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Abstract

The field of atomic, molecular and optical physics (AMO) has experienced tremendous
progress the last 20 years. Two prominent examples in this context are (i) systems of cold
atoms in optical lattices, for instance, allowing for investigations of fundamental questions of
traditional condensed matter physics, and (ii) systems of atoms in optical resonators, enabling
single-atom manipulations and leading to a variety of new phenomena. Moreover, both of
these systems offer a plethora of applications for quantum information processing.

This thesis presents my work based on a generalization of models for cold atoms in optical
lattices by including a high-Q optical cavity to the dynamics. This provides new perspectives
to investigate collective effects of atoms in optical resonators and to study fundamental issues
of strongly correlated systems. The thesis is divided into three parts corresponding to con-
ceptually different topics. The work was performed at the Institute for Theoretical Physics
at the University of Innsbruck under the supervision of Prof. Helmut Ritsch.

The first part of this thesis is devoted to investigations concerning the dynamics of sys-
tems of cold atoms in resonator-generated optical lattices. Here we derive a generalized
Bose-Hubbard Hamiltonian, describing the dynamical evolution of the atom-cavity system
and discuss the influence of the cavity degree of freedom on various properties of strongly
correlated systems in optical lattices. Moreover, we identify a regime, where the cavity field
can be eliminated, which provides a significant simplification of the model.

In the second part, we present two proposals for non-destructive probing of the atomic
phase of an ensemble of cold atoms in an optical lattice by means of cavity QED. The
first method consists of angle-resolved measurements of photon number and variance via
off-resonant collective light scattering into a cavity. This provides information about atom-
number fluctuations, pair correlations and quantum fluctuations without single-site access.
The second method, fundamentally different from the first, shows how to map atomic quan-
tum statistics on transmission spectra of high-Q cavities. The predicted effects of both
proposals are accessible in experiments that recently became possible.

Collective interactions of atoms enclosed in a cavity and coherently excited by a laser field,
impinging perpendicularly on the cavity axis, lead to self-organization of the atoms within the
optical lattice. In the last part of this thesis, we accomplish a quantum mechanical analysis of
the onset of this self-ordering process. We show that atom-field entanglement plays a crucial
role in the spatial reordering of the atoms from a homogeneous towards one of two possible
ordered states.





Zusammenfassung

Auf dem Gebiet der atomaren, molekularen und optischen Physik (AMO) konnten
während der letzten 20 Jahre enorme Fortschritte erzielt werden. Zwei herausragende
Beispiele in diesem Zusammenhang sind (i) Systeme kalter Atome in optischen Gittern, die
unter anderem die Untersuchung fundamentaler Fragestellungen aus dem Gebiet der Physik
der kondensierten Materie erlauben, und (ii) Systeme von Atomen in optischen Hohlraum-
resonatoren, die es erlauben einzelne Atome zu manipulieren und zu einer Vielzahl an neuar-
tigen Phänomenen führen. Überdies bieten beide Systeme ein breites Spektrum an Anwen-
dungsmöglichkeiten im Bereich der Quanteninformationsverarbeitung an.

In der vorliegenden Dissertation sind meine Forschungsergebnisse über eine Verallge-
meinerung von Modellen, die kalte Atome in optischen Gittern - unter Hinzunahme eines
Hohlraumresonators mit hohem Gütefaktor - beschreiben, zusammengefasst. Es lassen sich
daraus neue Perspektiven zur Untersuchung kollektiver Effekte von Atomen in optischen
Resonatoren und zum Studium von fundamentalen Fragestellungen stark korrelierter Sys-
teme ableiten. Die vorliegende Dissertation ist in drei Abschnitte unterteilt, entsprechend
den dreie konzeptionell unterschiedlichen Themengebieten. Diese Arbeit wurde am Institut
für theoretische Physik der Universität Innsbruck durchgeführt und von Prof. Helmut Ritsch
betreut.

Die Dynamik von Systemen von kalten Atomen in optischen Gittern, die von Hohlraumres-
onatoren erzeugt werden, wird im ersten Abschnitt dieser Dissertation eingehend untersucht.
Hier leiten wir einen verallgemeinerten Bose-Hubbard Hamilton-Operator her, der die dy-
namische Entwicklung des Atom-Hohlraum Systems beschreibt und, diskutieren den Einfluss
des Hohlraums auf verschiedene Eigenschaften von stark korrelierten Systemen in optischen
Gittern. Außerdem weisen wir einen Bereich aus, in dem das Hohlraumfeld aus der Dynamik
adiabatisch eliminiert werden kann, was zu einer erheblichen Vereinfachung dieses Modells
führt.

Im zweiten Abschnitt schlagen wir zwei Methoden zur zerstörungsfreien Messung der
atomaren Phase eines Ensembles kalter Atome in optischen Gittern mittels Hohlraum-
Quantenelektrodynamik vor. Die erste dieser Methoden besteht aus winkel-auflösenden Mes-
sungen der Anzahl an Photonen und ihrer Varianz durch nicht-resonante, kollektive Licht-
streuung in den Hohlraum. Dies liefert Informationen über Fluktuationen der Atomzahl,
Paarkorrelationen und Quantenfluktuationen, ohne Zugang zu einzelnen Gitterplätzen haben
zu müssen. Die zweite Methode, die sich von der ersten fundamental unterschiedet, zeigt,
wie man atomare Quantenstatistik auf Transmissionsspektra eines Hohlraumresonators mit
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hohem Gütefaktor abbilden kann. Die vorhergesagten Effekte beider Vorschläge können in
heute möglichen Experimenten beobachtet werden.

Kollektive Wechselwirkungen zwischen Atomen in einem Hohlraumresonator, die von
einem senkrecht auf die longitudinale Achse des Hohlraums einfallenden Laser angeregt wer-
den, führen zur Selbstorganisation der Atome innerhalb des Gitters. Im letzten Abschnitt
dieser Dissertation führen wir eine quantenmechanische Analyse der Entstehung dieses Selb-
storganisationsprozesses durch. Wir zeigen, dass die Verschränkung zwischen Atom und
Hohlraumfeld ein wesentliches Element in der räumlichen Umordnung von einem homogenen
Zustand, hin zu einem der zwei möglichen geordneten Zustände, ist.
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Helmut Ritsch bedanken, der mir trotz etwas schwieriger Begleitumstände die Möglichkeit
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Gebühr auskosteten.

Mit meinen Freunden vom Naturwissenschaftlichen Panoptikum Innsbruck (NPI)
Christofer Tautermann, Robert Morandell, Hannes Perschinka, Stefan Steidl, Peter Lam-
pacher, Wolfgang Stöggl und ganz besonders Bernd und Markus Wellenzohn durfte ich viele
lustige und glückliche, aber auch kuriose Momente erleben. Leider mussten wir letztes Jahr
gemeinsam auch die schmerzhaften Schattenseiten des Lebens erfahren, als unser treuer Fre-
und Markus Loferer, der für mich in vielerlei Hinsicht ein Vorbild war, viel zu früh aus dem
Leben scheiden musste.
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Chapter 1

General Introduction

In science one tries to tell people, in such a way as to be understood by everyone,
something that no one ever knew before. But in poetry, it’s the exact opposite.

Paul Dirac

The work presented in this thesis is based in the field of atomic, molecular and optical
(AMO) physics and focuses on the theory of cold atoms in optical lattices and cavity quantum
electrodynamics, both topics with impressive progress in the last century. Atoms in optical
cavities show a multifarious nonlinear behavior, due to the complex mutual interference of the
atomic positions and the intracavity field. The main objective of this work is to utilize these
nonlinear effects and provide new perspectives in the field of cold atoms in optical lattices.

Introduction

As already indicated by its name, AMO physics incorporates a wide variety of research areas,
each marking its own subject with important achievements with broad impact. Neverthe-
less, there are strong interactions between the various research areas, establishing a fruitful
interdisciplinary symbiosis. Atomic physics addresses questions concerning the properties of
atoms and their structure as well as collisions between atoms and interactions with solids
and external fields. Molecular physics investigates the structure and properties of molecules
and their clusters. Finally, modern optical sciences covers a broad spectrum of topics, e.g.
nonlinear and ultrafast optics, coherent sources of light and quantum optics.

Besides the aforementioned variety of addressed issues, AMO research provides the means
for answering fundamental physical questions by facilitating the most accurate techniques of
measurement, available in physics. As a matter of fact, highly accurate measurements of
time (and equivalently frequency), feasible with amazing precision, are allocated by atomic
physics.

Moreover, AMO physics develops new concepts and technologies with broad impact,
whose recipients are branches as diverse as astronomy, biology, chemistry, computational and
material science, engineering, medicine and telecommunication. As a valuable side-effect, the
necessary experimental and computational tools in the development of AMO sciences are
applied in other areas too.

A common feature in the biggest part of AMO physics is that the progress of theory
accompanies the progress in experimental research, leading to testable theoretical predictions,
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while other branches of physics suffer from a divergence of theoretical results and experimental
verification. Hence, the role of theoretical work in AMO research is twofold: It proposes new
experiments as well as it formulates new concepts and develops new theoretical tools to allow
for a further understanding of open questions in AMO physics as well as in other areas of
physics.

The mutual actuation of theoretical and experimental progress, and the applicability of
AMO physics to give insight to problems, originating from other branches of physics, ensure
that AMO physics keeps being a growing, highly active field with broad impact. As an
indicator of this may serve the fact that the Nobel committee of Sweden has awarded several
Nobel prizes to the AMO community in recent years.

General Historical Development of Atom-Optics

The 14th of December 1900 marked the beginning of a new physical era. At that time,
Max Planck presented his visionary idea of discretized energy levels to derive the formula for
blackbody radiation [1]. Although Planck himself attached no deeper relevance to this ad
hoc considerations, a revolution of the physical view of the world was irrevocably initiated.

Quantum Theory, which arose from that origin, was then developed during the 1920s by
people like Bohr, Born, Schrödinger and Heisenberg, and was initially purely fundamental
research. It accounted for the stability and the emission spectra of atoms and molecules and
furthermore could explain phenomena, in contrast to classical physics, like the photoelec-
tric [2] and the Compton effect [3].

Spectacular observations soon demonstrated the counter-intuitive nature of quantum me-
chanics, for instance the wave nature of matter [4]. However, an experimental investigation
of other phenomena, located in the heart of quantum theory, like entanglement and the cor-
responding Schröedinger-cat paradox, seemed beyond an ever possible realization. At that
time, experimental techniques were much too less sophisticated, to allow for a manipulation
and observation of single atoms.

The most important step towards manipulation at an ultimate quantum level was the
invention of the laser 50 years ago [5], certainly the invention of AMO physics with the
broadest influence on other physical branches. Primarily considered as a fancy laboratory
toy, the facility of creating coherent, nearly monochromatic light pulses became the very tool
in experimental physics. Evidently, not one of the modern experiments mentioned in this
thesis is thinkable without the existence of lasers. Besides the wide applications in metrology,
completely new branches like laser spectroscopy [6], laser chemistry [7], or in principle even
quantum optics [8–10] were established or essentially promoted; not to forget the applications
of laser technology in our everyday life.

Let us glance at the development of the laser and its applications towards the realization
of the state-of-the-art techniques, providing the necessary equipment for today’s fascinat-
ing experiments. For a long time, manipulation of single atoms or molecules seemed an
unimaginable task. Nevertheless, AMO physics was able to overcome all technological and
theoretical hurdles. First, trapping of single ions, pioneered by Paul and Dehmelt [11, 12],
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was realized in groundbreaking [13, 14]. As a second step, laser cooling enabled efficient cool-
ing of neutral atoms to very low temperatures. In its simplest form, Doppler cooling, atoms
absorb photons, red detuned from the atomic resonance frequency, from counter-propagating
laser beams. Spontaneous re-emitting of photons in random directions leads to a net cooling
force [15–18]. More elaborate schemes, allowing for cooling atoms below the Doppler limit,
followed. Schemes like polarization-gradient cooling [19] or velocity-selective coherent pop-
ulation trapping (VSCPT) [20] were able to cool certain species of atoms to temperatures
in the nano-Kelvin regime. For reviews of the fascinating subject of cooling and trapping of
atoms and ions with light, awarded with the Nobel prize in 1997 for Claude Cohen-Tannoudji,
Steven Chu and William Phillips, see [21–25].

With this high level of control and manipulation, the next step was the realization of
a phenomenon, known already since the 1920s. Bose and Einstein [26, 27] realized that a
macroscopic fraction of bosons, cooled to extremely low temperatures, occupy the same single-
particle quantum state. Finally in 1995, the first experimental realizations of a so-called Bose-
Einstein condensate (BEC) [28–31] were accomplished with dilute atomic vapors [32–34]. In
addition to the above mentioned laser-based cooling methods, a new method, evaporative
cooling [35–38], had to be invented, to provide for the extremely low temperatures of few
micro-Kelvin to nano-Kelvin and the necessary phase-space densities of 1013 - 1015 cm−3 to
observe the phase transition. Since BEC is the matter counterpart of laser light, it envisioned
similar intriguing perspectives. In the first years after these pioneering experiments, the
research focused upon studies concerning the wave nature of matter. Among others, this
included investigations and observations of interference fringes of matter waves, superfluid
properties and collective excitations in BEC, nonlinear wave mixing, as well as the realization
of an atom laser [39–42]. Additionally, it was possible to create BEC for a variety of atomic
species. The current list of established BECs contains all stable bosonic isotopes of alkali
atoms [36], i.e. Hydrogen, Lithium, Sodium, Potassium, two isotopes of Rubidium and
Cesium [43], as well as Chromium [44], Ytterbium [45], and metastable Helium [46, 47].

Even though an impressive level of control over single atomic systems was already reached,
to obtain the above mentioned BEC of Cesium, more had to be done. With the help of
magnetic [48–51] and optical Feshbach resonances [52–54] it was possible to tune the on-site
interactions, by ramping an external magnetic field, from repulsive to attractive or vice versa.
This was a key ingredient for the production of the Cesium BEC. Moreover, it allowed for
exploring new physical effects and spellbinding applications in the context of many-particle
physics. For instance, new quantum phases were realized, like degenerate Fermi gases [55–
58] and Bose-Fermi mixtures [59–62]. By ramping across the resonance, ultracold molecules
can be formed from pairs of atoms, condensing to a molecular BECs [63–70], as well as to
diatomic heteronuclear molecular BECs [71–73]. Furthermore, it was possible to observe sev-
eral theoretically predicted phenomena, like the BEC-BCS crossover, in quantum degenerate
Fermi gases [74–80] or the incidence of trimer states, the so-called Efimov states [81].

Obviously, the tendency of AMO research was towards the study of fundamental questions
in many-body physics. To allow for an investigation of strongly correlated systems, cold atoms
had to be implemented in optical lattices. The development of this novel research field within
the last 10 years will be presented in the subsequent section.

Beforehand, we want to mention that AMO physics plays an important role in another
highly active branch of physics. After Feynman had noticed the fundamental significance of
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entanglement of quantum states when it comes to numerically simulate physics [82], the field
of quantum information processing and quantum computation arose, with impressive progress
in a relatively short time [83–86]. In the meantime a number of applications were provided
by this theory, like quantum cryptography, which makes it possible that two parties can
communicate completely secure via quantum channels [87–90]. There are already systems
using these techniques commercially available.

To realize the ultimate goal of this field, a universal quantum computer, several models
have been invented. For instance, the quantum circuit model [83], the one-way quantum
computer [91–94], adiabatic quantum computing [95–99] and topological quantum compu-
tation [100–104]. All of these schemes have in common that initialization and read-out
procedures, for the storage and processing of the basic unit of quantum information (q-byte),
realized by a quantum two-level system, have to be realized. Further conditions are scalability
and long coherence times [105]. As a matter of fact, several AMO systems, fulfill more or less
all of these requirements, and are promising candidates for the implementation of quantum
information processing and quantum computing [106–119].

Cold Atoms in Optical Lattices

After studying weakly interacting dilute gases, tuning collisional properties via Feshbach
resonances, opened up the the possibility of investigation of strongly correlated phases.

Hubbard-type lattice models typically emerge from questions, concerning strongly cor-
related systems in traditional condensed matter physics. In a seminal work Dieter Jaksch
and coworkers showed [120], that cold atoms, loaded and trapped in optical lattices allow for
engineering such strongly correlated systems within the field of AMO physics. The periodic
arrays of (optical) potential wells are provided by so-called optical lattices (see chapter 2),
which are created by counter-propagating laser fields.

A major advantage of AMO physics, compared to solid state physics, is the impressive level
of control over many of the relevant parameters of their systems. This opened up a plethora
of promising applications in the theory of condensed matter physics, where experimental
verifications of theoretical predictions are a much harder task. By means of AMO physics,
several phenomena of condensed matter physics could be observed for the first time. Firstly, it
was possible to experimentally observe the predicted phase transition from the Mott insulator
phase to the superfluid phase [121–123], as demonstrated by beautiful experiments of Greiner
et al. [124, 125].

Adjusting the parameters of the optical lattice and external fields, allow for a serious
toolbox of techniques to control the dynamic of the atoms in the lattice [126]. Easily the
lattice depth can be varied, by changing the power of the intersecting lasers. This results in
a reduced tunneling rate of the atoms. Furthermore, even on-site interactions inside lattice
wells can be tailored using Feshbach resonances [127]. A modification of the configuration of
the lattice lasers, a plurality of lattice geometries are possible, e.g. rectangular, triangular
and Kagomé lattices [126, 128–130]. If the intensities of the lasers differ from direction to
direction, non-homogeneous lattices are generated. Hence, effectively two-dimensional or one-
dimensional lattices can be generated, when the optical potentials in one or two directions
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are very deep. Hence, the atoms are very tightly trapped in these directions. For this reason,
it was possible to realize systems of hard-core bosons in 1D [131, 132], observe the Mott
insulator to superfluid transition in 1D [133–135] and 2D [136]. Moreover, cold atoms in
optical lattices allowed for an experimental observation of fascinating predictions from low-
dimensional physics, like the equivalence of a system of strongly interacting, hard-core 1D
Bosons (Tonks-Girardeau gas) and non-interacting 1D Fermions [137, 138]. This equivalence
is known as fermionization. Very recently, the group of Jean Dalibard demonstrated the
existence of the Berezinskii-Kosterlitz-Thouless phase transition in 2D [139].

Several theoretical proposals exist for the applications of these techniques to investigate
extended systems, including spin models with interesting new phases [130, 140–143], the
Kondo effect and other issues concerning impurities [144, 145], spin glass systems [146], lattice
gauge theories [147], properties of Luttinger liquids [148], and investigations concerning the
superfluidity of Fermions [149, 150].

In general, optical lattices are very uniform and only few impurities are present, which as-
sists the engineering of the condensed matter lattice models. Besides, superimposing lattices
with commensurate frequencies allows to create superlattices with complex structure [151].
Disordered systems can be studied by applying non-commensurate frequencies, leading to
pseudo-random disorder, whereas adding a laser speckle pattern generates random disor-
der [130, 146].

Cold atoms in optical lattices are well isolated and relatively insensitive to perturbations
from the environment. This leads to coherent dynamics on long timescales [152], compared to
systems in condensed matter physics. A consequence of this good isolation is the possibility
of the creation of repulsively bound atom pairs, by means of Feshbach resonances, as recently
observed [153]. Finally, these systems are accessible for several types of spectroscopic mea-
surements, like interference experiments from atoms released from the traps [124, 125] and
detection of coincidences and density-density correlations [154–156].

AMO physics provides prospectives for the implementation of quantum information and
engineering entanglement using cold atoms in optical lattices. Besides the long coherence
times, implied by the exceptionally well isolation of these systems, another advantage is their
inherent scalability. Several proposals to perform gate operations exist, including operations
via collisional or dipole interactions [157–160], operations based on atomic tunneling between
adjacent wells [161, 162] or based on the motional state of atoms [163], as wells as operations
based on strong dipole-dipole interactions between Rydberg atoms [164]. Cluster states are
required to perform one-way quantum computing. A one-dimensional version of these states
have been created, by entangling a large array of atoms via controlled collisions [165]. A
subtle task is the individual addressing of atoms in the particular sites optical lattices. One
possible way to resolve these difficulties is to use marker atoms [166].

However, at the present time, the primary function of systems of cold atoms in optical lat-
tices, is to simulate models from traditional condensed matter physics, which are intractable
there [167]. This agrees with the visionary idea of Feynman, established already 30 years
ago [82].

The present thesis provides a first step to merge systems of cold atoms in optical lattices
with another versatile element of quantum optics, namely optical cavity resonators. Along
the lines of cold atoms, the investigations - both in experiment and theory - of this system
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have experienced tremendous progress within the last decade. A brief introduction to basic
theoretical results of cavity quantum electrodynamics (CQED), required for the rest of this
thesis, is presented in chapter 3. The next section is devoted to a sketch of the historical
development of the field.

Cavity Quantum Electrodynamics (CQED)

As a matter of principle, the theory of cavity quantum electrodynamics was inherently in-
cluded immediately from the first appearance of quantum theory, since Planck considered
quantized modes of the electromagnetic field inside a cavity [1]. However, modern CQED
deals with the interaction of atoms, enclosed in a resonator, with (few) modes of the intra-
cavity field.

The interaction between atoms and the electromagnetic field, in particular the light field,
in free space is straightforward. Matter influences light via a refractive index, to be inserted
in Maxwell’s equation. On the other hand, light exerts forces on particles, entering Newton’s
equations. Is the atom enclosed by a resonator, which implies specific boundary conditions
for the field, the situation drastically changes. The dynamics of light and matter is no longer
independent, since they mutually influence each other. Especially in the strong coupling
regime, where the atom is strongly coupled to a single cavity mode (see chapter 3), the cavity
and the atom have to be considered as a single entity, the atom-cavity system.

The origin of modern CQED lies in the 1940s, where Purcell recognized that the modified
boundary conditions for the electromagnetic field have a grave influence on the spontaneous
emission rate of atoms enclosed in the cavity [168]. This is known as the Purcell effect.
However, the cavity here merely plays a passive role, by modifying the density of the mode,
which interacts with the atom. The dynamical influence of the cavity field plays only a minor
role here. As we pointed out in the sections before, single-atom experiments require a high
level of experimental tools. Hence, the observation of the modified atomic lifetimes due to
the presence of a cavity, succeeded almost 40 years after Purcell’s prediction [169–171]. The
interaction strength with (quantized) field modes is determined by the electric dipole moment
of the atom (the interaction of atoms with quantized resonator modes was first described by
Jaynes [172]). Hence, these experiments were performed using the large dipole moment of
Rydberg atoms, as proposed by Kleppner [173].

To explore the ultimate quantum level, where the cavity light field dynamics is no longer
irrelevant, the system has to reside in the so-called strong coupling regime. There, the coupling
strength, given by the single-photon Rabi-frequency (see chapter 3), has to exceed all possible
dissipative processes (mainly, spontaneous emission rate of the atoms and the loss rate loss
of cavity photons) and the inverse of the interaction time.

Primarily, the strong coupling regime, was reached for microwave cavities in the
1980s [174, 175]. Since then, a rich variety of theoretically predicted effects have been ob-
served, including Rabi oscillations in a small quantum field [176], sub-Poissonian [177] and
trapping field states [178], bistable behavior [179], as well as a direct proof of field quantiza-
tion [180], decoherence of quantum superpositions [181] and Fock state generation [182, 183].
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In the optical domain, reaching the strong coupling regime is a much more demanding
task. Due to the short wavelength, tiny cavities, with a length in the micro-meter regime,
are needed. Hence, the photons have to undertake many round-trips in the cavity, which
has to be provided by extremely good mirrors. In the seminal experiment of Thompson et
al. [184], the so-called vacuum Rabi-splitting (see chapter 3) of the transmission spectrum of
a probe laser was observed. During the aforementioned round-trips, the atom is constantly
absorbing a photon followed by a re-emission into the cavity mode. This oscillatory exchange
of excitation could be observed [185], using a homodyne measurement of a transmitted field.

The efforts for reaching the optical strong coupling regime are worthwhile. The photons
carry a larger momentum, which amounts to larger forces exerted on the atoms at an ab-
sorption event. This leads to astonishing effects and prospective applications. For instance,
laser-cooled atoms, traversing the cavity, can be individually detected [186–188]. The laser-
cooling scheme slows down the atoms, yielding a long interaction time. This allows to observe
the effects of the light field on the atom, which itself alters the light field. Hence, the com-
bined dynamics of the atom-cavity field is visible [189, 190]. To carry this mechanism to the
extremes, Hood et al. [191] and Pinkse et al. [192] demonstrated the trapping of a single atom
in the light field of only a single photon.

Extended manipulations require enhanced extra trapping time of the atom. Trapping of
atoms in free space by means of optical dipole force traps, consisting of an optical beam, far
red-detuned from the atomic resonance, was already accomplished. Hence, it was evident to
implement such a far off-resonant trap (FORT) in an optical resonator and decouple the trap-
ping from the interaction with the (quantized) cavity mode. For red detuning, the dipole force
trap induces an attractive force towards the field antinodes of the optical beam. For a proper
choice of the beam’s frequency, strongly enhanced trapping times are achieved for atoms near
the center of the cavity [193, 194]. Recently, the group of Rempe established a blue-detuned
dipole trap, where the atoms are attracted towards the nodes of the potential. Due to the
absence of large Stark shifts for all atomic states in such a trap, the free-space properties
of the atoms are hardly influenced. This has several advantages concerning fluctuation and
heating issues [195].

An major drawback of laser-cooling is the requirement of closed optical cycles, to con-
stantly repeat scattering events, which provides for the dissipation of energy. Unfortunately,
several particles do not meet this requirement. This especially holds for molecules with their
continuum-like spectra of rotational and vibrational states. Here, the atom-cavity system
provides a different possibility for dissipation. In the strong-coupling limit, where the atom
and the cavity form one entity, the reaction of the light field on atomic motion does not
occur immediately. This delay leads to a dissipative force and energy, which is stored in the
cavity field, can leak out of the cavity via loss of photons. This dynamical cavity cooling
was proposed first by our group [196], and has been thoroughly studied since then [197–199].
The experimental realization of this cooling scheme was first done by Maunz et al. [200]. The
achievable limit of the cooling temperature scales with the cavity loss rate, which can be
significantly lower than the Doppler limit. Moreover, since no closed optical cycle is needed,
dynamical cavity cooling provides promising perspectives to efficiently cool molecules, as
suggested by Vuletić and Chu [201], or even atomic qubits [202].

In the aforementioned experiments, a probe laser was driving the cavity via one of its mir-
rors. Variations of this configuration, including the application of a laser field, transversally
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to the cavity axis, which directly excites the atom, allowed for cooling in the directions of
this driving laser field [203–205]. In combination with laser-cooling and an additional dipole
trap in radial directions, cavity cooling in all spatial directions was realized [206].

Another configuration consists of several mirrors, assembling a ring cavity, where the
enclosed atom is interacting with two counterpropagating modes [207–209].

Cavity QED also provides interesting features for many-body physics. If many atoms are
present, collective effects in standard cavities [210] or in ring cavities [211–215] were observed.
One prominent example of these collective effects is the spatial self-organization of atoms in
transversally pumped cavities, as predicted in our group [216, 217] and firstly observed by
Black et al. [218].

Let us finally regard the relevance of CQED for quantum information processing. There
its role is twofold: On the one hand, it serves as a tool. Several quantum information
applications, based on AMO proposals, require a deterministic source of single photons [109],
a so-called photon pistol. Single photons “on demand” were provided by means of optical
cavities [219–222]. Furthermore, the vacuum Rabi splitting in a cavity (see chapter 3) allows
for state-sensitive detection of atoms [189, 190, 193]. On the other hand, various proposals
for an active role of cavities for quantum information processing exist [223]. Atoms, strongly
coupled to a cavity mode, constitute a matter-light interface, with which the implementation
of a quantum gate between single photon qubits [224] or the mapping of quantum states
between atoms and photons [225], is possible.

Overview

Besides the present general introduction, this thesis contains seven articles and one preprint,
together with three extra chapters, clarifying the theoretical background of the publications.
Each chapter contains its own bibliography. At the beginning of each article, a short note
indicates the primary contribution of the author of the present thesis to that article.

The thesis is divided into three parts. Part I, Ultracold Atoms in Optical Lattices En-
closed in an Optical Cavity, provides in two chapters a brief theoretical introduction to the
two main topics, discussed in this thesis. Chapter 2 introduces the field of Cold Atoms in
Optical Lattices and chapter 3 gives an introduction to Cavity Quantum Electrodynamics.
Two articles and one preprint follow in the subsequent chapters. In chapter 4 we elaborate
on the issue of Quantized Motion of Laser-Driven Atoms in a Cavity Field, where we consider
a single potential well of the optical potential inside the resonator. Chapter 5, Cold Atom
Dynamics in a Quantum Optical Lattice Potential outlines the basic features of strongly-
correlated ultracold atoms in an optical lattice, which itself is generated by the resonator.
Here, a generalization of the Bose-Hubbard model is presented. Finally, chapter 6 discusses
in depth this model and its restrictions, considers further properties and provides possible
applications.

Part II of this thesis, Probing Atomic Phases in Optical Lattices, contains three articles,
where we propose new methods for non-destructively probing the atomic phase of an ensemble
of cold atoms in an optical lattice, by means of cavity QED. The first, in chapter 7, Cavity
Enhanced Light Scattering in Optical Lattices to Probe Atomic Quantum Statistics, gives
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an outline of the general mechanism, how angle resolved measurements of photon number
and variance are capable of supplying information about atom-number fluctuations and pair
correlations. An in-depth analysis of this method is provided in chapter 8, Light Scattering
from Ultracold Atoms in Optical Lattices as an Optical Probe of Quantum Statistic. Here,
off-resonant collective light scattering from ultracold atoms trapped in an optical lattice is
generally studied. All the calculations of the various statistical quantities, necessary for the
proposal of chapter 7 are provided here. Chapter 9, Probing Quantum Phases of Ultracold
Atoms in Optical Lattices by Transmission Spectra in Cavity QED, points out a fundamentally
different, but also nondestructive method of probing atomic phases. Here, we show how to
map atomic quantum statistics on transmission spectra of high-Q cavities. The predicted
effects in this part are accessible in experiments that have recently become possible and allow,
for instance, for a detailed observation of the Mott insulator to superfluid phase transition.

The third part of this thesis, Self-Organization of Atoms in Optical Lattices, is devoted
to a microscopic analysis of the collective self-ordering process. After an introduction, pro-
vided in chapter 10, two articles are presented. Chapter 11, Entanglement Assisted Fast
Reordering of Atoms in an Optical Lattice within a Cavity at T = 0, elaborates on the rele-
vance of atom-field entanglement in a spatial atomic reordering process towards an ordered
state in a transversally pumped cavity. We discuss several possible approaches to this is-
sue, showing that entanglement, absent in a semiclassical treatment, is a generic feature for
quantum phase transitions in optical potentials. This discussion is extended in chapter 12,
Microscopic Physics of Quantum Self-Organization of Optical Lattices in Cavities, where a
detailed discussion of the results of the foregoing article is presented and extended calculations
are accomplished.

The thesis is concluded with a curriculum vitae.
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[125] M. Greiner, O. Mandel, Th. W. Hänsch, and I. Bloch, Collapse and Revival of the
Matter Wave Field of a Bose-Einstein Condensate, Nature (London) 419, 51 (2002).

[126] D. Jaksch and P. Zoller, The Cold Atom Hubbard Toolbox, Annals of Physics 315, 52
(2005).

[127] E. L. Bolda, E. Tiesinga, and P. S. Julienne, Effective-Scattering-Length Model of Ul-
tracold Atomic Collisions and Feshbach Resonances in Tight Harmonic Traps, Phys.
Rev. A 66, 013403 (2002).

[128] P. S. Jessen and I. H. Deutsch, Optical Lattices, Adv. At. Mol. Opt. Phys. 37, 95 (1996).



18 General Introduction

[129] L. Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann, and M. Lewenstein,
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A. Kantian, H. P. Büchler, and P. Zoller, Repulsively Bound Atom Pairs in an Optical
Lattice, Nature (London) 441, 853 (2006).
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Part I

Ultracold Atoms in Optical Lattices
Enclosed in an Optical Cavity





Chapter 2

Background: Cold Atoms in Optical Lattices

Systems of cold atoms, loaded into optical lattices, open up the possibility to engineer
model Hamiltonians, known from condensed matter physics, like Hubbard lattice models as
the Bose-Hubbard model. In solid state systems these models are rather hard to test, whereas
quantum optical systems are relatively simple and, which is an essential feature, tunable and
offer therefore a plethora of applications to test fundamental condensed matter models.

In this chapter the basic properties of the physics of cold atoms in optical lattices are
presented in a condensed from. We begin with an outline of the physics of a single atom
in an optical lattice, where we review the energy band structure of the lattice potential, the
Bloch and the Wannier functions, which serve as localized ground state functions for atoms
in optical lattices. In the last section, we switch to several particles and derive the Bose-
Hubbard model for cold atoms in optical lattices. This model is the basis for the subsequent
efforts in this thesis. In chapter 3 we generalize this model to atoms enclosed in optical
cavities, where the optical lattice, in addition to a “classical” lattice, as presented here in
this chapter, is generated by the resonator itself.

2.1 Optical Lattices

Optical lattices are periodic potentials, created by the interaction of neutral atoms with the
interference pattern of intersecting laser beams. The origin of the array of potential wells
lies in the dependence of the interaction energy of the internal atomic states on the light
intensity. The interference pattern of intersecting laser light causes a periodically varying
intensity, leading to optical potential wells for the neutral atoms. These wells are separated
by the order of the laser wavelength.

2.1.1 Optical Potentials - The AC-Stark Shift

The interaction of neutral atoms with light consists of two different processes. First, there
is the absorption of a photon followed by the stimulated emission of a photon. This is the
conservative part of the interaction, caused by the interaction of the light field with the
induced dipole moment of the atom and leads to a shift of the energy levels of the atoms,
the so-called light shift or AC-Stark shift. On the other hand an absorption process can also
be followed by a spontaneous emission of a photon. This leads to the dissipative part of the
interaction. Although this emission process is random in time and direction, it can induce a
net force on the atom. On average the recoil momentum on the atom of the emitted photon
is zero, while the direction of the momentum of the absorbed photons is always along the
laser beam. This effect is widely used in Doppler cooling techniques.
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Let us now consider a classical, single-mode laser light with frequency ωl and wavenumber
kl forming a one-dimensional standing wave E(x, t) = El(x) cos(ωlt−φ)ε, created by counter-
propagating laser beams, schematically depicted in Fig. 2.1.

Figure 2.1. Scheme of the interaction of a two-level atom with ground state |g〉 and
excited state |e〉, energetically separated by ~ωeg, with a standing wave laser field with
frequency ωl and wavenumber kl. The detuning of the laser and the atomic transition fre-
quency is given by δ = ωl−ωeg. This leads to the so-called AC-Stark shift ~ |Ω(x)|2 /(4δ)
of the levels (2.7).

Here El(x) is the amplitude of the electric field and ε is the polarization vector. This light
field interacts with a two-level atom with ground state |g〉 and excited state |e〉, with energy
difference ~ωeg. Let us assume that the ground state energy is zero, i.e. Eg = 0. Thus, the
interaction energy in the electric-dipole approximation reads as follows [1]:

H = HA +HI (2.1)

=
p̂2

2m
+ ~ωeg|e〉〈e| − d ·E(x̂).

Herem is the atom mass, p̂ and x̂ is the atomic momentum and position operator, respectively.
Note that in the electric dipole approximation x̂ corresponds to the atom’s center of mass. d
is the dipole operator. Due to the odd parity of d the interaction Hamiltonian can be written
as

HI = −~Ω(x̂)

2

[

e−i(ωlt−φ)σ+ + e−i(ωlt−φ)σ−
]

− ~Ω†(x̂)
2

[

ei(ωlt−φ)σ+ + ei(ωlt−φ)σ−
]

. (2.2)

Here Ω(x̂) = El(x̂)〈e|d·ε|g〉 is the Rabi frequency. The operators σ+ and σ− = σ†+ denote
the well known Pauli matrices

σ+ ≡ |e〉〈g| =
(

0 1
0 0

)

, σ− ≡ |g〉〈e| =
(

0 0
1 0

)

.

Physically the terms in the first bracket of (2.2) correspond to rising the atom from the
ground state |g〉 to the excited state |e〉 and to lowering the atom from |e〉 to |g〉 by absorbing
a photon from the laser field. The terms in the second bracket correspond to an atomic
transition from |g〉 to |e〉 and a transition from |e〉 to |g〉 by emitting a photon. The first



2.1. Optical Lattices 29

and the last of these processes are resonant, whereas the other two processes are off-resonant
and can be neglected as follows: Firstly, we choose a rotating frame to remove the time
dependence, by means of a unitary transformation |ψ̃〉 = U(t)|ψ〉, where U = exp(iωlt|e〉〈e|).
This corresponds to a new Hamiltonian H̃ = UHU † + i~

(

d
dtU

)

U †, which is in our case

H̃I = −~δ|e〉〈e| − ~Ω(x̂)

2

[

eiφσ+ + eiφe−2iωtσ−
]

− ~Ω†(x̂)

2

[

e−iφe2iωltσ+ + e−iφσ−
]

, (2.3)

where δ = ωl − ωeg is the detuning of the light field from the atomic resonance frequency.
For times t � 1/ωl, the time average of the time-dependent terms is approximately zero,
such that we can safely neglect them. This is known as the rotating wave approximation.
Omitting the tilde, the approximative interaction Hamiltonian is

HI = −~δ|e〉〈e| − ~Ω(x̂)

2
eiφσ+ −

~Ω†(x̂)
2

e−iφσ−. (2.4)

The energy eigenvalues of this Hamiltonian are

E = −~δ

2
± ~

2

√

δ2 + |Ω(x)|2. (2.5)

For large detuning |δ| � ω, where the population in the excited state, and hence the satura-
tion parameter, s ≈ |Ω(x)|2 /(2δ2), is very small, the energy eigenvalues reduce to

E ≈ −~δ

2
± ~δ

2

[

1 +
1

2

( |Ω(x)|
δ

)2
]

. (2.6)

The shift of the eigenvalues due to the interaction with the light field is the second term in
square brackets and is called AC-Stark shift. As the calculations above show, it corresponds
to the conservative part of the interaction and varies spatially via Ω(x). This light shift can
be interpreted as a potential

V = −~ |Ω(x)|2
4δ

(2.7)

for the atom in the ground state, in which it is most of the time in the low saturation limit.
This defines the optical potential. For red detuning δ < 0, the minima of the potentials are
the maxima of the Rabi frequency Ω(x), i.e. the intensity maxima. For blue detuning, δ > 0,
to the contrary, the atoms are repelled from points with high intensity, since the potential
minima correspond to the points with the lowest intensity.

2.1.2 Spontaneous Emission

In reality, the excited state will decay by emitting photons spontaneously. As aforementioned,
there exists a dissipative force originating from to this spontaneous emission process, beside
the conservative dipole force. There are several possibilities to treat this process, for instance
the description with a stochastic Schrödinger equation [2] or via the interaction with an
external reservoir and a master equation (see Sec. 3.1.3). For the moment we limit ourselves
to a more phenomenological treatment and add a non-hermitian part to the Hamiltonian (2.4)

H ′ = H − iγ
2
|e〉〈e|, (2.8)
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where γ = |〈e|d·ε|g〉|2ω3
eg/(3πε0~c3) is the spontaneous emission rate for a two-level atom [3].

For large detuning, the light shift, which can also be calculated with second order perturbation
theory, is now a complex number ∆E = ~ |Ω(x)|2 /[4(δ − iγ/2)] = V (x) + iΓeff. The real
part corresponds to the optical potential, whereas the imaginary part describes the non-
conservative part, the spontaneous emission. The dissipation term

Γeff =
~ |Ω(x)|2 γ

8δ2
(2.9)

is proportional to δ−2 and can therefore be safely neglected for large detuning |δ| � Ω,
compared to the conservative part V ∼ δ−1. Note that the spontaneous emission rate is
enhanced for red detuned optical lattices, since it increases with increasing light intensity.

2.1.3 Lattice Geometry

In order to create periodic arrays of optical potentials, several laser beams have to be over-
lapped. The simplest possible pattern is a one-dimensional lattice, generated by two counter-
propagating laser beams, which produce a single standing wave El(x) = E0 cos(klx). In this
case, the lattice potential (2.7) is simply given by

V = −~Ω2
0

4δ
cos2(klx) = V0 cos2(klx), (2.10)

where Ω0 = E0〈e|d·ε|g〉. The main difference to periodic potentials in solid crystals is the tun-
ability of the potential. On the one hand the potential depth V0 depends on the laser intensity
|E0|2, on the other hand the potential minima can be moved and made state-dependent by
the use of laser polarizations. Optical lattices in higher dimensions are generated basically
with the same method, by superimposing standing laser fields in other directions. Varying
the geometry and polarizations opens up a large variety of possibilities of lattice properties.
See for instance [4–7]. Note, that another advantage compared to crystalline periodic poten-
tials is the much less number of imperfections in optical lattices and the exceptional isolation
from the environment, leading to long coherence times of the atomic dynamics.

2.2 A Single Particle in an Optical Lattice

In this section we will review some standard results of the physics of a single particle in a
periodic potential. For simplicity we consider only a single spatial dimension, such as the
optical potentials, derived in section 2.1.1. For large detuning or on times where spontaneous
emission can be neglected the time evolution of a single particle is given by the Hamiltonian

H =
p̂2

2m
+ V0 cos2(klx̂). (2.11)

The lattice constant is given by a = π/kl. The main consequences of (2.11), like the energy
band structure or Brillouin zones, are due to the periodicity of the potential (see Fig. 2.2).
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Figure 2.2. Periodic potential V0 cos2(klx) with V0 < 0, corresponding to a one-
dimensional optical lattice.

2.2.1 Harmonic Oscillator Approximation

When the optical lattice is sufficiently deep and the particle is trapped in one of the potential
wells, the potential can be expanded, leading to a harmonic potential

V =
mω2

HOx
2

2
with ωHO = Ω0kl

√

~

2 |δ|m = 2

√

|V0|ER
~2

. (2.12)

Here ER denotes the recoil frequency, i.e. ER = ~
2k2
l /(2m). In this case the ground state

wavefunction of the particle is simply given by the Harmonic Oscillator wave functions

ϕHO(x) =

√

1

x0
√
π
e−x

2/(2x2
0
). (2.13)

The size of the ground state is characterized by the oscillator length x0 =
√

~/(mωHO),
or klx0 = (|V0| /ER)−1/4. A necessary condition for the validity of this approximation, is
that the depth of the lattice is large enough. This is fulfilled for x0 � a. Later we will
construct the localized eigenfunctions of the complete lattice and calculate certain matrix
elements thereof. Using this harmonic approximation reduces of course much the complexity
of the calculation of these matrix elements. In Sec. 2.3 we will investigate the validity of the
harmonic approximation in this context.

2.2.2 Bloch Functions

The potential in (2.11) is invariant under translations x→ x+ la for l ∈ Z. Therefore, if φ(x)
is a time-independent solution of the corresponding, also φ(x + na) solves the Schrödinger
equation corresponding to the Hamiltonian

[

− ~
2

2m

d2

dx2
+ V0 cos2(klx)

]

φ(x) = Eφ(x). (2.14)
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This is the Mathieu equation [8]. The periodicity condition on the solutions, which, in the
physical context, are called Bloch functions, implies, that they are of the following form:

φ(n)
q (x) = eiqxu(n)

q (x). (2.15)

The parameter q is called quasimomentum and is restricted to the first Brillouin zone, i.e.
q ∈ [−π/a, π/a]. The number n is the energy band index, since for a given q there are several

solutions of (2.14). The functions u
(n)
q (x) have the same periodicity as the lattice potential,

u
(n)
q (x+ la) = u

(n)
q (x) for l ∈ Z. They are eigenfunctions of the Hamiltonian

Hq =
(p̂+ q)2

2m
+ V0 cos2(klx̂). (2.16)

This is known as Bloch’s Theorem [9, 10]. Due to the periodicity given by the lattice, things

get much easier, when we use Fourier expansions. For instance, the function u
(n)
q (x) can be

written as

u(n)
q (x) =

1√
2π

∑

j∈Z

c
(n,q)
j ei2klxj. (2.17)

Note that the factor 2 in the exponent is due to the squared cosine potential. The eigenvalue

equation corresponding to the Hamiltonian (2.16) is now an equation for the coefficients c
(n,q)
j

∑

j′∈Z

Hjj′c
(n,q)
j′ = E(n)

q c
(n,q)
j with Hjj′ =







[2j + q/(~kl)]
2ER + V0/2 if j′ = j

V0/4 if j′ = j ± 1
0 otherwise

(2.18)

By restricting to a finite value of coefficients, i.e. −J ≤ j ≤ J , this problem can be readily
solved. Note that already relatively small values of J (J ≈ 10) provide for accurate results. In

Fig. 2.3 the energy band structure E
(n)
q as a function of q for the periodic lattice potential is

depicted. In Fig. 2.3(a), there is no lattice potential present, i.e. V0 = 0. Here, the quadratic

spectrum of free particles is observable. For deeper lattices, the lower bands, E
(n)
q < 0,

correspond to bound states, while higher energy bands still belong to free particles. For deep
enough lattices, e.g. as in Fig. 2.3(c), the energy gap between the two lowest bands is nearly
constant and approximately given by ~ωHO. Very cold atoms correspond to energies much
smaller than this value, which makes it possible to restrict the system to the lowest Bloch
band.

2.2.3 Wannier Functions

The Bloch functions (2.15) are invariant under translations by integer multiples of the lattice
constant. This is shown in Fig. 2.4, where we plot the probability density for the Bloch

function φ
(0)
0 (x) of the lowest band (n = 0) for q = 0 and several lattice depths. If the lattice

is absent (V0 = 0), the solutions are plane waves, leading to a homogeneous probability
distribution. This is not suitable to describe particles, localized at a certain well of the
optical lattice. Hence, by superimposing Bloch functions with different quasi-momenta, one
is able to construct proper wavefunctions for localized particles.
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Figure 2.3. Energy band structure as a function of the quasimomentum for V0 cos2(klx)
with V0 < 0. The lattice constant is given by a = π/kl. For a potential depth of (a)
V0 = 0 the energy spectrum is quadratic and corresponds to free particles. For deeper

lattices, (b) V0 = −5ER and (c) V0 = −10ER, the lower lying energy bands (E
(n)
q < 0)

correspond to bound states. In (d), for V0 = −20ER, three bound states occur.

Such a family of orthonormal solutions of (2.14) which form a complete basis of the
Hilbert space, corresponding to the particle’s external degrees of freedom, are the Wannier
functions [9, 10]. In principle the Wannier function mostly located at site xj , corresponding
to the n−th energy band, is defined - up to a normalization constant N - as the following
superposition of Bloch functions:

wn(x− xj) =
1√
N

∫ π/a

−π/a
dqφ(n)

q (x)e−iqxj . (2.19)

Since the Bloch functions are unique only up to an arbitrary complex phase, the defi-
nition (2.19) is also not unique. Nevertheless, Kohn showed [11] that there exists only one
choice of phases, such that the Wannier functions wn(x) (i) are real for each band, (ii) fall off
exponentially, i.e. |wn(x)| ∼ e−hnx for large |x| with hn > 0, and (iii) are either symmetric
(for even n) or antisymmetric (for odd n) around the potential minima. The Wannier func-
tions corresponding to this choice of phases, which we will use in the following, are known as
maximally localized Wannier functions. In order to obtain these kind of Wannier functions,

we have to choose the phases of φ
(n)
q (x) as follows [11]: For even band index n and also for

the lowest energy band (n = 0), choose φ
(n)
q (0) ∈ R and such that q 7→ φ

(n)
q (0) is an analytic
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Figure 2.4. Probability distribution of the Bloch functions for the lowest band and zero

quasimomentum,
∣

∣

∣
φ

(0)
0 (x)

∣

∣

∣

2
for a lattice depth of V0 = 0 (dotted, black line), V0 = −5ER

(solid, red line), V0 = −10ER (dashed, green line) and V0 = −20ER (dashed-dotted,
blue line). If the lattice is absent, the particles are free, which implies a homogeneous
probability distribution. The deeper the lattice gets, the more the wave function gets
localized in every lattice well.

function. This can be ensured by choosing an equal sign for all coefficients in the Fourier
sum (2.17). Then wn(x − xj) are symmetric around xj and real. For odd n, on the other

hand, choosing φ
(n)
q (0) purely imaginary, and imposing the same smoothness condition on

the Bloch functions lead to real but antisymmetric Wannier functions.

Since we restrict our investigations to very cold atoms, we only have to deal with Wan-
nier functions of the lowest energy band. Examples of this Wannier functions are plotted in
Fig. 2.5(a). Here we plotted w0(x) for V0 = −5ER and V0 = −10ER. The deeper potential
provides better localized wavefunctions. In Fig. 2.5(b) we depict the asymptotic behavior of
the n = 0 Wannier functions on a logarithmic scale and compare it with their approxima-
tions by groundstate wavefunctions of harmonic oscillators (2.13). The deeper the potential,
the better is this approximation. Nevertheless, log(|wn(x)|) decreases linearly, whereas the
harmonic oscillator functions are Gaussians, and show a quadratic behavior on a logarithmic
scale.

2.3 The Bose-Hubbard Model

Originally, the Bose-Hubbard model was used to study systems in condensed matter theory,
like electrons in periodic crystalline structures. For instance, Fisher et al. [12] were the first
to investigate the phase diagram of the Bose-Hubbard Hamiltonian at temperature T = 0.
The application of this model to cold atoms in optical lattices was firstly discussed by Jaksch
et al. [13], which envisioned a wide variety of promising applications of AMO physics in the
physics of condensed matter. Although this model is nowadays commonly used, we exhibit
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(a) (b)

Figure 2.5. (a) Wannier functions w0(x) for V0 = −5ER (dashed, red line) and
V0 = −10ER (solid, blue line). The lattice potential V = −5ER cos2(klx) is indicated
with the thinner line. (b) Logarithmic absolute value of the Wannier functions w0(x) for
V0 = −5ER (red line) and V0 = −10ER (blue line). The corresponding approximations
by harmonic oscillator functions (2.13) are the dashed lines. Clearly one sees the decay
∝ e−|x| for the Wannier functions, whereas the harmonic oscillator decay ∝ e−x2

.

its naive derivation, since a generalization of the Bose-Hubbard model (see chapters 5 and 6)
to cold atoms in cavities, where the optical lattice is generated by the resonator, is the basis
of our work in this thesis.

2.3.1 Microscopic Derivation of the Bose-Hubbard Hamiltonian

We consider two-level atoms in a one-dimensional optical lattice, consisting of M lattice
sites, generated by counter-propagating laser light. A single atom is described by the Hamil-
tonian (2.11). Restricting the dynamics to two-body interactions, the situation with several
bosonic particles is described with the second quantized formalism [14] in the form:

H =

∫

R

dxΨ†(x)

(

− ~
2

2m
∇2 + V (x)

)

Ψ(x) +
1

2

∫

R

∫

R

dxdyΨ†(x)Ψ†(y)U(x, y)Ψ(x)Ψ(y).

(2.20)
Here Ψ(x) denotes the field operator for the bosonic particles, V (x) = V0 cos2(klx)+VT (x) is
the external potential for the single particle, which consists of the lattice potential V0 cos2(klx)
and an additional external trapping potential VT (x) (e.g. a magnetic parabolic potential).
U(x, y) denotes the two-body interaction. In the regime of cold temperatures, the only
significant contribution to U(x, y) are s-wave collisions, reducing the two-body interactions
to contact interactions

U(x, y) = g1Dδ(x − y), (2.21)

where the coupling parameter g1D is a function of a one-dimensional s-wave scattering length
g1D [15], the only parameter describing the two-body interaction. This means, only particles
located at the same lattice well, interact significantly via U(x, y). Note that in real-world
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situations, the one-dimensional lattice is in principle only quasi one-dimensional, arising from
a very tight confinement in the other two dimensions. In the 3D-case the contact interaction
term is modeled by a pseudopotential [16]

U(x) =
4π~

2as
m

δ3(x) = gδ3(x), (2.22)

where m is the mass of the atoms and as denotes the s-wave scattering length. The inte-
gration in the second term of (2.20) has then to be performed over R

3 × R
3. For tight axial

confinement, which is necessary in order to consider one-dimensional optical lattices (and
therefore the one-dimensional integration in the first term of (2.20)), the 3D-interaction can
be reduced to a one-dimensional coupling strength g1D [15].

In order to derive the Bose-Hubbard model, we expand the field operators in the Wannier
basis

Ψ(x) =

M
∑

i=1

∞
∑

n=0

wn(x− xi)bn,i, (2.23)

where bn,i is the bosonic annihilation operator for a particle in the energy band n, located
at site i, i.e. trapped in the lattice well around the potential minimum at xi. As a first
approximation we assume, such a low temperature T , that the corresponding energy is much
lower than the energy gap between the two lowest Bloch bands, approximately given by ~ωHO.
In addition, we assume that this applies also for the mean interaction energies g1D〈n̂i〉, where
〈n̂i〉 is the mean number of atoms at an arbitrary site i. If this is the case, we can restrict
the second sum in (2.23) to the lowest energy band n = 0,

Ψ(x) =
M
∑

i=1

w(x− xi)bi, (2.24)

where w(x) ≡ w0(x) and bi ≡ b0,i. Replacing the field operators in (2.20) by this expression,
we obtain the following Hamiltonian:

H =
∑

k,l

Eklb
†
kbl + V0

∑

k,l

Jklb
†
kbl +

∑

k,l

Vklb
†
kbl +

1

2

∑

i,j,k,l

Uijklb
†
ib

†
jbkbl, (2.25)

where the first order matrix elements are given by

Ekl =

∫

R

dxw(x− xk)
(

− ~
2

2m
∇2

)

w(x − xl), (2.26a)

Jkl =

∫

R

dxw(x− xk) cos2(kx)w(x− xl), (2.26b)

Vkl =

∫

R

dxw(x− xk)VT (x)w(x − xl). (2.26c)

The matrix elements for the on-site interaction reads as

Uijkl = g1D

∫

R

dxw(x− xi)w(x− xj)w(x− xk)w(x− xl). (2.27)
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The separation of the matrix elements for the kinetic energy (Ekl) and for the potential
energy (JklV0) is artificial here and they can be simply added. If an optical cavity with an
intracavity quantum field is present this is no longer true. Therefore we retain this separation
here.

Next, we assume that the variation of the additional external potential over the size of a
single lattice well is negligible, i.e. VT (x)w(x− xi) = VT (xi)w(x− xi). Therefore, due to the
orthonormality of the Wannier functions, the contribution of the external potential amounts
to a discretized energy shift

Vkl = VT (xk)

∫

R

dxw(x− xk)w(x− xl) = VT (xk)δkl = εkδkl. (2.28)

The on-site elements Jkk and Ekk are independent of the lattice site k, and are therefore
denoted by E0 and J0, respectively. The off-site elements Jk,lEkl for k 6= l are symmetric with
respect to the lattice sites, and describe tunneling to other wells. Here we can safely restrict to
hopping between neighboring sites (this is known as the tight-binding approximation). Since
the next-nearest elements are typically two orders of magnitude smaller than the nearest-
neighbor term [see Fig. 2.6(a) and Fig. 2.6(b)] they can safely be neglected. This means,
Ekl and Jkl with |k − l| > 1 are omitted, and we denote the neighboring tunneling elements
El,l+1 and Jl,l+1 by E and J , respectively.

Figure 2.6. (a) Tunneling matrix elements for the kinetic energy for the nearest
neighbors E/ER (red, solid line), where E ≡ E12, for the next-to-nearest neighbors
E13/ER (blue, dashed line) and for the third neighbors E14/ER (black, dashed-dotted
line) along one dimension as a function of the potential depth. (b) The same for the
tunneling matrix element of the potential energy J ≡ J12 (red, solid line), J13 (blue,
dashed line) and J14 (black, dashed-dotted line). The nearest neighbor elements are at
least two orders of magnitude larger and dominate.

Similar approximations can be performed for the on-site interaction matrix ele-
ments (2.27). Here, only Uijkl with i = j = k = l have to be taken into account since
the pure overlap integrals of Wannier functions with at least one Wannier function sited at a
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neighboring well are more than two orders of magnitude smaller than Ukkkk for an arbitrary
k (See Fig. 2.7). Obviously, this matrix element is even smaller if one Wannier function is
located at a next-to-neighboring well.

Figure 2.7. On-site interaction energy U ≡ U0000 (red, solid line) in units of g1D/a
compared with nearest neighbor elements U0101 (blue, dashed line) and U0001 (black,
dashed-dotted line) along one dimension as a function of the potential depth. The latter
ones are negligible, since they are at least two orders of magnitude smaller.

Finally, combining all these approximations, we obtain the Bose-Hubbard Hamiltonian

H = (E0 + J0V0)

M
∑

i=1

n̂i + (E + JV0)
∑

〈i,j〉
b†i bj +

U

2

M
∑

i=1

n̂i (n̂i − 1) +

M
∑

i=1

εin̂i, (2.29)

where n̂i = b†ibi is the number operator for particles at site i, M is the number of wells and
〈i, j〉 denotes the summation over neighboring sites i and j. Note, that for a fixed number of
particles, which we will assume, i.e. N̂ =

∑M
i=1 n̂i = N1 the first sum is just a global energy

shift and can be omitted. If an additional external trap is absent, which we will also assume
in the following chapters, (2.29) reduces to

H = (E + JV0)
∑

〈i,j〉
b†i bj +

U

2

M
∑

i=1

n̂i (n̂i − 1) . (2.30)

Note that in the absence of an external trapping potential, we can directly map the total
tunneling matrix element E + JV0 to the bandstructure. For U = 0 we have the usual
tight-binding Hamiltonian [10]. The single-particle eigenstates of this model have the form

|ψ〉 =

M
∑

n=1

eiαnb†n|0〉. (2.31)
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The constant α is determined by periodic boundary conditions αl = 2πM , which we impose.
Here l is an integer number. Applying the tight-binding Hamiltonian on |ψ〉 with eigenvalue
Eα brings us to the relation

2(E + JV0) = Eα. (2.32)

Obviously the total tunneling matrix element can then simply be found as

E + JV0 =
max

(

E
(0)
q

)

−min
(

E
(0)
q

)

4
. (2.33)

The zero denotes the lowest energy band. The hopping matrix element can thus be easily
calculated from the Bloch band. Unfortunately this method does not work for the kinetic
energy and the potential matrix element separately. Another approximation method is based
on the Mathieu functions, solving also the single-particle Hamiltonian (2.11). For deep enough
lattices, the matrix element is approximately given by [17]

E + JV0 =
4√
π
ER

( |V0|
ER

)3/4

e−2
√

|V0|/ER . (2.34)

The validity of this expression is shown in Fig. 2.8(f), where we compare the so estimated value
of the tunneling element with the exact one, derived with Wannier functions. Nevertheless,
the same disadvantage as above comes here into play.

For deep lattices it is also possible to approximate the Wannier functions by groundstate
wavefunctions of harmonic oscillators (2.13), which allows for analytic expressions of the
matrix elements (2.26) and (2.27):

E0 =
~

2

4mx2
0

, (2.35a)

E =
~

2

4mx2
0

(

1− π2

2k2
l x

2
0

)

e−π
2/(4k2

l
x2
0
), (2.35b)

J0 =
1 + e−k

2

l
x2
0

2
, (2.35c)

J =
1− e−k2

l
x2
0

2
e−π

2/(4k2

l
x2
0
), (2.35d)

U =
g1D√
2πx0

. (2.35e)

Here x0 =
√

~/(mωHO) = 1/k · (|V0| /ER)−1/4 is the width of the harmonic oscillator ground
state. In Fig. 2.8 we compare the various matrix elements, on-site and off-site, for kinetic and
potential energy as well as the on-site interaction U , calculated with the Wannier functions
and with the harmonic oscillator approximation, as a function of the relative potential depth
|V0| /ER. The on-site elements from both methods are converging, which is not the case for
the off-site elements. Here, the harmonic oscillator elements always underestimate the real
matrix elements. The reason for this behavior is the much stronger decrease of the Gauss
functions than of the Wannier functions [see Fig. 2.5(b)].
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Figure 2.8. (a) On-site matrix elements of the kinetic energy E0/ER, calculated with
Wannier functions (solid line) and with groundstate functions of a harmonic oscilla-
tor (2.13) (dashed line). (b) The same for the dimensionless on-site matrix element of
the potential energy J0. (c) Tunneling matrix element of the kinetic energy E/ER with
Wannier functions (solid line) and oscillator functions (dashed-line). (d) The same as
(c) for the potential energy J . (e) On-site interaction U in units of g1D/a, for Wannier
function (solid line) and harmonic oscillator functions (dashed line). (f) Tunneling ma-
trix element of the total energy (E + JV0)/ER calculated with Wannier functions (solid
line), harmonic oscillator functions (dashed-dotted line), and the approximation by the
Mathieu function (2.34) (dashed line). All quantities are plotted as functions of |V0|/ER.
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2.3.2 The Superfluid State and the Mott Insulator State

In the Hamiltonian (2.30) there is a competition between the tunneling matrix element E +
JV0, which is essentially the kinetic energy element E, as we can see in Fig. 2.8(c) and
(d), which tries to delocalize the particles and the interaction term U , which attempts to
localize the particles and keeping the particle number fluctuations small. Essentially two
parameters characterize the system, the average particle density n = N/M and the ratio
between interaction and hopping U/(E + JV0). Two main regimes exist for the system.
On the one hand, the system can be either in a superfluid phase, where the single-particle
wave functions are delocalized over the lattice. On the other hand, the system can be in
the Mott insulator phase, where the particles are localized on single lattice sites. One of the
first investigations in this direction was the study of the phase diagram of the Bose-Hubbard
model by Fisher et al. [12], which we schematically depict in Fig. 2.9. At that time, however,
an experimental verification seemed far out of reach. One of the main advantages of the
realization of the Bose-Hubbard model with cold atoms in optical lattices, is the tunability
of the ratio U/(E + JV0) via the power of the lattice lasers. A lot of investigation on this
subject has now been done and also the first experimental realization of the Mott-insulator
to superfluid phase transition in the seminal work by Greiner et al. [18] has been performed.
For a review of the current status of the research on the field see [7].

Let us first consider the regime, where the kinetic energy dominates over the on-site
interaction, i.e. U/(E+JV0)→ 0. In this limit the ground state of the system is a superfluid
state, which in the case of a lattice with M sites and N particles can be written as

|SF〉 =
1√
N !

(

1

M

M
∑

i=1

b†i

)N

|0〉, (2.36)

where |0〉 = |0, . . . , 0〉 denotes the state of an empty lattice. In this state all atoms occupy
the same single-particle wavefunction, which is delocalized over the lattice. This macroscopic
occupation of one state realizes a Bose-Einstein condensate (BEC). Particle number fluctu-
ations in a site i, (∆n̂i)

2 = 〈n̂2
i 〉 − 〈n̂i〉2 are large and scale as the average density N/M .

Furthermore, the systems shows long-range off-diagonal coherence.

As U/(E + JV0) and hence the interaction energy increases, the particles repel each
other more and more. This impedes the tunneling of particles to a neighboring site, since
the necessary kinetic energy for this process is insufficient to negotiate the repulsion energy.
When the particle density n is equal to one, the ground state of the systems, consists of
a single localized particle in every well. Generally, a necessary condition for such a Mott
insulator state, is an integer mean particle density. For (E + JV0)/U → 0 the ground state
of the system is the Mott insulator state

|MI〉 =
M
∏

i=1

|n〉i (2.37)

for n = N/M ∈ N. This state has no particle number fluctuations and the off-diagonal
coherences decay exponentially with the distance of the respective sites.

In Fig. 2.9 we show this in the schematic picture of the Bose-Hubbard phase diagram, in
the grand canonical ensemble for fixed mean number of particles n̄ = 〈N̂〉/M via a chemical
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potential µ. The lobes correspond to the Mott insulator phases, with n = 1, 2, . . . particles
in every lattice site. In this lobes, particle number fluctuations vanish. We can also observe,
that for non-integer n̄ /∈ N, even for U � (E+JV0), the system is not in the Mott insulating
regime. A small fraction of particles remain superfluid on top of the Mott insulator core, this
is the regime between the Mott lobes, indicated by the solid line 〈n̂〉 = 1 + ε in Fig. 2.9. For
E + JV0 = 0 the necessary energy to increase the average particle density by one is just the
on-site interaction energy U . Therefore the elongation of each lobe at the ordinate is just U .

Figure 2.9. Schematic phase diagram for the Bose-Hubbard model (2.29) at zero
temperature without external trap, i.e. εi = 0 for all i. The Mott lobes indicate regimes,
where the particles are in the Mott insulating regime, with fixed number of n = 1, 2, . . .
particles per site.

The transition from the Mott insulator phase to the superfluid phase realizes a so-called
quantum phase transition, i.e. a phase transition at zero temperature. We will not discuss the
quantum statistical features of this system in greater detail, instead we refer the interested
reader for instance to [19].
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Chapter 3

Background: Basics of Cavity Quantum

Electrodynamics (CQED)

In chapter 2 we briefly reviewed some of the main features of the theory of cold atoms in
optical lattices and discussed the physical applications thereof, allowing for an experimental
realization of the Mott insulator to superfluid phase transition.

In this chapter we will deal with another versatile quantum optical system. Optical
cavities turned out to be a useful tool to significantly enhance the interaction between matter
and light on a fundamental quantum level, providing for a variety of applications in AMO
physics. Moreover, in the strong coupling regime, a backaction mechanism of the intracavity
light field on the motion of atoms inside the resonator and vice versa exists. Hence, atom
and cavity has to be considered as a single entity, the atom-cavity system. A number of
impressive results based on this complex interaction has been predicted and experimentally
verified in the last years.

In this chapter on basic essentials of cavity QED, we first present some general properties
of cavities, followed by a discussion of the Jaynes-Cummings Hamiltonian [1], describing the
interaction of an atom with a single mode of the cavity. Next we introduce dissipation, namely
spontaneous emission of photons from atoms and loss of cavity photons to the system, which
is now also coherently driven. Then we discuss how to eliminate the excited state of the
two-level atom from the dynamics, to obtain an effective Hamiltonian, which is the crucial
element in the description of the resonator-generated optical lattice, as a generalization of the
optical lattices, discussed in the previous chapter. Furthermore, we briefly show how to add
an additional far-detuned dipole trap (classical optical lattice), not influenced by the cavity
mode, as an additional, useful element of the model. Finally, we consider motion transverse
to the cavity axis (up to here only motion along the cavity axis will be allowed), which leads
to a slight variation in the corresponding Hamiltonian.

3.1 Atoms in Optical Cavities

This section is devoted to recapitulate the important properties of optical cavity resonators.
We start with a discussion about classical resonators, followed by introducing ideal (lossless)
quantum cavities, i.e. atoms inside the resonator are coupled to the quantized intracavity
field. Finally we add dissipation to the system, in order to describe more realistic situations.

3.1.1 Optical Cavities

We consider a Fabry-Perot resonator, consisting of two highly reflective mirrors, where
monochromatic light is coupled in at one mirror, and the transmitted intensity is measured
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at the opposite mirror. In order to achieve a simple illustration, we assume the mirrors
to be flat and parallel with an axial distance of L (x−direction). An incident plane wave
Ein = E0 cos(kx) leaks into the empty cavity via one of the mirrors, as depicted in Fig. 3.1.

Figure 3.1. Schematic diagram of a Fabry-Perot type resonator, consisting of two
parallel mirrors with distance L. On the left mirror light is coupled in, on the right
mirror it leaks out of the resonator, where it is detected.

Generally, the normal modes of an empty cavity are defined as the solutions of the
Helmholtz equation

(

∇2 +
ω2

c2

)

u(x) = 0, (3.1)

which fulfill appropriate boundary conditions, corresponding to the specific mirror geometry.
The electric field is a superposition of the eigenmodes unmk(x) with eigenfrequencies ωnmk.
In our one-dimensional example this is fairly easy, since the electric field has to vanish at the
mirror, we obtain

un(x) = sin
(πn

L
x
)

and ωn =
nπc

L
for n ∈ N (3.2)

Two consecutive longitudinal modes of the resonator are characterized by consecutive
mode numbers n, which are typically very large. The corresponding difference in frequency
is called free spectral range

νFSR ≡
ωn+1 − ωn

2π
=

c

2L
(3.3)

The transmitted light has a maximum, when its frequency corresponds to one of the
eigenfrequencies. Hence, two peaks in the transmission signal are separated by νFSR. If the
mirrors are not of this perfect (and idealistic) form, the mode functions are much more com-
plicated and of course in reality three-dimensional. This implies the appearance of transverse
modes, i.e. modes with transverse (here y− and z−direction) intensity dependence, like the
transverse-electro-magnetic modes TEMnm. In a cavity formed by two spherical mirrors, the
most fundamental mode is the TEM00 mode [2]. This mode is also called Gaussian mode,
since - near the cavity center - its radial dependence is that of a Gaussian function1

u00(x) = sin(kx)e−(y2+z2)/w2
0 , (3.4)

1In the rest of this thesis, though, we will use cos(kx) instead of the sin-function. This amounts just in an
addition of a global phase and makes physically no difference. With the cosine, we have a potential well at
x = 0.
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where the beam radius w(x) = w0

√

1 + 4x2/(k2w4
0) at the cavity center (x = 0) is called

waist of the cavity and k = 2π/λ is the mode wavenumber. Here we omitted the longitudinal
mode number, which precisely has to be taken into account via λ. For a symmetric cavity
the waist can be calculated [3]:

w2
0 =

L

k

√

2R − L
L

. (3.5)

Here, R is the radius of curvature of the mirror. For a confocal cavity (R = L) this reduces
to w2

0 = L/k. The mode volume of the cavity is the integral of the squared modulus of the
corresponding mode function, i.e.

V =

∫

R3

d3x |u00(x)|2 ≈ πw2
0

4
L, (3.6)

if we assume that the edges of the cavity mirrors at x = 0 and x = L are impenetrable,
resulting in a vanishing mode function for x < 0 and x > L.

Let us now come back to our simplified plane mirror model and assume, that both mirrors
have a reflectivity R, a transmittivity T and a loss rate L, resulting from absorption and
scattering in the mirror medium. Furthermore we assume, that the cavity is enclosed by a
vacuum, i.e. the index of refraction is one. At any of the two mirrors the relationR+T +L = 1
must hold. According to Airy’s formula, the total transmittivity of the resonator is [4]

Tcav =
T 2

(1−R)2 + 4R sin2(kL)
(3.7)

Figure 3.2. Transmittivity of the Fabry-Perot resonator corresponding to (3.7) as a
function of the frequency of the incoming light. The distance between the peaks of the
Lorentzians is called the free spectral range νFSR. The linewidth (FWHM) δν defines
the cavity decay rate κ.

When the frequency of the incoming field is on resonance with one of the longitudinal
modes (kL = 2πn), this expression presumes its maximum Tmax = T 2/(1 −R)2. Expanding



48 Background: Basics of Cavity Quantum Electrodynamics (CQED)

the sin−function in the denominator of (3.7), which is possible for wavenumbers k = ω/c
close to one of the mode frequencies, we obtain a Lorentz profile for (3.7) around the peak
at ν = nνFSR (see Fig. 3.2)

Tcav ≈
Tmax

1 + 4
(

F
νFSR

)2
(∆ν)2

, (3.8)

where ∆ν = ν − nνFSR. Here we defined a very important characteristic parameter for
resonators, the finesse F by

F =
π
√
R

1−R . (3.9)

Note, that the finesse solely depends on the reflectivity of the mirror and gives a measure for
the resolutions of the light field in the resonator, before it leaks out of the cavity. From this
Lorentzian we can easily read off the width (FWHM) δν = κ/π (κ is therefore known as the
cavity loss rate)

δν =
κ

π
=
νFSR

F . (3.10)

Finally the quality factor, or Q-factor, of a resonator at resonance is defined as 2π times the
ratio of stored energy in the cavity to energy loss per oscillation period, i.e.

Q = 2π
W

∆W
= ω

W

PL
, (3.11)

where W is the energy, stored in the resonator, ∆W = τPL the energy loss per oscillation
period (duration τ) and PL = −dW

dt the energy loss per unit time. Using the decay constant
of the resonator, κ = PL/W , we obtain:

Q =
ω

κ
= 2πn

νFSR

κ
= 2nF . (3.12)

Here, n denotes the number of the longitudinal mode.

We conclude this section with an overview of current state-of-the-art numbers, which
experimental cavity QED groups have achieved. The group of Jeff Kimble at Caltech [5]
use a cavity with a length of L = 42.2µm, waist w0 = 20µm and mirrors with a curvature
radius of R = 20cm. The finesse has a value of F = 4.2 × 105 and at a cavity frequency of
ω = 2.211MHz (corresponding to the D2 line of atomic Caesium λ = 852.4nm) a Q-factor of
Q = 8.584× 107. In one of the most recent experiments in Gerhard Rempe’s group at MPQ
Garching [6] the cavity in use has a length of L = 0.122mm and a waist of w0 = 29µm. They
operate at a frequency of ω = 2.416MHz, corresponding to λ = 780.2nm. The finesse of the
cavity is F = 4.4× 105 and its quality factor Q = 1.282 × 108.

3.1.2 The Jaynes-Cummings Hamiltonian

We consider here a single two-level atom, interacting with a single mode of the quantized
electromagnetic field, first investigated by Jaynes [1]. This model is a reasonable approxi-
mation for an atom interacting with the field inside an optical resonator without losses. In
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principle, the procedure is similar to the case of the interaction with a classical field, pre-
sented in Sec. 2.1.1. A single one-dimensional standing wave quantized mode with frequency
ωc is given by [7]

E(x) = i

√

~ωc
2ε0V

u(x)aε + h.c. (3.13)

Here V denotes the quantization volume and u(x) the mode function of the cavity mode (3.6).
The annihilation operator of a photon of the considered mode is given by a ≡ â, whereas a†

corresponds to the creation of a cavity photon. Near the center of a confocal, Fabry-Perot
cavity the mode function in axial direction (here: x−direction) is cosine-like, whereas in
transverse direction, the mode function decays as a Gaussian,

u(x) = cos(kx)e−(y2+z2)/w2
0 . (3.14)

In the following, we will neglect the transversal dependence and assume the region of inter-
action is exactly in the center of the cavity. We assume the ground state energy of the atom
to be zero (Eg = 0), and use the electromagnetic dipole and long-wavelength approximation.
Then the Hamiltonian for a single atom, interacting with a single quantized mode is given by

H = HA +HF +HI (3.15)

=
p̂2

2m
+ ~ωeg|e〉〈e| + ~ωc

(

a†a+
1

2

)

− i~g(x̂)
(

a− a†
)

⊗ (σ+ + σ−) ,

where g(x̂) = 〈e|d·ε|g〉 cos(kx̂)
√

ωc/(2ε0V ~) denotes the coupling strength. The other no-
tations are the same as in Sec. 2.1.1. Again the interaction Hamiltonian HI consists of two
resonant terms σ+ ⊗ a, σ− ⊗ a†, and two non-resonant terms σ+ ⊗ a†, σ− ⊗ a. The first
correspond to a transition of the atom |g〉 → |e〉 accompanied by the annihilation of a photon
of the field mode and a transition |e〉 → |g〉, together with the creation of a photon, both
of these processes are energy conserving. The latter ones correspond to a transition of the
atom |g〉 → |e〉 accompanied by the emission of a photon of the field mode and a transition
|e〉 → |g〉, together with the annihilation of a photon. They are highly off-resonant and do
not conserve energy. Therefore we can safely neglect them (rotating wave approximation).
Finally the Hamiltonian, after a simple energy shift reads as follows:

H =
p̂2

2m
+ ~ωeg|e〉〈e| + ~ωca

†a− i~g(x̂)
(

σ+a− σ−a†
)

. (3.16)

This is the well known Jaynes-Cummings Hamiltonian. From this point on we omit the
tensor product between operators acting on different Hilbert spaces. Let us briefly review
the properties of this system, which can easily be solved analytically. If we neglect, for the
moment, the translational degrees of freedom, the ground state of this system is |g, 0〉, where
the atom is in its internal ground state and zero photons are present in the cavity. Generally
the eigenstates are superpositions of n+ 1 photons in the cavity and the atom in the ground
state, |g, n + 1〉, and n photons in the cavity, but the atom in the excited state, |e, n〉. We
formulate this as follows:

|+, n〉 = cos θn|e, n〉 + sin θn|g, n+ 1〉, (3.17a)

|−, n〉 =− sin θn|e, n〉+ cos θn|g, n+ 1〉. (3.17b)
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The basis {|+, n〉, |−, n〉} is called the dressed states basis. Within the rotating frame approx-
imation, the Hamiltonian can be decomposed as a direct sum H =

∑

Hn, where each Hn

acts just in the manifold En, spanned by the bare states basis {|g, n+1〉, |e, n〉}. The rotation
angle θn is determined by the coupling g(x) and the atom-cavity detuning ∆ = ωc − ωeg.

tan 2θn = −2g
√
n+ 1

∆
with 0 ≤ 2θn ≤ π, (3.18)

which results in coefficients for the dressed states of

cos θn =

√

Ωn + ∆

2Ωn
and sin θn =

√

Ωn −∆

2Ωn
, (3.19)

where Ωn =
√

∆2 + 4g2(n+ 1). Fig. 3.3 shows the correspondence between the dressed states
and uncoupled bare states. The energy eigenvalues of the dressed states are

E±,n = n~ωc +
~(ωc + ωeg)

2
± ~

2
Ωn. (3.20)

Figure 3.3. Schematic diagram of the uncoupled bare states (left) and the the dressed
states (right), which are the eigenstates of the coupled system. The dressed states corre-
sponding to n photons are forming manifolds En, which are energetically well separated
by the energy of one cavity photon ~ωc. The splitting of the dressed states within each
manifold depends on n via Ωn.

The coupling with the light mode induces a light shift, as in the case of the interaction
with a classical light field. This energy splitting E+,n−E−,n = ~Ωn depends via g = g(x̂) on
the atomic position. The splitting of the lowest pair of energy levels, corresponding to n = 0,
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is called normal mode splitting or vacuum Rabi-splitting. At resonance (∆ = 0) its value is
just given by the, spatial dependent, coupling strength g(x)

∆E0(x) = 2~g(x) (3.21)

This normal mode is visible, when the atom is strongly interacting with the a single pho-
ton of the cavity, which implies that the coupling constant is larger than the corresponding
linewidths, i.e. g0 � (γ, κ, τ−1), where τ is the interaction time of the atom and the cavity
mode. g0 denotes the maximum of the coupling constant. Meeting these criteria experi-
mentally is a very hard and complicated task, especially for cavities of optical frequencies.
The first who observed the normal mode splitting in the optical regime were Thompson et
al. [8]. The opposite limit κ � g is called bad-cavity limit. Recent experimental numbers
are, for instance, (g0, κ, γ)/2π = (34, 4.1, 2.5) MHz in Kimble’s group [5], while at the MPQ
in Garching the group of Rempe applies (g0, κ, γ)/2π = (16, 1.4, 3) MHz in the blue-detuned
dipole trap experiment [6].

For a not too large coupling constant, we can calculate approximate energy shifts of the
eigenstates of (3.16), using time-independent perturbation theory.

∆E ≈− ~g2(x)
n+ 1

∆
for |g, n+ 1〉, (3.22a)

∆E ≈+ ~g2(x)
n+ 1

∆
for |e, n〉. (3.22b)

Therefore we are in a similar situation as in the classical model before (2.7), with the
difference, that the depth of the cavity-induced lattice now depends on the number of photons
in the cavity mode. In Figure 3.4 we schematically depict the dependence of the energy
spectrum on the axial position of the atom, within one well. Since the energy is increasing
with n this energy spectrum is known as the Jaynes-Cummings ladder. Since dissipative
effects play a crucial role in cavities, we postpone a more detailed discussion of the resonator-
generated lattice, after an introduction of lossy channels and coherent driving schemes to the
cavity. Note that here at least one photon has to be present to realize this potential. The
state |g, 0〉 experiences no energy shift. Other models exist, where also an empty cavity can
induce trapping potentials [9].

3.1.3 Open Systems - Dissipation

The Jaynes-Cummings Hamiltonian, derived in the previous section, describes closed systems
and therefore does not take into account any losses whatsoever. This simplification is in most
experimental situations too crude and interactions of the system with the environment cannot
be ignored. From the various possible loss channels, only two are of major importance for our
studies. Our system is assumed to be coupled to the environment via spontaneous emission of
photons from the atoms and via loss of photons from the cavity. Not only that these damping
mechanisms allow to gain information about the system, i.e. the atoms and the intracavity
field, they also provide the necessary channel to transport entropy out of the system, a basic
requirement to perform cavity cooling.
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Figure 3.4. Axial dependence of the energy eigenvalues (3.22) within one well of the
lattice potential, generated by the cavity. The depth of these wells is increasing with
increasing n (number of photons in the cavity), therefore this energy spectrum is called
Jaynes-Cummings ladder.

Beside these losses, we consider two coherent pumping laser fields, both with frequency
ωp (see Fig. 3.5). One of these driving lasers is directly impinging on the atoms, the other
pumping field excites the cavity modes, by directly injecting a laser beam through one of the
cavity mirrors. The interaction of the atoms with this coherent pumping field can be modeled
by an interaction with a classical field (see Sec. 2.1.1). In the rotating frame approximation,
the corresponding Hamiltonian is [cf. (2.2) and (2.4)]

HAP = −i~h(x̂)ζ
(

σ+e
−iωpt − σ−eiωpt

)

. (3.23)

h(x) denotes the mode function of the pump laser and ζ its strength. They are given by
h(x̂)ζ = −iEp(x̂)〈e|d·ε|g〉. The laser field pumping the atoms is formed by a broad standing
wave, transversally to the cavity axis, i.e. Ep(x̂) = Ep cos(kpŷ). Since we are only interested
in the dynamics in the direction of the cavity axis, we can neglect the spatial dependence of
the pumping field, and without loss of generality, we can set h(x) ≡ 1. This driving field will
often be referred to as the “atom pump”.

In addition, also the cavity mode is coherently excited by a driving laser field, with
strength η and the same frequency ωp, in order to get rid of the time dependencies of both
of the driving fields, simultaneously. In the following this will be often called the “cavity
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Figure 3.5. Scheme of atoms in a cavity, interacting with a single cavity mode.
The system is coupled to a reservoir via cavity loss, characterized by the loss rate κ
and spontaneous emission from photons, described by the spontaneous emission rate γ.
Furthermore, two pump lasers, both with the same frequency ωp but different strength,
are coherently driving the system.

pump”. The Hamiltonian, describing this contribution is

HCP = −i~η
(

aeiωpt − a†e−iωpt
)

. (3.24)

Although, in principle, η and ζ can be chosen complex, to describe other relative phases, which
also allows for interesting effects [10], we restrict in this work on real η and ζ. Altogether,
the Hamiltonian describing the non-dissipative evolution of the system thus is

HS = HA +HF +HI +HAP +HCP (3.25)

=
p̂2

2m
+ ~ωeg|e〉〈e| + ~ωca

†a− i~g(x̂)
(

σ+a− σ−a†
)

−i~ζ
(

σ+e
−iωpt − σ−eiωpt

)

− i~η
(

aeiωpt − a†e−iωpt
)

.

To eliminate the time dependence, we perform a unitary transformation |ψ̃〉 = U(t)|ψ〉, where
U = exp[iωpt(σ+σ−+a†a)]. This corresponds to a transformation H̃ = UHU † + i~

(

d
dtU

)

U †.
Omitting the tilde we obtain

HS =
p̂2

2m
− ~∆a|e〉〈e| − ~∆ca

†a− i~g(x̂)
(

σ+a− σ−a†
)

− i~ζ (σ+ − σ−)− i~η
(

a− a†
)

,

(3.26)

where ∆a = ωp−ωeg and ∆c = ωp−ωc denote the atom-pump detuning and the cavity-pump
detuning, respectively.

In order to develop a theoretical description for the interaction of a system S with a
reservoir R, which form altogether a Hilbert space H = HS ⊗ HR. The system is then
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described by the Hamiltonian HS from (3.26). Typically the reservoir is modelled as a bath
of independent harmonic oscillators with frequencies ωk and a free-evolution Hamiltonian

HR =
∞
∑

k=0

(

c†kck +
1

2

)

, (3.27)

where ck and c†k are annihilation and creation operators for the reservoir excitations, respec-
tively. For the interaction of the system variables with the reservoir, we use the rotating frame
approximation. Then the atom-reservoir Hamiltonian is analogue to the Jaynes-Cummings
Hamiltonian, but with many modes

HAR =

∞
∑

k=0

gAR,k(x)
(

σ+ck + σ−c
†
k

)

. (3.28)

Similarly the Hamiltonian for the coupling of the reservoir modes to the cavity mode is in
the same line as (3.24)

HCR =

∞
∑

k=0

gCR,k

(

a†ck + ac†k

)

. (3.29)

Here gAR,k(x) and gCR,k are the coupling strengths of the reservoir mode k with the atom
and the cavity mode, respectively. The total evolution of the system, can be obtained by
solving the von-Neumann equation for the density operator χ(t) and the total Hamiltonian
H = HS +HR +HAR +HCR

d

dt
χ(t) = − i

~
[H,χ] (3.30)

Solving this equation for the huge system S⊗R is a very hard - and in our case unnecessary -
task, since we are only interested in the dynamic of the atom-cavity system. Several approxi-
mations can be done, to reduce the analytical difficulties. On the one hand, interactions with
the reservoir are - for quantum optical systems - typically very weak, such that excitations of
higher than second order are negligible (Born-Approximation [11]). On the other hand, the
influence of the small system on the huge reservoir can be safely neglected. Furthermore, the
decay timescale for correlations in the reservoir is much smaller than in the system, causing
that the reservoir state does not depend at all on the state of the system and has effectively
no memory. This is - qualitatively - the meaning of the Markov approximation [11, 12], which
we assume to be valid in our case. Altogether, we use both of these approximations and trace
over the degrees of freedom of the reservoir, to obtain a density operator for the system under
investigation

ρ = trR{χ}. (3.31)

The resulting dynamical equation for the reduced density operator of the system, is called
the master equation. We abandon a detailed derivation and refer to specific quantum optical
literature, e.g. [11]. For the considered system and its dissipation channels it reads as:

ρ̇ = − i
~
[HS , ρ]− γ(n̄+ 1) (σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+)− γn̄ (σ−σ+ρ+ ρσ−σ+ − 2σ+ρσ−)

− κ(n̄+ 1)
(

a†aρ+ ρa†a− 2aρa†
)

− κn̄
(

aa†ρ+ ρaa† − 2a†ρa
)

, (3.32)
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where γ is the spontaneous emission rate for the atoms (see Sec. 2.1.2) and κ the loss rate
of cavity photons. The only influence of the state of the reservoir on the system is via the
mean occupation number of its oscillator mode n̄ ≡ n̄(ωeg,T ). For a reservoir at temperature
T , the mean occupation of a mode k with frequency ωk is [11]

n̄(ωk, T ) =
1

e~ωk/(kBT ) − 1
, (3.33)

where kB denotes Boltzmann’s constant. At low temperatures and for optical frequencies,
these numbers are very small, n̄� 1. Since we constrain our investigations in the following
to zero temperature, where the reservoir is in a vacuum state |vac〉〈vac|, n̄ is exactly zero and
the final master equation for the system reduces to

ρ̇ = − i
~
[HS , ρ] + Lρ. (3.34)

The Liouvillian superoperator L, describing spontaneous emission and cavity loss is given by

Lρ = Lκρ+ Lγρ = κ
(

2aρa† − a†aρ− ρa†a
)

+ γ (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (3.35)

3.2 Resonator-Generated Optical Lattices

In chapter 2 we discussed how optical lattices can be generated with “classical” fields, i.e.
laser fields with a very high photon number. In this case the AC-Stark shift generates optical
potentials for atoms in the ground state, and by changing the geometry of the intersecting
laser beams one can produce a broad variety of lattice geometries. In Sec. 3.1.2 we presented
an analogue situation for atoms interacting with a single mode of a cavity. Nevertheless the
AC-Stark shifts (3.22) are in this sense only valid for an ideal, lossless cavity. In this section
we derive the lattice potential for a cavity, including dissipation via spontaneous emission
and loss of cavity photons.

3.2.1 Adiabatic Elimination of the Excited States

In the Heisenberg picture, with an evolution determined by the Liouvillian (3.35) the opera-
tors for the internal atomic dynamics and the field obey the Heisenberg-Langevin equations

σ̇− =− i

~
[σ−,H]− γσ− + ξ̂ = (i∆a − γ) σ− + g(x̂)σza+ ζσz + ξ̂, (3.36a)

σ̇+ =− i

~
[σ+,H]− γσ+ + ξ̂† = − (i∆a + γ) σ+ + g(x̂)σza

† + ζσz + ξ̂†, (3.36b)

ȧ =− i

~
[a,H] − κa+ ξ̂a = (i∆c − κ) a+ g(x̂)σ− + η + ξ̂a. (3.36c)

Here σz ≡ |e〉〈e| − |g〉〈g| = [σ+, σ−] is the Pauli matrix for the z-component, which describes
the inverse population. The noise operators ξ̂, ξ̂†, and ξ̂a describe white noise [13]. Since,
by assumption, the reservoir is at zero temperature and therefore in the vacuum state, their
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expectation values vanish and we can neglect these noise terms. The mode function corre-
sponds to a standing wave, Fabry-Perot cavity, i.e. g(x̂) = g0 cos(kx̂). When the cavity is
only very weakly driven, the systems Hilbert space consists of the states |g, 1〉 or |e, 0〉, and
contributions of other states can be neglected [14]. Hence,

〈aσz〉 = −〈a〉. (3.37)

Nevertheless, in situations where the excited state is very weakly populated, this relation
holds at least approximately. This is the so-called low-saturation regime, where the saturation
parameter s = g2

0/(∆
2
a + γ2) (see also Sec. 2.1.1) is very small, s� 1. This is a regime where

typical quantum optical situations take place, and rather easily attainable, by choosing a
large atom-pump detuning ∆a. More generally, this method consists of replacing σz by its
expectation value 〈σz〉, a technique called bosonisation [15], since the commutation relations
for Pauli matrices are modified to bosonic commutation relations: [σ−, σ+] = −σz → −〈σz〉.
Then the equations (3.36) become linear, and 〈σz〉, which is also called population inversion
has only the role as a parameter, which has to be chosen self-consistently. Nevertheless, for
low saturation, the population inversion can be well approximated by -1. In this regime the
timescale of the ground state evolution is much longer than those of the excited state. Hence,
we can set the derivatives in in (3.36a) and (3.36b) to zero, as well as σz = −1. Then the
excited state is adiabatically eliminated from the dynamics. The steady state values of the
operators σ± follow then self-explanatory

σ− = −ζ + g(x̂)a

γ − i∆a
and σ+ = −ζ + g(x̂)a†

γ + i∆a
. (3.38)

After deriving these steady state “values” of these operators, we can proceed along two
different lines. On the one hand, we can replace them in the equation for the field (3.36c),
yielding

ȧ =
[

i∆c − κ− (Γ0 + iU0) cos2(kx)
]

a+ η − (γeff + iηeff) cos(kx̂), (3.39)

where we applied the specific form of the mode function g(x̂) = g0 cos(kx̂) and introduced
the following abbreviations, characterizing the atom’s dispersive and absorptive influence on
the cavity field:

U0 =
g2
0∆a

γ2 + ∆2
a

and Γ0 =
g2
0γ

γ2 + ∆2
a

. (3.40)

Here U0 can be interpreted as the energy light shift per photon for the atom, which will
be clarified with equation (3.42) and Γ0 as the photon loss probability per atom through
incoherent scattering. The other two terms are only relevant in the case, where the atoms
are directly pumped and therefore reflect the influence of the atomic position on the field.

γeff =
g0ζγ

γ2 + ∆2
a

and ηeff =
g0ζ∆a

γ2 + ∆2
a

. (3.41)

On the other hand, we can also replace σ± by their steady state expressions (3.38) in the
Hamiltonian (3.26) and in the spontaneous emission part of the Liouvillian (3.35). In this
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way we obtain an effective Hamiltonian (choosing normal order for the field operators), which
then solely depends on the atom’s external degrees of freedom and the cavity field. Thus,

Heff =
p̂2

2m
+ ~U0 cos2(kx̂)a†a+ ~ηeff cos(kx̂)

(

a+ a†
)

− i~η
(

a− a†
)

. (3.42)

Now the interpretation of U0 is clear. This is the analogue of the classical AC-Stark light
shift (2.10), per one photon (〈a†a〉 = 1). The terms corresponding to Γ0 and γeff arise from
the replacement in the Liouvillian Lγ , which reads as

Lγ,eff = Γ0 cos2(kx̂)
(

2aρa† − a†aρ− ρa†a
)

+ γeff

[

a− a†, ρ
]

. (3.43)

This method must - of course - lead also to the same dynamical equation as (3.39) for the
field. This is easy to check by calculating

d

dt
〈a〉 = tr{ρ̇a} with ρ̇ = − i

~
[Heff, ρ] + Lκρ+ Lγ,effρ. (3.44)

A major part of our work is the derivation of a generalized Bose-Hubbard model, which
includes also resonator-generated optical lattices and the cavity as a dynamical element.
This procedure requires a many-particle Hamiltonian in second quantization formalism (see
Sec. 2.3.1). The implementation of (3.42) as the corresponding single-particle Hamiltonian
provides a generalized Hamiltonian with adiabatically eliminated excited states. Nevertheless,
it is also possible to use (3.26) as a single-particle Hamiltonian in the second quantization
formalism and then eliminate the excited state of the atoms. This leads finally to the same
Bose-Hubbard Hamiltonian (see chapter 6).

Finally we can make a useful approximation. In the rest of this thesis, we work in a
regime far off resonance, i.e. ∆a � γ. Hence U0 � Γ0 and ηeff � γeff. This allows us to
neglect spontaneous emission at all and set γ = 0 in the equations above.

3.2.2 Intracavity trapping potential

The trapping depth of the resonator-generated optical lattice depends on two quantities, the
coupling strength U0 and the number of photons in the cavity field. In order to have bound
states, we have to reassure that this depth fulfills at least V ≥ 2ER. Experiments for U0 > ER,
where atoms are trapped with just a single photon in the potential of the cavity field were
successfully performed in the group of Kimble [16] and in the group of Rempe [17]. Although
fascinating from a fundamental point of view, this setup involves short trapping times, not
suitable for instance for quantum communication purposes. Also in the case of directly driven
atoms, we consider only a weak cavity field (see chapter 6), where the above relation might
not hold. Therefore we decouple the trapping from the QED interaction by introducing
an additional “classical” potential along the cavity axis, allowing us to consider situations
where bound states always exist and an expansion of the second-quantized Hamiltonian in a
Wannier basis always makes sense.

This can be achieved by implementing an intracavity red-detuned, far off-resonance dipole
trap (FORT) [18–20], along the cavity axis. This leads to a position-dependent AC-Stark
Shift (2.7)

VF (x) = − ~gF
ωF − ωeg

cos2(kFx)e
−(x2+y2)/w2

0 , (3.45)
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where we assumed that the waist of the FORT field is equal to those of the cavity field,
which is in fact a very accurate approximation. Experimentally, the external trapping laser
frequency ωF is mainly chosen to have a detuning of two free spectral ranges from the cavity
frequency ωc, such that it is in resonance with another mode of the cavity. Hence, the cavity
field and the FORT field will not interfere perfectly constructive in the cavity and the coupling
of the atom to the total electromagnetic field in the cavity differs from site to site of the cavity
lattice. Nevertheless, for the experimentally applied detunings of two free spectral ranges,
the coincidence of the cavity field wells and the FORT field wells in the vicinity of the center
of the cavity is almost perfect [21], such that the exact value of ωF is rather irrelevant. For
a red-detuned trapping laser, the ground state experiences a negative shift, the excited state
an equally large positive shift2. Thus, we can extend the Hamiltonian (3.26) to

HS =
p̂2

2m
− ~∆a|e〉〈e| + ~∆F (x̂) (|e〉〈e| − |g〉〈g|) − ~∆ca

†a (3.46)

−i~g(x̂)
(

σ+a− σ−a†
)

− i~ζ (σ+ − σ−)− i~η
(

a− a†
)

=
p̂2

2m
− ~∆̃aσ+σ− − ~∆F (x̂)− ~∆ca

†a (3.47)

−i~g(x̂)
(

σ+a− σ−a†
)

− i~ζ (σ+ − σ−)− i~η
(

a− a†
)

,

where ∆F (x) = ωp − VF (x)/~, resulting from the transition to the rotating frame and ∆̃a =
∆a − 2∆F (x). Note, that we again neglected the transverse part of the mode functions,
assuming the atom to be in the radial center of the cavity. In experiments this has to be
accomplished by additional transverse traps. Proceeding as above with the elimination of
the excited states (large detuning) leads to identical expressions for the steady-states of σ±,
except the replacement ∆a → ∆̃a. Following the lines of Sec. 3.2.1, we obtain an extended
effective Hamiltonian, after an energy shift of ~ωp

H̃eff =
p̂2

2m
+~Ũ0 cos2(kx̂)a†a+Vcl cos

2(kF x̂)+~η̃eff cos(kx̂)
(

a+ a†
)

− i~η
(

a− a†
)

, (3.48)

where we defined the parameters as

Ũ0 =
g2
0∆̃a

γ2 + ∆̃2
a

, η̃eff =
g0ζ∆̃a

γ2 + ∆̃2
a

and Vcl = − gF
ωF − ωeg

. (3.49)

The suffix cl should emphasize, that this trapping potential is independent of the quantized
cavity field with (eventually) few photons. Hence it could be interpreted as a “classical”
potential. The form of the Liouvillian (3.43) remains unchanged. Only the denominators of
γeff and Γ0 have to be adapted, with the replacement of ∆a by ∆̃a. We do not consider here
the subtle question of the influence of the FORT field to cooling/heating issues or fluctuation
processes. A detailed discussion can be found in [23].

For a reasonable choice of the FORT wavelength (e.g. 104kF /2 = 102k/2 [23]), an almost
perfect agreement of the FORT wells and the cavity field wells can be found near the center of

2For certain species of atoms like Cesium it is possible to adjust the wavelength of the FORT laser λF by
a few free spectral ranges to the “magic wavelength”, where the ground and the excited state are both shifted
negatively. This allows state-insensitive cooling for these types of atoms. [22]
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the cavity. Hence, in the vicinity of the center, we can replace kF by the cavity wavenumber
k. Here we can also neglect the spatial variation of the coupling strength across the wells of
the FORT trap. In this sense ∆a differs from ∆̃a just by a constant. Thus, we can omit all
the tildes in (3.48) and obtain as a final expression for the effective Hamiltonian:

Heff =
p̂2

2m
+
(

Vcl + ~U0a
†a
)

cos2(kx̂) + ~ηeff cos(kx̂)
(

a+ a†
)

− i~η
(

a− a†
)

. (3.50)

Recently, the group of Rempe was able to experimentally realize a blue-detuned intracav-
ity dipole trap [6]. Here, the atoms are repelled from the intensity maximum of the trapping
field and instead attracted to antinodes of the field. This has the advantage that the Stark
shift for all levels are small, leading to free-space-like properties of the atom, except for the
strong coupling to the cavity mode. This is an ideal setup to test our model. Similar like
above, a suitable choice of longitudinal modes (in this case, the detuning is three free spectral
ranges from the main cavity mode), leads to a good matching of trap intensity minima and
cavity field maxima, in the center region of the cavity. Furthermore this setup allows to avoid
difficulties with issues like cavity-enhanced heating.

3.3 Transverse Motion

Up to now we took only one-dimensional motion along the cavity axis into account. When
the cavity is pumped, driving the mode along the cavity axis, only forces along this axis are
exerted. A coherently pumped atom, on the other hand, scatters photons from the pumping
field, which impinges perpendicular to the cavity axis on the atom, into the cavity mode.
Hence, forces in both directions are exerted. Nevertheless, Vukics [10] has showed that cross
effects between the two direction have almost no influence on the dynamical properties of the
system, allowing for an independent study of both directions. In the last part of this thesis
(chapter 11 and 12) we consider the motion of the atom transversally to the cavity axis, in
the direction of the laser beams, which excites the atom. This requires some slight variations
in the effective Hamiltonian, which we will derive in this section.

Our model again consists of a two-level atom, interacting with a single, standing wave
mode of a cavity field. We apply a single coherent laser field, which pumps directly the atom
and forms a broad standing wave in y-direction, i.e. transversally to the cavity axis (see
Fig. 3.6). We do not consider cavity pumping and an additional classical lattice potential,
here. Hence, the system Hamiltonian (3.26) is modified to

HS =
p̂2
y

2m
− ~∆a|e〉〈e| − ~∆ca

†a− i~g(x̂)
(

σ+a− σ−a†
)

− i~ζh(ŷ) (σ+ − σ−) , (3.51)

where g(x) = g0 cos(kx̂) is the mode function of the cavity mode and p̂y is the momentum
operator in y−direction. We assume that the atom remains near the center of the cavity and
neglect the transverse Gaussian profile of the mode function. The transverse mode function
of the pumping laser is denoted h(ŷ) = cos(kpŷ). Note that the coupling strength of the atom
to this laser field is implemented in the constant ζ. The Liouvillian superoperators for cavity
decay and spontaneous emission (3.35) remain the same, as for motion along the cavity axis.
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Figure 3.6. Left: In this setup we investigate the motion of the atom along the cavity
axis (x−direction), in the optical lattice, generated by the resonator (lattice constant
a = π/k). Here we consider driving of the atom and/or the cavity mode with a coherent
laser field. Right: Here we consider motion of the atom transversally to the cavity axis
(y−direction), in the lattice, built up by the pumping laser (lattice constant a = π/kp).

Since we only have to take into account the motion along the y−axis, the value of the
x−position of the atom does not matter and without loss of generality we can set cos(kx̂) = 1.
After adiabatic elimination of the excited state, analogue to Sec. 3.2.1, we obtain the following
steady state expressions

σ− = −ζ cos(kpŷ) + g0a

γ − i∆a
and σ+ = −ζ cos(kpŷ) + g0a

†

γ + i∆a
. (3.52)

We replace the σ± operators in (3.51), yielding an effective Hamiltonian, describing atomic
motion along the y−direction and the cavity field evolution

Heff =
p̂2
y

2m
− ~(∆c − U0)a

†a+ V0 cos2(kpŷ) + sgn(U0)
√

~U0V0 cos(kpŷ)
(

a+ a†
)

, (3.53)

where V0 = ~ζ2∆a/(γ
2 + ∆2

a) is the lattice potential, associated with the driving laser
field. This is a standard optical lattice potential through the AC-Stark shift in the sense
of Sec. 2.1.1, independent of the photon number a†a in the cavity. As we will see, this is a
convenient simplification, when it comes to second quantization and the calculation of the
matrix elements in the Wannier basis.

Obviously we also have to replace σ± in the Liouvillian corresponding to spontaneous
emission

Lγ,eff = Γ0

(

2aρa† − a†aρ− ρa†a
)

+ γeff cos(kpŷ)
[

a− a†, ρ
]

. (3.54)

These are now the ingredients of the von-Neumann equation, determining the evolution of
our system’s density operator. We limit, however, our investigations to a regime, where the
frequency of the pumping laser is far detuned from the atomic transition frequency, ∆� γ.
Hence, we can again neglect spontaneous emission and all terms associated with it.
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Quantum Motion of Laser-Driven Atoms in a Cavity Field†

Optics Communications 243, 145 (2004)

C. Maschler and H. Ritsch

Institut für theoretische Physik, Universität Innsbruck,
A-6020 Innsbruck, Austria

We investigate the quantum motion of coherently driven ultracold atoms in the field
of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the
atomic transition but close to a cavity resonance, so that spontaneous emission is strongly
suppressed but a coherent field builds up in the resonator by stimulated scattering. On
one hand the shape of the atomic wave function determines the field dynamics via the
magnitude of the scattering and the effective refractive index the atoms create for the
mode. The mode intensity on the other hand determines the optical dipole force on the
atoms. The system shows rich coupled atom-field dynamics including self-organisation,
self trapping, cooling or heating. In the limit of deep trapping we are able to derive a
system of closed, coupled equations for a finite set of atomic expectations values and the
field. This allows to determine the self consistent ground state of the system as well as
the eigenfrequencies and damping rates for excitations.

4.1 Introduction

Cooling and trapping of neutral atoms to temperatures close to quantum degeneracy has
now become a standard experimental tool [1]. Laser fields so far-off resonance that they
induce almost no spontaneous emission but still create significant forces have proven an
ideal tool to manipulate and control this atoms in a well defined way [2]. Most spectacular
applications include the formation of optical lattices for such atoms [3, 4] or quasi 1D traps.
In most cases the back action of the atoms on the field can be largely neglected, although
it was theoretically predicted almost from the beginning, that the atoms could influence the
fields as a sort of dynamic refractive index [5]. In principle this implies a fairly complicated
dynamical extension of the theoretical models as we now have a time dependent potential
in the atomic Hamiltonian, which (nonlocally) depends on the atomic wavefunction itself.
Although some important effects of atomic back action on the field (enhanced directional

†The author of the present thesis performed all the calculations in this publication.
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scattering) for detuned fields were investigated by Ketterle already some time ago [7], these
effects are very small for current atomic densities and the large atom-field detunings used for
dipole trapping. However, the situation changes dramatically if the fields involved are not
freely propagating but enclosed in a high-Q optical resonator [8–10], where the effective atom-
field interaction per atom and per photon is strongly enhanced. On one hand this allows to
create much deeper and larger potentials for a given laser power [11]. On the other hand the
atomic back action on the field yields valuable information on the atomic time evolution [12].
As this information is obtained nondestructively it allows as well for subsequent controlled
manipulation of the cold atoms (BEC). Proposed applications of this coupled dynamics range
from energy extraction (damping) from the atomic cloud via cavity decay [9], unification of
two condensates into one via cavity coupling [10] to the controlled generation of macroscopic
atomic superposition states via cavity scattering [13]. In all of these cases the atoms were
assumed to be moving in so far-off resonance driven cavity mode, that they basically act as
a dynamic refractive index. During the motion on finds a large refractive index if the atoms
are close to antinodes and almost no effect, when they sit around a node of the mode.

Here we generalize the situation to the case, where the coherent driving field is directly
applied to the atoms instead of pumping the mode. They can be mathematically related
to each other by a amplitude shift transformation of the field mode operator [14]. Such a
transformation does not exist for a quantum description of atomic motion. As the atom now
has a position distribution no single effective field shift can be found, which transforms the
interaction Hamiltonian in the desired way. This leads to genuinely different dynamics.

In the case of coherent driving of only the atoms, all the photons in the cavity mode
are created through scattering on the atoms. Hence, the shape of the atomic wavefunction
not only determines the refractive index but also the effective pump amplitude of the cavity
mode.

The importance of this new system property can be seen fairly easy in the generic case of
a transverse plane wave pump field and a single standing wave cavity mode with sinusoidal
mode function along the cavity axis. For a homogenous distribution of the atoms no photons
will be coherently scattered into the mode as the contributions from the negative and positive
parts of the mode cancel each other. If the atoms, however, are localized around an antinode
of the field one gets very strong scattering into the mode and the field intensity scales as the
square of the number of atoms. This effect implies a very interesting bistable self trapping
and self organization effect of the atoms in the case when they can be treated as classical point
particles and red atom field detuning [15], for which strong experimental evidence has been
found recently [16]. Cavity cooling for a single atom has been recently also experimentally
demonstrated by Rempe and coworkers [23]. Very intriguing dynamical phenomena of coupled
atom field dynamics have also been observed in ring cavities ranging from strong common
acceleration [17] to collective transverse oscillations [18].

Even more intriguing effects can be expected in the quantum regime, where two macro-
scopically distinct ground states of the system should exist. In the following we will investigate
this in a simplified 1D model, which allows some analytical treatment but still contains a lot
of the essential physics. This work is organized as follows: In Sec. 4.2 we develop our model of
the quantum motion of a single driven two-level atom in high-Q cavity mode. In Sec. 4.3 we
show that in the low temperature, deep trapping limits the dynamics relates to a quantized
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oscillator with time dependent frequency, for which analytic solutions exists for many cases.
This allows to determine ground state properties. In the following we use the Hamiltonian
to derive a closed set of coupled equations for the field amplitude and a finite set of certain
atomic expectation values. These can be easily numerically integrated. In Sec. 4.4 we nu-
merically solve these equations for a wider range of parameters to determine the damping
(cooling) rates in the system and compare the two cases of atom and cavity pumping.

4.2 Model

Let us consider a two-level atom with mass m and transition frequency ωa strongly interacting
with a single standing wave cavity mode of frequency ωc. The atom is also coupled to a
coherent laser field with frequency ωp and strength ζ from the side of the cavity as depicted
in Fig. 4.1. Alternatively the cavity is coherently driven at ωp with amplitude η. At this
point we will include both driving terms in the Hamiltonian, although for the examples we
will only use one at a time.

The Hamiltonian of the system using the rotating-wave and the electric-dipole approxi-
mation is

H =
p2

2m
− ~∆aσ

+σ− − ~∆ca
†a− i~g(x)

(

σ+a− σ−a†
)

− ih(x)ζ
(

σ+ − σ−
)

− iη
(

a− a†
)

,

(4.1)
where ∆a = ωp−ωa is the detuning of the pump laser from atomic resonance and ∆c = ωp−ωc
is the detuning from the cavity. ζ and η denote the pumping strengths of the external driving
fields (Fig. 4.1).

Figure 4.1. Scheme of an atom inside a cavity driven by two external lasers. The atom
is directly driven with pump strengths ζ and frequency ωp. An additional laser with
strength η drives the cavity.

The mode functions of the cavity mode and the pump laser, which forms a broad standing
wave transverse to the cavity are given by g(x) = g0 cos(kx) and h(x) = h(y) = h0 cos(kpy),
respectively.
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In addition we include two types of dissipation processes namely cavity loss at rate κ and
spontaneous emission of the atom at rate γ. Using a standard technique in quantum optics
we treat this incoherent processes as interaction with an external heat bath so that we get
the following well known master equation for the density operator % [24].

As we are mainly interested in the limit of very large atom-pump detunings, where spon-
taneous emission is strongly suppressed and the forces are governed by the dipole force of
the fields, we neglect the recoil induced radiation pressure force on the atom. In fact due
to the symmetries of cavity mode and pump its average value is zero and the corresponding
momentum diffusion can be expected to be very small. Hence we get

%̇(t) =
1

i~
[H, %(t)] + L%(t), (4.2)

where the Liouvillian reads as

L%(T ) = κ
(

2a%(t)a† − a†a%(t)− %(t)a†a
)

+ γ
(

2σ−%(t)σ+ − σ+σ−%(t)− %(t)σ+σ−
)

(4.3)

The corresponding Heisenberg equation for the atomic polarization then reads

σ̇− = i∆aσ
− + g(x)σza+ ζh(x)σz − γσ− (4.4)

In a similar way we obtain

ȧ = i∆ca+ g(x)σ− − κa+ η. (4.5)

Here, we restrict ourselves to a regime of low saturation, such that we can adiabatically
eliminate the excited atomic state. In addition we assume a coherent field amplitude α =
〈a〉 much bigger than one, i.e., |α| � 1, which allows us to treat the coherent cavity field
amplitude as a classical c-number quantity [19].

Despite all these simplifications we are still left with an effective Hamiltonian, which does
not allow a direct analytic solution. Hence in order to get some first insight we resort to a
further simplification step and consider the case, where the atoms are well localized in position
space around the field antinodes, where they see a potential minimum. This allows to expand
the optical potential around the antinode kx = −π, so that the cavity mode locally creates
a harmonic potential. Of course we have to do a self consistency check on our parameters at
the end to see whether this approximation stays valid during time evolution.

Finally we obtain

Heff =
p2

2m
− ~∆c |α(t)|2 + ~U0 |α(t)|2 (1− k2x2)

+ 2~ηeffh(y)

(

−1 +
k2x2

2

)

Re(α(t)) + 2~ηIm(α(t)). (4.6)

Taking the average value with respect to the atomic degrees of freedom, the equation for the
field amplitude then reads

α̇(t) =
[

i∆c − κ− (Γ0 + iU0)
(

1− k2
〈

x2
〉)]

α(t)−(γeff + iηeff) h(y)

(

1− k2
〈

x2
〉

2

)

+η. (4.7)
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In the above equations the magnitude of the dispersive and absorptive influence of the
atom on the cavity field scales with the parameters [20]

U0 =
g2
0∆a

∆2
a + γ2

and Γ0 =
g2
0γ

∆2
a + γ2

. (4.8)

U0 can be easily interpreted as the light shift per photon, which the atom experiences at an
antinode, while Γ0 gives the photon loss probability per atom through incoherent scattering.
As mentioned above the transverse pump field impinging on the atoms implies a position
dependent pumping term which scales with the parameters

γeff =
g0ζγ

∆2
a + γ2

and ηeff =
g0ζ∆a

∆2
a + γ2

. (4.9)

As we work in the far-off resonance regime we have U0 � Γ0 and ηeff � γeff, so that we
can safely neglect spontaneous emission, i.e., γ = 0 for our first discussion of the dynamics
in the following.

4.3 System Dynamics

4.3.1 Mapping to an oscillator with time dependent frequency

Looking at the effective Hamiltonian (4.6) one sees that it can be rewritten as the Hamiltonian
of a harmonic oscillator

H =
p2

2m
+
mω2(t)x2

2
+ f(t) (4.10)

with time-dependent frequency

ω(t) = k

√

2~

m

√

−U0 |α(t)|2 + ηeffh(y)Re(α(t)). (4.11)

The third term f(t) in Eq. (4.10) only amounts to a global time dependent phase and we do
not have to take it into account in detail. Of course the central problem is that we do not
have an prescribed form of α(t), which has to be dynamically determined. One interesting
limit here corresponds to the case of instant reaction of the field to the atom for large κ, for
which we arrive at a nonlinear Schrödinger equation. Here we will not pursue this limit in
more detail as we have the use of high-Q cavities in mind.

To solve such problems Lewis and Riesenfeld have developed a method to express the
dynamic solution of (4.10) in terms of time parameterized oscillator eigenfunctions [6, 21] for
any given ω(t). Their method requires to solve an extra c-number differential equation, the
so-called Ermakov equation

r̈(t) + ω2(t)r(t) =
1

mr3(t)
(4.12)

to explicitly find the desired time dependent solution. This is even analytically possible in
several cases and the solutions are then related to the harmonic oscillator eigenfunctions for
any time t through the relation

ψn(x, t) =
1

n!2n
√
π~

exp [iβn(t)]
√

r(t)
Hn

(

x

r(t)
√

~

)

exp

[

i
m

2~

(

ṙ(t)

r(t)
+

i

mr2(t)

)

x2

]

, (4.13)
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where βn(t) reads

βn(t) = −1

~

∫ t

0

[

~ (n+ 1/2)

mr2(t′)
− f(t′)

]

dt′. (4.14)

In our case we do not have an explicit form of ω(t) and so we cannot derive an explicit
analytical answer. However, the numerical solution of the full dynamics can be simply found
by solving a single ordinary differential equation for r(t) in parallel with finding the light field
dynamics. This is fairly easily possible, as one can express the values of atomic operators
needed to solve the light field equation simply in terms of r(t) for any given n. If the atom
is initially in the ground state ψ0(x, 0) with respect to the momentary field intensity, this
relation reads

〈

x2(t)
〉

=
~

2
r2(t) (4.15)

〈

p2(t)
〉

=
~

2
r−2(t) +

~m2

2
ṙ2(t). (4.16)

Similar results hold for initial conditions of higher n. Note that due to the influence
of atomic expectation values on the field dynamics, which feed back to the atomic time
evolution, the problem is not linear. Hence if we decompose the initial condition into a
harmonic oscillator basis, we cannot solve the dynamics separately for each basis state and
then add up the contributions. Instead we numerically have to find the solution independently
for each initial condition. From the form of the solutions one sees immediately, that the shape
of the wavefunction does not change, if one starts with an oscillator eigenfunction. An initially
prepared Gaussian wave packet stays Gaussian all the time and only its width changes. This
is important, if we start with a steady state and then change one of the operating parameters
like pump strength or detuning. Here the wavefunction always corresponds to the same
oscillator eigenstate and we only get a time dependent width and phase of the wavefunction.

Of course during time evolution we have to check, whether this width stays consistent
with the harmonic approximation for the potential. From the time dependent solution we
can then extract all desired quantities as the kinetic or the total mean energy of the atom
to characterize the cooling and relaxation properties of our system. Of course by looking
for solutions with time independent r we can search for steady states and find properties
of the ground state of the coupled system. To illustrate this at an example, we solve (4.7)
and (4.12) in the case where the pump light is directly applied to the atom, i.e., η = 0 and
ηeff 6= 0. For simplicity we start with a superposition of only few oscillator eigenstates. As
initial basis we choose the eigenstates corresponding to the momentary eigenfrequency ω(0)
derived from the chosen initial value of the field amplitude α(0).

Hence we have to set r(0) = [mω(0)]−1/2 and ṙ(0) = 0. The operating parameters
∆c = −10κ and U0 = −5κ are chosen in a way that the light field creates an attractive
potential for the atoms and we get cooling in the corresponding classical model [19]. As a
simple but nontrivial example we choose an even superposition of the ground state and the
first excited state ψ(x, 0) = 1√

2
[ψ0(x, 0) + ψ1(x, 0)] and a very weak initial value of the field

α(0) = 1.
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The expectation values of the position operator (center of mass) and position operator
squared (proportional to the potential energy) than explicitly read

〈x(t)〉 =

√

~

2
r(t) cos [β0(t)− β1(t)] (4.17)

=

√

~

2
r(t) cos

[

1

m

∫ t

0
r−2(τ) dτ

]

〈

x2(t)
〉

= ~r2(t). (4.18)

The corresponding numerical solution is shown in Fig. 4.2. As expected the atom starts
to oscillate in the potential and induces corresponding field oscillations with some delay.
Clearly the dissipative character of the atomic motion is visible. Interestingly after some
initial adjustments, the motion of the center of mass is only very weakly damped, whereas
the average potential energy proportional to

〈

x2(t)
〉

and the field amplitude α(t) tend to a
stationary value. So after some time the atom oscillates in a self generated deep potential well
with an almost constant field. The slow damping of the center of mass motion is connected
to the fact that 〈x(t)〉 does not directly enter in the field equation. In contrast to classical
mechanics, quantum mechanics allows states where

〈

x2(t)
〉

is constant despite of oscillating
〈x(t)〉. Effectively we see that the system dynamically traps and localizes itself close to a
field antinode.

4.3.2 Coupled equations for atomic expectation values and the field

Using the method developed above allows in principle to obtain the time dependent wave-
function of the system for any given initial condition. However, the method is a bit involved
to apply in general. Applying it to a broad Gaussian wave packet with an initial width much
larger than the ground state requires many basis states to be included in the dynamics. Al-
though from this we then can calculate all possible observables, the whole procedure can be
rather inefficient. In particular one is often interested only in the time evolution of a few
key quantities as energy, localization and field. It turns out that similar to the semiclassical
model [22], it is more efficient to use the effective Hamiltonian (4.6) directly to derive a cou-
pled system of differential equations for the field and the desired expectation values directly.
After some algebra within the harmonic approximation one finds the following equations for
the squared atomic position and momentum observables:

d

dt
α(t) =

[

i∆c − κ− iU0

(

1− k2
〈

x2
〉)]

α(t) + iηeffh(y)
(

1− k2
〈

x2
〉

/2
)

+ η (4.19a)

d

dt

〈

x2
〉

=
1

m
〈xp+ px〉 (4.19b)

d

dt
〈xp+ px〉 =

2

m

〈

p2
〉

+ 4k2
~
〈

x2
〉

[

U0 |α(t)|2 − ηeffh(y)Re(α(t))
]

(4.19c)

d

dt

〈

p2
〉

=2k2
~ 〈xp+ px〉

[

U0 |α(t)|2 − ηeffh(y)Re(α(t))
]

(4.19d)
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Figure 4.2. Numerical solution of the field equation (4.7) and the Ermakov equa-
tion (4.12) for the directly driven atom. The initially prepared state is ψ(x, 0) =
1√
2
[ψ0(x, 0) + ψ1(x, 0)]. The parameters are κ = 1, η2

eff = 200, ∆c = −10 and U0 = −5.

Again this system is not analytically solvable, but surprisingly it is closed, finite and fairly
easy to solve numerically, independent of the precise form of the initial wavefunction. Let
us again first consider the case of coherent pumping applied directly to the atom, i.e. η = 0
and ηeff 6= 0. A typical numerical solution of the time evolution is shown in Fig. 4.4. As
above after some relaxation oscillations the system reaches a quasi steady state. Again we
have chosen parameters implying cooling in the classical case. Note that the solution obeys
the limitations set by the Heisenberg uncertainty relation in the quantum dynamics.

4.3.3 Steady state properties

Before we dicuss the parameter dependence of the dynamics in more detail, we derive some
simple results on stationary states of this system. Interestingly by setting (4.19a) and (4.19c)
to zero one immediatly sees, that there is no unique solution for the steady state equations.
For any given value of

〈

x2
s

〉

exists a corresponding value of
〈

p2
s

〉

, such that the system is in a
steady state. Hence we have different stable states despite the fact that the system is coupled
to a zero temperature bath via the cavity modes. Only if we impose the extra condition,
that the steady state is a Heisenberg limited Gaussian wave packet like the ground state of
an oscillator, the solution becomes unique and we have
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〈

x2
〉

=
b2

2
and

〈

p2
〉

=
~

2

2b2
, (4.20)

where b is a solution of the equation:

~

b2m
= −2k2

[

U0 |αs|2 − ηeffh(y)Re(αs)
]

b2. (4.21)

The corresponding stationary field amplitude then reads

αs = −i (1− k2b2/4)ηeffh(y)

i∆c − κ− iU0(1− k2b2/2)
. (4.22)

Figure 4.3. Width b of the stationary oscillator ground state for ∆c = −10κ, depending
on U0. The other parameters are κ = 1 and η2

eff = 200κ. The solid line corresponds to
the directly driven atom, the dashed dotted line corresponds to the laser-driven cavity.

In Fig. 4.3 we plot the width of the system ground state b as a function of the coupling
strength U0 for negative pump cavity detuning ∆c = −10κ. We see a fairly weak dependence
of b on U0 while the corresponding stationary photon number shown in Fig. 4.6 shows a sharp
peak, when we hit resonance. Note, that there is only one physically acceptable solution
of (4.21). In principle this equation has two positive roots b2 but we have to exclude one of
them, because it corresponds to a width much larger than the wavelength invalidating the
harmonic approximation for the potential.

For comparison we now consider the case of cavity pumping as well, i.e., we set ηeff = 0
and η 6= 0. This make the equations a bit simpler. Using (4.6) we can again derive an
analogous system of nonlinear differential equations as above.

Assuming that the stationary state is a Gaussian state with width b, we can uniquely
solve the steady state equations for b and get

~
2

mb2
= −2k2

~U0 |αs|2 b2. (4.23)
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Here the corresponding stationary field value is

αs = − η

i [∆c − U0 (1− k2b2/2)]− κ. (4.24)

For comparison b for this case is also shown in Fig. 4.3 (dash-dotted line). Note that while
for strong coupling U0 � κ the values pretty much agree, we observe a significant difference
in the ground state width for small |U0|. To facilitate the comparison we have chosen η in
such a way (see the next section) as to minimize the difference in the maximum steady photon
number |αs|2 in the two cases (see Fig. 4.6). Although being a bit artificial this conditions
allows to compare the dynamical aspects of the two cases over a wide range of parameters.

4.4 Cavity cooling in the quantum regime

In the next step, we try to investigate the dissipative behavior of the coupled atom field
dynamics and see how the cavity damping can be used to extract energy from the system.
For red detuning (∆a < 0) the atom is pushed towards the field antinode, where the atom
interacts maximally with the field. Hence in order to allow dynamic localization of the
wavefunction one has to extract energy from the motion. In the classical version of the model
there are parameter regimes where one gets heating and others where one has an effective
friction force for the atomic motion. The regime of heating could be useful as well for the
tailored generation of motional excitations.

Here we will concentrate in the cooling regime, which appears for ∆c < U0 < 0, as only
this regime allows capturing and stable trapping. To this end we have to resort to numerical
simulations for some characteristic cases. In Fig. 4.4 we show such a numerical solution
of (4.19a) - (4.19d) for ∆c = −10 and U0 = −5. We assume a rather broad initial position
distribution

〈

x2
〉

≈ (λ/2)2 and choose
〈

p2
〉

according to the Heisenberg minimum uncertainty
relation. We see that after some damped oscillations, the width of the position distributions
tends to a stationary state much smaller than the initial condition. Hence the atoms trap
themselves close to an antinode. At the same time the field and momentum width reach
nonzero steady states as well. Note that the field intensity inside the resonator increases very
rapidly and is entirely due to coherent scattering from the atoms. The behavior is qualitative
similar, but still different from the case of direct light injection into the cavity. The numerical
solution is shown in Fig 4.5. Clearly the position dependent scattering only present in the
first case leads to a much more pronounced damping and atom field coupling.

Obviously the parameters characterizing the pump strengths ηeff and η are inherently
different. Hence to compare both setups we have to use some method to relate the two cases
in order to facilitate a useful comparison. Here we have chosen η in a way that the stationary
photon number reached in the case ∆c = U0 coincides in both cases. It is interesting,
that in this case the stationary photon numbers for different values of ∆c and U0 are also
very similar for a large range of parameters. For the chosen parameters the largest relative
difference between both photon numbers in the case of Fig. 4.6 is 5 · 10−3. This property
allows us now to quantify the difference in the damping rates and atomic localization for a
large range of parameters.
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Figure 4.4. Numerical Solutions for the directly driven atom. (a) Intensity |α(t)|2 of
the cavity field and (b),(c) Variances of x and p, respectively. The parameters in this
case are κ = 1, η2

eff = 200, ∆c = −10 and U0 = −5.
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Figure 4.5. Numerical solution for the atom inside the laser-driven cavity. (a) Intensity
|α(t)|2 of the cavity field and (b),(c) Variances of x and p, respectively. The parameters
in this case are also κ = 1, ∆c = −10 and U0 = −5, whereas η is chosen in the described
way for η2

eff = 200.
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Figure 4.6. Stationary photon number |αs(t)|2 of the cavity field for the laser-driven
cavity and the cavity with directly driven atom, in the case of the harmonic ground
state, whose width depends on U0 and ∆c. The parameters are κ = 1, ∆c = −10 and
η2
eff = 200. We choose η, such that both photon numbers coincide for ∆c = U0.

To quantify the cooling efficiency we fit the time dependence of the cycle averaged energy
of the atom

E =
1

2m

〈

p2
〉

+
mω2(t)

2

〈

x2
〉

, (4.25)

to an exponential decay, from which we then read off a damping rate. Here ω(t) is the
time-dependent trap frequency. Although quantum dynamical aspects of the cavity field are
in principle physically very interesting, we have to limit our parameter space here to large
enough photon numbers |αs|2 > 1 to legitimate the semiclassical approximation for the field.

Figure 4.7. Numerically calculated damping parameters for (a) ∆c = −10 and (b)
∆c = −5 for the directly driven atom (solid line) and the driven cavity (dash-dotted
line). The parameters are κ = 1, η2

eff = 200 and η as described in Fig. 4.6.

As obvious from Fig. 4.7 for large |∆c| we find a strong resonant enhancement of the damp-
ing rate around U0 ≈ ∆c/2. In general for large detuning and large |U0| (strong coupling)
the difference between driving the atom or the mode is not very pronounced. However, for
smaller |U0|, which is the regime more easily attainable experimentally, driving directly the
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atom shows improved damping and capturing than using a laser-driven cavity. The domain
of strong cooling broadens for smaller |∆c|.

Figure 4.8. Numerically calculated variance of the position of the atom in the stationary
states (a) ∆c = −10 and (b) ∆c = −5 for the directly driven atom (solid line) and the
driven cavity (dash-dotted line). Numerically calculated relation of the stationary energy
of the atom relative to the ground state energy of a harmonic oscillator with steady-state
frequency for (c) ∆c = −10 and (d) ∆c = −5 for the directly driven atom (solid line)
and the driven cavity (dash-dotted line). Other parameters are the same as in Fig. 4.7.

In Fig. 4.8(a)-(b) we calculate the stationary variance of the atomic position distribution.
Again we observe good localization for large |U0| in both cases, whereas the directly driven
atom is significantly better localized for smaller |U0|. Note that achieving the same photon
number requires a much stronger laser for atom driving, which could in practice limit its
applicability. A second important quantity to characterize the performance of the cooling is
the final temperature of the atom. In the quantum regime we have to compare the stationary
energy of the atom relative to the ground state energy of a harmonic oscillator with equivalent
steady-state frequency. Note that as our potential is time dependent a direct comparison of
the final energies as a function of various parameters makes much less sense. Interestingly
as seen from Fig. 4.8(c)-(d) the average excitation can reach very low values clearly in the
quantum regime. For the chosen parameters and initial conditions we, however, do not get
efficient ground state cooling. Again for small |U0| we see the largest differences between
atom and cavity driving.

In practice there are several other possibilities to optimize damping and cooling for a given
geometry. For a fixed detuning we can e.g. optimize the pump strength ηeff as a function
of coupling strength U0. We find that the maximum value of the damping rate only weakly
depends on ηeff. Nevertheless the maximum damping occurs at significantly lower values of
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|U0|, as we show in Fig. 4.9.

Figure 4.9. Value of U0 where the damping rate reaches its maximum in the case of
the driven atom for ∆c = −10 and κ = 1.

The above considerations are valid for fairly large atomic excitations as long as the har-
monic approximation for the potential is valid. As has been emphasized before [9] in the
regime of very weak excitations from the ground state, one can approximate the excitation
spectrum of the atom through linearization analytically. This allows us to check the reli-
ability of our numerical predictions at least qualitatively. Following a standard procedure
we set: α(t) = α0 + δα(t) and ψ(x, t) = e−iµt [ψ0(x) + δψ(x, t)], where µ is the energy of
the ground state, i.e. µ = ~ω0/2 + ~U0 |α0|2 + 2~ηeffh(y)Re(α0) for the driven atom and
µ = ~ω0/2 + ~U0 |α0|2 for the laser-driven cavity. By making the ansatz

δψ(x, t) = e−γt
[

e−iνtδψ+(x) + eiνtδψ−(x)∗
]

,

δα(t) = e−γt
[

e−iνtδα+(t) + eiνtδα−(t)∗
]

, (4.26)

we then obtain a linear system of equations for the eigenvalues ω = γ − iν and for the
excitation eigenstates δα±(t) and δψ±(x). In the harmonic approximation, the cavity field
only couples the ground state of the harmonic oscillator ψ0 and the second excited state ψ2.
For the excitations we hence can assume that our Hilbert space for the atomic wavefunction
is spanned by these two states, which reduces the eigenvalue problem to a 6×6 linear system.
Two of the eigenvalues are in both cases zero. The remaining characteristic polynomial then
reads:

0 =
(

4ω2
0 − ω2

)

[−∆c + U0 (1 + ωr/ω0)− iκ− ω]

× [−∆c + U0 (1 + ωr/ω0) + iκ+ ω]− 16
ω2
r

ω0
(4.27)

× [−∆c + U0 (1 + ωr/ω0)] |α0U0 + ηeffh(y)/2|2 ,
where ωr = ~k2/(2m). Note that the characteristic polynomial in the case of a laser-driven
cavity is very similar and can be obtained by setting ηeff = 0 and inserting the proper value
for α0.

In both cases ω0 is the ground state frequency of a harmonic oscillator (4.11) for the two
different driving schemes. The imaginary part of one of the eigenvalues can be interpreted
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Figure 4.10. Numerically calculated imaginary part of one of the eigenvalues of (4.27)
for the directly driven atom (solid line) and for the driven cavity (dash-dotted line). The
parameters are ∆c = −10, κ = 1, η2

eff = 200 and η as described in Fig. 4.6.

as energy loss and has to be compared to our numerically obtained damping rates. When we
plot this for a certain value of ∆c we obtain qualitatively the same behavior as in Fig. 4.7.
This can be seen in Fig. 4.10. Hence the weak excitations seem to be damped by the same
mechanisms.

4.5 Conclusions

Enclosing the far-off resonance laser field to manipulate ultracold atoms in a high-Q cavity has
many new and important dynamical quantities. Cavity decay opens a new decay channel for
motional energy (entropy) without the detrimental effects of ordinary spontaneous emmission.
In this way the atom can dynamically trap and cool itself, which could be very important for
coherent loading of optical microtraps. In particular by applying the driving field directly to
the atom we can significantly enhance the localization and cooling properties of the system.
At the same time monitoring the cavity output field will then give a direct observable on the
number and temperature of the loaded atoms. By proper choice of parameters one can also
create controlled excitations and manipulate the wave function in a well defined way.
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We study a generalized cold atom Bose Hubbard model, where the periodic optical
potential is formed by a cavity field with quantum properties. On the one hand the
common coupling of all atoms to the same mode introduces cavity mediated long range
atom-atom interactions and on the other hand atomic backaction on the field introduces
atom-field entanglement. This modifies the properties of the associated quantum phase
transitions and allows for new correlated atom-field states including superposition of
different atomic quantum phases. After deriving an approximative Hamiltonian including
the new long range interaction terms we exhibit central physical phenomena at generic
configurations of few atoms in few wells. We find strong modifications of population
fluctuations and next-nearest neighbor correlations near the phase transition point.

Laser fields can nowadays be routinely used to create tailored optical potentials for ultra-
cold neutral atoms [1]. Loading an atomic BEC into such a periodic standing light pattern
allows to experimentally implement systems, which are well described by a Bose Hubbard
Hamiltonian with externally controllable parameters [2–4]. In some recent spectacular ex-
periments the predicted Mott-insulator to superfluid quantum phase transition has been
observed [5]. As the light fields are normally intense and strongly detuned from any atomic
transition, their properties can be safely approximated by prescribed classical fields inde-
pendent of the atomic state. However, this is invalid if they are confined within an optical
resonator. For a sufficient atom number N and atom-field coupling g the fields become dy-
namical quantities depending on the atoms. In addition in a high-Q cavity the quantum
properties of the field get important and the atoms move in quantized potentials [6, 7]. Ul-
timately this allows different states of the lattice field (e.g. different photon numbers) to be
quantum correlated with different quantum phases of the atoms. As a striking example the
atoms could be in a superposition of a Mott insulator and a superfluid state connected with
a different cavity field amplitudes. Even in the classical field limit of high photon numbers
all atoms see the same field state and thus we get new long range atom-atom interactions.

†The author of the present thesis performed all the calculations in this publication.
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Figure 5.1. Sketch of the setup. N two-level atoms, strongly interacting with a single
standing wave mode of an optical cavity, are coherently driven by a laser field via the
cavity mirrors.

Interestingly the idea of implementing such combination of cavity QED and a BEC has exper-
imentally made such rapid progress recently, that its success can be expected very soon [8].

In this work we discuss the basic physical properties of such a generalized model of
ultracold atoms in a periodic potential generated by a quantized field mode. In a first step
we derive an approximate Hamiltonian analogous to the Bose Hubbard Hamiltonian including
a quantized potential. Its basic physical implications are then exhibited in two cases: (a)
a strongly damped cavity, where the field dynamics can be adiabatically eliminated, which
leads to a rescaling of the coupling parameters and new long range atom-atom coupling terms
and (b) a dynamical model where the field is approximated by its time dependent expectation
value derived from a dynamical equation containing atomic expectation values.

Model: Let us consider N two-level atoms with mass m and transition frequency ωa
strongly interacting with a single standing wave cavity mode of frequency ωc � ωa. The
system is coherently driven by a laser field with frequency ωp ≈ ωc through the cavity mirror
with amplitude η. Alternatively the atoms are illuminated transversally to the cavity axes
(see Fig. 5.1) with amplitude ζ.

Including damping, the dynamics is given by the master equation for the atom field density
operator %̇ = 1

i~ [H, %]+L%, where the Liouvillian L models dissipation. For large atom-pump
detuning spontaneous emission is negligible and cavity loss κ will be the dominant dissipative
process, i.e., L% = κ

(

2a%a† − a†a%− %a†a
)

. Here a is the annihilation operator for a cavity
photon.

As convenient choice we rewrite the Hamiltonian in a second quantized form, where the
direct interaction between the atoms is modeled by a pseudopotential and characterized by
the s-wave scattering length as:
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H =

∫

d3xΨ† (x)H0Ψ(x) +
1

2

4πas~
2

m

∫

d3xΨ† (x)Ψ† (x) Ψ (x) Ψ (x) . (5.1)

Here Ψ (x) is the field operator for the atoms and H0 is the single-particle Hamiltonian
in rotating-wave and dipole approximation:

H0 =
p2

2m
− ~∆aσ

+σ− − ~∆ca
†a− i~g(x)

(

σ+a− σ−a†
)

− i~h (x) ζ
(

σ+ − σ−
)

− i~η
(

a− a†
)

, (5.2)

where ∆a = ωp − ωa and ∆c = ωp − ωc is the atom-pump and cavity-pump detuning,
respectively. Along the cavity axis (x-direction) the atom-field coupling is set to g(x) =
g0 cos(kx), while the transverse laser beam forms a standing wave with amplitude h (x) =
h0 cos(kpy) in the y-direction, where we set y = 0 for our 1D-considerations. In the regime of
low saturation [9] (large ∆a) adiabatic elimination of the excited atomic state in (5.2) then
leads to:

H0 =
p2

2m
+cos2(kx)

(

~U0a
†a+ Vcl

)

−~∆ca
†a− i~η

(

a− a†
)

+~ηeff cos(kx)
(

a+ a†
)

. (5.3)

The important parameter U0 = g2
0/∆a here is the optical lattice depth per photon [6]

and also gives the refractive index of one atom at an antinode. The term containing ηeff =
g0h0ζ/∆a represents an effective pump through atomic scattering into the mode. Along x
the cavity field forms an optical lattice potential with period λ/2 and depth ~U0a

†a. For the
sake of generality we add an extra classical potential Vcl as well.

To derive a generalized Bose-Hubbard Hamiltonian we expand the Bloch states of a single
atom inside the lattice using localized Wannier functions [10] and rewrite the field operators
in Eq. (5.1) in these functions, keeping only the lowest vibrational state at each site (lowest
band) Ψ (x) =

∑

i biw (x− xi) to get:

H =
∑

k,l

Ek,lb
†
kbl +

(

~U0a
†a+ Vcl

)

∑

k,l

Jk,lb
†
kbl + ~ηeff

(

a+ a†
)

∑

k,l

J̃k,lb
†
kbl − i~η

(

a− a†
)

+
U

2

∑

k

b†kbk
(

b†kbk − 1
)

− ~∆ca
†a. (5.4)

The operators b†k (bk) correspond to the creation (annihilation) of an atom at site k and

the on-site interaction of two atoms is given by U = 4πas~2

m

∫

d3x |(x)|4 . As the nonlinear
part of the nearest-neighbor interaction is typically two orders of magnitude smaller than
the on-site interaction it is neglected as usually. In contrast to the classical field case [3] the
appearance of the cavity field operator does not allow to reassemble all hopping terms to
a single expression. To be still able to proceed analytically we assume a weak dependence
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of w(x) on the cavity photon number. Although the opposite limit might even contain
more interesting physics, we will concentrate on this limit to be able to proceed analytically.
Explicitly the coupling matrix elements read:

Ek,l =

∫

d3xw (x− xk)

(

− ~
2

2m
∇2

)

w (x− xl) , (5.5a)

Jk,l =

∫

d3xw (x− xk) cos2(kx)w (x− xl) , (5.5b)

J̃k,l =

∫

d3xw (x− xk) cos(kx)w (x− xl) . (5.5c)

These matrix elements are symmetric, i.e., Ek,l = El,k, Jk,l = Jl,k and J̃k,l = J̃l,k and
the on-site elements Ek,k and Jk,k are independent of k. As the next-nearest neighbor terms
are typically two orders of magnitude smaller than the nearest-neighbor amplitudes they are
omitted too. Note that in the case of transverse pumping two adjacent wells acquire different
depths since the cos in (5.3) changes sign periodically, which implies J̃k,k = −J̃k+1,k+1. The
Hamiltonian (5.4) now reads:

H = E0N̂ +EB̂ +
(

~U0a
†a+ Vcl

)(

J0N̂ + JB̂
)

+ ~ηeff

(

a+ a†
)

J̃0

∑

k

(−1)k+1n̂k

− ~∆ca
†a− i~η

(

a− a†
)

+
U

2

∑

k

n̂k (n̂k − 1) , (5.6)

where we introduced N̂ =
∑

k n̂k =
∑

k b
†
kbk (number operator) and B̂ =

∑

k

(

b†k+1bk + h.c.
)

(jump operator). E0, J0 and J̃0 are on-site matrix elements, whereas

E and J are the site-to-site hopping elements. The Hamiltonian (5.6) is a central result of
this work and gives the starting point to discuss the physics below.

Lets first look at the light field dynamics and write down the corresponding Heisenberg
equation:

ȧ =
[

i
(

∆c − U0

(

J0N̂ + JB̂
))

− κ
]

a+ η − iηeffJ̃0

∑

k

(−1)k+1n̂k. (5.7)

We see that the quantum state of the field depends not only on the number of atoms N̂ but
also on coherences via B̂. Particularly interesting effects can also be expected from the last
term describing transverse pumping as the corresponding operator has an alternating sign
for neighboring wells. Hence it vanishes exactly for a Mott insulator state, while it gives
a nonzero contribution for a superfluid state. Nevertheless we will concentrate here on the
more simple setup pumping acts via a cavity mirror and set ηeff = 0 below.

Bad cavity limit: The common interaction of all atoms with the same field implies a
complicated dynamics. Luckily in typical setups the field damping rate κ is the fastest time
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Figure 5.2. (a) Numerically found average potential depth Veff = Vcl + ~U0〈a†a〉 of the
ground state of (5.6) for N = 2 atoms in two wells. (b) Relative error in this potential
using expansion (5.9). The parameters are η = 2κ, Vcl = −4ER and the scattering length
is as = 0.1ER.

scale in the system. This allows to eliminate the cavity degrees of freedom by formally solving
equation (5.7) for a = η/[κ − i(∆c − U0(J0N̂ + JB̂))] and inserting this back to (5.4). As
N̂ commutes with B̂ this gives no ordering problem. For a fixed atom number N = 〈N̂〉 we
then expand a to second order in the small tunneling matrix element J :

a ≈ η

κ− i∆′
c

[

1− iU0J

κ− i∆′
c

B̂ − U2
0J

2

(κ− i∆′
c)

2
B̂2

]

, (5.8)

where ∆′
c = ∆c − U0J0N is a rescaled detuning, so that we have:

H =

[

E + J

(

Vcl − ~U0η
2 κ2 −∆′

c
2

(

κ2 + ∆′
c
2
)2

)]

B̂ − 3~U2
0 η

2∆′
c

3κ2 −∆′
c
2

(

κ2 + ∆′
c
2
)3 J

2B̂2

+
U

2

∑

k

n̂k (n̂k − 1) . (5.9)

Obviously H now contains cavity induced rescaling of the tunnel coupling proportional
to B̂ as well as nonlocal correlated two atom hopping terms proportional to B̂2 mediating
long range interactions. In Fig. 5.2 we show the excellent agreement of the field calculated
from the expansion (5.8) compared to a full numerical inversion within a large parameter
range as used below. Note that the matrix elements still weakly depend on the depth of the
optical potential via 〈B̂〉 but as J is small they can be approximated neglecting the B̂-term
and setting J0 = 1 in the field expectation value α0 = η/[κ − i(∆c −NU0)].

Lets now discuss some key physics. In the simplest case of a single particle in two wells
the symmetric and antisymmetric superpositions of the atom in either site are eigenstates
with an energy difference
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Figure 5.3. (a) Energy difference ∆E as function of ∆c for a single atom in two wells
for U0 = −1.2κ (solid line) and U0 = −0.4κ (dashed line). The associated lattice depth
is shown in (b). The other parameters are η = 2κ and Vcl = −4ER.

∆E = 2

[

E + J

(

Vcl − ~U0η
2 κ2 −∆′

c
2

(

κ2 + ∆′
c
2
)2

)]

, (5.10)

strongly depending on the cavity parameters (see Fig. 5.3a). Hence detuning gives a
handle to control the tunnel coupling and atom confinement (Fig. 5.3b). Note that the
symmetric and antisymmetric eigenstate are associated with different field amplitudes (lattice
depths).

Adding more atoms the interaction term comes to play and the ground state of the system
is a superposition of different atomic configurations. Here the cavity parameters influence
the position and shape of the well known Mott-insulator superfluid transition [2–4]. An
important quantum feature appears for fields where the uncertainty in the photon number
is not neglible. For an average photon number n̄ generating a potential depth close to the
phase transition point the photon numbers n̄ ± 1 are than associated to different atomic
phases, so that the ground state contains atomic states of different phases correlated with
the corresponding photon number. Even for a system being dominantly in the insulator
phase, photon number fluctuations then allow the atoms to jump. This is shown in Fig. 5.4a
for 4 particles in 4 wells. Here we compare the site occupation probabilities as a function of
scattering length for a purely classical and a quantum potential where the photon number
uncertainty allows hopping even in the insulator regime. This behaviour can be enhanced or
reduced through cavity mediated interaction as shown in Fig. 5.4b, where we plot the atom
number fluctuations in one well as a function of as for different atom-cavity detunings and
compare it to the classical field case. Clearly the atom number fluctuations are enhanced on
one side of the cavity resonance and suppressed on the other.

The appearance of long range 4 particle interactions mediated by the B̂2-term in (5.9)
can be seen by comparing the density-density correlation functions 〈ninj〉 [11] for nearest and
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Figure 5.4. (a) Occupation probabilities pi for i atoms in one well as function of
scattering length for the ground state of 4 atoms in 4 wells. The parameters are U0 = −κ
and ∆c = −3.75κ and Veff = ~U0〈a†a〉 = −4ER. For comparison the dashed lines
correspond to an equivalent classical potential, i.e., 〈a†a〉 = 0 and Vcl = −4ER. (b)
Fluctuations of atom number in one well as a function of as for different cavity detunings
∆c = −5κ (solid line), ∆c = −3κ (dashed line) and a classical field (dashed-dotted line).

next nearest neighbor sites. Depending on cavity parameters as shown in Fig. 5.5a each of
the two correlations can be enhanced or reduced with respect to the classical potential case.

Coupled atom-field dynamics in the semiclassical limit: As final point we turn
to the classical field limit of the coupled Hamiltonian (5.6) for fixed N and large photon
number. Here the field is approximately in a coherent state |α〉 and the system is assumed
to evolve as a product state |Φ〉 = |ψ〉 ⊗ |α(t)〉. The Heisenberg equation (5.7) for the field
then reduces to a classical equation for α containing expectation values of atomic operators:

α̇(t) =
[

i
(

∆c − U0〈ψ|J0N̂ + JB̂|ψ〉
)

− κ
]

α(t) + η, (5.11a)

i~
d

dt
|ψ〉 =

[

E + J
(

Vcl + ~U0 |α(t)|2
)]

B̂|ψ〉+ U

2

∑

k

n̂k (n̂k − 1) |ψ〉. (5.11b)

α(t) is then inserted back into the atomic Hamiltonian like a classical time dependent
potential Vcl [9, 12]. Similar to the case of a time dependent Gross-Pitaevskii equation [12] the
corresponding Schrödinger equation can be solved simultaneously, where the matrix elements
E, J have to be recalculated in each time step.

Although the factorizing assumption is in general doubtful and one has to check the
dynamical restriction to the lowest band, this procedure gives a first insight in the dynamical
behavior of the model. As a generic example we show the time evolution of the uncertainty
of the site occupation number starting with a ’superfluid’ state at t = 0, when the onsite
interaction is turned on. Fig. 5.5b shows that in contrast to a fixed external potential the
dynamic cavity field leads to a damping of the fluctuations approaching a Mott insulator
state.
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Figure 5.5. (a) Difference of the density-density correlation functions: 〈n1n3〉−〈n1n2〉.
Parameters are as in Fig. 5.4b. (b) Dynamical evolution of atom number fluctuations in
one well starting from an interaction free ground state and a sudden turn on of onsite-
interaction. A linear fit is depicted by the dashed line. Here we chose U0 = −κ, ∆c =
−4.2κ, Vcl = 0, as = 3ER and η such that Veff = −4ER.

In summary we have shown that a dynamical quantum optical potential for ultracold
atoms invokes a wealth of new physics. The effects are pronounced in the limit of strong
coupling and small photon numbers but long range interactions persist even in the bad cavity
limit within a classical field approximation. The considered systems are in range of current
experimental capabilities and should allow to control and study new quantum phases.
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[8] B. Nagorny, T. Elsässer, and A. Hemmerich, Phys. Rev. Lett. 91, 153003 (2003); J. A.
Sauer et al., Phys. Rev. A 69, 051804 (2004).



BIBLIOGRAPHY 89

[9] C. Maschler and H. Ritsch, Opt. Comm. 243, 145 (2004).

[10] C. Kittel, Quantum Theory of Solids, John Wiley & Sons, (New York 1963).

[11] T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B 61, 12474 (2000).

[12] P. Horak and H. Ritsch, Phys. Rev. A 63, 23603 (2001).





Chapter 6

Publication

Ultracold Atoms in Optical Lattices Generated by Quantized

Light Fields†

arXiv: quant-ph/0710.4220 (submitted to European Journal of Physics D)

C. Maschler1, I. B. Mekhov1,2, and H. Ritsch1

1) Institut für theoretische Physik, Universität Innsbruck,
A-6020 Innsbruck, Austria

2) St. Petersburg State University, Faculty of Physics,
St. Petersburg, Russia

We study an ultracold gas of neutral atoms subject to the periodic optical potential
generated by a high-Q cavity mode. In the limit of very low temperatures, cavity field
and atomic dynamics require a quantum description. Starting from a cavity QED single
atom Hamiltonian we use different routes to derive approximative multiparticle Hamilto-
nians in Bose-Hubbard form with rescaled or even dynamical parameters. In the limit of
large enough cavity damping the different models agree. Compared to free space optical
lattices, quantum uncertainties of the potential and the possibility of atom-field entangle-
ment lead to modified phase transition characteristics, the appearance of new phases or
even quantum superpositions of different phases. Using a corresponding effective master
equation, which can be numerically solved for few particles, we can study time evolution
including dissipation. As an example we exhibit the microscopic processes behind the
transition dynamics from a Mott insulator like state to a self-ordered superradiant state
of the atoms, which appears as steady state for transverse atomic pumping.

6.1 Introduction

Laser light, far red detuned from an atomic resonance, is nowadays a standard tool in ex-
perimental quantum optics to create tunable optical potentials [1] which can be loaded with
ultracold atoms to provide for a plethora of possibilities to study quantum properties of
many-body strongly correlated systems [2]. The high level of microscopic understanding and
extensive control of the light fields and atoms allow to implement genuine models like e.g.
the Bose-Hubbard (BH) model [3, 4]. Initially originating from condensed matter physics [5]

†The author of the present thesis performed all the calculations in this publication. I. M. acted as a
discussion partner of all the aspects of this work.
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it has been used to study the Mott insulator to superfluid phase transition [6] in detail and in
real time. Adjusting several of the lattice parameters as the intensity and the configuration
of the lattice lasers provides a versatile toolbox of techniques to control the dynamics of the
atoms in the lattice [7]. Moreover, the collisional properties of the certain types of atoms
can be tailored by means of magnetic [8] or optical [9] Feshbach resonances. Using extra
confinement it was even possible to observe the Mott insulator to superfluid transition in
1D [10, 11] and 2D [12], followed by other spectacular demonstrations of condensed matter
physics phenomena as the realization of a Tonks gas in 1D [13, 14] and the Berezinskii-
Kosterlitz-Thouless phase transition in 2D [15]. Theoretically many more proposals to apply
these methods to spin systems and investigate further fascinating properties of strongly cor-
related systems were put forward (see [16] for a review).

In all of these approaches, the light fields were approximated by classical, externally
prescribed fields independent of the atoms. This requires intense light, far detuned from any
atomic transition. Of course this assumption holds no longer if the light, which generates
the optical lattice, is enhanced by an optical resonator. In this case - given a sufficient atom
number N and atom-field coupling g - the field itself becomes a dynamical quantity [17]
depending on the atomic distribution. As all atoms are coupled to the same field modes, this
immediately introduces substantial long range interactions, which cannot be ignored as in free
space. In specially designed cases this force induces coherently driven atoms to self-organize
in regular patterns as predicted in Ref. [18, 19] and subsequently experimentally verified [20].

In addition, in a high-Q optical resonator relatively low photon numbers are sufficient to
induce strong forces. This was demonstrated by trapping an atom in the field of just a single
photon [21, 22]. Hence the inevitable photon number fluctuations induced by cavity damping
induce force fluctuations on the atoms inducing diffusion. At the same time as cavity photon
loss constitutes a dissipation channel, it can also carry out energy and entropy of the system.
This opens possibilities for cooling of atomic motion [23–26], as demonstrated by beautiful
experiments in the group of Rempe [27, 28]. Since this cooling mechanism does not require
the existence of closed optical cycles it could even be used for qubits [29] or to damp quantum
oscillations or phase fluctuations of a BEC coupled to a cavity field [30, 31].

For low photon numbers the quantum properties of the light field get important as well and
the atoms are now moving in different quantized potentials determined by the cavity photon
number. Quantum mechanics of course allows for superpositions of photon numbers invoking
superpositions of different optical potentials for the atoms. First simplified models to describe
this new physics were recently proposed by us [32] and in parallel by other authors [33]. As
the intracavity field itself depends on the atomic state (phase), different atomic quantum
states are correlated with different states of the lattice field with differing photon number
distributions. In this way quantum mechanics allows for the creation of very exotic atom-field
states, like a superposition of a Mott-insulator and superfluid phase, each thereof correlated
with a different photon number. Some quite exotic looking phase diagrams for this system
were already discussed in Ref. [33]. Without resorting to the full complex dynamics of the
system, the quantum correlations between the field and the atomic wavefunctions open the
possibility of non-destructively probing the atomic state by weak scattering of coherent light
into the cavity mode [34] and carefully analyzing its properties [35].

It is quite astonishing, that experimental progress in the recent years has made such sys-
tems experimentally accessible and at present already several experimental groups succeeded
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in loading a BEC into a high-Q optical cavity [36–39]. A reliable analysis of these experiments
has made more thorough theoretical studies of systems mandatory.

In this work we concentrate on the study of an ultracold gas in optical lattices including
the quantum nature of the lattice potential generated from a cavity field. This extends and
substantiates previous studies and predictions on such a system by us [32] as well as other
authors [33]. Here we limit ourselves to the case of a high-Q cavity which strongly enhances
a field sufficiently red detuned from any atomic transition to induce an optical potential
without significant spontaneous emission. In particular we address two different geometric
setups, where either the cavity mode is directly driven through one mirror, or the atoms are
coherently excited by a laser and scatter light into the cavity mode. The cavity potential
can also be additionally enhanced by some extra conservative potential applied at a different
frequency [40, 41]. These two generic cases leads to quite different physical behavior and
allow to discuss several important aspects of the underlying physics.

This paper is organized as follows. Sec. 6.2 is devoted to a systematic presentation of our
model and various simplifying approximations as adiabatic elimination of the excited states
of the atoms and subsequent formulation of an effective multi-particle Hamiltonian in second
quantized form. In section 6.3, we specialize on the simplest generic case of a coherently
driven cavity and approximate the corresponding Hamiltonian by adiabatic elimination of
the cavity field. We investigate the properties thereof, corresponding to the influence of the
cavity on the Mott-insulator to superfluid quantum phase-transition and identify the regime
of validity for the elimination of the cavity field. Finally, we compare these results with the
dynamics of the full master equation. In Sec. 6.4 we study the more complex case of atoms
coherently driven by a laser field transversal to the cavity axis, where it is much harder to
find valid analytical simplifications and one has to resort to numerical studies of few particle
dynamics. Finally, we conclude in Sec. 6.5.

6.2 Model

We start with N two-level atoms with mass m and transition frequency ωeg strongly inter-
acting with a single standing wave cavity mode of frequency ωc. We also consider coherent
driving of the atoms at frequency ωp and strength ζ and the cavity with amplitude η (see
Fig. 6.1). Note that in the specific examples later we will consider only one pump laser beam
at a time.

Using the rotating-wave and electric-dipole approximation, we can describe a single atom
of this system by the Jaynes-Cummings Hamiltonian [42]

H(1) = H
(1)
A +H

(1)
R +H

(1)
Int. (6.1)
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Figure 6.1. (color online). Scheme of atoms inside an optical cavity, driven by two
external lasers.

Explicitly the different Hamiltonians for the atoms, the field mode and the interaction read:

H
(1)
A =

p̂2

2m
+ Ve(x)σ+σ− + Vg(x)σ−σ+ + ~ωV Gσ

+σ− − i~h(x)ζ
(

σ+e−iωpt − σ−eiωpt
)

,

(6.2a)

H
(1)
R = ~ωca

†a− i~η
(

aeiωpt − a†e−iωpt
)

, (6.2b)

H
(1)
Int = −i~g(x)

(

σ+a− σ−a†
)

. (6.2c)

Here h(x) denotes the mode-function of the transverse pump field, g(x) denotes the cavity
mode function and the field operator a describes the annihilation of a cavity photon with
frequency ωc. The transition frequency of the atom is given by ωeg. Ve(x) and Vg(x) are
external trapping potentials for the atom in the excited and the ground state, respectively.
In order to change to slowly varying variables we apply a unitary transformation with oper-
ator U(t) = exp[iωpt

(

σ+σ− + a†a
)

], such that we end up with the following single-particle
Hamiltonian, using the same symbols for the transformed quantities:

H
(1)
A =

p̂2

2m
+ Ve(x)σ+σ− + Vg(x)σ−σ+ − ~∆aσ

+σ− − i~h(x)ζ
(

σ+ − σ−
)

, (6.3a)

H
(1)
R = −~∆ca

†a− i~η
(

a− a†
)

, (6.3b)

H
(1)
Int = −i~g(x)

(

σ+a− σ−a†
)

, (6.3c)

where ∆c = ωp − ωc, ∆a = ωp − ωeg denotes the detunings of the cavity and the atomic
transition frequency from the pumping field frequency. In order to describe the situation for
N atoms, we use the single-particle Hamiltonian of Eq. (6.1) and (6.3) in second quantization
formalism[43], i.e.,

H = HA +HR +HA−R +HA−P +HA−A. (6.4)

The terms in this expression correspond to the single particle terms in (6.2) and (6.3). Hence,
HA and HR model the free evolution of the atomic and the field variables, respectively. They
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read as:

HA =

∫

d3x

[

Ψ†
g(x)

(

− ~
2

2m
∇2 + Vg(x)

)

Ψg(x) + Ψ†
e(x)

(

− ~
2

2m
∇2 − ~∆a + Ve(x)

)]

Ψe(x),

(6.5)
where Ψg(x) and Ψe(x) denotes the atomic field operators for annihilating an atom at position
x in the ground state and the excited state, respectively. They obey the usual bosonic
commutation relations

[

Ψf (x),Ψ†
f ′(x

′)
]

= δ3
(

x− x′) δf,f ′ (6.6a)
[

Ψf (x),Ψf ′(x
′)
]

=
[

Ψ†
f (x),Ψ†

f ′(x
′)
]

= 0, (6.6b)

for f, f ′ ∈ {e, g}. The field operator remains unchanged, i.e., HR = −~∆ca
†a− i~η

(

a− a†
)

.
The two-body interaction is modeled by a short-range pseudopotential [44], characterized by
the s-wave scattering length as, leading to a Hamiltonian

HA−A =
U

2

∫

d3xΨ†
g(x)Ψ†

g(x)Ψg(x)Ψg(x), (6.7)

where U = 4πas~
2/m. The coupling of the cavity field with the atoms inside the cavity is

given by

HA−R = −i~
∫

d3xΨ†
g(x)g(x)aΨe(x) + h.c., (6.8)

whereas the interaction with the laser beam, which coherently drives the atoms, reads

HA−P = −i~ζ
∫

d3xΨ†
g(x)h(x)Ψe(x) + h.c.. (6.9)

Let us now calculate the Heisenberg equations for the various field operators, starting
with the operator for the excited state, i.e.,

∂Ψe(x)

∂t
= i

[

~

2m
∇2 − Ve(x)

~
+ ∆a

]

Ψe(x)− [g(x) + ζh(x)] Ψg(x). (6.10)

The first term corresponds to the free evolution of the atomic state, whereas the second term
describes the absorption of a cavity photon or a pump photon together with the annihilation
of a ground state atom. Similarly, the equation for the ground state operator reads:

∂Ψg(x)

∂t
= i

[

~

2m
∇2 − Vg(x)

~
− U

~
Ψ†
g(x)Ψg(x)

]

Ψg(x) + [g(x) + ζh(x)] Ψe(x). (6.11)

Finally, the Heisenberg equation for the cavity field operator is given by:

∂a

∂t
= i∆ca+ η +

∫

d3xg(x)Ψ†
g(x)Ψe(x). (6.12)

Again, the first term corresponds to the free field evolution, whereas the last two terms are
driving terms of the cavity field.
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As we want to treat temperatures close to T = 0 we have to avoid heating and the model
only makes sense for very weak atomic excitation, where there is only negligible spontaneous
emission. In this limit we can adiabatically eliminate the excited states from the dynamics
of our system. This requires large atom-pump detunings ∆a, where we also can neglect the
kinetic energy term and the trapping potential in (6.10) compared to ∆a. Necessarily, we
assume that the field operators Ψg(x) and a vary on a much slower time scale than the 1/∆a

terms, such that we obtain:

Ψe(x, t) = − i

∆a
[ζh(x) + g(x)a(t)] Ψg(x, t). (6.13)

Inserting this expression for Ψe(x) into (6.11) and (6.12) leads then to:

∂Ψg(x)

∂t
= i

[

~

2m
∇2 − Vg(x)

~
− ζ2h2(x)

∆a
− g2(x)

∆a
a†a

−ζh(x)g(x)

∆a

(

a+ a†
)

− U

~
Ψ†
g(x)Ψg(x)

]

Ψg(x), (6.14)

∂a

∂t
= i

[

∆c −
1

∆a

∫

d3xg2(x)Ψ†
g(x)Ψg(x)

]

a− iζ

∆a

∫

d3xh(x)Ψ†
g(x)Ψg(x) + η. (6.15)

The central trick is now to find an effective Hamiltonian Heff which leads to the same
dynamics as given by Eq. (6.14) and (6.15). Thus this Hamiltonian has to obey:

i~
∂Ψg(x)

∂t
= [Ψg(x),Heff] and i~

∂a

∂t
= [a,Heff] . (6.16)

From this we can easily read off a possible effective Hamiltonian of the form:

Heff =

∫

d3xΨ†
g(x)

{

− ~
2

2m
∇2 + Vg(x)

+
~

∆a

[

ζ2h2(x) + g2(x)a†a+ ζh(x)g(x)
(

a+ a†
)]

}

Ψg(x)

+
U

2

∫

d3xΨ†
g(x)Ψ†

g(x)Ψg(x)Ψg(x)− i~η
(

a− a†
)

− ~∆ca
†a. (6.17)

The corresponding single particle Hamiltonian, which leads to this second quantized Hamil-
tonian is [45]:

H
(1)
eff =

p2

2m
+Vg(x)+

~

∆a

[

ζ2h2(x) + g2(x)a†a+ ζh(x)g(x)
(

a+ a†
)]

−i~η
(

a− a†
)

−~∆ca
†a.

(6.18)

This simplified effective atom-field Hamiltonian will be the basis of our further consid-
erations. It is, however, still much too complex for a general solution and we will have to
make further simplifying assumptions. Hence at this point we will restrict ourselves to 1D
motion along the cavity axis. In an experimental setup this could be actually realized by
a deep radial trapping potential, but we think that at least qualitatively the model should
also capture the essential physics if some transverse motion of the particles was allowed. As
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one consequence this assumption requires a rescaling of the effective two-body interaction
strength [46], which enters as an open parameter in our model anyway.

Mathematically we thus end up with a one-dimensional optical lattice, wich is partly
generated by the resonator field and superimposed onto a prescribed extra trapping po-
tential Vg(x) = Vg(x). The mode function of the cavity along the axis is approximated
by g(x) = g(x) = g0 cos(kx) and the transverse laser beam forms a broad standing wave
h(x) = h0 cos(kpy), which in our one-dimensional considerations (y = 0) is just a constant
term that we can eventually omit in (6.17).

As we consider external pumping of atoms and mode, we essentially treat an open system
and we have to deal with dissipation as well. Such dissipation processes are modeled by
Liouvillean terms L appearing in the master equation for the atom-field density operator,
i.e.,

%̇ =
1

i~
[Heff, %] + L%. (6.19)

As mentioned above, we assume large atom-pump detuning ∆a, suppressing spontaneous
emission to a large extend. However, we still have to deal with the cavity loss κ, which
will thus be the dominant dissipation process. Hence the corresponding Liouvillean using a
standard quantum optics approach [49] reads:

L% = κ
(

2a%a† − a†a%− %a†a
)

. (6.20)

Equivalently in the corresponding Heisenberg equation for the field operator, cavity loss
leads to damping terms and fluctuations, so that it then reads:

ȧ =

{

i

[

∆c −
g2
0

∆a

∫

dxΨ†
g(x) cos2(kx)Ψg(x)

]

− κ
}

a

− iζg0h0

∆a

∫

dxΨ†
g(x) cos(kx)Ψg(x) + η + Γin. (6.21)

Since we will be mainly interested in normally ordered quantities and assume vacuum (T=0)
outside the cavity, the input noise operators Γin will not enter in the dynamics, such that we
will omit them later.

Let us proceed and transform the Hamiltonian in a more commonly known form. Follow-
ing standard procedures, one constructs maximally localized eigenfunctions at each site and
expands the atomic field operator Ψg(x) in terms of single atom Wannier functions [48]

Ψg(x) =
∑

n

∑

k

bn,kwn(x− xk), (6.22)

where bn,k corresponds to the annihilation of a particle in the n−th energy band at site k.
Since we assume the involved energies to be much smaller than the excitation energies to the
second band, we are able to keep only the lowest vibrational state in the Wannier expansion,
i.e., Ψg(x) =

∑

k bkw(x−xk), where w(x) = w0(x). This yields to the following Hamiltonian:

H =
∑

k,l

Eklb
†
kbl +

(

~U0a
†a+ Vcl

)

∑

k,l

Jklb
†
kbl + ~ηeff

(

a+ a†
)

∑

k,l

J̃klb
†
kbl − i~η

(

a− a†
)

+
1

2

∑

i,j,k,l

Uijklb
†
i b

†
jbkbl − ~∆ca

†a, (6.23)
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where the addendum eff of the Hamiltonian is omitted. Here we introduced an important
characteristic parameter of atomic cavity QED, namely the refractive index U0 of a single
atom at an antinode, which is given by U0 = g2

0/∆a. It gives the frequency shift of the cavity
mode induced by a single atom at an antinode and also corresponds to the optical lattice
depth for an atom per cavity photon [17]. Similarly, the parameter ηeff = g0h0ζ/∆a describes
the position dependent effective pump strength of the cavity mode induced by the scattered
light from a single atom at an antinode.

Note that in contrast to a free space lattice the Wannier state expansion, Eq. 6.22 is a
rather formal procedure here, as the potential depth and thus the Wannier functions depend
on the cavity field and thus in principle are dynamic quantities, which have to be determined
consistently. This is of course consequently also true for the various coupling parameters
in the Hamiltonian. The above model thus can only be valid as long as the single band
approximation stays valid during the system dynamics. In particular in the case, where the
atoms are trapped solely by the cavity field [21, 22] this is not valid for very low photon
numbers.

In principle this problem can be circumvented by adding an additional external trapping
potential Vg(x) to the model, which guarantees a minimum potential depth even in the case of
zero cavity photons. Practically this is feasible, for instance, with a far detuned, off-resonant
dipole trap (FORT) [50], i.e., Vg(x) = Vcl cos

2(kFx), where kF denotes the wave number of the
FORT field. In the experimental realization, the frequency of the corresponding laser field ωF
is only very few free spectral ranges separated from the main cavity frequency ωc [27, 51, 52].
Hence, in the vicinity of the cavity center, the coincidence of the FORT field and the cavity
field is very good, and we can replace in good agreement cos2(kFx) with cos2(kx).

Let us remark here that by including this extra potential we have saved our model and
allowed for further analytical analysis of the dynamics, but we also have thrown out a great
deal of interesting physics already. Actually, for very few atoms one still can solve the full
Hamiltonian without the restriction to the lowest bands by quantum Monte Carlo wave-
function simulations. Some early results of such simulations can be found in Ref. [55, 56].
However, this is not the subject of this work and we will proceed here with the effective
lattice model under the assumption of a deep enough extra potential or strong enough cavity
fields.

Note that in (6.23), in contrast to the case of the Bose-Hubbard model in a classical optical
lattice, where the matrix elements of the potential and kinetic energy can be merged, here
two separate parts exist due to the presence of the cavity field operators in the Hamiltonian.
Explicitly they read as:

Ekl =

∫

dxw(x− xk)
(

− ~
2

2m
∇2

)

w(x− xl), (6.24a)

Jkl =

∫

dxw(x− xk) cos2(kx)w(x − xl), (6.24b)

J̃kl =

∫

dxw(x− xk) cos(kx)w(x − xl). (6.24c)

The on-site elements Jkk and Ekk are independent of the lattice site k, whereas J̃kl changes
sign periodically, i.e., J̃kk = −J̃k+1,k+1 due to the cos, which has twice the periodicity of
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the lattice. This also accounts for J̃k,k+1 = 0. Note that the existence of this term implies
that two adjacent wells acquire different depths forcing us to reassure that for the case of
the directly pumped atom ηeff(a+ a†) cos(kx) is only a small perturbation of the lattice. As
the next-nearest elements are typically two orders of magnitude smaller than the nearest-
neighbor term [3] they can safely be neglected (tight-binding approximation). Furthermore,
in the case of the nonlinear interaction matrix elements,

Uijkl = g1D

∫

dxw(x− xi)w(x− xj)w(x − xk)w(x − xl) (6.25)

we can omit the off-site terms since they are also typically two orders of magnitude smaller
than the on-site interaction matrix elements. Note that g1D is the one-dimensional on-site
interaction strength, originating from an adjustment of the scattering length as, due to the
transversal trapping [46]. As a central result of our studies we therefore obtain a generalized
Bose-Hubbard Hamiltonian:

H = E0N̂ +EB̂ +
(

~U0a
†a+ Vcl

)(

J0N̂ + JB̂
)

+ ~ηeff

(

a+ a†
)

J̃0

∑

k

(−1)k+1n̂k

− ~∆ca
†a− i~η

(

a− a†
)

+
U

2

∑

k

n̂k (n̂k − 1) , (6.26)

where the nonlinear on-site interaction is characterized by U = 4πas~2

m

∫

dx |w(x)|4 . In ad-

dition, we introduced the number operator N̂ =
∑

k n̂k =
∑

k b
†
kbk and the jump operator

B̂ =
∑

k

(

b†k+1bk + h.c.
)

. The site-independent on-site matrix elements are labeled E0, J0

and J̃0, whereas E and J are the site-to-site hopping elements. Note that for strong classical
intracavity fields and no transverse pump we recover the standard Bose-Hubbard Hamilto-
nian.

Finally, let us remark that we now can also rewrite the field Heisenberg Eq. (6.21) in the
above terms, which gives:

ȧ =
{

i
[

∆c − U0

(

J0N̂ + JB̂
)]

− κ
}

a+ η − iηeffJ̃0

∑

k

(−1)k+1n̂k. (6.27)

Here we clearly see that besides the number operator N̂ for the atoms also the coherence
properties via the operator B̂ and statistics via n̂k plays a decisive role in the field dynamics.
As this field acts back on the atomic motion, interesting and complex coupled dynamics
can be expected from this model, which was partly already discussed in [32, 33] and will be
elucidated more in the remainder of this work.

6.3 Cavity pump

Let us now turn to the conceptually simplest case and restrict the pumping only to the cavity,
where a only single mode is coherently excited (cavity pumping). This mode will generate an
optical potential in addition to the prescribed external potential. For large enough photon
numbers the external potential can be even omitted and the particles are trapped solely by
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the cavity field. As essential ingredient in the dynamics, the identical coupling of all atoms
to this same field mode induces a long-range interaction between the atoms independent of
their positions. Setting ηeff = 0, the Hamiltonian (6.26) is reduces to:

H = E0N̂ +EB̂ +
(

~U0a
†a+ Vcl

)(

J0N̂ + JB̂
)

− ~∆ca
†a− i~η

(

a− a†
)

+
U

2
Ĉ. (6.28)

Here we introduced Ĉ =
∑

k n̂k (n̂k − 1) for the operator of the two-body on-site interaction.
Still we see that the corresponding Heisenberg equation for the cavity field:

ȧ =
{

i
[

∆c − U0

(

J0N̂ + JB̂
)]

− κ
}

a+ η. (6.29)

depends on photon number and coherence. For very weak fields this yields an atom statistics
dependent cavity transmission spectrum, which was studied in some detail in Ref. [35]. Here
we go one step further and study the dynamical back action of the field onto atomic motion
and field mediated atom-atom interaction, which appear at higher photon number. As the
model is still rather complex we need some further approximations at this point in order to
catch some qualitative insight.

6.3.1 Field-eliminated Hamiltonian

Although the influence of the cavity field on the atoms is equal on all particles, their common
interaction generates a dynamics much more complex than for a Bose-Hubbard model with
prescribed external potential. This is more analogous to real solid state physics where the
state of the electrons also acts back on the potentials. To exhibit the underlying physics,
we will now derive an approximate Hamiltonian, which solely depends on particle variables
by adiabatically eliminating the field (6.28). This should be valid when the damping rate
κ of the cavity generates a faster time scale than the external atomic degrees of freedom.
Actually as tunneling is mostly a very slow process (much slower than the recoil frequency),
this will be almost always the case in practical experimental setups. To this end, we simply
equate (6.29) to zero and obtain formally a = η/{κ− i[∆c−U0(J0N̂+JB̂)]}. In the following
we constrain ourselves to the case of a fixed number of atoms, i.e., N̂ = N1. The very small
tunneling matrix element J can be used as an expansion parameter, leading to:

a ≈ η

κ− i∆′
c

[

1− i U0J

κ− i∆′
c

B̂ − (U0J)2

(κ− i∆′
c)

2
B̂2

]

, (6.30)

where we introduced a shifted detuning ∆′
c = ∆c − U0N .

In order to obtain an effective Hamiltonian, where the cavity degrees of freedom are
eliminated, we replace the field terms in (6.28), by the steady state expressions (6.30), as well
as in the Liouville super operator (6.20). Note, that this is more appropriate than the naive
approach of a replacement just in the Hamiltonian, as has been done in our former work [32].
If we consider terms up to order ∝ J 2, the exchange in the Hamiltonian yields:

Had = (E + JVcl)B̂ +
U

2
Ĉ +

~U0Jη
2

κ2 + ∆′
c
2

(

∆′
c
2 − κ2

κ2 + ∆′
c
2 B̂ −

3U0J∆′
c

κ2 + ∆′
c
2 B̂

2

)

. (6.31)
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Next, we apply the same procedure to the Liouville equation - again up to terms ∝ J 2 - we
obtain an adiabatic Liouville operator:

Lad% = −i 2U0Jκ
2η2

(

κ2 + ∆′
c
2
)2

[

B̂ +
2∆′

cU0J

κ2 + ∆′
c
2 B̂

2, %

]

+
κU2

0 J
2η2

(

κ2 + ∆′
c
2
)2

(

2B̂%B̂ − B̂2%− %B̂2
)

. (6.32)

The Lindblad terms in the second line are real, corresponding to dissipation, whereas the
first, imaginary term corresponds to a unitary time evolution and has therefore to be added
to the adiabatic Hamiltonian, i.e.,

Had → Had +
2~U0Jκ

2η2

(

κ2 + ∆′
c
2
)2

(

B̂ +
2∆′

cU0J

κ2 + ∆′
c
2 B̂

2

)

.

Altogether, we end up with a Hamiltonian, where the cavity field has been eliminated:

Had = (E + JVcl)B̂ +
U

2
Ĉ +

~U0Jη
2

κ2 + ∆′
c
2

(

B̂ +
U0J∆′

c

κ2 + ∆′
c
2

κ2 − 3∆′
c
2

κ2 + ∆′
c
2 B̂

2

)

. (6.33)

The loss rate of the cavity is described by the remaining dissipative part of (6.32):

Lad% =
κU2

0 J
2η2

(

κ2 + ∆′
c
2
)2

(

2B̂%B̂ − B̂2%− %B̂2
)

. (6.34)

Note, that the above adiabatic elimination procedure is not completely unambiguous due
to ordering freedom. Nevertheless it should give a qualitatively correct first insight. An
alternative way of deriving an effective Hamiltonian, depending solely on particle observable
is similar to (6.16) and (6.17). This amounts to a replacement of the field variables with (6.30)
in the Heisenberg equation for the external atomic degrees of freedom, which read as follows:

ḃk =
1

i~

[(

E + JVcl + ~U0Ja
†a
)

(bk−1 + bk+1)− Un̂kbk
]

. (6.35)

A naive replacement of the field operator a and its adjoint a† by (6.30) in the above expression
leads to an equation for ḃk, which cannot be generated from an effective adiabatic Hamiltonian
in the form ḃk = −i/~[bk,Had]. Hence, before substituting the adiabatic field operators, we
have to symmetrize the expression containing the field term in (6.35) in the form

ḃk = − i
~

[(E + JVcl) (bk−1 + bk+1)− Un̂kbk]−
i~U0J

2

[

a†a (bk−1 + bk+1) + (bk−1 + bk+1) a
†a
]

.

(6.36)
This form enables us to describe the dynamics of bk by a Heisenberg equation with an effective
Hamiltonian, which up to second order in J reads:

Had = (E + JVcl)B̂ +
U

2
Ĉ +

~U0Jη
2

κ2 + ∆′
c
2

(

B̂ +
U0J∆′

c

κ2 + ∆′
c
2 B̂

2

)

. (6.37)

The terms in the second line stem from the field terms in (6.36). Although this Hamiltonian
looks a bit different from the first version derived before (6.33), their properties are - within
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their regime of validity - in very good agreement as long as hopping is slow compared to
damping.

To exhibit the physical content of this Hamiltonian one can look at its eigenstates. As
first step we calculate the Mott insulator state [see Eq. (6.49)] fraction of the lowest energy
state |ψ〉 of these two Hamiltonians, i.e., pMI = |〈ψ|MI〉|2 (see also Fig. 6.4), as a function of
the on-site interaction energy for different values of ∆′

c. This will indicate changes of position
and behavior of the Mott insulator superfluid transition. as shown in Fig. 6.4. To compare
the two approximate Hamiltonians in Fig. 6.2, we plot the difference of the Mott insulator
fraction of the ground state of (6.33) and (6.37), as well as the difference of the steady state
photon number. Obviously the two Hamiltonians, converge in the limit of large cavity decay
κ. This can also be seen in Fig. 6.2, where the dashed-dotted line depicts the case of a smaller
∆′
c (which is equivalent to an enlarged κ), showing a strongly enhanced coincidence.

6.3.2 Field-eliminated density operator

Let us now use a further and somehow more systematic alternative approach to eliminate
the cavity field dynamics from the system evolution directly from the Liouville equation by
following a method proposed by Wiseman and Milburn [53], which is valid for large κ and
low photon numbers. In this case we have

∣

∣

∣

∣

〈Hat〉
κ

∣

∣

∣

∣

∼
∣

∣

∣

∣

~U0〈a†a〉
κ

∣

∣

∣

∣

= ε� 1, (6.38)

where Hat is the atomic part of (6.28), i.e., Hat = (E + VclJ) B̂ + UĈ/2. Again the total
atom number N̂ is supposed to be constant. This allows to expand the density operator in
powers of ε, corresponding to states with increasing photon number:

% = %0 ⊗ |0〉a〈0|+ (%1 ⊗ |1〉a〈0|+ h.c.) + %2 ⊗ |1〉a〈1|+
(

%′2 ⊗ |2〉a〈0|+ h.c.
)

+O
(

ε3
)

. (6.39)

Here %i are density operators for the particle variables, corresponding to the order i of mag-
nitude in the expansion parameter ε. We substitute this expression into the Liouville equa-
tion (6.19) with the Hamiltonian from (6.28), which leads to the following set of equations:

%̇0 =
1

i~
[Hat, %0]− η

(

%1 + %†1

)

+ 2κ%2 (6.40a)

%̇1 =
1

i~
[Hat, %1]− η

(√
2%′2 + %2 − %0

)

− κ%1 (6.40b)

+ i
[

∆c − U0

(

J0N + JB̂
)]

%1 + κO
(

ε4
)

%̇2 =
1

i~
[Hat, %2] + η

(

%1 + %†1

)

− 2κ%2 − iU0

[

J0N + JB̂, %2

]

+ κO
(

ε4
)

(6.40c)

%̇′2 =
1

i~

[

Hat, %
′
2

]

+
√

2η%1 − 2κ%′2 + 2i
[

∆c − U0

(

J0N + JB̂
)]

%′2 + κO
(

ε4
)

,(6.40d)

Now we adiabatically eliminate the off-diagonal elements %1 and %′2. Setting their derivations
in (6.40b) and (6.40d) to zero and neglecting terms with respect to the assumption (6.38),
we obtain:

%′2 =
η√
2A

%1 +O
(

ε3
)

. (6.41)
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Figure 6.2. (color online) (a) Contribution of the Mott-insulator state to the ground
state pMI = |〈ψ|MI〉|2 of (6.37) as function of the 1D on-site interaction strength in units
of ERd (d is the lattice constant) (b) Logarithmic difference of pMI, calculated with
the groundstate of (6.37) and (6.33). (c) Logarithmic difference of the adiabatically
eliminated photon number 〈ψ|a†a|ψ〉 with a from (6.30) for the two different ground
states. The parameters are κ = 1/

√
2ωR, η = 2.35ωR and ∆′

c = −κ (red, solid line),
κ = 4ωR, η = 12.5ωR and ∆′

c = κ (blue, dashed line) and κ = 4ωR, η = 10ωR and ∆′
c =

−κ/10 (black, dashed-dotted line). In any of the curves, we set Vcl = 0 and U0 = −ωR.
Here ωR is the frequency corresponding to the recoil energy, i.e., ER = ~

2k2/(2m) = ~ωR.
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This is consistent with the assumption %′2 ∼ O
(

ε2
)

. Here we defined A = κ− i∆′
c + iU0JB̂.

Putting (6.41) into (6.40b) and neglecting the terms consistent with the order of the expan-
sion, such that %1 ∼ O (ε), it follows that:

%1 =
η

A+ η2/A
(%0 − %2) +O

(

ε4
)

. (6.42)

We simplify this expression, %1 ≈ ηA−1(%0−%2), which is consistent with the above expansion
and substitute it into (6.40a) and (6.40c):

%̇0 =
1

i~
[Hat, %0] + 2κ%2 − η2

[

A−1 (%0 − %2) + (%0 − %2)A
†−1
]

(6.43a)

%̇2 =
1

i~
[Hat, %2]− iU0

[

J0N + JB̂, %2

]

− 2κ%2

+ η2
[

A−1 (%0 − %2) + (%0 − %2)A
†−1
]

. (6.43b)

In order to formulate a master equation for the particle variables we have to use the reduced
density operator, where we trace over the field variables, i.e., %at = tr(%) = %0 + %2 +O

(

ε4
)

.
With (6.43a) and (6.43b) we see that:

%̇at =
1

i~
[Hat, %at]− iU0

[

J0N + JB̂, %2

]

. (6.44)

As a further approximation, which is also consistent with the expansion order of the assump-
tion (6.38), we set (6.43b) to zero and neglect [Hat, %2] and all other terms smaller than
O
(

ε3
)

. Then we can express %2 through %0:

%2 =
η2

2κ

[

A−1%0 + %0A
†−1
]

. (6.45)

Within this order of magnitude of ε we can replace %0 with %at, leading us finally to the
following master equation for the reduced density operator of the particle variables:

%̇at =
1

i~
[Hat, %at]− i

U0η
2

2κ

[

J0N + JB̂,
(

A−1%at + %atA
†−1
)]

. (6.46)

Note that this model also contains a damping part, since the operator A is not hermitian.
Let us investigate this damping, by expanding the inverse of A up to first order in J , which
is consistent with the order of magnitude in (6.46). Hence we replace A−1 and its adjoint in
this equation by

A−1 ≈ 1

κ− i∆′
c

(

1− i U0J

κ− i∆′
c

B̂

)

(6.47)

and its adjoint. Since we are restricted on a subspace of constant atom number, the Liouville
equation reads as follows:

%̇at =
1

i~

[

Hat +
~U0η

2

κ2 + ∆′
c
2

(

JB̂ +
U0∆

′
cJ

2

κ2 + ∆′
c
2 B̂

2

)

, %at

]

− (JU0η)
2

2κ

κ2 −∆′
c
2

(

κ2 + ∆′
c
2
)2

[

B̂,
[

B̂, %at

]]

.

(6.48)
Obviously, the non-dissipative part of this equation agrees perfect with our adiabatically
eliminated Hamiltonian (6.37) and the structure of the dissipative part is of the same Lindblad
form as (6.34). Note that an expansion of A−1 to higher order in J would also provide us the
correct next-order term of (6.37) plus an extra term in the Liouville-equation, which does
not correspond to unitary time evolution, as described by a Hamiltonian. This confirms the
usefulness of the naive elimination method, also used in Ref. [32]
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6.3.3 Quantum phase transitions in an optical lattice

In section 6.3.1 we derived two approximate Hamiltonians (6.33) and (6.37) describing our
system of cold atoms in an optical lattice. To a large extend they still implement the well
known BH model, but with parameters controllable via cavity detuning and some additional
nonlocal interaction terms. Let us now investigate their properties in some more detail. One
of the key features of optical cavities is the feedback mechanism between atoms and cavity
field. Hence, computations are a subtle issue, since the matrix elements in the BH Hamilto-
nian depend on the field amplitude, which itself depends on the atomic positions. In principle
a rigorous treatment would consist of calculating the matrix elements (6.24) for every photon
Fock state and treating the parameters of the BH model as operators. To avoid the full
complexity of such an approach we will first assume only a weak dependence of the Wannier
functions on the mean cavity photon number 〈a†a〉, which allows us to proceed analytically.
For any set of operating parameters we then calculated the matrix elements in a self-consistent
way replacing the photon number operator by its average in the iteration process. Explicitly

this is implemented by starting from some initial guess J
(0)
0 , E

(0)
0 , J (0), E(0) in the Hamilto-

nian (6.37), from which we calculate the ground state |ψ(0)〉. By use of this state we obtain an
initial mean photon number 〈ψ(0)|a†a|ψ(0)〉, with the steady-state field operator (6.30). Now

we can calculate the matrix elements J
(1)
0 , E

(1)
0 , J (1), E(1) again leading to a new ground state

|ψ(1)〉 and a new mean photon number 〈ψ(1)|a†a|ψ(1)〉. Proceeding iteratively, in most case
the fixpoint is reached already after very few iterations and the system properties are then
calculated with this self-consistent matrix elements. The convergence speed decreases near
the resonance for the cavity photon number (cf. Fig. 6.3), which occurs for ∆c = U0J0N −κ,
especially for large U0. Introducing some damping in the iteration procedure easily resolves
this issue, though. As we mentioned already before, we restrict the model on a subspace HN

Figure 6.3. (color online). Self-consistent photon number in the case of four particles
in four wells without on-site interaction. Parameters are U0 = −ωR and κ = ωR.

of a fixed total particle number N in an optical lattice of M sites. A basis of HN consists
of the states |N, 0, 0, . . . , 0〉, |N − 1, 1, 0, . . . , 0〉, . . . , |0, 0, . . . , 0, N〉. Since we are interested in
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the quantum phase transition between the Mott insulator (MI) and the superfluid (SF) state
occurring during the variation of certain external parameters, we investigate the contribu-
tions of these specific states to the ground state of the atomic system. The Mott insulator
state is a product of Fock states with uniform density distribution, i.e.,

|MI〉 = |n, n, . . . , n〉, (6.49)

with n = N/M . In contrast, in a SF state each atom is delocalized over all sites. It is given
by a superposition of Fock states, namely of all possible distribution of the atoms in the
lattice sites, i.e.,

|SF〉 =
∑

k1,k2,...,kM

N !√
MN
√
k1!k2! · · · kM !

|k1, k2, . . . , kM 〉, (6.50)

with
∑M

i=1 ki = N . Although the density in the superfluid state is also uniform 〈n̂i〉SF = N/M
and therefore equal to the Mott insulator state, its properties are fundamentally different.
This manifests especially in the spectra and angle dependence of scattered light, providing
for new, non-destructive probing schemes for the atomic phases [34, 35].

Let us now investigate the influence of the cavity on position and shape of the well-known
“classical” MI-SF-transition [3–5]. To do so, we compare the two cases of a pure quantum
field, i.e., Vcl = 0 in (6.37), and a classical field (η = 0) provided by Vcl for generating the
optical potential. We choose η in such a way, that at zero on-site interaction, g1D = 0, both
potentials are equally deep. As depicted in Fig. 6.4, the influence of the cavity strongly de-
pends on the detuning ∆c. Two contributions arise from the quantum nature of the potential.
On the one hand the potential depth and therefore the matrix elements depend on the atomic
state. For a classical potential this is clearly not the case. On the other hand the cavity me-
diates long-range interactions via the field, which corresponds to the B̂2-term in (6.37). If a
potential depth near the phase transition point for the quantum case is associated with some
certain average photon number n̄, then n̄± 1 are associated to different atomic phases. This
means that the ground state of the quantized cavity field contains contributions of different
atomic states, each of them correlated with the corresponding photon number. In this sense
photon number fluctuations drive particle fluctuations. Depending on parameters the former
or the latter effect contributes more. In Fig. 6.4 this is shown for four atoms in four wells,
where we calculated the occupation probability for the Mott insulator pMI = |〈ψ|MI〉|2 and
the superfluid state pMI = |〈ψ|SF〉|2 for the ground state |ψ〉 of (6.37) as a function of the
dimensionless one-dimensional on-site interaction strength g1D/(dER) for a purely classical
and a purely quantum case. For ∆c − U0J0N = κ, photon number fluctuations enhance
particle fluctuations, shifting the superfluid to Mott insulator transition to higher values of
the on-site interaction [Fig. 6.4(a)]. However, if we choose ∆c − U0J0N = −κ, the influence
of the atomic state on the potential depth exceeds the cavity-mediated long-range interac-
tions, strongly shifting the transition to lower values of g1D [Fig. 6.4(b)]. Note, that for this
behavior, the cavity loss rate must be - although within the bad cavity limit - small enough.
For larger κ the quantum effects disappear and the ground states for classical and quantum
potential coincide.

To correctly address the long-range interactions, corresponding to the B̂2 term in (6.37),
we calculate the contribution of the Mott insulator state to the ground state of this adiabatic
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Figure 6.4. (color online) Cavity influence of the Mott insulator to superfluid transition
by means of a comparison of the occupation probabilities pMI and pSF for a purely
quantum field, i.e., Vcl = 0, and a purely classical field, i.e., η = 0, as a function of
the dimensionless one-dimensional on-site interaction strength g1D/(dER). We choose η
such that both potentials are of equivalent depth for zero on-site interaction (g1D = 0).
The quantum and classical case is depicted with solid and dashed lines, respectively. In
(a) we set (U0, κ, η) = (−1, 1/

√
2,
√

5.5)ωR and ∆c − U0J0N = κ. (b) The same as (a)
but with ∆c − U0J0N = −κ.



108 Publication: Ultracold Atoms in Optical Lattices Generated by . . .

Hamiltonian including and omitting the B̂2 part, respectively. Although, in the situation
of Fig. 6.4(a) the net effect enhances the phase transition, the cavity mediates long-range
coherence via B̂2, which can be seen by enlarged particle number fluctuations as shown in
Fig. 6.5. Although the effect is not too strong as it depends on J 2 is has infinite range and
will get more important for large particle numbers.

Figure 6.5. (color online) Influence of the long-range interaction on the Mott in-
sulator to superfluid phase transition, mediated via the B̂2 term in (6.37). The solid
line shows the probability for the Mott insulator state as a function of dimensionless
one-dimensional on-site interaction strength g1D/(dER) for a a purely quantum field,
i.e., Vcl = 0. The dashed line corresponds to the probability for the same Hamiltonian,
neglecting the B̂2 term. The parameters are the same as in Fig. 6.4(a).

Finally, we exhibit the transition from a cavity field with quantum properties towards a
classical optical lattice. This relies on the assumption that a very bad cavity should be almost
like no cavity and increasing κ, but keeping the potential depth constant, approaches the clas-
sical limit. Hence, the effects of the quantum natures and feedback of lattice potential should
disappear and the ground states for classical and quantum potential coincide. The adiabatic
eliminated Hamiltonian then has to approach the classical Bose-Hubbard Hamiltonian. This
is shown in Fig. 6.6 for a system of four atoms in four wells, where we simultaneously in-
crease κ and η, keeping U0η

2/κ2 = −6ER fixed. For every κ we calculated the value of the
on-site interaction g1D, where the contributions of the Mott state and the superfluid state
to the ground state of (6.37) are equal, i.e., |〈ψ|MI〉| = |〈ψ|SF〉|. This is compared with the
corresponding value of the interaction strength at the same intersection point of a purely
classical Bose-Hubbard model with a potential depth of Vcl = −6ER. We see that the transi-
tion occurs already at a cavity linewidth of only an order of magnitude larger than the recoil
frequency, where the deviation is small already. Thus one needs quite good resonators to see
the quantum shift in the phase transition.
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Figure 6.6. (color online) Value of the on-site interaction g1D, where the contributions
of the Mott state and the superfluid state to the ground state of (6.37) are equal, i.e.,
|〈ψ|MI〉| = |〈ψ|SF〉|, as a function of κ (solid line) for a system of four atoms in four
wells. Simultaneously we increase η, such that U0η

2/κ2 = −6ER is fixed. Obviously, the
corresponding value at the same intersection point of a purely classical Bose-Hubbard
Hamiltonian with Vcl = −6ER is constant (dashed line). Parameters are U0 = −ωR, κ =
4ωR and ∆C − U0N = −κ.
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6.3.4 Comparison with the full dynamics of the master equation

Using the approximate adiabatic model with eliminated field we have found important
changes in the physics so far. Even stronger effects are to be expected in the limit of less
and less cavity damping and stronger atom field coupling. Let us now investigate some first
signs of this and test the range of validity of the above model in this limit. To do so we
have to resort to numerics and compare solutions of the full master equation (6.19) with the
ground states of the adiabatically eliminated Hamiltonian (6.37). Obviously solving the full
master equation is a numerically demanding task. Nevertheless, constraining to few atoms
in few wells we are able to solve the equations and reveal the essential physical mechanisms.
The limit of the band model description is of course reached for atoms coupled strongly to a
cavity field with only very few photons and no additional classical potential Vcl present. Here
very strong changes in the tunneling amplitudes occur whenever a photon leaks out of the
cavity and reduces the momentary potential depth. This leads to strongly enhanced particle
hopping. For instance, one can think of the situations “one photon present” and “no photon
present”, where the atoms can freely move within the cavity in the absence of an external
trap. On the other hand one extra photon can almost block hopping. Note that in this case
the ground state atomic configuration can be close to superfluid for a low photon number
and close to an insulator state for a higher photon number. As our matrix elements depend
only on the mean photon number 〈a†a〉, these differences cannot be taken into account in an
adiabatic model.

We can explicitly show this behavior by reducing the coupling strength U0, but keeping
the average potential depth fixed (equal matrix elements), by means of a higher average
cavity photon number, which leads to strongly reduced photon number fluctuations. This
is depicted in Fig. 6.7, where we show the tunneling behavior 〈kx(t)〉 of a single atom in
a two well approximation. The atomic ground state of this system is the symmetric state
|ψ0〉 = (|l〉+ |r〉) /

√
2 having a mean position of 〈kx〉ψ0

= π/2. Here, |l〉 (|r〉) means the left
(right) of the two wells. Decreasing U0, increasing η and adjusting ∆c, yields different mean
photon numbers 〈a†a〉, but equal average lattice potential depth V = U0〈a†a〉. (We do not
consider an additional classical potential here.) If only few photons are present, we observe
large fluctuations of the field and the system damps fast to the ground state. As the photon
number increases, the potential approximates a classical potential as expected, where there
is no dephasing. The (nearly) equal oscillation frequencies show that the matrix elements
coincide for the different photon numbers. This is an interesting feature corresponding to the
quantum nature of the potential. In contrast to the Bose-Hubbard model for a classical optical
lattice, lattice depth and interaction strength are not the only important system parameters.
Quantum fluctuations of the potential are an additional source of atomic fluctuations, playing
an essential role in the evolution of the system. Obviously, if only an external potential
is present and the atom is no longer coupled to the cavity field (U0 = 0), the system is
undamped, due to the lack of the only dissipation channel present, cavity loss. In this case
the Hamiltonian (6.28) reduces to H = (E + JVcl)B̂ + U/2Ĉ, and the atom, initially not in
the symmetric state, oscillates between the left and right well. Note that a more rigorous
treatment of operator-valued matrix elements - as described in the previous section - would
be capable of describing this behavior correctly. Alternatively for few atoms Monte-Carlo
wave function simulations of the full Hamiltonian could be performed, allowing for processes,
where the particle leaves the lowest band [54].
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Figure 6.7. (color online) Mean position 〈kx(t)〉 of a single atom in two wells. We
adjusted U0, η,∆c in such a way, that the mean number of cavity photons increases,
but the lattice depth stays nearly constant: V = ~U0〈a†a〉 = −8ER. Starting with
(U0, η, κ) = (−50, 10, 25) (in units of ωR) and ∆c = J0U0, followed by a successive
reduction of U0 by a factor of 5, together with an increase of η by a factor of

√
5 and

a proper adjustment of ∆c, this leads to mean photon numbers of 0.16 (solid line), 0.8
(dashed line), and 4 (dashed-dotted line). Initially, the atom is in the right well.
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Obviously, this enhancement of atom fluctuations for low photon numbers also affects the
dynamics of several atoms. We demonstrate this for the case of two atoms in two wells. We
assume strong coupling with few cavity photons and a strong on-site interaction, which - in
principle - inhibits tunneling and drives the system deeply into the Mott insulator regime.
However, starting from a state slightly perturbed from the ground state of the adiabatically
eliminated Hamiltonian (6.37), the system does not evolve towards this Mott-like ground
state but towards some other, drastically different state. Increasing the photon number,
while keeping the lattice depth constant, reduces the atom fluctuations and keeps the system
near its adiabatic ground state. This is shown in Fig. 6.8(a), where the probability for the
system being in the Mott insulator regime pMI = |ψMI(t)|2 is plotted. Again we observe
that, the larger the intracavity photon number is, the more the potential approaches a purely
classical one and the more significant the ground state probabilities of (6.37) are. Hence we
see that including the photon number fluctuations strongly suppresses the Mott insulator
state by allowing the particles to hop during photon number fluctuations. This is also a
strong restriction for the use of our adiabatic model Hamiltonian, where only average photon
numbers enter the model parameters.

Qualitatively this behavior is already indicated by the form of the dissipative part of
adiabatically eliminated Liouvillean (6.34). This superoperator does not affect the superfluid
state, which is the ground state in the case of zero interaction, i.e., Lad% = 0 for % = |SF〉〈SF|.
Other states are significantly altered, leading to a non-unitary evolution for U 6= 0.

Clearly, some added external classical potential diminishes this problem as it can ensure
the existence of a bound state, independent of the number of cavity photons, giving an upper
limit to the hopping rate. This is demonstrated in Fig. 6.8(b), where a classical potential
of Vcl = −5ER is added. Here for 〈a†a〉 = 1.44 the deviations from the adiabatic ground
state are of the same order as for Vcl = 0 for 〈a†a〉 = 4.8 [Fig. 6.8(a)]. Nevertheless, for not
too leaky cavities (κ is in an intermediate regime), the regime of validity of the adiabatically
eliminated Hamiltonian (6.37) is limited to case where either a large purely classical potential
or a large photon number is given.

Finally, we investigate the other limit of validity, where a rather large external classical
potential, but only a very low photon number is given, i.e., a weakly driven cavity. Here the
ground state properties of our model resemble to a very high degree those of the ordinary
Bose-Hubbard model. As mentioned above, an atomic ensemble interacting with a purely
classical potential, has no channels of dissipation in the absence of spontaneous emission. So
unless we prepare the system in its groundstate, it will show undamped oscillation. In strong
contrast the coupling of the atoms to an even small intracavity field with a very low photon
number opens a dissipation channel. Although the enhancement of atom number fluctuations
due to fluctuation induced tunneling is small, this damping still can drive the system into a
steady state, very closely to the adiabatic ground state of (6.37). This is shown in Fig. 6.9 for
the case of two atoms in two wells. Here we prepare, for different values of on-site interaction,
the atoms in a state perturbed from the ground state of (6.37) with initially no photon in
the cavity and a given value of the classical potential Vcl = −10ER. For g1D = 0, the ground
state is the superfluid state, so Fig. 6.9(a) is the generalization of Fig. 6.7 to two atoms.
Although the photon number is only 〈a†a〉 = 1.3× 10−4, the system is driven into its ground
state. For increasing interaction strength, the Mott insulator state becomes more and more
favored. Still, the interaction with the tiny intracavity field enables damping of the atomic
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Figure 6.8. (color online) Probability of the Mott insulator state |ψMI(t)|2 for two
atoms in two wells. Parameters and procedure as in Fig. 6.7, but due the second atom
the photon numbers are increased. The on-site interaction is U = 0.32ER. (a) Vcl = 0.
The curves correspond to a mean photon number of 0.19 (solid line), 0.97 (dashed line),
4.8 (dashed-dotted line) and 24.2 (dotted line). (b) Vcl = −5ER and corresponding
photon numbers of 0.05 (solid line), 0.28 (dashed line), 1.44 (dashed-dotted line).



114 Publication: Ultracold Atoms in Optical Lattices Generated by . . .

evolution towards a steady state, very close to the adiabatic ground state.

Figure 6.9. (color online) Probability of the Mott insulator state |ψMI(t)|2 for two
atoms in two wells for different on-site interaction. In (a) there is no interaction, i.e.,
U = 0, in (b) U = 0.0065ER, in (c) U = 0.0324ER and in (d) U = 0.081ER. Other
parameters are (U0, κ, η,∆c) = (−50, 25, 1, 0) (in units of ωR), the classical potential
is Vcl = −10ER. The solid line in each subplot shows the corresponding ground state
probability of (6.37) and the number of cavity photons is 〈a†a〉 = 1.3× 10−4.

This leads to the conclusion, that, although the cavity field may not lead to significant
modifications of the ground state of the system, the cavity is a useful tool for faster preparing
a system of atoms in its ground state by opening a dissipation channel, so that it decays
towards an eigenstate of the adiabatically eliminated Hamiltonian (6.37).

6.4 Atom pumping

Let us now return to our starting Hamiltonian (6.26) and consider a second generic model,
where the pump laser is not injected through the cavity mirrors, but directly illuminating the
atoms. This rather small change has a drastic influence on the physical behavior of this sys-
tem. In the case of cavity pumping, all atoms are simultaneously coupled to the same mode.
In this way the cavity field depends on the atomic distribution and long range order inter-
actions are mediated via the cavity field, influencing the Mott-insulator to superfluid phase
transition. In the new geometry, only the directly excited atoms coherently scatter photons in
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the cavity mode. Due to the position-dependent coupling, the scattered field amplitude and
phase for each atom is strongly position dependent. Atoms located at nodes are not coupled
to the field, leading to no scattering, whereas atoms at antinodes are maximally coupled,
leading to maximum scattering. Atoms in adjacent wells are separated by half a wavelength
and scatter with opposite phases, such that their contributions to the scattered field interferes
destructively. Naively one would thus immediately conclude that atoms forming a state with
a homogeneous density scatter no field at all so that nothing happens [34, 35]. Nevertheless,
fluctuations of the density still can allow for some background scattering which should dimin-
ish for lower temperature. For suitable parameters the corresponding forces start to reorder
the atoms towards a periodic pattern of the atoms, where scattering is strongly enhanced.
This then deepens the optical potential, stabilizing the pattern in a self-organizing runaway
process, semiclassically described in [18].

At T = 0 quantum fluctuations still can trigger this reorganization. To study this effect
we assume the coherent pump field to form a broad plane wave propagating transversally to
the cavity axis (see Fig. 6.1) replacing cavity pumping. This means that we set η = 0 and
the Hamiltonian (6.26) for constant atom number N reads as follows:

H = (E + JVcl) B̂ + ~ (U0J0N −∆c) a
†a+

U

2
Ĉ + ~U0Ja

†aB̂ + ~ηeff

(

a+ a†
)

J̃0D̂. (6.51)

Here we introduced the operator D̂ =
∑

k(−1)k+1n̂k describing the difference in atom
number between odd and even sites. The corresponding Heisenberg equation for the cavity
field (6.27) reads as follows:

ȧ =
{

i
[

∆c − U0

(

J0N + JB̂
)]

− κ
}

a− iηeffJ̃0D̂. (6.52)

Consequently the Heisenberg equation for the particle operators is:

ḃk =
(

E + JVcl − iU0Ja
†a
)

(bk+1 + bk−1)− iηeffJ̃0

(

a+ a†
)

(−1)k+1bk + Un̂kbk. (6.53)

Hence we see that the occupation number difference drives the cavity field, which then
in turn starts to dephase neighboring atom sites via the first term in the second line of
Eq. (6.53). Note that this interesting part of the dynamics even survives for deeper lattices
when J is negligibly small and J̃ is of order unity. This will discussed in more detail using
various approximations below.

6.4.1 Field-eliminated Hamiltonian

Adiabatic elimination of the field variables is a bit more subtle here as compared to the
cavity pump case discussed before. The scattering amplitude of light into the cavity mode
here depends strongly on the atomic positions. Hence even small position changes have a
large influence on the cavity field dynamics. The maximum photon number is established
when all the atoms are well localized at either only odd or only even lattice sites. For red
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atom field detuning this increases the lattice depth and forces the atoms into one of two
stable patterns, where the wells where atoms are located are deeper than the empty ones.
Hence this changes the translational periodicity of the optical lattice from λ/2 to λ. Such
bistable behavior was observed by Vuletić and coworkers [20] and explained in a semiclassical
treatment [18].

Let us now turn to a quantum treatment of atoms and field. Naive adiabatic elimina-
tion encounters a first difficulty, as the operators B̂, D̂ do not commute, [B̂, D̂] 6= 0. Hence
this already creates an ordering problem in the formal steady-state solution of (6.52), which
gets even more difficult when it comes to the replacement of the field operators to obtain
an effective Hamiltonian (6.51). Unfortunately also the second approach used in the case
of cavity pumping, namely reading off an effective Hamiltonian from the particle operator
Heisenberg equation does not resolve this problems. Replacing a with the steady-state ex-
pression in (6.53) leads to a rather complex form, so that there is no simple way to find a
suitable effective Hamiltonian Had, with i~ḃk = [bk,Had].

Hence we have to resort to the further approximation of neglecting the term ~U0Ja
†aB̂,

compared to JVcl. This still leaves the most important part of the new physics, but reduces
the field equation to the form:

ȧ =
(

i∆′
c − κ

)

a− iηeffJ̃0D̂. (6.54)

The steady-state solution of this equation is immediately at hand and free of ordering
ambiguities of non-commuting operators.

a =
iηeffJ̃0

i∆′
c − κ

D̂. (6.55)

Also the particle operator equation is much simpler within this approximation:

ḃk = (E + JVcl) (bk−1 + bk+1)− iηeffJ̃0

(

a+ a†
)

(−1)k+1bk + Un̂kbk. (6.56)

In this form one then can find a well defined effective Hamiltonian only containing particle
operators. Let us thus proceed as in Sec. 6.3.1 and simply substitute (6.55) and its adjoint
into (6.51). This yields the effective Hamiltonian:

Had = (E + JVcl)B̂ +
U

2
+

~J̃2
0 η

2
eff∆′

c

κ2 + ∆′
c
2 D̂

2. (6.57)

Within first order in J the replacement of the field variables in the Liouvillean part of
the master equation (6.20) in this case does not provide an extra terms to be included in the
Hamiltonian. So the effective cavity decay induced dissipation on the atomic dynamics takes
the simple and intuitive form:

Lad% =
κη2

effJ̃
2
0

κ2 + ∆′
c
2

(

2D̂%D̂ − D̂2%− %D̂2
)

. (6.58)

Note that Eq. (6.57) with the replacement of the field operator by its steady-state ex-
pression also leads to the same time evolution as induced by (6.56) after symmetrizing with
respect to the field terms. The two approaches thus lead to identical predictions, which we
will exhibit in some more detail in the following.
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6.4.2 Self-organization of atoms in an optical lattice

In this section we investigate the microscopic dynamics of self-ordering near zero temperature
and compare the results of the general model Hamiltonian (6.51) and the corresponding
effective Hamiltonian (6.57). In order to simplify things, we keep the approximation from
above and neglect JU0a

†a in the model, i.e.,

H = (E + JVcl) B̂ − ~∆′
ca

†a+
U

2
Ĉ + ~ηeffJ̃0D̂

(

a+ a†
)

, (6.59)

with ∆′
c = ∆c − U0J0N . Let us point out here, that the Hamiltonian in this approximative

form is equivalent to a Hamiltonian describing 1D motion along an optical lattice transverse
to the cavity axis. Such a lattice can e.g. be generated by the pump laser itself as it was
studied in [55, 56] to investigate the onset of the self-organization process [18–20] at zero
temperature.

Similar to that case, the effective Hamiltonian Eq. (6.59) for moderate coupling repro-
duces quite well the results of a full Monte-Carlo wavefunction simulation. We have checked
this for a rather small system of two atoms in two wells with periodic boundary conditions.
This is the minimal system to study self-organization but in general sufficient to capture the
physics. In this special case the operator B̂ simply couples the ordered |11〉 state to the
state 1/

√
2 (|20〉 + |02〉), while the operator D̂2 leaves all the basis states {|11〉, |20〉, |02〉}

unchanged. It simply leads to a relative energy shift. Hence starting from a perfectly or-
dered atomic state (the analog of the Mott insulator state) the Hamiltonian part of the time
evolution of the system couples it to the symmetric superposition of ordered states. In an
adiabatic limit those ordered states are correlated with a coherent field ±α in the cavity.
Thus without damping the evolution would simply read:

|ψ(t)〉 = cos (2ωt) |11, 0〉 + i sin (2ωt)√
2

(|20, 2α〉 + |02,−2α〉) . (6.60)

where the frequency ω is given by the (E + JVcl)/~. Here |11, 0〉 is the state with one atom
in each well and zero photons, whereas |20, α〉 (|02,−α〉) corresponds to the state with both
atoms in the left (right) well, and the cavity field being in a coherent state with amplitude 2α
(−2α). The factor 2 is due to constructive interference of the fields, scattered by the ordered
atoms. In the Mott state, the scattering fields cancel each other.

Note that such an entangled superposition of different atomic states and fields cannot
be reproduced by any classical or mean field evolution and requires a genuine quantum
description. If on-site interaction is added the amplitude of this oscillations decreases due to
extra relative different phase changes of the self-ordered and the Mott state.

Of course we now have to add the effect of dissipation via cavity loss. We will see that
even single cavity photon decay events strongly perturb the system evolution. This can be
immediately seen by applying the photon annihilation operator to the entangled atom-field
state, i.e.,

|ψ(t)′〉 ∝ a|ψ(t)〉 ∝ |20, 2α〉 − |02,−2α〉. (6.61)
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This procedure projects out the Mott contributions to the state as they are connected to
zero photons. Surprisingly in addition it also blocks further tunneling by introducing a minus
sign between the two ordered states. At this point coherent atomic time evolution stops until a
second photon escapes and re-establishes the plus sign. This then allows tunnel coupling back
to the Mott insulator state again. In this sense self-ordering is an instantaneous projective
process here, where the cavity acts as measurement apparatus asking a sort of yes/no ordering
question.

The fact, that for transverse pumping the adiabatic field state associated to the Mott
insulator is an intracavity vacuum decouples this state from further dynamics even in the
presence of dissipation. This creates numerical difficulties and prohibits an approximation of
the dissipative dynamics by the adiabatic ground state values of (6.57) only. As soon as a
photon leaks out of the cavity, the contribution of the Mott-insulator state is canceled, no
matter how large it, corresponding to a given on-site interaction, might be. Hence, every
initial state evolves into a superposition of the ordered states and the ground state values of
the effective Hamiltonian do not make much sense. Nevertheless, including the damping via
the effective Liouvillean (6.58) approximately reveals the complete dynamics. In Fig. 6.10 we
show the results of a Monte-Carlo simulation of the dynamics of the Mott and the superfluid
contribution, corresponding to (6.59) and compare it with a solution of the master equation,
consisting of the Hamiltonian (6.57) and Liouvillean (6.58), where the field variables are
eliminated. Furthermore, the restriction of the Hilbert space to the two states of (6.61) and
|11, 0〉, allows for a proof of the accuracy of our assumption, concerning the fast evolution of
the cavity field. We use the coefficients c(t), c̃(t) (calculated with the Monte Carlo simulation)
of |ψ(t)〉 = c̃(t)|11, 0〉 + c(t)(|20, 2α〉 ± |02,−2α〉) to construct a purely atomic state |ϕ(t)〉 =
c̃(t)|11〉 + c(t)(|20〉 ± |02〉). Then the mean photon number, calculated with the effective
photon operator (6.55) agrees very well with the real mean photon number, i.e.,

η2
effJ̃

2
0

∆′
c
2 + κ2

〈ϕ(t)|D̂2|ϕ(t)〉 ≈ 〈ψ(t)|a†a|ψ(t)〉. (6.62)

6.5 Conclusions

Based on an approximative Bose-Hubbard type model descriptions, we have shown that
quantum characteristics of light fields generating optical potentials lead to shifts in quantum
phase transition points and play a decisive role in the microscopic dynamics of the transition
process. While many physical aspects can be already captured by effective Hamiltonians
with rescaled parameters, cavity mediated long-range interactions also play an important
role and add a new nonlocal element to optical lattices dynamics for atoms. In that context
even small modifications in the setup, from cavity pump to transverse pump, have a drastic
influence on the behavior of the system on a microscopic level. We have seen that the
Bose-Hubbard Hamiltonian for the former system can, in a certain parameter regime, be
significantly simplified by adiabatically eliminating the field variables. Although the cavity
has influence on its shape, the Mott insulator to superfluid phase transition occurs similar
to classical optical lattices. For transverse pumping this is not the case. Here, the fields
scattered by the atoms in the uniform Mott state cancel and completely suppress scattering.
In parallel new ordered states with maximal coupling of pump and cavity field appear and
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(c)

Figure 6.10. (color online) (a) Contribution of the Mott insulator state pMI in a
system of two atoms in two wells. The solid line shows the results of a Monte-Carlo
simulation, corresponding to (6.59) with dissipation via cavity loss. The dashed line
depicts the solution of a master equation with effective Hamiltonian (6.57) and Li-
ouvillean (6.58). The constant line, shows the ground state value of this contribu-
tion of the effective Hamiltonian. (b) The same for the contribution of the superfluid
state pSF. (c) shows analogue results for the mean photon number. Parameters are
Vcl = −10ER, (κ,U0, ηeff) = (4,−0.1, 1)ωR and ∆c = U0J0N + κ.
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the dynamics favors a superposition of these two ordered states correlated with coherent field
states with phase difference π. Hence the dynamics generates strong atom field entanglement
and large effective optical nonlinearities even in the limit of linear weak field scattering.

Of course the various approximations used to derive our effective Hamiltonians still leave
a lot of room for improvements and we could only touch a very small part of the physical
effects and possibilities contained in these model. Fortunately the experimental progress in
this field is spectacularly fast and several groups now have set up optical lattices with cavity
fields [36–39] and intriguing potential applications of such systems were already proposed [57],
so that one can expect a fast and exciting further development of this field.
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Probe Atomic Quantum Statistics†
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Different quantum states of atoms in optical lattices can be nondestructively moni-
tored by off-resonant collective light scattering into a cavity. Angle resolved measurements
of photon number and variance give information about atom-number fluctuations and pair
correlations without single-site access. Observation at angles of diffraction minima pro-
vides information on quantum fluctuations insensitive to classical noise. For transverse
probing, no photon is scattered into a cavity from a Mott insulator phase, while the
photon number is proportional to the atom number for a superfluid.

Studies of ultracold atoms in optical lattices link various disciplines. Fundamental quan-
tum many-body theories, formulated initially for condensed matter, can be tested in better
controllable atomic systems [1], e.g., strongly correlated phases, quantum simulators. Such
studies influence different areas [1]: quantum information processing, ultracold collisions,
exotic molecules, etc.

While mean-field approaches describe only the average atomic density, the main goal is
to study quantum properties of these gases. They are most prominent in lattices, where
one has phase transitions between states of similar density but radically different quantum
fluctuations.

Standard methods to measure quantum properties are based on matter-wave interfer-
ence of atoms released from a trap [2] destroying the system. “Bragg spectroscopy” using
stimulated matter-wave scattering by laser pulses proved successful [3, 4] but destructive.

†The primary contribution of the author of the present thesis performed to this publication was the instal-
lation of the model and the calculation of certain generic examples and statistical quantities (cf. Table 7.1).
He also acted as a discussion partner on all other aspects of the work.
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Figure 7.1. Setup: A lattice is illuminated by a probe at the angle θ0 which is scattered
into a cavity at θ1.

Alternative less destructive methods observing scattered light were proposed mainly for ho-
mogeneous Bose-Einstein condensates (BEC) [5–8], but not yet implemented.

Here we show that specifically for periodic lattices, light scattering can help to overcome
experimental difficulties. In contrast to homogeneous BECs, scattering from a lattice allows
to determine local and nonlocal correlations without single-atom optical access using the
suppression of strong classical scattering at Bragg minima and monitoring much richer angular
distributions. This looks extremely useful for studying phase transitions between, e.g., Mott
insulator (MI) and superfluid (SF) states, without destruction, since various quantum phases
show even qualitatively distinct scattering.

Joining two fields, cavity quantum electrodynamics (QED) and ultracold gases, will enable
new investigations of both light and matter at ultimate quantum levels, which only recently
became experimentally possible [9].

Our model is based on nonresonant interaction, not relying on a particle level structure.
Thus it also applies to molecular physics, where new quantum phases were obtained [10].
It can be also applied for semiconductors [11], as, e.g., were used for BEC of exciton-
polaritons [12].

Model. We consider N two-level atoms in an optical lattice with M sites. A region of
K ≤M sites is illuminated by probe light which is scattered into another mode (cf. Fig. 7.1).
Although, each mode could be a freely propagating field, we will consider cavity modes
whose geometries (i.e. axis directions or wavelengths) can be varied. A related manybody
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Hamiltonian is given by

H =
∑

l=0,1

~ωla
†
l al +

∫

d3rΨ†(r)Ha1Ψ(r), (7.1a)

Ha1 =
p2

2ma
+ Vcl(r) + ~g2

0

∑

l,m=0,1

u∗l (r)um(r)a†l am
∆ma

, (7.1b)

where a0 (a1) are the annihilation operators of the probe (scattered) light with the frequencies
ω0,1, wave vectors k0,1, and mode functions u0,1(r); Ψ(r) is the atom-field operator. In the
effective single-atom Hamiltonian Ha1, p and r are the momentum and position operators
of an atom of mass ma trapped in a classical potential Vcl(r); g0 is the atom–light coupling
constant. We consider the field-atom detunings ∆la = ωl − ωa larger than the spontaneous
emission rate and Rabi frequencies. Thus, in Ha1 the adiabatic elimination of the upper state
was used.

Assuming weak fields a0,1, we expand Ψ(r) in Eq. (7.1a) using localized Wannier func-
tions corresponding to Vcl(r) and keep only the lowest vibrational state at each site:
Ψ(r) =

∑M
i=1 biw(r− ri), where bi is the atom annihilation operator at site with coordi-

nate ri. Substituting this in Eq. (7.1a), one can get a generalized Bose-Hubbard Hamiltonian
[1] including light scattering. However, in contrast to our previous work [13] and “Bragg
spectroscopy” [4], we do not consider lattice excitations here and focus on scattering from
atoms in a prescribed state.

Neglecting atomic tunneling, the Hamiltonian reads:

H =
∑

l=0,1

~ωla
†
lal + ~g2

0

∑

l,m=0,1

a†lam
∆ma

(

K
∑

i=1

J lmi,i n̂i

)

, (7.2)

where n̂i = b†i bi. We define the operator of the atom number at illuminated sites as

N̂K =
∑K

i=1 n̂i. For a deep lattice the coefficients J lmi,i =
∫

drw2(r − ri)u
∗
l (r)um(r) reduce

to J lmi,i = u∗l (ri)um(ri) neglecting atom spreading, which can be studied even by classical
scattering [14].

The Heisenberg equation for the scattered light in the frame rotating with ω0 (∆01 =
ω0 − ω1) thus reads:

ȧ1 = i

[

∆01 −
g2
0

∆1a

K
∑

i=1

|u1(ri)|2n̂i
]

a1 − i
g2
0a0

∆0a

K
∑

i=1

u∗1(ri)u0(ri)n̂i − κa1, (7.3)

where κ is the cavity decay rate and a0 will be assumed a classical field given by a c-number
constant.

Light properties. Though the dispersion shift of a cavity mode is sensitive to atom
statistics through n̂i, we assume it is much smaller than κ or ∆01. A stationary solution of
Eq. (7.3) for a1 and photon number then reads
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a1 = CD̂, nph = a†1a1 = |C|2D̂∗D̂, D̂ =

K
∑

i=1

Ain̂i, (7.4)

with C ≡ ig2
0a0/[∆0a(i∆01−κ)] and the coefficients Ai(θ0, θ1) ≡ u∗1(ri)u0(ri). This expression

of the light operators through the atomic ones is a central result here.

For a 1D lattice of period d and atoms trapped at xm = md (m = 1, 2, ...,M) the mode
functions are u0,1(rm) = exp(imk0,1xd) for traveling and u0,1(rm) = cos(mk0,1xd) for standing
waves with k0,1x = |k0,1| sin θ0,1 (cf. Fig. 7.1). For the atomic quantum state we use the
assumptions: (i) the mean atom number at all sites is 〈n̂i〉 = n = N/M (〈N̂K〉 = NK ≡ nK)
and (ii) the pair correlations 〈n̂in̂j〉 are identical for any i 6= j, which is valid for a deep
lattice, and will be denoted as 〈n̂an̂b〉 (with a 6= b).

Thus, 〈a1〉 ∼ 〈D̂〉 =
∑K

i=1Ai〈n̂i〉 = nA showing that the field amplitude only depends
on the mean density and exhibits the angular distribution of classical diffraction A(θ0, θ1) ≡
∑K

i=1Ai(θ0, θ1) with diffraction maxima and minima. The central point now is that the
photon number (7.4) is not just the amplitude squared, but we get

〈D̂∗D̂〉 =〈n̂an̂b〉|A|2 + (〈n̂2〉 − 〈n̂an̂b〉)
K
∑

i=1

|Ai|2, (7.5a)

R(θ0, θ1) ≡〈D̂∗D̂〉 − |〈D̂〉|2 = 〈δn̂aδn̂b〉|A|2 + (〈δn̂2〉 − 〈δn̂aδn̂b〉)
K
∑

i=1

|Ai|2, (7.5b)

where δn̂i ≡ n̂i− n giving 〈δn̂aδn̂b〉 = 〈n̂an̂b〉 − n2, and 〈δn̂2〉 equal to the variance (∆ni)
2 =

〈n̂2
i 〉−n2. Thus, the intensity is sensitive to atomic quantum statistics via the density-density

correlations 〈n̂in̂j〉 different for particular states. Besides the classical angle dependence |A|2,
the second term in Eq. (7.5a) reflects fluctuations and has a completely different dependence.
Particularly in a lattice, scattering is sensitive not only to the periodic density, but also to
periodic fluctuations, leading to the observable difference between states with and without
nonlocal correlations. Analysis of quadrature variances gives results similar to analysis of the
noise quantity R.

For two traveling waves, Eq. (7.5a) gives the structure factor considered in Ref. [7] on
homogeneous BECs. We show that a more general form including standing waves gives new
measurable quantities beyond structure factor.

The intensity fluctuations of the scattered light depend on the fourth moments of the
atomic number operators and four-point density correlations 〈n̂in̂jn̂kn̂l〉. For example the
photon-number variance is given by

(∆nph)2 = 〈n2
ph〉 − 〈nph〉2 = |C|4(〈|D̂|4〉 − 〈|D̂|2〉2) + |C|2〈|D̂|2〉. (7.6)

To discuss examples of different scattering we summarize statistical properties of typical
states in Table 7.1. For light scattering, the most classical state corresponding to pointlike
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atoms is MI. Here the atom number at each site n̂i does not fluctuate and we have no pair
correlations. Hence we see from Eq. (7.5a) that the zeros of classical diffraction [A(θ0, θ1) = 0]
are zeros of light intensity.

MI SF Coherent

|Ψ〉
M
∏

i=1

|ni〉i
1√

MNN !
(

M
∑

i=1

b†i )
N |0〉 e−

N
2

M
∏

i=1

e

q

N
M
b†i |0〉i

〈n̂2
i 〉 n2 n2(1− 1/N) + n n2 + n

(∆ni)
2 0 n(1− 1/M) n

〈N̂2
K〉 N2

K N2
K(1− 1/N) +NK N2

K +NK

(∆NK)2 0 NK(1−K/M) NK

〈n̂an̂b〉 n2 n2(1− 1/N) n2

〈δn̂aδn̂b〉 0 −N/M 2 0

Table 7.1. Various statistical quantities of typical quantum atomic states, namely the
Mott insulator state, the coherent state and the superfluid state.

This is different for a SF where each atom is delocalized over all sites leading to number
fluctuations at a given site and at K < M sites; the atoms at different sites are anticorrelated.
At a classical diffraction zero we still find a photon number proportional to the atom number
N .

A coherent state approximates a SF but without pair correlations. In the limitN,M →∞,
it well describes scattering from a small region (K �M) of a partially illuminated superfluid
(SFK). However, we proved that even in this limit it fails to describe scattering at angles of
Bragg maxima from a large lattice region (K ∼M).

Example. Let us now show the most striking predictions of this model at the basic
example of a probe transverse to the lattice (θ0 = 0, cf. Fig. 7.1). The scattered light
is collected in a cavity along the lattice (θ1 = π/2) with atoms trapped at the antinodes
(d = λ/2) [13, 15].

The operator D̂ =
∑K

k=1(−1)k+1n̂k (7.4) here gives almost zero average field amplitude
independently on the atomic state. This reflects the opposite phase of light scattered from
atoms separated by λ/2 (diffraction minimum). However, the cavity photon-number is pro-
portional to 〈D̂∗D̂〉 = (〈n̂2〉 − 〈n̂an̂b〉)K [cf. Eq. (7.5a)], which is determined by statistics of
a particular state. Thus, atoms in a MI state scatter no photons, while a SF scatters number
of photons proportional to the atom number:

〈a1〉MI = 〈a1〉SF = 0, but

〈a†1a1〉MI = 0, 〈a†1a1〉SF = |C|2NK .

Moreover, the photon number fluctuations (∆nph)2 are also different for various atomic

states. In the MI state, the variance (∆|D|2)2MI = 〈|D̂|4〉MI − 〈|D̂|2〉2MI = 0, whereas in SF,
there is a strong noise (∆|D|2)2SF ≈ 2N2

K .
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Coupled light-matter dynamics in a cavity can lead to a new self-organized phase [15]
with atoms trapped at every second site (d = λ), which gives D̂ =

∑K
k=1 n̂k = N̂K (7.4). If

this state is a MI with d = λ, the number of photons 〈a†1a1〉Self-org = |C|2N2
K is proportional

to the atom number squared and has a superradiant character.

Figure 7.2. Intensity angular distributions for two traveling waves. (a) Intensity of
classical diffraction; (b) noise quantity R (7.7) for coherent atomic state (constant 1, line
A), SF with all sites illuminated K = M (curve B), and MI state (constant 0, line C);
(c) the same as in (b) but for partially illuminated SF with K = M/2. N = M = 30,
θ0 = 0.

Angular distributions. We will quantitatively discuss angular intensity distributions
for scattering between two traveling waves, where Eq. (7.5b) reduces to

R = 〈δn̂aδn̂b〉
sin2 (Kα−/2)

sin2 (α−/2)
+ (〈δn̂2〉 − 〈δn̂aδn̂b〉)K. (7.7)

While |A|2 in the first term reproduces classical diffraction with α− = k0xd sin θ0 −
k1xd sin θ1, the second term in Eq. (7.5b) is simply isotropic. Thus, the noise quantity is
zero for MI, RMI = 0, nonzero but isotropic for the coherent state, RCoh = NK , and angle
dependent for a SF. In a SF, even small pair correlations 〈δn̂aδn̂b〉 = −N/M 2 give a large
contribution near diffraction maxima (α− = 2πl, l = 0, 1, ..), where the geometric factor is
K2, invalidating the coherent-state approximation.

Figure 7.2 displays those angular distributions. Classical diffraction |〈D〉|2 with the only
possible zero-order maxima at θ1 = 0, π (d = λ0,1/2, θ0 = 0) is shown in Fig.7.2(a). R for
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Figure 7.3. Intensity angular distributions for two standing-wave modes. (a) Intensity
of classical diffraction; (b) noise quantity for coherent state; and (c) for SF (curve A)
and MI (constant 0, line B). N = M = K = 30, θ0 = 0.1π.

the coherent and SFK states are plotted in Figs. 7.2(b), (c). For MI, R = 0. In SF, there is
a noise suppression at maxima, which is total for all sites illuminated, K = M , and partial
for K = M/2.

In a maximum, D̂ (7.4), is reduced to N̂K . Thus, the field amplitude is determined
by NK = nK, the intensity depends on 〈D̂∗D̂〉 = 〈N̂2

K〉, while R = (∆NK)2 gives the
atom number variance at K sites, which reflects the total and partial noise suppression in
Figs. 7.2(b) and 7.2(c), since 〈NK〉 fluctuates for K < M . In diffraction minima, the field
is zero, but the intensity is proportional to 〈n̂2〉 − 〈n̂an̂b〉. Under scattering of spatially
incoherent light, the intensity is isotropic and proportional to 〈n̂2〉.

So, in optical experiments, varying the geometry, the global statistics of K sites, local
single-site statistics, and pair correlations can be obtained even without a single-site access.
Thus, light scattering gives a way to distinguish between atomic states. As shown by Eq. (7.7)
and Fig. 7.2, MI and SFM states are different in diffraction minima and in incoherent light.
They are indistinguishable in maxima. SFM and coherent states differ in maxima only. MI
and coherent state are different at any angles.

The noise quantity or photon statistics are different in orders of NK for various states.
Nevertheless, for large NK , there could be practical problems to subtract large values in a



134 Publication: Cavity Enhanced Light Scattering to Probe . . .

maximum. In Refs. [6], this even led to a conclusion about the state indistinguishability by
intensity measurements. In contrast to homogeneous BECs, in lattices, this problem has a
natural solution: measurements outside maxima are free of the strong classical-like part of
scattering and thus directly reflect fluctuations.

A classical analogy of different light scattering consists in different density fluctuations. A
quantum treatment gives a deeper insight. Superfluid state is a superposition of all possible
multisite Fock states giving distributions of N atoms at M sites. Various Fock states become
entangled to scattered light of different phases and amplitudes. In contrast to a classical case
(and MI with the only multisite Fock state), light fields entangled to various distributions
do not interfere with each other due to the orthogonality of the Fock states. This reflects
the which way information and explains the zero amplitude but nonzero photon number in a
diffraction minimum.

If at least one of the modes is a standing wave, the angle dependences become much richer.
Besides new classical maxima given by α± = k0xd sin θ0±k1xd sin θ1, the second, “noise,” term
in Eqs. (7.5a) and (7.5b) is also not isotropic. It includes a sum of the geometric coefficients
squared, which is equivalent to effective doubling of the lattice period (or light frequency
doubling) leading to new features at angles, where classical diffraction predicts zero. In
Fig. 7.3, a case of two standing waves is shown. Due to the effective period doubling (given
by 2α0,1 = 2k0,1xd sin θ0,1 and 2α±), new features at the angles of, e.g., effective first-order
maxima appear, though classically only the zero-order maxima are still possible.

The angle dependence of the photon number variance (∆nph)2 determined by (∆|D|2)2
shows anisotropic features due to “period doubling” even for two traveling waves. For the
coherent state, the light at a maximum displays strong noise [(∆|D|2)2 = 4N3

K + 6N2
K +Nk

because 〈|D̂|4〉 = N4
K+6N3

K +7N2
K +Nk and 〈|D̂|2〉 = N2

K+NK ], stronger than the isotropic
component (N 2

K in highest order of NK) and new features at θ1 = ±π/2 (for θ0 = 0, 2N2
K in

highest order of NK). In SFM , the noise at maxima can be suppressed, while at other angles
it is nearly equal to that of the coherent state. In MI, (∆|D|2)2 = 0. Distinguishing between
atomic states by light statistics is similar to that by the intensity.

In summary, we have shown that atomic quantum states can be nondestructively moni-
tored by measuring scattered light. In contrast to homogeneous BECs, scattering from lattices
exhibits advantageous properties: suppression of the classical scattering in Bragg minima, ac-
cess to local and nonlocal correlations, angular distributions richer than classical diffraction.
Also other optical phenomena and quantities depending nonlinearly on the atom number
operators will reflect quantum atom statistics [16, 17], e.g., the dispersion of a medium will
provide a spectral method of quantum state characterization. Exploiting quantum properties
of light should be applicable to other Bragg spectroscopy setups.

Support by: Austrian Science Fund (P17709, S1512).
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We study off-resonant collective light scattering from ultracold atoms trapped in an
optical lattice. Scattering from different atomic quantum states creates different quantum
states of the scattered light, which can be distinguished by measurements of the spatial
intensity distribution, quadrature variances, photon statistics, or spectral measurements.
In particular, angle-resolved intensity measurements reflect global statistics of atoms (to-
tal number of radiating atoms) as well as local statistical quantities (single-site statistics
even without an optical access to a single site) and pair correlations between different
sites. As a striking example we consider scattering from transversally illuminated atoms
into an optical cavity mode. For the Mott insulator state, similar to classical diffraction,
the number of photons scattered into a cavity is zero due to destructive interference, while
for the superfluid state it is nonzero and proportional to the number of atoms. More-
over, we demonstrate that light scattering into a standing-wave cavity has a nontrivial
angle dependence, including the appearance of narrow features at angles, where classical
diffraction predicts zero.

8.1 Introduction

Ever since the first generation of Bose-Einstein condensates (BEC), it has been a central
task to study quantum properties of such degenerate gases. Surprisingly, it turned out that
many properties are well explained by the Gross-Pitaevskii equation, which is a an effective
nonlinear single-particle equation and allows to calculate the evolution of the average atomic

†The primary contribution of the author of the present thesis performed to this publication was the instal-
lation of the model and the calculation of certain generic examples and statistical quantities (cf. Sections 8.5
and 8.6). He also acted as a discussion partner on all other aspects of the work.



138 Publication: Light Scattering from Ultracold Atoms in Optical Lattices . . .

density and phase. The density can be observed by simple absorption images after expansion,
and the phase can be mapped onto density modulations in interferometric setups. The limited
validity of such mean-field descriptions became apparent with the advent of optical lattices
[1, 2], where one has quantum phase transitions between states of similar average density but
radically different quantum fluctuations.

The majority of methods to characterize quantum properties of degenerate gases are based
on matter-wave interference between atoms released from a trap in time-of-flight measure-
ments [2–4], which destroys the system. Recently, a method of “Bragg spectroscopy” based
on stimulated scattering of matter waves by laser pulses was applied to homogeneous BECs
[5, 6] and atoms in lattices [7–10]. In this case, the measured quantities (e.g. structure fac-
tor), which carry information about density fluctuations, are also accessible via matter-wave
interference. Although the scattered light and stimulated matter waves can be entangled and
mutually carry the statistical information [11, 12], the laser fields are simply considered as a
tool to stimulate matter waves.

In contrast to those works, the nondestructive methods based on measurements of light
fields only, without destroying atoms, were proposed in Refs. [13–22] for homogeneous BECs
in traps and optical lattices [23]. Here the average amplitude of the scattered light is solely
determined by the average atomic density, while the photon number and other higher order
field expectation values contain quantum statistical properties of atoms.

In this paper, we show that this is of even greater significance for atoms in lattices, where
different quantum phases show qualitatively distinct light scattering [24]. In particular, lin-
ear scattering can create entangled states of light and manybody atomic states, exhibiting
a nontrivial connection of the field amplitude and intensity. As a practical consequence, we
demonstrate the possibility to distinguish between different quantum phases, e.g., Mott in-
sulator (MI) and superfluid (SF), by measuring properties of a scattered off-resonant beam.
This possibility is exhibited in several different ways involving simple intensity measure-
ments, or more involved measurements of quadrature variances, photon statistics, as well as
phase-sensitive or spectral measurements. A careful analysis of the scattered light provides
information about global statistics (related to atom number at a lattice region illuminated
by the probe), local quantities (reflecting statistics at a single site even without an optical
single-site access), and pair correlations between different sites.

Note that we consider off-resonant and almost nondestructive light scattering, which in
principle can be repeatedly or even continuously applied to the same sample. This is very
different from noise spectroscopy in absorption images [3] where observations of quantum
fluctuations of the atomic density were recently reported.

For homogeneous BECs [13–22], the scattered light was shown to consist of two contri-
butions: the strong classical part insensitive to atomic fluctuations, and weaker one, which
carries information about atom statistics. For a large atom number, the classical part com-
pletely dominates the second one, which, in some papers, even led to a conclusion about the
impossibility of distinguishing between different atomic states by intensity measurements,
and, hence, to a necessity to measure photon statistics.

In our work, we show that light scattering from atoms in optical lattices has essentially
different and advantageous characteristics in contrast to scattering from homogeneous BECs.
For example, the problem of suppressing the strong classical part of scattering has a natural
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solution: in the directions of classical diffraction minima, the expectation value of the light
amplitude is zero, while the intensity (photon number) is nonzero and therefore directly
reflects density fluctuations. Furthermore, in an optical lattice, the signal is sensitive not
only to the periodic density distribution, but also to the periodic distribution of density
fluctuations, giving an access to even very small nonlocal pair correlations, which is possible
by measuring light in the directions of diffraction maxima.

As free space light scattering from a small sample can be weak, it might be selectively
enhanced by a cavity. The corresponding light scattering from an optical lattice exhibits a
complicated angle dependence and narrow angle-resolved features appear at angles, where
classical diffraction cannot exist. In experiments, such a nontrivial angle dependence can
help in the separation between the signal reflecting atom statistics from a technical noise.

Joining the paradigms of two broad fields of quantum physics, cavity quantum electrody-
namics (QED) and ultracold gases, will enable new investigations of both light and matter at
ultimate quantum levels, which only recently became experimentally possible [25, 26]. Here
we predict effects accessible in such novel setups.

Experimentally, diffraction (Bragg scattering) of light from classical atoms in optical
lattices was considered, for example, in Refs. [27–29]. In our work, we are essentially focused
on the properties of scattering from ultracold lattice atoms with quantized center-of-mass
motion.

The paper is organized as follows. In Sec. II, a general theoretical model of light scattering
from atoms in an optical lattice is developed taking into account atom tunneling between
neighboring sites. In Sec. III, we significantly reduce the model to the case of a deep lattice
and give a classical analogy of light diffraction on a quantum lattice. Section IV presents a
relation between atom statistics and different characteristics of scattered light: intensity and
amplitude, quadratures, photon statistics, and phase-sensitive and spectral characteristics.
Properties of different atomic states are summarized in Sec. V.

In Sec. VI, we present a simple example of the model developed: light scattering from a
lattice in an optical cavity pumped orthogonally to the axis. The main results are discussed
in Sec. VII and summarized in Sec. VIII.

8.2 General model

We consider an ensemble of N two-level atoms in an optical lattice with M sites. Except the
presence of a trapping lattice potential, atoms are illuminated by and scatter field modes at
different directions. A possible experimental realization is shown in Fig. 8.1. Here, a lattice is
illuminated by a “pump” beam, whereas measurements are carried out in one of the scattered
modes, which is treated as a “probe.” Note that different experimental setups are possible:
the modes can be either in free space, or selected by traveling- or standing-wave cavities, or
even correspond to different modes of the same cavity. For definiteness, we will consider the
case, where mode functions are determined by cavities, whose axes directions can be varied
with respect to the lattice axis (the simplest case of two standing-wave cavities at angles θ0

and θ1 is shown in Fig. 8.1). Instead of varying the angles, the mode wavelengths can be
varied with respect to the wavelength of a trapping beam. We also assume, that not all M
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Figure 8.1. (Color online) Setup. Atoms in a lattice are illuminated by a pump wave
at angle θ0; scattered (probe) light is collected by a cavity at angle θ1 and measured by
a detector.

lattice sites are necessarily illuminated by additional modes, but some region with K ≤ M
sites.

The manybody Hamiltonian in the second quantized form is given by

H =Hf +Ha, (8.1a)

Hf =
∑

l

~ωla
†
lal − i~

∑

l

(η∗l al − ηla†l ), (8.1b)

Ha =

∫

d3rΨ†(r)Ha1Ψ(r) +
2πas~

2

m

∫

d3rΨ†(r)Ψ†(r)Ψ(r)Ψ(r). (8.1c)

In the field part of the Hamiltonian Hf , al are the annihilation operators of light modes
with the frequencies ωl, wave vectors kl, and mode functions ul(r), which can be pumped
by coherent fields with amplitudes ηl. In the atom part, Ha, Ψ(r) is the atomic matter-field
operator, as is the s-wave scattering length characterizing the direct interatomic interaction,
and Ha1 is the atomic part of the single-particle Hamiltonian H1, which in the rotating-wave
and dipole approximation has a form

H1 =Hf +Ha1, (8.2a)

Ha1 =
p2

2ma
+

~ωa
2
σz − i~g0

∑

l

[σ+alul(r)−H. c.] (8.2b)
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Here, p and r are the momentum and position operators of an atom of mass ma and resonance
frequency ωa, σ

+, σ−, and σz are the raising, lowering, and population difference operators,
g0 is the atom–light coupling constant.

We will consider essentially nonresonant interaction where the light-atom detunings ∆ la =
ωl−ωa are much larger than the spontaneous emission rate and Rabi frequencies g0al. Thus, in
the Heisenberg equations obtained from the single-atom Hamiltonian H1 (8.2), σz can be set
to −1 (approximation of linear dipoles). Moreover, the polarization σ− can be adiabatically
eliminated and expressed via the fields al. An effective single-particle Hamiltonian that gives
the corresponding Heisenberg equation for al can be written as H1eff = Hf +Ha1 with

Ha1 =
p2

2ma
+ Vcl(r) + ~g2

0

∑

l,m

u∗l (r)um(r)a†l am
∆ma

. (8.3)

Here, we have also added a classical trapping potential of the lattice, Vcl(r), corresponds to
a strong classical standing wave. This potential can be, of course, derived from one of the
modes al = acl [in this case Vcl(r) = ~g2

0 |aclucl(r)|2/∆cla], and it can scatter light into other
modes. Nevertheless, at this point we will consider Vcl(r) as an independent potential, which
does not affect light scattering of other modes that can be significantly detuned from acl [i.e.
the interference terms between acl and other modes are not considered in the last term of
Eq. (8.3)]. The later inclusion of the light scattered by the trapping wave will not constitute
a difficulty, due to the linearity of dipoles assumed in this model.

We will consider scattering of weak modes from the atoms in a deep lattice. So, the
fields al are assumed much weaker than the field forming the potential Vcl(r). To derive the
generalized Bose–Hubbard Hamiltonian we expand the field operator Ψ(r) in Eq. (8.1), using
localized Wannier functions corresponding to Vcl(r) and keeping only the lowest vibrational
state at each site: Ψ(r) =

∑M
i=1 biw(r− ri), where bi is the annihilation operator of an atom

at the site i with the coordinate ri. Substituting this expansion in Eq. (8.1) with Ha1 (8.3),
we get

H = Hf +

M
∑

i,j=1

Jcl
i,jb

†
i bj + ~g2

0

∑

l,m

a†l am
∆ma





K
∑

i,j=1

J lmi,j b
†
ibj



+
U

2

M
∑

i=1

b†i bi(b
†
i bi − 1), (8.4)

where the coefficients J cl
ij correspond to the quantum motion of atoms in the classical potential

and are typical for the Bose-Hubbard Hamiltonian [1]:

Jcl
i,j =

∫

drw(r− ri)

(

−~
2∇2

2m
+ Vcl(r)

)

w(r− rj). (8.5)

The coefficients J lmij describe an additional contribution arising from the presence of light
modes:

J lmi,j =

∫

drw(r− ri)u
∗
l (r)um(r)w(r − rj). (8.6)

In the last term of Eq. (8.4), only the on-site interaction was taken into account and U =
4πas~

2/ma

∫

dr|w(r)|4.
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As a usual approximation, we consider atom tunneling being possible only to the nearest
neighbor sites. Thus, coefficients (8.5) do not depend on the site indices (J cl

i,i = Jcl
0 and

Jcl
i,i±1 = Jcl), while coefficients (8.6) are still index-dependent. The Hamiltonian (8.4) then

reads

H = Hf + Jcl
0 N̂ + JclB̂ + ~g2

0

∑

l,m

a†lam
∆ma

(

K
∑

i=1

J lmi,i n̂i

)

(8.7)

+~g2
0

∑

l,m

a†l am
∆ma





K
∑

〈i,j〉
J lmi,j b

†
i bj



+
U

2

M
∑

i=1

n̂i(n̂i − 1),

where 〈i, j〉 denotes the sum over neighboring pairs, n̂i = b†ibi is the atom number operator

at the i-th site, and B̂ =
∑M

i=1 b
†
ibi+1 + H.c. While the total atom number determined by

N̂ =
∑M

i=1 n̂i is conserved, the atom number at the illuminated sites, determined by N̂K =
∑K

i=1 n̂i, is not necessarily a conserved quantity.

The Heisenberg equations for al and bi can be obtained from the Hamiltonian (8.7) as

ȧl = −i



ωl +
g2
0

∆la

K
∑

i=1

J lli,in̂i +
g2
0

∆la

K
∑

<i,j>

J lli,jb
†
ibj



 al − ig2
0

∑

m6=l

am
∆ma

(

K
∑

i=1

J lmi,i n̂i

)

−ig2
0

∑

m6=l

am
∆ma





K
∑

<i,j>

J lmi,j b
†
i bj



+ ηl (8.8a)

ḃi = − i
~



Jcl
0 + ~g2

0

∑

l,m

a†l am
∆ma

J lmi,i + Un̂i



 bi −
i

~



Jcl + ~g2
0

∑

l,m

a†lam
∆ma

J lmi,i+1



 bi+1

− i
~



Jcl + ~g2
0

∑

l,m

a†l am
∆ma

J lmi,i−1



 bi−1. (8.8b)

In Eq. (8.8a) for the electromagnetic fields al, two last terms in the parentheses correspond
to the phase shift of the light mode due to nonresonant dispersion (the second term) and due
to tunneling to neighboring sites (the third one). The second term in Eq. (8.8a) describes
scattering of all modes into al, while the forth term takes into account corrections to such
scattering associated with tunneling due to the presence of additional light fields. In Eq. (8.8b)
for the matter field operators bi, the first term gives the phase of the matter-field at the site
i, the second and third terms describe the coupling to neighboring sites.

It is important to underline that except for the direct coupling between neighboring sites,
which is usual for the standard Bose–Hubbard model, Eqs. (8.8) also take into account long-
range correlations between sites, which do not decrease with the distance and are provided
by the common light modes al that are determined by the whole set of matter-field operators
bi.
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8.3 Scattering from a deep lattice and classical analogy

We will significantly reduce the general model described by the Hamiltonian (8.7) and Heisen-
berg equations (8.8). In contrast to our previous paper [30] and works on so-called “Bragg
spectroscopy” [7–10], we will not consider excitations of the lattice by light and stimulation
of matter waves. The focus of the present paper is a study of properties of light scattered
from the atoms in a prescribed quantum state, which is not necessarily the ground one. The
main result is the demonstration of the possibility to distinguish between different atomic
quantum states of different statistics by measuring light only.

We consider a very deep lattice formed by a strong classical potential Vcl(r), so that the
overlap between Wannier functions in Eqs. (8.5) and (8.6) is small and tunneling between
neighboring sites is impossible (J cl = 0 and J lmi,j = 0 for i 6= j). The on-site coefficients

J lmi,i (8.6) can be then approximated as J lmi,i = u∗l (ri)um(ri) neglecting details of the atomic
localization, which are accessible even from the classical consideration [27–29].

For simplicity, we will consider scattering of a single classical mode a0 (“pump”) consid-
ered as a given c-number quantity, into another mode a1 with the relaxation rate κ included
phenomenologically. The Heisenberg equation (8.8a) for the scattered light a1 then reads

ȧ1 = −i
[

ω1 +
g2
0

∆1a

K
∑

i=1

|u1(ri)|2n̂i
]

a1 − i
g2
0a0

∆0a

[

K
∑

i=1

u∗1(ri)u0(ri)n̂i

]

− κa1 + η1, (8.9)

where we do not add the Langevin noise term, since we will be interested in normal ordered
quantities only. In the Heisenberg equation for the matter–field operators bi (8.8b), only the
first term is nonzero. This term affects only the phase of the matter field, but not the atom
number operators n̂i = b†i bi. Hence, though the the matter–field phase still depends on the
common light mode, the operators n̂i, appearing in Eq. (8.9), are constant in time.

We assume that the dispersion shift of the cavity mode g2
0/∆1a

∑K
i=1 |u1(ri)|2n̂i is much

smaller than κ or detuning between the pump and scattered light ∆01 = ω0 − ω1. Thus, a
stationary solution of Eq. (8.9) has a form

a1 = CD̂, C ≡ − ig2
0a0

∆0a(κ− i∆01)
, (8.10a)

D̂ ≡
K
∑

i=1

u∗1(ri)u0(ri)n̂i, (8.10b)

where we have also assumed no additional pumping (η1 = 0) and replaced the operators
a0,1(t) by their slowly varying envelopes ã0,1(t) [a0,1(t) = ã0,1 exp(−iω0t)] skipping in the
following notations all tilde signs.

This expressing the light operators in terms of the atomic ones in Eq. (8.10) is a central
result here, which we will use to study the properties of the scattered field.

In the following, we will consider a 1D lattice of the period d with atoms trapped at
xm = md (m = 1, 2, ..,M). The result for the field operator a1 (8.10a) with the operator D̂
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(8.10b) has an analogy in classical diffraction. For scattering of a traveling wave a0 in the
direction of a traveling wave a1 from a lattice with 〈n̂i〉 = n at each site, the expectation
value of the field is given by

〈a1〉 = C〈D̂〉 = C

K
∑

m=1

eimδkxd〈n̂m〉 = Cnei(K+1)α−/2 sin (Kα−/2)

sin (α−/2)
, (8.11)

where α− = δkxd, and δkx = (k0−k1)x = k(sin θ0− sin θ1) is the projection of the difference
between two wave vectors on the lattice direction, θ0,1 are the angles between wave vectors
and a vector normal to the lattice direction (cf. Fig. 8.1), k = ω/c for ω0 = ω1 = ω.

Equation (8.11) simply describes classical diffraction of the traveling wave a0 on a diffrac-
tion grating formed by equally spaced atoms with positions of diffraction maxima and minima
(i.e. scattering angles θ1) determined by the parameter α− depending on the geometry of
incident and scattered waves and diffraction grating through θ0, |k0,1|, and d. A more general
form of the operator D̂ given by Eq. (8.10b) describes also diffraction of a standing wave a0

into another mode a1, which can be formed, for example, by a standing–wave or ring optical
cavity.

Equation (8.11) shows that the expectation value of the scattered field is sensitive only
to the mean number of atoms per site n and reflects a direct analogy of light scattering
from a classical diffraction grating. Nevertheless, the photon number (intensity) and photon
statistics of the field a1 are sensitive to higher moments of the number operators n̂i as well
as to the quantum correlations between different lattice sites, which determines quantum
statistical properties of ultracold atoms in an optical lattice and will be considered in the
next sections.

8.4 Relation between quantum statistics of atoms and char-
acteristics of scattered light

8.4.1 Probing quantum statistics by intensity and amplitude measure-
ments

According to Eq. (8.10a), the expectation value of the photon number a†1a1 is proportional to
the expectation value of the operator D̂∗D̂. We introduce coefficients Ai(θ0, θ1) responsible
for the geometry of the problem:

D̂ =
K
∑

i=1

Ain̂i, Ai(θ0, θ1) ≡ u∗1(ri)u0(ri),

A(θ0, θ1) ≡
K
∑

i=1

Ai(θ0, θ1), (8.12)

where u0,1(rm) = exp(imk0,1xd + φ0,1m) for traveling waves, and u0,1(rm) = cos(mk0,1xd +
φ0,1m) for standing waves (m = 1, 2, ...M), k0,1x = |k0,1| sin θ0,1, θ0,1 are the angles between
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mode wave vectors and a vector normal to the lattice axis; in the plane-wave approximation,
additional phases φ0,1m are m-independent.

The expectation values of D̂ and D̂∗D̂ then read

〈D̂〉 =

K
∑

i=1

Ai〈n̂i〉 = nA, (8.13a)

〈D̂∗D̂〉 =
K
∑

i,j=1

A∗
iAj〈n̂in̂j〉 (8.13b)

= 〈n̂an̂b〉|A|2 + (〈n̂2〉 − 〈n̂an̂b〉)
K
∑

i=1

|Ai|2, (8.13c)

R(θ0, θ1) ≡ 〈D̂∗D̂〉 − |〈D̂〉|2

= (〈n̂an̂b〉 − n2)|A|2 + (〈n̂2〉 − 〈n̂an̂b〉)
K
∑

i=1

|Ai|2 (8.13d)

= 〈δn̂aδn̂b〉|A|2 + (〈δn̂2〉 − 〈δn̂aδn̂b〉)
K
∑

i=1

|Ai|2. (8.13e)

In Eqs. (8.13) we have used the following assumptions about the atomic quantum state |Ψ〉:
(i) the expectation values of the atom number at all sites are the same, 〈n̂i〉 = n, (ii) the
nonlocal pair correlations between atom numbers at different sites 〈n̂in̂j〉 are equal to each
other for any i 6= j and will be denoted as 〈n̂an̂b〉 (with a 6= b). The latter assumption is
valid for a deep lattice. We also introduced the fluctuation operators δn̂i = n̂i − n, which
gives 〈δn̂2〉 equal to the variance (∆ni)

2 = 〈n̂2
i 〉 − n2.

Equation (8.13a) reflects the fact that the expectation value of the field amplitude (8.10a)
is sensitive only to the mean atom numbers and displays the angle dependence of classical
diffraction given by the factor A(θ0, θ1), which depends on the mode angles and displays
pronounced diffraction maxima and minima. Equation (8.13b) shows that the number of
scattered photons (intensity) at some angle is determined by the density–density correlations.
In the simplest case of two traveling waves, the prefactors A∗

iAj = exp[iδkx(xj − xi)] with
δkx = k0x − k1x. In this case, Eq. (8.13b) gives the so-called structure factor (function),
which was considered in the works on light scattering from homogeneous BEC [17, 18]. Here
we essentially focus on optical lattices. Moreover, it will be shown, that the more general
Eq. (8.13b), which includes scattering of standing waves, contains new measurable features
different from those of a usual structure factor.

Equation (8.13c) shows, that the angle dependence of the scattered intensity consists of
two contributions. The first term has an angle dependence |A(θ0, θ1)|2 identical to that of the
expectation value of the field amplitude squared (8.13a). The second term is proportional to
the quantity 〈n̂2〉 − 〈n̂an̂b〉 giving quantum fluctuations and has a completely different angle
dependence

∑K
i=1 |Ai|2. The expression (8.13c) has a form similar to the one considered in

papers [13, 15, 16] on light scattering from a homogeneous BEC, where the scattered intensity
consisted of two parts: “coherent” (i.e. depending on the average density) and “incoherent”
one (i.e. depending on the density fluctuations). Nevertheless, in the present case of a
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periodic lattice, this similarity would be exact only in a particular case where there are no
nonlocal pair correlations 〈n̂an̂b〉 = nanb = n2 (〈δn̂aδn̂b〉 = 0), which in general is not true
and leads to observable difference between states with and without pair correlations.

Further insight into a physical role of nonlocal pair correlations can be obtained from
Eqs. (8.13d) and (8.13e) for the “noise quantity” R(θ0, θ1) ≡ 〈D̂∗D̂〉 − |〈D̂〉|2, where we
have subtracted the classical (averaged) contribution |〈D̂〉|2 to the intensity 〈D̂∗D̂〉. Equa-
tion (8.13e) shows that, in the noise quantity, a term with the classical angular distribution
|A(θ0, θ1)|2 appears only if the pair correlations are nonzero. The physical meaning of this
result is that, in an optical lattice, it is not only the density distribution that displays spatial
periodic structure leading to diffraction scattering, but also the distribution of number fluc-
tuations themselves. In the framework of our assumption about equal pair correlations, the
spatial distribution of fluctuations 〈δn̂aδn̂b〉 can be either the same as the density distribution
(with a lattice period d) or zero. In the former case, pair correlations contribute to the first
term in Eqs. (8.13d) and (8.13e) with classical distribution |A(θ0, θ1)|2, in the latter case,
〈δn̂aδn̂b〉 = 0, and the only signal in the noise quantity is due to on-site fluctuations 〈δn̂2〉
with a different angle dependence

∑K
i=1 |Ai|2. Note that, in general, the spatial distribution

of fluctuations can be different from that of the average density and can have a period propor-
tional to the lattice period d. This will lead to additional peaks in the angular distribution of
the noise quantity (8.13d), (8.13e). The generalization of those formulas is straightforward.

Even with spatially incoherent pump a0, the intensity of the scattered mode a†1a1 is
sensitive to the on-site atom statistics. To model this situation, the quantum expectation
value 〈D̂∗D̂〉 (8.13b) should be additionally averaged over random phases φ0,1m appearing in
the definition of mode functions in Eq. (8.12). In Eq. (8.13b), only terms with i = j will then
survive and the final result reads

〈D̂∗D̂〉inc = p0K〈n̂2〉, (8.14)

where p0 is equal to 1 for two traveling waves, 1/2 for a configuration with one standing wave,
and 1/4, when both modes a0,1 are standing waves.

8.4.2 Quadrature measurements

The photon number a†1a1 is determined by the expectation value 〈D̂∗D̂〉, whereas 〈D̂〉 gives
the field 〈a1〉 (8.10a). While photon numbers can be directly measured, a field 〈a1〉 mea-
surement requires a homodyne scheme. Such a measurement then makes 〈D̂〉 experimentally
accessible. Actually for a quantum field only the expectation values of quadratures of a1

that are Hermitian operators and can be measured. Using Eq. (8.10a) and the commutation

relation [a1, a
†
1] = 1, the quadrature operator Xφ and its variance (∆Xφ)

2 can be written as

Xφ ≡ 1

2

(

a1e
−iφ + a†1e

iφ
)

= |C|X̂D
φ−φC

, (8.15a)

X2
φ =

1

4
+ |C|2(X̂D

φ−φC
)2, (8.15b)

(∆Xφ)
2 ≡ 〈X2

φ〉 − 〈Xφ〉2 =
1

4
+ |C|2(∆XD

φ−φC
)2, (8.15c)
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where C = |C| exp(iφC) and the quadratures of D̂ are

X̂D
β ≡ 1

2

(

D̂e−iβ + D̂∗eiβ
)

, (8.16a)

(∆XD
β )2 ≡ 〈(X̂D

β )2〉 − 〈X̂D
β 〉2. (8.16b)

In Eqs. (8.15), the phase φ is related to the homodyne reference phase, while φC is determined
by the phase of the pump a0 and parameters of the field–matter system [cf. Eq. (8.10a)].
Hence, the phase β = φ − φC entering Eqs. (8.15) can be controlled by varying the phase
difference between the pump and homodyne fields.

Using Eq. (8.12), the quadrature operator X̂D
β reads

X̂D
β =

K
∑

i=1

Aβi n̂i, Aβi (θ0, θ1) ≡ |Ai| cos (φAi
− β),

Aβ(θ0, θ1) ≡
K
∑

i=1

Aβi (θ0, θ1), (8.17)

where Ai = |Ai| exp(iφAi
), and we defined new quantities Aβi (θ0, θ1) and Aβ(θ0, θ1).

Since Eq. (8.17) for X̂D
β and Eq. (8.12) for D̂ have a similar structure, the Eqs. (8.13) for

the quantities 〈D̂〉, 〈D̂∗D̂〉, and R can be rewritten for the quantities 〈X̂D
β 〉, 〈(X̂D

β )2〉, and

(∆XD
β )2, respectively, with the change of parameters Ai(θ0, θ1) and A(θ0, θ1) to Aβi (θ0, θ1)

and Aβ(θ0, θ1). Thus, the above discussion of Eqs. (8.13) can be repeated in terms of the

quadrature operators with the only difference that coefficients Aβ
i (θ0, θ1) and Aβ(θ0, θ1) now

depend also on the homodyne phase. An advantage of this reformulation is that the expec-
tation value of the non-Hermitian operator a1, which determines 〈D̂〉, is now replaced by
the expectation value of the Hermitian operator Xφ, which is consistent with a procedure of
measuring quadratures of the quantum field a1.

8.4.3 Photon number fluctuations

While the intensity of the scattered light is sensitive to the second moments of the number
operators n̂i, quantum statistics of the field reflexes the forth-order moments. The variance
(∆nph)

2 of the photon number nph = a†1a1 is given by

(∆nph)2 = 〈n2
ph〉 − 〈nph〉2 =: (∆n2

ph) : +〈nph〉 (8.18)

= |C|4(〈D̂∗2D̂2〉 − 〈D̂∗D̂〉2) + |C|2〈D̂∗D̂〉,

where : (∆n2
ph) := 〈a†21 a2

1〉 − 〈a†1a1〉2 = |C|4(〈D̂∗2D̂2〉 − 〈D̂∗D̂〉2) is a normal ordered photon-
number variance. Thus, the problem is reduced to measurements of the photon number
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|C|2〈D̂∗D̂〉 and quantity |C|4〈D̂∗2D̂2〉, which after straightforward calculations is given by

〈D̂∗2D̂2〉 =

∣

∣

∣

∣

∣

K
∑

i=1

Ai

∣

∣

∣

∣

∣

4

〈nanbncnd〉 (8.19)

+ 2

[(

K
∑

i=1

|Ai|2Ai
)

K
∑

i=1

A∗
i + c.c.

]

(

2〈nanbncnd〉 − 3〈n2
anbnc〉+ 〈n3

anb〉
)

+





(

K
∑

i=1

A2
i

)(

K
∑

i=1

A∗
i

)2

+ c.c.





(

−〈nanbncnd〉+ 〈n2
anbnc〉

)

+ 2

(

K
∑

i=1

|Ai|2
)2
(

〈nanbncnd〉 − 2〈n2
anbnc〉+ 〈n2

an
2
b〉
)

+

∣

∣

∣

∣

∣

K
∑

i=1

A2
i

∣

∣

∣

∣

∣

2
(

〈nanbncnd〉 − 2〈n2
anbnc〉+ 〈n2

an
2
b〉
)

+ 4

∣

∣

∣

∣

∣

K
∑

i=1

Ai

∣

∣

∣

∣

∣

2 K
∑

i=1

|Ai|2
(

−〈nanbncnd〉+ 〈n2
anbnc〉

)

+

K
∑

i=1

|Ai|4
(

−6〈nanbncnd〉+ 12〈n2
anbnc〉 − 4〈n3

anb〉 − 3〈n2
an

2
b〉+ 〈n4〉

)

,

where we assumed again that correlations do not depend on site indices, and sites with the
indices a, b, c, and d are different. In Eq. (8.19), each prefactor containing geometrical
coefficients Ai (8.12) determines different angle dependences of a corresponding term.

Thus, varying the geometry of a problem (e.g. angles of two modes, wavelengths of the
modes or that of trapping potential determining the lattice period), one has access to different
statistical quantities characterizing the quantum state of ultracold atoms.

8.4.4 Phase-sensitive and spectral measurements

In the derivation of Eq. (8.10), we have neglected the term g2
0/∆1a

∑K
i=1 |u1(ri)|2n̂i in Eq. (8.9)

related to the refractive index of atoms for the scattered light. This term is normally very
small at large detunings. However, if the scattered mode is confined in a very good optical
resonator, the light experiences a very long effective path within the atoms, and this term
shifts the phase of the scattered light. In a steady state approximation it amounts to the
dispersion shift of a cavity mode.

Equation (8.9) shows that even in the absence of the pump field (a0 = 0), quantum
fluctuations of the atom number enter the phase via operators n̂i of K illuminated sites, which
depend on the atomic quantum state. In the simplest case of a traveling wave, |u1(ri)| = 1,
and the operator

∑K
i=1 n̂i = N̂K is the number of atoms at K sites. As will be discussed

below, in the Mott insulator state, the expectation value of this quantity NK = 〈N̂K〉 does
not fluctuate. In the superfluid state with K = M , NM is equal to the total number of atoms
N , and also is fixed. However for K < M , NK fluctuates strongly and, as will be discussed,
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for K � M corresponds to a coherent state with 〈N̂2
K〉 = 〈N̂K〉2 + 〈N̂K〉. Those statistical

properties of the atomic states are reflected in the phase of the light field. In particular,
measurements of the dispersion shift of a cavity mode will show a frequency distribution
reflecting the distribution of atom numbers.

This also opens an alternative spectral method of determining the quantum state of the
atoms in a cavity with two degenerate modes. Let us consider the mode a0 as a dynamical
quantity obeying an equation as Eq. (8.9), which can be obtained from the set of Eq. (8.8a),
while the second degenerate mode is called a1. The atoms lead to the collective normal-
mode splitting of two cavity modes as recently experimentally observed [31]. If the coupling
coefficient between two degenerate modes, which is equal to g2

0/∆0aD̂ [cf. Eq. (8.9) and the
definition of the operator D̂ in Eq. (8.12)], exceeds the cavity relaxation rate κ, a spectral
doublet instead of single maximum can be observed in the spectrum of the output light.

It is quite expected that the collective strong coupling between the modes and thus
the spectral splitting depends on the number of atoms in a lattice. Interestingly, from the
equations for a0 and a1, it can be shown, that parameters of the normal-mode splitting
(e.g. splitting frequency, linewidths) also depend on the atomic quantum state. So, spectral
mode-splitting measurements also can be used to distinguish between atomic quantum phases
and allow a nondestructive measurement of a quantum phase transition dynamics. In the
following we will, however, restrict our study to single frequency measurements and leave a
more detailed analysis of phase- and frequency-sensitive phenomena to other works [32].

8.5 Quantum statistical properties of typical atomic distribu-

tions

Let us briefly summarize some key statistical properties of typical states of N atoms at
M lattice sites, i.e: the Mott insulator state (MI), superfluid state (SF), and a multisite
coherent-state approximation to the SF state.

The MI state represents a simple product of local Fock states at each site with precisely
ni atoms at a site i. As a consequence, atom numbers at each site n̂i (as well as the number
of atoms at K sites N̂K) do not fluctuate, and there is no quantum correlations between sites:

|ΨMI〉 =

M
∏

i=1

|ni〉i, (8.20a)

〈n̂2
i 〉MI = n2

i , (8.20b)

(∆ni)
2
MI = 0, (8.20c)

〈N̂2
K〉MI = N2

K , (8.20d)

(∆N̂K)2MI = 0, (8.20e)

〈n̂an̂b〉MI = nanb, (8.20f)

〈δn̂aδn̂b〉MI = 0, a 6= b. (8.20g)

Similarly to Eq. (8.20f),(8.20g), all two-, three-, and four-site quantities in Eq. (8.19) factorize.
From the light–scattering point of view, this is the most classical atomic state, which corre-



150 Publication: Light Scattering from Ultracold Atoms in Optical Lattices . . .

sponds to periodically ordered pointlike atoms. We will further consider the commensurate
filling with ni = N/M atoms at each site.

The SF state corresponds to a BEC where each atom is in the zero quasi-momentum
Bloch–state of the lowest band and is equally delocalized over all sites. Hence, the atom
numbers at a given site (and the number of atoms at K < M sites) fluctuate. As a conse-
quence of the total atom number conservation, the numbers of particles at two different sites
a 6= b are anticorrelated.

|ΨSF〉 =
1√
N !

(

1√
M

M
∑

i=1

b†i

)N

|0〉, (8.21a)

〈n̂i〉SF =
N

M
, (8.21b)

〈n̂2
i 〉SF =

N(N − 1)

M2
+
N

M
, (8.21c)

(∆ni)
2
SF =

N

M

(

1− 1

M

)

, (8.21d)

〈N̂K〉SF = K
N

M
, (8.21e)

〈N̂2
K〉SF = K2N(N − 1)

M2
+K

N

M
, (8.21f)

(∆NK)2SF = K
N

M

(

1− K

M

)

, (8.21g)

〈n̂an̂b〉SF =
N2

M2

(

1− 1

N

)

, (8.21h)

〈δn̂aδn̂b〉SF = − N

M2
. (8.21i)

All two-, three-, and four-site quantities in Eq. (8.19) also do not factorize. The SF state
(8.21a) is a superposition of all possible multisite Fock states of N atoms at M sites. The
expectation values in the SF state can be calculated using normal ordering and the following
relations:

bi|ΨSF(N,M)〉 =

√

N

M
|ΨSF(N − 1,M)〉, (8.22a)

〈ΨSF|b†mi bmi |ΨSF〉 =
N(N − 1)...(N −m+ 1)

Mm
, (8.22b)

where Eq. (8.22a) relates SFs with N and N − 1 atoms.

We will introduce another, coherent, quantum state, which is often considered as an
approximation to the SF state, and represents a product of local coherent states at each site.
In this approximate state, the numbers of particles at a given site and at any K ≤ M sites
fluctuate. Moreover, the total number of particles at M sites is also a fluctuating quantity,
which is a disadvantage of this approximation. Similarly to the MI state, correlations between
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several different sites are absent.

|ΨCoh〉 = e−N/2
M
∏

i=1

e
√
N/Mb†i |0〉i, (8.23a)

〈n̂i〉Coh =
N

M
, (8.23b)

〈n̂2
i 〉Coh =

N2

M2
+
N

M
, (8.23c)

(∆ni)
2
Coh =

N

M
, (8.23d)

〈N̂K〉Coh = K
N

M
, (8.23e)

〈N̂2
K〉Coh = K2 N

2

M2
+K

N

M
, (8.23f)

(∆NK)2Coh = K
N

M
, (8.23g)

〈n̂an̂b〉Coh =
N2

M2
, (8.23h)

〈δn̂aδn̂b〉Coh = 0, (8.23i)

and we have

bi|ΨCoh(N,M)〉 =

√

N

M
|ΨCoh(N,M)〉, (8.24a)

〈ΨCoh|b†mi bmi |ΨCoh〉 =
Nm

Mm
. (8.24b)

Comparing Eqs. (8.21), (8.22) for the SF state and Eqs. (8.23), (8.24) for the coherent
one, we can state that under the approximation N,M → ∞, but finite N/M , the coherent
state is a good approximation for local one-site quantities and correlations between different
sites. Moreover, if K � M , the SF expectation values related to the nonlocal N̂K operator
are also well approximated by corresponding quantities in the coherent state. Nevertheless,
if the number of sites K is of the order of M , the coherent-state approximation fails for those
quantities.

One can prove even a more general statement for the functions 〈D̂∗D̂〉 (8.13) and 〈D̂∗2D̂2〉
(8.19), which determine the intensity and statistics of light and are the most important
quantities in this work. If the number of sites illuminated by light, K, is much smaller than
the total number of lattice sites M , the coherent-state is a good approximation for calculating
characteristics of scattered light in the limit N,M → ∞, but finite N/M . If, in opposite,
the number of sites interacting with light is of the order of the total number of sites in the
lattice, this approximation, in general, gives wrong results. As will be shown, it fails for
light scattering in the directions of diffraction maxima. The proof of the statement is based
on the consideration of the orders of sums in Eqs. (8.13), (8.19), which contain geometrical
coefficients Ai and are proportional to the powers of K, whereas factors containing atom
fluctuations have powers of M in denominators.

Thus, light scattering from the region of a SF optical lattice with K �M sites is equiv-
alent to the light scattering from the atoms in the coherent state (in absolute values both
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K and M can be very large). Moreover, in the directions outside diffraction maxima, the
coherent-state approximation works well even in the case where any number of sites is illu-
minated.

In the following, discussing all states, we will use the notations n = N/M for the atomic
“density” (expectation value of the particle number at each site) and NK = KN/M = nK
for the expectation value of the particle number at K sites. These two parameters fully
characterize light scattering in the MI and coherent states, while all three parameters N ,
M , and K are necessary to characterize scattering in the SF phase. For definitiveness, we
will discuss a case with large values of N , M , and K where difference between odd and
even number of lattice sites vanishes. Nevertheless, note that physical problems including
BECs with large atom number loaded into lattices with small site numbers are also of great
importance [33, 34]. Results for this case, can be obtained from expressions of this section
and Eqs. (8.13) and (8.19).

8.6 Example: 1D optical lattice in a transversally pumped
cavity

Before considering a general angular distribution of scattered light, we would like to present
the most striking prediction of our model describing the difference between atomic quantum
states, observable by light scattering. Let us consider a configuration of Fig. 8.1 where the
pump (traveling or standing wave) is orthogonal to the lattice (θ0 = 0), and the scattered
light is collected along the lattice axis (θ1 = π/2) by a standing- or traveling-wave cavity.
This geometry coincides with the one considered in the context of cavity cooling [35–37] and
lattices in optical cavities [30]. Atoms are assumed to be trapped at each lattice site (d = λ/2)
at field antinodes.

In this case, the operator D̂ (8.12) is reduced to
∑K

k=1(−1)k+1n̂k, which, independently on

an atomic state, gives zero for the expectation value of the field amplitude proportional to 〈D̂〉
(here we assume even K). This corresponds to the classical destructive interference between

atoms separated by λ/2. In contrast, the photon number in a cavity a†1a1 is proportional to
〈D̂∗D̂〉 = (〈n̂2〉 − 〈n̂an̂b〉)K [cf. Eq. (8.13c)], which is determined by statistics of a particular
state, and is equal to zero for the MI state and to NK for the SF state.

Thus, atoms in a MI state scatter no photons into a cavity, while a SF scatters number
of photons proportional to the atom number:

〈a1〉MI = 〈a1〉SF = 0, but 〈a†1a1〉MI = 0, 〈a†1a1〉SF = |C|2NK . (8.25)

Hence, already the mean photon number provides information about a quantum state of
ultracold atoms.

The photon number fluctuations (∆nph)
2 (8.18) are also different for various states. In

the MI state, the variance (∆|D|2)2 = 〈D̂∗2D̂2〉 − 〈D̂∗D̂〉2 is zero, (∆|D|2)2MI = 0, whereas in
the SF state, Eq. (8.19) gives a very strong noise (∆|D|2)2SF = 2N2

K (in highest order of NK).

Nonlinear light-matter dynamics in a cavity can lead to a new self-organized phase [36, 38]
where all atoms occupy only each second site leading to doubling of the lattice period, d = λ.
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Figure 8.2. Intensity angular distributions for two traveling waves, the pump is
transverse to the lattice (θ0 = 0). (a) Intensity of classical diffraction of coherent light
(curve A), isotropic intensity of incoherent light scattering, Eq. (8.14), for coherent
atomic state (line B) and MI state (line C); (b) noise quantity, Eq. (8.27), for coherent
atomic state (constant value 1, line A), SF with all sites illuminated K = M (curve B),
and MI (constant value 0, line C); (c) the same as in (b) but for partially illuminated
SF with K = M/2. N = M = 30.

The operator D̂ (8.12) is then reduced to
∑K

k=1 n̂k = N̂K . Thus, if the final self-organized

state is a MI with d = λ, the photon number in a cavity is 〈a†1a1〉Self-org = |C|2N2
K , which

is proportional to the atom number squared and has a superradiant character. This result
coincides with the theory of self-organization with classical center-of-mass motion [38].

8.7 Results and Discussion

In the following we will compare light scattering from atoms in the following states: MI, SF
with all sites illuminated (K = M using the notation SFM ), and partially illuminated SF
under the approximation N,M → ∞, finite n = N/M , K � M , which will be denoted as
the “coherent” taking into account the equivalence proved in Sec. V. The results for the SFK

state with any K can be obtained from the general Eqs. (8.13), (8.19), and (8.21).



154 Publication: Light Scattering from Ultracold Atoms in Optical Lattices . . .

8.7.1 Two traveling waves and discussion of essential physics

For two traveling waves, which can be free-space modes or fixed by ring cavities, the geomet-
rical coefficients (8.12) are Am = exp(imα−) (α− = k0xd sin θ0− k1xd sin θ1), and Eq. (8.13e)
for the noise quantity is reduced to

R = 〈δn̂aδn̂b〉
sin2 (Kα−/2)

sin2 (α−/2)
+ (〈δn̂2〉 − 〈δn̂aδn̂b〉)K, (8.26)

where the first term has the angle dependence of classical diffraction (8.11), and the angle
dependence in the second term in Eq. (8.13e) is reduced to a constant (isotropic) one, K.
In the MI and coherent states, where pair correlations 〈δn̂aδn̂b〉 are absent, the first term is
zero. In the MI state, on-site density fluctuations 〈δn̂2〉 are also zero giving the zero value of
the noise quantity (8.26), while in the coherent state, it is the on-site fluctuations 〈δn̂2〉 = n
that give isotropic contribution to R. Thus, we have

RMI = 0, (8.27a)

RCoh = nK = NK , (8.27b)

RSFK
= − N

M2

sin2 (Kα−/2)

sin2 (α−/2)
+
N

M
K. (8.27c)

It is important to note, that in the SF state (8.27c), even in a large optical lattice
with N,M → ∞, very small pair correlations 〈δn̂aδn̂b〉 = −N/M 2 can give a significant
angle-dependent contribution to the noise quantity, which occurs near a diffraction maxi-
mum (α− = 2πl, l = 0, 1, ..), where the geometrical factor is equal to K 2, and if the number
of the illuminated sites K is of the order of M . This demonstrates the importance of nonlocal
correlations and invalidity of the coherent-state approximation under those conditions. Out-
side the diffraction maximum, where the geometrical factor is small, pair correlations do not
play any role and the coherent-state approximation works well even for all sites illuminated.

Figure 8.2 shows several angle dependences of the scattered light in the case of two
traveling waves. As an example, in all figures, we will consider atoms at each lattice sites
providing d = λ0,1/2. In Fig. 8.2(a), the angular distribution of classical diffraction |〈D〉|2
(curve A) is shown. In the case of d = λ0,1/2 and the pump being orthogonal to the lattice
(θ0 = 0), only the zero-order diffraction maxima at θ1 = 0, π are possible in the classical
picture. Corresponding noise quantities R for the coherent (constant lines A) and SFK

(curves B) states are displayed in Figs. 8.2(b) and 8.2(c) (in MI, the noise is zero, which is
displayed by lines C). According to Eq. (8.27), the intensity fluctuations are isotropic for the
coherent atomic state, while there is suppression of intensity noise under scattering from the
SF. The suppression occurs in the regions of diffraction maxima. For all sites illuminated,
K = M [cf. Fig. 8.2(b)], the suppression is total, while for K = M/2 it is only partial [cf.
Fig. 8.2(c)]. Outside the maxima, the dependence for SFK is well approximated by that for
the coherent state for any K.

It is important to underline, that in a broad range of angles, the number of scattered
photons from the SF (or coherent) state is nonzero, even if the expectation value of the
electromagnetic field vanishes, which manifests the appearance of nonclassical entanglement
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between the light and manybody atomic system. Moreover, in contrast to MI state, atoms
in SF state scatter photons at angles, where the classical diffraction does not exist.

For example, in a simple configuration considered in Sec. VI where the pump is orthogonal
to the lattices (θ0 = 0), and the scattered light is collected by a cavity along the lattice axis
(θ1 = π/2), the atoms in the MI state scatter no photons as in classical diffraction minimum.

In contrast, atoms in the SFK state scatter the number of photons a†1a1 = |C|2〈D̂∗D̂〉 =
|C|2NK , proportional to the number of the atoms illuminated [cf. Eq. (8.27) and Fig. 8.2(b)
at the angle θ1 = π/2].

For two traveling waves, the expression for D̂ (8.12), in a diffraction maximum where all
atoms radiate in phase with each other and α− = 2πl, is reduced to the operator N̂K . Thus,
the quantity 〈D̂〉 = NK = nK is the expectation value of the atom number at K sites and
proportional to the average atom number at a single site. The intensity of the light scattered
into a diffraction maximum is determined by 〈D̂∗D̂〉 = 〈N2

K〉, while noise R = (∆NK)2 gives
the atom number variance at K sites. The latter statement corresponds to Figs. 8.2(b) and
8.2(c) displaying the total noise suppression in SFM state, where the total atom number at
all sites K = M does not fluctuate, while for K < M , NK is a fluctuating quantity and the
noise suppression is only partial.

At the angle of a classical diffraction “minimum” (forK � 1 this is approximately valid for
any angle outside narrow regions of maxima), the expectation value of the field amplitude is
zero, as well as the first terms in Eqs. (8.13c), (8.13d), (8.13e), and both the intensity 〈D̂∗D̂〉
and noise R are proportional to the quantity 〈n̂2〉 − 〈n̂an̂b〉 giving the difference between
local and nonlocal fluctuations. For two traveling waves, the coefficient of proportionality is
isotropic and equal to K [cf. Eq. (8.26)].

For scattering of incoherent light (8.14), the intensity is proportional to the local quantity
〈n̂2〉 and is shown in Fig. 8.2(a) for MI (curve C) and coherent, almost the same as in SF,
(curve B) states. This quantity can be also obtained under coherent scattering of two traveling
waves, if one tunes the angles such that the geometrical factor of the first term in Eq. (8.26)
is equal to K. Practically, this variant is easy to achieve only for a diffraction pattern with
diffraction maxima, which are not too narrow.

Hence, in an optical experiment, both global statistical quantities related to K ≤M sites,
local quantities reflecting statistics at a single site, and pair correlations can be obtained. It
is important, that local statistics can be determined by global measurements, i.e., an optical
access to a single site is not necessary.

Therefore, light scattering gives a possibility to distinguish different quantum states of
ultracold atoms. As demonstrated by Eq. (8.27) and Fig. 8.2, MI and SFM states are dis-
tinguishable in diffraction “minima” and in incoherent light, while they are indistinguishable
(for traveling waves) in maxima, because the total atom number contributing to the maxi-
mum does not fluctuate. The SFM and coherent states can be distinguished in diffraction
maxima only. The MI and coherent states can be distinguished in any angle of the scattering
pattern.

Measurements of the noise quantity discussed or, alternatively, related quantities for
quadratures (8.16) or photon number variance (8.18), give the values, which are different
in orders of the emitter number NK for different quantum states. Nevertheless, for large NK ,
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there could be practical problems in the subtraction of large values in a diffraction maximum
to get the noise contribution. In some papers, a similar problem even led to a conclusion
about state indistinguishability by intensity measurements in BEC [14, 19, 20] and, hence,
to a necessity to measure photon statistics. A rather involved method to suppress the strong
classical part of scattering using a dark-state resonance in BEC was proposed in Ref. [16]. In
contrast to homogeneous ensembles, in optical lattices, this problem has a natural solution:
measurements outside diffraction maxima are free of the strong classical-like part and thus
directly reflect density fluctuations.

The classical analogy of the difference in light scattering from different atomic states
consists in different density fluctuations in different states. In particular, classical density
fluctuations would also lead to impossibility of obtaining a perfect diffraction minimum,
where contributions from all sites should precisely cancel each other.

Scattering at diffraction maxima can be treated as superradiant one, since the intensity of
the scattered light is proportional to the number of phase-synchronized emitters squared N 2

K .
In diffraction minima, destructive interference leads to the total (subradiant) suppression
of coherent radiation for MI state; whereas for SFK state, the intensity is nonzero and
proportional to the number of emitters NK , which is analogous to the emission of independent
(non-phase-synchronized) atoms.

Nevertheless, the quantum treatment gives a deeper insight into the problem. In the SF
state, at the angles of classical diffraction minima, the expectation value of the electromag-
netic field is zero, while the photon number takes a nonzero value, which can be explained
as follows. Equation (8.21a) shows that the SF state is a superposition of all possible mul-
tisite Fock states of N atoms at M sites. Under the light–matter interaction, the Fock
states corresponding to different distributions of atoms at lattice sites become entangled to
scattered light of different phases and amplitudes. In contrast to the classical case, light
fields entangled to various atomic distributions do not interfere with each other, which is
due to the orthogonality of the Fock states, providing a sort of which-way information. This
leads to a difference from the classical (or MI with the only multisite Fock state) case and
nonzero expectation value of the photon number. The absence of interference gives also an
insight into the similarity of scattering from the SF state to the scattering from independent
(non-phase-synchronized) atoms, where interference is also absent.

8.7.2 Standing waves

If at least one of the modes is a standing wave, the angle dependence of the noise becomes
richer. In an experiment, this configuration corresponds to a case where the scattered light
is collected by a standing-wave cavity, whose axis can by tuned with respect to the lattice
axis [30]. Except for the appearance of new classical diffraction maxima represented by
the first terms in Eqs. (8.13c), (8.13d), (8.13e), which depend on the phase parameters α± =
k0xd sin θ0±k1xd sin θ1, the angle dependence of the second term is also not an isotropic one, as
it was for two traveling waves. This second, “noise,” term includes a sum of the geometrical
coefficients squared, which is equivalent to the effective doubling of the lattice period (or
doubling of the light frequency) and leads to the appearance of new spatial harmonics in the
light angular distribution. Such period doubling leads to the appearance of the peaks in the
noise distribution at the angles, where classical diffraction does not exists.
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Figure 8.3. Intensity angular distributions for scattering into a standing-wave cavity.
(a) Traveling-wave pump at θ0 = 0.1π; (b) traveling or standing-wave pump at θ0 = 0;
(c) standing-wave pump at θ0 = 0.1π. Intensities of classical diffraction are shown in
Figs. (a1), (b1), and (c1); noise quantities for coherent state are shown in Figs. (a2),
(b2), and (c2) and for SF in Figs. (a3), (b3), and (c3). N = M = K = 30.
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In Fig. 8.3(a), angular distributions of the scattered light are shown for a traveling-wave
pump, which is almost orthogonal to a lattice (θ0 = 0.1π), while the probe is a standing wave.
Classical diffraction pattern [cf. Fig. 8.3(a1)] is determined by |A|2 through the parameters
α± and shows zero-order diffraction maxima in transmission (θ1 = θ0 and its counterpart due
to the presence of the standing-wave cavity at θ1 = π + θ0) and reflection (θ1 = π − θ0 and
the counterpart at −θ0). The intensity noise for atoms in the coherent state [cf. Fig. 8.3(a2)]
is determined by

∑K
i=1 |Ai|2 through another parameter 2α1 = 2k1xd sin θ1 and has different

characteristic features at θ1 = 0, π, and ±π/2. It is the latter feature that corresponds to
the effective frequency doubling and appears at an angle, where classical diffraction has a
minimum. In the case of SFM state [cf. Fig. 8.3(a3)], pair correlations in Eqs. (8.13d) and
(8.13e) are nonzero, hence, both geometrical factors contribute to the noise distribution, which
has the features at angles characteristic to both classical scattering and the light noise of the
coherent-state case. Outside the characteristic features, the noise distribution is isotropic and
takes a nonzero value similar to the case of two traveling waves [cf. Fig. 8.2]. Figure 8.3(b)
shows a simpler situation, where the pump is precisely orthogonal to the lattices (θ0 = 0).

In Fig. 8.3(c), a situation similar to Fig. 8.3(a) is shown for the case where both the pump
and probe are standing waves. While classical diffraction still depends on the parameters α±,
the factor

∑K
i=1 |Ai|2 determining the intensity noise depends on four parameters 2α0,1 =

2k0,1xd sin θ0,1 and 2α±. Thus, in the light noise from a lattice in the coherent and SF
states, the features are placed at the positions of classical zero-order diffraction maxima
and the angles, which would correspond to the classical scattering from a lattice with a
doubled period d = λ, where the appearance of first-order diffraction maxima is possible.
Similar to Fig. 8.3(a), features at θ1 = 0, π, and π/2 also exist. In the case θ0 = 0, the
angular distribution for two standing waves is identical to that of one standing wave shown
in Fig. 8.3(b).

In the SFM state, there are two types of diffraction maxima. In the first one, the noise can
be completely suppressed due to the total atom number conservation, similarly to the case
of traveling waves. This occurs, if the condition of the maximum is fulfilled for both of two
traveling waves forming a single standing wave [cf. Fig. 8.3(b)]. In the second type, even for
K = M , only partial noise suppression is possible, since only one of the traveling waves is in
a maximum, while another one, being in a minimum, produces the noise [cf. Figs. 8.3(a) and
8.3(c)]. In contrast to two traveling modes, in the second type of maxima, one can distinguish
between SFM and MI states, since MI produces no noise in any direction.

8.7.3 Quadratures and photon statistics

An analysis of the angular distribution of the quadrature variance (∆XD
β )2 (8.16b) shows,

that even for two traveling waves, new peaks due to effective period doubling appear [see
Fig. 8.4(a)]. Additionally, the amplitude of noise features can be varied by the phase difference
between the pump and homodyne beams β, which is shown in Figs. 8.4(b) for the coherent
and in Fig. 8.4(c) SFM states. In the coherent state, all peaks are very sensitive to β. In
the SFM state, the noise suppression at diffraction maxima is insensitive to variations of β,
whereas other peaks are β-dependent. The relation of (∆XD

β )2 to the quadrature variance of
the light field is given by Eq. (8.15c).
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Figure 8.5. Angular distributions of photon-number variances for two traveling waves.
(a) Intensity of classical diffraction (curve A), isotropic intensity of incoherent light
scattering, Eq. (8.14), for coherent atomic state (line B) and MI state (line C); (b)
normal ordered photon-number variance for coherent atomic state under scattering of
coherent, Eq. (8.28) (curve A), and incoherent (line B) light; (c) normal ordered photon-
number variance for SF state under scattering of coherent, Eq. (8.28) (curve A), and
incoherent (line C) light, variance for coherent (line B) and MI (curve D) states under
scattering of incoherent light. Normal ordered photon-number variance for MI state
under scattering of coherent light is zero for all angles. θ0 = 0, N = M = K = 30.
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The angle dependence of the variance (∆|D|2)2 = 〈D̂∗2D̂2〉 − 〈D̂∗D̂〉2, which is pro-
portional to the normal ordered photon-number variance and determines the light statistics
(8.18), also shows anisotropic features due to frequency doubling even for two traveling waves
(Fig. 8.5). In this case, Eq. (8.19) is reduced to

〈D̂∗2D̂2〉 =

(

sin(Kα−/2)
sin(α−/2)

)4

〈nanbncnd〉 (8.28)

+ 2

(

sin(Kα−/2)
sin(α−/2)

)3 cos(Kα−/2)
cos(α−/2)

(

〈n2
anbnc〉 − 〈nanbncnd〉

)

− 4

(

sin(Kα−/2)
sin(α−/2)

)2
[

(K − 2)〈nanbncnd〉 − (K − 3)〈n2
anbnc〉 − 〈n3

anb〉
]

+

(

sinKα−
sinα−

)2
(

〈nanbncnd〉 − 2〈n2
anbnc〉+ 〈n2

an
2
b〉
)

+ 2K2
(

〈nanbncnd〉 − 2〈n2
anbnc〉+ 〈n2

an
2
b〉
)

+ K
(

−6〈nanbncnd〉+ 12〈n2
anbnc〉 − 4〈n3

anb〉 − 3〈n2
an

2
b〉+ 〈n4〉

)

,

where the first four terms has features at angles typical to classical diffraction, the fourth
term is also responsible for the doubled-frequency feature, and the last two terms contribute
to the isotropic component.

For the coherent state, the light scattered into a diffraction maximum displays a very
strong noise (equal to 4N 3

K + 6N2
K + Nk because 〈D̂∗2D̂2〉 = N4

K + 6N3
K + 7N2

K + Nk and

〈D̂∗D̂〉 = N2
K +NK), which is much stronger than the isotropic component (N 2

K in highest
order of NK) and the features at θ1 = ±π/2 (2N 2

K in highest order of NK) [Fig. 8.5(b)]. In
SFM state, the noise at maxima can be suppressed, while at other angles, in highest order of
NK , it is equal to that of the coherent state [Fig.8.5(c)]. In MI state, the variance (∆|D|2)2
is zero for all angles. Conclusions about state distinguishing by measuring light statistics
are very similar to those drown from the intensity and amplitude measurements, which have
been discussed in Sec. VIIA, including scattering of incoherent light (see Fig. 8.5 and the
discussion of Fig. 8.2).

In experiments, the nontrivial angle dependence of the noise can help in the separation
of the light noise reflecting atom statistics from technical imperfections.

8.8 Conclusions

We studied off-resonant collective light scattering from ultracold atoms trapped in an optical
lattice. Measuring the light field allows to characterize the quantum state of atoms in a
nondestructive way and in particular distinguish between different atomic states. The scat-
tered light differs in intensity, quadrature variances, and photon statistics. A measurement
of the intensity angular distribution provides information about atom number fluctuations
in a finite lattice region, local quantum statistics at single sites, and pair correlations. Note
that even local statistics can be determined by global measurements without an optical ac-
cess to particular sites. Alternatively to angle-resolved measurements, variations of the mode
wavelengths with respect to the wavelength of a trapping beam can be considered.
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Light scattering as a diagnostic tool has particular advantages for optical lattices in con-
trast to scattering from a homogeneous BEC. Here one has a natural way to suppress the
strong classical scattering background by looking at the directions of diffraction minima. In
these directions the expectation value of the field amplitude vanishes while the intensity (pho-
ton number) is nonzero and directly reflects quantum fluctuations. Furthermore, in an optical
lattice, the signal is sensitive not only to the periodic density distribution, but also to the
periodic density fluctuations, giving an access to even very small nonlocal pair correlations.
These can be obtained by measuring light at diffraction maxima.

As the most striking example, we considered light scattering from a 1D lattice in a
transversally pumped optical cavity as in a setup involving collective cavity cooling [36, 38–
40]. The number of photons scattered into the cavity is zero for the Mott insulator phase but
proportional to the atom number in the superfluid phase. Both states have almost the same
average density but different quantum uncertainties. So the superfluid state is a quantum
superposition of different Fock states corresponding to all possible distributions of N atoms
at M sites. Under illumination by a coherent light, various Fock states become entangled to
scattered light states with different amplitudes and phases. In contrast to classical scatter-
ing, where the atoms are described by c-number center-of-mass positions [41], for a quantum
description of the atomic motion the light field amplitudes corresponding to different atomic
distributions do not interfere. This is due to the orthogonality of Fock states forming the
superfluid providing a sort of which way information.

In the example configuration, the cavity-field amplitude is determined by the atom number
operators n̂i = b†i bi. Hence, the expectation value of the field amplitude is sensitive to the
average density only. In contrast, the intracavity photon number reflects the second moments
of atom number operators (e.g. density-density correlations), while photon statistics reflects
the forth moments.

Let’s emphasize that other physical systems are possible, where the light amplitude de-
pends on the matter-field amplitudes bi, while the intensity is sensitive to density operators
n̂i. The latter situation is typical to configurations, where two or more atomic subsystems
exist and can interact with each other, in particular, through light fields. The examples
are matter-wave superradiance and amplification, where two or more momentum states of
cold atoms were observed [11, 12, 42, 43], and interaction between two BECs with different
internal [44–47] or motional [48] atomic states. In the framework of our paper, matter-field
amplitudes bi can also contribute to light amplitudes al, if the tunneling between lattice sites
is important, which we have considered in the general model in Sec. II. In the rest of the
paper, the lattice was assumed deep leading to negligible tunneling.

In general, a variety of optical effects can be sensitive to a quantum state of an ultracold
matter, if the density operators enter measurable quantities nonlinearly, such that the ex-
pectation value of those quantities cannot be simply expressed through expectation values of
density operators. For instance, the χ(3) nonlinearity [49] and refractive index of a gas, where
nonlocal field effects are important [50], were shown to depend on atom statistics. In this
paper, we focused on such nonlinear quantities as intensity, quadrature variances, and pho-
ton statistics of scattered light [51]. Phase-sensitive and spectral characteristics mentioned
in Sec. IV.D reflect the dependence of the dispersion of a medium on the quantum state of
matter [32, 52]. Moreover, such dispersion effects (e.g. cavity-mode shift) will reflect atom
statistics not only in light intensity, but even in light amplitudes 〈al〉.



BIBLIOGRAPHY 163

So far we have neglected the dynamic back action of scattered field on atoms. This can be
well justified in a deep lattice where the momentum transfer is by far not enough to change
the atomic vibrational state as long as not too many photons are scattered. Even without
energy transfer the information one gets from the light will induce measurement back-action.
This should have intriguing consequences for multiple consecutive measurements on the light
scattered from optical lattices.
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Studies of ultracold gases in optical lattices provide a means for testing fundamental
and application-oriented quantum many-body concepts of condensed-matter physics in
well controllable atomic systems [1]; examples include strongly correlated phases and
quantum-information processing. Standard methods to observe quantum properties of
BoseEinstein condensates are based on matterwave interference between atoms released
from traps [2–6], a method that ultimately destroys the system. Here, we propose a
new approach on the basis of optical measurements that conserves the number of atoms.
We prove that atomic quantum statistics can be mapped on transmission spectra of
high-Q cavities, where atoms create a quantum refractive index. This can be useful for
studying phase transitions [7] for example, between Mott insulator and superfluid states
as various phases show qualitatively distinct light scattering. Joining the paradigms
of cavity quantum electrodynamics and ultracold gases could enable conceptually new
investigations of both light and matter at ultimate quantum levels. We predict effects
accessible in experiments that recently became possible [8].

All-optical methods to characterize atomic quantum statistics were proposed for homoge-
neous BEC [9–13] and some modified spectral properties induced by BEC’s were attributed
to collective emission [9, 10], recoil shifts [12] or local field effects [14].

We show a completely different phenomenon directly reflecting atom quantum statistics
due to state-dependent dispersion. More precisely, the dispersion shift of a cavity mode
depends on the atom number. If the atom number in some lattice region fluctuates from
realization to realization, the modes get a fluctuating frequency shift. Thus, in the cavity

†The primary contribution of the author of the present thesis performed to this publication was the instal-
lation of the model and the calculation of certain generic examples and statistical quantities. He also acted
as a discussion partner on all other aspects of the work.
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Figure 9.1. Schematic setup. Atoms are periodically trapped in an optical lattice
created by laser beams, which are not shown in this figure. Additionally, the atoms are
illuminated by two light modes at the angles θ0,1 with respect to the lattice axis.

transmission-spectrum, resonances appear at different frequencies directly reflecting the atom
number distribution function. Such a measurement allows then to calculate atomic statistical
quantities, e.g., mean value and variance reflected by spectral characteristics such as the
central frequency and width.

Different phases of a degenerate gas possess similar mean-field densities but different
quantum amplitudes. This leads to a superposition of different transmission spectra, which
e.g. for a superfluid state (SF) consist of numerous peaks reflecting the discreteness of the
matter-field. Analogous discrete spectra reversing the role of atoms and light, thus reflecting
the photon structure of electromagnetic fields, were obtained in cavity QED with Rydberg
atoms [15] and solid-state superconducting circuits [16]. A quantum phase transition towards
a Mott insulator state (MI) is characterized by a reduction of the number of peaks towards
a single resonance, because atom number fluctuations are significantly suppressed [17, 18].
As our detection scheme is based on nonresonant dispersive interaction independent of a
particular level structure, it can be also applied to molecules [19, 20].

We consider the quantized motion of N two-level atoms in a deep periodic optical lattice
with M sites formed by far off-resonance standing wave laser beams [1]. A region of K ≤
M sites is coupled to two quantized light modes whose geometries (i.e. axis directions or
wavelengths) can be varied. This is shown in Fig. 9.1 depicting two cavities crossed by a
1D string of atoms in equally separated wells generated by the lattice lasers (not shown). In
practice two different modes of the same cavity would do as well.
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As shown in the Methods section, the Heisenberg equations for the annihilation operators
of two light modes al (l = 0, 1) with eigenfrequencies ωl and spatial mode functions ul(r) are

ȧl = −i
(

ωl + δlD̂ll

)

al − iδmD̂lmam − κal + ηl(t), (9.1)

with D̂lm ≡
K
∑

i=1

u∗l (ri)um(ri)n̂i,

where l 6= m, δl = g2/∆la, g is the atom-light coupling constant, ∆la = ωl − ωa are the large
cavity-atom detunings, κ is the cavity relaxation rate, ηl(t) = ηle

−iωlpt gives the external
probe and n̂i are the atom number operators at a site with coordinate ri. We also introduce
the operator of the atom number at illuminated sites N̂K =

∑K
i=1 n̂i.

In a classical limit, Eq. (9.1) corresponds to Maxwell’s equations with the dispersion-
induced frequency shifts of cavity modes δlD̂ll and the coupling coefficient between them
δ1D̂10. For a quantum gas those quantities are operators, which will lead to striking results:
atom number fluctuations will be directly reflected in such measurable frequency-dependent
observables. Thus, cavity transmission-spectra will reflect atomic statistics.

Eq. (9.1) allows to express the light operators al as a function f(n̂1, ..., n̂M ) of atomic
occupation number operators and calculate their expectation values for prescribed atomic
states |Ψ〉. We start with the well known examples of MI and SF states and generalize to
any |Ψ〉 later.

From the viewpoint of light scattering, the MI state behaves almost classically as precisely
〈n̂i〉MI = qi atoms are well localized at the ith site with no number fluctuations. For negligible
tunneling, it is represented by a product of Fock states, i.e.,

|Ψ〉MI =
M
∏

i=1

|qi〉i ≡ |q1, ..., qM 〉, (9.2)

with expectation values

〈f(n̂1, ..., n̂M )〉MI = f(q1, ..., qM ), (9.3)

since n̂i|q1, ..., qM 〉 = qi|q1, ..., qM 〉. For simplicity we consider equal average densities 〈n̂i〉MI =
N/M ≡ n (〈N̂K〉MI = nK ≡ NK).

In our second example, SF state, each atom is delocalized over all sites leading to local
number fluctuations at a lattice region withK < M sites. Mathematically it is a superposition
of Fock states corresponding to all possible distributions of N atoms at M sites:

|Ψ〉SF =

√

N !

MN

∑

q1,...,qM

1√
q1!...qM !

|q1, ..., qM 〉. (9.4)

Although its average density 〈n̂i〉SF = N/M is identical to a MI, it creates different light
transmission spectra. Expectation values of light operators can be calculated from

〈f(n̂1, ..., n̂M )〉SF =
1

MN

∑

q1,...,qM

N !

q1!...qM !
f(q1, ..., qM ), (9.5)
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representing a sum of all possible “classical” terms. Thus, all these distributions contribute
to scattering from a SF, which is obviously different from 〈f(n̂1, ..., n̂M )〉MI (9.3) with only a
single contributing term.

In the simple case of only one mode a0 (a1 ≡ 0), the stationary solution of Eq. (9.1) for
the photon number reads

a†0a0 = f(n̂1, ..., n̂M ) =
|η0|2

(∆p − δ0D̂00)2 + κ2
, (9.6)

where ∆p = ω0p − ω0 is the probe-cavity detuning. We present transmission spectra in

Fig. 9.2 for the case, where |u0(ri)|2 = 1, and D̂00 =
∑K

i=1 n̂i reduces to N̂K . For a 1D lattice
(see Fig. 9.1), this occurs for a traveling wave at any angle, and standing wave transverse
(θ0 = π/2) or parallel (θ0 = 0) to the lattice with atoms trapped at field maxima.

For an MI, the averaging of Eq. (9.6) according to Eq. (9.3) gives the photon number

〈a†0a0〉MI, as a function of the detuning, as a single Lorentzian described by Eq. (9.6) with
width κ and frequency shift given by δ0〈D̂00〉MI (equal to δ0NK in Fig. 9.2). Thus, for MI,
the spectrum reproduces a simple classical result of a Lorentzian shifted due to dispersion.

In contrast, for a SF, the averaging procedure of Eq. (9.5) gives a sum of Lorentzians
with different dispersion shifts corresponding to all atomic distributions |q1, ..., qK〉. So, if
each Lorentzian is resolved, one can measure a comb-like structure by scanning the detuning
∆p. In Figs. 9.2a and 9.2c, different shifts of the Lorentzians correspond to different possible
atom numbers at K sites (which due to atom number fluctuations in SF, can take all values
0,1,2,...,N). The Lorentzians are separated by δ0. Thus, we see that atom number fluctuations
lead to the fluctuating mode shift, and hence to multiple resonances in the spectrum. For
larger κ the spectrum becomes continuous (Fig. 9.2b), but broader than that for MI.

Scattering of weak fields does not change the atom number distribution. However, as
the SF is a superposition of different atom numbers in a region with K sites, a measurement
projects the state into a subspace with fixedNK in this region, and a subsequent measurement
on a time scale short to tunneling between sites will yield the same result. One recovers
the full spectrum of Fig. 9.2 by repeating the experiment or with sufficient delay to allow
for redistribution via tunneling. Such measurements will allow a time dependent study of
tunneling and buildup of long-range order. Alternatively, one can continue measurements on
the reduced subspace after changing a lattice region or light geometry.

We now consider two modes with ω0 = ω1, the probe injected only into a0 (Fig. 9.1)
and the mentioned geometries where D̂00 = D̂11 = N̂K (see Fig. 9.3). From Eq. (9.1), the

stationary photon number a†1a1 = f(n̂1, ..., n̂M ) is

a†1a1 =
δ21D̂

†
10D̂10|η0|2

[∆̂′2
p − δ21D̂†

10D̂10 − κ2]2 + 4κ2∆̂′2
p

, (9.7)

where ∆̂′
p = ∆p − δ1D̂11.

In a classical (and MI) case, Eq. (9.3) gives a two-satellite contour (9.7) reflecting normal-
mode splitting of two oscillators 〈a0,1〉 coupled through atoms. This was recently observed [21]
for collective strong coupling, i.e., the splitting δ1〈D̂10〉 exceeding κ. The splitting depends
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Figure 9.2. Photon number in a single cavity mode. (a) Single Lorentzian for MI (curve
A) reflects non-fluctuating atom number. Many Lorentzians for SF (curve B) reflect atom
number fluctuations, which are imprinted on the positions of narrow resonances. Here κ
is smaller than satellite separation δ0 (κ = 0.1δ0), N = M = 30, K = 15. (b) The same
as in (a) but κ = δ0 gives smooth broadened contour for SF. (c) Spectra for SF with
N = M = 70 and different number of sites illuminated K = 10, 35, 68. The transmission
spectra have different forms, since different atom distribution functions correspond to
different K. κ = 0.05δ0.

on the geometry (see Eq. (9.1)) representing diffraction of one mode into another. Thus, our
results can be treated as scattering from a “quantum diffraction grating” generalizing Bragg
scattering, well-known in different disciplines. In diffraction maxima (i.e. u∗

1(ri)u0(ri) = 1)
one finds D̂10 = N̂K providing the maximal classical splitting. In diffraction minima, one
finds D̂10 =

∑K
i=1(−1)i+1n̂i providing both the classical splitting and photon number are

almost zero.

In SF, Eq. (9.5) shows that 〈a†1a1〉SF is given by a sum of all classical terms with all possible
normal mode splittings. In a diffraction maximum (Figs. 9.3a,b), the right satellite is split
into components corresponding to all possible NK or extremely broadened. In a minimum
(Figs. 9.3c,d), the splittings are determined by all differences between atom numbers at odd
and even sites

∑K
i=1(−1)i+1qi. Note that there is no classical description of the spectra in

a minimum, since here the classical field (and 〈a†1a1〉MI) are simply zero for any ∆p. Thus,
for two cavities coupled at diffraction minimum, the difference between the SF and MI states
is even more striking: one has a structured spectrum instead of zero signal. Moreover, the
difference between atom numbers at odd and even sites fluctuates even for the whole lattice
illuminated, giving nontrivial spectra even for K = M .
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Figure 9.3. Photon number in one of two strongly coupled modes. (a) Diffraction
maximum, doublet for MI (curve A) and spectrum with structured right satellite for SF
(curve B). Structure in the satellite reflects atom number fluctuations in SF, while narrow
spectrum for MI demonstrates vanishing fluctuations. Here κ is smaller than satellite
separation 2δ0 (κ = 0.1δ0), K = 15. (b) The same as in (a) but κ = δ0 gives broadened
satellite for SF. (c) Diffraction minimum, zero field for MI and structured spectrum for
SF. Nonzero structured spectrum for SF reflects fluctuating difference between atom
numbers at odd and even sites, which exists even for the whole lattice illuminated,
K = M . Here κ is smaller than satellite separation 2δ0 (κ = 0.1δ0), K = 30. (d) The
same as in (c) but κ = δ0 gives broadened contour for SF. N = M = 30 in all figures.

In each of the examples in Figs. 9.2 and 9.3, the photon number depends only on one
statistical quantity, now called q, f(q1, ..., qM ) = f(q). For the single mode and two modes
in a maximum, q is the atom number at K sites. For two modes in a minimum, q is the
atom number at odd (or even) sites. Therefore, expectation values for some state |Ψ〉 can
be reduced to 〈f〉Ψ =

∑N
q=0 f(q)pΨ(q), where pΨ(q) is the distribution function of q in this

state.

In high-Q cavities (κ � δ0 = g2/∆0a), f(q) is given by a narrow Lorentzian of width
κ peaked at some frequency proportional to q (q = 0, 1, ..., N). The Lorentzian hight is
q-independent. Thus, 〈f〉Ψ as a function of ∆p represents a comb of Lorentzians with the
amplitudes simply proportional to pΨ(q).

This is our central result. It states that the transmission spectrum of a high-Q cavity
〈a†a(∆p)〉Ψ directly maps the distribution function of ultracold atoms pΨ(q), e.g., distribution
function of atom number at K sites. Various atomic statistical quantities characterizing a
particular state can be then calculated: mean value (given by the spectrum center), variance
(determined by the spectral width) and higher moments. Furthermore, transitions between
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different states will be reflected in spectral changes. Deviations from idealized MI and SF
states [22] are also measurable.

For SF, using pSF(q) (see Methods), we can write the envelopes of the comb of Lorentzians
shown in Figs. 9.2a,c and 9.3a,c. As known, the atom number at K sites fluctuates in SF with
the variance (∆NK)2 = NK(1 −K/M). For example, Fig. 9.2c shows spectra for different
lattice regions demonstrating Gaussian and Poissonian distributions with the spectral width
σω = δ0

√

(∆NK)2, directly reflecting the atom distribution functions in SF. For K ≈M the
spectrum narrows, and, for the whole lattice illuminated, shrinks to a single Lorentzian as in
MI.

The condition κ < δ0 = g2/∆0a is already met in present experiments. In the recent
work [8], where setups of cavity QED and ultracold gases were joined to probe quantum statis-
tics of an atom laser with 87Rb atoms, the parameters are (g,∆0a, κ) = 2π × (10.4, 30, 1.4)
MHz. The setups of cavity cooling [23, 24] are also very promising.

For bad cavities (κ � δ0 = g2/∆0a), the sums can be replaced by integrals. The broad
spectra in Figs. 9.2b and 9.3b,d are then given by convolutions of pΨ(q) and Lorentzians. For
example, curve B in Fig. 9.2b represents a Voigt contour, well-know in spectroscopy of hot
gases. Here, the “inhomogeneous broadening” is a striking contribution of quantum statistics.

In summary, we exhibited that transmission spectra of cavities around a degenerate gas in
an optical lattice are distinct for different quantum phases of even equal densities. Similar in-
formation is also contained in the field amplitudes 〈a0,1〉 contrasting previous suggestions [13]
that 〈a0,1〉 probes only the average density. This reflects (i) the orthogonality of Fock states
corresponding to different atom distributions and (ii) the different frequency shifts of light
fields entangled to those states. In general also other optical phenomena and quantities
depending nonlinearly on atom number operators should similarly reflect the underlying
quantum statistics [25–27].

Methods

Derivation of Heisenberg equations

A manybody Hamiltonian for our system presented in Fig. 9.1 is given by

H =
∑

l=0,1

~ωla
†
l al +

∫

d3rΨ†(r)Ha1Ψ(r), (9.8)

with

Ha1 =
p2

2ma
+ Vcl(r) + ~g2

∑

l,m=0,1

u∗l (r)um(r)a†l am
∆ma

, (9.9)

where a0,1 are the annihilation operators of the modes of frequencies ω0,1, wave vectors
k0,1, and mode functions u0,1(r); Ψ(r) is the atom-field operator. In the effective single-atom
Hamiltonian Ha1, p and r are the momentum and position operators of an atom of mass
ma trapped in the classical potential Vcl(r), and g is the atom–light coupling constant. We
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consider off-resonant scattering where the detunings between fields and atomic transition
∆la = ωl − ωa are larger than the spontaneous emission rate and Rabi frequencies. Thus, in
Ha1 the adiabatic elimination of the upper state, assuming linear dipoles with adiabatically
following polarization, was used.

For a one-dimensional lattice with period d and atoms trapped at xj = jd (j =
1, 2, . . . ,M) the mode functions are u0,1(rj) = exp(ijk0,1xd+ iφ) for traveling and u0,1(rj) =
cos(jk0,1xd+ φ) standing waves with k0,1x = |k0,1| cos θ0,1, θ0,1 are angles between the mode
and lattice axes, φ is some spatial phase shift (cf. Fig. 9.1).

Assuming the modes a0,1 much weaker than the trapping beam, we expand Ψ(r) using lo-
calized Wannier functions [7] corresponding to the potential Vcl(r) and keep only the lowest vi-
brational state at each site (we consider a quantum degenerate gas): Ψ(r) =

∑M
i=1 biw(r− ri),

where bi is the annihilation operator of an atom at site i at a position ri. Substituting this
expansion in the Hamiltonian H, one can get a generalized Bose-Hubbard model [7] includ-
ing light scattering. In contrast to “Bragg spectroscopy”, which involves scattering of matter
waves [4], and our previous work [28], we neglect lattice excitations here and focus on light
scattering from atoms in some prescribed quantum states.

Neglecting atomic tunneling, the Hamiltonian reads:

H =
∑

l=0,1

~ωla
†
l al + ~g2

∑

l,m=0,1

a†l am
∆ma

(

K
∑

i=1

J lmi,i n̂i

)

,

where n̂i = b†ibi. For deep lattices the coefficients J lmi,i =
∫

drw2(r − ri)u
∗
l (r)um(r) reduce

to J lmi,i = u∗l (ri)um(ri) neglecting spreading of atoms, which can be characterized even by
classical scattering [29]. The Heisenberg equations obtained from this Hamiltonian are given
by Eq. (9.1), were we have added a relaxation term. Strictly speaking, a Langevin noise
term should be also added to Eq. (9.1). However, for typical conditions its influence on the
expectation values of normal ordered field operators is negligible (see e.g. [30]). In this paper,

we are interested in the number of photons 〈a†l al〉 only, which is a normal ordered quantity.
Thus, one can simply omit the noise term in Eq. (9.1).

Simple expressions for spectral line shapes in SF state

We will now derive expressions for the spectra presented in Figs. 9.2 and 9.3 demonstrating
relations between atomic quantum statistics and the transmission spectra for the SF state. As
has been mentioned in the main text, in all examples presented in Figs. 9.2 and 9.3, the photon
number depends only on a single statistical quantity, which we denote as q. Using this fact,
the multinomial distribution in Eq. (9.5) reduces to a binomial, which can be directly derived
from Eq. (9.5): 〈f〉SF =

∑N
q=0 f(q)pSF(q) with pSF(q) = N !/[q!(N−q)!](Q/M)q(1−Q/M)N−q

and a single sum instead of M ones. Here Q is the number of specified sites: Q is equal to
K for one mode and two modes in a maximum; Q is the number of odd (or even) sites for
two modes in a minimum (Q = M/2 for even M). This approach can be used for other
geometries, e.g., for two modes in a minimum and K < M , where Eq. (9.5) can be reduced
to a trinomial distribution.
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As a next approximation we consider N,M � 1, but finite N/M , leading to the Gaussian
distribution pSF(q) = 1/(

√
2πσq) exp [−(q − q̃)2/2σ2

q ] with central value q̃ = NQ/M and

width σq =
√

N(Q/M)(1 −Q/M).

In high-Q cavities (κ � δ0 = g2/∆0a), f(q) is a narrow Lorentzian of width κ peaked
at some q-dependent frequency, now called ∆q

p. Since the Lorentzian hight is q-independent,
〈f〉SF as a function of ∆p is a comb of Lorentzians with the amplitudes proportional to pSF(q).

Using the Gaussian distribution pSF(q),we can write the envelope of such a comb. For a
single mode [Fig. 9.2a,c, Eq. (9.6)], we find ∆q

p ≈ δ0q with the envelope

〈a†0a0(∆
q
p)〉SF =

αδ0√
2πσω

e−(∆q
p−∆̃p)2/2σ2

ω ,

where the central frequency ∆̃p = δ0NK , spectral width σω = δ0
√

NK(1−K/M), and α =
|η0|2/κ2. So, the spectrum envelopes in Fig. 9.2a,c are well described by Gaussians of widths
strongly depending on K.

For K → 0 and K → M , the binomial distribution pSF(q) is well approximated by a
Poissonian distribution, which is demonstrated in Fig. 9.2c for K = 10 and K = 68. For
K = M the spectrum shrinks to a single Lorenzian, since the total atom number at M sites
does not fluctuate.

In other examples (Figs. 9.3a and 9.3c), the above expression is also valid, although
with other parameters. For two modes in a diffraction maximum (Fig. 9.3a), the central
frequency, separation between Lorentzians and width are doubled: ∆̃p = 2δ0NK , ∆q

p ≈ 2δ0q
and σω = 2δ0

√

NK(1−K/M); α = |η0|2/(2κ2). The left satellite at ∆p = 0 has a classical
amplitude |η0|2/(4κ2).

The nonclassical spectrum for two waves in a diffraction minimum (Fig. 9.3c) is centered
at ∆̃p = δ0N , with components at ∆q

p ≈ 2δ0q, and is very broad, σω = δ0
√
N ; α = |η0|2/κ2.

For bad cavities (κ� δ0), the sums can be replaced by integrals with the same parameters
∆̃p and σω as for κ < δ0. For a single mode, Fig. 9.2b represents a Voigt contour

〈a†0a0(∆p)〉SF =
|η0|2√
2πσω

∫ ∞

0

e−(ω−∆̃p)2/2σ2
ωdω

(∆p − ω)2 + κ2
.

For two modes in a diffraction minimum the photon number (Fig. 9.3d) is

〈a†1a1〉SF =
|η0|2√
2πσω

∫ ∞

−∞

ω2e−ω
2/2σ2

ωdω

(∆′2
p − ω2 − κ2)2 + 4κ2∆′2

p

,

where ∆′
p = ∆p − ∆̃p, while in a maximum (Fig. 9.3b)

〈a†1a1〉SF =
|η0|2

4
√

2πσω

∫ ∞

0

ω2e−(ω−∆̃p)2/2σ2
ωdω

[∆p(∆p − ω) + κ2]2 + κ2ω2
.
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Part III

Self-Organization of Atoms in
Optical Lattices





Chapter 10

Background: Self-Organization of Atoms in a

Cavity

The last part of this thesis is devoted to a microscopic view on the self-organization
process of atoms in a cavity field and its onset. In this background chapter we present a
qualitative overview of the phenomenon of self-organizing atoms into a regular lattice in a
cavity field, first investigated in our group [1]. In our studies here, we consider motion of the
atoms along the direction of the pumping laser. This leads to slightly simplified calculations,
but essentially contains all the underlying physics. The single-particle Hamiltonian for this
situation, was derived in Sec. 3.3. Since this self-organization process, of course, relies on
many-body physics, we have to derive a corresponding Bose-Hubbard Hamiltonian, as well.
This can be found in the second part of this chapter.

Some of the results in the subsequent chapters have been obtained with Monte-Carlo wave
function simulations, performed by Andras Vukics. In order to avoid an overloading of this
thesis, we will not present a background chapter on the Monte-Carlo method, and instead
refer to [2].

10.1 Collective Cooling and Spatial Self-Organization of

Atoms

The strong coupling of a single atom inside a high-Q optical resonator allows for efficient
cooling and trapping of this atom [3–7]. The underlying cooling mechanism is fundamen-
tally different to usual laser cooling schemes and relies on the complex nonlinear interaction
between cavity field and atom and on the presence of a dissipation channel, independent of
spontaneous emission. Essentially, the atom scatters into the cavity mode, which can lose
photons and hence energy via the cavity mirrors.

Conventional laser cooling schemes are not altered by the presence of many atoms, since
they depend merely on single atom processes. For resonator-induced forces, though, this is
drastically different. Here, all atoms interact, mediated by the intracavity field, to which all
atoms are simultaneously coupled. Hence, the positions and velocities of the atoms influence
each other and modify the scattering properties of each atom and therewith the cooling
process. This leads to cooperative effects, providing for perspectives to significantly enhance
the cooling efficiency.

This cooperative effect requires direct coherent driving of the atoms instead of exciting
the cavity mode. We presented this so-called “atom pumping” setup already in chapters 5
and 6. We consider N two-level atoms, transversally illuminated by a red-detuned pumping
laser (see Fig. 10.1). The atoms scatter photons in the cavity mode, with a field amplitude
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Figure 10.1. Schematic diagram of atoms, coherently excited from a laser, perpendic-
ular to the cavity axis. This modifies the lattice potential (periodicity λ/2), by altering
the depths of neighboring sites, leading to an array with periodicity λ. After a self-
organization process the atoms form a density grating corresponding to this potential.

and phase, determined by each atoms’ position. The key point is now, that interference
between the emitted light fields from the various atoms has a drastic influence on the common
scattering rates, as in ordinary Bragg scattering by a periodic pattern of atoms. Hence, the
contributions of atoms in adjacent wells of an optical lattice cancel, since they are separated
by half a wavelength and scatter fields with a phase difference of π. This would inhibit an
intracavity field buildup for a uniform atomic distribution. Nevertheless, density fluctuations
allow for a small field with some random corresponding phase. This induces a runaway
process via atomic redistribution mediated by the cavity field. Due to the red detuning, the
atoms are attracted by the antinodes of the optical lattice. This periodic localization leads to
collective emission into the cavity mode direction, inducing deeper potential wells and further
localization, which provides for a stabilization of the emerging atomic pattern.

As we mentioned above, the periodic pattern must be a grating with periodicity λ/2,
which would only lead to destructive interference. Instead, the uniform gas spontaneously
breaks the translational symmetry, and organizes itself in one of two possible patterns. Either
all atoms accumulate at all “even” numbered or all “odd” numbered sites of the optical lattice
with periodicity λ/2, generated by a standing wave with wavelength λ. The reason for this,
lies in an additional force term proportional to cos(kx) [see Eq. (5.3)], instead of the quadratic
dependence ∝ cos2(kx) of the dipole force of the optical lattice. This force, originating from
the recoil accompanying the scattering corresponding to the atomic pumping, has opposite
signs for neighboring wells. Hence, whilst one lattice well is deepened by this force, the depth
of the subsequent neighboring well is reduced (see Fig. 10.1). Density fluctuations lead to a
momentary unbalance of the populations in neighboring wells, inducing a runaway process,
until all atoms are in the same class of well. The field intensity corresponding to this final
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state depends quadratically on the atom number N , an obvious sign of the cooperativity in
this process. For a suitable choice of parameters, this process leads to efficient cooling and
trapping of the atoms, by means of the cavity loss, which dissipates the increased kinetic
energy of the atoms, when they fall into the lattice wells. Heating processes limit the cooling
temperature to some finite value.

In seminal experiments by Vuletić and coworkers [8–10], strongly enhanced emission (by
orders of magnitude) was observed, as soon as the pumping laser intensity exceeded a cer-
tain threshold. This led to efficient cooling of large ensembles. Since a phase difference of
π between the two possible regular gratings exist, a heterodyne measurement of the time
phase allows to observe the symmetry breaking between the two patterns, induced by density
fluctuations.

Moreover, this self-organization effect persists also in a two-dimensional situation, if the
pumping field is a standing wave field, generated by counterpropagating laser beams. Here,
the atoms organize in one of two equivalent rectangular arrays in form of a checkerboard. In
Fig. 10.2, we schematically depict the two patterns and their spatial offset, leading to the
phase difference in the scattered light.

Figure 10.2. In two dimensions the atoms self-organize in a checkerboard pattern. The
two different but equivalent density gratings, depicted by blue and red balls, emit light
into the cavity mode with a phase difference of π.

An additional point has to be added to the above discussion. Zippilli et al. [11, 12]
argued that, if the pumping field is close to resonance, Bragg scattering cannot explain the
dramatic suppression of atomic fluorescence, which allows the cavity loss to be the dominant
dissipation channel. In fact, for atom numbers below a certain threshold value, i.e. N � N0,
the intensity of the cavity field depends quadratically on the atom number, and the number
of excited atoms is close to the free-space excitation population. The resulting enhancement
of the scattering rate into the cavity can be well described by Bragg scattering. However, for



184 Background: Self-Organization of Atoms in a Cavity

N � N0, the total power of dissipation via spontaneous emission loses ground, since it scales
as 1/N . In this regime, leaking of cavity photons is the main dissipation channel and the
intracavity intensity is approximately constant and independent of N . A closer look reveals,
that for ∆c ≈ 0 and κ < Γ, the cavity field and the pumping laser field have opposite phases
and mutually cancel at atomic positions. Hence, the atoms localize at positions, where atomic
excitations and fluorescence are strongly suppressed. Therefore, the ratio of scattering in the
cavity mode to free-space scattering increases with N , even in the saturation regime, where
the intensity of the cavity field is constant.

Note, that this collective effect is different to other, recently demonstrated, collective phe-
nomena. For the collective atomic recoil laser in a ring cavity (CARL) [13–17], a magneto-
optical trap is required, in order to stabilize the atoms, since their center of mass is continu-
ously accelerated by the CARL process.

10.2 The Bose-Hubbard Hamiltonian for Transverse Motion

In Sec. 3.3 we described the setup for our studies concerning the onset of the self-organization
process, to which this chapter is devoted. We considered motion of particles, in the optical
lattice, generated by the pumping laser field. The coupling of the particles to the cavity
mode, though, is responsible for collective effects, including the self-ordering of particles in
one of two stable patterns.

In this section we have to correctly address a single particle Hamiltonian, which we im-
plement in a second-quantized Hamiltonian, allowing for a many-body description. Starting
from (3.51), we adiabatically eliminate the excited states simply by replacing the Pauli ma-
trices σ± by their steady state values

σ− = −ζ cos(kpŷ) + g0 cos(kx̂)a

γ − i∆a
and σ+ = −ζ cos(kpŷ) + g0 cos(kx̂)a†

γ + i∆a
. (10.1)

Here kp denotes the wavenumber of the pumping field lattice, whereas k is the wavenumber of
the cavity lattice. To the contrary of (3.52), we incorporated the position in the cavity field
via cos(kx̂), which in fact is necessary in the second-quantized formalism. Nevertheless, since
we neglect motion along the cavity axis, we can omit the momentum operator p̂x and replace
x̂ by a c-number x0. Then, the replacement of the expressions for the excitation operators
yield

Heff =
p̂2
y

2m
− ~

[

∆c − U0 cos2(kx0)
]

a†a+ V0 cos2(kpŷ)

+ sgn(U0)
√

~U0V0 cos(kpŷ) cos(kx0)
(

a+ a†
)

, (10.2)

where the potential depth of the lattice corresponding to the pumping laser field and the cavity
field (per photon), respectively, are given by V0 = ~ζ2∆a/(γ

2+∆2
a) and U0 = g2

0∆a/(γ
2+∆2

a).
The particle motion is now only one-dimensional, and we can apply the general second-
quantized Hamiltonian (2.20). Here, we have to implement all terms, corresponding to par-
ticle motion. Since cos2(kx0)a

†a originally depended on particle motion, we will include also
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this term. Furthermore, without loss of generality, we can set x0 = 0. Hence, we get:

H =

∫

R

dyΨ†(y)

[

p̂2
y

2m
+ V0 cos2(kpŷ) + sgn(U0)

√

~U0V0 cos(kpŷ)
(

a+ a†
)

+ ~U0a
†a

]

Ψ(y)

− ~∆ca
†a+

1

2

∫

R

∫

R

dxdyΨ†(x)Ψ†(y)U(x, y)Ψ(x)Ψ(y). (10.3)

Here Ψ(y) denotes the field operator for the bosonic particles. Now, proceeding along the
lines of Sec. 2.3.1, we consider one-dimensional on-site interactions U(x, y) = g1Dδ(x−y) and
expand the field operator in the Wannier basis, where we only take the lowest energy band
into account, i.e.

Ψ(x) =
M
∑

i=1

w(x− xi)bi. (10.4)

Here w(x) is the Wannier function, corresponding to the lowest band, and bi is the bosonic
annihilation operator for a particle at site i. Moreover, the same arguments concerning the
relevance of the various tunneling contributions as in Sec. 2.3.1 are valid. Hence, we only
have to consider next-neighbor hopping and only one term for the on-site interactions. Here,
due to the existence of cos(kpy), a new term appears, which allows the system to break the
translational symmetry of the lattice. The associated matrix elements

J̃kl = sgn(U0)
√

~U0V0

∫

R

dy w(y − yk) cos(kpy)w(y − yl) (10.5)

have vanishing values for tunneling, i.e. J̃n,n±1 = 0 for all n, if we neglect tunneling to other
then adjacent sites:

J̃n,n±1

sgn(U0)
√

~U0V0
=

∫

R

dy w(y − yn±1) cos(kpy)w(y − yn)

= (−1)n
∫

R

dy w(y ± a) cos(kpy)w(y)

= ±(−1)n
∫

R

dy w
(

y +
a

2

)

sin(kpy)w
(

y − a

2

)

= 0,

since w(y + a/2)w(y − a/2) is even (a = π/k). A similar argument shows, that the on-site
elements have alternating signs, i.e. J̃n,n = −J̃n±1,n±1. As a last step, the assumption of a
constant atom number, allows to neglect constant terms in the second quantized Hamiltonian:

H = J
∑

〈k,l〉
b†kbl + J̃

∑

k

(−1)kn̂k

(

a+ a†
)

− (∆c −NU0)a
†a+

U

2

∑

k

n̂k(n̂k − 1). (10.6)

Note, that to the contrary of chapter 2, here J is the matrix element, corresponding to the

total energy J =
∫

R
dy w(y − a)

(

− ~2

2m
d2

dy2
+ V0 cos2(ky)

)

w(y). The operator for the particle

number at site k is denoted by n̂k = b†kbk and J̃ = J̃00. This is the modified Bose-Hubbard
Hamiltonian, providing for the many-body plus cavity field dynamics, which we use in the
remaining two chapters of this thesis.1

1In chapter 12, the lattice definition is slightly different. There, the lattice potential is proportional to
sin2(kpy), leading to lattice sites at yn = π/2 + na for n ∈ Z. Nevertheless, this amounts just to a global
phase shift, having no influence on matrix elements or any other properties of the dynamics.
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Laser-illuminated atoms in an optical resonator exhibit a phase transition between
the homogenous distribution and two possible ordered configurations in the optical lattice
formed by the cavity and pump fields. At zero temperature, atom-field entanglement
plays a crucial role in the spatial reordering of the atoms from a homogeneous towards
the two ordered states, where all atoms occupy either only even or only odd lattice
sites. Concurrent with the buildup of atom-field entanglement, the homogeneous atomic
cloud evolves immediately into the superposition of the two stable patterns entangled
with opposite cavity field amplitudes. This possibility is absent in a factorized (classical)
treatment of atoms and field and should be generic for spontaneous symmetry breaking
in quantum phase transitions in optical potentials.

Laser light with spatially modulated intensity, far red detuned from an atomic resonance
creates a designable optical potential to trap and manipulate ultra-cold atoms [1]. Con-
structing a periodic lattice potential enables tailored implementations of the Bose-Hubbard
Hamiltonian [2] to study quantum phase transitions [3] or ideas of quantum information
processing [4]. Whilst the effect of a free-space laser field can be well approximated by an
external potential via factorizing field and atomic dynamics, a field enclosed in a cavity is
influenced by the atoms and takes part in the coupled atom-field dynamics [5, 10]. Nowadays
in optical cavity QED using cold atoms in high finesse Fabry-Perot resonators the regime of
strong light-matter interaction is experimentally accessible [6–8]. Here even a single cavity
photon exerts significant forces and the quantum properties of the optical forces can no longer
be ignored [9, 11].

†The primary contribution of the author of the present thesis to this publication were the calculations
concerning the Bose-Hubbard model, while the Monte Carlo calculations were performed by A. V. The toy
model was described by H. R. The author of the present thesis also acted as a discussion partner for all the
aspects of this work.
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In this paper we discuss some fundamental consequences of the back-action of a particle’s
motion on the potential it moves in. In particular, we concentrate on the physics of such
an intrinsic feedback mechanism at the quantum level. Here the potential and thus the
force the particles feel can be in a superposition state entangled with their position. As an
experimentally accessible example we consider a laser-illuminated degenerate gas moving in
the optical potential generated by a high-Q cavity field. As theoretically predicted [12] and
subsequently demonstrated in experiment [13] this system exhibits a phase transition in the
classical, thermal gas limit [14].

This phenomenon is briefly summarized as follows. For red detuning (high field seeking
atoms), above a threshold pump intensity the atoms spontaneously break the continuous
translational symmetry along the cavity axis (see the geometry in Fig. 11.1(b), although in
this paper the motion will be restricted only along the pump field) and form one of two
regular patterns that maximize light scattering from the pump into the cavity. Here the
atoms arrange along Bragg planes optimally coupling the pump and the cavity fields. The
two possible patterns (their configuration is similar to the black and white fields of a checker-
board) lead to superradiant light scattering proportional to the square of the particle number,
however, with opposite phases of the cavity field amplitude. For a thermal cloud, the onset
of self- organization can be understood as originating from an amplification of the atomic
density fluctuations by feedback through the cavity field. For a random distribution of atoms
on different lattice sites the scattering into the cavity mode enlarges the potential depth of
those lattice sites, where more atoms sit. This subsequently leads to trapping of more atoms
at these sites in a runaway process towards the ordered pattern.

In this paper we will concentrate on the regime of quantized atomic motion at T =
0, where the onset of atomic order and symmetry breaking is more intricate. Using an
atomic BEC as an initial state the atoms have a kinetic energy much less than the recoil
energy so that their wave function is flat on the wavelength scale [8]. Since the atoms
form a linear refractive medium in the large atom-field detuning limit and coherent high-
intensity pumping is employed, it is tempting to use a “classical” (mean-field) description
of the scattered light field and calculate the back-action using a mean-field approximation
of the condensate. This approximate mean-field model predicts that no light is scattered
into the cavity from the initially homogeneous atomic distribution as the field amplitudes
scattered into the cavity from different parts of the atomic wave function separated by half
a wavelength interfere destructively. Thus one expects no light scattering at start and self-
organization would occur on a very slow time scale only due to an eventual asymmetry of
the initial wavefunction. As we will show later in this work, this conclusion is only valid for
a “classical” (or factorized) description of the cavity field amplitude as it it is widely applied
for off resonant light scattering [15].

The cavity field in fact realizes a quantum feedback [16] for the atomic motion in which
atom-field entanglement is a crucial element. In this case scattered field amplitudes with op-
posite phases do not necessarily cancel, but entangle to different atomic wave functions [17].
If these are orthogonal, “which way information” prevents the interference of the correspond-
ing field amplitudes. Although the quantum average of the field amplitude is zero, the photon
number in the cavity can grow fast. This is clearly incompatible with a classical field ap-
proximation or a factorization of the atom and field dynamics. The important point now
is that the two opposite phase components of the cavity field superposition create opposite
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forces pulling the corresponding parts of the atomic wave functions towards the respective
self-organized configuration. Hence self-organization starts immediately even at T = 0 in the
full quantum description of the ultracold atom and cavity system.

Note that this dynamics conserves symmetry and exhibits accelerated evolution towards a
macroscopic superposition state of the atoms entangled with the field. Decoherence via cavity
photon loss will induce spontaneous symmetry breaking later, which amounts to measurement
induced relative atomic localization [18].

The remaining part of this paper is organized as follows. Before starting a detailed
analysis of the coupled atom-field dynamics underlying the self-organization process, we will
first briefly discuss some key aspects in a simplified mechanical system. Then we present
the Hamiltonian of the optical system. We apply the Bose-Hubbard-type model introduced
in [9] to numerically investigate the transient dynamics of initially homogeneous many-atom
matter waves. The validity of the approximations (i.e. using the lowest lying levels in the
Wannier basis) is then checked by the Monte-Carlo wave function method, developed for the
specific system in [11].

The toy model with only two degrees of freedom describes the motion of a particle on a
seesaw. The potential the atom experiences is determined by the tilt angle of the seesaw ϕ
which is a dynamical variable coupled to the atom’s position x as depicted in Fig. 11.1(a).
Adding weak linear restoring forces both to the particle excursion and to the angular motion
of the seesaw, the corresponding potential energy can be written as

V (x, ϕ) = ω2
xx

2 + ω2
ϕϕ

2 − 2J sin(ϕ)x (11.1)

≈ ω2
xx

2 + ω2
ϕϕ

2 − 2Jϕx

= (ωxx− ωϕϕ)2 − 2ϕx(J − ωxωϕ) .

In classical mechanics x = ϕ = 0 is a stationary point, which is unstable for J > ωxωϕ. A
small perturbation from x = 0 triggers to tilt the seesaw slowly in one of the directions and
the particle runs off with increasing acceleration. Obviously the closer the particle is to the
origin initially, the longer it will stay near x = 0.

Figure 11.1. Scheme of the quantum seesaw (a) and the corresponding atom-cavity
system (b).
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However, the situation is different if x and ϕ are quantum variables. In this case we have
two quantum oscillators (x̂, ϕ̂) with nonlinear coupling Jϕ̂x̂. Even for a perfectly balanced
initial wavepacket with 〈ϕ̂〉 = 〈x̂〉 = 0 we find fast decay. Since the seesaw can evolve into
a superposition of right and left tilt, the right part of the wave packet will push it to the
right and start accelerating to the right with amplitude ϕ(t), while the second half moves left
with opposite tilt −ϕ(t). Hence a quantum seesaw immediately leaves its unstable equilibrium
and escapes towards right and left simultaneously, forming an entangled superposition of both
possibilities. Although the expectation values of x̂ and ϕ̂ remain zero (or grow slowly for a
small initial asymmetry), their variances rapidly grow in time. Note that any factorization
assumption for the two quantum degrees of freedom eliminates this decay possibility, which
thus is essentially tied to the possibility of entanglement.

After this excursion to basic mechanics, which makes things look simple, let us now
return to the more complex dynamics of ultracold atoms trapped in a 1D optical lattice
perpendicular to a cavity (Fig. 11.1(b)). Here the cavity field takes the role of the seesaw
potential. It is modified by the atoms through photon scattering between the mode and the
lattice laser which is assumed far red detuned from the atoms but close to resonance with
the cavity mode. Through interference between cavity and lattice field the particles influence
the potential they move in.

In the limit of large atom-laser detuning (small atomic saturation) a corresponding single-
atom Hamiltonian reads [5]:

H =
p2

2m
+ V0 sin2(kx)− ~ (∆c − U0) a

†a+
√

~V0U0 sin(kx)
(

a+ a†
)

, (11.2)

where a and a† are the cavity photon annihilation and creation operators. The optical
lattice depth is given by V0, ∆c denotes the detuning between the lattice field and the cavity
resonance, and U0 describes the shift of the cavity resonance frequency per atom (V0, U0 < 0).
This enables us to construct an N-atom Hamiltonian in second quantized form. On expanding
the atomic operators in a localized Wannier basis of the lattice potential and keeping only
the lowest vibrational state, the following Bose-Hubbard type Hamiltonian [9] is obtained:

H =
∑

m,n

Jm,nb
†
mbn − ~

(

∆c − U0

∑

n

b†nbn

)

a†a+
(

a+ a†
)

∑

m,n

~J̃m,nb
†
mbn. (11.3)

The operator bn annihilates an atom at the site kx = (n − 1/2)π. The coupling matrix
elements for the kinetic and potential energy p2/2m + V0 sin2(kx) between sites m and n
are denoted by Jm,n, whereas J̃m,n gives the matrix elements of

√

U0V0/~ sin(kx). Onsite
interaction between atoms is neglected. The model holds as long as the scattering induced
potential change is much smaller than the depth of the lattice potential, |U0| � |V0|.

Due to the periodicity of the system, it is enough to consider only two sites, left and right,
centered on kx = ±π/2. The matrix elements Jl,r = J , J̃l,l = −J̃r,r = J̃ are important, the
others either vanish or amount to additive constants. The effective Hamiltonian reads

H = J
(

b†l br + b†rbl
)

+ ~ (∆c − U0N) a†a+ ~J̃
(

b†l bl − b†rbr
)(

a+ a†
)

, (11.4)

where N = b†l bl + b†rbr is the total number of atoms.
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We first attempt to apply a “classical” (mean-field) approximation to the cavity mode
and replace the operators a and a† by their expectation values α(t) and α∗(t). As we are
dealing with off resonant scattering from a coherent laser field with high photon number, this
assumption looks reasonable. It is essentially equivalent to assuming a factorized atom-field
state with this latter being in a coherent state. The atomic motion is governed by

H = J
(

b†l br + b†rbl
)

+ ~J̃
(

b†l bl − b†rbr
)

2Re {α(t)} , (11.5)

where α(t) fulfills a c-number equation [9] containing expectation values of atomic operators
and a damping term with decay rate κ:

α̇(t) = [i (∆c − U0N)− κ]α(t)− iJ̃
〈

b†l bl − b†rbr
〉

. (11.6)

By construction, entanglement is absent in this model and a perfectly symmetric atomic
distribution with no average field implies α̇(t) = α(t) = 0 and is stationary. The system
can escape from this stationary solution only by spontaneous symmetry breaking. As shown
in Fig. 11.2, starting with a tiny initial population asymmetry reveals the bistability of the
system and will dynamically confine the atoms to one of the two wells correlated with a
nonzero field amplitude. The characteristic time required for this is determined by the size
of the (thermal) fluctuations.

Figure 11.2. (a) Time evolution of the field intensity (dashed line) and site-occupation
difference (solid line) for mean-field approximation (c.f. Eq. (11.6)) and taking four
atoms. The initial distribution deviates slightly from a symmetric one, U0 = −0.25κ,
∆c = −2/3κ, V0 = −4~κ and κ = 1~k2

m . The insert shows the much faster growth of the
field intensity (solid line) and entanglement of the corresponding quantum model (note
the different time range).

However, the numerical solution of the full quantum dynamics reveals that this mean field
approach is a very poor approximation. In sharp contrast to the mean-field approximation
the quantum solution of Eq. (11.4) exhibits an instant increase of the photon number and fast
self-organization as shown by the solid line in the inset of Fig. 11.2. Essentially the buildup
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of a nonclassical field with atom-field entanglement in the quantum solution generates this
fast dynamics.

As a better approximation to the full quantum solution of Eq. (11.4) we formally solve
the operator Heisenberg equation for a in the bad cavity limit, where the field adiabatically
follows the atomic dynamics. The genuine quantum properties of the cavity field a are then
represented in terms of the atomic population difference operator:

a = −i J̃

κ− i(∆c − U0N)

(

b†l bl − b†rbr
)

. (11.7)

As the atom number N̂ = N is a constant of motion, the dynamics takes place in ir-
reducible subspaces. It is instructive to consider first the single atom subspace where the
entanglement-assisted decay, analogous to the quantum seesaw mechanism, can already be
seized. For a single atom, b†i bi acts as a projector on the i-th well. Hence, depending on
the atom’s position the field 〈a〉 changes sign and vanishes for a symmetric atomic state.

However, the photon number operator a†a ∝
(

b†l bl − b
†
rbr

)2
is proportional to the unit oper-

ator in the single atom subspace, so that the photon number is nonzero independent of the
atomic state and in particular also for a symmetric state. This implies that, in contrast to
the mean-field description, even a perfect symmetric initial population triggers the growth of
the photon number although the mean field vanishes, 〈a〉 = 0.

Figure 11.3. Entanglement (solid lines), photon number (dot- dashed lines), and the
two-site atom-atom correlation function (dotted lines) for two atoms in two wells. Lines
with extra circles show the case of exactly one atom in each well at start (Mott state),
while the others correspond to a symmetric superposition state for each atom (superfluid
state). The parameters are U0 = −2κ,∆c = −6κ, J = 0.01κ and J̃ = 1.6κ

The dynamics is qualitatively quite similar for two atoms as shown in Fig. 11.3. One can
monitor the self-organization process by looking at the probability for the two atoms sitting
in different wells (〈nlnr〉), which decays during the self-organization process. Note that the
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entanglement decays on a longer time scale, due to environmental effects, than the formation
of the self-organized state. Interestingly there is a marked dependence on the specific quantum
state producing an initially symmetric population distribution. The superfluid state, when
both atoms are in a symmetric superposition of the two wells, (1/2 (b†l +b

†
r)2|0〉), self-organizes

faster than the Mott insulator state (b†l b
†
r|0〉), indicated by the lines with circles in the figure).

The Mott state is a perfectly balanced initial state with exactly one atom in each well without
any quantum density fluctuations. The corresponding steady-state field, given in Eq. (11.7),
is an eigenstate with zero eigenvalue. Nevertheless, tunneling induces coherence between
the left and right sites and subsequently the entanglement drives the decay towards the
self-organized state.

Let us now go one step further towards realistic modeling and check the lattice model
by the Monte Carlo Wave Function (MCWF) method [11]. This method allows to solve the
coupled atom-field dynamics given by Eq. (11.2) including cavity decay and atomic spon-
taneous emission. The atomic motion is limited to one wavelength with periodic boundary
conditions, however, it is not restricted to the lowest-energy Wannier-basis states. The en-
ergy and photon number dependent tunneling is automatically included in the wave function
trajectories.

The full atom-cavity density operator can be approximated by an ensemble average. For
a deep enough potential V0 < −10Er, where Er = (~k)2/2m is the recoil energy, and small
U0, an excellent agreement with the lattice model is obtained. As an instructive example
the evolution of the mean photon number and the negativity characterizing the atom-field
entanglement is plotted in Fig. 11.4. Here we have chosen some detuning between the cavity
mode and the pump light to get photon number oscillations, which highlights the connection
between photon number and entanglement at the self- organizations onset.

Light scattering creates photons immediately in the cavity in a superposition state of two
phases entangled to an atomic state. The photon number oscillates in parallel with the atom-
field entanglement. Note the very good agreement with the quantum lattice model, which
predicts more entanglement since less atomic states are available (just the lowest Wannier
basis states).

Looking at individual trajectories reveals that the system evolves into the “stochastic”
state

|ψ±〉 = 1/
√

2 (|left〉 |α〉 ± |right〉 |−α〉) , (11.8)

where |left〉 |α〉 (|right〉 |−α〉) means an atomic wave packet centered on the left (right) with
coherent field states of amplitude α (−α). It is checked by inspecting the numerical wave-
function that the field state components |±α〉 are indeed very close to a coherent state, i.e.,
to the class of states that is usually considered classical. However, even a linear medium
scattering classical light can generate a nonclassical field if the scatterer position is in a quan-
tum superposition state. The state of Eq. (11.8) stochastic in the sense that each photon
loss event flips the relative sign of the two contributions. Although no phase information is
extracted from the counted photons, the density matrix evolves into a left-right mixed state
if one does not keep exactly track of the counts. Hence entanglement decays on the time
scale of cavity loss.

The sensitivity of the self-organized state to quantum fluctuations can be studied by
launching the system from the ordered initial state |r〉 |−α〉. As we see in Fig. 11.5 tunneling
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Figure 11.4. Fast correlated growth of entanglement (i.e. logarithmic negativity)
and photon number for a single atom starting in a symmetric state and a vacuum field.
Parameters: U0 = −4κ, ∆c = −9κ, V0 = −2κ, κ ≈ 40~k2

m . The results of the MCWF sim-
ulations (dotted and dashed-dotted line) agree very well with the lattice model (dashed
and solid line).

is suppressed as the effective potential is deeper than V0 and this state is remarkably stable.
Nevertheless the atom can escape owing to some large quantum fluctuation and the field
amplitude collapses. Again we end up in the state of Eq. (11.8), where 〈x〉 = 〈a〉 = 0, while
the photon number is nonzero:

〈

a†a
〉

≈ |α|2. Hence in terms of the quantum seesaw we see
that even if it is tilted to one direction, fluctuations eventually enable the system to escape
from this state to a symmetric final state again.

In summary, at the example of self-organization of ultracold atoms in an optical lattice
we found that a full quantum description of the field and the possibility of entanglement is
an essential ingredient for correctly describing dynamical decay of a quantum system from
an unstable equilibrium point. The classical (factorized atom-field state) description of the
optical potential predicts a stationary homogeneous distribution, while a quantum description
implies immediate atomic ordering via atom-field entanglement formation. The entanglement
involves states that cannot be described as small quantum fluctuations around a large mean-
field, even if starting the system from coherent states with large photon and atom number.
Entanglement enabled decay can be a generic feature in the dynamics of quantum phase
transitions induced by a classical control parameter, whenever the quantum system acts even
minimally back on its control. Recent progress in cavity QED should allow to study such
models in the laboratory with current technology.

We acknowledge funding from the Austrian Science Foundation (P17709), the National
Scientific Fund of Hungary (T043079, T049234, NF68736).
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Figure 11.5. Dynamic formation of a symmetrically self-organized state. The atom
is initially well localized in the right well (〈x〉 = − π

2 ) and generates approximately a

coherent field of intensity
〈

a†a
〉

≈ |〈a〉|2 ≈ |α|2. Due to fluctuations it eventually escapes
and evolves into the state of Eq. (11.8), having no mean field but non-vanishing photon
number: 〈a〉 = 0,

〈

a†a
〉

≈ |α|2. Parameters: U0 = −κ/2, ∆c = −1.2κ, V0 = −2~κ,

κ ≈ 200~k2

m .
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We study quantum particles at zero temperature in an optical lattice coupled to a
resonant cavity mode. The cavity field substantially modifies the particle dynamics in the
lattice, and for strong particle-field coupling leads to self-organisation of the particles, a
configuration with only every second site occupied. We study the growth of this order out
of a homogeneous initial distribution for few particles. Simulations reveal that the growth
dynamics crucially depends on the initial quantum many-body state of the particles and
can be monitored via the cavity fluorescence. Studying the relaxation time of the ordering
reveals inhibited tunneling due to the interaction with the cavity field. However, the
relaxation becomes very quick for strong coupling.

12.1 Introduction

Ultracold atoms in an optical lattice formed by a far detuned laser field constitute an ideal
system to study quantum phase transitions, i.e., phase transitions at zero temperature [1]. In
the most prominent example first predicted theoretically [2] and confirmed experimentally [3]
it was found that the particle ground state changes from a superfluid state where all atoms
are delocalised to a perfectly ordered Mott insulator state for increasing lattice depth. More
complex phases as supersolids, etc. were predicted if long range interactions or mixed species
setups [4, 5] are used, but these are harder to realize and measure experimentally. While the
final states are well understood, these phase transitions require the buildup or decay of long
range correlations, the mechanism and time scale of which is not fully understood.

In a parallel development a dynamical transition to a self-organised phase in optical
lattices was found for classical particles, when the lattice is placed inside an optical resonator.

†The primary contribution of the author of the present thesis to this publication were all the calculations
concerning the Bose-Hubbard model. He also acted as a discussion partner for all the aspects of this work.
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It originates from interference of the resonantly enhanced light field scattered by the atoms
into the cavity mode with the lattice light itself and leads to a preferred occupation of every
second site [6]. For a finite temperature cloud thermal density fluctuations are amplified and
lead to a runaway self-organisation by feedback from the cavity field. However, for a BEC
(T ≈ 0) the initial density is perfectly homogeneous and only quantum fluctuations which
go beyond a mean field description of the cold gas can start the self-organising process when
the cavity interaction is switched on. Tunnelling results in a dynamical change of the atomic
phase at T = 0 which gets irreversible only if cavity decay is included. In this work we study
this quantum dynamics on the microscopic level and show how it depends on the precise
quantum properties of the initial atomic state beyond any mean field density.

The paper is also intended to show the limitations of the effective Bose-Hubbard type
model developed earlier [7] for atom-cavity systems. We demonstrate that in the regime
of moderate coupling the low-dimensional Bose-Hubbard approach reproduces very well the
results of a full Monte Carlo wave-function simulation, while it breaks down in the regime of
stronger coupling. Even in this regime, however, it predicts the steady state surprisingly well,
whereas the relaxation time to this state is predicted wrong. We show that the relaxation
time of the system exhibits a highly non-trivial behaviour. In the regime of moderate atom-
cavity coupling the relaxation time is composed of the timescale of photon counts and that
of tunnelling. The combination of these two time scales leads to a minimum behaviour in the
relaxation time, while for stronger coupling the relaxation becomes very quick, a behaviour
observed in the full simulations but not reproducible with the Bose-Hubbard approach.

We first describe our system, the model, and solution methods applied. Afterwards, we
go on investigating the dynamics of a single atom in the system. Although self-organisation
cannot be defined in this case, we demonstrate that already here the relaxation time exhibits
the same behaviour we find later for two atoms, and here it is easier to give a qualitative
picture of this behaviour. We finally turn to the case of two atoms and show how the
increasing coupling results in a transition from a T = 0 homogeneous initial condition into a
self-organised configuration in steady state.

12.2 System, Models

The proposed setup is depicted in Figure 12.1. It consists of a one dimensional optical lattice
within a cavity sustaining a single mode with its axis aligned orthogonally to the lattice
axis — such systems have been studied in diverse theoretical contexts before [8–11], and are
available experimentally [12, 13]. We assume that the cavity mode function is constant along
the lattice direction, still, as we will see below, it modifies significantly the dynamics of atoms
in the lattice.

A standard quantum optical model for the system with a single atom moving in one
dimension along the lattice axis is obtained by adiabatic elimination of the atomic excited
state(s). This is justified in the regime where the driving — in our case, the laser generating
the lattice (pump) — is far detuned from the atomic transition frequency [14, 15]. The
Hamiltonian for a single atom and the cavity then reads (~ = 1):
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Figure 12.1. Scheme of the system consisting of a one dimensional optical lattice with
lattice axis x and a cavity sustaining a single EM mode aligned orthogonally.

H =
p2

2µ
+ V0 sin2(Kx)− (∆C − U0) a

†a+ sign(U0)
√

U0 V0 sin(Kx)
(

a† + a
)

. (12.1)

Here x, p, and µ are the atomic position and momentum operators and the mass, respectively;
a is the cavity field operator, ∆C = ω−ωC is the cavity detuning — ω is the laser, ωC is the
cavity frequency —, and K is the lattice field wave number. The first two terms describe the
atomic motion in the lattice, which appears as a classical potential after the elimination of
the atomic internal dynamics. The potential depth for a two-level atom V0 = η2/∆A where
η is the pump Rabi frequency and ∆A = ω − ωA, ωA is the atomic transition frequency.
The third term is the free Hamiltonian of the cavity mode with the detuning shifted by
U0 = g2/∆A where g is the atom-cavity interaction coupling constant. The last term describes
the atom-mode interaction which stems from stimulated absorption from the pump followed
by stimulated emission into the cavity mode and the reverse process. Atomic spontaneous
emission is strongly suppressed due to the large atom-pump detuning and therefore neglected.
The cavity mode is, however, coupled to the surrounding EM modes, resulting in the decay
of cavity photons (escape through the mirrors). The process is described by the Liouvillean
dynamics [16]

Lρ = κ

(

2aρa† −
[

a†a, ρ
]

+

)

. (12.2)

Note that model (12.1)-(12.2) is not specific to a two-level atom but generally applicable
to linearly polarisable particles, atoms and molecules alike. In this case the parameter U0 is
proportional to the susceptibility of the particles [15]. In the following we shall hence speak
about particles without any further specification.

As described theoretically [6, 17] and observed experimentally [18] the model (12.1)-
(12.2) features a phase transition termed self-organisation for a finite temperature classical
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gas. As this occurs for red-detuned driving, i.e., high field seeking particles with U0, ∆C < 0
we will restrict ourselves to this case. Self-organisation can be qualitatively understood
as follows: The system has three steady-state configurations in a mean field description:
(i) an “unorganised” configuration where the particles are equally distributed through all
lattice sites and scatter no light into the cavity due to destructive interference and (ii) two
“organised” configurations in which the particles occupy either only the even or only the odd
sites of the lattice and scatter superradiantly into the cavity. In the latter case the last term
in the Hamiltonian (12.1) deepens the lattice potential at the positions of the particles, so
that they are self-trapped or “self-organised”.

Configurations (ii) have lower energy and entropy (lower symmetry) than configuration (i).
At a given temperature the system chooses between configuration (i) and one of configurations
(ii) so as to minimise the free energy. Lowering the temperature results in a phase transition
when the symmetry of configuration (i) is spontaneously broken into the lower symmetry of
one of configurations (ii).1

The above qualitative picture is modified by the fact that the system never reaches thermal
equilibrium with some external heat bath as energy is continuously flowing through the system
from the pump via scattering on the particles into the cavity field and then out via the cavity
loss channel. Self-organisation is therefore a dynamical phase transition for which the above
mentioned configurations are steady-state patterns. In steady state the particles have a
momentum distribution determined by the cavity field fluctuations, which, in most cases of
physical interest, resembles very much a thermal distribution [19]. In this sense it is justified
to speak about an effective temperature of the particles and use the picture of an equilibrium
phase transition as we did above.

Let us now turn to the case of zero temperature and envisage a fixed number of classical
point particles at each lattice site. In contrast to above, no matter whether we are above or
below the threshold, no dynamics will arise because a homogeneous gas scatters no field into
the cavity due to destructive interference. If no photons are present initially, such a classical
gas cannot break the symmetry and is unable to escape the initial homogeneous configuration
(i).

In the following we show that this is quite different for quantum particles at T = 0, a
situation which can be prepared by loading a BEC or particles coupled out from a BEC into
the cavity [20, 21]. Interestingly, in this case both for a Mott insulator and superfluid state
(BEC) as initial condition, quantum fluctuations and the possibility of tunnelling between
lattice sites immediately start self-organisation and the superradiant build-up of the cavity
photon number. This is combined with an intricate measurement-induced dynamics related
to the information gained via the dissipation channel of the photon-loss.

Let us emphasise that there are two main differences as compared to the above-described
classical self-organisation: the initial temperature of the particles is zero and the particles
in the lattice are confined strongly enough so that hopping between the lattice sites is due
solely to tunnelling. Redistribution thus is a coherent quantum process and requires no direct
inter-particle interaction.

1Note that self-organisation is a phase transition without any direct particle-particle interaction: only an
effective interaction exists generated by the single cavity mode with which all particles interact.
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We are using two approaches to the problem. The first one is the direct simulation of the
system (12.1)-(12.2) by the Monte Carlo wave-function (MCWF) method, which unravels the
corresponding Master equation in terms of individual quantum trajectories. This approach
takes into account the full particle and cavity dynamics, with the cavity decay accounted
for by quantum jumps. We are using a new simulation framework presented in Reference
[22]. The second approach analogous to standard Bose Hubbard models is based on a second-
quantised form of the Hamiltonian (12.1):

∫

dxΨ†(x)H Ψ(x) where the field operator Ψ(x)
is restricted to the lowest vibrational band of the lattice.

To obtain the smallest possible system useful for studying self-organisation, we restrict
the dynamics to only one lattice wavelength, that is, two lattice sites (cf. Figure 12.1) with
periodic boundary condition. This is the smallest system which can seize the difference
between the configurations described above and contains all the essential physics.

With two lattice sites the lowest vibrational band constitutes a two-dimensional Hilbert
space, for which the localised Wannier basis with state |l〉 localised at the left and |r〉 at the
right lattice site can be used. Hence Ψ(x) = 〈x | l〉 bl + 〈x | r〉 br, where bl and br are the
corresponding bosonic annihilation operators. Putting the restricted field operator back into
the second-quantised Hamiltonian we obtain the Bose-Hubbard type Hamiltonian:

HBH = J
(

b†l br + b†rbl
)

− (∆C −NU0) a
†a+ J̃

(

b†l bl − b†rbr
)(

a† + a
)

, (12.3)

where J ≡ 〈l| (p2/(2µ) + V0 sin2(Kx))|r〉 and J̃/(sign(U0)
√
U0 V0) ≡ 〈l| sin(Kx)|l〉 =

−〈r| sin(Kx)|r〉.
The dynamics of particles in cavities as described by such Hamiltonians in system con-

figurations different from the one investigated here has been discussed in Refs. [7, 23, 24].
A very attractive feature of Hamiltonian (12.3) is that it is simple enough so that together
with the Liouvillean (12.2) the full time-dependent Master equation can be solved even for
several particles. For discussions below we will imagine this Master equation as unravelled
in quantum trajectories.

12.3 Discussion

Self-organisation of an initially thermal gas of classical point-like particles in the system with
classical cavity field (coherent state) has been described above to set the scene for the two-
particle quantum results presented in Section 12.5, and to raise two questions concerning
quantum particles in a quantum-mechanically described cavity field:

1. whether in the steady state of the quantum Master equation (12.1)-(12.2) there is some
transition, a quantum analogue for the above-described self-organisation, which is a
classical dynamical phase transition [17].

2. if there is such a transition then whether there is a mechanism via which an ultracold
homogeneous gas can escape the unorganised configuration and evolve into the organised
one(s), which is not possible with a classical mean-field description of either the atoms
or the cavity field [25].
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In Section 12.5 both questions will be answered to the positive for the case of two particles
in the system restricted to two lattice sites, which is the smallest system for which the
two questions make sense. For two particles we certainly cannot expect a “quantum phase
transition”. Nonetheless, we do observe a very smooth transition in the structure of the
quantum steady state, which is analogous to self-organisation as it happens in the second
order density correlation.

From the discussion in Section 12.2 we also see that unlike in the classical case, where the
model could be solved even for several thousand particles [6, 14, 17], full quantum mechanical
solution for several particles is difficult. Indeed, to account for the dynamical nature of the
lattice, i.e., the fact that the field scattered by the particles from the pump into the cavity
modifies the potential felt by the particles (cf. last term in the Hamiltonian (12.1)), several
single-particle states has to be incorporated in the simulation: In the MCWFS we typically
use 30 momentum eigenstates (for details see Reference [22]). For N particles this gives a
30N dimensional Hilbert space, which is further multiplied by the cavity-field Hilbert space.
With nowadays computational resources this approach can be practically pursued up to two
particles. In the Bose-Hubbard approach, on the other hand, there are only two single-
particle states, but these are defined by the lattice potential solely. Hence it remains to
be demonstrated that this approach can be applied at all to describe self-organisation, a
phenomenon based on the dynamical nature of the lattice. This problem is also addressed in
Section 12.5 where we compare our two-particle MCWFS and Bose-Hubbard results.

12.4 Single-particle dynamics

We first consider the dynamics of a single particle initially prepared in one of the localised
states (say, |r〉). Without coupling to the cavity (U0 = 0) the particle moves unperturbed in
the lattice via tunnelling, which, in the case of two sites corresponds to an oscillation between
states |r〉 and |l〉. This can be monitored via the expectation value 〈Kx〉, which, as displayed
in Figure 12.2 (a) (red line), oscillates accordingly between ±π/2 (cf. also Figure 12.1).

This simple behaviour is significantly modified in the presence of even a weakly coupled
cavity, U0 6= 0. Now the particle scatters photons from the lattice field into the cavity mode,
depending on its state. Photons can decay according to the Liouvillean (12.2) and allow to
monitor the particle motion. The decay of a cavity photon can be modelled by a quantum
jump, which is mathematically described by the application of the cavity field operator a on
the state vector of the system. This, in turn, changes the whole particle-field wave function
and thus gives feedback on the particle localisation.

When the coupling is weak enough, the field in the cavity will be small, and the contri-
bution of the last term of Hamiltonian (12.1) to the potential felt by the particle (second
term in the same Hamiltonian) is negligible, so that it still makes sense to define the localised
particle states solely from the lattice potential.

We assume that these states are well localised. When a point-like particle is placed into
the lattice at position x in steady state it radiates a coherent field |α(x)〉 into the cavity
where the amplitude is determined by the Liouvillean dynamics (12.1)-(12.2) and reads

α(x) =

√
U0V0

U0 −∆C − iκ
sin(Kx) =

√
U0V0

κ

1

1− i sin(Kx), (12.4)
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Figure 12.2. Simulated data for a single particle in the lattice-cavity system. Pa-
rameters: V0 = −10ωrec, κ = 10ωrec, ∆C − U0 = −κ, with the recoil frequency
ωrec ≡ ~K2/(2µ). The colour code: red corresponds to U0 = 0, green to U0 = −0.005ωrec,
blue to U0 = −0.5ωrec, and magenta to U0 = −10ωrec; with maximal cavity photon num-
bers amounting to 0, 2.5·10−4, 2.5·10−2, and 0.5, respectively. (a) Example single MCWF
trajectories. On the green trajectory green arrows mark the instants of cavity decays
(photon escapes): the resulting jump in the tunnelling oscillation’s phase is visible. (b)
Ensemble average data — Lines without points: solution of the time-dependent Master
equation based on the Bose-Hubbard Hamiltonian (12.3). Lines with points: ensemble
average of several MCWF trajectories.
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where the second equality holds under the resonance condition ∆C − NU0 = −κ (N is the
particle number), to which we restrict ourselves in the following. This makes that the cavity
field increases monotonically with increasing coupling.

Accordingly, in state |r〉 the particle will radiate an approximately coherent state |α〉,
while in state |l〉 a coherent state with opposite phase | − α〉, where α = α(x = π/(2K)). It
can also be expressed from the Bose-Hubbard model as α = J̃/(κ(1 − i)).

If we assume that tunnelling is much slower than cavity field evolution, then the latter
will follow adiabatically the former. Without cavity jumps the system evolves coherently and
since the back action of the cavity field on the particle motion is negligible by our assumption,
this evolution amounts to an oscillation between states |r, α〉 and |l,−α〉, hence at a given
time instant t the overall state of the particle-cavity system reads approximately

|Ψ(t)〉 = cos(Jt)|r, α〉 + i sin(Jt)|l,−α〉. (12.5)

Now imagine that at time t a jump happens: Immediately after the jump the state of the
system reads

|Ψ′(t)〉 ∝ a|Ψ(t)〉 ∝ cos(Jt)|r, α〉 − i sin(Jt)|l,−α〉, (12.6)

that is, the cavity jump is reflected back onto the particle motion and results in a jump of
the phase of the tunnelling oscillation.

This behaviour is verified by the simulations, an example trajectory is displayed in Fig-
ure 12.2 (a) (green line). Here the parameters were chosen such that the maximal expectation
value of the cavity photon number is only 2.5 · 10−4 — this maximum is achieved when the
particle is prepared perfectly localised at a lattice site.

The jump is a stochastic event and in ensemble average the jumps of the phases on
individual trajectories result in a dephasing and hence damping of the oscillation. This
behaviour, as displayed in Figure 12.2 (b) (green lines) is verified by both the MCWFS and the
simulation of the time-dependent Master equation based on the Bose-Hubbard Hamiltonian
(12.3). In this regime of very low cavity photon number, the correspondence between the
two models is very good. Increasing the photon number results in several jumps happening
in one tunnelling cycle: in ensemble average this corresponds to the over-damped regime of
the tunnelling oscillation (cf. Figure 12.2 (a-b) blue line).

The above picture of the dynamics on one Monte Carlo trajectory is not valid in the
regime of stronger coupling where the photon number is higher. Here the cavity field modifies
significantly the potential felt by the particle and hence the states |r〉 and |l〉 defined solely
by the lattice potential lose their significance because many other particle spatial states enter
the dynamics. Cavity decays are much more frequent, and the stronger field fluctuations are
reflected back onto the potential. Accordingly, as we observe in Figure 12.2 (magenta line),
the Bose-Hubbard approach being based on those two states breaks down in this regime.

The steady state of the dynamics is, quite independently of the coupling, the mixed state
ρss ≈ (|r, α〉 〈r, α|+ |l,−α〉 〈l,−α|)/2. As displayed in Figure 12.3, the relaxation time to this
state, that is, the time scale of the damping of the tunnelling oscillation exhibits a non-trivial
behaviour. For moderate coupling, according to the discussion above, this is composed of
two time scales: the time scale of cavity photon decay, and that of tunnelling. The former
being inversely proportional to the photon number gets faster with increasing coupling.
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Figure 12.3. Relaxation time of the damping of the tunnelling oscillation simulated
with the MCWF and Bose-Hubbard approach. Same parameters as above. The dotted
hyperbole has been fit on the weak-coupling part of the data and is proportional to the
cavity photon count rate. The dotted horizontal line is the time scale of tunnelling with
no coupling.

On the other hand the latter gets slower, a behaviour verified by both the MCWF and
the Bose-Hubbard approach. In the following we give an interpretation in the framework of
the Bose-Hubbard approach. Here, when initially in the state |r, α〉, the system first evolves
into |l, α〉 via tunnelling (first term of Hamiltonian (12.3)), and this state is then transformed
into |l,−α〉 by the dissipative cavity evolution on a timescale of κ−1, since in steady state
the particle in state |l〉 radiates the approximately coherent field | − α〉. States |r, α〉 and
|l, α〉, however, have different energies because of the last term in Hamiltonian (12.3), so
that the tunnelling becomes non-resonant and hence slows down as compared to the free (no-
cavity) case. Using the α value calculated above from the Bose-Hubbard approach the energy
difference reads ∆ = 2J̃2/κ ∝ |U0|. With increasing U0 the energy difference increases, so
that tunnelling gets slower. The above discussion is summarised in Figure 12.4.

The combination of one accelerating and one slowing time scale results in the minimum
behaviour of the relaxation time in Figure 12.3 around U0 = −0.05ωrec. Ultimately, with
high enough coupling the cavity-generated potential starts to dominate the lattice potential,
in which regime strong fluctuations and self-trapping lead to fast relaxation as observed in
the MCWFS (red line |U0| & ωrec). Obviously, the Bose-Hubbard approach is unable to
reproduce the behaviour in this regime.

12.5 Two-particle dynamics

Having understood the dissipative quantum dynamics of a single particle in our lattice-cavity
system, we now turn to the case of two particles. Two particles on two lattice sites with
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Figure 12.4. Effective level scheme for one particle in the Bose-Hubbard approach.
Tunnelling acts as an off-resonant driving while the dissipative cavity field dynamics as
damping of the higher-lying states.

periodic boundary conditions is the minimal system that can exhibit the difference between
the configurations described above for self-organisation. In the Bose-Hubbard approach where
there is only one state at each lattice site the Hilbert space for the particles is spanned by
only three states: |1, 1〉 ≡ |0〉 — the Mott insulator (MI) state, which corresponds to the
homogeneous distribution or unorganised configuration —, and |2, 0〉 ≡ |−〉 and |0, 2〉 ≡ |+〉
corresponding to the two organised configurations. |0〉 scatters no field (and no photons) into
the cavity due to destructive interference between the fields scattered by the two particles,
while |−〉 and |+〉 scatter |−2α〉 and |2α〉, respectively, the factor 2 being due to constructive
interference. The difference between the two configurations can be monitored via the density
correlation 〈nlnr〉, which is 1 for the MI state and 0 in the subspace spanned by |±〉.

When the particles are initially in the MI state, then for U0 = 0 at time t the particle
state is

|Ψ(t)〉 = cos(2Jt)|0〉 + i√
2

sin(2Jt) (|−〉+ |+〉) . (12.7)

With U0 6= 0 under the simplifying conditions we discussed above for the single particle case
we have for the joint system

|Ψ(t)〉 = cos(2Jt)|0, 0〉 + i√
2

sin(2Jt) (|−,−2α〉 + |+, 2α〉) . (12.8)

If a jump happens in this state (application of a), then the state immediately after the
jump reads

|Ψ′(t)〉 ∝ a|Ψ(t)〉 ∝ |−,−2α〉 − |+, 2α〉. (12.9)

There are two points worth noting here: Firstly, the quantum jump in the photon number
erases all information about the phase of the tunnelling oscillation in the particle Hilbert
space. Secondly, after the escape of one single photon from the cavity tunnelling stops
immediately. Indeed, in the state (12.9) both |−,−2α〉 and |+, 2α〉 tunnels to |0, 0〉 (note that
we assume again the cavity field following adiabatically the tunnelling), but their phases are
opposite, and hence the two paths interfere destructively. A second jump at t ′ > t, however,
makes the phases match again, and puts the state |Ψ′′(t′)〉 ∝ a|Ψ′(t)〉 ∝ |−,−2α〉 + |+, 2α〉
back into the tunnelling cycle (12.8). An example MCWF trajectory exhibiting this behaviour
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is plotted in Figure 12.5(a) (green line). We observe that a quantum jump brings the system
into the state (12.9), signalled by 〈nlnr〉 = 0, and it remains there until the next jump, when
it starts to oscillate anew.

In ensemble average these stochastic “dark” periods of the tunnelling oscillation lead to
damping just as in the single-particle case. The final steady state is always a mixture

ρss = w|0, 0〉 〈0, 0| + 1− w
2

(|−,−2α〉 〈−,−2α|+ |+, 2α〉 〈+, 2α|) . (12.10)

At this point it becomes clear that any mean-field description of this system is bound to fail:
a mean cavity field description would prohibit the possibility of a coherent superposition of
different particle configurations radiating different fields as in (12.8), which is essential for the
onset of the dynamics from a homogeneous zero-temperature initial condition (see also [25]).
On the other hand, a particle mean field cannot seize the difference between states (12.10)
with different w, because this appears only in the density correlation.

As displayed in Figure 12.5 (b), our two approaches for simulating the damping agree
well in the regime of moderate coupling. However, just as in the single-particle case, strong
coupling — in the regime where the cavity-generated potential dominates the lattice one
— results in extremely quick damping, which cannot be reproduced by the Bose-Hubbard
approach. Here the relaxation time exhibits the same behaviour as we have seen in the
single-particle case (cf. Figure 12.6 (a)): with increasing coupling it has a minimum, after
which the Bose-Hubbard approach gives a monotonic increase of the relaxation time, while
the MCWFS gives a peak, and for even stronger coupling very quick relaxation. For the
interpretation of this behaviour the same discussion applies as above for the single-particle
case.

Increasing coupling results in a decrease of the weight w of the MI component in steady
state, cf. Figure 12.6 (b), and with strong enough coupling (|U0| & 10ωrec in our case)
the steady state is confined solely into the self-organised subspace. This proves our initial
assertion that even when the system is started from a T = 0 homogeneous state (here the
MI state) self-organisation can occur. On the same Figure we also see that this is confirmed
by both approaches, only the relaxation time of the process is predicted wrongly by the
Bose-Hubbard approach for strong coupling.

It is easy to see that starting the system from the superfluid (SF) state

|SF〉 ∝ |0〉+ 1√
2

(|−〉+ |+〉) (12.11)

instead of the MI as above does not change the steady state since already the first quantum
jump erases the information about the initial condition completely. The process of relaxation
will, however, be different. This process can be monitored by a time resolved analysis of
the intensity escaping the cavity, which is proportional to the cavity photon number: an
example is displayed in Figure 12.7. Here, we are in the over-damped regime of the tunnelling
oscillation. When prepared in the MI state, the particles do not scatter initially, and the
buildup of the cavity field occurs on the time scale of the self-organisation process. With the
SF initial state, on the other hand, some field is built up almost instantly (on the time scale
of κ−1), because in the SF the states |±〉 have finite weight; while the rest of the field is built
up on the longer time scale.
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Figure 12.5. Simulated data for two particles in the lattice-cavity system with same
parameters as above. The colours correspond to the same values of U0, here with maximal
cavity photon numbers amounting to 0, 10−3, 0.1, and 2. (a) Example single MCWF
trajectories — the vertical dotted lines mark the time instants of cavity decays on the
trajectory plotted in green. (b) Ensemble average data — lines without points: data
stemming from the Bose-Hubbard approach; lines with points: MCWF approach.
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Figure 12.6. (a) Relaxation time for two particles and (b) weight of the MI component
in the steady-state mixture (12.10) — 〈nlnr〉ss = w — as functions of the coupling. Same
parameters as above.



212 Publication: Microscopic Physics of Quantum Self-Organisation . . .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20  25  30  35

350300250200150100500

ph
ot

on
 n

um
be

r

ωrect

κt

Mott insulator

Superfluid

Figure 12.7. Initial build-up of the cavity photon number with the particles prepared
initially in the Mott insulator or superfluid state. U0 = −10ωrec, other parameters are
the same as above.

12.6 Conclusions

In summary, we have seen that coupling two particles in an optical lattice to a cavity induces
an irreversible reorganisation of the particles, a process which can be monitored directly in
an experiment by the time-resolved analysis of the intensity escaping the cavity. We have
shown that no classical or mean-field description of either the particles or the cavity field
can account for the phenomenon. For strong enough coupling the process leads to a fast
self-organisation of the particles, a configuration in which they occupy every second site in
the lattice, and scatter superradiantly into the cavity. An important conclusion of the work
is that while an effective low-dimensional Bose-Hubbard type model cannot reproduce the
time evolution in the strong-coupling regime as observed in more detailed simulations, it can
still predict the steady state remarkably well. This model can therefore be used in the future
for a high number of particles to study possible quantum phase transitions occurring in the
steady state of this dissipative system.
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