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Zusammenfassung

Die Entwicklung verschiedener Atomkühlverfahren in den letzten Jahrzehnten eb-
nete den Weg zur Erforschung der Bewegung stark korrelierter Atome in optischen
Gittern. Idealisierte »klassische« optische Gitter, die von zwei gegenläufigen Laser-
strahlen gebildet werden, sind keiner Rückwirkung der in ihnen gefangenen Atome
ausgesetzt. Dies ändert sich, wenn das Licht in einem optischen Hohlraumresonator
hoher Güte eingeschlossen ist. In diesen Systemen werden Lichtfelder und die durch
sie induzierten Potentiale stark von den eingeschlossenen Teilchen beeinflusst und
somit integraler Bestandteil der Dynamik. Diese Rückwirkung erlaubt es, Atome
mittels Licht in optischen Resonatoren zu kühlen. Des weiteren lassen sich dadurch
effektive nichtlokale Wechselwirkungen zwischen Teilchen realisieren, da jegliche von
einem Teilchen verursachte Änderung des elektrischen Feldes von sämtlichen anderen
verspürt wird.

Die vorliegende Dissertation fasst meine Forschungsergebnisse zu Systemen kalter
Atome in optischen Hohlraumresonatoren zusammen. Sie gliedert sich thematisch
in drei Teile, die einem Hintergrundteil sowie den zwei unterschiedlichen studierten
Systemen entsprechen. Im ersten Forschungsteil untersuchen wir das Verhalten von
ultrakalten Atomen in einem Ringresonator. Dazu werden Konzepte und Methoden,
wie sie für die Beschreibung sowohl »klassischer« als auch von Stehwellenresonatoren
gebildeter, das heißt »gequantelter«, optischer Gitter angewandt werden, verallge-
meinert. Ein wichtiges Resultat dieser Arbeit ist, dass Näherungen, die für die eben
genannten Systeme üblicherweise durchgeführt werden, die Dynamik nicht mehr
adäquat beschreiben können. Im Speziellen zeigen wir, dass im von uns abgeleiteten
mathematischen Modell (ein verallgemeinerter Bose-Hubbard-Hamiltonoperator)
Kopplungen zu energetisch höher gelegenen Teilchenzuständen vorkommen, welche
die Systemdynamik nachhaltig beeinflussen. Dies hat wichtige Konsequenzen für
das Tunnelverhalten, wie wir durch Analyse von Quantensprungtrajektorien zeigen
konnten. Quantensprünge des Feldes haben stets signifikante Auswirkungen auf die
Teilchenbewegung. Diese konnten wir in einem Grenzfall, in dem sich die Dynamik
durch adiabatische Eliminierung der Hohlraummode vereinfachen lässt, vermittels
eines einfachen analytischen Modells begründen. Diese quantenmechanische Dynamik
führt zu starken nichtlokalen Bewegungskorrelationen und Teilchenverschränkung.
Ein besonders überraschendes Ergebnis der Arbeit ist, dass sich die Quantenkor-
relationen massiv von ihren klassischen Äquivalenten unterscheiden. Dies kann für
zukünftige Experimente, die den Übergang von der Quantenmechanik zur klassischen
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Zusammenfassung

Physik untersuchen, von Bedeutung sein.
Im zweiten Forschungsteil untersuchen wir das kollektive Phänomen der Selbstor-

ganisation in optischen Stehwellenresonatoren. Dabei befinden sich die Atome im
Lichtfeld eines Lasers und streuen Licht in den Resonator. Oberhalb einer kritischen
Laserintensität ordnen sich die Teilchen in einem bestimmten Muster an, welches
dem durch ihre eigenen gestreuten Photonen gebildeten Potential entspricht. Sie
fangen sich also in ihrer selber errichteten Falle. Numerische Simulationen zeigen,
dass Resonatorkühlen diesen Selbstorganisationsprozess auf langen Zeitskalen auszu-
lösen vermag, selbst wenn die ursprüngliche Lichtintensität des einstrahlenden Lasers
hierfür nicht ausreichend ist. Wir leiten eine Bewegungsgleichung für die Phasenraum-
verteilung der Teilchen her, die im Gegensatz zu früheren Arbeiten Fluktuationen
explizit berücksichtigt und somit das Verhalten auf langen Zeitskalen vorhersagen
kann. Diese nichtlineare Fokker-Planck-Gleichung erlaubt neue Einblicke sowohl in
den Selbstorganisations- als auch in den Kühlprozess. Darüber hinaus schlagen wir ein
neues effizienteres Kühlverfahren für Moleküle vor, das auf der Beimengung leichterer
vorgekühlter Atome beruht. Dies ist von praktischer Bedeutung, da konventionelle
Laserkühlverfahren für die meisten Moleküle aufgrund der im Vergleich zu Atomen
erhöhten Anzahl an Freiheitsgraden nicht angewendet werden können.
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Abstract

The investigation of the motion of strongly correlated atoms in optical lattices became
possible owing to the development of various atom cooling schemes during the last
decades. Idealised “classical” optical lattices, created by two counter-propagating
laser beams, are not subject to any back-action stemming from the confined particles.
This behaviour is altered when the light field is enclosed within a high-finesse optical
cavity. In such systems the trapped atoms strongly influence the intracavity light
field and, consequently, the light-induced forces. Therefore the optical lattice itself
becomes an integral part of the dynamics. This back-action is the physical ground for
cooling atoms within optical cavities. Furthermore, the interaction of all atoms with a
single common cavity mode induces non-local couplings between the particles because
any modification of the light field originating from a single particle is experienced by
all the others.
The present thesis summarises my research on systems of cold atoms in optical

resonators. It is divided into three parts, a background part and two parts devoted
to the two different systems studied. In the first research part we investigate the
behaviour of ultracold particles in ring resonators. To this end we generalise concepts
and methods frequently employed in the investigation of either “classical” optical
lattices or “quantised” lattices generated by standing-wave cavities. An important
result of this work is, that common approximations for such systems do not provide
an accurate description of the dynamics within ring resonators any more. Particularly,
we show that couplings to excited particle states appear in the model we have derived
(a generalised Bose–Hubbard Hamilton operator), which strongly alter the dynamics.
As we could show by analysing quantum jump trajectories, these couplings have
important consequences for the tunnelling behaviour of the particles. We could
motivate the occurring correlated particle-field jumps by means of a simple analytical
model in a limit, where the cavity mode can be adiabatically eliminated from
the dynamics. These genuine quantum effects lead to strong non-local motional
correlations and entanglement between the atoms. A surprising result of this work is,
that the quantum correlations strongly differ from their classical counterparts. This
may be applicable in experiments exploring the quantum-classical boundary.

In the second research part of the thesis we investigate the collective phenomenon
of self-organisation in optical standing-wave cavities. In this setup the atoms are
illuminated by a transverse laser beam and scatter light into the resonator. Above a
certain critical threshold laser intensity, the particles order themselves in a specific
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Abstract

pattern. Its form is related to the potential created by the scattered photons. There-
fore the atoms are aligned in a trap created by themselves. Numerical simulations
reveal that cavity cooling can trigger a self-organisation processes even if the initial
light intensity of the irradiating laser is insufficient. We derive an equation of motion
for the phase-space density of the particles, which contrary to previous work explicitly
takes into account fluctuations, allowing for prediction of the system behaviour on
long time scales. This non-linear Fokker–Planck equation offers new insights into the
cooling- and the self-organisation process. Furthermore, we propose a new cooling
scheme for molecules which is based on the admixture of lighter pre-cooled atoms.
This new proposal is of practical relevance because conventional laser cooling schemes
are not applicable for molecules due to their plethora of degrees of freedom.
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Chapter 1

General introduction and overview

The beginning of the twentieth century was a remarkable period since most of
the foundations of modern physics were developed at this time. Max Planck’s
revolutionary work on black body radiation from 1900 [1.1, 1.2], where he postulated
that energy can only be absorbed or emitted in discrete portions by oscillators, and
Albert Einstein’s discussion of the photoelectric effect from 1905 [1.3] are commonly
regarded as the birth of quantum mechanics. Paul Dirac’s subsequent studies of
particle-light interaction in the 1920s and his derivation of the Einstein coefficients for
spontaneous and stimulated emission [1.4, 1.5] established the basis for the theory of
quantum electrodynamics (QED). Later contributions by Fermi, Dyson, Feynman and
others [1.6–1.8] provided a deeper understanding of the interaction of quantised light
fields with quantised matter. Moreover, the mathematical formulation of quantum
electrodynamics as a field theory could also be applied very successfully to describe
the weak and strong forces of particle physics, which are responsible for radioactive
decay and describe the interactions within the atomic nucleus, respectively.
On the experimental side, it was as early as 1933 that R. Frisch could confirm

Einstein’s hypothesis, that absorption and emission of a photon by an atom are
associated with a recoil kick on the particle [1.9]. One of the most ground-breaking
experimental achievements of the twentieth century was without a doubt the real-
isation of the laser in 1960 [1.10] following a theoretical proposal from 1958 [1.11].
This invention favoured a vast expansion of research in atomic, molecular and optical
physics (AMO). Besides having huge experimental and theoretical impact by them-
selves, nowadays lasers are an indispensable tool in any quantum optics laboratory
around the world and also found their way into our everyday life. They are routinely
used for trapping and cooling atoms [1.12–1.14] and also provide a wide range of
applications as optical tweezers [1.13], for example in the investigation of DNA
strings [1.15] or for the manipulation of large living objects [1.16]. Based upon work
by Ashkin on light forces [1.17], Hänsch and Schawlow [1.18] and, independently,
Wineland and Dehmelt [1.19], proposed the Doppler cooling scheme in 1975. Since
then, a variety of novel schemes like, for example, polarisation-gradient cooling [1.20],
allowing for sub-Doppler cooling have been proposed [1.21]. In 1997, the Nobel Prize
was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for
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1 General introduction and overview

their contributions to laser cooling and trapping [1.22–1.24].
The possibility of cooling atomic gases allowed for the experimental realisation of

Bose–Einstein condensates (BECs) in 1995 [1.25, 1.26], which Eric A. Cornell, Carl
E. Wieman and Wolfgang Ketterle were awarded the Nobel Prize for in 2001 [1.27,
1.28]. This particular state of matter has been predicted by Einstein in 1925 [1.29,
1.30] based upon the Bose–Einstein distribution [1.31]. This genuine quantum-
mechanical phase is characterised by a macroscopic population of the lowest energy
state, where all particles behave like a single matter wave. In the same way as
light can show corpuscular behaviour, matter can also show wave properties. The
extremely low temperatures in the range of a few hundred nano-Kelvin to a few
micro-Kelvin required for the phase transition to happen could not be reached by
ordinary laser cooling alone. Indeed, an additional evaporative cooling technique
was applied [1.25, 1.26]. Since 1995, Bose–Einstein condensation has been realised
experimentally for a variety of atomic species [1.32–1.35].

1.1 Light forces, laser cooling and optical lattices

The general idea of light exerting mechanical forces on matter is not new, already
Johannes Kepler suggested the idea of radiation being responsible for the fact that
the tail of a comet always points away from the sun in his work De cometis from 1619.
Let us elaborate on the two radiative forces an atom can experience, the radiation
pressure force and the dipole force [1.36]. Even though they have different names
and physical interpretations, it is of note that they both stem from the very same
interaction of the atomic dipole with the electric field.

First, let us consider the situation of a two-level atom being illuminated by a plane
wave. Every time the atom absorbs a photon from the laser, a subsequent spontaneous
emission of one photon into free space follows on a time scale determined by the
atomic linewidth. This spontaneous emission process has no distinct direction and
hence does not contribute to any net force on average, yet there is a contribution to
force fluctuations and therefore to momentum diffusion. That is, for each absorption-
spontaneous emission cycle—on average—the momentum of one photon pointing
into the propagation direction of the wave is transferred to the atom. This is the
dissipative radiation pressure force and it is proportional to the spontaneous emission
rate of the two-level atom. Note that absorption-stimulated emission cycles do not
contribute to the force as the photon is emitted back into the laser propagation
direction.
Things change considerably when the atom is not illuminated by a single plane

wave but rather by two counter-propagating laser beams forming a standing wave. In
this setup the atom experiences a force proportional to the light intensity gradient,
the so-called dipole force. It occurs due to the interaction of the induced atomic
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1.1 Light forces, laser cooling and optical lattices

dipole with the laser, hence the name. Contrary to the radiation pressure force
caused by absorption-spontaneous emission cycles, the dipole force originates from
absorption-stimulated emission processes, where the atom absorbs a photon from one
beam and subsequently emits one into the counter-propagating beam [1.36]. Hence
every such cycle is associated with a momentum transfer of twice the momentum
carried by a single photon of a laser beam. The momentum of the field and the
particle are changed in this process but the field energy remains constant because
both light beams have the same frequency. Thus, photon redistribution in a standing
wave is a dispersive process rendering the force conservative. With increasing laser
power the dipole force becomes larger, as opposed to the radiation pressure force
which is bound by the atomic linewidth, independent of the light intensity [1.36]. We
conclude this discussion by noting that the dipole force is of great practical relevance,
especially in dipole traps [1.14] and optical lattices [1.37] to mention two important
examples.
Let us now briefly explain the basic idea of Doppler cooling. Due to the Doppler

effect the frequency of a laser beam appears higher to an atom moving towards the
laser and lower when it moves away from it. This can be exploited for cooling using
counter-propagating laser beams, which are both appropriately red-detuned with
respect to the atomic transition. Let us imagine an atom moving towards one of
the detuned lasers. Owing to the Doppler effect, the latter appears in resonance
to (and the co-propagating one farer detuned from) the atom and it experiences
different radiation pressures from the two beams [1.36]. On average this amounts
to a net friction force decelerating the particle. This way the atomic motion can
be cooled down to temperatures determined by the atomic linewidth. This limiting
temperature is called Doppler limit and is typically of the order of a few hundred
micro-Kelvin. The setup involving counter-propagating laser beams has been dubbed
optical molasses because the forces resemble the ones for a viscous fluid [1.38].
As mentioned, the dipole force allows for the creation of optical lattices. They

have been in the centre of attention since the middle of the 1990s, when Jaksch et al.
[1.39] showed that a dilute gas of cold atoms trapped within an optical lattice could
be mapped to the Bose–Hubbard model, a model originally proposed in the 1960s for
the computation of correlations in fermionic systems [1.40]. The great advantage of
optical lattices compared to actual solid-state systems is their controllability and the
quasi-absence of decoherence on experimental time scales [1.41]. The dipole force
and hence the depth of the lattice can easily be varied with the laser intensity and
various lattice geometries can be realised with different laser setups [1.41, 1.42]. The
quantum phase transition between a Mott insulator and a superfluid state for the Bose–
Hubbard model, as predicted in 1989 [1.43], could be demonstrated experimentally
with a Bose–Einstein condensate of ultracold atoms in 2002 [1.44]. Since then, optical
lattices have been applied very successfully for the realisation of otherwise inaccessible
condensed matter and solid-state systems [1.37], especially in one [1.45–1.47] and
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two dimensions [1.48]. The idea of simulating a quantum system with the help of
another quantum system goes back to Feynman [1.49]. Optical lattices are also an
important resource for quantum information and quantum computing [1.50–1.52].
New experimental directions include the investigation of Bose–Fermi mixtures [1.53]
or ultracold chemistry [1.54]. Furthermore, ultracold atoms play an important role
in quantum metrology [1.55], for example new proposals for more precise atomic
clocks are based on optical lattices [1.56].

1.2 Atoms in optical cavities

The last part of this general introduction is devoted to cavity quantum electrodynam-
ics (cavity QED), describing the interaction of quantised particles with the quantised
electromagnetic field within an optical resonator. Here, due to the longer interaction
times a significant back-action of the particles on the radiation field can be observed.
Indeed, in the strong-coupling regime of cavity QED, where the coherent processes
are much stronger than their dissipative counterparts, atom and field cannot be
treated as independent constituents of a joint system any more—much rather the
atom and the field have to be considered as one single entity. This behaviour has
been predicted theoretically by Jaynes and Cummings in 1963 [1.57], the predicted
vacuum Rabi splitting was experimentally demonstrated in 1992 [1.58]. A few years
later, light forces could be observed for the first time in optical resonators [1.59]. An
astonishing effect in the strong-coupling regime was demonstrated in 2000, namely
the possibility of trapping an atom in the field of a single photon [1.60–1.62].

Parallel to the experimental developments in the 1990s, the theoretical proposal of
exploiting the dissipation channels of optical resonators as a new resource for particle
cooling, called cavity cooling, was published by Horak et al. in 1997 [1.63]. The
theoretical understanding was improved in many subsequent publications [1.64–1.70]
and collected in a review paper by Domokos and Ritsch in 2003 [1.71]. The major
advantage of the proposed cavity cooling scheme as compared to usual laser cooling
schemes—like Doppler cooling—is, that it does not require any closed spontaneous
emission-repumping cycle for the particles. Conventional laser cooling schemes cannot
be applied to atoms with unfavourable level structures, molecules which have a wide
range of rotational or vibrational states [1.72, 1.73] or other polarisable objects like
nanoparticles [1.74]. In cavity cooling, the non-perfect mirrors allow for transporting
energy and entropy out of the system, independent of the internal structure of the
particle as long it is linearly polarisable [1.71]. Spontaneous emission, which is
indispensable for all previous laser cooling schemes, is not required as a resource.
Basically, one exploits the time lag of the field when reacting to the particle, which
amounts to a friction force experienced by the latter [1.71]. The limiting factor for
the achievable temperatures is the cavity linewidth, which can be much lower than
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the Doppler limit. We close this discussion on cooling by mentioning two important
experimental achievements, the successful observation of cavity cooling of a single
atom in 2004 [1.75] and the very recent realisation of sub-recoil cooling in 2012 [1.76].
As a generalisation of the Bose–Hubbard model for ultracold atoms in optical

lattices [1.39], Maschler and Ritsch [1.77] investigated the case of resonator-generated
lattices within a cavity, where all particles interact with each other via the common
trapping cavity mode. These effective interactions lead to a non-local correlated
motion of distant particles, which is in clear contrast to the behaviour of ultracold
atoms in “classical” optical lattices not subject to any back-action from the particles.
Furthermore, the phase diagram changes considerably when the light field is enclosed
in an optical lattice [1.78–1.82], involving areas of co-existing Mott insulator and
superfluid phases. In a closely related application, Mekhov et al. showed that the
quantum phases of ultracold atoms in classical optical lattices can be determined
by analysing the transmission spectra of appropriately placed optical cavities [1.83].
See [1.84] for a recent review.
Predicted in our group in 2002 [1.70] and experimentally demonstrated shortly

afterwards in 2003 [1.85], self-organisation of atoms within an optical cavity is
a striking example for a collective effect. In this setup the particles are directly
illuminated by a laser beam transverse to the cavity axis and scatter light from
the laser into the resonator. When the particles are homogeneously distributed,
these contributions add up destructively so that the particles do not experience any
force. Above a certain critical laser intensity, however, the atoms begin to scatter
in phase so that a dipole potential builds up. The more particles are trapped, the
deeper the potential gets. The atoms are thus trapped in a potential created by their
own scattered light, hence the name self-organisation. When all particles scatter in
phase, the intracavity light intensity scales with the square of the particle number, a
phenomenon known as superradiance [1.86]. The threshold condition for the laser
power was lately confirmed experimentally [1.87].

1.3 Outline of the thesis

This thesis is organised into three parts and contains three published articles and
one preprint. A short note at the beginning of each publication indicates the primary
contribution of the author of the present thesis to that article.

The first part provides an introduction into cavity QED and the physics of particles
in optical lattices. Basic physical models like the Jaynes–Cummings Hamiltonian
as well as some mathematical background needed for our research contained in this
thesis are presented. The Monte Carlo wave function simulation algorithm is also
introduced as we made heavily use of it in the publications found in the second part
of the present thesis.
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The second part is devoted to ultracold particles in ring resonators and contains
a publication, a preprint and additional material to the latter. The first article
describes a generalisation of the Bose–Hubbard model to optical lattices generated
by a ring resonator. Due to the changed boundary conditions we expected crucial
differences to the case of standing-wave cavities studied in [1.77, 1.80]. This is indeed
the case, one of the most striking differences emerging from this research was the
break-down of a simple lowest-band model. It proved to be non-sufficient for an
accurate description of the dynamics because in this approximation the standing-wave
lattice is recovered. The coupling of higher bands also causes entanglement and
correlations between the particles. The preprint is devoted to these topics, where we
employed an optomechanical approach for the case of two particles. Surprisingly, a
major difference to the classical case investigated by Gangl et al. [1.65, 1.66] could
be observed. Whilst classically the particles tend to anti-correlate their motion,
quantum-mechanically we have found the opposite behaviour of positive correlations.
The last part, finally, summarises our research on particle self-organisation in

optical resonators. It contains two journal articles together with an additional
chapter presenting details of the calculations not contained in the publications. In
the first article we derive a Fokker–Planck equation for the particle phase-space
density. This equation governs the time evolution beyond the mean-field limit on
longer time scales where correlations of fluctuations are taken into account as well.
In the second article we generalise this idea to an ensemble of different species.
We find that adding any extra species always lowers the laser power needed for
self-organisation. Additionally, we studied a sympathetic cooling scheme where heavy
particles—like molecules—can be efficiently cooled by admixing particles of a lighter
species, e.g. atoms, without the need of any direct particle-particle interactions.
Each chapter has its own bibliography, which are all gathered at the end of this

thesis, starting on page 153. Inevitably, some references appear there multiple times.
This thesis closes with a list of publications and conference contributions of the
author.
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Background to cavity QED and
optical lattices





Chapter 2

Cold particles in optical cavities

In this chapter we review some basic physical models and concepts of cavity QED
(cavity quantum electrodynamics) relevant for our work. In section 2.1 we introduce
the fundamental Jaynes–Cummings Hamiltonian, which describes the interaction
of a two-level atom with a single mode of the quantised electric field. Resonator-
generated optical lattices are introduced in section 2.3. The latter require techniques
allowing for the description of so-called open systems, i.e. systems in contact with
some environment—leading to dissipation and quantum noise. We present these
necessary tools in the intermediate section 2.2. Additionally, we also review the
Monte Carlo wave function simulations algorithm, a numerical integration technique
for the efficient computation of the time evolution of large systems. Such calculations
are ubiquitous in our research and therefore we heavily make use of this algorithm in
the present thesis.

2.1 The Jaynes–Cummings model
The interaction of a two-level atom with an isolated quantised light mode has first
been investigated by Jaynes and Cummings in 1963 [2.1]. A single light mode can
be addressed with the help of an optical cavity, the eigenfrequencies ω = nπc/L
(n ∈ N) of which being separated by the free spectral range ωfsr = πc/L [2.2]. Here
L denotes the cavity length. We assume one of those frequencies to be close to the
atomic transition frequency, so that we can neglect all other distant (in frequency
space) modes of the cavity, see figure 2.1. This system is omnipresent in the field of
quantum optics and lies at the heart of cavity QED. Due to its importance for our
research we shall present it here in more detail.
The electric field operator for a single mode reads [2.3]

E(x) = i

√
~ωc

2ε0V
(a− a†)u(x)e, (2.1)

where V is the mode volume and u(x) the mode function. We have assumed the latter
to be real because we will consider the case of sinusoidal mode functions throughout
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Figure 2.1: Illustration of the frequencies of the system. The cavity is transmissive for certain
discrete frequencies which are separated by the free spectral range (solid line).
The atomic line (dashed) is close to a single cavity mode and far off-resonant to
all the other resonator modes.

this thesis. The polarisation vector is denoted by e and the cavity frequency by ωc.
Photons are created and annihilated by the bosonic operators a† and a. Denoting by
x the direction along the cavity axis, the fundamental mode of a Fabry–Perot cavity
with spherical mirrors is periodic in this direction with Gaussian shape in the two
transverse directions near the cavity centre [2.2],

u(x) = cos(kx)e
− y2+z2

w2
0 . (2.2)

The width of the Gaussian is called mode waist and also appears in the mode volume

V =
∫ L

0
dx
∫∫

R2
dy dz|u(x)|2 = π

4w
2
0L. (2.3)

We assume the two-level atom to be confined along the cavity axis, so that we
are left with an effective one-dimensional system. In dipole- and long-wavelength
approximation the interaction Hamilton operator reads [2.3]

Hint = −d ·E(x). (2.4)

Expressing the dipole operator d in the ground- and excited states |g〉 and |e〉 of the
atom yields

Hint = −i~g(x)(σ+ + σ−)(a− a†), (2.5)

with the coupling strength g(x) =
√

ωc
2~ε0V

〈g|d · e|e〉 cos(kx), the wave number k
and the operators σ+ := |e〉〈g| and σ− := |g〉〈e| describing the excitation and the
de-excitation of the atom, respectively. Four different physical processes are contained
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2.1 The Jaynes–Cummings model

in this Hamiltonian, two of them energy-conserving and two non-energy-conserving.
The former are

• σ+a—absorption of a photon and excitation of the atom

• σ−a
†—emission of a photon and de-excitation of the atom

and the latter

• σ−a—absorption of a photon and de-excitation of the atom

• σ+a
†—emission of a photon and excitation of the atom.

The non-energy-conserving terms are usually neglected in the rotating wave approx-
imation (RWA). The justification therefor can be seen in an interaction picture with
respect to the free evolution

H0 = ~ωca
†a+ ~ωaσ+σ−. (2.6)

Performing this transformation one observes that the energy-conserving terms rotate
with the difference of the frequencies, whereas the non-energy-conserving terms
rotate with the sum of them. The RWA consists of neglecting such rapidly oscillating
terms [2.3].
Including the centre-of-mass momentum of the atom with mass m, the complete

Hamiltonian reads

H = p2

2m + ~ωaσ+σ− + ~ωca
†a− i~g(x)(aσ+ − σ−a†). (2.7)

We will, however, ignore the motional degrees of freedom for the moment and the
following considerations. First of all, we notice that the Hamiltonian commutes
with the excitation operator N := a†a + σ+σ−, i.e. the Hamiltonian only couples
states |g, n〉 (atom in the ground state and n photons in the cavity) with |e, n− 1〉
(atom in the excited state and n − 1 photons in the cavity). Its ground state is
|g, 0〉. Consequently, the Hamiltonian can be decomposed as H = ⊕

nHn, where
Hn only acts on the subspace (called manifold in this context) with n excitations,
spanned by the vectors |e, n− 1〉 and |g, n〉. The Hamilton operator Hn can easily
be diagonalised within this two-dimensional manifold. Its eigenstates

|+, n〉 = cosϑn |e, n− 1〉+sinϑn |g, n〉 (2.8a)
|−, n〉 = −sinϑn |e, n− 1〉+cosϑn |g, n〉 (2.8b)

are called dressed states [2.3]. They are neither atomic nor photonic excitations but
combinations of both. This means that the two independent systems—atom and
cavity—have been replaced by a single entity—the joint atom-cavity system—due
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2 Cold particles in optical cavities

to the interaction. Defining the detuning ∆ := ωc − ωa and Ωn :=
√

∆2 + 4g2n, the
mixing coefficients are found to be

cosϑn =
√

Ωn −∆
2Ωn

(2.9a)

sinϑn =
√

Ωn + ∆
2Ωn

. (2.9b)

The corresponding eigenenergies are

E±,n = −~∆
2 + ~ωcn±

~
2Ωn. (2.10)

The two levels within a manifold are separated by the detuning ∆ for a non-interacting
system, the interaction increases the splitting to Ωn. At resonance, the energy gap is
∆En = E+,n − E−,n = 2~g

√
n, see figure 2.2. The cavity frequency ωc determines

the energy difference between the manifolds, cf. figure 2.3 for an illustration. The
splitting of the (without interaction degenerate) lowest energy manifold at resonance,

∆E1 = E+,1 − E−,1 = 2~g, (2.11)

is known as vacuum Rabi splitting or normal mode splitting. To be visible, the
interaction strength needs to be much larger than the atomic and the cavity linewidth
(strong-coupling regime). Experimentally, it has first been observed by Thompson et
al. in 1992 [2.4].
Up to now we have considered an immobile atom, so let us briefly investigate

the case of a moving particle. The position-dependent coupling strength causes
a corresponding spatial variation of the energy splitting. The Jaynes–Cummings
interaction can be treated in second-order time-independent perturbation theory in
the dispersive limit |∆| � g

√
n to obtain the shifts

∆Eg,n ≈ ~g2(x) n∆ (2.12a)

∆Ee,n−1 ≈ −~g2(x) n∆ (2.12b)

of the bare atom-resonator system for the manifold containing n excitations. For
negative detuning, ∆ < 0, the levels are repelled whereas in the opposite case ∆ > 0
the spatial modulation causes an attraction of the levels. The ground state |g, 0〉
remains unshifted. See figure 2.4.

2.2 Open systems
The Jaynes–Cummings Hamiltonian describes the idealised situation of a perfectly
closed system without losses like spontaneous emission or photons leaking out of the
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|−, n〉

|+, n〉

2h̄g
√
n

E

∆

Figure 2.2: Illustration of the avoided crossing for the manifold containing n excitations. The
gap increases with increasing excitation number n.
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Figure 2.3: Illustration of the energy levels of the bare system (left) and of the dressed states
(right) for two manifolds containing n and n+ 1 excitations, respectively. The
splitting increases with increasing excitation number n.
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|g, 2〉
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Figure 2.4: Spatial variation of the energy levels for ∆ < 0 (off scale). The splitting increases
with increasing excitation number n.

resonator. Of course, this assumption is subject to failure when it comes to describing
actual experiments—they inevitably always interact with their environment, intro-
ducing (quantum) noise to the system of interest. Albeit an unwanted property in
many situations (and one strives hard minimising it), it is an absolutely indispensable
feature rather than a bug for many other applications. Cavity cooling, for example,
requires such a dissipation channel for taking entropy out of the system [2.5–2.7].
Furthermore, damping mechanisms allow for monitoring the system and obtaining
information about the atoms and the light confined within the cavity.
The mathematical description of quantum noise can be done in a twofold way—

either in the Schrödinger picture for the density matrix or with the help of stochastic
Heisenberg–Langevin equations in the Heisenberg picture. Naturally, both formula-
tions are equivalent. The classical analogon would be the Fokker–Planck equation
describing the time evolution of the probability density, which is equivalent to a
set of stochastic differential equations for the quantities of interest [2.8] (cf. also
section 8.1).

2.2.1 Heisenberg–Langevin equations

Let us first describe the influence of a heat bath with many degrees of freedom on
a “small” system in the Heisenberg picture. In quantum optics the environment
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2.2 Open systems

Figure 2.5: Schematic view of the coupling between a system and its surrounding environment.
The interaction between the system operator c and the bath operators b(ω) with
strength B(ω) is described by the Hamiltonian (2.14b). We are interested in the
time evolution of a system operator A.

consists of all modes of the surrounding electromagnetic field. We shall present the
derivation following [2.9].
We start from the idealised Hamiltonian

H = Hsys +Hbath +Hint (2.13)

with

Hbath = ~
∫ ∞
−∞

dωb†(ω)b(ω) (2.14a)

Hint = i~
∫ ∞
−∞

dωB(ω)
[
b†(ω)c− c†b(ω)

]
. (2.14b)

Hsys is a generic Hamiltonian containing variables of the small system of interest
only. The operators b(ω) and b†(ω) are bosonic annihilation and creation operators
fulfilling the commutation relation[

b(ω), b†(ω′)
]

= δ(ω − ω′) (2.15)

and c is an operator of the small system mediating the interaction with the environ-
ment. Our goal is to find an equation of motion for an arbitrary system operator A.
See figure 2.5 for a sketch. To this end we formally integrate the equation for the bath
operator b(ω) and plug in the result into the equation for A. As we will see, quantum
noise and damping will be introduced to the latter due to the interaction (2.14b).
The Heisenberg equations of motion derived from the Hamilton operator (2.13)

are

ḃ(ω) = −iωb(ω) + B(ω)c (2.16a)

Ȧ = 1
i~

[A, Hsys] +
∫

dωB(ω)
(
b†(ω)[A, c]− [A, c†]b(ω)

)
. (2.16b)
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The formal solution for the bath operator is

b(ω) = b0(ω)e−iω(t−t0) + B(ω)
∫ t

t0
dt′e−iω(t−t′)c(t′). (2.17)

Substituting this result into the equation (2.16b) for A yields

Ȧ = 1
i~

[A, Hsys] +

+
∫

dωB(ω)
(
eiω(t−t0)b†0(ω)[A, c]− [A, c†]e−iω(t−t0)b0(ω)

)
+

+
∫

dωB2(ω)
∫ t

t0
dt′
(
eiω(t−t′)c†(t′)[A, c]− [A, c†]e−iω(t−t′)c(t′)

)
. (2.18)

At this point we apply the first Markov approximation

B(ω) =
√
κ

π
, (2.19)

i.e. a frequency-independent coupling to the reservoir. Its most striking consequence
is the fact that the resulting equation for A is now a first order differential equation.
This means that the future behaviour of any operator is fully determined by the
value of all system operators in the present. Furthermore, we use the representation∫ ∞

−∞
dωe−iω(t−t′) = 2πδ(t− t′) (2.20a)

of the Dirac δ-function and the relation∫ t

t0
dt′c(t′)δ(t− t′) = 1

2c(t). (2.20b)

Moreover, we define an “input” field

bin(t) := 1√
2π

∫
dωe−iω(t−t0)b0(ω) (2.21)

satisfying [
bin(t), b†in(t′)

]
= δ(t− t′). (2.22)

Putting everything together we obtain the Heisenberg–Langevin equation

Ȧ = 1
i~

[A, Hsys]− [A, c†]
[
κc+

√
2κ bin(t)

]
+
[
κc† +

√
2κ b†in(t)

]
[A, c] (2.23)

for the system operator A, where the input operators are to be taken as noise terms.
Setting A = c = a as an example, we obtain the well-known quantum Langevin
equation

ȧ = 1
i~

[a,Hsys]− κa+
√

2κ ain(t) (2.24)

for a decaying cavity mode a.
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2.2.2 Master equation
The interaction of the small system (e.g. an experimental setup) with the surrounding
environment can also be described in the Schrödinger picture. Instead of time-
dependent operators like in the Heisenberg picture, one considers a time-dependent
density operator ρtot and static operators. The subscript “tot” refers to the compound
setup of the small system together with the bath. Its time evolution is governed by
the von Neumann equation

ρ̇tot = 1
i~

[H, ρtot] (2.25)

with an Hamiltonian of the form (2.13). Usually, one is not interested in the evolution
of the total density operator but rather in its counterpart ρ describing the small
system only. It is obtained by tracing over the bath variables,

ρ := Trbath (ρtot) . (2.26)

In the same way as we have derived an effective equation for an arbitrary system
operator A in the previous section, we now strive to find an evolution equation for ρ.
We again follow the line of [2.9] but skip the details of the calculation for brevity and
only mention the main steps and ideas. One starts by formally integrating the von
Neumann equation (2.25) in the interaction picture with respect to the free evolution
H0 = Hsys +Hbath. This solution is plugged back into the evolution equation (2.25)
iteratively twice and subsequently differentiated with respect to time yielding an
integro-differential equation for ρtot assuming an initially factorised density operator
ρtot(0) = ρ(0)⊗ρbath. Furthermore, one makes a weak coupling assumption, meaning
that the reservoir density operator is not significantly affected by the interaction, in
contrast to the system density operator which describes a much smaller (and hence
easier to perturb) system. Mathematically, this is expressed by the factorisation
assumption

ρtot(t) ≈ ρ(t)⊗ ρbath ∀t, (2.27)
which results in an integro-differential equation for ρ. As last step one makes the
Markov approximation assuming the bath autocorrelation time being much faster
than the time scale on which ρ(t) evolves on, to finally end up with a first order
differential equation for ρ. For a system-bath interaction like (2.14b) one finds the
master equation

ρ̇ = 1
i~

[Hsys, ρ] + Lρ. (2.28)

The last term is called Liouvillean and has the Lindblad form [2.10, 2.11]

Lρ = κ
(
2cρc† − c†cρ− ρc†c

)
. (2.29)

Like for the Heisenberg–Langevin equations, knowledge of the system density operator
at present suffices to compute its value at all future times.
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2 Cold particles in optical cavities

We have assumed the surrounding bath to be in its vacuum state when writing
down the Liouvillean (2.29), an assumption widely used in quantum optics. This is
justified because the number of thermal excitations of modes with optical frequencies
(ω ∼ 400–800THz) at room temperature tends to zero. In situations where this
approximation is not adequate, the Liouvillean adopts the form

Lρ = κ(n̄+ 1)
(
2cρc† − c†cρ− ρc†c

)
+ κn̄

(
2c†ρc− cc†ρ− ρcc†

)
, (2.30)

with n̄ the mean occupation of the mode with frequency ω. For an environment at
temperature T it is determined by the Bose–Einstein distribution [2.12]

n̄(ω, T ) = 1

e
~ω

kBT − 1
. (2.31)

We shall now very briefly present a numerical method for solving the master
equation (2.28) frequently used in our work before coming back to the cavity QED
system consisting of a single atom interacting with a single mode—this time including
damping.

2.2.3 Monte Carlo wave function simulations
Even though being an equation for the reduced density matrix of the “small” system
of interest only, the master equation (2.28) may still be computationally very hard
to integrate for more complicated systems. As an example occurring in our work,
consider two moving particles interacting with a single cavity mode. The Hilbert
space of such a system can easily consist of several thousand dimensions, making it
virtually impossible to directly solve the master equation numerically, both in terms
of execution time and memory consumption. In such situations the “quantum jump”
approach of the Monte Carlo wave function simulation algorithm can be employed.
Instead of propagating a large density matrix of dimension d × d, one repeatedly
solves the stochastic time evolution for state vectors of dimension d × 1 with a
different random number seed for each trajectory [2.13–2.15]. Each trajectory evolves
independently from the others so that many of them can be computed in parallel.
This renders the algorithm very efficient for execution on high performance computing
(HPC) clusters. For large ensembles the mean of all trajectories converges towards the
full solution of the master equation. Besides its numerical advantages, the quantum
trajectory method is also a powerful tool for unravelling the density matrix dynamics,
i.e. to depict the microscopic behaviour of the system [2.16]. A nice example for this
is the description of quantum self-organisation found in reference [2.17].
Let us now briefly describe the algorithm [2.3, 2.15]. We consider the master

equation
ρ̇ = 1

i~
[H, ρ] + Lρ (2.32)
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containing the general Liouvillean

Lρ =
∑
n

(
JnρJ

†
n −

1
2J
†
nJnρ−

1
2ρJ

†
nJn

)
. (2.33)

The Jn are called jump operators. As an example, the jump operator for a decaying
cavity is J =

√
2κa. Introducing the non-Hermitian Hamiltonian

HnH := H − i~
2
∑
n

J†nJn (2.34)

the master equation (2.32) can be rearranged to

ρ̇ = 1
i~

(
HnHρ− ρH†nH

)
+
∑
n

JnρJ
†
n. (2.35)

Its first part will describe damping via a non-unitary time evolution whereas the
second part will be responsible for quantum jumps at randomly chosen times according
to a special selection criterion.
The Monte Carlo wave function method time step consists of two parts, a non-

unitary time step and a possible quantum jump afterwards. The state vector is
re-normalised after each time step.

1. Non-unitary evolution—The state vector is first evolved for a short time δt
according to the Schrödinger equation containing the non-Hermitian Hamilto-
nian (2.34). In lowest order this gives∣∣∣ψ1(t+ δt)

〉
= e−iHnHδt/~ =

(
1− iHnHδt

~

)
|ψ(t)〉+O

(
δt2
)
. (2.36)

As a consequence of the non-Hermiticity of the Hamiltonian, the norm of |ψ(t)〉
is not preserved and decreases,∥∥∥∣∣∣ψ1(t+ δt)

〉∥∥∥2
=
〈
ψ(t)

∣∣∣∣∣
(

1 + iH†nHδt

~

)(
1− iHnHδt

~

)∣∣∣∣∣ψ(t)
〉

=

= 1− iδt

~

〈
ψ(t)

∣∣∣HnH −H†nH

∣∣∣ψ(t)
〉

+O
(
δt2
)
'

' 1− δt
∑
n

〈
ψ(t)

∣∣∣J†nJn∣∣∣ψ(t)
〉

=:

=: 1−
∑
n

δpn =: 1− δp. (2.37)

2. Quantum jump—The second step contains the possibility of a quantum jump.
To this end we draw a random number ε uniformly distributed between zero
and one and compare it to the loss of the norm δp. We have to distinguish two
cases.
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2 Cold particles in optical cavities

• ε ≥ δp. This will be the more probable case since δp� 1. No quantum
jump occurs and the state vector is just re-normalised,

|ψ(t+ δt)〉 =
∣∣ψ1(t+ δt)

〉
√

1− δp
. (2.38)

• ε < δp. In this case a quantum jump occurs and the new normalised
state vector is chosen among the different states Cn |ψ(t)〉 according to
the probability law Πn = δpn/δp (∑n Πn = 1),

|ψ(t+ δt)〉 = Cn |ψ(t)〉√
δpn/δp

. (2.39)

It can be shown that this procedure is on average equivalent to the solution of the
master equation [2.15], i.e. that

ρMC(t) = 1
N

N∑
j=1
|ψj(t)〉〈ψj(t)| (2.40)

converges towards the solution of the master equation (2.32) as the number of
trajectories N tends to infinity.
A quantum jump corresponds to the application of a specific jump operator on

the stochastic state vector. Quantum jumps can therefore be interpreted as a
measurement event, where e.g. a leaked photon is detected outside of the resonator
for J ∝ a. The non-Hermitian Hamiltonian is also called “conditional Hamiltonian”
because it describes the system dynamics under the condition that no quantum jump
occurs.
The numerical implementation of the algorithm is simple for small systems with

few dimensions, for larger systems (like the ones considered in our work) additional
considerations have to be made to minimise the usage of computer resources. One
very efficient attempt in this direction is the C++QED framework developed by
A. Vukics [2.18, 2.19], which presents an ideal basis for the numerical implementation
of the quantum systems considered in this thesis.

2.3 Resonator-generated optical lattices
After the mathematical excursus concerning the description of open systems we now
return to the model considered in section 2.1 to apply these techniques. In contrast
to the presentation there, this time we explicitly take into account resonator losses as
well as spontaneous decay of the atom. We will in particular concentrate on a regime
where the excited atomic state can be adiabatically eliminated from the dynamics,
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2.3 Resonator-generated optical lattices

leading to an effective model for the external particle degrees of freedom and the
resonator mode only. The resulting model is one of the most important fundaments
of the work considered in this thesis.
We again consider a single two-level atom coupled to a single mode. Not only do

we include dissipation, we also add an external drive of the cavity mode via a laser
shining through one of the cavity mirrors. Its pump strength is denoted η. In a
frame rotating with the pump laser frequency ωp the Hamiltonian reads [2.6]

H = p2

2m − ~∆ca
†a− ~∆aσ+σ− − i~g(x)

(
aσ+ − σ−a†

)
− i~η

(
a− a†

)
. (2.41)

Here we have introduced the detunings of the cavity and the atom from the laser
as ∆c := ωp − ωc and ∆a = ωp − ωa, respectively. Denoting by 2κ the decay rate
of cavity photons and by γ the polarisation decay rate of the atom, the Liouvillean
superoperator reads

Lρ = κ
(
2aρa† − a†aρ− ρa†a

)
+ γ (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (2.42)

Note that we have assumed the environment to be in its vacuum state (T = 0) as
previously discussed. The master equation containing (2.41) and (2.42) is equivalent
to the Heisenberg–Langevin equations

ȧ = (i∆c − κ)a+ g(x)σ− + η + ξa (2.43a)
σ̇− = (i∆a − γ)aσ− + g(x)aσz + ξσ. (2.43b)

These are non-linear equations because of the appearing term aσz. The white noise
operators ξa and ξσ fulfil [2.9] (cf. also equation (2.22))[

ξa(t), ξ†a(t′)
]

= 2κδ(t− t′) (2.44a)[
ξσ(t), ξ†σ(t′)

]
= 2γδ(t− t′). (2.44b)

We now consider a situation where the excited atomic state is very weakly populated
(low saturation regime), which can be achieved for either large detuning ∆a or large
decay γ. In this limit we can perform a bosonisation of the atomic dipole, i.e. virtually
extend the two levels to an infinite ladder as for a bosonic mode [2.7]. This means
that the population inversion operator σz = |e〉〈e| − |g〉〈g| is replaced by its mean
value 〈σz〉 and the commutator [σ−, σ+] = −σz → −〈σz〉 is now a c-number. In
principal its value has to be computed self-consistently, but in the low saturation
regime it may readily be set to 〈σz〉 = −1. This way the non-linear correlation
aσz is removed from the Heisenberg–Langevin equation (2.43b) and we obtain a
linear set of equations. This regime is particularly interesting for the description
of polarisable particles with no significant internal excitations, i.e. in the limit of
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2 Cold particles in optical cavities

vanishing spontaneous decay [2.7]. The excited atomic state can now be adiabatically
eliminated from the dynamics. The steady-state value of the polarisation operator is
found to be [2.7]

σ− = g(x)a
i∆a − γ

. (2.45)

For the approximation to be valid we require the population of the excited state to
remain small,

〈σ+σ−〉 = g2(x)
γ2 + ∆2

a

〈
a†a

〉
� 1. (2.46)

For further convenience we define the light shift per photon

U0 := g2
0∆a

γ2 + ∆2
a

(2.47)

and the incoherent scattering rate

Γ0 := g2
0γ

γ2 + ∆2
a
. (2.48)

Here the coupling has been chosen to g(x) = g0 cos(kx). The new Heisenberg–
Langevin equation for the field,

ȧ =
(
i
[
∆c − U0 cos2(kx)

]
−
[
κ+ Γ0 cos2(kx)

])
a+ η + ξa, (2.49)

clearly demonstrates the dispersive and absorptive effects of the atom. Alternatively,
we can also substitute the polarisation (2.45) into the Hamiltonian (2.41) and the
Liouvillean (2.42), yielding

Heff = p2

2m − ~∆ca
†a+ ~U0a

†a cos2(kx)− i~η
(
a− a†

)
(2.50a)

and
Leffρ =

[
κ+ Γ0 cos2(kx)

] (
2aρa† − a†aρ− ρa†a

)
. (2.50b)

In the limit of large detuning, |∆a| � γ, the particle-induced terms approximately
read U0 ≈ g2

0/∆a and Γ0 ≈ γg2
0/∆2

a so that we can safely neglect any effects stemming
from spontaneous emission, Γ0 � κ. In this limit the particle mainly acts as a moving
refractive index, shifting the cavity resonance frequency according to its position
relative to the mirrors.
The Hamilton operator (2.50a) describes a particle moving within a resonator-

generated optical lattice as the depth ~|U0|a†a of the periodic potential is now a
fluctuating quantum operator instead of a simple c-number. For negative detuning,
∆a < 0, the particle is attracted towards the points of maximal light intensity and
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2.4 Mechanical effects of light in optical resonators: Forces and cooling

hence called a high-field seeker. Accordingly, the particle is called a low-field seeker in
the opposite case of positive detuning, ∆a > 0, where the potential wells are located
at the points of vanishing light intensity.
The model (2.50) can be regarded as an extension of the theory of optical lat-

tices [2.20–2.22] (cf. also section 3.3) to quantised light fields subject to the back-action
induced by the particle. Notably, the Bose–Hubbard model (cf. section 3.2) can be
generalised to the quantum potential [2.23–2.27].

2.4 Mechanical effects of light in optical resonators: Forces
and cooling

Following the previous considerations we will neglect any effects emerging from
spontaneous emission of the atom. The force operator associated with the Hamilton
operator (2.50a) reads

F = ṗ = 1
i~

[p,Heff ] = − d
dxHeff = −~U ′(x)a†a, (2.51)

where we have defined U(x) := U0 cos2(kx). It is convenient for the following investig-
ation to decompose the force operator (2.51) into its mean value and fluctuations [2.7],

F = 〈F 〉+ δF. (2.52)

The expectation value 〈F 〉 gives rise to a conservative force associated with a potential
in steady state as well as to an additional velocity-dependent force, which for properly
chosen parameters can become negative (friction). The fluctuations δF (usually
called Langevin force), in contrast, do not contribute to any net force. However, they
do cause momentum diffusion, i.e. a linear growth of the momentum variance with
time. This heating counteracts the friction force and is therefore a limiting factor for
the achievable final temperature in steady state.
For an immobile atom the mean steady-state photon number is found from the

Heisenberg–Langevin equation (2.49) to be
〈
a†a

〉
= η2

κ2 + [∆c − U(x)]2
. (2.53)

Consequently, the mean force is

〈F 〉 = − ~η2U ′(x)
κ2 + [∆c − U(x)]2

. (2.54)

This is the dipole force and it is a result of coherent absorption and stimulated
emission processes, where the particle absorbs photons from and emits photons into
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2 Cold particles in optical cavities

the mode [2.7]. More precisely, the atom redistributes photons between the two
counter-propagating waves forming the standing-wave lattice. This process is energy
conserving and therefore the dipole force is conservative, i.e. it can be obtained from
the potential

V (x) = −~η2

κ
arctan

(∆c − U(x)
κ

)
. (2.55)

The dipole force (2.54) shows the expected behaviour of high-field-seeking atoms for
red detuning (U0 < 0) and low-field-seeking atoms for blue detuning (U0 > 0).

All these considerations so far hold for non-moving particles. Let us now investigate
the case of a slowly moving atom. First of all, we have to elaborate on what “slowly”
means in this context. The field cannot react instantaneously to the particle motion,
its dynamics is subject to an intrinsic delay determined by the field damping time κ−1.
A slow atom is an atom that does not move considerably (compared to a wavelength)
on this time scale, i.e. k|v| � κ. This field delay will result in a velocity-dependent
force and is the physical ground for cavity cooling. In this limit of slowly moving
particles the velocity dependence can be taken into account in a consistent manner by
replacing d/dt→ ∂/∂t+v∂/∂x and solving the Heisenberg–Langevin equation (2.49)
for different orders of the velocity (a = a0 + va1 + . . . ) [2.7]. In such a treatment the
external degrees of freedom of the particle are considered classically, which is valid
for temperatures (kinetic energy) much larger than the recoil energy, kBT � ER.
We will come back to this condition later on in section 8.2 where we investigate
the Wigner transformation of the master equation to obtain stochastic semiclassical
equations of motion.
To first order in the velocity we find [2.6]

a0 = η

κ− i[∆c − U(x)] (2.56a)

a1 = −a′0
κ− i[∆c − U(x)] . (2.56b)

Inserting these results into the mean force defined in equation (2.52) yields

〈F 〉 = F0 + vF1, (2.57)

with F0 the dipole force (2.54) and

F1 = 4~η2κ[∆c − U(x)][U ′(x)]2

(κ2 + [∆c − U(x)]2)3 . (2.58)

Neglecting localisation effects [2.28] one can consider the position-averaged force F 1.
If it is negative, F 1 corresponds to friction and in the opposite case to heating of
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2.4 Mechanical effects of light in optical resonators: Forces and cooling

the particle. We have plotted its behaviour in figure 2.6. In the limit ∆c = −κ and
κ� |U0| we find the simple expression [2.28]

F 1 ≈ −
~η2k2U2

0
4κ4 . (2.59)

Even though this force is independent of the sign of U0 (and hence ∆a), negative light
shifts are more favourable as they allow for trapping in a generalised three-dimensional
model [2.28].

Let us now take into account the fluctuating part of the force (2.52), amounting for
momentum diffusion. The general definition of the momentum diffusion coefficient
D is [2.29]

d
dt Var (p(t)) = 2D. (2.60)

It can also be related to the two-time force correlation function1 [2.29, 2.30],

Cov
(
F (t), F (t′)

)
=
〈
F (t)F (t′)

〉
− 〈F (t)〉

〈
F (t′)

〉
= Dδ(t− t′), (2.61)

which facilitates its evaluation using the fluctuating steady-state solution

a(t) = η + ξa(t)
κ− i[∆c − U(x)] (2.62)

of (2.49) and the only non-vanishing correlation [2.7]〈
ξa(t)ξ†a(t′)

〉
= 2κδ(t− t′). (2.63)

In the same parameter regime as employed for the friction we find [2.28]

D = ~κ
2

~η2k2U2
0

4κ4 (2.64)

and the steady-state temperature

kBT = D
F 1

= ~κ
2 . (2.65)

If the cavity linewidth is smaller than the atomic spontaneous emission rate γ, the
final temperature (2.65) can be much lower than the temperatures achievable with
Doppler cooling [2.31] (which are limited by γ). Another striking advantage of cavity
cooling is, that the cavity itself provides the decay channel. So there is no need for
closed spontaneous emission–repumping cycles of the atom. This is particularly useful
for the cooling of any kind of polarisable particle, e.g. molecules, for which in many
cases such cycles cannot be found [2.32]. We conclude this section by mentioning
that cavity cooling of single atoms has been experimentally demonstrated, see for
example [2.33].

1This expression is directly related to the force fluctuations since Cov (F (t), F (t′)) ≡ 〈δF (t)δF (t′)〉
with δF = F − 〈F 〉.
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Figure 2.6: Averaged friction force F 1. The region of red detuning for both, the particle and
the cavity, is a cooling regime characterised by a negative force (blue regions).
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Chapter 3

Ultracold atoms in optical lattices

In this chapter we present—in condensed form—the basics of lattice physics, of the
Bose–Hubbard model and of the theory of optical lattices needed for our work.

3.1 One particle in a periodic potential
For the following considerations we treat the potential as an external, prescribed,
quantity and ignore its physical origin. Optical lattices, which are typically generated
by two counter-propagating laser beams, are introduced later on in section 3.3.
Let the potential V (x) be periodic with periodicity a such that V (x+ a) = V (x).

For simplicity we restrict ourselves to a one-dimensional system for the remainder of
this chapter. A single particle in such a periodic potential is described by the simple
Hamilton operator

H = p2

2m + V (x). (3.1)

3.1.1 Bloch functions and Bloch bands

The Hamiltonian (3.1) commutes with the translation operator Ta defined as [3.1]

Taψ(x) = ψ(x+ a). (3.2)

Therefore, both operators can be diagonalised simultaneously. We now adopt ref-
erence [3.1] for the derivation of the Bloch theorem. Let ψ(x) denote an eigen-
state of Ta with eigenvalue λ ∈ C. Consequently, multiple displacements fulfil
Tna ψ(x) = ψ(x+ na) = λnψ(x). To avoid ψ(x) to grow without bounds for x→ ±∞
we require |λ| = 1. Consequently, the eigenvalue can always be written λ = eiqa with
−π ≤ qa < π and the eigenfunction ψ(x) has the form

ψ(x) = eiqxu(x), (3.3)

with u(x+na) = u(x) for n ∈ Z. This important result is known as Bloch theorem and
was first derived by F. Bloch in 1929 [3.2]. The parameter q is called quasi-momentum.
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3 Ultracold atoms in optical lattices

The periodic functions u(x) fulfil the stationary Schrödinger equation[
(p+ q)2

2m + V (x)
]
u(x) = Eu(x). (3.4)

Its spectrum is found to be discrete with eigenvalues En(q), where n ∈ N0 is denoted
band index. The Bloch theorem (3.3) now takes the form

φ(n)
q (x) = eiqxu(n)

q (x), (3.5)

where the functions φ(n)
q (x) are called Bloch functions.

Numerically, the Schrödinger equation (3.4) is most easily solved in Fourier space,

u(n)
q (x) = 1√

2π
∑
j∈Z

c
(n,q)
j e2ikxj , (3.6)

where the factor two is due to the special choice V (x) = V0 cos2(kx) for the periodic
potential. It has been chosen because—as we will see later—optical lattices have this
shape. The eigenvalue equation (3.4) then reads∑

j′∈Z
Hjj′c

(n,q)
j′ = E(n)

q c
(n,q)
j (3.7)

with the matrix

Hjj′ =


[
2j + q

~k
]2
ER + V0

2 for j′ = j
V0
4 for j′ = j ± 1

0 otherwise
. (3.8)

Here we have defined the recoil energy ER := ~2k2/2m. The eigenvalue equation is
solved numerically for a finite number of coefficients (typically, around twenty are
sufficient). In figures 3.1 and 3.2 we show the band structure computed numerically
for different potential depths. It can be seen that the number of bound states, i.e.
states for which E

(n)
q < 0, increases with the potential depth. Without potential

the quadratic dispersion of free particles is recovered. For very deep lattices the
bandwidth shrinks and the band gap converges towards the harmonic oscillator
energy ∆E = ~ω, with the frequency ω =

√
4V0ER/~. For very cold—i.e. ultracold—

particles we can thus restrict ourselves to the lowest Bloch band [3.3]. This will lead
to the development of the Bose–Hubbard model treated in section 3.2. There we will
also find a very important relation between the bandwidth and particle tunnelling.
An example for a Bloch function is plotted in figure 3.3.
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Figure 3.1: Bloch bands for the potential V (x) = V0 cos2(kx) and different potential depths.
The lattice constant is a = π/k. (a) V0 = 0, (b) V0 = 5ER, (c) V0 = 10ER and
(d) V0 = 20ER. Without potential the free dispersion is recovered. The number
of bound bands increases with the potential depth, for V0 = 20ER the three
lowest bands are bound.
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Figure 3.2: Bandwidth of the Bloch bands as a function of the potential depth [3.4]. The
transition from the continuum (free particle) to separated bands is clearly visible.
For very deep potentials the bandwidth converges towards zero and the spacing
between the bands (gap) approaches the oscillator frequency, ∆E → ~ω (harmonic
oscillator limit).
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Figure 3.3: Modulus of the (unnormalised) lowest Bloch functions with n = q = 0 for different
potential depths.

3.1.2 Wannier functions

The Bloch functions are not very suited for the description of localised particles
because they are inherently de-localised. However, as they form a complete basis,
it is possible to find their right combination to derive a set of functions describing
states localised at a certain potential well. These functions were first introduced by
G. H. Wannier in 1937 [3.5]. Some twenty years later, W. Kohn investigated their
analytical properties [3.6] and proofed that there exists a unique superposition of
Bloch functions localised at a potential well with the properties of (i) being real,
(ii) having a definite parity (even or odd) with respect to the potential minimum and
(iii) falling off exponentially with distance. These functions are known as maximally
localised Wannier functions or Wannier–Kohn functions and shall be treated here in
more detail.
Wannier functions are defined as [3.6]

w(n)(x) :=
√

a

2π

∫ π/a

−π/a
φ(n)
q (x)dq. (3.9)

From (3.5) we find the shifted Wannier function at xj := aj,

w(n)(x− xj) :=
√

a

2π

∫ π/a

−π/a
φ(n)
q (x)e−iqxj dq. (3.10)
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The Wannier functions (3.10) are orthonormal and fulfil∫ ∞
−∞

wn(x− xj)∗wm(x− xj′)dx = δnmδjj′ . (3.11)

Multiplying equation (3.10) with eiq′xj and using∑
j

ei(q
′−q)xj = 2π

a
δ(q′ − q) (3.12)

we obtain the back transformation

φ(n)
q (x) =

√
a

2π
∑
j

w(n)(x− xj)eiqxj . (3.13)

Note that the functions (3.10) are not unique because the Bloch functions (3.5) are
only defined up to a phase. Maximally localised Wannier functions are obtained if the
phases are chosen the following way [3.6]. For even n one has to choose φ(n)

q (0) ∈ R
such that q 7→ φ

(n)
q (0) is an analytic function. This is the case if all Fourier coefficients

in equation (3.6) have the same sign. The resulting Wannier function is then real
and even around xj . For the odd Wannier functions φ(n)

q (0) has to be chosen purely
imaginary and the same analyticity condition as for the even states has to be fulfilled.
This can be achieved with antisymmetric Fourier coefficients, c(n,q)

j = −c(n,q)
−j .

The so-found Wannier functions decrease exponentially with distance, i.e. w(n)(x) ∝
exp(−hn|x|) for large |x| and some hn > 0. This behaviour strongly differs from
harmonic oscillator functions which decay ∝ exp(−x2/ξ2

0), with the typical oscillator
length ξ0 =

√
~/mω. See figure 3.4.

As mentioned earlier it is sufficient to take into account only the lowest Bloch
band for ultracold particles. Consequently, we can restrict ourselves to the n = 0
Wannier functions for the derivation of the Bose–Hubbard model. In this work we will
always mean the maximally localised Wannier functions when referring to “Wannier
functions” unless otherwise stated.

3.2 The Bose–Hubbard model
We will now give a short review on the microscopic derivation of the Bose–Hubbard
model and its properties. The model has first been introduced in the early 1960s to
describe correlations in fermionic systems [3.7]. Its zero temperature phase diagram
for a bosonic system was later investigated by Fisher et al. in the late 1980s [3.8],
depicting a quantum phase transition between a superfluid phase and a Mott-insulator
phase. A decade later, Jaksch et al. [3.9] proposed a realisation of the Bose–Hubbard
model with an ultracold dilute gas of bosonic atoms confined within an optical lattice.
The phase transition [3.10] was experimentally demonstrated a couple of years later
by Greiner et al. [3.11]. See [3.3] for a recent review of the field.
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Figure 3.4: Wannier functions for two different potential depths on a linear (left) and on
a logarithmic scale (right). The dashed lines are harmonic oscillator functions
corresponding to the chosen potential depth. The different decay of the Wannier
(∝ e−hn|x|) and oscillator functions (∝ e−(x/ξ0)2) is clearly visible.

3.2.1 Microscopic derivation

The derivation given here is based upon the work by Jaksch et al. [3.9]. Again, our
starting point is the single-particle Hamilton operator

H0 = p2

2m + V0 cos2(kx). (3.14)

The corresponding many-body Hamiltonian is obtained within the second quantisation
formalism (see, for example, [3.12]) as

H =
∫

dxΨ†(x)
(
− ~2

2m
d2

dx2 + V0 cos2(kx) + VT(x)
)

Ψ(x)+

+ 1
2

∫∫
dx dx′Ψ†(x)Ψ†(x′)U(x, x′)Ψ(x′)Ψ(x), (3.15)

where we added an external trapping potential VT(x) and included two-body interac-
tions U(x, x′). In the limit of very low temperatures the most important interactions
stem from s-wave collisions which can be described by the pseudo-potential [3.13]

U(x, x′) = g1Dδ(x− x′). (3.16)

Its coupling parameter g1D is a function of the one-dimensional scattering length.
The physical meaning of equation (3.16) is that only particles trapped at the very
same potential well will effectively interact with each other. We now expand the field
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3.2 The Bose–Hubbard model

operator Ψ(x) in terms of the previously derived Wannier functions (3.10),

Ψ(x) =
M∑
j=1

∞∑
n=0

w(n)(x− xj)bnj , (3.17)

with M the number of lattice sites. The bosonic operators bnj (bnj †) destroy (create)
a particle at the jth site in the nth Bloch band. As previously mentioned we assume
the particles to be very cold, i.e. their energy being well below the excitation gap
to the first excited Bloch band. The same has to hold for the mean interaction
energy [3.3]. Under these simplifying conditions we readily find the lowest-band
Hamiltonian

H =
M∑
i,j=1

Jijb
†
ibj + 1

2

M∑
i,j,k,l=1

Uijklb
†
ib
†
jbkbl +

M∑
i,j=1

Vijb
†
ibj (3.18)

with the matrix elements

Jij =
∫ ∞
−∞

dxw(x− xi)
(
− ~2

2m
d2

dx2 + V0 cos2(kx)
)
w(x− xj), (3.19a)

Vij =
∫ ∞
−∞

dxw(x− xi)VT(x)w(x− xj) (3.19b)

and
Uijkl = g1D

∫ ∞
−∞

dxw(x− xi)w(x− xj)w(x− xk)w(x− xl). (3.19c)

The diagonal terms Jii describe the on-site energies and the off-diagonal terms Jij
tunnelling between site i and site j. As shown in [3.14] the next-nearest neighbour
hopping matrix elements are at least one order of magnitude smaller than their
nearest-neighbour counterparts Ji,i+1. Hence we restrict ourselves to the latter
mechanism and define J := Ji,i+1. A similar observation holds for the interaction
matrix element (3.19c), the on-site term U := Uiiii, describing the interaction of two
particles trapped at the same site, dominates all other non-local combinations. These
observations hold for lattices deeper than V0 ∼ 5ER [3.14]. The external trapping
potential VT(x) typically includes several dozen to hundred lattices sites, so that it is
justified to approximate it by a constant at each potential well. The matrix element
Vij then simplifies to

Vij ≈ VT(xi)
∫

dxw(x− xi)w(x− xj) = VT(xi)δij =: εiδij . (3.20)

Using the considerations above we find the Bose–Hubbard Hamilton operator
(omitting a global energy shift)

H = J
∑
〈i,j〉

b†ibj + U

2
∑
i

ni(ni − 1) +
∑
i

εib
†
ibi, (3.21)
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3 Ultracold atoms in optical lattices

where 〈i, j〉 denotes the sum over nearest-neighbour sites only. The first term describes
hopping (tunnelling) between adjacent wells, the second one two-body interactions
and the last one describes a local energy shift due to an external trapping potential.
A Fourier transformation of the hopping contribution in (3.21) yields (tight binding)

Hhopping = 2J
∑
k

cos(ka)a†kak. (3.22)

The bandwidth of the lowest Bloch band is therefore directly related to the tunnelling
matrix element, ∆E = 4J .

3.2.2 Superfluid and Mott-insulator phases
For εi = 0 the Bose–Hubbard Hamiltonian (3.21) is subject to a competition between
kinetic energy J and interaction energy U . For J/U →∞ the ground state consists
of particles de-localised over the whole lattice and is called superfluid state. The
ideal superfluid state for U = 0 for N particles in M wells is [3.3]

|SF〉 = 1√
N !

 1√
M

M∑
j=1

b†j

N |0〉 , (3.23)

with the vacuum state |0〉 = |0, . . . , 0〉 denoting an empty lattice. The state (3.23)
exhibits large on-site particle number fluctuations and long-range off-diagonal coher-
ences, where

〈
b†ibj

〉
decreases polynomially with |i− j|. For increasing U tunnelling

is hindered by repelling interactions. For commensurate filling the ground state for
J/U → 0 is a Mott insulator state with n̄ = N/M particles per site [3.3],

|MI〉 =
M∏
j=1
|n̄〉j . (3.24)

This states shows no number fluctuations and its off-diagonal elements decay expo-
nentially. For N/M /∈ N the perfect Mott insulator is not the ground state, a small
fraction remains superfluid even for J/U → 0 [3.3].

3.3 Optical lattices
Up to now we have ignored the physical origin of the lattice and have considered
it to be an external prescribed quantity. Let us now elucidate the background of
optical lattices, which are typically created by two counter-propagating laser beams.
Actually, we have already encountered their quantised version in equation (2.50a)
in section 2.3. The physical ground of the force is again the AC-Stark shift (cf.
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3.3 Optical lattices

equation (2.12)) stemming from the coherent absorption and stimulated emission of
photons. The mathematics is very similar to the derivation presented in section 2.1.
We start from the Hamiltonian [3.15]

H = p2

2m + ~ωaσ+σ− − d ·E(x) (3.25)

in dipole approximation. Here x and p denote the particle’s centre-of-mass position
and momentum operator, respectively, m its mass and ωa the transition frequency
between the ground state |g〉 and an excited state |e〉. The atomic raising and
lowering operators are defined as σ+ = |e〉〈g| and σ− = |g〉〈e|, respectively. The
electric field E(x) = El(x) cos(ωlt)e is created by two counter-propagating laser
beams of frequency ωl and e is the polarisation vector. Due to the odd parity of the
dipole operator d, the particle-field interaction can be expressed as

Hint = −d ·E(x) =

= −~Ω(x)
2

(
σ+e

−iωlt + σ−e
−iωlt

)
− ~Ω†(x)

2
(
σ+e

iωlt + σ−e
iωlt
)

(3.26)

with the Rabi frequency Ω(x) := El(x) 〈e|d · e|g〉 /~. The terms in the first parenthesis
of the Hamiltonian (3.26) correspond to absorption of a laser photon and excitation
(first part) or de-excitation (second part) of the atom, respectively. The second
parenthesis describes the reverse processes with emission of a photon. The two
non-energy-conserving processes can be neglected within the following rotating wave
approximation. We transform the Hamiltonian (3.26) into an interaction picture
with respect to H0 = ~ωaσ+σ−,

HI = −~Ω(x)
2

(
σ+e

−i(ωl−ωa)t + σ−e
−i(ωl+ωa)t

)
−

− ~Ω†(x)
2

(
σ+e

i(ωl+ωa)t + σ−e
i(ωl−ωa)t

)
. (3.27)

For ωl ≈ ωa two of the terms oscillate very rapidly with frequency ω ≈ 2ωl. The
non-resonant terms can be neglected with respect to the near-resonant ones in the
rotating wave approximation [3.16]. Performing another transformation into a frame
rotating with the laser frequency ωl to get rid of the explicit time dependence, we
obtain the final Hamiltonian

H = −~δσ+σ− −
~Ω(x)

2 σ+ −
~Ω†(x)

2 σ−, (3.28)

with the detuning δ := ωl − ωa. Its eigenvalues are

E = −~δ
2 ±

~
2

√
δ2 + |Ω(x)|2. (3.29)
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3 Ultracold atoms in optical lattices

For large detuning, |δ| � |Ω|, the population of the excited state remains very small.1
An expansion of the eigenvalues yields

E ≈ −~δ
2 ±

~δ
2

(
1 + 1

2
|Ω(x)|2
δ2

)
. (3.30)

This is the AC-Stark shift and it amounts to a spatially varying potential [3.14]

V (x) = ~|Ω(x)|2
4δ (3.31)

for ground-state atoms. As for the quantum case treated in section 2.3 we find for
red detuning δ < 0 that the atom is dragged towards the points of maximal light
intensity, whereas in the opposite, blue-detuned, case the atom is repelled from these
points and attracted towards the points of vanishing light intensity.

3.4 Spontaneous emission
The potential (3.31) originates from the conservative part of the atom-light interaction,
called dipole force. A second, non-conservative force (called Langevin force) stemming
from spontaneous emission has not been taken into account yet. Its physical origin is
the process of an atom absorbing a photon from the laser followed by a spontaneous
emission of a photon into free space. Every time this happens the atom experiences
a recoil kick into the opposite direction. On average, these kicks do no contribute to
any net force (all directions are equally probable) but rather to momentum diffusion
(heating). The spontaneous emission rate Γ due to incoherent scattering by the
particle can be estimated by the atomic decay rate γ times the occupation probability
of the excited state [3.14]. For |δ| � |Ω| this rate is given by

Γ(x) = γ|Ω(x)|2
4(δ2 + γ2) . (3.32)

For large detuning |δ| � |Ω|, γ this rate scales like Γ ∼ δ−2 and can thus safely be
neglected in comparison to the potential scaling as V ∼ δ−1. Of course, this is the
same result (semiclassical analogon) as the one obtained in section 2.3 for a quantised
light field. The scattering rate can also be derived in a more systematic way, e.g.
with the help of a stochastic Schrödinger equation or the master equation [3.18], cf.
also section 2.3.
Let us evaluate the scattering rate (3.32) for a deeply trapped particle where

a harmonic oscillator approximation of the lowest Wannier function is possible.
1The saturation parameter obtained from the optical Bloch equations is s = |Ω(x)|2/2δ2 [3.17].
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3.4 Spontaneous emission

Calculating the effective spontaneous emission rate for the state

ψ(x) = 1
π1/4√ξ0

exp
(
−1

2
(x− x0)2

ξ2
0

)
(3.33)

in a red detuned lattice (δ < 0⇒ x0 = 0) yields

Γred ≈
γΩ2

0
4δ2

(
1− ωR

ω

)
≈ V0

~|δ|
γ. (3.34)

For blue detuning (δ > 0⇒ x0 = π/2k) we find

Γblue ≈
ω

4δ γ. (3.35)

Here we have used the definitions Ω(x) = Ω0 cos(kx), V0 = ~Ω2
0/4|δ|, the recoil

frequency ωR = ER/~ = ~k2/2m and the oscillator frequency ω =
√

4V0ER/~. The
effective spontaneous scattering rate in blue-detuned lattices is smaller than for their
red-detuned counterparts with the same |δ| [3.14],

Γred
Γblue

= ~ω
ER

> 1. (3.36)

For typical experiments the time scales defined by Γ are of the order of minutes
compared to typical experimental time scales of the order of seconds [3.14]. Therefore
spontaneous emission does not play an important role for such experiments. To
provide some experimental numbers [3.19], for a red-detuned λl = 1064.5 nm (ωl =
2π × 281.6THz) laser trapping Cesium atoms via the 62S1/2 to 62P3/2 transition
with ωa = 2π × 351.7THz and a linewidth γ = 2π × 5.2MHz in a potential of
depth V0 = 20ER, with ωR = 2π × 1.3 kHz, the spontaneous emission rate is
Γ = 1.2× 10−2 s−1.
Recently, however, the problem of heating of bosons in optical lattices has raised

growing interest. See, for example, references [3.20, 3.21] for two recent publications
in this direction.
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Chapter 4

Background to particles in ring resonators

4.1 Introduction

So far we have only considered linear standing-wave resonators in this thesis. They are
characterised by a large free spectral range and thus allow for the isolation of a single
non-degenerate mode of the electric field [4.1]. In our research on ultracold atoms,
however, we have focused on a different geometry, namely on ring resonators. In the
simplest case such a ring resonator can be realised with the help of three mirrors, in
lieu of only two like for a linear Fabry–Perot cavity. The most striking difference
of ring resonators compared to the latter is the existence of degenerate modes [4.2].
Although it is still possible to address a single frequency owing to the large free
spectral range, this frequency is now associated with two different running wave
modes u(x) ∝ exp(±ikx), one travelling clockwise and the other one anti-clockwise
along the cavity axis. The boundary conditions within a Fabry–Perot cavity with
perfectly conducting mirrors require that the electric field vanishes on the mirror
surfaces [4.3]. For ring resonators this boundary condition does not apply, which
offers an additional degree of freedom to the system, the phase of the intracavity
light field. This has the important consequence that the resonator-generated lattice
(similar to the one derived in section 2.3 for a standing-wave resonator) does not only
exhibits an operator-valued depth, but also an operator-valued phase. That is, both,
the lattice depth and its phase, depend on the quantum state of both intracavity
fields. This is a major difference to the linear resonator and has important physical
implications. Owing to these freedoms the system is translation invariant, meaning
that the total momentum of the atoms and all the light fields (including the pump
and loss fields) is conserved. Hence, no momentum is absorbed by the mirrors,
contrary to Fabry–Perot resonators [4.2].
All these properties of ring cavities offer new possibilities for cavity cooling of

polarisable particles. Studies of the ring resonator [4.2, 4.4] and, more general,
of arbitrary multimode cavities [4.2, 4.5, 4.6], in the semiclassical limit revealed,
for example, reduced cooling times as compared to single-mode setups in linear
resonators. Systems of cold particles within ring resonators have also been realised
experimentally, see, for example [4.7, 4.8].
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4 Background to particles in ring resonators

For ultracold particles the semiclassical treatment becomes inadequate1 and the
full quantum nature of the particles must be taken into account. One method to
reduce the complicated Hamiltonian is to generalise the Bose–Hubbard model [4.10]
to resonator-generated lattices. Maschler and Ritsch presented such a model in
2005 [4.11] and showed that—within some limitations—the approximations required
for the derivation of the “classical” Bose–Hubbard model remained valid. For example,
the lowest-band approximation also holds for quantised lattices. Furthermore, it is
still justified to consider nearest-neighbour hopping only due to the fast decaying
matrix elements for jumps over larger distances. However, the cavity mode mediates
non-local interactions between all particles at all sites, leading to effective non-
locally correlated two-particle hopping processes as demonstrated in [4.11]. Further
phenomena as well as the implications of the particle back-action on the field and
hence on the phase diagram have been extensively studied, notably in the groups
of Lewenstein, Morigi and Ritsch [4.12–4.16]. Since this description proofed to be
very successful we strived to apply this formalism also to ring resonators. On this
way we encountered several a priori unexpected results such as the break-down of
a simple lowest-band model (see the publication in chapter 5 for details). This is
because additional physical processes which couple different Bloch bands appear in
the Hamiltonian. Such processes are not present in linear cavities, or, more precisely,
can safely be ignored due to the small magnitudes of the associated matrix elements.
These dynamical couplings to higher bands are a crucial feature of ring-resonator-
generated optical lattices, causing non-local position and momentum correlations,
particle entanglement and squeezing. These phenomena are studied in the preprint
in chapter 6.

4.2 Derivation of the Hamiltonian

The lattice Hamiltonian for linearly polarisable particles can readily be derived
following the line of section 2.3. For convenience we perform a transformation of the
mode functions and consider the standing waves us(x) = sin(kx) and uc(x) = cos(kx)
instead of the two counter-propagating waves. Both modes interact with the particle
via a Jaynes–Cummings interaction so that the Hamiltonian including the pump
terms reads

H = p2

2m − ~∆c
∑
j=s,c

a†jaj − ~∆aσ+σ−−

− i~g0
∑
j=s,c

uj(x)
(
ajσ+ − σ−a†j

)
− i~

∑
j=s,c

ηj
(
aj − a†j

)
. (4.1)

1The semiclassical approximation is limited to temperatures much larger than the recoil energy [4.9].
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4.2 Derivation of the Hamiltonian

We note that symmetric pumping of the two counter-propagating modes results in
an effective pump of the cosine mode; the sine mode is driven for an appropriate
phase shift between the two pump lasers. As previously done for the standing-wave
resonator, we consider the parameter regime of large detuning between the pump
laser and the atomic transition frequency. This allows for a bosonisation of the
atomic dipole and an adiabatic elimination of the atom from the dynamics [4.2].
Following [4.2] we find the polarisation

σ− =
g0
∑
j=s,c uj(x)aj
i∆a − γ

(4.2)

and the effective Hamiltonian

H = p2

2m − ~∆c
∑
j=s,c

a†jaj + ~U0E†(x)E(x)− i~
∑
j=s,c

ηj
(
aj − a†j

)
(4.3)

with the dimensionless electric field

E(x) :=
∑
j=s,c

uj(x)aj . (4.4)

Explicitly, the particle-field interaction term reads

E†(x)E(x) = a†cac cos2(kx) + a†sas sin2(kx) +
(
a†cas + a†sac

)
sin(kx) cos(kx). (4.5)

The first two terms describe the well-known quantum potentials created by the two
standing-wave modes. The last term does not exist for linear resonators and describes
the coherent particle-mediated redistribution of photons between the two standing-
wave modes. It is this term which gives rise to the previously mentioned coupling
between the various Bloch bands. This can easily be seen as follows. Suppose one of
the two modes to be strongly pumped so that the particle is trapped in a minimum
of the optical lattice. The term sin(kx) cos(kx) ≡ 1

2 sin(2kx) is asymmetric with
respect to these potential wells. Hence it will not give any contribution when only
considering the lowest band Wannier functions. Localised particle states of different
parity, however, are coupled through this operator.
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Chapter 5

Publication

Physical Review A 82, 043605 (2010)

Microscopic dynamics of ultracold particles in a ring-cavity
optical lattice†

Wolfgang Niedenzu1, Rainer Schulze1,2, András Vukics1, and Helmut Ritsch1

1Institut für Theoretische Physik, Universität Innsbruck,
Technikerstraße 25, A-6020 Innsbruck, Austria

2Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck,
Technikerstraße 25, A-6020 Innsbruck, Austria

The quantum dynamics of particles optically trapped in a symmetrically pumped
high-Q ring cavity exhibits much richer physics than for a standing-wave resonator.
In addition to modifying the lattice depth, light scattering by the particles shifts and
reshapes the trapping potential. We calculate the corresponding changes in tunneling
amplitudes and damping by an effective bipotential (two-level) model for the particle
motion. As a crude truncation of the Bose-Hubbard model, expansion to the lowest band
decouples particle and field dynamics. Only including excitations to higher bands can
capture this essential additional physics and correctly describe decoherence, damping,
and long-range correlations of the particle dynamics. The validity limits of the analytic
models are confirmed by quantum Monte Carlo wave-function simulations, which
exhibit correlated particle-field quantum jumps as unambiguous quantum signature of
the system dynamics.

URL: http://link.aps.org/doi/10.1103/PhysRevA.82.043605
DOI: 10.1103/PhysRevA.82.043605
PACS: 37.30.+i, 05.30.Jp, 37.10.Vz, 42.50.Wk

†The author of the present thesis performed all the calculations in this publication. R. S. imple-
mented the classical simulations and, together with A.V., acted as a discussion partner on all
other aspects of the work.
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5.1 Introduction

In the past decade the theoretical and experimental study of ultracold quantum gases
in optical potentials has seen tremendous progress and growth [5.1–5.3]. Optical
lattices generated by spatially periodic laser fields can be routinely loaded with atoms
very close to T = 0 with different filling factors and including multiple species [5.4].
Using magnetic fields or extra lasers the local interactions between the particles
can be controlled providing for a versatile test ground of many-particle quantum
phenomena. In most of these cases the backaction of the particles on the trapping
and control fields is so small that the forces are well described by prescribed external
potentials. Nevertheless for large lattices this backaction cannot be ignored and
couples particle and field dynamics [5.5]. This coupled dynamics gets a particularly
important new dimension when the light fields generating the potentials are enclosed
in optical resonators [5.6] and the field amplitudes thus constitute separate dynamical
quantum variables. Following initial theoretical studies [5.7] recent experiments
now opened this new dimension by loading Bose-Einstein condensates (BECs) into
optical resonators of high finesse [5.8–5.10]. Due to the large number of atoms the
so-called strong-coupling limit of cavity QED was surpassed by several orders of
magnitude reaching new parameter regimes of cavity QED and nonlinear quantum
dynamics [5.9, 5.11, 5.12].
From a theoretical point of view, a dynamic lattice potential with quantum

properties creates a wealth of new phenomena like atom-field entanglement, long-
range interactions, and phononlike excitations with controllable properties. In
particular, if several field modes are involved as in a ring cavity, new phenomena
related to long-range (phonon-type) interactions of solid-state physics should become
accessible for thorough tests in cold-atom setups. As a striking example, translation
invariance and momentum conservation of the combined atom-field system induce
pair correlations in the momentum space of the particles. Similarly, even small
momenta transferred from atoms to the field should lead to measurable optical phase
shifts [5.13], which might give a direct handle to observe the onset of superfluidity of
the atoms or construct ultrasensitive acceleration detectors with BECs.

Of course, these new quantum degrees of freedom strongly increase the mathemati-
cal complexity of the theoretical model. As a first consequence the fairly simple, and
for free-space optical lattices very successful, description of the system properties in
terms of a single-band Bose-Hubbard model [5.1] cannot be directly applied in the
case of dynamic potentials of varying depth and position. For standing-wave cavities
an effective description in terms of self-consistent effective parameters has already
been developed [5.14–5.16]. It will be a central goal of this work to develop improved
approximative model descriptions for ring resonators and to study the limits, where
a generalized version of the Bose-Hubbard model can still be applied to understand
key features of the underlying physics.
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Initially, setups of atoms in ring cavities were mainly considered to generalize
and test cavity cooling of a wide class of polarizable particles, where no alternative
laser cooling schemes exist. A ring geometry offers a wider capture range, faster
cooling times [5.6], as well as lower temperatures [5.17], including even the idea of
stopping and cooling a fast molecular beam [5.18]. An ultimate goal here is the
development of an all-optical route to a BEC of polarizable point objects replacing
evaporative cooling by cavity cooling which involves no particle loss. More recently,
an alternative research direction studies quantum dynamics of atomic ensembles
of very low temperature stored within a ring-cavity optical lattice [5.19, 5.20]. As
discussed in early theoretical work [5.21, 5.22], controlling phase and amplitude of
both pump fields of the ring cavity, which was verified in various experiments [5.19,
5.23], gives great flexibility in controlling position and depth of the generated optical
potential as well as the mode properties of lattice beams [5.24]. In the limiting case
of a single-side pump one also recovers the model of the collective atomic recoil
laser (CARL) [5.25, 5.26]. First experiments using a single-side pump were already
performed [5.20]. So far, the theoretical descriptions of BECs in ring cavities were
mainly based on a Gross-Pitaevskii description of the atoms [5.20, 5.27, 5.28] and a
coherent-state approximation for the cavity modes.
As for ultracold atomic gases in general the theoretical focus now shifts toward

new quantum phases of degenerate gases near T = 0 [5.7, 5.14, 5.15, 5.29, 5.30],
where mean-field approximations have to be abandoned. Interestingly, for the case
of a single-mode standing-wave cavity it was possible to derive an effective Bose-
Hubbard-type model which still proved valid for a dynamical quantized field creating
the optical potential. This could capture important aspects of the dynamics and
predict surprising modifications of the corresponding phase diagram [5.14–5.16]. As
expected this dynamics in general invokes particle-field entanglement and nonlinear
optics as well [5.31, 5.32]. Here we investigate in which cases an extension of the
Bose-Hubbard model for a ring-resonator-generated optical lattice is feasible. This is
complicated by the fact that not only the lattice depth but also the lattice position
are now fluctuating quantum variables. Thus already the definition of the proper
Wannier basis functions is hard.

The article is organized as follows: We start with a tutorial review of the classical
point-particle motion in ring-cavity-generated optical potentials and the presentation
of the general atom-field Hamiltonian in Sec. 5.2. In the following Sec. 5.3 we
concentrate on the weak-coupling case, where only a single or a few excitations are
generated in the unpumped mode and adiabatic effective potentials for the atomic
motion can be derived on elimination of the mode dynamics. Here the cavity dynamics
modifies tunneling and induces damping of nonlocal coherence. Subsequently, in
Sec. 5.4 we set out to derive an effective Bose-Hubbard-type model. Interestingly
we miss central physical effects if we use the standard single-band approximation.
Actually, central properties of ring-resonator-generated lattices appear in a two-
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band expansion presented in Sec. 5.4.3, where tunneling is accompanied by photon
scattering and jumps to the higher band. Finally, in Sec. 5.5 we compare an effective
multiband model with numerical simulations of the coupled atom-field dynamics in
full momentum space.

5.2 One polarizable point particle in a ring resonator

Let us first exhibit some essential physical properties of particle motion in ring
cavities by considering a single linearly polarizable point particle moving inside a
symmetrically driven ring resonator, cf. Fig. 5.1. The two counter-propagating modes
with wave number k are pumped with amplitudes η± and decay at a rate κ. The
pump frequency is detuned by ∆c = ωpump − ωcavity with respect to the bare cavity
resonance. Symmetric pumping, i.e., η+ = η−, generates a standing-wave field with
spatial dependence ∝ cos(kx) in the empty cavity. The second orthogonal field mode
with spatial dependence ∝ sin(kx) thus will not be excited by the pump [5.13], but
it still cannot be ignored for the dynamics. Note that physical differences between a
standing-wave resonator and a ring resonator have been investigated before, e.g., in
Ref. [5.33]. At this point for simplicity we assume sufficient transverse localization of
the particle so we can restrict ourselves to an effective one-dimensional description
along the resonator axis.

5.2.1 Classical and semiclassical description

Before turning to the quantum model we shall briefly review the corresponding
classical field equations [5.6, 5.22] to obtain a first qualitative insight into the
underlying dynamical principles of the system. These classical equations of motion
for the two driven and damped amplitudes of the counterpropagating modes coupled
by a polarizable point particle read [5.22]

α̇± =
[
i(∆c − U0)− κ− Γ0

]
α± − (Γ0 + iU0)α∓e∓2ikx + η±. (5.1)

The central parameters U0, which denotes the frequency shift of the mode induced
by the particle and Γ0, which gives the particle-induced extra loss of the mode,
are directly related to the real and imaginary parts of the particle’s linear suscep-
tibility [5.34, 5.35]. These parameters also play a central role in the light forces
determining the equations of motion for the particle [5.6]

Fdip = −4~kU0 Im
(
α∗+α−e

−2ikx
)

(5.2a)

Frp = 2~kΓ0
(
|α+|2 − |α−|2

)
, (5.2b)
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5.2 One polarizable point particle in a ring resonator

Figure 5.1: (Color online) Sketch of the system: One polarizable particle in a symmetrically
driven ring cavity (pumping fields η+ and η−). The resonator loss is characterized
by the decay rate κ.

where (5.2a) is the dipole force and (5.2b) the radiation-pressure force. We see that
U0 gives the optical light shift and Γ0 the photon scattering rate per photon in
the mode. The dipole force can be derived from a potential proportional to the
intracavity intensity and is—in a quantum picture—associated with the coherent
redistribution of photons between the two modes. Depending on sgnU0 the particles
are trapped either at the intensity minima (U0 > 0, “low-field seekers”) or at
the intensity maxima (U0 < 0, “high-field seekers”). As we will focus on the
dispersive, far-detuned limit where Γ0 � |U0|, we will neglect the radiation-pressure
force (5.2b) and scattering loss in the following. Nevertheless, photons leak out of
the resonator irreversibly and carry away momentum of the particle, which generates
a nonconservative dynamics, including friction and diffusion of particle motion [5.22].
The fluctuations in the photon numbers inducing diffusion (heating) then limit the
final steady-state temperature [5.36] of the particle. Computation of this friction
coefficient stemming from the dipole force indicates a cooling regime for U0 < 0 and
∆c < 0 [5.6, 5.22]. We will therefore concentrate on this parameter regime for the
rest of this work.
We show a typical result of the combined particle-field equations in Fig. 5.2. An

initially fast moving particle slows down while moving along the resonator axis
before eventually getting trapped and oscillating around a potential minimum. This
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Figure 5.2: (Color online) Particle motion in a ring cavity as solution of Eqs. (5.1) and (5.2).
The particle moves along the cavity axis and eventually gets trapped. (a) Position,
(b) momentum, (c) intensities split into symmetric (left y-axis) and antisymmetric
(right y-axis) parts, and (d) phase shift from an initially cos2(kx)-shaped potential.
Parameters: ∆c = −2.6ωR, κ = ωR, U0 = −0.3ωR, and η+ = η− = 4ωR.

is reflected clearly in the field dynamics as well since symmetric pumping of the
counter-propagating running waves corresponds to a pumped [∝ cos(kx)] and an
unpumped [∝ sin(kx)] standing wave. A moving particle will scatter light from
the cosine to the sine mode so that the resulting superimposed fields correspond to
a shifted cosine mode. Hence also the resulting optical potential ∝ cos2(kx) gets
shifted due to excitations of the sine mode as long as the particle moves. This can
be clearly seen in Figs. 5.2(c) and 5.2(d). In the classical limit a particle at rest
will scatter no more light into the sine mode and we obtain a pure cosine field in
the resonator. In quantum mechanics the uncertainty relation will prevent this and
quantum fluctuations of the particle position and momentum will couple the two
modes even at zero temperature [5.17].

5.2.2 Quantum description

Let us now turn to a quantum description of the particle motion and the field modes.
For convenience, we use a basis of {cos(x), sin(x)} mode functions rather than the
propagating wave modes {exp(±ikx)}. This facilitates a straightforward comparison
with the case of the standing-wave resonator by putting the coupling to the sine
mode to zero and also allows for a better separation of the classical part of the
field amplitude in the cosine mode. The corresponding Hamiltonian for symmetric
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5.2 One polarizable point particle in a ring resonator

pumping thus reads:

H = p2

2m + ~U0
[
a†cac cos2(kx) + a†sas sin2(kx)

]
+

+ ~U0
2
(
a†cas + a†sac

)
sin(2kx)−

− ~∆c
(
a†cac + a†sas

)
− i~ηc

(
ac − a†c

)
. (5.3)

While the first line contains the optical potentials induced by the two field modes
independently, the second line describes the particle-position-dependent coherent
scattering of photons between the two modes. The third line contains the free-field
evolution for both modes as well as the pumping of the cosine mode.
Let us first look at the corresponding Heisenberg equations for the particle mo-

mentum,

ṗ = ~kU0
(
a†cac − a†sas

)
sin(2kx)−

− ~kU0
(
a†cas + a†sac

)
cos(2kx), (5.4a)

and for the mode amplitudes (dropping the input noise operators),

ȧc =
{
i
[
∆c − U0 cos2(kx)

]
− κ

}
ac −

iU0
2 sin(2kx)as + ηc (5.4b)

ȧs =
{
i
[
∆c − U0 sin2(kx)

]
− κ

}
as −

iU0
2 sin(2kx)ac. (5.4c)

The first line of equation (5.4a) describes a force which solely depends on the photon
numbers in the modes whereas the second line is phasedependent and stems from the
interference terms of the two modes of the intracavity electric field. In the special
case of only one mode (e.g., setting as = 0) we recover the case of a standing-wave
resonator. Small field amplitudes in the sine mode then simply induce a phase-
dependent force on the particle while small deviations of the particle position from
x = 0 determine the phase of the sine-mode field.

In the Schrödinger picture the time evolution of the density matrix ρ of the coupled
system is determined by the master equation

ρ̇ = 1
i~

[H, ρ] + Lcρ+ Lsρ, (5.5)

where the Liouvillean superoperator describing photon losses is given by [5.37]

Liρ = κ
(
2aiρa†i − a

†
iaiρ− ρa

†
iai
)
, i ∈ {c, s}. (5.6)
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In general the field damping time will be shorter than the time scale of particle
motion so the fields will reach a particle-dependent quasi-stationary state. For strong
coherent pumping of the cosine mode one thus can approximate ac by a coherent
field of amplitude αc and only treat the sine mode quantum mechanically. In the
limit of very deep optical potentials, where particles are trapped near x ≈ 0, this
leads to the equations [5.17]

ṗ = 2~kU0
(
|αc|2 − a†sas

)
kx− ~kU0

(
α∗cas + αca

†
s

)
(5.7a)

ȧs = (i∆c − κ) as − iαcU0kx, (5.7b)

which are well known in optomechanics. In the opposite limit of a very weak potential
and an initially flat particle distribution (k = 0) the sin(2kx) term will only amount
to scattering to particle waves with p = ±2~k [5.38], where again a simple coupled-
oscillator model can be applied. In this work we will concentrate on the general case
where the particles are weakly trapped in the optical potential but still can tunnel
between adjacent sites. This should finally lead to a Bose-Hubbard-type description
with new types of long-range interactions.

5.3 Effective potentials and dynamics in the weak-coupling
limit

As the general quantum dynamics is too complex for a direct solution we have to
resort to interesting limiting cases. In this section we first work out the cavity-induced
corrections to the particle dynamics in a classical potential. As outlined above the
particles moving in the cavity field will scatter light between the modes and thus
change the depth and shape of the optical potential. If the adjustment time of
the field, i.e., the cavity decay, is faster than the typical particle motion, one can
still expect to be able to define an effective potential for the particle. These cavity
losses, from another viewpoint, can also be seen as a continuous measurement of
the particle dynamics [5.39] which modifies the system dynamics via measurement
backaction [5.40]. In the following we try to address these new key aspects in the
strong-damping and weak-coupling limit, where they give only small corrections.

In a cavity the optical potential felt by the the particle is no longer conservative and
constant as fluctuations in the field amplitude (quantum jumps) lead to momentum
diffusion and dephasing of the wave function. This behavior is generic for a quantum
system coupled to an open system. For free-space optical lattices the most important
part of the decoherence stems from spontaneous photon scattering from the trap
field to free space. However, for typical operating conditions far off any resonance,
decoherence times are of the order of minutes rendering the light fields to constitute
conservative classical potentials [5.2]. In a resonator-generated potential one has a
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5.3 Effective potentials and dynamics in the weak-coupling limit

second important contribution to decoherence via cavity decay. For sufficient atom-
field coupling, the corresponding decoherence times can be quite short. Actually, one
recovers the free-space conservative-field limit in the case of a very bad, “infinitely”
fast decaying cavity together with a very strong pump and weak coupling, where the
particles cannot induce any changes to the field dynamics.
In the following, we calculate corrections to this limit in the bad-cavity case via

adiabatic elimination of the field dynamics. We first demonstrate semiclassically in
secular approximation within the Schrödinger picture that the field always relaxes to
a very low-excited state for properly chosen parameters. This allows us to derive
an effective potential for the coherent particle dynamics. Still, the field dynamics
induces dephasing as can be clearly observed on the decay of coherent tunneling
oscillations due to photon scattering. In the following we will study this dephasing
and derive an estimate for this decay rate.

5.3.1 Low-excitation limit in the Schrödinger picture

As seen from the Heisenberg equations (5.4) for the field modes the sine mode
will only be populated by photons scattered in by the particles from the strongly
pumped cosine mode. On the other hand, the driven cosine mode will be highly
occupied and close to a coherent state |αc〉 with |αc| � 1. This generates an optical
potential of depth V0 = ~|U0||αc|2 forming a periodic optical lattice. In the limit
of small |αc||U0|/|∆c| we find only a very small field corresponding to at most one
photon in the second mode. The wave function of the total system thus can be well
approximated by the sum of a zero-photon and a one-photon component in the sine
mode and a coherent state in the cosine mode. Neglecting higher sine-mode photon
numbers as well as constant terms an effective approximate Hamiltonian in this limit
thus can be conveniently written as

H =
(
p2

2m + ~U0|αc|2 cos2(kx)
)
− ~

(
∆c − U0 sin2(kx)

)
σ̃+σ̃−+

+ ~U0
2 sin(2kx)

(
α∗c σ̃

− + αcσ̃
+
)
, (5.8)

where we have introduced the (photonic) raising and lowering operators σ̃+ := |1〉〈0|
and σ̃− ≡

(
σ̃+)† = |0〉〈1|. For simplicity and without loss of generality we choose the

pump phase in a way that Imαc = 0 in the following. The rather familiar-looking
Hamiltonian (5.8) now exactly corresponds to a two-level particle moving in an
optical potential, whose internal degrees of freedom are interacting with a classical
spatially varying light field. Note that while the two states here physically describe
zero or one photon in the sine mode and not actual internal particle excitations, the
mathematics is the same as for an internal atomic excitation. Actually, in the past
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decades numerous ways to treat this generic laser-cooling Hamiltonian in different
approximations have been developed.
Here we will follow the well-established dressed-states approach, based on the

possibility to analytically diagonalize the Hamiltonian for any fixed particle position
x and determine the corresponding adiabatic field states. Hence x and p are treated
as classical variables [5.41]. Alternatively, it would be also possible to directly solve
the optical Bloch equations. Both methods start from a semiclassical approximation
of the external particle variables. However, as shown in Refs. [5.42, 5.43] there exists
a corresponding consistent quantum-mechanical interpretation of the dressed-states
picture. Here we will follow both approaches. The semiclassical approximation allows
to obtain analytical results for the effective potential, which will give significant
qualitative insight to the expected system dynamics and the latter treatment allows
for an estimate of the effective motional decoherence and damping rates.
Diagonalization in the semiclassical limit yields the eigenvalues (the “adiabatic

potentials” [5.44])

V±(x) = ~U0

(
|αc|2 −

1
2

)
cos2(kx)− ~(∆c − U0)

2 ± ~Ω(x)
2 (5.9)

and the corresponding normalized eigenvectors

|x; +〉 = cosϑ |0〉+sinϑ |1〉 (5.10a)
|x;−〉 = −sinϑ |0〉+cosϑ |1〉 , (5.10b)

where we have defined

∆(x) := ∆c − U0 sin2(kx) (5.11a)

Ω(x) :=
√

∆2(x) + U2
0 |αc|2 sin2(2kx) (5.11b)

sinϑ(x) := sgn (U0αc sin(2kx))
√

Ω(x)−∆(x)
2Ω(x) (5.11c)

cosϑ(x) :=
√

Ω(x) + ∆(x)
2Ω(x) . (5.11d)

For |U0||αc| � |∆c| the state |x;−〉 contains only a very small amount of the
one-photon state (it is thus a “quasidark state” [5.44]) since in leading order

cos2 ϑ(x) ' |αc|2

4
U2

0
∆2

c
sin2(2kx) (5.12a)

sin2 ϑ(x) ' 1− |αc|2

4
U2

0
∆2

c
sin2(2kx). (5.12b)
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The equations of motion for the two populations (in secular approximation which is
valid for well-resolved lines, i.e., Ω(x)� κ⇒ |∆c| � κ) read [5.41, 5.45]

Π̇+ = −Γeff
+ Π+ + Γeff

− Π− (5.13a)
Π̇− = −Γeff

− Π− + Γeff
+ Π+, (5.13b)

with the position-dependent effective rates

Γeff
+ (x) = 2κ sin4 ϑ(x) (5.14a)

Γeff
− (x) = 2κ cos4 ϑ(x). (5.14b)

Its steady-state solution reads

Π+ = Γeff
−

Γeff
+ + Γeff

−
'

Γeff
−

Γeff
+

=
(Ω + ∆

Ω−∆

)2
(5.15a)

Π− = Γeff
+

Γeff
+ + Γeff

−
' 1− Γeff

−
Γeff

+
= 1−

(Ω + ∆
Ω−∆

)2
. (5.15b)

This state is reached within a time determined by the population decay rate Γpop =
2κ(sin4 ϑ+ cos4 ϑ). Since Γeff

− � Γeff
+ the field will always end up in the local |x;−〉

state provided that ωR � Γpop. The low-excitation approximation is thus well
justified. For U0/∆c � 1 the steady-state populations (5.15) reduce to

Π+ '
|αc|4

16
U4

0
∆4

c
sin4(2kx) (5.16a)

Π− ' 1− |αc|4

16
U4

0
∆4

c
sin4(2kx). (5.16b)

A small photon number in the sine mode is thus consistent with the approximation
Π− ' 1 as the photon number scales with U2

0 /∆2
c and the population with U4

0 /∆4
c .

Hence, in steady state the effective potential reads

〈V (x)〉 ' ~U0|αc|2 cos2(kx) + |αc|2

4
~U2

0
∆c

sin2(2kx). (5.17)

This is of course the same result as obtained for optical lattice potentials (AC Stark
shift) [5.2]. There the potential is found to be V (x) = ~|Ω(x)|2/4δ, where Ω(x) is the
Rabi frequency and δ the detuning of the two-level system with respect to the driving
laser. Setting Ω(x) := U0αc sin(2kx) and δ := ∆c the second part of equation (5.17)
is recovered. The first part is just some additional classical potential which in our
case does not affect the “internal” variables of the particle.
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Let us now treat the problem in a closely related quantum-mechanical way. To
this end we apply the unitary transformation

U =
(

cosϑ sinϑ
− sinϑ cosϑ

)
(5.18)

on the Hamiltonian (5.8). Assuming adiabaticity (non adiabatic off-diagonal terms
much smaller than the difference between the adiabatic eigenvalues [5.42]), the
resulting Hamiltonian in the adiabatic basis {|+〉 , |−〉} reads [5.42]

Had =
(
p2

2m + ~U0

(
|αc|2 −

1
2

)
cos2(kx)

)
+ ~Ω(x)

2
(
|+〉〈+| − |−〉〈−|

)
. (5.19)

The eigenstates of (5.19) are ∣∣∣Ψ±n,q〉 =
∣∣∣φn,±q 〉

|±〉 , (5.20)

where
∣∣∣φn,±q 〉

denotes the Bloch state with quasi momentum q for the nth energy
band of the two adiabatic potentials V±(x) defined in (5.9). Looking again at the
rate equations stemming from the master equation including photon decay one finds
the effective decay rates [5.46]

Γ+
n,q = 2κ

〈
φn,+q

∣∣∣sin2 ϑ
∣∣∣φn,+q 〉

(5.21a)

Γ−n,q = 2κ
〈
φn,−q

∣∣∣cos2 ϑ
∣∣∣φn,−q 〉

. (5.21b)

The dynamics described by the corresponding rate equations is shown in Fig. 5.3.
Again, as in the semiclassical case we have Γ+

n,q � Γ−n,q, and only the subspace
belonging to |−〉 will be significantly populated in steady state. Therefore the
adiabatic potential V−(x) can be treated as an effective potential for the particle
motion as long as the incoherent processes within this subspace are sufficiently
small [5.2]. Decoherence manifests itself as finite lifetime of the Bloch states within
this potential, leading to a damping of the particle motion. This can be understood
in the following way: Localized particles within the lattice are described by coherent
superpositions of Bloch states [5.47]. If these coherences get lost due to a finite life
time of the Bloch states, the particles can no longer coherently move through the
lattice and experience an additional friction force. We estimate the effective rate to
be

Γ ∼ max
q

Γ−0,q ' 2κ |αc|2U2
0

4∆2
c

max
q

〈
φ0
q

∣∣∣sin2(2kx)
∣∣∣φ0
q

〉
, (5.22)
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Figure 5.3: (Color online) Time evolution of the band populations stemming from the rate
equations in the basis (5.20) containing the rates (5.21). The potential depth
is V0 = 25ER and thus the first three bands are bound. We have assumed a
double-well potential hence each band consists of two Bloch states with different
quasi momenta. The initial state was Π−0,−1 = Π−0,0 = 0.5. There is no significant
population transfer to the subspace belonging to the |+〉 adiabatic eigenstate,
whereas the population distribution within the |−〉 subspace changes, the particle
is heated. Parameters: U0 = −ωR, αc = 5, ∆c = −500ωR, and κ = 100ωR.

which in a very crude approximation gives

Γ . 2κ |αc|2U2
0

4∆2
c

= |V0|
2
|U0|κ
∆2

c
. (5.23)

This rate has to be compared to the tunneling time T , which is determined by the
inverse bandwidth of the lowest Bloch band. A high Q factor requires

ΓT ≤ 2κT |αc|2U2
0

4∆2
c

!
� 1. (5.24)

5.3.2 Effective potential via adiabatic elimination in the Heisenberg
picture

As a second alternative approach we will directly work in the Heisenberg picture. In
contrast to the previous section, where we applied a two-level approximation for the
field, we consider the full mode operator a here. Its equation of motion apart from
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the vacuum input noise operator reads

ȧ = (i∆(x)− κ)a− iη(x), (5.25)

where we have defined
η(x) := αcU0

2 sin(2kx). (5.26)

Its formal steady-state solution reads

a = −iη(x)
κ− i∆(x) . (5.27)

Hence one obtains the photon number

a†a = |η(x)|2
κ2 + ∆2(x) '

|αc|2

4
U2

0
κ2 + ∆2

c
sin2(2kx), (5.28)

where the latter is valid in the limit U0/∆c � 1. For |∆c| � κ it converges to the
result (5.12a) obtained previously in the Schrödinger picture in secular approximation.
The scattered coherent field |α(x)〉 with amplitude (5.27) coincides with the steady-
state solution |x;−〉 of the rate equations (5.13) in the same limit up to a phase
depending on the (arbitrary) global phase of the eigenstates |x;±〉. Note that without
the secular approximation κ also appears in the steady-state solution of the rate
equations and thus in the photon number and the effective potential. The steady-
state solution then can contain coherent superpositions of |x; +〉 and |x;−〉 as the
states are not well enough separated.
The effective potential for the particle thus reads

Veff(x) = ~U0|αc|2 cos2(kx) + ~∆(x)|η(x)|2
κ2 + ∆2(x) '

' ~U0|αc|2
(

cos2(kx) + 1
4

∆cU0
∆2

c + κ2 sin2(2kx)
)
, (5.29)

which equals the adiabatic potential V−(x) in the aforementioned approximation.
Now we can proceed exactly as before and estimate the particle’s motion damping

rate via the rates between the Bloch states,

Γeff ∼ max
q

2κ
〈
φ0,eff
q

∣∣∣∣∣ |η(x)|2
κ2 + ∆2(x)

∣∣∣∣∣φ0,eff
q

〉
'

' 2κ |αc|2

4
U2

0
∆2

c + κ2 max
q

〈
φ0,eff
q

∣∣∣sin2(2kx)
∣∣∣φ0,eff
q

〉
. (5.30)

We have plotted this rate in Fig. 5.4 and the effective potential in Fig. 5.5. Figure 5.6
shows the particle motion for different parameters. The adiabatic elimination of the

58



5.3 Effective potentials and dynamics in the weak-coupling limit

Bose–Hubbard model

Monte Carlo simulations

adiabatic elimination

κ/ωR

Γ
/ω

R

600500400300200100

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 5.4: (Color online) Damping coefficient Γ stemming from the adiabatic elimination
(solid lines), from Monte Carlo wave-function simulations (dots, cf. Sec. 5.5,
model (ii)) and computed with the two-band Bose-Hubbard model (dashed lines)
presented in Sec. 5.4.3. The statistical error from the MCWFs is of the order of
the point size. From bottom to top: U0 = (−1,−3,−5)ωR. The other parameters
are αc =

√
12ωR/|U0| and ∆c = U0 − κ.

field dynamics results in a loss of information about the system and a broadening of
the effective potential wells for the particles (cf. Fig. 5.5). Physically, this can be
interpreted as a mixture of a shift of the cosine-squared potential to the left as well as
to the right. These shifts originate from the single-photon field of undetermined phase
in the sine mode. A similar situation occurs in transversally pumped standing-wave
resonators [5.48], where for a given cavity-field phase every even potential well gets
deepened (leading to selforganization of the particles) and for the opposite phase every
odd well is deeper. After adiabatic elimination of the field the mixture of both effects
can be observed which deepens the whole lattice. Note that the effect of different
atoms in the same state adds up coherently here, so even a tiny single-particle effect
could have dramatic consequences for a superfluid many-particle state in the lattice.

In principle the model could also be applied to the case of a BEC of N particles in
the same motional state. In this case the backaction effect on the potential would
be strongly enhanced and modifications of tunneling will lead to significant changes
of the collective nonlinear dynamics of a corresponding mean-field model. We will,
however, not pursue this route any further here and rather turn to a description in
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Figure 5.5: (Color online) Effective potential Veff(x) compared to the unperturbed potential
V (x) = ~U0|αc|2 cos2(kx). At kx = nπ/2 (n ∈ Z) the two potentials agree as
for these points the coupling to the mode vanishes. Parameters: U0 = −50ωR,
αc =

√
2.4, ∆c = −150ωR, and κ = 100ωR.

terms of localized basis function in the spirit of a Bose-Hubbard model.

5.4 Bose-Hubbard model for a ring-cavity potential
The many-body version of the single-particle Hamiltonian (5.3) is conveniently
obtained through a second-quantization formalism. With Ψ(x) denoting the bosonic
particle field operator, the corresponding Hamilton operator reads

H =
∫

dxΨ†(x)H1Ψ(x)− ~∆c
(
a†cac + a†sas

)
−

− i~ηc
(
ac − a†c

)
+ g1D

2

∫
dxΨ†(x)Ψ†(x)Ψ(x)Ψ(x), (5.31)

with

H1 = p2

2m + ~U0
(
a†cac − a†sas

)
cos2(kx)+

+ ~U0a
†
sas + ~U0

2 (a†cas + a†sac) sin(2kx). (5.32)

The two-body interaction at very low temperatures (s-wave scattering) is modeled
by a short-range pseudopotential containing the scattering length [5.49]. As our
central goal is to study the implications of the quantized potential, we will, however,
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Figure 5.6: (Color online) Particle motion simulated with three different models [cf. models
(i)-(iii) in Sec. 5.5]. [Red (solid line without additional points] Solution of the
complete ring resonator with both dynamical modes. [Green (squares)] Solution
setting the coupling to the unpumped mode to zero, i.e. a standing-wave lattice
formed by the pumped mode. [Blue (triangles)] Solution of the model (5.8),
where the pumped mode has been set to a static coherent state. The blue
(dashed) envelope is the exponential decay predicted in equation (5.30). As
the photon number in the pumped mode is high (and thus the fluctuations
small), most of the damping originates from fluctuations in the unpumped mode.
Tunneling is slightly enhanced compared to the standing-wave lattice, which is
consistent with the shape of the effective potential: A broader potential results
in slightly larger hopping matrix elements. However, stronger damping can be
observed whenever tunneling gets enhanced as the coupling to the unpumped mode
increases. Ensemble averages over 100 Monte Carlo wave-function trajectories.
Parameters: U0 = −ωR, αc =

√
12, ∆c = U0 − κ, and κ = 600ωR (upper plot)

and κ = 200ωR (lower plot), respectively.
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neglect any direct particle-particle interaction for the moment. It can be reintroduced
later by effective on-site interactions in the corresponding generalized Bose-Hubbard
model.
In order to obtain a Bose-Hubbard description of the particle dynamics, the

standard procedure is to expand the field operators appearing in (5.31) using a suitable
set of localized Wannier functions which can be obtained from Bloch eigenfunctions of
the single-particle Hamiltonian [5.47]. In the limit of particle energies well below the
trap frequency ωT =

√
4V0ER/~ (V0 is the potential depth), the expansion may be

even restricted to the lowest Bloch band [5.1, 5.2]. In many cases, this approximation
is very good and thus the consideration of higher bands is not necessary—even in
the presence of any direct particle-particle interaction. Although one has to take
extra care in choosing the correct Wannier basis, to some extent this procedure can
still be applied when the optical lattice is generated not by a classically described
coherent light field but rather by a quantized standing-wave mode of an optical
resonator [5.14–5.16, 5.50]. As long as the photon-number uncertainty is much less
than the average photon number, a self-consistent average potential depth can be
chosen to calculate suitable particle basis states for the expansion of the field operator.
The relevant parameters like tunneling- and on-site energies then only weakly depend
on the photon-number fluctuations in the mode. Note that this procedure gets
doubtful or even inapplicable if the cavity damping rate gets comparable with the
time scale of particle motion, or when only few photons are present in the field mode
generating the potential.

Naturally, one is tempted to try an analogous approach for the ring-cavity lattice
formed by two quantized light modes as a first step. In the case of symmetric pump,
only the cosine mode is excited in the empty cavity, and thus we can start with
a Wannier basis involving only the lowest band of the highly excited cosine-mode
potential. Interestingly, we find that within this ansatz a restriction of the particle
dynamics to the lowest band immediately implies a complete decoupling of the sine
mode from the dynamics. The ring resonator then behaves exactly as a standing-wave
cavity because the possibility of a lattice displacement is neglected by this ansatz.
In principle, one needs to consider displaced Wannier functions, which is not an
obvious task: Treating the displacement δx as a self-consistent c-number (in the spirit
of the afore discussed self-consistent potential depth) would result in a vanishing
displacement for all times, if it was zero initially. This obviously does not reproduce
the scattering of photons into the unpumped mode. On the other hand, differently
displaced Wannier functions—which would take into account that the Hamiltonian
modifies the lattice—are not orthogonal and hence do not form a suitable basis for
a lattice model. One way to overcome this problem by taking into account higher
Bloch bands will be presented in Sec. 5.4.2, where we show, that the corresponding
cooperative tunneling and scattering processes are needed for a correct physical
modeling of the dynamics.
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5.4 Bose-Hubbard model for a ring-cavity potential

5.4.1 Single-band model

As just discussed, in a first attempt we restrict the particle dynamics in the Hamilto-
nian (5.31) to the lowest Bloch band in the potential generated solely by the strongly
pumped cosine mode. The field operator is thus approximated by

Ψ(x) '
∑
i

w0(x− xi)bi, (5.33)

where the bosonic operators b(†)i destroy (create) a particle at the ith lattice site and
w0(x− xi) =: w0

i (x) denotes the zeroth-band Wannier function localized there. The
expanded Hamilton operator (5.31) then reads

H =
∑
i,j

Eijb
†
ibj + ~U0

(
a†cac − a†sas

)∑
i,j

Jijb
†
ibj+

+ ~U0Na
†
sas + ~U0

2
(
a†cas + aca

†
s

)∑
i,j

J̃ijb
†
ibj−

− ~∆c
(
a†cac + a†sas

)
− i~ηc

(
ac − a†c

)
, (5.34)

where we have defined the matrix elements

Eij :=
〈
w0
i ,
p2

2mw0
j

〉
(5.35a)

Jij :=
〈
w0
i , cos2(kx)w0

j

〉
(5.35b)

J̃ij :=
〈
w0
i , sin(2kx)w0

j

〉
. (5.35c)

As the next-nearest neighbor matrix elements are at least one order of magnitude
smaller than their nearest-neighbor counterparts, we keep only the latter. Looking
closely at the above expressions, the most interesting point to note is that J̃ik = 0 ∀i, k
due to symmetry. This can easily be seen analytically: The product w0(x−xi)w0(x−
xj) is symmetric about the point (xi + xj)/2 and has compact support due to the
exponential localization of the Wannier functions. The function sin(2kx), on the other
hand, is an odd function with respect to the extrema of the potential. The integrand
appearing when evaluating the scalar product (5.35c) is thus an odd function and
therefore the integral over R vanishes. Hence the Bose-Hubbard-type Hamiltonian
reads

H = E0N + EB +
[
~U0

(
a†cac − a†sas

)]
(J0N + JB)+

+ ~U0Na
†
sas − ~∆c

(
a†cac + a†sas

)
− i~ηc

(
ac − a†c

)
, (5.36)
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where we have defined the particle number operator N and the hopping operator
B := ∑

i(b
†
ibi+1 + b†i+1bi). E0, J0 (E, J) denote the on-site (nearest-neighbor off-site)

matrix elements (5.35).
Note the lack of terms accounting for scattering into the sine mode in this Hamil-

tonian. The unpumped mode thus completely decouples from the system dynamics
and simply decays to its vacuum state. Hence there will be no difference to the
standing-wave cavity case after this decay. Mathematically, this can be seen by
explicitly writing the Heisenberg equations for the sine mode,

ȧs = (i (∆c + U0 ((J0 − 1)N + JB))− κ) as (5.37a)
˙

a†sas = −2κa†sas. (5.37b)

In the bad-cavity limit, when the field relaxes almost instantaneously to its steady-
state value, both quantities vanish. To capture more of the physics of the ring
resonator, higher bands need to be included. This will be done in Sec. 5.4.2.

As the single-mode model has been extensively treated in previous literature, we will
not discuss this much further. But is this result a bug or a feature? Mathematically,
the decoupling of the sine mode originates from the even symmetry of the lowest-band
Wannier functions, which we used as our basis. Physically, one could argue that
tunneling between sites within a band does not invoke any force or momentum
transfer and thus introduces no coupling or scattering to the empty sine mode. Hence
the model can be at least self-consistent for a superfluid phase strictly limited to a
single band. Of course, adding on-site interactions already destroys this argument
as these are connected to changes of the local wave functions which amounts to the
appearance of higher-band contributions. These will couple to the sine mode as seen
in the numerical examples in Sec. 5.2 and the appearance of sine photons thus would
herald the breakdown of zeroth-band superfluidity.

5.4.2 Multiband model

In order to incorporate excitations of the unpumped mode we have to allow for
tunneling events from one site to a neighboring site with a simultaneous generation
of a photon in the sine mode. This means that the final particle wave function is
shifted with respect to the unperturbed basis: As the Wannier states corresponding
to the cosine potential form an orthogonal basis set, mathematically this amounts,
of course, to the admixture of higher-band Bloch functions in the dynamics. One
might at this point be tempted to state that the zeroth-band motion will thus largely
decouple from the unpumped sine mode whenever the excitation energy to the next
band is sufficiently large. However, one has to be more careful here. Actually, the
lowest-band approximation in the cosine potential does not necessarily coincide with
the lowest-band approximation for the ring cavity. During the time evolution the
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5.4 Bose-Hubbard model for a ring-cavity potential

potential can get shifted relative to the unperturbed potential generated by the
pump field. Hence, despite possessing contributions from higher-band wave functions,
the particle can still have an energy corresponding to the lowest band as its wave
function is simply a shifted lowest-band Wannier state.

Mathematically, one can estimate such contributions by expanding the lowest-band
Wannier functions of a shifted lattice in the Wannier functions (including higher
bands) of the original one, which, as said, form a complete basis set. We see, that to
lowest order only the first antisymmetric band significantly contributes. This can be
easily checked. If w0(x− xi) is the lowest-band Wannier function localized at the
ith lattice site of the unperturbed lattice, the Taylor expansion of a slightly shifted
Wannier function to lowest order in the shift δx reads

w0(x− xi − δx) ' w0(x− xi)− δxw′0(x− xi). (5.38)

The first derivative of the ground-state Wannier function is antisymmetric and thus
the first band gets involved.
Let us therefore develop an improved version of the previously derived Bose-

Hubbard model, which includes the important new physics originating from the
ring-cavity geometry. To this end, we reconsider the original Hamiltonian (5.3) and
assume a sufficiently strong coherent field αc in the cosine mode so that its quantum
properties can be ignored and only the sine mode needs a description by an operator
a. The Hamiltonian thus reads

H = p2

2m + ~U0
(
|αc|2 − a†a

)
cos2(kx)−

− ~ (∆c − U0) a†a+ ~U0
2 sin(2kx)

(
α∗ca+ αca

†
)
. (5.39)

For very low photon numbers in the sine mode, we can neglect its contribution
proportional to a†a to the potential depth and get:

V (x) = ~U0
(
|αc|2 − a†a

)
cos2(kx) ' ~U0|αc|2 cos2(kx). (5.40)

This Hamiltonian is closely related to an optomechanical coupling as used in Ref.
[5.17], but here we have a periodic trapping potential for the particle motion. During
the dynamics, the classical periodic potential is modified through the scattering term.
A photon in the sine mode essentially leads to a broadening of the effective potential,
which lowers the ground state energy and modifies the tunnel coupling to neighboring
sites.

From a physics point of view, the dynamics induced by this Hamiltonian in several
aspects resembles the case of particle motion in a standing-wave light field across a
high-finesse resonator [5.31, 5.48], where a self-organization of the particles in two
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possible patterns filling every second lattice site can occur. Position-dependent light
scattering modifies the optical potential so the occupied sites deepen. The difference
to our system is the symmetry of the scattering term, which here is antisymmetric
with respect to the extrema of the classical potential. So instead of resulting in a
state-dependent deepening of the lattice, the scattered light shifts the position of
the lattice sites with respect to the classical potential. In a Bloch expansion with
respect to the classical potential this shift amounts to contributions of higher bands
like any interaction term would do.
To obtain a lattice model we expand the field operator to

Ψ(x) =
∑
i

∑
n

bni w
n
i (x), (5.41)

where bni destroys a particle in the nth band at the ith well and wni denotes the
corresponding Wannier function. Neglecting any direct particle-particle interaction,
we obtain the second-quantized version of the Hamiltonian (5.39),

H =
∑
n,m

∑
i,j

Enmij bni
†bmj − ~

(
∆c − N̂U0

)
a†a+

+ ~U0
2

∑
n<m

J̃nmT̃nm +
∑
i 6=j

J̃ ′nmij B̃nm
ij

(α∗ca+ αca
†
)
, (5.42)

where we have defined the operators

N̂ :=
∑
n

∑
i

bni
†bni ≡ Nid (5.43a)

T̃nm :=
∑
i

(
bni
†bmi + bmi

†bni

)
(5.43b)

B̃nm
ij := bni

†bmj + bmj
†bni . (5.43c)

N̂ is the number operator and proportional to the identity operator id as the total
number of particles is conserved. T̃nm describes transitions between two bands
within one well, whereas B̃nm

ij accounts for hopping between two wells together with
a change of the band. The corresponding matrix elements read

Enmij :=
〈
wni ,

(
p2

2m + ~U0|αc|2 cos2(kx)
)
wmj

〉
(5.44a)

J̃nm := 〈wni , sin(2kx)wmi 〉 (5.44b)

J̃ ′nmij :=
〈
wni , sin(2kx)wmj

〉
. (5.44c)

Note that in-well transitions between bands without photon exchange are prohibited
as Enmii = 0 ∀n 6= m.
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5.4.3 Two-band lattice model
The Hamiltonian (5.42) is still complex and hard to solve completely. Hence, we
will first try to highlight the basic physics of particle motion and lattice shifts in
an as-simple-as-necessary model and restrict the particle motion to two bands. As
pointed out earlier, to lowest order the first excited band gets coupled. It will be the
superpositions of odd- and even parity eigenstates within one well which scatter a
coherent field into the sine mode with non-vanishing amplitude 〈a〉. Keeping only
the on-site and nearest-neighbor matrix elements and defining En := Ennii , J̃ := J̃01

and J̃ ′ := J̃ ′01
i,i+1 the Hamiltonian reads

H =
∑
n=0,1
i

Enbni
†bni +

∑
n,m=0,1
〈i,j〉

Enmi,j b
n
i
†bmj +

+ ~U0
2

J̃ T̃ +
∑
〈i,j〉

J̃ ′B̃ij

(α∗ca+ αca
†
)
− ~

(
∆c − N̂U0

)
a†a. (5.45)

T̃ := T̃ 01 and B̃ := B̃01
i,i+1 describe on-site (off-site) parity changes.

Here we make a short remark concerning very deep potentials. There the hierarchy

|J̃ | � |E1| � |E0| ∼ |J̃ ′| � |E01
i,i+1| (5.46)

holds. Hence, tunneling happens preferably via excitation to the first band and
subsequent tunneling within this band (see also Figs. 5.7 and 5.13). However, one has
to be conscious that a too-large effective coupling strength invalidates the two-band
model as even higher bands need to be taken into account. See Fig. 5.10 for a
situation where the two-band model fails whereas the three-band version allows for
reproducing the results of the full Monte Carlo simulations (cf. Sec. 5.5).
Most of the new physics involving tunneling with light scattering and hopping

between bands can be already seen in a truncated two-site version of the model.
Labeling the two sites by indices l and r for left and right, the Heisenberg equation
of motion for the field then explicitly reads (neglecting the input noise operator)

ȧ = (i (∆c −NU0)− κ) a− iαcU0
2

(
J̃ T̃ + J̃ ′B̃

)
(5.47)

and its steady-state solution

ass =
−iαcU0

2

(
J̃ T̃ + J̃ ′B̃

)
κ− i (∆c −NU0) . (5.48a)

For the photon number one obtains

(
a†a

)
ss

=
|αc|2U2

0
4

(
J̃ T̃ + J̃ ′B̃

)2

κ2 + (∆c −NU0)2 '
|αc|2

4
U2

0
∆2

c + κ2

(
J̃ T̃ + J̃ ′B̃

)2
, (5.48b)
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Figure 5.7: (Color online) Schematic view of some processes appearing in the Hamilto-
nian (5.45) for two chosen lattice sites. The width of the arrows corresponds to
the amplitude of the process, i.e., the magnitude of the matrix elements (5.44).

where the latter is valid for |U0| � |∆c|.
For large resonator damping constants κ, where the particle dynamics follows the

field adiabatically, the localized states within one band radiate a field with zero
amplitude,

〈wni |ass|wni 〉 = 0 ∀i, n (5.49)
but non-vanishing photon number. Indeed, for one particle, the photon number is
the same for all four localized basis states,〈

ψ
∣∣∣(J̃ T̃ + J̃ ′B̃)2

∣∣∣ψ〉 = J̃
2 + J̃ ′

2 ∀ |ψ〉 ∈
{
|wni 〉

∣∣∣ i ∈ {l, r}, n ∈ {0, 1}}. (5.50)

As pointed out before, the ground state will always have a non-negligible contribution
of the first band. Therefore it is convenient to switch to the basis of even and odd
localized states, ∣∣∣ψ±l,r〉 := 1√

2

( ∣∣∣w0
l,r

〉
±
∣∣∣w1

l,r

〉 )
(5.51)

which radiate an approximately coherent field |±α〉 with amplitude

α =
−iαcU0

2 J̃

κ− i (∆c −NU0) (5.52)

into the resonator. Strictly speaking, this is valid only as long J̃2 � J̃ ′
2. However, this

does not bring about any further restriction on the potential depth V0 = ~|U0||αc|2
since already for V0 = 5ER (for shallower potentials, the localized Wannier states
cannot be properly defined [5.2]) the squared matrix elements already differ by three
orders of magnitude, J̃ ′2/J̃2 ∼ 0.002. This difference gets much more pronounced
for deeper and deeper lattices. We can thus safely assume J̃2 + J̃ ′

2 ' J̃2.
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The basis decomposition of an arbitrary particle state in one well reads√
1− |ε|2

∣∣∣w0
i

〉
+ ε

∣∣∣w1
i

〉
=
√

1− |ε|2 + ε√
2

∣∣∣ψ+
i

〉
+
√

1− |ε|2 − ε√
2

∣∣∣ψ−i 〉 . (5.53)

The vanishing field amplitude for a particle in a parity eigenstate (|ε| ∈ {0, 1}) can
thus be explained as a consequence of destructive interference: The two components of
the particle state radiate a field |α〉 and a field |−α〉, respectively. The resulting field
state described by the reduced density matrix ρ ∝ |α〉〈α|+ |−α〉〈−α| has a vanishing
amplitude expectation value but a non vanishing photon-number expectation value,
cf. the broadened adiabatic potential derived in Sec. 5.3 which can be explained as
an average effect of the two shifts.

The jump operator
√

2κa can act as a parity-switch operator: Suppose the particle
being in the lowest band of the left well prior to the jump,

|ψ〉 ∝
∣∣∣ψ+

l

〉
|α〉+

∣∣∣ψ−l 〉 |−α〉 . (5.54a)

Directly after the jump, the system state reads

a |ψ〉 ∝
∣∣∣ψ+

l

〉
|α〉 −

∣∣∣ψ−l 〉 |−α〉 , (5.54b)

which corresponds to the antisymmetric particle state (ε = 1 above). Figures 5.11,
5.12, and 5.13 show single Monte Carlo trajectories depicting this behavior. More
generally, quantum jumps result in a loss of the coherences in the system state [5.48]:
During the coherent evolution the composed system state reads

|ψt〉 = c+
l (t)

∣∣∣ψ+
l

〉
|α〉+ c−l (t)

∣∣∣ψ−l 〉 |−α〉+
+ c+

r (t)
∣∣∣ψ+

r

〉
|α〉+ c−r (t)

∣∣ψ−r 〉 |−α〉 . (5.55a)

Acting with the jump operator ∝ a on this state causes two phase shifts destroying
the coherences:

a |ψt〉 ∝ c+
l (t)

∣∣∣ψ+
l

〉
|α〉 − c−l (t)

∣∣∣ψ−l 〉 |−α〉+
+ c+

r (t)
∣∣∣ψ+

r

〉
|α〉 − c−r (t)

∣∣ψ−r 〉 |−α〉 . (5.55b)

For the ensemble average over many quantum trajectories this effects leads to
dephasing and thus to a damping of the tunneling oscillations.

5.5 Comparison with full Monte Carlo wave-function
simulations

So far our treatment relied on a series of analytic approximations which allowed us
to predict a wealth of new physical phenomena. To get a first check on the validity
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and the prediction power of these models we compare them to “full” numerical
simulations of the single-particle dynamics in a ring resonator. They are carried out
in a momentum- and photon-number basis truncated at sufficiently high numbers
to include all the relevant physics. In addition to a quantitative check for the
analytic approximations these simulations also give nice qualitative insights into
the microscopic origins of the observed phenomena. These simulations with at
least three independent quantum degrees of freedom are generally very expensive
in computer memory and time. They were performed using a Monte Carlo wave-
function simulation algorithm as implemented in the locally developed C++QED
framework [5.51]1, which is highly optimized for efficient memory handling and
time-evolution speed. For technical reasons we swapped the role of the the two modes
in the simulations, the sine mode is thus pumped and therefore the two potential
wells (periodic boundary conditions) are located at kx = ±π/2.

We performed Monte Carlo simulations of three different systems:

(i) the full ring resonator as described by the Hamilton operator (5.3),

(ii) the reduced system with the pumped mode set to a coherent state described
by the Hamiltonian (5.39) [without the approximation (5.40)],

and, for comparison,

(iii) the pumped standing-wave resonator.

Additionally, we performed as well a series of Monte Carlo simulations of

(iv) the Bose-Hubbard model (5.45) to demonstrate the effects of quantum jumps
on the particle parity. However, for the time evolution of the density matrix this
much lower-dimensional model was alternatively solved by directly integrating
the full master equation.

In order to reobtain the (approximately) same potential depth in the full system (i)
we set ηc = |αc|

√
κ2 + (∆c − U0)2. In all simulations, the particle was initially in

a Gaussian state (momentum-space simulations) or in the lowest Wannier state
(lattice model), respectively, localized in the right well. Note that due to the
periodic boundary conditions, tunneling is enhanced by a factor of 2 in all numerical
simulations. For comparison, we have taken this into account in the Bose-Hubbard
model as well and have doubled all hopping matrix elements.

In Fig. 5.8 the standing-wave lattice is compared to the ring resonator. Although
the unpumped mode is hardly populated—

〈
a†a

〉
∼ 1.4× 10−5—its impact on the

1The latest—and strongly improved with respect to the previous one described in Ref. [5.51]—
release of the framework (version 2) can be downloaded from the project’s homepage www.uibk.
ac.at/th-physik/qo/research/cppqed.html or directly at www.cppqed.sourceforge.net.
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Figure 5.8: (Color online) Comparison of the standing-wave resonator [model (iii)] and the
ring resonator [model (i)] for one particle. Ensemble average over 250 trajectories.
Parameters: U0 = −3ωR, αc = 2, ∆c = U0 − κ, and κ = 400ωR.

particle is well pronounced. We see a significantly faster decay of coherent tunneling
due to the presence of the second mode as source of decoherence. One might also
recognize a slightly faster tunneling time due to the modified effective potential but
this would require a much larger ensemble to be quantitatively checked. Here the
validity condition for the approximation (5.40) is very well fulfilled. Note that for
the parameters used in the figure the average photon number in the pumped mode
generating the optical potential was only 4, which, however, still proves enough
for the classical (coherent state) approximation for this mode amplitude to give
qualitatively similar results. As particle motion is based essentially on tunneling in
the low temperature limit, scattering to the unpumped mode can be viewed as an
effective friction mechanism in the model.
Figure 5.9 shows the particle hopping between two sites computed from all four

aforementioned models. The reduced system (ii) is indeed a good approximation for
sufficiently large |αc|. Since the effective coupling is not too large the two-band Bose-
Hubbard model can remarkably well reproduce the results. However, as the coupling
increases the two-band approximation turns out to be too restrictive. Including
higher bands in such cases becomes absolutely necessary. Such a situation is depicted
in Fig. 5.10, where taking into account the second excited band allows for reproducing
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Figure 5.9: (Color online) Average position of the particle computed with the four models
described in Sec. 5.5. For the Bose-Hubbard model the population imbalance
〈Nr〉−〈Nl〉 has been plotted. Ensemble average over 100 trajectories. Parameters:
U0 = −ωR, αc =

√
12, ∆c = U0 − κ, and κ = 400ωR.

the predictions of model (ii).
Looking at the microscopic origin of the dephasing and decoherence, the crucial

effect of quantum jumps on these can be seen in Figs. 5.11, 5.12, and 5.13. The parity
swaps predicted in Eqs. (5.54) can be nicely seen and the different tunneling time
scales corresponding to the two bands are clearly visible. As the jump times have a
strong random contribution, the source of dephasing thus gets very obvious. Actually,
a related mechanism might also occur in free-space optical lattices if collisions invoke
higher bands in the particle dynamics. Note that transitions between the bands
visible in changes of the tunnel oscillation frequency are also accompanied by jumps in
the photon number, which provides for real-time monitoring of the band populations.

Finally, we demonstrate that the Bose-Hubbard model can capture a great deal of
the underlying physics if several bands are included. This is depicted in Fig. 5.14
which exhibits a significant excitation of the first excited band in steady state. This
is consistent with the full simulations above, where a similar heating to higher bands
can be observed, cf. Fig. 5.8.

5.6 Conclusions
We have developed several approximative analytical models to describe the dynamics
of a quantum particle in an optical lattice which is generated by counter propagating
fields in a high-Q ring resonator. A standard single-band description in terms
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Figure 5.10: (Color online) Average position of the particle computed with Monte Carlo
simulations (ensemble average over 150 trajectories) of the reduced model (ii) and
with the two- and three-band lattice models. The two-band version fails, whereas
the inclusion of the next band reproduces the correct behavior. Parameters:
U0 = −2ωR, αc =

√
12.5, ∆c = U0 − κ, and κ = 10ωR.
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Figure 5.11: (Color online) Sample trajectory of the reduced model (ii) showing the position
expectation value 〈kx〉 (left y-axis, lower curve) and

〈
a†a
〉
(right y-axis, upper

curve). The two quantum jumps occurring at ωRt ∼ 70 and ωRt ∼ 100 are
clearly visible: The photon number in the mode and the occupied band of the
particle are changed simultaneously as seen from the sudden change of the
oscillation frequency and amplitude between the potential wells. Here even
higher bands are excited. After the fast oscillation between the wells the particle
gets trapped again, but in a higher excited state, as can be seen from the higher
amplitude. The photon-number variance is much more pronounced. Parameters:
U0 = −2ωR, αc =

√
6, ∆c = U0 − κ, and κ = 500ωR.
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Figure 5.12: (Color online) Single Monte Carlo trajectory of the two-band Bose-Hubbard
model for a shallow potential (V0 = 12ER) and two wells. [Red solid line
(blue dots)] Expectation value of the particle number in the zeroth (first) band
within each well. Quantum jumps in the photon number can indeed trigger
parity changes of the particle as sketched in the text [Eqs (5.54)]. The different
tunneling time scales for the two bands can be seen. This trajectory can be
regarded as a Bose-Hubbard equivalent to Fig. 5.11; the parameters are the
same as described in the caption.
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Figure 5.13: (Color online) Single Monte Carlo trajectory of the two-band Bose-Hubbard
model for a very deep potential (V0 = 50ER) and two wells. [Red crosses
(blue dots)] Expectation value of the particle number in the zeroth (first) band
within each well. As zeroth-band tunneling is neglectable on the simulated time
scale, the population within this band does not change considerably (horizontal
lines). Only the first-band tunneling has a significant effect and subsequently
modifies the zeroth-band distribution within the two lattice sites. Parameters:
U0 = −2ωR, κ = 500ωR, αc = 5, and ∆c = U0 − κ.
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Figure 5.14: (Color online) Population evolution from the Bose-Hubbard-like lattice model
for a fixed potential depth V0 = 12ER. The different time scales for the
two bands are clearly visible. The particle was initially in the lowest band
and located in the left well. The black dash-dotted line shows the tunneling
Rabi oscillation for the lowest band without any coupling to the mode, i.e.
H = E0

lrb
0
l
†
b0
r + H. c., for comparison. (Left y-axis) Populations; (right y-axis)

photon number. As the parameters are similar to the ones used in figure 5.6, these
plots give a microscopic band interpretation of the particle motion presented
there. Parameters: U0 = −2ωR, αc =

√
6, ∆c = U0−κ, and κ = (500, 100, 10)ωR

from top to bottom.
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of Bloch or Wannier functions calculated from the unperturbed optical potential
predicts frictionless tunneling motion of the particles and long-range coherence of
the corresponding wave function. However, this approximation misses most of the
essential physics. Already a perturbative inclusion of the first excited band reveals
particle hopping between bands and sites accompanied by photon scattering into
empty field modes as a key mechanism to provide for a realistic description of the
dynamics. Even for very small photon scattering rates it leads to dephasing of tunnel
oscillations and decoherence of the wave function. This will strongly diminish coherent
transport together with heating of particle motion. In the perturbative approach
it essentially leads to a modified effective potential shape and a phase-decay term.
Note that this term, although being much smaller in a free-space-lattice setup, will
finally also pose limits on obtainable coherence lengths and acceleration sensitivity in
large free-space optical lattices. Microscopically, dephasing can be traced back to the
strongly band (energy) dependent tunneling times, so even very small contributions of
different bands lead to significant time shifts of tunnel oscillations. The corresponding
approximative models which we developed will give a basis for future many-body
generalizations of the model involving short- and long-range interactions between
different particles. The interactions mediated by the scattered photons play a very
similar role as phonons in real solid-state systems and thus can be a useful handle
to shape and study long-range interactions in cold-atom optical lattices. As the
photons scattered by different particles into the same mode even at long distances will
interfere, they can lead to nonlocal momentum-space pairing of particle motion. The
interaction will also help to establish long-range order, which will be particularly the
case for the transverse-pump case, where no a-priori order is prescribed by the field
modes and the atoms can self-arrange in a supersolid with diagonal and off-diagonal
order.
In addition to modifying the dynamics and steady state of the particles, the

scattering modes also provide for a basis for a real-time monitoring system of the
particles to study the transition between different quantum phases or quantum
models of transport in lattices with destruction of the system. This would require
including direct local interactions in addition, which should be possible at least in the
few-band limit of the model. As we centrally only need polarizable point particles,
corresponding effects could as well be observed with molecules or even nanoparticles
which are optically trapable.
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Figure 6.1: (Colour on-line) Sketch of the system. The pumped standing-wave mode (red)
traps the particles, the second orthogonal one (black) mediates an effective
interaction between them.

6.1 Introduction
The past decades have seen tremendous success in the implementation of control
schemes for the motional state of matter via light fields either in free space or in
optical cavities. A diversity of examples exist where the quantum regime of motion
has been reached. The masses span many orders of magnitude, from the microscopic
atomic size systems such as atoms in optical cavities [6.1–6.4] and laser-cooled ions
in ion traps [6.5] to the macroscopic level with cavity-embedded membranes [6.6],
mirrors [6.7] or levitated dielectric nano-particles [6.8].
A common interaction Hamiltonian that well approximates many quantum light-

matter interfaces is quadrature-quadrature coupling [6.9]; more specifically, the
displacement of the mechanics is coupled directly to a quadrature of the high-Q
optical field mode that can be then used as an observable for indirect position
detection. Adding a second mechanical system coupled to the field then allows
one to engineer an effective two particle mechanical coupling by eliminating the
mediating light mode. Here we find pulsed regime entanglement, non-classical
momentum correlations and heralded entanglement triggered by photon detection.
Recently, an expansion to quadratic coupling has been proposed [6.10] and the
investigation of dissipation-induced [6.11, 6.12], noise-induced [6.13] and remote
entanglement [6.14, 6.15] has been of great interest, including a scheme for sensitive
force measurements [6.16] and entanglement of macroscopic oscillators [6.17].
Here we show that all this can be implemented in a system consisting of two
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particles strongly trapped in the cosine mode of a ring cavity, where the two-particle
interaction is carried by sideband photons in the sine mode. For deep trapping it
yields the typical optomechanical Hamiltonian [6.18]. We start our presentation
with a brief review of this result extended to two particles. We then analyse single
quantum trajectories depicting strong correlations and entanglement. A subsequent
investigation of momentum correlations reveals classically forbidden positive values
in steady state, even in the absence of entanglement. The steady state shows a
strong delocalisation of the centre-of-mass independent of the particle separation.
We also show how to generate entanglement either in a pulsed regime or heralded
by the detection of photons. Analytical calculations are carried out in the regime
of strong particle confinement and matched to the more generally valid numerical
simulations with good agreement. Finally, the occurrence of correlations in the
system is explained in a simple adiabatic model.

6.2 Optomechanical dynamics of two particles in a ring
cavity

We study two small polarisable particles confined within a symmetrically-pumped
ring resonator, see fig. 6.1. Symmetric pumping results in a standing-wave optical
potential with spatial dependence cos2(kx) [6.18, 6.19]. The cosine mode is strongly
pumped and approximated by a highly excited coherent state |αc〉 with |αc| � 1
(and without loss of generality αc ∈ R). The particles scatter photons into the
unpumped orthogonal sine mode. This setup can be generally described by the
Hamiltonian [6.18, 6.19]

H =
2∑
i=1

[
p2
i

2m + ~U0α
2
c cos2(kxi) + ~U0a

†a sin2(kxi)
]

+

+ ~U0αc
2

(
a+ a†

) 2∑
i=1

sin(2kxi)− ~∆ca
†a. (6.1)

Here, a denotes the annihilation operator of the quantum-mechanical sine mode,
U0 < 0 the optical potential depth per photon, xi and pi the particles’ centre-of-mass
position and momentum operators, respectively, and m the particle mass. The pump
is detuned by ∆c := ωp − ωc from the bare cavity resonance frequency ωc. To avoid
instabilities we restrict ourselves to red detuned lasers (∆c < 0) for which a cooling
regime exists [6.20]. The sine mode is only weakly populated by scattering such
that

〈
a†a

〉
is negligible compared to α2

c [6.18]. Damping of the cavity mode is taken
into account by the Liouvillean Lρ = κ

(
2aρa† − a†aρ− ρa†a

)
[6.21] in the master
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equation
ρ̇ = 1

i~ [H, ρ] + Lρ. (6.2)

In the limit of tightly trapped particles, when it is justified to keep only the
first and second order terms in the expansion of the trigonometric factors, the
Hamiltonian (6.1) can be mapped onto the optomechanical model [6.18]

H =
2∑
i=1

~ωb†ibi − ~∆ca
†a+ ~g

2∑
i=1

(bi + b†i )(a+ a†) (6.3)

with ω :=
√

4~|U0|α2
cER/~, g := U0αckξ0/

√
2, the recoil energy ER ≡ ~ωR :=

~2k2/2m and the oscillator length ξ0 :=
√
~/mω. The scaling of the latter suggests

that the Lamb–Dicke regime kξ0 � 1 may also be reached for very heavy particles
in shallower traps. As we do not consider any direct particle-particle interactions,
the Hamiltonian (6.3) is also valid for particles not confined in the same, but rather
in distant sites within the resonator.
Interestingly, the Hamiltonian (6.3) applies to a whole class of systems. A few

well-studied realisations are (i) a cavity with vibrating end mirrors where the mirror-
light field is always linear and governed mainly by the cavity length and the zero
point motion of the mechanics [6.22, 6.23], (ii) two light membranes inside a cavity
field positioned at the maximum slope of the field amplitude where the coupling
depends on the reflective properties of the membranes and is increased with decreasing
mass [6.24] and (iii) very light nano-sized dielectric spheres held inside the cavity
field either by an external trapping light mode or by means of optical tweezers [6.8].

6.3 Single trajectory treatment
To get some first insight into the dynamics, let us solve eq. (6.2) numerically for
some typical parameters. The direct solution of the master equation (6.2) is compu-
tationally very demanding owing to the large Hilbert space of the joint particles-field
system. Therefore we resort to Monte Carlo wave function simulations [6.25], in
which the system is coherently evolved between so-called “quantum jumps”. These
jumps correspond to a photon detected at the resonator output [6.25]. Besides
the more favourable usage of computer resources, single trajectories also provide
additional insight into the microscopic processes in the system. The simulations were
efficiently implemented with the freely available1 C++QED framework [6.26, 6.27]
and performed in a joint momentum- and Fock basis.

A typical trajectory is shown in fig. 6.2, where the blue arrows indicate the times
at which jumps occur. Initially, the particles were prepared in the ground state of

1http://cppqed.sourceforge.net
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6.4 Non-classical momentum correlations

two separated potential wells and owing to the deep potential tunnelling is strongly
suppressed. The momentum correlation coefficient Cp for the two particles is defined
as

Cp := Cov(p1, p2)
∆p1∆p2

= 〈p1p2〉 − 〈p1〉 〈p2〉
∆p1∆p2

, (6.4)

where Cp = 1 means perfect correlation and Cp = −1 perfect anti-correlation of
the motion. Quantum jumps by photodetection trigger strong correlations and
entanglement between the particles due to the cavity-mediated interaction. The
logarithmic negativity [6.28] already after the first jump approaches the value for
a maximally entangled Bell state and the correlation reaches a value of Cp ≈ 0.5.
The emerging state corresponds to a superposition of two particles moving to the
right and two particles moving to the left such that the centre-of-mass momentum
remains zero. As we will see later this behaviour is caused by excitation of a single
particle into the first excited state within the trap. Beginning with the second jump
the system is subject to fast oscillations which are of the order of the trap frequency.
Note that only the field is dissipative in our model and induces quantum jumps.
However, the particles respond to the sudden changes of the field in a correlated way.
Interestingly, while entanglement is quite pronounced on single trajectories, it

remains small on average, see also fig. 6.3, where we have depicted the initial and
final momentum distribution. The averaged steady-state logarithmic negativity is
EN ∼ 10−3.

6.4 Non-classical momentum correlations

We now examine the momentum correlations in more detail. Classical simulations
reveal much stronger damping of the centre-of-mass motion than of the relative motion.
Hence the particles become anti-correlated [6.1, 6.20, 6.29], see fig. 6.4. Surprisingly,
the quantum simulations of the ring resonator system yield the opposite result. On
average, initially uncorrelated particles become positively correlated due to the cavity
input noise. This effect is visible in the steady-state density matrix presented in
fig. 6.3. There, the momentum distribution is elongated into the first quadrant,
which is a signature of positive correlations. Note that quantum mechanics allows
pure states with positive correlations, but still zero average centre-of-mass motion
with large uncertainty. The time evolution of the momentum correlation coefficient
is depicted in fig. 6.5. We observe smaller correlations around the cooling sideband
∆c = −ω as compared to the other chosen detuning ∆c = −κ. For comparison,
we also present the results of simulations containing the quadratic optomechanical
Hamiltonian (6.3). The latter yields accurate results provided that the position spread
remains small compared to a wavelength, k∆x� 1. This is fulfilled for operation
near the cooling sideband, but not for ∆c = −κ. Positive correlations of the particle
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Figure 6.2: (Colour on-line) Photon number, momentum correlation and entanglement for a
single trajectory. The dashed vertical lines indicate quantum jumps. Parameters:
αc = 150, U0 = − 1

αc
ωR, ∆c = −κ and κ = 10ωR.
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Figure 6.3: (Colour on-line) Diagonal elements of the two-particle reduced density matrix in
momentum space, initially (left) and in steady state (right). Ensemble average of
5000 trajectories. Same parameters as in fig. 6.2.
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Figure 6.4: (Colour on-line) Classical simulations [6.20] for 1000 initial conditions. Left:
Initial condition, right: Distribution at ωRt = 3000. The particles become
anti-correlated and cooled. Same parameters as in fig. 6.2.

motion can also be observed in much shallower potentials where the particles are
barely trapped and both light modes are treated quantum-mechanically [6.30].

6.5 Heralded entanglement

In the dynamics correlations and entanglement are generated by quantum jumps
induced by photon count events. Hence they are particularly strong immediately
after a jump. In real experiments it is generally not possible to exactly keep track
of each emitted photon due to the detector efficiency, i.e. one cannot exactly follow
a certain quantum trajectory. Hence, the system always evolves into a mixed state
and if a photon is observed (measured) outside of the resonator, it is impossible to
determine whether it was the first, the second and so on. Naturally, the question
arises whether effects observed on single trajectories (like entanglement) “survive”
this averaging and can still be expected to be observable after jumps. Every time a
photon is detected, the mixed state inside the resonator is projected into the state

ρj := aρa†

Tr (aρa†) , (6.5)

where ρ is the density matrix evolved according to the master equation (6.2). Inter-
estingly, the momentum correlation coefficient (6.4) is nearly constant (Cp ≈ 0.5 for
∆c = −κ and Cp ≈ 0.3 on the cooling sideband, respectively), regardless of the time
the jump occurred at, see also fig. 6.6. The logarithmic negativity is smaller than on
single trajectories, but still prominent with a value EN ∼ 0.2 for our parameters and
a jump in steady state.
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Figure 6.6: (Colour on-line) Diagonal elements of the reduced two-particle conditional density
matrix (6.5) after a photon detection in steady state. Particle correlations as
well as entanglement become much more pronounced compared to the density
matrix shown in fig. 6.3. Same parameters and colour code as there.

The conditional density matrix (6.5) is closely related to the field autocorrelation
function [6.21]

g(2)(0) =

〈
a†a†aa

〉
〈a†a〉2

≡

〈
a†a

〉
ρj

〈a†a〉ρ
. (6.6)

It has the very intuitive interpretation as the ratio between the photon number
after and prior to a jump in steady state [6.31]. For our parameters it indicates
photon bunching close to a thermal (chaotic) state (for which g(2)(0) = 2). This
is consistent with the picture of the mode being incoherently populated through
particle noise—perfectly localised particles do not scatter. Hence the field expectation
vanishes and only its variance gives a contribution.
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6.6 Covariance matrix analysis for deep potentials
As we concentrate on deeply trapped particles we now make an approach widely
used in the field of optomechanics. The Hamiltonian (6.3) is quadratic in the bosonic
operators so that an initially Gaussian state remains Gaussian throughout the time
evolution. Gaussian states are completely defined by a displacement vector and a
covariance matrix Vij := 1

2 [Cov(ξi, ξj) + Cov(ξj , ξi)], with ξ := (x̃1, p̃1, x̃2, p̃2, X, P ),
x̃i := xi/ξ0 = (bi + b†i )/

√
2, p̃i := piξ0/~ = (bi − b†i )/(i

√
2) and the field quadratures

X and P [6.32]. As shown in [6.9], the time evolution of V is determined by the
equation (its steady-state version is called Lyapunov equation)

V̇ (t) = AV (t) + V (t)AT +B, (6.7)

where A and B are the drift- and diffusion matrices appearing in stochastic Heisen-
berg–Langevin equations equivalent to the master equation [6.9]. The steady-state
solution of (6.7) for the covariances is Cov(p̃1, p̃2) = Var(p̃i)− 1/2 and Cov(x̃1, x̃2) =
Var(x̃i) − 1/2 (both particles behave the same way). It only exists in the cooling
regime ∆c < 0 since the momentum variance is only positive for red detuning.
The momentum covariance is also genuinely positive. For Cp we find the simple
(g-independent) expression

Cp = κ2 + (∆c + ω)2

κ2 + (∆c − ω)2 > 0, (6.8)

which is precisely the ratio of the Stokes- (Γ−, heating) and anti-Stokes (Γ+, cooling)
scattering rates found when adiabatically eliminating the cavity field [6.9]. These
rates Γ± = g2κ

κ2+(∆c±ω)2 also define the time scale τ ∼ (Γ+ − Γ−)−1 on which the
steady state is reached.
Cp has a minimum at ∆c = −

√
κ2 + ω2 and approaches unity for |∆c| → ∞ and

∆c → 0−. From the form of the steady-state covariance matrix we can deduce that
steady-state entanglement between the particles can only occur if Cov(x̃1, x̃2) < 0,
which implies squeezing of the position variable. This is a direct consequence of the
entanglement criterion derived in [6.33]. See fig. 6.7 for an example of the Lyapunov
time evolution. For such deep potentials we restricted ourselves to Monte Carlo
simulations of the master equation containing the Hamiltonian (6.3). Again, the
C++QED framework provides a helpful basis for their numerical implementation as
it also supports the simulation of coupled oscillators.

The steady-state covariance matrix reveals strong correlations between the particles
and the field quadratures, making it intuitively clear that the reduced conditional
density matrix for the particles strongly differs from its steady-state counterpart.
Each photon detection highly influences the joint state of particles and cavity field.
We show both density matrices in fig. 6.7. The logarithmic negativity for the
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Figure 6.7: (Colour on-line) Upper plot: Momentum correlation obtained from Monte Carlo
simulations in the Lamb–Dicke limit for kξ0 = 0.1 (red, ensemble of 500 tra-
jectories) and solution of eq. (6.7) (blue). The position correlation is likewise
pronounced. Lower plots: Diagonal elements of the reduced particle density
matrix in steady state (left) and of the reduced conditional density matrix (6.5)
(right). Parameters: ω = 200ωR, g = 5ωR, κ = 100ωR and ∆c = −20ωR.

conditional density matrix is EN ≈ 0.25 and Cp is found to be Cp ≈ 0.9. Due to the
particles-field correlations in steady state the conditional density matrix (6.5) does
not describe a Gaussian state. Indeed, it reveals a double-peak structure.

6.7 Transient entanglement

Quantum jumps project the states out of equilibria. Similar non-equilibrium dynamics
can be studied by starting from a prescribed initial condition as e.g. an uncorrelated
product state. We now move to investigate the transient regime, where light pulses
can be used to generate build-up of motional correlations in the system. While
we are free to explore any regime numerically, the problem can be analytically
treated only in the adiabatic case where the cavity mode can be eliminated from the
dynamics, i.e. when g � κ or g � |∆c±ω| [6.9]. We verify, however, that the optimal
entanglement regime is indeed around the point analytically tackled. In this limit
the tripartite system can be reduced to a quadrature-quadrature coupled mechanical
bipartition that exhibits quantum-mechanical correlations and entanglement. We
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Figure 6.8: (Colour on-line) Transient entanglement (lower red curve) and momentum vari-
ance (upper blue curve) as obtained from the Lyapunov equation. Black dashed
lines: Solution of the master equation for the ring resonator (2000 trajectories),
for comparison. Parameters: ω = 30ωR, g = 5ωR, κ = 5ωR and ∆c = −(ω − κ).

skip the cumbersome adiabatic elimination process for brevity and only note, that
the effective particle-particle interaction is determined by the parameter

Υ = −
(∆c − ω

κ
Γ− + ∆c + ω

κ
Γ+

)
. (6.9)

One can see in fig. 6.8 an example of the time evolution of entanglement. Tailoring
the cavity driving laser pulse to match the half-period of the particle-particle state
swap process can then lead to a strongly entangled state.

6.8 Microscopic interpretation of dynamics and quantum
jumps

Our effective optomechanical Hamiltonian (6.3) is formally similar to a model describ-
ing the microscopic dynamics of self-organisation of particles in a cavity field [6.34].
The behaviour of single trajectories there can be explained with the help of an
adiabatic model. In this section we generalise that specific method to the master
equation containing the quadratic Hamiltonian (6.3).

For a model in the spirit of [6.34] we diagonalise the scattering operator ∑i(bi+ b†i )
to obtain the new particle basis {|ei〉} containing bright (eigenvalue λi 6= 0, they
always appear with both signs ±1) and dark (λi = 0) states. Ignoring terms stemming
from the oscillator energies for the moment, the bright states radiate a field |λiα〉
with α := −ig/(κ− i∆c). The crucial assumption now is adiabaticity (cavity decay
assumed to define the fastest time scale), i.e. we assume each particle state |ei〉 to be
correlated with its associated unperturbed field state to find the approximated joint
particle-field stochastic state vector

|ψ(t)〉 =
∑
j

cj(t) |ej〉 |λjα〉 . (6.10)
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The coefficients ci(t) are determined by the effective conditional Monte Carlo time
evolution generated by the non-Hermitian Hamiltonian (abbreviating |i〉 := |ei〉)

HnH := ~ω
∑
ij

〈i|
∑
k

b†kbk |j〉 |i〉〈j| − i~κ
∑
i

|λiα|2 |i〉〈i| (6.11)

for the particles only. Its Hermitian part contains the oscillator energies expressed in
the scattering basis and couples the constituents of the latter.
From the form of the state vector (6.10) one can conclude what happens if a

photon is detected. Applying the jump operator ∝ a on the internal state (6.10)
at time tj yields a |ψ(tj)〉 ∝

∑
i ci(tj)λi |ei〉 |λiα〉. Hence, all information about the

dark contributions are erased and the relative phases between the bright states
change sign (as for each λi there exists also an eigenvalue −λi). Since |λiα|2 � 1 the
reduced density matrix for the particles directly after a jump mainly contains the
pure state |ψp〉 ∝

∑
j cj(t)λj |ej〉 (during the time evolution the particle state reads

|ψp〉 ≈
∑
j cj(t) |ej〉). Inserting the coefficients for a state describing two particles in

the ground state, the first jump excites one of them and the photon number increases
by a factor of three. The resulting particles state |ψp〉 ≈ 1√

2 (|ψ0ψ1〉+ |ψ1ψ0〉) is
entangled with EN = 1 and correlated with Cp = 1/2. Beginning with the second
jump, fast oscillations with a frequency determined by ω build up, see fig. 6.9. The
same qualitative behaviour can also be observed in the “full” trajectory shown in
fig. 6.2, even though there are some important differences, e.g. the photon number
after the first jump. They are due to the fact that the quadratic expansion (6.3) is not
very accurate and that the adiabatic approximation is doubtful for the parameters
employed there. It is also possible to generalise (6.11) to two wells by including a
tunnelling rate, the latter giving rise to slow enveloping oscillations.

6.9 Conclusion and outlook
Starting from two particles in a ring resonator, our conclusions are quite general. We
have proposed a tripartite optomechanical system with two identical oscillators that
can be correlated via the mediation of a photon field and the interaction amplified by
the cavity confinement. The Gaussian evolution of the reduced mechanical bipartition
has been followed both numerically and analytically, while non-Gaussian effects owing
to the deviation from the bilinear Hamiltonian have been investigated numerically.
The non-intuitive and classically forbidden positive momentum correlations are a
main result of the paper, and are interpreted as strong delocalisations (superpositions)
of the centre-of-mass independent of the particle separation and thus of the extension
of the effective system; this suggests possible use of the setup to test the quantum-
classical boundary. Transient entanglement as shown here can also be exploited in a
pulsed regime where light pulses can drive the mechanical bipartition into a strongly
entangled state.
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possible.
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Chapter 7

Additional material
In this chapter we provide some additional calculations to the preceding publication
(chapter 6). We present the adiabatic elimination of the field using the projection
technique. This elimination leads to an effective master equation for the particles,
containing the Stokes and anti-Stokes sidebands as heating and cooling channels.
This way more insight into the physical processes involved in the dynamics is provided.
Afterwards, we summarise a general recipe on how to transform a quadratic master
equation into an equation for the covariance matrix, which is very helpful for the
computation of the time evolution of Gaussian states. Finally, we briefly review some
entanglement criteria and—for comparison—the “full” solution without adiabatic
elimination of the field.

7.1 Adiabatic elimination of the field
In the publication we consider the master equation

ρ̇ = 1
i~

[H, ρ] + Lρ (7.1)

containing the quadratic Hamiltonian

H =
∑
i

~ωb†ibi − ~∆ca
†a+ ~g

∑
i

(bi + b†i )(a+ a†) (7.2)

and the Liouvillean
Lρ = κ

(
2aρa† − a†aρ− ρa†a

)
. (7.3)

Assuming, that the field evolution defines the fastest time scale, g � κ or g �
|∆c ± ω|, the field may be adiabatically eliminated from the dynamics. We perform
this adiabatic elimination with the projection technique and very closely follow the
line of [7.1, 7.2]. As for every adiabatic elimination process, the crucial assumption
is a separation of time scales.

It is convenient for the following calculations to consider the master equation (7.1)
in an interaction picture with respect to the free evolution

H0 =
∑
i

~ωb†ibi − ~∆ca
†a. (7.4)
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To this end we apply the unitary transformation

U(t) = exp

−i
ω∑

j

b†jbj −∆ca
†a

 t
 (7.5)

on the Hamiltonian (7.2) to obtain its representation

Hint(t) = U−1(t)HU(t)− i~U−1(t)∂U(t)
∂t

(7.6)

in the interaction picture. Explicitly, this time-dependent Hamilton operator reads

Hint(t) = ~g
∑
j

(
bje
−iωt + b†je

iωt
) (
aei∆ct + a†e−i∆ct

)
. (7.7)

Let us remark that the following derivation is very similar to the derivation of the
general master equation presented in section 2.2.2. There we have considered a small
system, e.g. an experimental setup, interacting with a large surrounding heat bath.
Here, the resonator mode corresponds to this bath.
The master equation for the joint particles-field density matrix ρtot reads

ρ̇tot = 1
i~

[Hint(t), ρtot] + Lρtot. (7.8)

The aforementioned separation of time scales allows for the approximation

ρtot ' ρ0
c ⊗ ρ (7.9)

for times t > |∆|−1. The appearing reduced density matrix ρ := Trc(ρtot) is for the
particles only and ρ0

c = |0〉〈0| is the steady state of the shifted resonator modes [7.1].
The effective master equation for the particles after the adiabatic elimination of the
field has the generic form

ρ̇ = Ladρ, (7.10)

where the Liouvillean is found to be [7.1]

Ladρ = − 1
~2

∫ ∞
0

dτ Trc
([
Hint(t), eLτ

[
Hint(t− τ), ρ0

c ⊗ ρ
]])

(7.11)

in second order perturbation theory (cf. also section 2.2.2). Defining the abbreviations
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7.1 Adiabatic elimination of the field

G(t) := ∑
j

(
bje
−iωt + b†je

iωt
)
and F (t) := aei∆ct + a†e−i∆ct, the partial trace is

−Trc
([
Hint(t), eLτ

[
Hint(t− τ), ρ0

c ⊗ ρ
]])

=

= −g2 Trc
([
G(t)F (t), eLτ

[
G(t− τ)F (t− τ), ρ0

c ⊗ ρ
]])

=

= −g2 Trc
(
G(t)F (t)eLτG(t− τ)F (t− τ)ρ0

c ⊗ ρ
)

+

+ g2 Trc
(
G(t)F (t)eLτρ0

c ⊗ ρG(t− τ)F (t− τ)
)

+

+ g2 Trc
(
eLτG(t− τ)F (t− τ)G(t)F (t)ρ0

c ⊗ ρ
)
−

− g2 Trc
(
eLτρ0

c ⊗ ρG(t− τ)F (t− τ)G(t)F (t)
)
. (7.12)

Finally, we find

− Trc
([
Hint(t), eLτ

[
Hint(t− τ), ρ0

c ⊗ ρ
]])

=

= e−(κ+i∆c)τ [G(t), ρG(t− τ)] + e−(κ−i∆c)τ [G(t− τ)ρ,G(t)] , (7.13)

where we used that only terms of the form Trc(aa†ρ0
c) give a contribution. Hence,

the Liouvillean (7.11) reads

Ladρ = g2∑
jk

∫ ∞
0

dτe−(κ+i∆c)τ×

×
[
bke
−iωt + b†ke

iωt, ρ
(
bje
−iω(t−τ) + b†je

iω(t−τ)
)]

+ H.c. (7.14)

Evaluation of the integral yields

Ladρ = g2∑
jk

bke−iωt + b†ke
iωt, ρ

 bje
−iωt

κ+ i(∆c − ω) +
b†je

iωt

κ+ i(∆c + ω)

+ H.c.

(7.15)
Upon a transformation back into the original frame, this equation reads

Ladρ = ~
∑
jk

[
bk + b†k, ρ

(
u−bj + u+b

†
j

)]
+ H.c. =

= ~
∑
jk

{(
bk + b†k

)
ρ
(
u−bj + u+b

†
j

)
− ρ

(
u−bj + u+b

†
j

) (
bk + b†k

)}
+ H.c.,

(7.16)

with the abbreviations

u± := g2

κ+ i(∆c ± ω) ≡
g2κ− ig2(∆c ± ω)
κ2 + (∆c ± ω)2 . (7.17)
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This equation should be equivalent to an effective master equation (cf. equation (7.10))

ρ̇ = Ladρ = 1
i~

[Heff , ρ] + Leffρ. (7.18)

To find the corresponding effective Hamiltonian and Liouvillean we make use of the
identity [7.1]

− (ρA+ H.c.) = 1
i

[
i

2
(
A−A†

)
, ρ

]
−
{1

2
(
A+A†

)
, ρ

}
+
. (7.19)

Inserting A =
(
u−bj + u+b

†
j

) (
bk + b†k

)
we find the effective Hamiltonian (adding

the free evolution)

Heff =
∑
k

~ωb†kbk +
∑
jk

i~
2
[(
u−bj + u+b

†
j

) (
bk + b†k

)
−
(
bk + b†k

) (
u∗−b

†
j + u∗+bj

)]
(7.20)

and the effective Liouvillean

Leffρ =
∑
jk

1
2

[
2
(
bk + b†k

)
ρ
(
u−bj + u+b

†
j

)
−
{(
u−bj + u+b

†
j

) (
bk + b†k

)
, ρ
}

+

]
+

+
∑
jk

1
2

[
2
(
u∗−b

†
j + u∗+bj

)
ρ
(
bk + b†k

)
−
{(
bk + b†k

) (
u∗−b

†
j + u∗+bj

)
, ρ
}

+

]
. (7.21)

In rotating-wave approximation (for ω � Γ± [7.1], cf. also sections 2.1 and 3.3) the
latter may be written as a sum of two correlated decay channels,

Leffρ = Γ+D
[∑

i

bi

]
(ρ) + Γ−D

[∑
i

b†i

]
(ρ) (7.22)

with D[A](ρ) := 2AρA† − A†Aρ − ρA†A. The effective rates for correlated decay
(anti-Stokes) and heating (Stokes) are given by

Γ± := Re(u±) = g2κ

κ2 + (∆c ± ω)2 . (7.23)

Defining
Γ+ =: γ(n̄+ 1) and Γ− =: γn̄ (7.24)

one finds
γ = Γ+ − Γ− and n̄ = 1

2

(Γ+ + Γ−
Γ+ − Γ−

− 1
)
. (7.25)

For ∆c < 0 cooling is stronger than heating, Γ+ − Γ− > 0. We will therefore restrict
ourselves to this parameter regime.
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7.2 Lyapunov equation
The master equation (7.1) is equivalent to stochastic Heisenberg–Langevin equations
(see also sections 2.2.1 and 2.2.2). For quadratic Hamiltonians these stochastic
equations are fully determined by a drift- and a diffusion matrix. These matrices
can easily be found [7.1] from the generic master equation

ρ̇ = 1
i~

[
ξTMξ, ρ

]
+
∑
i

ΓiD
[
LTi ξ

]
(ρ) (7.26)

as
A = 2σ[M + Im(Γ)] and B = 2σRe(Γ)σT , (7.27)

with
Γmn :=

∑
i

ΓiL∗i,mLi,n (7.28)

and ξ := (x1, p1, . . . , xn, pn)T . Furthermore, σ := ⊕
i J , with J being the symplectic

matrix J :=
( 0 1
−1 0

)
. Note that the position and momentum operators have to be

provided in their dimensionless form (quadratures) such that their general commutator
adopts the form [ξj , ξk] = iσjk.

Quadratic Hamilton operators as in equation (7.26) preserve the Gaussian nature
of an initially Gaussian state. In this context, Gaussian states are states with a
Gaussian-shaped Wigner function [7.3]. We skip a discussion of the latter at this
point and rather refer to section 8.1, where we will re-encounter the Wigner function
in a somewhat more general context. Gaussian states include a variety of important
states, notably coherent-, squeezed- and thermal states [7.3]. The striking feature of
Gaussian states is, that they are fully determined by the covariance matrix

Vij := 1
2 [Cov(ξi, ξj) + Cov(ξj , ξi)] (7.29)

and a displacement vector d = 〈ξ〉 [7.3]. All higher moments of a Gaussian state
can be expressed through these quantities. It is therefore unnecessary to integrate
the full master equation for Gaussian initial conditions. Rather, the former can be
reduced to two ordinary differential equation systems for the covariance matrix and
the displacement vector.

According to reference [7.1] the time evolution of the displacement vector determ-
ined by the master equation (7.26) is given by

d
dtd(t) = Ad(t). (7.30)

The corresponding equation for the covariance matrix is [7.1]

d
dtV = AV (t) + V (t)AT +B. (7.31)
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The steady-state version of this equation is called Lyapunov equation in literature. We
will, however, also refer to equation (7.31) as (time-dependent) Lyapunov equation
for convenience.
The drift and diffusion matrices corresponding to the master equation (7.18)

containing the effective Hamiltonian (7.20) and Liouvillean (7.22) explicitly read

A =


0 ω 0 0

2Υ− ω −2γ 2Υ −2γ
0 0 0 ω

2Υ −2γ 2Υ− ω −2γ

 (7.32a)

and

B =


Γ+ + Γ− 0 Γ+ + Γ− 0

0 Γ+ + Γ− 0 Γ+ + Γ−
Γ+ + Γ− 0 Γ+ + Γ− 0

0 Γ+ + Γ− 0 Γ+ + Γ−

 , (7.32b)

where we have defined γ := Γ+ − Γ− and

Υ := −
(∆c − ω

κ
Γ− + ∆c + ω

κ
Γ+

)
. (7.33)

These matrices are equivalent to

A =


γ ω γ 0

2Υ− ω −γ 2Υ −γ
γ 0 γ ω

2Υ −γ 2Υ− ω −γ

− γ


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 (7.34a)

and

B = γ(2n̄+ 1)


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 (7.34b)

with n̄ defined in equation (7.25).
The Lyapunov equation can easily be integrated numerically to obtain V (t).

In order to find the steady-state covariance matrix fulfilling AV + V AT = −B
analytically, one has to be a little bit careful. As the mechanical oscillators do not
decay, two eigenvalues of the drift matrix have zero real part and thus give rise
to undamped solutions and hence hinder finding the steady-state solution directly.
We circumvent this problem by introducing some Brownian noise to the particle
momenta and by taking the limit of zero additional noise afterwards. We have
checked numerically that the so-found steady state solution agrees with the numerical
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time-integrated solution. Because Brownian noise cannot be formulated in Lindblad
form [7.2] we manually add it to the drift and diffusion matrices (7.32) as

A 7→ A+


0 0 0 0
0 −γB 0 0
0 0 0 0
0 0 0 −γB

 and B 7→ B +


0 0 0 0
0 γB 0 0
0 0 0 0
0 0 0 γB

 . (7.35)

The steady-state covariance matrix then reads

lim
γB→0

V =


a c a− 1

2 c
c b c b− 1

2
a− 1

2 c a c
c b− 1

2 c b

 (7.36)

with

a := 4(Γ+ − Γ−)2(Γ+ + Γ−)− (3Γ+ − Γ−)Υω + Γ+ω
2

−2(Γ+ − Γ−)(4Υ− ω)ω (7.37a)

b := Υ(Γ+ + Γ−)− ωΓ+
−2ω(Γ+ − Γ−) (7.37b)

c := −Γ+ + Γ−
2ω . (7.37c)

The momentum correlation coefficient (6.4) is found to be

Cp = (Γ+ + Γ−)Υ− Γ−ω
(Γ+ + Γ−)Υ− Γ+ω

. (7.38)

The position and momentum correlations are positive for a, b ≥ 1/2, i.e. for all
non-squeezed states. If either x or p are squeezed the corresponding correlation
becomes negative. The momentum correlation coefficient (7.38) has a minimum at
∆c = −κ and approaches unity for ∆c → −∞.

7.3 Entanglement criteria for Gaussian states
Here we just briefly summarise two important theorems concerning the entanglement
of bipartite Gaussian states. For their respective proofs we refer to the original
publications.

A necessary and sufficient criterion for inseparability of a bipartite Gaussian state
is violation of the inequality [7.4]

detA detB +
(1

4 − | detC|
)2
− Tr

(
AJCJBJCTJ

)
≥ 1

4 (detA+ detB) , (7.39)
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where the covariance matrix has been written in the block form V :=
(
A C
CT B

)
.

The logarithmic negativity [7.5] of a bipartite Gaussian state can easily be computed
from its covariance matrix (7.29). To this end we need to calculate the symplectic
eigenvalues ci of V TB . They can easily be obtained from the eigenvalues ±ici of
Ω−1ΛV Λ, with the mirror reflection matrix Λ := diag(1, 1, 1,−1) and Ω := J ⊕ J ,
with J being the symplectic matrix J :=

( 0 1
−1 0

)
. The logarithmic negativity is then

EN = F (c1) + F (c2) with F defined as [7.5]

F (c) =
{

0 c ≥ 1
2

− log2(2c) c < 1
2
. (7.40)

7.4 Steady-state solution without adiabatic elimination

The procedure of section 7.2 can of course also be applied to the joint particles-field
system (7.1) without adiabatically eliminating the cavity field. In this case the full
drift and diffusion matrices defined in equation (7.27) read

A =



0 ω 0 0 0 0
−ω −γB 0 0 −2g 0
0 0 0 ω 0 0
0 0 −ω −γB −2g 0
0 0 0 0 −κ −∆c
−2g 0 −2g 0 ∆c −κ


(7.41)

and

B =



0 0 0 0 0 0
0 γB 0 0 0 0
0 0 0 0 0 0
0 0 0 γB 0 0
0 0 0 0 κ 0
0 0 0 0 0 κ


. (7.42)

Using the same method (addition of Brownian noise) as in section 7.2, the steady-state
covariance matrix is found to be

lim
γB→0

V =



a 0 a− 1
2 0 c − κ

∆c
c

0 b 0 b− 1
2 0 − g

2∆c
a− 1

2 0 a 0 c − κ
∆c
c

0 b− 1
2 0 b 0 − g

2∆c
c 0 c 0 d f
− κ

∆c
c − g

2∆c
− κ

∆c
c − g

2∆c
f e


(7.43)
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with

a := 8g2∆c(2∆c − ω)− (κ2 + ∆2
c)(κ2 + (∆c − ω)2)

8∆c(8g2∆c + (κ2 + ∆2
c)ω) (7.44a)

b := −κ
2 + (∆c − ω)2

8∆cω
(7.44b)

c := −g2
κ2 + ∆2

c
8g2∆c + (κ2 + ∆2

c)ω (7.44c)

d := 4g2∆c + (κ2 + ∆2
c)ω

2(8g2∆c + (κ2 + ∆2
c)ω) (7.44d)

e := g2(8∆2
c − 4κ2) + ∆c(κ2 + ∆2

c)ω
2∆c(8g2∆c + (κ2 + ∆2

c)ω) (7.44e)

f := 2g2κ

8g2∆c + (κ2 + ∆2
c)ω . (7.44f)

This steady-state solution describes a physical state in the cooling regime (∆c < 0)
only, in the opposite case of positive detuning the momentum variance would become
negative. The steady-state momentum covariance explicitly reads

Cov(p1, p2) = Var(pi)−
1
2 = −κ

2 + (∆c + ω)2

8∆cω
(7.45)

and is thus also genuinely positive. The momentum correlation coefficient adopts
the particularly simple form

Cp = 1 + 4∆cω

κ2 + (∆c − ω)2 = κ2 + (∆c + ω)2

κ2 + (∆c − ω)2 ≡
Γ−
Γ+

. (7.46)

Note that this coefficient is independent of the coupling strength g, but of course it
is zero if the coupling is set to zero from the beginning.
Due to the positiveness of the momentum covariance, entanglement between the

particles can only occur if Cov(x1, x2) < 0 and thus for a squeezed state in the
position variable (as a negative position covariance implies Var(xi) < 1/2). This is a
direct consequence of the separability criterion (7.39). The state described by the
covariance matrix (7.43) is always separable for positive position correlations. An
entangled state might exist if the latter become negative.
We conclude this chapter by noting that within the adiabatic elimination the

cross-covariances Cov(xi, pj) do not vanish in steady state as in the full model.
However, the rotating-wave approximation in the effective Liouvillean is only valid
for ω � Γ± [7.1], hence these terms are very small.

101





Part III

Self-organisation of cold particles
in optical resonators





Chapter 8

Background to self-organisation
In this chapter we review the semiclassical approximation used in the remainder of
this thesis and present a short introduction into particle self-organisation in optical
cavities.
The principal idea of the semiclassical theory is to convert the complicated and

high-dimensional master equation for the density matrix into a partial differential
equation (PDE) for an equivalent c-number quasi-probability distribution, in our
case this will be the Wigner function. Upon an approximation this PDE can be
transformed into a Fokker–Planck equation (FPE), which itself can be transformed
into a system of stochastic differential equations (SDEs). These SDEs can efficiently
be numerically integrated in parallel on a high performance computing cluster.

8.1 Wigner function, Fokker–Planck equation and
stochastic differential equations

Historically, there were many attempts to introduce a classical phase-space probability
density distribution into quantum mechanics. The first goes back to 1932, when
E. Wigner proposed the function (provided here in its one-dimensional version) [8.1]

W (x, p) = 1
2π~

∫ ∞
−∞

dξ exp
(
− i
~
pξ

)〈
x+ 1

2ξ
∣∣∣∣ρ∣∣∣∣x− 1

2ξ
〉
, (8.1)

which is nowadays known as Wigner function. It fulfils some desired requirements
of a genuine probability distribution, notably its marginal distributions for position
or momentum, i.e. W (x) and W (p), are obtained by integrating (8.1) with respect
to the other variable. However, there is one important property which forbids its
probability density interpretation—it can become negative. As an example, the
Wigner function of Fock states (except the vacuum state) adopts negative values.
For this reason the Wigner function is called a quasi-probability distribution function.
The time-evolution equation for the Wigner function can be obtained from its

definition (8.1). As an important example, consider the von Neumann equation

ρ̇ = 1
i~

[H, ρ] (8.2)
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with the Hamiltonian
H = p2

2m + V (x) (8.3)

describing a single particle moving in some potential. It translates into the partial
differential equation [8.2]

(
∂

∂t
+ p

m

∂

∂x
− dV (x)

dx
∂

∂p

)
W (x, p, t) =

=
∞∑
l=1

(−1)l(~/2)2l

(2l + 1)!
d2l+1V (x)

dx2l+1
∂2l+1

∂p2l+1W (x, p, t) (8.4)

containing all derivatives of the potential. If, however, the potential is at most
harmonic, the classical Liouville equation(

∂

∂t
+ p

m

∂

∂x
− dV (x)

dx
∂

∂p

)
W (x, p, t) = 0 (8.5)

is recovered. PDEs containing higher order derivatives than second cannot be
transformed into a set of corresponding stochastic differential equations and therefore
lack the classical probability density interpretation. Another possible problem arises
in systems for which the PDE is a Fokker–Planck equation (i.e. containing only
second order derivatives)—but with negative diffusion matrix, leading to the very
same interpretation problems as discussed above. In such situations one may consider
different quasi-probability distribution functions, e.g. the Glauber–Sudarshan P -
distribution or the Husimi–Kano Q-distribution [8.2]. However, for our systems
considered here the Wigner function formalism is still very suited.
How does one transform an arbitrary master equation, possibly containing a

Liouvillean superoperator, into an equation for the Wigner function? As shown
in [8.3] one can derive so-called operator correspondences for this purpose,

xρ 7→
(
x+ i~

2
∂

∂p

)
W (x, p), ρx 7→

(
x− i~

2
∂

∂p

)
W (x, p), (8.6a)

pρ 7→
(
p− i~

2
∂

∂x

)
W (x, p), ρp 7→

(
p+ i~

2
∂

∂x

)
W (x, p), (8.6b)

aρ 7→
(
α+ 1

2
∂

∂α∗

)
W (x, p), ρa 7→

(
α− 1

2
∂

∂α∗

)
W (x, p), (8.6c)

a†ρ 7→
(
α∗ − 1

2
∂

∂α

)
W (x, p), ρa† 7→

(
α∗ + 1

2
∂

∂α

)
W (x, p). (8.6d)

We conclude this section with the recipe on how to transform a general Fokker–
Planck equation into a set of stochastic differential equations. A general FPE has
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the generic form

∂

∂t
F (x, t) = −

N∑
i=1

∂

∂xi

[
Ai(x, t)F (x, t)

]
+ 1

2

N∑
i,j=1

∂2

∂xi∂xj

[
Bij(x, t)F (x, t)

]
, (8.7)

with the drift vector A(x, t) and the diffusion matrix B(x, t). Provided that the
latter is positive semidefinite the FPE (8.7) is equivalent to the Itō SDE system [8.4]

dx(t) = A(x, t) dt+ V (x, t) dW (8.8)

with B = V V T and the Wiener processes W = (W1, . . . ,WN )T [8.5].

8.2 Introduction to self-organisation
The phenomenon of self-organising systems can be observed in many fields of science.
Some examples are the flocking behaviour of birds [8.6] in biology, supramolecular
chemistry [8.7] and the sandpile as a generic example of self-organised criticality [8.8]
in physics. Notably, this rather generic mechanism can also be found in a simple
cavity QED setup we are about to present.
Contrary to all situations discussed so far in the present thesis the cavity mode

is not driven by an external pump but the particles are directly illuminated by a
transverse laser and scatter pump photons into the resonator mode. The contributions
from the different particles interfere and—depending on the particle positions—may
add up constructively. Above a certain critical laser power the scattered light creates
a sufficiently deep potential into which more and more particles are dragged. These
additional trapped particles in turn now also scatter in phase, thus amplifying the
intracavity light field and consequently deepening the potential. The particles are
trapped by their own scattered light field, thus the name “self-organisation”. As we
will see, there are two equivalent particle patterns maximising Bragg scattering. In
two dimensions, they resemble a chessboard where either only the black or only the
white squares are populated. The first theoretical investigation of this phenomenon
was presented by Domokos and Ritsch in 2002 [8.9]. An experimental confirmation
by Black et al. followed shortly afterwards in 2003 [8.10].
For the mathematical description of transversally pumped particles within an

optical cavity we combine the Hamiltonians (2.41) of section 2.3 and (3.28) of
section 3.3,

H = p2

2m − ~∆ca
†a− ~∆aσ+σ− − i~g(x)(aσ+ − σ−a†)− i~ζ(y)(σ− − σ+). (8.9)

Here ζ(y) denotes the effective atom pump strength, x the direction along the cavity
axis and y the transverse direction. After an adiabatic elimination of the excited
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state as presented in section 2.3, and a generalisation to N particles we find

H =
N∑
i=1

[
p2
x,i + p2

y,i

2m + ~U0a
†a sin2(kxi) + ~

η2

U0
cos2(kyi)

]
+

+
N∑
i=1

~η(a+ a†) sin(kxi) cos(kyi)− ~∆ca
†a. (8.10)

Here we have used g(x) = g0 sin(kx), ζ(y) = ζ0 cos(ky), U0 := g2
0/∆a and η :=

g0ζ0/∆a. Note that we have ignored spontaneous emission as previously discussed
in section 2.3. The master equation describing the system contains the Hamilto-
nian (8.10) and the Liouvillean Lρ = κ

(
2aρa† − a†aρ− ρa†a

)
. We now have all

ingredients needed for the derivation of the time evolution equation for the Wigner
function. The potential terms are not second order in x and y, the resulting PDE
will therefore contain an infinite amount of derivatives and needs to be truncated to
a Fokker–Planck equation (the FPE is only exact for Gaussian processes [8.11]). This
step is justified under the following conditions [8.12, 8.13]. First of all, absorption
or emission of a photon should not affect the Wigner function considerably. This is
the case if the photon momentum ~k is small compared to the momentum width
∆p of the Wigner function. The latter is related to the gas temperature, making
the condition equivalent to the requirement for the gas temperature to be much
larger than the recoil energy, kBT � ER. The second condition is that the field
is close to a coherent state with an average photon number larger than one. This
makes the second order derivative ∂α∂α∗ negligible compared to |α|2 allowing for
the neglection of a third-order derivative term ∂α∂α∗∂p. Applying the operator
correspondences (8.6), the FPE in the semiclassical limit reads

∂

∂t
W =

−i
∆c − U0

∑
j

sin2(kxj)

( ∂

∂α
α− ∂

∂α∗
α∗
)W

+

iη∑
j

sin(kxj) cos(kyj)
(
∂

∂α
− ∂

∂α∗

)W+

+
[
κ

(
∂

∂α
α+ ∂

∂α∗
α∗ + ∂2

∂α∂α∗

)]
W+

+

−∑
j

px,j
m

∂

∂xj
+
∑
j

∂V (α, α∗, xj , yj)
∂xj

∂

∂px,j

W+

+

−∑
j

py,j
m

∂

∂yj
+
∑
j

∂V (α, α∗, xj , yj)
∂yj

∂

∂py,j

W, (8.11)
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with the single-particle potential

V (α, α∗, x, y) = ~U0|α|2 sin2(kx)+~η(α+α∗) sin(kx) cos(ky)+~
η2

U0
cos2(ky). (8.12)

The Wigner function W depends on all particle positions and momenta as well as on
the cavity field, W (x1, y1, . . . , xN , yN , px,1, py,1, . . . , px,N , py,N , α, α

∗). The first two
lines of the FPE (8.11) describe the coherent evolution of the field mode, containing
the particles as effective refractive index (first line) and as effective pump through
scattering from the pump laser (second line). The third line contains damping and
diffusion terms for the mode. Finally, the last two lines describe the coherent particle
motion along (fourth line) and transversal (fifth line) to the cavity. There is no explicit
momentum diffusion contained in this Fokker–Planck equation, only the mode is lossy.
This is a direct consequence of the neglection of spontaneous emission—the additional
noise terms appearing in the momentum and field equations would be proportional
to the incoherent scattering rate Γ0 (2.48) defined in section 2.3 [8.14]. However, the
mode mediates interactions between the particles, which (for appropriate detuning
∆c) leads to a friction force and momentum diffusion causing a finite steady-state
temperature.
The corresponding system of stochastic differential equations according to equa-

tion (8.8) is

dxj = px,j
m

dt (8.13a)

dyj = py,j
m

dt (8.13b)

dpx,j = −∂V (α, α∗, xj , yj)
∂xj

dt (8.13c)

dpy,j = −∂V (α, α∗, xj , yj)
∂yj

dt (8.13d)

dα =

i
∆c − U0

∑
j

sin2(kxj)

− κ
α dt−

− iη
∑
j

sin(kxj) cos(kyj) dt+
√
κ

2 (dW1 + idW2) . (8.13e)

These SDEs are called semiclassical equations of motion. The particle and field
operators have been replaced by classical variables but the noise terms are of quantum-
mechanical origin, hence the name. In principle, the stochastic equations (8.13) have
to be interpreted in the Itō sense. However, as the diffusion is constant, the correspond-
ing Stratonovich equations are readily obtained and do not contain any corrections
to the drift terms [8.5]. This would not be the case when considering spontaneous
emission where the diffusion terms are position- and field-dependent [8.14].
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The equation (8.13e) for the field now makes clear what we have expressed in words
at the beginning of this section. The collective scattering term sums up particle
contributions sin(kxj) cos(kyj), which vary from +1 to −1 like on a checkerboard
pattern with spacing ∆x = ∆y = λ = 2π/k. For a homogeneous distribution on the
x–y plane, the sum over these scattered fields averages out. If, however, the pump
power is increased and the particle density higher at points where sin(kx) cos(ky) =
+1 (denoted “even” sites), their contributions sum up constructively amounting for
an increasing intracavity field and thus potential. More precisely, the even lattice
sites become deeper and therefore attract more and warmer particles, which now
constructively contribute to the sum in equation (8.13e). The odd sites become
shallower as the even ones deepen. The very same mechanism of course also holds
for the odd sites being populated, both self-organisation patterns are completely
equivalent and one is chosen at random in each realisation. This is an example for
spontaneous symmetry breaking. See figure 8.1 for an illustration and a numerical
example. If all particles are confined in either the odd or the even sites, the field
is effectively pumped with strength ηN and the intensity |α|2 scales with N2. This
is known as the superradiance effect [8.14] and is an undoubtful signature for a
cooperative mechanism involving all particles. Since the mode is dissipative, it
is eligible for transporting energy and entropy out of the cavity. This allows for
cooperative cooling for correctly chosen parameters. The minimal final temperature
possible below threshold is then solely determined by a cavity parameter, the linewidth
κ. Experimentally, such cooperative effects have been demonstrated e.g. in the group
of Vuletić [8.10, 8.15, 8.16]. More details can be found in the publication in the next
chapter.
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Figure 8.1: Illustration of the self-organisation process (upper plots) and a single trajectory of
the stochastic differential equations (8.13) for N = 50000 particles (lower plots).
Initially, without pump laser, the atoms are homogeneously distributed (left).
After the laser is switched on, the particles organise in its standing wave (middle).
Finally, the particles self-organise in the potential created by their own scattered
light (right).
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Publication

EPL (Europhysics Letters) 96, 43001 (2011)

Kinetic theory of cavity cooling and self-organisation of a
cold gas†

W. Niedenzu, T. Grießer and H. Ritsch

Institut für Theoretische Physik, Universität Innsbruck -
Technikerstraße 25, 6020 Innsbruck, Austria, EU

We study spatial self-organisation and dynamical phase-space compression of a dilute
cold gas of laser-illuminated polarisable particles in an optical resonator. Deriving a
non-linear Fokker–Planck equation for the particles’ phase-space density allows us to
treat arbitrarily large ensembles in the far-detuning limit and explicitly calculate friction
forces, momentum diffusion and steady-state temperatures. In addition, we calculate
the self-organisation threshold in a self-consistent analytic form. For a homogeneous
ensemble below threshold the cooling rate for fixed laser power is largely independent
of the particle number. Cooling leads to a q-Gaussian velocity distribution with a
steady-state temperature determined by the cavity linewidth. Numerical simulations
using large ensembles of particles confirm the analytical threshold condition for the
appearance of an ordered state, where the particles are trapped in a periodic pattern
and can be cooled to temperatures close to a single vibrational excitation.

URL: http://iopscience.iop.org/0295-5075/96/4/43001
DOI: 10.1209/0295-5075/96/43001
PACS: 37.30.+i, 37.10.-x, 51.10.+y

†The primary contribution of the author of the present thesis to this publication was the imple-
mentation and the analysis of the numerical simulations. All analytical results were calculated in
collaboration with T.G., where each author individually performed the calculations, except of
the distribution function above threshold which was obtained by T.G.
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9.1 Introduction
A dilute cold gas of polarisable particles can be manipulated in a controlled way
using the light forces induced by a sufficiently strong laser far off any internal optical
resonance [9.1]. For a free-space laser setup this force generates a conservative optical
potential for the particles with a depth proportional to the local light intensity. As the
forces are generated via photon redistribution among different spatial directions, the
particles in turn alter the field distribution and act essentially as a spatially varying
refractive index. While this backaction can safely be ignored in standard optical
traps [9.2], it was shown to have a significant effect if the light fields are confined
within an optical resonator enhancing the effective particle-light interaction [9.3].

For transverse illumination a threshold pump intensity where this coupled particle-
field dynamics can lead to spatial self-ordering of the particles into a regular pattern—
resembling very closely a phase transition—was theoretically predicted and experi-
mentally confirmed [9.4–9.6]. Due to cavity losses this dynamics is dissipative and
thus can constitute a new cooling mechanism for a very general class of polarisable ob-
jects [9.7, 9.8]. Extensive simulations using fairly large numbers of particles with large
detunings predict that already with current molecular sources and cavity technology
a useful phase-space compression could be achieved [9.9]. However, particle-based
simulations cannot be applied to sufficiently large particle numbers and laser powers
for the whole parameter range of interest. As an alternative, a Vlasov-equation-based
approach [9.10] for the particles’ phase-space distribution provides a description for
arbitrarily large ensembles, but excludes correlations important on longer time scales.
In this work we adopt methods from plasma kinetic theory to generalise the Vlasov
model to include correlations, leading to a non-linear Fokker–Planck equation for the
statistically averaged phase-space distribution, which includes friction and diffusion
and allows to predict cooling time scales and the unique steady-state distribution.

9.2 Semiclassical equations of motion
We consider N polarisable particles moving along the axis of a lossy standing-wave
resonator assuming strong transversal confinement. The particles are off-resonantly
illuminated by a transverse standing-wave pump laser and scatter light, whose phase
is determined by the particle positions, into the cavity. The quantum master equation
describing this system can be transformed into a partial differential equation for
the Wigner function [9.11]. Truncating this equation at second-order derivatives
(semiclassical limit) yields a Fokker–Planck equation, which for positive Wigner
functions—excluding all non-classical states [9.12]—is equivalent to the Itō stochastic
differential equation (SDE) system

dxj = vj dt (9.1a)
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dvj = − 1
m

∂U(xj , α)
∂xj

dt (9.1b)

dα =

i

∆c − U0

N∑
j=1

sin2(kxj)

− κ
α dt−

− iη
N∑
j=1

sin(kxj) dt+
√
κ

2 (dW1 + i dW2) , (9.1c)

with the single-particle potential

U(x, α) = ~U0|α|2 sin2(kx) + ~η(α+ α∗) sin(kx). (9.2)

Each particle has the mass m; xj and vj denote the centre-of-mass position and
velocity of the jth particle, respectively. U0 is the light shift per photon and κ the
cavity decay rate; the associated input noise is taken into account by the two Wiener
processes dW1 and dW2. Here we have neglected momentum diffusion caused by
spontaneous emission, which is valid for large ensembles and large detunings [9.8].
The transverse laser standing wave gives an effective position-dependent pump of
magnitude η of the field mode α with wave number k. This laser is detuned by
∆c = ωp − ωc from the bare cavity resonance frequency. We will focus on the
weak-coupling limit N |U0| � |∆c| ∼ κ throughout this paper. Refer to fig. 9.1 for a
schematic view of the system.
We used the scheme proposed in [9.13, 9.14] for the direct numerical integration

of the SDE system (9.1). However, for analytical predictions and the description of
very large ensembles, a continuous phase-space description as described below proves
far more suitable.

9.3 Continuous description, instability threshold
The semiclassical SDEs (9.1) are equivalent to the Klimontovich equation [9.15]

∂fK
∂t

+ v
∂fK
∂x
− 1
m

∂U

∂x

∂fK
∂v

= 0 (9.3)

together with an evolution equation for the field mode α obtained replacing the
sums in eq. (9.1c) by the integrals N

∫∫
•fK(x, v, t)dxdv. fK(x, v, t) is the so-called

Klimontovich or “exact” distribution function with initial condition

fK(x, v, 0) = 1
N

N∑
j=1

δ
(
x− xj(0)

)
δ
(
v − vj(0)

)
. (9.4)

As this function is highly irregular, the above reformulation has no computational
merit by itself, but provides an ideal starting point for a statistical treatment. To
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Figure 9.1: (Colour on-line) An ensemble of particles is illuminated by a transverse standing-
wave laser and scatters light into the resonator (effective pump strength η).
Above a threshold pump intensity the particles self-organise in a periodic pattern.
Cavity losses are characterised by the decay rate κ.

this end we decompose every quantity (fK, α and U) into its smooth mean value
and fluctuations,

fK(x, v, t) =: 〈f(x, v, t)〉+ δf(x, v, t), (9.5)
with 〈δf(x, v, t)〉 = 0. The statistical average 〈•〉 is over an ensemble of similar initial
conditions {(xj(0), vj(0))} and α(0), as well as over the realisations of the white
noise process mimicking the input noise for the cavity field.
For the smooth ensemble-averaged Klimontovich distribution, called one-particle

distribution function, we then find

∂ 〈f〉
∂t

+ v
∂ 〈f〉
∂x
− 1
m

∂ 〈U〉
∂x

∂ 〈f〉
∂v

=
〈
∂δU

∂x

∂δf

∂v

〉
. (9.6)

Neglecting all correlations in eq. (9.6) leads to the Vlasov equation, which becomes
exact in the limit N →∞ [9.10].
The Vlasov equation together with the equation for 〈α〉 possesses an infinite

number of possible spatially homogeneous stationary solutions with zero cavity field,
of which, however, not all are necessarily stable against perturbations. Indeed,
for any (dimensionless) symmetric velocity distribution g(v/vT) := LvT 〈f(v)〉 and
δ := ∆c −NU0/2 < 0 we find, that if

Nη2

kBT
vp
∫ ∞
−∞

g′(ξ)
−2ξ dξ > δ2 + κ2

~|δ|
, (9.7)
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where vp denotes the Cauchy principal value, perturbations trigger a self-organisation
process. Here we have defined the thermal velocity v2

T := 2kBT/m; L is the cavity
length. For a Gaussian distribution the integral evaluates to one. The relation (9.7)
has been derived by methods presented in [9.10]. There it was shown that the
threshold can be computed from the zeros of the dispersion relation (Re(s) > 0)

D(s) = (s+ κ)2 + δ2 − i~kδNLη
2

2m

∫ ∞
−∞

(
∂v 〈f〉
s+ ikv −

∂v 〈f〉
s− ikv

)
dv. (9.8)

9.4 Kinetic equation for the velocity distribution in the
non-organised phase

Let us now return to eq. (9.6), which for weak spatial inhomogeneity—as expected
below the instability threshold (9.7)—approximately reads

∂ 〈f〉
∂t
≈
〈
∂δU

∂x

∂δf

∂v

〉
, (9.9)

where the overbar denotes the spatial average. The right-hand-side correlation
function can be computed using established methods from plasma physics as in [9.15]
when the fluctuations evolve on a much faster time scale than the average values,
which are considered “frozen”. This is justified as long as the system remains far
from instability. After some lengthy calculations, which we omit here for the sake of
compactness, we obtain (for symmetric distributions) the non-linear Fokker–Planck
equation

∂

∂t
〈F 〉+ ∂

∂v

(
A[〈F 〉] 〈F 〉

)
= ∂

∂v

(
B[〈F 〉] ∂

∂v
〈F 〉

)
(9.10)

for the velocity distribution 〈F (v, t)〉 := L 〈f(v, t)〉, with the coefficients

A[〈F 〉] := 2~kδκη2

m

kv

|D(ikv)|2 (9.11a)

B[〈F 〉] := ~2k2η2κ

2m2
κ2 + δ2 + k2v2

|D(ikv)|2 . (9.11b)

This equation, which describes the sub-threshold gas dynamics, is one of the central
analytical results of this work. Note that the coefficients functionally depend on
〈F 〉 through the dispersion relation D(iω) := limε↓0D(ε+ iω). A and B represent
the deterministic part of the equations and the field noise, respectively. All cavity-
mediated long-range particle interactions are encoded in the dispersion relation.
Note that very far below threshold the full dispersion relation (9.8) reduces to
D(ikv) ' (ikv + κ)2 + δ2, which corresponds to the N independent-particles case.
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9.5 Equilibrium distribution and temperature
Normalisable steady-state solutions of eq. (9.10) exist only for negative detuning
δ < 0, where light scattering is accompanied by kinetic-energy extraction from the
motion. For positive detuning the particles are heated. Interestingly, we obtain
the non-thermal q-Gaussian velocity distribution function (also known as Tsallis
distribution and closely related to Student’s t-distribution) [9.16, 9.17]

〈F (v)〉 ∝
(

1− (1− q) mv
2

2kBT

) 1
1−q

, (9.12)

with q := 1 + ωR/|δ| and the recoil frequency ωR := ~k2/2m. We have defined an
effective “temperature” parameter

kBT = ~
κ2 + δ2

4|δ| = ~κ
2 . (9.13)

The latter minimum value of T appears for δ = −κ. The parameter |δ|/ωR determines
the shape of the distribution and gives rise to further restrictions. Normalisable
solutions exist for |δ| > ωR/2, the second moment (kinetic energy) only for |δ| >
3ωR/2. The case |δ| = ωR corresponds to a Lorentzian distribution. For |δ|/ωR →∞,
i.e. q → 1, the distribution (9.12) converges to a Gaussian distribution with kinetic
temperature kBTkin := m

〈
v2〉 given by the parameter kBT defined in eq. (9.13),

which justifies the choice of “temperature” above. Refer to fig. 9.2 for an example of
prominent q-Gaussian behaviour (q = 1.4). Tsallis distributions have already been
observed experimentally in dissipative optical lattices [9.18].
Of course the distribution (9.12) can be unstable and in fact is, if

√
Nη >

√
Nηc := κ2 + δ2

2|δ|

√
2

3− q
δ=−κ= κ

√
2

3− q , (9.14)

which can be seen by inserting the q-Gaussian into (9.7). For a Gaussian and δ = −κ
this criterion may be reformulated as

N |U0|Vopt > ~κ2, (9.15)

where Vopt is the optical potential depth created by the pump laser. If the condi-
tion (9.14) is satisfied, we conclude that there exists no spatially homogeneous steady
state at all and consequently we expect the system to organise. The possibility
of attaining such an inhomogeneous equilibrium even though the uniform distri-
bution (9.12) is stable cannot be ruled out mathematically but seems unlikely on
physical grounds. These expectations are confirmed by all our numerical simulations
of eqs. (9.1).
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Figure 9.2: (Colour on-line) Normalised q-Gaussian velocity distribution for δ = −2.5ωR ob-
tained by integrating the semiclassical equations (9.1) up to ωRt = 5N (solid line)
compared to the theoretically predicted q-Gaussian (9.12) (circles). The Gaussian
(dashed line) is plotted for the temperature (9.13). The kinetic temperature
differs considerably from eq. (9.13), kBTkin = 2.5kBT . Parameters: N = 5000,
NU0 = −0.1ωR,

√
Nη = 1800ωR, κ = 100ωR and ∆c = −2.55ωR. Ensemble

average over 25 initial conditions and 10 realisations of the white noise process.

Based on these considerations we predict the occurrence of dissipation-induced
self-organisation if the self-consistent relation (9.14) is fulfilled. That is, any initially
stable, unorganised distribution will loose kinetic energy (cavity cooling) and eventu-
ally self-organise. Contrary to the self-organisation process of an initially unstable
state, which is abrupt and accompanied by strong heating, dissipation-induced self-
organisation is characterised by a much slower buildup of the photon number and
monotonous cooling.

9.6 Self-organised phase

Above threshold the mathematics becomes more complex due to the inhomogeneous
spatial distribution. However, using action-angle variables [9.19, 9.20], we can still
derive a Fokker–Planck equation similar to eq. (9.10) [9.21]. In the limit of deep
trapping, where a harmonic approximation for the potential becomes valid, the
steady-state solution for the strongly organised phase is a thermal distribution with
a kinetic temperature depending on the linewidth κ and the trap frequency ω0,

kBTkin = ~
κ2 + δ2 + 4ω2

0
4|δ| . (9.16)
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Figure 9.3: (Colour on-line) Order parameter (9.18) as function of the pump strength obtained
from eqs. (9.1) in the long-time limit (ωRt = 50N). The red dashed line is given
by eq. (9.19), the black dashed line around the critical point corresponds to
eq. (9.21). Parameters: N = 1000, NU0 = −ωR, κ = 100ωR, ∆c = NU0/2− κ
(i.e. δ = −κ) and kBT0 = 110ER. Ensemble average of 20 (away of the critical
point) and 60 (around the critical point) noise trajectories, respectively, for one
initial condition.

The trap frequency is ω2
0 = 4ηωR 〈|Reα∞|〉 and can be approximated by

ω2
0 '
√
NηωR

(
η

ηc
+
√
η2

η2
c
− 1

)
∼ N (9.17)

in the far-detuned regime where |δ| � ωR; ηc is the self-consistent critical value
defined in eq. (9.14). As the temperature depends explicitly on the laser power, higher
pump strengths result in deeper trapped ensembles with increased kinetic energy.
Note that this system has the interesting property that the more particles we add,
the deeper the optical potential gets as is the case for self-gravitating systems [9.22].
The order parameter

Θ := lim
t→∞

∫∫
sin(kx) 〈f(x, v, t)〉 dxdv (9.18)

is an adequate measure of particle localisation in equilibrium as it is zero for a
completely homogeneous distribution and plus/minus one for the perfectly self-
organised phase (i.e. δ-peaks), the sign depends on whether the odd- or even wells are
populated [9.6]. In fig 9.3 we depict its behaviour as a function of the pump strength.
Initially, the particles were spatially homogeneously distributed with a (stable)
Gaussian velocity distribution; self-organisation sets in because of the cavity cooling
effect. Hence the branching point is given by the self-consistent threshold (9.14).
For the strongly organised phase, where the distribution function is a thermal

state with temperature (9.16), the order parameter reads (in harmonic oscillator
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Figure 9.4: (Colour on-line) Schematic view of the phase diagram in the weak-coupling limit
(N |U0| � κ) for κ = 100ωR. Equilibrium solutions exist only for δ < −ωR/2, the
Lorentzian corresponds to the case |δ| = ωR. For large values of the detuning |δ|,
strongly organised equilibria exist already for pump strengths slightly above the
critical value, cf. also fig. (9.3).

approximation)

Θ = ±
(

1− kBTkin
~ω2

0
ωR

)
. (9.19)

Its maximum value is limited by the detuning and the recoil frequency, Θ →
± (1− ωR/|δ|) for η →∞. This corresponds to a Gaussian spatial distribution with
width k2(∆x)2 = 2ωR/|δ|. Let us also briefly investigate the opposite limit of pump
strengths slightly above threshold. Solving the self-consistency equation

Re 〈α〉∞ = −Nη|δ|
κ2 + δ2 Θ (9.20)

perturbatively around the critical point for a thermal state yields

Θ ' ±2
√
η

ηc
− 1 (9.21)

and thus a critical exponent of 1/2, as already predicted in [9.6].
The self-consistent phase diagram including cavity cooling is sketched in fig. 9.4.

For small |δ|/ωR the ensemble will always remain weakly organised (i.e. a small
spatial modulation on top of a homogeneous background) above threshold as the
necessary prerequisites for a strongly organised equilibrium—and hence the validity
of eq. (9.16)—cannot be fulfilled.
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Figure 9.5: (Colour on-line) Kinetic temperature for N = 500 and different pump strengths.
Parameters: κ = 100ωR and δ = −κ. The initial instability threshold is at
η = 10ηc. Ensemble average over 5 initial conditions with 5 noise trajectories.

9.7 Cooling time

Let us take a closer look at the cooling time τ , i.e. the time characteristic for the
kinetic-energy equilibrisation. First we treat the case of a fixed ensemble size and
variable pump strength. The drift term A+ ∂vB in the non-linear Fokker–Planck
equation (9.10)—scaling as ∼ η2/ωR—might suggest the conclusion that the larger
the pump strength the shorter the cooling time. However, numerical simulations (cf.
fig. 9.5) prove this expectation to be somewhat misleading. The reason therefor is
the onset of self-organisation which occurs as soon as the momentary distribution
becomes unstable according to eq. (9.7). Particle trapping is a hindrance to optimal
cooling in a twofold way. Firstly, with its appearance kinetic energy is dissipated
at a significantly lower rate because a part of the laser power is utilised for the
buildup of the potential and consequently is not available for cooling. Secondly,
the lowest achievable temperature increases with the pump strength, cf. eq. (9.16).
The situation is worst for initially unstable ensembles since the particles are heated
before being cooled. Hence it is a plausible requirement that self-organisation has to
be avoided to realise the optimal cooling time. Accordingly, as a rule of thumb we
may state that the latter is achieved for a laser power which renders the desired gas
temperature critical. Hence the optimal cooling time is estimated from eq. (9.10) to
be

τopt ≈
kvT0

4
√
πκ2N (9.22)

assuming a Gaussian and δ = −κ for simplicity. This estimate is valid for kvT0 � κ,
where T0 is the initial temperature.

For a fixed η, all ensembles composed of N < Nc particles experience in a
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Figure 9.6: (Colour on-line) Kinetic temperature for fixed pump strength and N =
{100, 500, 1000, 1750}, from bottom to top. Parameters: η = 28ωR, κ = 100ωR
and δ = −κ. The self-consistent threshold (9.14) is surpassed for all curves;
the ensemble with N = 1750 is initially unstable. Ensemble average over 25
(N = 100) and 8 (higher particle numbers) initial conditions, respectively, and 5
noise trajectories.

good approximation the same cooling time τ ∼ ωR/η
2 for reaching the minimal

temperature (9.13). Nc is the critical particle number rendering the given η critical.
Note however, that this time scale is suboptimal for all ensemble sizes except N = Nc.
The scaling with N for fixed laser power is more favourable as for standard cavity
cooling [9.23]. Refer to fig. 9.6. For initially stable ensembles the cooling rate is
approximately the same until the instability point is reached.
Let us briefly mention another aspect of the scaling of the Fokker–Planck equa-

tion (9.10) particularly useful for numerical simulations. Fixing
√
Nη for different

particle numbers yields a cooling time τ ∼ N/ωR. Numerical simulations of the
semiclassical equations (9.1) confirm this result, cf. figs. 9.7 and 9.8. There we have
depicted the temperature evolution for the pump strength being a fixed fraction
of the critical value ηc for two different particle numbers, i.e.

√
N1η1 =

√
N2η2. In

fig. 9.8 the threshold (9.7) is surpassed during the time evolution.
In order to verify the Fokker–Planck equation (9.10), we consider the equation

d
dtkBTkin = −2m

∫ ∞
−∞

v

(
−A 〈F 〉+B

∂

∂v
〈F 〉

)
dv. (9.23)

for the kinetic temperature kBTkin := m
〈
v2〉 and close it by assuming 〈F (v, t)〉

to be a Gaussian velocity distribution with temperature kBTkin for all times. This
assumption is well justified for large detunings |δ| � ωR and its predicted temperature
reproduces the results obtained from the SDEs (9.1) quite well, cf. fig. 9.7. The main
difference between the curves stems from the relatively small particle numbers in
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Figure 9.7: (Colour on-line) Comparison of the kinetic temperature obtained from the
SDEs (9.1) and as solution of eq. (9.23) for two different particle numbers and
constant

√
Nη. As expected, both ensembles evolve on a time scale ∼ N/ωR.

Parameters: NU0 = −0.01ωR, κ = 100ωR, ∆c = NU0/2 − κ (i.e. δ = −κ) and√
Nη = 80ωR ≡ 0.8

√
Nηc. Ensemble average of 50 (N = 100) and 2 (N = 1000)

initial conditions, respectively, and 50 realisations of the white noise process.
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Figure 9.8: (Colour on-line) Temperature evolution above the self-consistent threshold (9.14).
The homogeneous distribution is stable until the relation (9.7) is satisfied. This
also limits the validity of eq. (9.23). Parameters: NU0 = −ωR, κ = 100ωR,
∆c = NU0/2− κ (i.e. δ = −κ) and

√
Nη = 200ωR ≡ 2

√
Nηc. As

√
Nη = const.,

the photon number scales only ∼ N and not ∼ N2 (superradiance effect). Fur-
thermore, the equilibrium temperature is the same for both ensembles. The
simulations were performed up to ωRt = 40N and revealed a temperature
kBTkin ≈ 0.57κ, which agrees very well with the theoretical prediction (9.16). En-
semble average of 50 (N = 250) and 25 (N = 1000) initial conditions, respectively,
and 10 realisations of the white noise process.
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combination with pump values close to threshold, where the hypothesis of separated
time scales used to derive eq. (9.10) is no longer valid due to long-lived fluctuations.
Of course, a thorough investigation of the validity of eq. (9.10) would require a

numerical integration thereof. However, in steady state, all results of numerical
simulations of the SDE system (9.1) were found to be in excellent agreement with the
predictions of the kinetic theory, both, below (e.g. fig. 9.2) and above (e.g. fig. 9.8)
threshold.

9.8 Conclusion and outlook
Collective light scattering from a dilute gas of cold particles into a high-Q resonator
mode under suitable conditions leads to friction forces and cooling of particle motion
even below the self-organisation threshold. In contrast to standard cavity cooling
the friction force below threshold only weakly depends on the particle number and
leads to fast internal thermalisation towards a q-Gaussian velocity distribution of
particles with average kinetic energy determined by the cavity linewidth only. Thus
this constitutes a viable method for cooling very large ensembles of particles with
sufficient polarisability independent of the need for a cyclic optical transition as
well as a way to implement evaporative cooling for low densities, where no direct
collisions occur.
As only the polarisability and mass of a particle enter, one can easily envisage a

combination of many species within the cavity to commonly interact with the same
pump and cavity fields as a generalised form of sympathetic cooling without the need
of direct interparticle interactions. The corresponding non-linear equation replacing
the Fokker–Planck equation (9.10) will then be of Balescu–Lenard type, cf. [9.21]
and references therein.

Acknowledgements
This work has been supported by the Austrian Science Fund FWF through projects
P20391 and F4013. We would like to thank J. Asbóth, H. Habibian, G. Morigi
and M. Sonnleitner for helpful discussions.

125





Chapter 10

Additional material

In this chapter we present some of the cumbersome calculations required for the
derivation of the results presented in the preceding publication in chapter 9. We
concentrate ourselves on three main points, (i) the threshold condition for self-
organisation, (ii) the evaluation of the correlation function and (iii) the computation
of the trap frequency.

10.1 Threshold condition
In this section we derive the threshold condition (critical pump strength) above
which a thermal and spatially homogeneous distribution becomes unstable. To this
end we linearise the Vlasov equation [10.1] for the phase-space distribution function
f(x, v, t),

∂f(x, v, t)
∂t

+ v
∂f(x, v, t)

∂x
− 1
m

dU(x)
dx

∂f(x, v, t)
∂v

= 0, (10.1)

around f(x, v, t) = f0(v) + δf(x, v, t) and α(t) = α0 + δα(t) and obtain

∂δf(x, v, t)
∂t

+ v
∂δf(x, v, t)

∂x
= 1
m

dU(x)
dx

∂f0(v)
∂v

. (10.2)

Note that for the spatially homogeneous distribution α0 = 0. As shown in the
publication the potential experienced by the particles reads

U(x) = ~U0|α|2 sin2(kx) + ~η(α+ α∗) sin(kx) (10.3)

and the equation of motion for the cavity field is

d
dtδα(t) = (iδ − κ)δα(t)− iNη

∫ ∞
−∞

dv
∫ L

0
dx sin(kx)δf(x, v, t). (10.4)

Here we have defined

δ := ∆c −NU0
1

Lv2
T
√
π

∫ ∞
−∞

dve
−
(

v
vT

)2 ∫ L

0
dx sin2(kx) = ∆c −

NU0
2 , (10.5)
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the thermal velocity vT :=
√

2kBT/m and the cavity length L (periodic boundary
conditions). As discussed in chapter 9 we neglect the first part of the potential in
the following.

An expansion of the density perturbation (with respect to a spatially homogeneous
distribution) in its Fourier series

δf(x, v, t) =
∑
n∈Z

δϕne
inkx (10.6)

yields the linearised equations of motion (the other density modes are not coupled to
the potential)

∂

∂t
δϕ±1 ± ikvδϕ±1 = ~kη

2m (δα+ δα∗)f ′0 (10.7a)
d
dtδα = (iδ − κ)δα− NLη

2

∫ ∞
−∞

dv [δϕ1 − δϕ−1] (10.7b)

d
dtδα

∗ = (−iδ − κ)δα∗ + NLη

2

∫ ∞
−∞

dv [δϕ1 − δϕ−1] (10.7c)

with f ′0 := ∂vf0(v). Inserting the ansatz δϕn = δϕ0
ne
st, δα = δα0est and δα∗ = δβ0est

with s = γ + iω ∈ C (γ, ω ∈ R) into these equations yields an algebraic system of
equations of the form

M

(
δα0

δβ0

)
=
(

0
0

)
(10.8)

for the field, where M ∈ C2×2. The determinant of M—denominated “dispersion
relation” [10.1]—must vanish to allow for non-trivial solutions. It reads

D(s) := (s+ κ)2 + δ2 − iδ~kNη
2L

2m

∫ ∞
−∞

dv
(

f ′0
s+ ikv

− f ′0
s− ikv

)
. (10.9)

The integrals appearing in the dispersion relation can readily be evaluated in the
limit1 γ → 0+ by applying the Sokhotsky–Plemelj theorem

lim
ε↓0

1
x± iε

= vp 1
x
∓ iπδ(x), (10.10)

where vp denotes the Cauchy principal value. We find

D(s) = (s+ κ)2 + δ2 − ~δ
NLη2

2m

∫ ∞
−∞

dv
(

f ′0
v + Im s

k − i
Re s
k

+ f ′0
v − Im s

k + iRe s
k

)
(10.11)

1The exponential growth rate γ vanishes at the threshold where a spatially homogenous distribution
becomes unstable [10.1].
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and hence

lim
Re s↓0

D(s) = (i Im s+ κ)2 + δ2−

− ~δ
NLη2

2m

[
vp
∫ ∞
−∞

dv f ′0(v)
v + Im s

k

+ iπf ′0

(
− Im s

k

)]
−

− ~δ
NLη2

2m

[
vp
∫ ∞
−∞

dv f ′0(v)
v − Im s

k

− iπf ′0
( Im s

k

)]
. (10.12)

The real and imaginary parts of this expression read

lim
Re s↓0

ReD(s) = −(Im s)2 + δ2 + κ2−

− ~δ
NLη2

2m

[
vp
∫ ∞
−∞

dv f ′0(v)
v + Im s

k

+ vp
∫ ∞
−∞

dv f ′0(v)
v − Im s

k

]
(10.13a)

and

lim
Re s↓0

ImD(s) = 2κ Im s− ~δ
NLη2

2m π

[
f ′0

(
− Im s

k

)
− f ′0

( Im s

k

)]
. (10.13b)

The phase-space distribution function f0(v) still contains the contribution stemming
from the spatially homogeneous distribution. Therefore we define the associated
velocity distribution

f0(v) =: 1
L
F (v). (10.14)

Assuming F (v) being monotonically decreasing from zero (which holds for all distri-
butions of interest, e.g. Gaussian and Lorentzian), i.e.

F ′(−|v|) ≥ F ′(|v|), (10.15)

the only solution of ImD(s) = 0 for δ < 0 is Im s = 0. Inserting this result into
equation (10.13a) yields the threshold condition

Nη2
c vp

∫ ∞
−∞

dvF
′(v)
−2v = δ2 + κ2

~|δ|
kBT

v2
T
. (10.16)

Here we usedm/2 = kBT/v
2
T. For the Gaussian—or Boltzmann—velocity distribution

F (v) = π−1/2v−1
T e−(v/vT)2 the integral evaluates to 1/v2

T and we obtain

√
Nηc =

√
δ2 + κ2

~|δ|
kBT . (10.17)
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10.2 Drift and diffusion coefficients below threshold
10.2.1 Preliminary considerations
In the publication we found the general equation of motion

∂〈f〉
∂t

= 1
m

∂

∂v

〈dδU
dx δf

〉
. (10.18)

Upon a Fourier transformation of the field and the distribution function the appearing
correlation function reads

1
m

〈dδU
dx δf

〉
= ~kη

2m
∑

n,n′=±1
〈(δα+ δα∗)δϕn′〉

1
L

∫ L

0
eikx(n+n′)dx =

= ~kη
2m

∑
n,n′=±1

〈(δα+ δα∗)δϕn′〉 δn,−n′ =

= ~kη
2m

∑
n=±1

〈(δα+ δα∗)δϕ−n〉 =

= ~kη
m

Re 〈(δα+ δα∗)δϕ1〉 . (10.19)

10.2.2 Calculation of the friction and diffusion coefficients
The equation of motion for the field fluctuations is

d
dtδα = (iδ − κ)δα− NLη

2

∫ ∞
−∞

dv [δϕ1 − δϕ−1] +
√
κ ξ (10.20)

and the Fourier components of the density fluctuations fulfil the linearised Vlasov
equation [10.1]

∂

∂t
δϕn + ikvnδϕn = ~kη

2m (δα+ δα∗) ∂
∂v
〈f〉 . (10.21)

We perform a Laplace transformation

δϕ̂n(s) :=
∫ ∞

0
δϕn(t)e−stdt (10.22)

to obtain
δϕ̂n(s) = δϕn(0)

s+ ikvn
+ ~kη

2m
〈f ′〉

s+ ikvn

[
δα̂(s) + δα̂∗(s)

]
(10.23)

and (ignoring the cavity input noise for the beginning)

δα̂(s) + δα̂∗(s) = iδη

D(s)I(s). (10.24)
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10.2 Drift and diffusion coefficients below threshold

Here we have defined

I(s) := NL

∫ ∞
−∞

dv
(
δϕ1(0)
s+ ikv

− δϕ−1(0)
s− ikv

)
(10.25)

and the dispersion relation (cf. also equation (10.9))

D(s) = (s+ κ)2 + δ2 − iδ~kNη
2L

2m

∫ ∞
−∞

dv
(
∂v 〈f〉
s+ ikv

− ∂v 〈f〉
s− ikv

)
. (10.26)

Note the important relation
D(s∗) = D∗(s). (10.27)

The initial distribution fluctuations can be expressed with the help of the Klimontovich
distribution [10.2] (cf. also equation (9.4)),

δf(x, v, 0) = fK(x, v, 0)− 〈f(x, v, 0)〉 = 1
N

∑
l

δ(x− xl0)δ(v − vl0)− 〈f(x, v, 0)〉 .

(10.28)
Its Fourier components are

δϕn(0) = 1
NL

∑
l

δ(v − vl0)e−ikxl0n − 〈f(0)〉 δn,0. (10.29)

The last term gives no contribution as we are solely interested in n = ±1 6= 0. Hence,
equation (10.25) evaluates to

I(s) =
∑
l

(
e−ikxl0

s+ ikvl0
− eikxl0

s− ikvl0

)
. (10.30)

We now transform the equations back into t-space by applying the relation

1
2πi

∫
ds est• →

∑
sk

Res •|sk
eskt, (10.31)

where {sk} are the poles of the function being Laplace transformed. Note that
the poles of D(s) have negative real part (i.e. 〈f〉 is Vlasov-stable) and thus their
contributions vanish for t→∞ [10.1]. For the particles we find from (10.23)

δϕn(t) =: δϕ1
n(t) + δϕ2

n(t), (10.32)

with
δϕ1

n(t) := 1
NL

∑
l

δ(v − vl0)e−ikn(xl0+vt) (10.33a)
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and

δϕ2
n(t) := ic

〈
f ′
〉∑

l

1
ik

e−ikxl0

vl0 − vn

{
e−ikvnt

D(−ikvn) −
e−ikvl0t

D(−ikvl0)

}
+

+ ic
〈
f ′
〉∑

l

1
ik

eikxl0

vl0 + vn

{
e−ikvnt

D(−ikvn) −
eikvl0t

D(ikvl0)

}
. (10.33b)

Here we have defined
c := ~kη

2m δη. (10.34)

It is easy to check that the symmetry condition
(
δϕ1,2

1

)∗
≡ δϕ1,2

−1 for the Fourier
coefficients is still fulfilled. Analogous, the field transformed back into the time
domain reads

δα(t) + δα∗(t) = iδη2i
∑
j

βj(t) = −2δη
∑
j

βj(t) (10.35)

with
βj(t) := Im

(
e−ik(xj0+vj0t)

D (−ikvj0)

)
. (10.36)

In order to find the evolution equation (10.18) for 〈f〉 we need to calculate the cor-
relation function (10.19) for large times (the fluctuations are assumed to evolve much
faster than the mean values as detailed in the preciding publication, cf. also [10.2]).
To this end it is convenient to define

C := lim
t→∞

1
m

〈dδU
dx δf

〉
= ~kη

m
Re 〈(δα+ δα∗)δϕ1〉 =: C1 + C2, (10.37)

where C1 and C2 correspond to the two contributions (10.32). They contain expressions
of the form 〈

(δα+ δα∗)δϕin
〉

= −2δη
〈∑

i

βi(t)δϕi1(t)
〉
. (10.38)

Hence we have to evaluate〈∑
i

βi(t)δϕ1(t)
〉

=: C1 + C2, (10.39)

where the average is defined as

〈•〉 =
∏
i

∫
dxi0

∫
dvi0 〈f(vi0)〉 • . (10.40)
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Evaluation of these integrals (the details can be found in section 10.2.3) for

C1 := 1
NL

〈∑
j

βj(t)
∑
l

δ(v − vl0)e−ikxl0

〉
e−ikvt (10.41)

yields

C1 = i

2 〈f(v)〉 1
D (ikv) ≡

i

2 〈f(v)〉 D (−ikv)
|D (ikv)|2

. (10.42)

Hence, the first part of the correlation function C defined in equation (10.37) reads

C1 = ~kη
m

Re
〈

(δα+ δα∗)δϕ1
1

〉
=

= ~kη
m

(−2ηδ) ReC1 =

= ~kδη2

m
〈f(v)〉 1

|D (ikv)|2
Im [D (−ikv)] =

= ~kδη2

m

〈f(v)〉
|D(ikv)|2

{
−2κkv − ~δNη2Lπ

2m
[〈
f ′ (v)

〉
−
〈
f ′ (−v)

〉]}
. (10.43)

Here we have used that the imaginary part of the dispersion relation for s = γ + iω
reads (cf. equation (10.13b))

lim
Re s↓0

Im(D(s)) = 2κ Im s− ~δNη2Lπ

2m

[〈
f ′
(
− Im s

k

)〉
−
〈
f ′
( Im s

k

)〉]
=

= 2κω − ~δNη2Lπ

2m

[〈
f ′
(
−ω
k

)〉
−
〈
f ′
(
ω

k

)〉]
. (10.44)

Now we have to compute the second part of the correlation function which contains
C2. After some lengthy calculation (the details are again presented in the following
section 10.2.3) we find

Re
〈

(δα+ δα∗)δϕ2
1

〉
= ~δ2kη3

2m
〈
f ′
〉 NLπ

k

[ 〈f(−v)〉
|D (ikv) |2 + 〈f(v)〉

|D (ikv) |2
]

(10.45)

and thus

C2 = ~kη
m

Re
〈

(δα+ δα∗)δϕ2
1

〉
=

= ~2δ2kη4NLπ

2m2
〈
f ′(v)

〉 1
|D(ikv)|2 [〈f (v)〉+ 〈f (−v)〉] . (10.46)
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Hence the correlation function reads

C = −2~δκη2k2v

m

〈f(v)〉
|D(ikv)|2−

− ~2δ2kη4NLπ

2m2
〈f(v)〉
|D(ikv)|2

[〈
f ′ (v)

〉
−
〈
f ′ (−v)

〉]
+

+ ~2δ2kη4NLπ

2m2
〈f ′(v)〉
|D(ikv)|2 [〈f (v)〉+ 〈f (−v)〉] . (10.47)

For symmetric distributions, 〈f(−v)〉 = 〈f(v)〉 ⇒ 〈f ′(−v)〉 = −〈f ′(v)〉, this result
simplifies considerably to

C = −2~kδκη2

m

kv

|D(ikv)|2 〈f(v)〉 . (10.48)

So far we have ignored any contribution stemming from the random input noise.
Including it yields an additional term

δα̂2(s) + δα̂∗2(s) = s+ κ+ iδ

D(s)
√
κ ξ̂(s) + s+ κ− iδ

D(s)
√
κ ξ̂∗(s) (10.49)

for the field in equation (10.24). Using the Fourier representation of the white noise
process,

ξ(t) = 1
2π

∫ ∞
−∞

ξ̃(ω)eiωtdω, (10.50)

with
〈
ξ̃(ω)ξ̃∗(ω′)

〉
= 2πδ(ω − ω′) [10.3], we find the representation

ξ̂(s) = 1
2π

∫ ∞
−∞

ξ(ω) 1
s− iω

dω. (10.51)

The back-transformation of equation (10.49) into t-space reads

δα2(t) + δα∗2(t) =

=
√
κ

2π

∫ ∞
−∞

(
iω + κ+ iδ

D(iω) ξ̃(ω)eiωt + −iω + κ− iδ
D(−iω) ξ̃∗(ω)e−iωt

)
dω. (10.52)

The particle mode (10.32) gets an additional contribution

δϕ̂3
n(s) := ~kη

2m
〈f ′〉

s+ ikvn

[
δα̂2(s) + δα̂∗2(s)

]
(10.53)
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due to the cavity input noise. Transformed back to t-space using equations (10.51)
and (10.31), this contribution evaluates to

δϕ3
n(t) = ~kη|n|

2m
〈
f ′
〉 √κ

2π

∫ ∞
−∞

dωξ(ω) iω + κ+ iδ

D(iω)(iω + ikvn)e
iωt+

+ ~kη
2m

〈
f ′
〉 √κ

2π

∫ ∞
−∞

dωξ(ω) −ikv + κ+ iδ

D(−ikvn)(−ikv − iω)e
−ikvnt+

+ ~kη
2m

〈
f ′
〉 √κ

2π

∫ ∞
−∞

dωξ∗(ω) −iω + κ− iδ
D(−iω)(−iω + ikvn)e

−iωt+

+ ~kη
2m

〈
f ′
〉 √κ

2π

∫ ∞
−∞

dωξ∗(ω) −ikv + κ− iδ
D(−ikvn)(−ikv + iω)e

−ikvnt. (10.54)

Again, we have ignored the poles of the dispersion relation as they give rise to
exponentially damped contributions and we are only interested in the long-time
behaviour on the time scale of the fluctuations. The expression (10.54) introduces
an additional contribution

C3 :=
〈

(δα2(t) + δα̂∗2(t))δϕ3
n(t)

〉
(10.55)

to the correlation function (10.37). We find (the details can be found in the following
section 10.2.3)

C3 = ~kηκ
2m

〈
f ′
〉 i

2π

(
−iπ |ikvn+ κ+ iδ|2

|D(ikvn)|2 − iπ |ikvn+ κ− iδ|2

|D(ikvn)|2

)
=

= ~kηκ
2m

〈
f ′
〉 κ2 + δ2 + k2v2n2

|D(ikvn)|2 . (10.56)

This expression allows us to evaluate the additional part C3 of the correlation function
C defined in equation (10.37),

C3 = ~kη
m

Re(C3) = ~2k2η2κ

2m2
κ2 + δ2 + k2v2

|D(ikv)|2
〈
f ′
〉
. (10.57)

Summarising, the evolution equation (10.18) for 〈f(v, t)〉 reads

∂

∂t
〈f(v, t)〉+ ∂

∂v
(A[〈f〉] 〈f(v, t)〉) = ∂

∂v

(
B[〈f〉] ∂

∂v
〈f(v, t)〉

)
, (10.58)

with the coefficients

A[〈f〉] := 2~kδκη2

m

kv

|D(ikv)|2 (10.59a)

B[〈f〉] := ~2k2η2κ

2m2
κ2 + δ2 + k2v2

|D(ikv)|2 . (10.59b)
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Note that (10.58) is a non-linear equation since these coefficients depend on the
phase-space distribution function through the dispersion relation

ReD(ikv) = −k2v2 + δ2 + κ2 + ~δ
NLη2

m
vp
∫ ∞
−∞

dv′ v
′∂v′ 〈f(v′)〉
v2 − v′2

(10.60a)

ImD(ikv) = 2κkv + ~δ
NLη2

m
π
∂ 〈f(v)〉
∂v

. (10.60b)

Recasting the equation of motion (10.58) into the standard Fokker–Planck form
yields

∂

∂t
〈f(v, t)〉 = − ∂

∂v

([
A[〈f〉] + ∂vB[〈f〉]

]
〈f(v, t)〉

)
+ 1

2
∂2

∂v2

([
2B[〈f〉]

]
〈f(v, t)〉

)
.

(10.61)

10.2.3 Evaluation of the correlation integrals
First contribution

Let us first evaluate C1, which is defined as

C1 := 1
NL

〈∑
j

βj(t)
∑
l

δ(v − vl0)e−ikxl0

〉
e−ikvt. (10.62)

Inserting equation (10.36) yields

C1 = e−ikvt

2iNL

〈∑
j

{
e−ik(xj0+vj0t)

D (−ikvj0) −
eik(xj0+vj0t)

D (ikvj0)

}∑
l

δ(v − vl0)e−ikxl0

〉
. (10.63)

Assuming initially uncorrelated particles, we have〈
e−ikxl0e−ik

′xj0g(vl0)h(vj0)
〉

= Lδljδk,−k′
∫ ∞
−∞

dvl0 〈f(vl0)〉 g(vl0)h(vl0). (10.64)

Applying this to our problem yields two terms, one proportional to δk,k and one
∝ δk,−k. The latter gives no contribution. Hence we find

C1 = −e
−ikvt

2iNLL
∑
l

∫ ∞
−∞

dvl0 〈f(vl0)〉 eikvl0t

D (ikvl0)δ(v − vl0). (10.65)

Since vl0 is only a dummy variable of integration the same integral appears N times
and we obtain

C1 = i

2 〈f(v)〉 D (−ikv)
|D (ikv)|2

. (10.66)

Here we have made use of the property (10.27) of the dispersion relation.
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10.2 Drift and diffusion coefficients below threshold

Second contribution

For C2 the same arguments apply. Moreover, all integrals must be interpreted
as Cauchy principal value integrals to give them a proper meaning. We also can
immediately omit parts of the integral that are imaginary because only Re(C2) is
needed at the end. Let us elaborate on this. We have to evaluate

C2 = lim
t→∞

〈∑
j

βj(t)δϕ2
1(t)

〉
=

= lim
t→∞

1
2i

〈∑
j

{
e−ik(xj0+vj0t)

D (−ikvj0) −
eik(xj0+vj0t)

D (ikvj0)

}
δϕ2

1(t)
〉
, (10.67)

with, from equation (10.33b),

δϕ2
1(t) := ic

〈
f ′
〉∑

l

1
ik

e−ikxl0

vl0 − v

{
e−ikvt

D(−ikv) −
e−ikvl0t

D(−ikvl0)

}
+

+ ic
〈
f ′
〉∑

i

1
ik

eikxl0

vl0 + v

{
e−ikvt

D(−ikv) −
eikvl0t

D(ikvl0)

}
. (10.68)

By inserting this expression into the equation for C2 and by using equation (10.64)
we find

C2 = icNL

2
〈
f ′
〉

vp
∫ ∞
−∞

dv′ eikv
′t

D (ikv′)
1

kv′ − kv

{
e−ikvt

D(−ikv) −
e−ikv

′t

D(−ikv′)

}
−

− icNL

2
〈
f ′
〉

vp
∫ ∞
−∞

dv′ e−ikv
′t

D (−ikv′)
1

kv′ + kv

{
e−ikvt

D(−ikv) + eikv
′t

D(ikv′)

}
(10.69)

and further

C2 = icNL

2
〈
f ′
〉 e−ikvt

D(−ikv) vp
∫ ∞
−∞

dv′
〈
f(v′)

〉 eikv
′t

D (ikv′) (kv′ − kv)−

− icNL

2
〈
f ′
〉

vp
∫ ∞
−∞

dv′
〈
f(v′)

〉 1
|D (ikv′)|2

1
kv′ − kv

−

− icNL

2
〈
f ′
〉 e−ikvt

D(−ikv) vp
∫ ∞
−∞

dv′
〈
f(v′)

〉 e−ikv
′t

D (−ikv′) (kv′ + kv)+

+ icNL

2
〈
f ′
〉

vp
∫ ∞
−∞

dv′
〈
f(v′)

〉 1
|D (ikv′)|2

1
kv′ + kv

. (10.70)

The second and the fourth line can be ignored as they give a purely imaginary
contribution and we are only interested in the real part. The remaining integrals are
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evaluated using the residual theorem (noting again that the poles of the dispersion
relation do not contribute to the integral in the limit t→∞) and give

C2 = −cNLπ2k
〈
f ′
〉 1
|D(ikv)|2 (〈f (v)〉+ 〈f (−v)〉) . (10.71)

Hence we obtain the required correlation function

Re
〈

(δα+ δα∗)δϕ2
1

〉
= −2δηReC2 =

= ~δ2η3NLπ

2m
〈
f ′
〉 1
|D(ikv)|2 (〈f (v)〉+ 〈f (−v)〉) . (10.72)

Contribution from the noise

By inserting the field (10.52) and the particle mode (10.54) into the correlation
function (10.55) and by making use of the correlation properties of the white noise
process [10.3] we find

C3 = ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dω iω + κ+ iδ

D(iω)
−iω + κ− iδ

D(−iω)(−iω + ikvn)+

+ ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dω iω + κ+ iδ

D(iω) eiωt
−ikv + κ− iδ

D(−ikvn)(−ikv + iω)e
−ikvnt+

+ ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dω−iω + κ− iδ
D(−iω)

iω + κ+ iδ

D(iω)(iω + ikvn)+

+ ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dω−iω + κ− iδ
D(−iω) e−iωt

−ikv + κ+ iδ

D(−ikvn)(−ikv − iω)e
−ikvnt,

(10.73)

where vp denotes the Cauchy principal value. Rearranging yields

C3 = ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dωκ
2 + (ω + δ)2

|D(iω)|2
i

ω − kvn
+

+ ~kηκ
2m

〈f ′〉
2π i
−ikv + κ− iδ
D(−ikvn) e−ikvnt vp

∫ ∞
−∞

dω iω + κ+ iδ

D(iω)(kv − ω)e
iωt+

+ ~kηκ
2m

〈f ′〉
2π vp

∫ ∞
−∞

dωκ
2 + (ω + δ)2

|D(iω)|2
−i

ω + kvn
+

+ ~kηκ
2m

〈f ′〉
2π i
−ikv + κ+ iδ

D(−ikvn) e−ikvnt vp
∫ ∞
−∞

dω −iω + κ− iδ
D(−iω)(kv + ω)e

−iωt. (10.74)

As before we can ignore the first and the third line because they are purely imaginary
and only the real part of C3 is needed. The remaining integrals are again computed
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using the residual theorem and give

C3 = ~kηκ
2m

〈
f ′
〉 i

2π

(
−iπ |ikvn+ κ+ iδ|2

|D(ikvn)|2 − iπ |ikvn+ κ− iδ|2

|D(ikvn)|2

)
=

= ~kηκ
2m

〈
f ′
〉 κ2 + δ2 + k2v2

|D(ikvn)|2 . (10.75)

10.3 Trap frequency and critical exponent
In the publication in chapter 9 we found the trap frequency ω2

0 = 4ηωR Reα in steady
state. To evaluate it self-consistently we compute Reα from α̇ = 0 and find

Reα = −Nη|δ|
κ2 + δ2 Θ (10.76)

with Θ := 〈sin(kx)〉 =
∫
f(x) sin(kx)dx. As pointed out in the publication the

particle distribution is thermal above steady state so that in harmonic oscillator
approximation we have

f(x) ∝ exp
(
−U(x)
kBT

)
= exp

−2~ηReα
[
−1 + 1

2

(
kx− 3π

2

)2
]

kBT

 . (10.77)

Hence the order parameter Θ evaluates to

Θ =
∫ [
−1 + 1

2

(
kx− 3π

2

)2
]
f(x)dx = −1 + kBT

4~ηReα ≡ −1 + kBT

~ω2
0
ωR. (10.78)

Inserting this expression into equation (10.76) yields

Reα = Nη|δ|
κ2 + δ2

(
1− kBT

~ω2
0
ωR

)
=

= Nη|δ|
κ2 + δ2

(
1− κ2 + δ2 + 4ω2

0
4|δ|ω2

0
ωR

)
=

=
√
N

2
η

ηc

(
1− ωR
|δ|
−
√
Nηc

2ω2
0
ωR

)
, (10.79)

where we have used the steady-state temperature

kBT = ~
κ2 + δ2 + 4ω2

0
4|δ| (10.80)
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and the critical pump strength

√
Nηc = κ2 + δ2

2|δ| . (10.81)

The latter is valid for ωR/|δ| � 1, therefore we set 1 − ωR/|δ| ' 1 in (10.79).
Replacing Reα = ω2

0/4ηωR we find

ω2
0 = 2

√
NηωR

η

ηc

(
1−
√
Nηc

2ω2
0
ωR

)
(10.82)

and thus

ω2
0 =
√
NηωR

(
η

ηc
±
√
η2

η2
c
− 1

)
. (10.83)

As the solution is valid for the strongly organised phase where η � ηc, only the
“+”-sign needs to be kept.

For the critical exponent one principally makes the same steps as before with the
phase space distribution

f(x, v) = exp
(
−
mv2

2 + 2~ηReα sin(kx)
kBT

)
, (10.84)

which is expanded up to O
(
[Reα]3

)
. One finds

Θ ' 2
√
η

ηc
− 1 (10.85)

and thus a critical exponent of 1/2.
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11.1 Introduction

Laser light induced forces are routinely used to manipulate polarizable particles from
atoms and molecules [11.1] to larger objects such as nanoparticles, micro beads or
even protozoae [11.2]. Laser trapping and cooling, however, is limited to a finite
class of atomic species, very few kinds of molecules [11.3] or isolated vibration modes
of nanomechanical objects [11.4]. Cooling requires specific setups with specifically
chosen laser frequencies and configurations for any species, so that their number only
slowly increases with time [11.5].
In principle, self-organization and cooling by coherent light-scattering in cavities

gives a general alternative to trap and cool any kind of polarizable particles within an
optical resonator [11.6–11.8]. In practice, however, the required phase-space densities
and laser intensities have so far only been achieved for atomic ensembles [11.9–11.11],
where theoretical expectations of fast sub-Doppler cooling were even surpassed [11.12],
but the required phase-space density to achieve self-ordering and trapping has not
been reached for molecules or nanoparticles [11.7, 11.13].
As solution we propose to put ensembles of different species simultaneously into

the same optical resonator. We predict that under suitable conditions all species are
simultaneously trapped and cooled using only a single laser frequency and optical
resonator. Our central claim is that the simultaneous presence of any additional
species always increases the collective light scattering and improves trapping and
cooling. As a particularly interesting case we study a mixture of a dense atomic
ensemble with a smaller ensemble of heavier molecules or nanoparticles. Even
when it is impossible to reach the self-organization threshold for the latter alone,
combined trapping and sympathetic cooling can be readily achieved in cooperation
with the atoms. Due to the nonlocal interaction the different particles might even be
located at different regions within the cavity. This setup opens up a novel way of
simultaneous multispecies trapping and cooling without the need of a tailored laser
configuration for each species. This can be improved further, using several cavity
modes simultaneously [11.7].

11.2 Model

Consider a dilute classical gas consisting of S kinds of Ns polarizable point particles of
mass ms within the overlap region of a high-Q optical resonator and a standing-wave
pump laser tuned close to resonance with a cavity mode (figure 11.1). The particles
scatter light into and out of the cavity mode and the resulting interference pattern
creates dynamical optical potentials guiding the particle motion. For simplicity
we approximate pump and cavity field in the interaction region by plane standing
waves and consider motion along the cavity axis only. This suffices to describe the
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11.2 Model

Figure 11.1: Ensembles of particles within a cavity illuminated transversely by a standing
wave laser resonant with the cavity. Above threshold the particles order in
regular tubes optimizing Bragg scattering into the mode.

essential physics of self-organization and cooling [11.9, 11.14, 11.15]. A practical
experimental implementation can be envisaged by confining the particles by two
crossed standing-wave pump lasers into a lattice of one-dimensional (1D) tubes
along the cavity axis [11.8, 11.16]. Extension to 3D motion and field geometries are
straightforward and are expected to induce only minor quantitative changes [11.15].
In terms of the effective pump amplitudes ηs, the light shifts per photon U0,s, and
the semi-classical cavity mode amplitude a, the optical potentials along the cavity
axis are given by [11.14]

Φs(x, a, a∗) = ~ηs (a+ a∗) sin(kx) + ~U0,s|a|2 sin2(kx), (11.1)

which lead to the one-body Hamiltonian functions Hs(x, p, a, a∗) = p2

2ms
+Φs(x, a, a∗),

determining the dynamics of an individual particle belonging to the sth species
through the canonical equations of motion [11.17]. Hs depends parametrically on the
cavity field amplitude a, which in turn is driven by the light scattered collectively by
all the particles and by white noise ξ, modeling vacuum fluctuations. As detailed
in refs. [11.18, 11.19], for a statistical treatment of the dynamics it is convenient to
redefine the state of the particles of the sth species {xjs(t), pjs(t)} in terms of the
Klimontovich distribution [11.20]

fsK(x, p, t) := 1
Ns

Ns∑
js=1

δ(x− xjs(t))δ(p− pjs(t)). (11.2)
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Then the mode amplitude evolves according to

ȧ = (i∆c − κ)a− i

~

S∑
s=1

Ns

∫
∂Hs

∂a∗
fsK(x, p, t)dxdp+

√
κξ, (11.3)

where κ denotes the cavity decay rate and ∆c = ωp−ωc the detuning between pump-
and cavity frequency. We decompose the Klimontovich distribution according to
fsK(x, p, t) = fs(x, p, t)+δfs(x, p, t), where fs(x, p, t) := 〈fsK(x, p, t)〉, averaged over an
ensemble of suitable initial conditions and the realizations of the white noise, is called
one-body distribution function. Note that fs(x, p, t)dxdp is equal to the expected
fraction of particles of the sth species in a phase space volume dxdp around the
point (x, p) at time t and the average over its fluctuations vanishes, 〈δfs(x, p, t)〉 ≡ 0.
Likewise we decompose the mode amplitude into a = α+ δa, where α = 〈a〉. The
one-body distribution function exactly satisfies

∂fs
∂t

+ p

ms

∂fs
∂x
− ∂ 〈Φs〉

∂x

∂fs
∂p

=
〈
∂δΦs

∂x

∂δfs
∂p

〉
, (11.4)

in which predominantly the rhs describes statistical correlations. For Ns → ∞
these tend to zero and we recover the Vlasov (or mean-field) kinetic theory. There,
〈Φs(x, a, a∗)〉 is replaced by Φs(x, α, α∗) and the rhs of (11.4) is set to zero, such
that spatially homogeneous particle distributions scatter no light into the mode and
constitute an equilibrium state at zero cavity field [11.19].

11.3 Multispecies self-organization threshold
Following [11.19], the multispecies self-organization threshold is obtained as the
boundary of dynamical stability of spatially uniform distributions in case of negative
effective detuning δ := ∆c − 1

2
∑
sNsU0,s < 0, by an analysis of the linearized Vlasov

equation [11.21]. For convenience we rescale the uniform equilibrium distributions
as f0,s(p) = (Lmsvs)−1Gs

(
p

msvs

)
in terms of a typical velocity vs and the cavity

length L. Assuming a strictly monotonous decrease in |p|, as fulfilled by all relevant
distributions (e.g. Gaussian, Bose–Einstein, q-Gaussian, etc.), a given set of spatially
homogeneous distributions is unstable if and only if

S∑
s=1

Nsη
2
s

kBTs

(
P
∫ ∞
−∞

−1
2u

dGs
du du

)
>
κ2 + δ2

~|δ|
, (11.5)

with kBTs = msv
2
s/2 and P the Cauchy principal value. For thermal (i.e. Gaussian)

momentum distributions the integral in (11.5) is unity and the threshold condition
assumes the simple form

S∑
s=1

Nsη
2
s

kBTs
>
κ2 + δ2

~|δ|
. (11.6)
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Figure 11.2: Concurrent self-organization of two species, initialized above the combined thresh-
old. Species one (orange) is initialized well above, species two (blue) far below
its proper threshold. (a) Final position distributions (periodic boundary condi-
tions). (c,d) Initial (dashed) and self-organized (solid) momentum distributions
obtained from numerical stochastic particle simulations (stochastic differential
equations, SDEs) [11.18]. Circles: theoretical predictions obtained from Vlasov
kinetic theory assuming the adiabatic invariance of the action variables (11.9)
as in [11.22]. (b) Growth of the order parameters Θs = |

∫
fs sin(kx)dxdp| to

predicted values. Parameters: N1 = 104, N2 = 500, m2 = 10m1, kBT1 = 104~κ,
kBT2 = 2.5× 105~κ, η1 = 2.4κ, η2 = 27.4κ and recoil frequency ωR = 10−2κ.

This threshold formula is one of the central results of the present work. Above
threshold, density perturbations and the electric field amplitude grow exponentially
and evolve, if the light shift is not too large, i.e. Ns|U0,s|

(
1 +∑

s′ 6=s
Ns′ηs′
Nsηs

)
. |δ|

for all species, towards an ordered quasi-stationary state (figure 11.2) with growth
exponent γ > 0 fulfilling

(γ + κ)2 + δ2 =
S∑
s=1

Nsη
2
s~δ

2kBTs

∫ ∞
−∞

udGs/du
(γ/kvs)2 + u2

du. (11.7)

Note that, while the rhs of equations (11.5) and (11.6) only depends on cavity
parameters, all terms in the sum on the lhs are manifestly positive and proportional
to the pump intensity. This has the important consequence that inserting any
extra particle species into the cavity will lower the power needed to start the self-
organization process, regardless of temperature or polarizability of the added particles.
Note that we neglect absorbtion of the pump beam, consistent with our assumption
of a dilute and optically thin gas. At higher temperatures, where (kvs)2 � κ2 + δ2,
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the field amplitude’s growth rate is, from (11.7), given by

γ = −κ+
(

S∑
s=1

~|δ|
kBTs

Nsη
2
s − δ2

)1/2

. (11.8)

We thus find strong sympathetic enhancement, i.e. the field grows faster the more
species contribute such that the required power and time needed for self-organization
is lowered by combining several species.

11.4 Long-term dynamics and equilibrium
For a large but finite number of particles, the Vlasov kinetic theory, which neglects all
dynamical correlations, provides an accurate description on a time scale essentially
fixed by the solution of equation (11.7). The long-term evolution of the system and
in particular its statistical equilibrium state are, on the other hand, governed by
precisely these correlations [11.18]. In this section we shall deal with this stage of the
time evolution in the limit of weak coupling, i.e. ∑Ns|U0,s| � |∆c|, where we can
neglect the terms ~U0,s|a|2 sin2(kx) in the optical potentials (11.1), rendering them
linear functions of the mode amplitude. We perform, for each species separately,
a canonical transformation of variables (x, p)→ (Is, θs). Here, Is denotes the one-
body action based on the ensemble-averaged Hamiltonian function 〈Hs(x, p, a, a∗)〉 ≡
Hs(x, p, α, α∗),

Is = ± 1
2π

∮ √
2ms [〈Hs〉 − 〈Φs(x′)〉]dx′ (11.9)

and θs its canonically conjugate angle variable

θs = ∂Ss
∂Is

, (11.10)

obtained from the generating function Ss = ±
∫ x√2ms [〈Hs〉 − 〈Φs(x′)〉]dx′. The

reason for doing this is that at the end of the initial, mean-field governed dynamics,
the one-particle distributions depend on (x, p) solely through the ensemble-averaged
one-body Hamiltonian functions and thus on the actions alone. From that point
onwards, they are slowly modified by the dynamical correlations in such a way that
the system evolves towards statistical equilibrium in a sequence of mean-field steady
states [11.23]

fs(x, p, t) ' fs(Is, t). (11.11)
After a lengthy calculation in theses new variables, the system’s long-term evolution
can be cast into a set of coupled nonlinear Fokker–Planck equations

∂fs
∂t

= ∂

∂Is

(
Asfs +Bs

∂fs
∂Is

+
S∑
r=1

C[fs, fr]
)

(11.12)

146
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for the distributions. The quasi-stationary ensemble-averaged mode amplitude is
determined by the implicit equation

α = 2π
∆c + iκ

S∑
s=1

Nsηs

∫
fs(Is)g0,s(Is, α)dIs, (11.13)

wherein
gn,s(Is, α) := 1

2π

∫ 2π

0
sin(kx)e−inθsdθs. (11.14)

The rhs of equation (11.12), describing the redistribution of particles among the
orbits, consists of two contributions originating from fluctuations and decay of the
mode amplitude

As[fs] = −4~∆cκωs

∞∑
n=−∞

n2η2
s |gn,s|2

|D(inωs)|2
(11.15)

Bs[fs] = ~2κ
∞∑

n=−∞

n2η2
s |gn,s|2

|D(inωs)|2
(
κ2 + ∆2

c + n2ω2
s

)
(11.16)

and a generalized Balescu-Lenard operator [11.24–11.26]

C[fs, fr] =
∞∑

n,m=−∞

∫
wnm(Is, I ′r)

(
n
∂fs
∂Is

f ′r −m
∂fr
∂I ′r

fs

)
dI ′r, (11.17)

where

wnm(Is, I ′r) := 8π2~2∆2
cNr

η2
s |gn,s|2η2

r |g′m,r|2

|D(inωs)||D(imω′r)|
nδ
(
nωs −mω′r

)
. (11.18)

Here, ωs(Is) = ∂ 〈Hs〉 /∂Is is the nonlinear orbital frequency and a prime denotes the
function at Ir = I ′r. For spatially uniform ensembles Is → p/k and the expressions for
As and Bs given in [11.18] are recovered. D(iω), here called the dielectric function,
is given by

D(iω) = (iω + κ)2 + ∆2
c − 4π~∆c

S∑
s=1

∞∑
n=−∞

Nsη
2
s

∫
∂fs
∂Is

n|gn,s|2

ω + nωs − i0
dIs (11.19)

and characterizes the system’s collective response. Let us remark that the coupled
kinetic equations (11.12) constitute another central result of our present work. In
their derivation we assumed that the particle distribution functions fs(Is, t) are
always strongly Vlasov stable. This assumption breaks down close to the self-
organization threshold and thus (11.12) is valid only away from the transition point.
The interaction contained in the Balescu-Lenard collision operator (11.17) quantifies
the energy and momentum exchange between particles of like and different species and
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involves orbits Ir, Is with nωr = mωs. In mechanics such orbits with commensurable
frequencies are called resonant. The origin of the energy exchange term (11.17) lies
in the scattering of laser light into the cavity by a first particle and subsequent
backscattering into the laser mode by a second, resonant particle. This is in effect
a pair collision albeit entirely nonlocal. The appearance of the dielectric function
also reveals that the remaining particles participate collectively as a medium in
that process. These quasi-collisions can be used for efficient sympathetic cooling
as demonstrated below. The source of the remaining terms in (11.12) involves only
single scattering events and subsequent loss through the cavity mirrors. It is worth
remarking that the quasi-collision operator (11.17) vanishes for thermal distributions
with equal temperatures, and thus the quasi-collisions tend to establish global thermal
equilibrium.
Stable equilibria of (11.12) exist only for ∆c < 0. Below threshold they are

homogeneous with vanishing field and, independent of the number of species, q-
Gaussian momentum distributions

fs,eq(p) ∝ expqs

(
−p2

2mskBT

)
, (11.20)

where
kBT := ~

κ2 + ∆2
c

4|∆c|
(11.21)

and
expq(u) =

[
1 + (1− q)u

] 1
1−q (11.22)

is the q-exponential with parameter qs = 1 + ωR,s/|∆c|. For qs → 1 the distribution
becomes an ordinary Gaussian. The recoil frequencies are given by ωR,s := ~k2/2ms

and kBT denotes a “thermal” energy with a minimum of ~κ/2 for ∆c = −κ. The
reason for the fact that the equilibrium state of a given species is unaffected by the
presence of others is the vanishing of interspecies scattering C[fs,eq, fr,eq] ≡ 0.
Sufficiently far above threshold the ordered equilibria are well approximated by

Maxwell-Boltzmann distributions

fs,eq(x, p) ∝ exp
(
−Hs

kBT skin

)
, (11.23)

with kinetic temperatures

kBT
s
kin :=

〈
p2〉
ms

= kBT +
~ω2

0,s
|∆c|

(11.24)

and trap frequencies ω2
0,s = 4ηsωR,s |Reα| proportional to the cavity field generated

commonly by all species. Therefore, unlike below threshold, the equilibrium of a given
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Figure 11.3: Self-organized steady-state momentum distributions of (a) species one and (b)
species two with m2 = 10m1. (c) Kinetic temperatures and the photon number.
Dashed lines: theoretical predictions. Dash-dotted line: maximally possible
photon number. Parameters: N1 = 300, N2 = 200,

√
N1η1 =
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κ = 100ωR, δ = −κ and ER,1 = ~ωR.

species is affected by the presence of the others. Figure 11.3 shows the formation
and properties of a two-species self-organized steady state. The initial increase of
the kinetic energy originates from the fast growth of the cavity intensity due to
instability and is followed by cooling in the trapped state.

11.5 Sympathetic cooling

Most interestingly, the energy exchange between different sorts of particles reduces the
cooling time for any species in the presence of another via collisionless sympathetic
cooling. At this point it is necessary to clarify the notion of cooling. We shall
associate with cooling a reduction of the extension of the sth species in one-body
phase space. As the quantity 〈Js〉 :=

∫
Jsfs(Is)dIs, with Js = Is for transient and

Js = Is/2 for trapped orbits, provides a measure of this extension, cooling therefore
corresponds to a decrease of 〈Js〉.1 We clearly see that a light species of particles not
only assists in trapping heavy particles via self-ordering, but also speeds up cooling.
Numerical simulations exhibit an increase of the occupied phase space volume during
initial self-trapping if the system starts above threshold (11.5) and there is only a
small energy exchange between deeply trapped ensembles if the resonance condition
in (11.18) is not satisfied. However, efficient sympathetic cooling can be achieved in
any case by initializing the system below threshold, such that interspecies scattering

1Let it be remarked that also the Bohr–Sommerfeld correspondence principle between integer
multiples of ~ of the action variable and quantum mechanical energy eigenstates suggests this
definition.
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can remove energy from the first species. This process continues efficiently until the
point of joint self-organization is reached and the lighter particles are trapped. These
then provide a continuously deepening potential for the the heavy species, which
subsequently gets trapped as well. This process is shown in figure 11.4. For carefully
chosen parameters, such that the trap frequencies of the species roughly coincide
and thus allow for quasi-collisions even in the self-organized regime, the sympathetic
cooling effect persists in principle also above threshold.
Finally, the energy flow per particle from species two to species one, Q̇21, for two

spatially homogeneous ensembles can, from equation (11.17), be estimated as

Q̇21 '
2N1η

2
2η

2
1~∆2

c
(κ2 + ∆2

c)2

√
m1
m2

√
π~ωR,2
kBT1

[
1− T2

T1

] [
1 + m1T2

m2T1

]− 3
2
. (11.25)

Here we assume that the first species is already cold, i.e. 2kBT1/~κ� κ/ωR, and far
from instability. It is maximal if ∆c = −κ.

11.6 Conclusions
In summary we have shown that if the self-organization threshold can be reached
with a certain species, any species can be added and will be trapped and cooled
as well. The final temperatures are only limited by the resonator linewidth and,
importantly, the cooling time of a given species can be reduced by means of energy
exchange with a second, already colder and lighter species. Because the general
effect has successfully been demonstrated in single-species experiments [11.12, 11.27,
11.28], we are confident that the multispecies generalization proposed here is well
within reach of current technology. New phases can also be expected in the case of
a crystallization of a multispecies quantum gas close to absolute zero [11.29]. We
expect that simultaneous additional cooling of one species will help to cool all others.
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