reflection and transmission imposed by Eq. (10.25).

for the single particle force is rather complex, we will not give it here and simply show
some numerical examples. We see that the presence of the second particle changes the
interaction between the particles and the fields in a much more complex way as above.
Indeed, both particles now are influenced by the presence and position of the other
one. This mechanism can lead to multi-stable optical binding effects as it has already
been shown in [10.19, 10.20]. Indeed, as demonstrated in Fig. 10.7 the force on the
second particle now exhibits small but spatially fast fluctuations due to the interference
of the reflected fields in addition to the larger oscillations from mode beating. Also
the force on the first particle is oscillating now. These oscillations are a consequence
of the interference between the incoming and backscattered fields. Here we see that
the effective total backscattered field can be less than for a single bead as the field
amplitudes from the two particles interfere like in a Fabry-Perot resonator driven with
a resonant wavelength. Hence we can find parameter ranges with an even bigger tractor
force than for a single particle. This can be enhanced by a collective mode coupling of
the two particles.

In general the distance of maximal tractor force on the first particle does not correspond
to a stable distance, but we find a large number of potentially stable distances. A fair
fraction of these correspond to a net negative force on both particles. Hence, we see
that also the full model allows for a many particle tractor beam configurations.

If we analyze this fact in more detail, we find that there exists a certain region of
parameters in which a stable two particle tractor beam comparable to the one which
has already been implemented in free-space geometries [10.9], can be realized . This
region corresponds to the one on the left side of the yellow dashed line in Fig. 10.8.
Obviously, in order to establish a negative tractor beam force the reflection as well as
the transmission coefficients between the two modes must not exceed a certain critical
value. On the one hand if the transmission is above a certain critical value no more
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stable point (i. e. points which fulfil the condition F; — F» = 0) can be found.) On the
other hand, if the reflection coefficient exceeds a certain value the force can no longer be
negative and the particles will always be pushed in the direction of the incoming laser
beam. This effect is related to the result for two particles in forward propagating fields
(cf. Eq. (10.32)). Nevertheless, due to the fact that the back-reflection for extended
objects is in general rather small, the necessary parameter regime can be reached in
some specific geometries like for example for beads trapped inside a two-mode hollow
core fibre (see Appendix A).

10.5 Conclusions and Outlook

We demonstrated that optical fibres supporting at least two transverse modes can be
the basis of translation invariant tractor beam implementations dragging particles and
even pairs of optically bound particles against the injected beam direction without the
need of any external control or feedback. The results are easily generalizable to several
particles. In practical implementations the remaining backscattering seems to be one of
the central obstacles to overcome here. For the implementation, only the higher order
mode has to be pumped via the one end of the fibre, where the particles should be
transported with hardly any restrictions on the bandwidth or coherence length. Apart
from being a neat physical mechanism, the tractor effect could be helpful in setups
where one plans to extract particles from a trap source and load them into a dipole trap
at the other end of the fibre [10.21].

In this work we have primarily shown that such tractor beams are theoretically
possible and given the necessary boundary conditions on the parameters to be achieved.
The main challenge in practice actually is to design the fibre in a way to maximize
cross coupling between two modes and minimizing loss to others. In a multi-mode fibre
the tractor force will be the bigger the higher the order of the injected mode and the
larger the amplitude of the fundamental mode at the particle position. For a hollow
core fibre coupling should be good using modes of the same symmetry as the T E Mg
and T'FE Msy mode with a particle of about wavelength size at its centre as it is shown
in the Appendix A.
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10.6 Appendix

A small particle placed inside the mode field of an optical waveguide or optical fiber
will locally perturb the field and change its propagation. If one considers positions
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Figure 10.9: Shape of the original (blue) and distorted mode function (real part orange,
imaginary part green) for a spherical bead of refractive index n = 1.25
and diameter 2 in the center of a rectangular waveguide for a waveguide
diameter a = 5.

significantly left and right of the bead, where near field effects can be neglected, the
propagation field can still be expanded in terms of the transverse eigenmodes of the
waveguide. For a bead made of linear optical material the corresponding expansion
coefficients on both sides are linearly connected by an effective transfer matrix.

The effect of the particle will be phase and amplitude changes of the modes induced by
light scattering between various forward and backward propagation modes. In addition,
some of the field could be absorbed or, equivalently, scattered to free space modes not
guided by the fiber so that the transfer matrix is not necessarily unitary. As the latter
effect cannot positively contribute to the tractor effect or inter-particle forces we will
neglect it for this calculation of the mode coupling coefficients.

To obtain the coefficients one needs to solve the corresponding Helmholtz equation
including proper boundary conditions, which for a detailed modelling requires rather
extensive numerical calculations as e.g. presented in [10.5, 10.12]. Here we are mainly
interested in the basic physics of the tractor force effect, which is contained in the
relative magnitude of the effective coupling between different transverse modes. As
shown above a strong tractor force requires stronger coupling of a mode to lower order
modes than to higher order modes as well as very low reflection. For only two modes
the coupling between the modes needs to be stronger than free space losses.

In order to keep the complexity low we thus refrain to a paraxial approximation for
the propagation of the fields. In this case the field evolution along a non-absorbing
bead can be approximated by the effective optical Schrédinger equation, where the bead
creates an effective potential for the transverse light field amplitude ¢ (r, ) propagating
along the fiber direction z [10.22]:

2 55 T Vopt(re) | ¥(ry). (10.36)

azw(rJ_) = m k‘

i
noko
In this case the optical potential of the bead

ng —n(rl)

Vopt (1) = (10.37)

2
2ng
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Figure 10.10: Shape of the original (blue) and the reflected mode function for a
spherical bead of refractive index n = 1.25 and diameter 2\ in the
center of a rectangular waveguide for a waveguide diameter a = 5.
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Figure 10.11: Mode coupling coefficients for the three lowest order symmetric modes
for a spherical bead of index n = 1.5 in the center of a rectangular
waveguide as function of bead diameter in units of the waveguide
diameter a = 9.

creates an effective local attractive potential which couples the various transverse modes.
Here n(r1)) is the bead refractive index distribution and ng the background refractive
index.

Below we will try to identify a favorable case for generating a tractor force in a simple
configuration. To show the qualitative behaviour we simply assume a perfect square
waveguide with with a certain diamater a [10.15] or a hollow guide with sharp (metallic)
boundaries [10.14] where the mode functions are simply given by harmonic functions
vanishing at the boundaries.

For a small refractive index of the bead and a not too large size, the effect of a bead
of diameter d on the field can then be simply estimated by the spatially accumulated
phase shift

eicb(u) =~ ei fod Vopt (r1)dz (10'38)

by field while traversing the bead and a small reflected component [10.13]. This is
shown in the example in Fig. 10.9 below, where we plot the original third order mode
function and its distorted form (real and imaginary part) after the bead on a cut along
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the x-axis. Similarly we can estimate the reflected contribution as shown in Fig. 10.10.

In this limit the mode coupling coefficients can then be simply obtained by projecting
the distorted and reflected fields onto the original modes. This will strongly depend
on position, size and refractive index of the bead. If we want strong overlap between a
higher order and a lower order mode it is thus favourable to put the bead at a position,
where the target mode has a high amplitude but the unwanted modes are low or strongly
varying. As an example here in Fig. 10.11 we show the case of a bead of varying size
exactly at the center of the waveguide where the first and third order mode amplitudes
are large, while others are small. We see that indeed the desired coupling between
mode one and two is about one order of magnitude bigger than the other couplings
and reflections. Hence, this configuration should lead to a sizeable tractor force for a
suitable particle size range.
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