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Zusammenfassung

Bei der Suche nach besseren optischen Laserkiihlverfahren fiir Vielteilchensyste-
men mit Hilfe einer Cavity wurde der Effekt der Selbstorganisation eher zufillig
entdeckt. Die einzige Anderung zur urspriinglichen Methode war, dass die Cav-
ity nicht direkt durch die Spiegel bestrahlt wurde, sondern indirekt iiber die sich
in der Cavity befindenden Atome. Theoretische Simulationen im semiklassischem
Limit zeigten, dass ab einer bestimmten Intensitéit des eingestrahlten Lichtes sich
die Teilchen in einem von zwei Mustern anordnen. Entweder positionierten sie
sich an jedem geradzahligen Intensitdtsmaximum der Cavity-Mode oder an jedem
ungeradzahligen.

Anschaulich lasst sich dies folgendermafien erkldren. Nachdem die Teilchen in
diesem Modell von Licht angezogen werden, ist es zu erwarten, dass sie sich vor
allem in der Nahe der Intensitdtsmaxima aufhalten werden. Zusatzlich muss man
beriicksichtigen, dass Atome, die sich in angrenzenden Maxima befinden, Licht mit
einem Phasenunterschied von 7, also destruktiv, in die Cavity strahlen und somit
in Summe keine Photonen in die Cavity gelangen.

Unvermeidbar werden von Zeit zu Zeit mehr Teilchen in entweder den geradzahli-
gen oder in den ungeradzahligen Maxima sein. Durch die damit verbundenen
korrelierten Fluktuationen im Cavity Lichtfeld entsteht ein optisches Potenzial,
das dieses Ungleichgewicht weiter verstarkt. Bei geniigend starker Einstrahlung
entsteht eine positive Riickkopplung, welche dazu fithrt, dass alle Teilchen sich fiir
eine der beiden Moglichkeiten entscheiden.

Durch Hinzufiigen weiterer Laser mit unterschiedlichen Frequenzen kann dieses
Modell von transversal gepumpten Atomen leicht verallgemeinert werden. Die Fre-
quenz jedes Lasers ist dabei auf eine unterschiedliche Mode der Cavity gestimmt.
Jeder einzelne dieser Laser wiirde fiir sich alleine zwei verschiedene Anordnungen
erlauben, die aber im Allgemeinen nicht kompatibel mit den Mustern der anderen
Laser sind. Es stellt sich daher die Frage, wie sich die Atome in diesem Fall or-
ganisieren und ob es mehrere unterschiedliche Moglichkeiten gibt. Im ersten Teil
dieser Arbeit beschéftige ich mich genau mit dieser Fragestellung. Zuerst erarbeite
ich eine Mastergleichung, die dieses System beschreibt, und untersuche numerisch
seine Zeitentwicklung. Abschliefend présentiere ich noch zwei Methoden um solche
Steady-State Muster naherungsweise zu bestimmen.

Der zweiten Teil dieser Arbeit untersucht den Einfluss der Dipol-Dipol Wechsel-
wirkung und des kollektiven Zerfalls auf Systeme bestehend aus raumlich verteilten
Spins. Das anschauliche Bild dazu ist, dass Photonen, die von einem Atom emittiert
werden, andere, sich in der Nédhe befindliche Atome, beeinflussen und somit ihre
Energieniveaus verschiebt und die Zerfallsraten dndert. Eine Kumulantenentwick-
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lung liefert die notige Basis um Systeme mit grofieren Teilchenzahlen numerisch zu
untersuchen.

Als erstes Beispiel untersuchen wir einen superradianten Laser. Als Modell kann
das tibliche Lasermodell verwendet werden, bei dem N Teilchen an eine Mode einer
Cavity gekoppelt werden. Der einzige Unterschied ist, dass diese Atome raumlich
getrennt sind und wechselwirken. Es zeigt sich, dass abhéngig von der genauen
Anordnung, die Linienbreite und weitere Laserparameter signifikant verdndert wer-
den.

Ein dhnlicher Effekt tritt bei den derzeitig besten Atomuhren, den optical-lattice-
clocks, auf. Der Grundstein dieser Uhren ist ein optisches Gitter, in dem ultrakalte
Atome gefangen sind. Die Struktur des optischen Gitters wird durch die Anord-
nung der Laser bestimmt. Es zeigt sich, dass dies die Uhrenfrequenz und auch die
Zerfallsrate der Atome wesentlich verdndern kann. Uberraschenderweise kann dies
auch zu einer Verbesserung der Genauigkeit fithren. Aus diesem Grund habe ich
verschiedenste Geometrien auf ihr Verhalten untersucht.

Eine weiterer, schon langer bekannter Ansatz die Uhrengenaugkeit zu verbessern
ist die Atome durch squeezing untereinander zu verschranken. Daher habe ich die
Kumulantenentwicklung noch erweitert, um squeezing zu ermoglichen. Damit kann
in Zukunft analysiert werden, ob die Verwendung beider Verfahren gemeinsam zu
weiteren Verbesserungen fiihrt.

Der letzte Teil dieser Arbeit beschéaftigt sich mit den numerischen Programmen
die im Rahmen dieser Dissertation erstellt wurden.
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Abstract

The effect of self-organization was originally encountered while trying to improve
the effectiveness of optical cooling schemes for many-particle systems by illumi-
nating the atoms transversally instead of pumping the cavity directly. Studying
the system in a semi-classical limit showed the existence of a finite critical pump
strength above which the atoms start to organize in regular patterns at every second
anti-node of the pumped cavity mode.

Intuitively, this can be explained by the following observations. First of all, the
particles in this model are assumed to be high-field seekers and we therefore expect
them to be focused around the anti-nodes of the cavity mode. The second obser-
vation is that particles that are positioned at neighboring anti-nodes scatter light
from the pump laser into the cavity with a phase shift of 7, which means that the
light interferes destructively, leaving the cavity mode unoccupied. Fluctuations
of the particle distribution between even and odd anti-nodes leads to correlated
fluctuations in the electric field of the cavity, which in turn creates an optical po-
tential that favors either the even or the odd anti-nodes — whichever are accidentally
more occupied at the moment. If the pumping is strong enough, this effect leads
to a positive feedback and results in a complete ordering at the even or the odd
anti-nodes.

A straight-forward extension of this model of transversally pumped atoms in a
cavity is to add additional pump lasers tuned to distinct cavity modes. Each laser
alone gives rise to two different possible orderings, which in general are incompatible
with the patterns generated by the other lasers. The question arises what are the
possible steady state patterns that the system can reach. In the first part of this
theses, I derive the master equation of this system and numerically study its time
evolution. Further on I present two methods to find its steady state solutions.

The second part of this thesis focuses on the influence of the dipole-dipole in-
teraction and collective decay onto the spin dynamics in spatially well arranged
many-particle systems. Intuitively, this can be pictured as photons emitted from
one atom affecting other nearby atoms, thereby shifting their energy levels and
changing their decay behavior. Performing a cumulant expansion provides a the-
oretical framework well suited to perform numerically simulations of such models
by neglecting higher order correlations.

One example, suitable for this approach, is the superradiant laser. It can be
modeled similarly to the traditional laser as N-particles inside of a cavity, but where
the particles are spatially distributed. Depending on the specific arrangement, the
line-width and other laser parameters can be significantly altered. Similar effects
occur in the latest generation of atomic clocks, i.e. optical lattice clocks. The choice
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Abstract

of lattice, generated by the trapping beams, modifies the clock frequency and also
the decay rate of the trapped atoms. Although one would probably expect that
this generally reduces the clocks accuracy, it turns out that for certain setups it
can actually lead to improvements. Therefore, I investigated optimized geometries
for future generation optical lattice clocks.

An alternative approach to improve the accuracy of atomic lattice clocks is to
use squeezing. I expanded the cumulant expansion formalism to include squeez-
ing which in the future can be used to study setups where both approaches are
combined.

In the last part I present the numerical frameworks that were developed in the
scope of this thesis.
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1. Introduction

Incredible advances in cooling techniques not only lead to the successful creation of
Bose-Einstein condensates but opened the path to many new, exciting applications.
Among others, systems consisting of atoms inside of a high finesse cavity gained
new interest. The ultra-low temperatures of the particles facilitated long interac-
tion times and even made real time observation of single atom effects possible. In
one such experiment, cold atoms were dropped slowly through a cavity [1]. Us-
ing the transmission spectrum allowed precise measurement of the atomic motion.
Although the cavity was only used as tool to probe the atoms, it was shown that
the back-action of the cavity field onto the atoms lead to significant acceleration
of the atoms along the cavity axis [2]. Interestingly, it turned out that with the
correct choice of parameters, i.e. red detuning of the probing laser with regard to
the atomic transition, a similar setup can also be used to cool the atoms far be-
low the Doppler limit [3]. The motional energy of the atoms is in this case first
transfered into the cavity field and then dissipates through the cavity mirrors. Like
most ensemble based cooling schemes also this one, where all atoms couple together
to a single light mode, scales unfavorably with the number of particles. However,
slightly modifying the system by directly illuminating the atoms transversally to
the cavity axis instead of longitudinally through the cavity leads to different behav-
ior. For a single atom this alteration results only in quantitative adjustments [4].
By contrast, for atomic ensembles it introduces a completely new phenomenon,
named self-organization, which leads to a radically changed scaling behavior [5].
Self-organization itself became an interesting research topic exhibiting interesting
effects like e.g. phase transitions [6].

In the following, a short summary of this transversally pumped cavity model
is given. Afterwards, the effect of self-organization is schematically explained.
Then the extension of this system to include multiple cavity modes of distinct
frequencies, as was developed in the publication [7], is presented. Finally, different
approximations are used with varying success to search for interesting steady state
solutions of this system.
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1.1. Single-mode cavity

1.1. Single-mode cavity

As depicted in Fig. 1.1, N polarizable particles of mass m are positioned inside a
planar cavity, which is essentially reduced to one single relevant mode of frequency
we. They are pumped coherently with a laser and interact with the light field
generated by the laser as well as by the cavity only via dipole interaction. This

Figure 1.1.: Particles trapped inside of a planar cavity are illuminated transversally
and scatter light into the cavity.

model can be treated in different formalisms ranging from mostly classical to fully
quantum mechanical.

1.1.1. Quantum mechanical model

Quantum mechanically this system is, due to the photon losses through the cavity
mirrors, an open system and therefore can be described by a master equation

7

p= h[ij] +Ii(2apaT—paTa—aTap) (1.1.1)

with the photon loss rate x [1]. The Hamiltonian consists of the usual particle and
cavity parts,

H, = ﬁ? 1.1.2

particles — % ( 1. )
i

Hcavity = WC&T&a (113)

as well as the interaction Hamiltonian

Hin = — 3 d;.E(#). (1.1.4)
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Switching into the interaction picture and using the rotating wave approximation
results in

2
fhpﬂﬂm+23%+§)%mﬂmm%+§)mmmmﬁ+m.(um

1.1.2. Semi-classical equations

Starting from the complete quantum description one can derive a much more in-
tuitive semi-classical model [2]. First the master equation is transformed into a
partial differential equation for the Wigner function. Taking the semi-classical
limit, i.e. truncating terms containing derivatives higher than second order leads to
a Fokker-Planck equation. This equation can then be solved using the stochastic
differential equations

;= vj (1.1.6a)

b= —— (1.1.6b)
. . . . . . K
a = (iA. — iUy Zsm2(k:cj) — K)o — stm(kxj) + \/;5 (1.1.6¢)
J J
with optical potential
Ul(x,a) = hUgla|*sin?(kx) + hn(a + o) sin(kz). (1.1.6d)

1.1.3. Self-organization

The mechanism of self-organization [3] is explained schematically in Fig. 1.2. Two
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Figure 1.2.: (1) Atoms are trapped inside of a high finesse cavity. (2) Two opposed
laser beams generate a standing wave orthogonal to the cavity axis.
(3) Atoms self-organize in a checkerboard pattern so that scattering of
photons into the cavity is maximized.
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opposed laser beams generate a standing wave orthogonal to the cavity axis. Since
they are red detuned compared to the relevant atomic transition, they pull the
atoms towards the points of high intensity, effectively trapping them in circular
disks separated by half the wave length. Assuming the atoms are distributed equally
along the cavity axis, scattering of laser light into the cavity is strongly suppressed.
The reason is that atoms separated by half a wavelength scatter light with a relative
phase shift 7, effectively canceling each other out. However, if the laser intensity
is adequately high, even small fluctuations in the particle distribution disturb this
equilibrium, leading to scattering of photons into the cavity after all. These photons
create an additional optical potential for the atoms along the cavity axis, thereby
driving the particles further away from their initial equal distribution. Again they
are trapped in points of high light intensity, but in this case only every second
such point is occupied. This results in the typical checker board pattern where
the scattered light interferes constructively. In principle, there are two possible,
equally likely configurations where either all particles are on the even sites or on
the odd sites. Which one of them is adopted by the system depends on the initial
disturbance of the particle distribution.
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1.2. Multi-mode cavity

A straight forward extension of the model introduced in the last section is to
use several pumping lasers of different frequency instead of just one as is shown in
Fig. 1.2. This greatly increases the complexity of the system but also makes it much
more interesting since it can be used to simulate a wider variety of Hamiltonians
and possibly obtain much richer dynamics. First, we will derive a full quantum

Figure 1.3.: Particles trapped inside of a planar cavity illuminated transversally by
several differently colored lasers.

description of the system which, however, is numerically tractable only for one or
two cavity modes and one or two particles. Afterwards, the corresponding semi-
classical equations are stated.

1.2.1. Quantum mechanical model

N ultra-cold particles are trapped in a potential V (z) and placed inside of a pla-
nar cavity. The particles are polarizable but besides that have no further specified
internal structure. Illuminating these particles from the side by standing waves
generated by lasers of different frequencies wlg and pump strength n* scatters pho-
tons into the cavity. Each of these lasers is closely tuned to a distinct cavity mode
w'. Compactly written, the system is fully determined by the following parameters:

e Modes: wy,

Un, Kn
e Particles: m, Z;

e Trapping potential: V(x)

e Pump Laser: w{;, Nk
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Since due to the loss of photons through the cavity mirrors the system is an open
system, the time evolution is governed by a master equation

p= —% [H, p] + Z Kn (2anpaj1 - pailan - a;flanp). (1.2.1)
n

Similar to the single mode case the Hamiltonian can be split into a particle part,
a cavity part and a particle-cavity interaction part,

H = Hcavity + Hparticles + Hing- (122)

Particles

The ultra-cold particles are assumed to be non-interacting and identical and are
trapped in an at this point unspecified potential V' (#;) described by the Hamiltonian

Hparticles = Z hi)article (123)
[

with the single particle Hamiltonian

~2
N
particle om

+ V(&) (1.2.4)

Cavity

As usual in quantum optics [1, 2] the cavity, where the mirrors are positioned at
—L and L, is described by quantized field modes with mode functions

Un(x) = €, sin(k,(x + L)), (1.2.5)
and wave numbers
T
n — —— = s 1.2.
k. 5" kn (1.2.6)

which results in the Hamiltonian

Heavity = Y Wil n. (1.2.7)
n

The photon losses through the cavity mirrors are taken into account by the jump
operators

T = /Fntn. (1.2.8)
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Pumping lasers

The particle pump is modeled as standing wave orthogonal to the cavity axis which
can, for example, be generated by shining in a laser from one side and reflecting
it from a mirror positioned on the opposite side. Assuming the laser intensity is
constant for the extension of the trapped particles, which can be achieved by con-
fining the particles tightly in respect to the laser direction and using an appropriate
focus, the laser light only has a time dependency left. Usually only a small part
of the light is scattered into the cavity and the pump strength has to be chosen
comparatively strong, it is natural to describe the laser field as classical light that
itself is not influenced by the presence of the particles, i.e. the electric field at the
position of the particles is

Epump = Ep cos(wpt). (1.2.9)
Each laser is tuned closely to a distinct cavity mode with detuning
Al = w, —wy (1.2.10)

which is assumed to be much smaller than the frequency spacing between the cavity
modes.

Particle-Field Interaction

The particles are coupled separately to the light field via dipole interaction. This
is described with the interaction Hamiltonian

Hing = Y by (1.2.11)
%

where the single particle-field interaction Hamiltonian is
= —d.E(&). (1.2.12)

Since the dipole moment of the particles is induced by the electric field, where here
only a linear dependency d = aF is assumed, this Hamiltonian,

~

i _aB(#).B(), (1.2.13)

int —

is non-linear. Combining the electric field originating from the light trapped in the

cavity modes,
> . " | hew o\
Ecavity (£;) = € Z T;un(azi)an + h.c., (1.2.14)
n

and the standing waves generated by the pumping lasers,

Epump =e, Z Ej cos(wyt), (1.2.15)
n

10



1.2. Multi-mode cavity

results in a total electric field

~
= —

E = Ecavity(fci) + Epump- (1216)

In principle, it seems necessary to take all different possible polarizations into
account. However, in the end only one case leads to non-trivial behavior. The
polarization of the cavity modes, the pumping lasers, as well as the particle dipoles
have to be oriented orthogonal to both the cavity axis and the pump direction.
Squaring this expression which is necessary to obtain the interaction Hamiltonian
leads to three terms,

~ ~

EQ — Ecavity (ji)-ﬁcavity (fijz) + Ecavity (ji)-Epump + Epump-Epump- (1217)

in which the last one is completely classical and therefore can be ignored for the
time-evolution of the system. Remaining are the linear term,

Eeavity (1) Epump ~ Zsm (% + L)) cos(wit)an, (1.2.18)

and the quadratic term
ﬁcamy( Epump ~ Z sin(kn(w; + L)) sin(ky (z; + L)) cos(w,'t) cos(wyt)
(anam + al dg + anal + d;&&};), (1.2.19)
Total Hamiltonian
Finally, bringing it all together the total Hamiltonian reads
H = H_ avity + Hparticles + Hing

- an Fan Z ( + V(i) - Zaﬁ(@i).ﬁ(@) (1.2.20)

In order to eliminate the explicit time dependence in the electric field term we
change into the interaction picture with respect to the operator ) w;dL&. Exten-
sive use of the rotating wave approximation allows us to neglect all terms containing
frequencies of different cavity modes as well as the usual fast rotating 2w terms re-
sulting in

== Al 3G, 24 V()

+ Z Ul sin? — L))afin + > nusin(kn (@ — L))(al, + an)  (1.2.21)

ni

11
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Hamiltonian in second quantization

For higher particle numbers it is advantageous to analyze the system in second
quantization formalism. Using the eigenfunctions of a single particle plus trap,

hparticle\pk<x) = Ekqlk(x); (1222)

to define the field operators

U(z) =D p(x)én (1.2.23)

with particle annihilation operators ¢ results in

H=— Z A"y, + /da:\iﬂ(a:)(;s + V() ¥(x)

+ / dr ¥l (2) Y " UG sin® (kn(x + L))}, an ¥ (x)
+ / deWi(z) Y " o sin(kn (2 + L)) (af, + an) ¥ (x) (1.2.24)

which simplifies to

H==Y" Alahan+Y" Evefer, + > U Apigelejalan + > noBuijéles(al, + an).
n k nij nij

(1.2.25)

The coupling strength between the various particle modes via the cavity is captured

in the constants A,;; and B,;; which only depend on the geometry of the cavity

as well as the geometry of the trapping potential. Mathematically, they can be

calculated by evaluating the overlap integrals

Apij = /OO ¥ (2)V(z) sin?(ky(z + L))da (1.2.26a)
Bpij = /OO U (2)¥(z) sin(ky,(z + L))dx. (1.2.26b)

Changing the selection of used mode functions as well as varying the trapping
potential allows to implement a wide variety of interactions that might lead to
completely different dynamics. As simplest example, we apply this formalism to
the case where the particles are trapped in a box potential,

Viz) = {0 z€l-a,d (1.2.27)

oo else.

Therefore, the eigenfunctions of the particle-plus-trap Hamiltonian are

i) = {\}a sin(Ki(x +a)) =z € [—a,a] (1.2.28)

0 else

12
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with wave numbers K; = i = Ki and energies E; = % (%)2 = %Kf The
overlap integrals
1 a
Anij = p / sin(Ki(x + a)) sin(Kj(z + a)) sin?(kn(z + L))dz (1.2.29a)
1 a
Bpij = — / sin(Ki(z + a)) sin(Kj(z + a)) sin(kn(x + L))dz (1.2.29b)
a —a
simplify to
1 (=" LT, a LT
Apij = 551']' + 1 {- 51nc(§(z —j+ 2En)) 005(5(2 —7)
. T, . . a T, . .
- 51nc(§(z —j— QEn)) 005(5(2 - 7))
+ sinc(g(i +Jj+ Q%n)) cos(g(z' +7))
-l-sinc(g(’H—j —Q%n))cos(g(i—i—j))} (1.2.30a)
and
1
Buij = 5{ — sinc(G (i + j + Tn)) sin(5 (i +j +n))
+ sinc(g(—i i+ %n)) sin(g(—i +j+mn)
. T, . . a . T .
+ SIHC(§(Z —Jj+ En)) sm(a(z —Jj+n))
+ sinc(g(i Ty %n)) sin(g(z’ +5—n))} (1.2.30D)

Heisenberg equations

Another often useful description, especially as starting point to obtain simplified
approximative expressions is the Heisenberg formalism. As important examples the
equations of motion for the cavity mode annihilation operator a, and the particle
mode operator ¢, are

in (1) (AT = Y U Auijelej)an(t) =13 Buijelenn = -an(t) = /Fulbin)n(t)
ij (]
(1.2.31a)

and

én(t) = — i(Brer(t) + 3 Ug Aujes(Dahan + 37 Bukjes (8)(naal, + nan),
nj nj

(1.2.31D)

respectively.
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1. Introduction

1.2.2. Semi-classical equations

To get a grasp of this fully quantum mechanical system it makes sense to first
analyze the easier understandable classical case. The semi-classical equations from
the single-mode case can easily be extended to the multi-mode case, i.e.

.T'}j = Uj (1.2.32&)
by = — 3 M (1.2.32b)

: A T : . , K
Gy, = (IA] — iUy Zst(kna:j) — Kp)Qp — i1y Zsm(k:n:cj) + \/;5 (1.2.32¢)
j

J

with optical potential

Un(z,0) = hUY | sin® (kpx) 4 By (o 4 o) sin(k, ). (1.2.32d)
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Self-ordering dynamics of ultracold atoms in multicolored cavity fields

S. Kramer and H. Ritsch
Institute for Theoretical Physics, Universitat Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria

We study light induced spatial crystallization of ultracold quantum particles confined along the
axis of a high-Q linear cavity via a transverse multicolor pump. Whenever a pump frequency is
tuned close to resonance with a longitudinal cavity mode, the dynamics favors bistable spatial par-
ticle ordering into a Bragg grating at a wavelength distance. Simultaneous pumping at several
resonant frequencies fosters competition between the different spatial lattice orders, exhibiting com-
plex nonlinear field dynamics involving several metastable atom-field states. For few particles even
superpositions of different spatial orders entangled with different light mode amplitudes appear. By
a proper choice of trap geometry and pump frequencies a broad variety of many particle Hamiltoni-
ans with a nontrivial long range coupling can be emulated in such a setup. When applying quantum
Monte Carlo wave function simulations to study time evolution we find simultaneous super radiant
scattering into several light modes and the buildup of strong non-classical atom field correlations.
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I. INTRODUCTION

When ultracold polarizable particles in an optical resonator are coherently illuminated from the side at
sufficient intensity, the system undergoes a transition from homogeneous to crystalline order accompanied by
superradiant light scattering into the cavity mode [1-3]. This self ordering process occurs as a quantum phase
transition for an ultracold Bose as well as Fermi gas close to zero temperature in the pure quantum regime [4, 5].
To surprising accuracy it can be reinterpreted and understood as implementation of the Dicke superradiant phase
transition, where a cavity mode is very strongly coupled to two motional modes of the trapped particles [6—
8]. As one of the early and seminal examples of a quantum phase transition [9, 10], the Dicke superradiant
phase transition has been studied extensively in theory since its proposition 50 years ago [9]. With the recent
successful experimental implementation based on a BEC of cold atoms in a cavity, a large number of more
detailed theoretical and numerical studies on the particular properties of this realization, its limitations and
new related phenomena like super-solidity have followed [11-15].

The first simple but still surprisingly successful generation of theoretical models was based on a single atomic
and a single cavity mode [7]. A particular interesting generalization was introduced by considering this ordering
phenomenon in degenerate multi-mode cavity fields and restricting the degrees of freedom of the particle motion
to a 2D plane [16]. This opened a new possible route to study a wealth of important quantum solid state
phenomena like emergent crystallinity, liquid crystalline phases [16, 17] or quantum neural network models [18]
in a well controllable atom-optical configuration. Due to the inherent complexity and technical difficulty of
degenerate multi-mode setups, which require at least a 2D geometry, theoretical modeling as well as experimental
implementations of such setups are very challenging and have, to our knowledge, not been implemented to date.
Recent theoretical generalizations to fermions reveal even more new physical phenomena, e.g. Umklapp lasing
or surprisingly reduced ordering thresholds [5, 19, 20].

In this work we investigate an alternative multi-mode extension employing several light frequencies simul-
taneously, each of them tuned closely to a separate longitudinal cavity mode. As the cavity modes form an
equidistant comb of sufficiently distinct frequencies, which is readily available experimentally with modern comb
technology, the technical complexity of an implementation seems much less challenging. Moreover, as coherent
light scattering between different modes can be neglected and the motion of the particles is confined along the
cavity axis, the computational complexity of the model is substantially reduced. This allows explicit numerical
treatments, at least for small implementations, where still many of the intriguing phenomena mentioned above
should appear. As amplitude, phase and detuning of each mode can be controlled independently, this setup
should allow for much more precise control and variability of the dynamics.

While virtually all the existing treatments have ignored the effect of the finite size of the particle trap inside
the resonator, here, we explicitly consider particles confined to a finite volume along the cavity axis. Hence, the
ground state is not translation invariant and neither are the higher trap eigenmodes which form the ordered
pattern. This implies a breakdown of the single mode model for a monochromatic pump. In the multicolor pump
case, this induces important extra couplings between many different trap modes, which can be tailored largely
by the choice of the pump and trap geometry. In any case, the relevant particle Hilbert space is substantially
enlarged.

We will first present the theoretical model assuming the particles to be trapped in a 1D external trap along
the cavity axis. For a few generic trap configurations, the scattering and coupling integrals between the light
field modes and trapped particle modes can even be calculated analytically, a numerical evaluation for more
realistic trap geometries is straightforward. Ultimately, we obtain a well defined effective Hamiltonian consisting
of many modes with widely tunable coupling elements. Within this framework at first, we shortly review the
single frequency phase transition but account for the full trap dynamics beyond a single excited trap mode. In
the last section we increase the number of pump fields and simulate the phase transition and steady states for
a multicolor setup.

II. MODEL

We consider a linear cavity of length 2L with N, particles trapped by an external potential V(z) in a finite
region along the cavity as depicted in fig. 1. For simplicity we assume the particles to be tightly confined in the
radial direction, making their movement effectively one dimensional. The particles with an internal excitation
energy hw, and spontaneous decay rate 7y are upon adiabatic elimination of the excited state are characterized
solely by their center of mass motion and their electric dipole moment, which is strongly coupled to the cavity
modes. The atoms are pumped transversely (in y-direction) by N, different standing wave lasers of frequency
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3

w’; with pump strength E;f and polarization orthogonal to the cavity. Different pump frequency components
are spaced by multiples of the cavity free spectral range close to the cavity eigenmodes but far from the atomic
resonance (fig. 1). Including spontaneous emission of the atoms as well as of the cavity modes, the time evolution

Y a E A
n @ —wa
(k)
% ok
P
n(ky)
Ty o
— —— N
-L -a a L b J.

FIG. 1: System setup consisting of N, quantum particles confined in a box trap V(z) along the cavity axis

and illuminated by N, lasers along the y-direction (left). Frequency diagram showing the pump lasers w’;

tuned closely to distinct longitudinal cavity modes w]’* well below the atomic frequency w, (right).
of the coupled atom field system can be described by a master equation of the form [8, 21]
. i i i i . it At a
p=—7H.pl+ > i(26% pot — pot6t — 66t p) + Z K (2anpal, — pafan — @ anp), (1)
i

where the Hamiltonian is given by

Npart

H = Hcauity + Hparticles + Hint = Z h/W'" T n + Z ﬁ(wa&iaﬂ

n=1

Z LE@). (2

Here w' denote the cavity eigenfrequencies. The electric field in the particle-field interaction term, E(il)

Il

E, (Z:) + E consists of the pump lasers E modeled as classical standing wave fields of the form Ep

e > Bk cos(wkt) and the cavity field E (&) = &>y ;Z: U (Z;)a, + h.c.. For a planar cavity the ef-
fective mode functions on the axis are simple trigonometric functions u,, = sin(k, (z + L)), with wave numbers
kn. After adiabatic elimination of the atoms’ inner degrees of freedom, elimination of fast rotating terms and

change into an interaction picture, the Hamiltonian (appendix A) reduces to

_ ; Anila, + Z(;’—l

+ E Uow? sin?(ky (& — L))al a, + g N sin(k, (2; — L))(af + an) (3)
with
h 1 [ hwy Wa
Up = de dn, == < Ep deg|? 4
%7 2Le w2+72| ol and 2Leo w2+72| gl (4)

For a many particle description it is convenient to rewrite the Hamiltonian in second quantized form. With
VU; denoting the eigenfunctions of the single particle Hamiltonian HparticieVi(z) = E;W;(z) we use ¥(z) =
> ¥i(z)é; the Hamiltonian can be compactly written as

H——ZAna an+ZEc cl+ZU0wn mjcjc]a an+2nn nijCi Cj(a + ). (5)

nij nij
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Note that we get a variety of opto-mechanical and as well as long range interactions mediated by the cavity
photons. The specific physical parameters of any concrete implementation are now contained in the detuning
of the pump lasers from their respective cavity mode, the spectrum of trap eigenenergies E; and the coupling
matrices,

Apij = /_oo U ()W (x) sin® (kn (x + L))da (6)
Buij = [ W @), () sinkn (@ + L)de, @)

which determine the various coupling strengths. The variation of the trap and pump geometry results in a
very wide range of achievable couplings, possibly usable as a very flexible resource for a quantum simulator.
Note that extra restrictions introduced by replacing the particles by fermions will further expand the available
options. The B matrices mediate the driving of the system by collective scattering photons into the cavity
modes, whereas the A matrices describe the diffractive scattering of the particles between different motional
trap modes by the cavity photons. Via tailoring these matrices the number and properties of combined atom
field eigenstates can be widely tuned and could provide a unique realization of a quantum spin glass with long-
range interaction [11] or generalized forms of Hopfield networks. For several generic cases these matrices can be
evaluated explicitly and we will discuss typical examples in the next paragraph.

A. Coupling matrices for particles in a square box potential

We now study basic properties of the above Hamiltonian by means of the generic example of a particle trapped
in a box potential of length 2a, i.e. V(z) = 0 when = € [—a,a] and oo otherwise. The eigenfunctions are then
. 2
U;(x) = ﬁci sin(K;(z +a)) inside the box and 0 outside of it. Here, K; = 5= (i+1), E; = % %) = %Kf
while the coupling matrices A,;; and B,;; are simple integrals of products of harmonic functions and read
(appendix B)

A .. = 16 + (_1)n ( COs 4 fCOS _ fcos  _ fcos ) (8)
nw T gt 4 YA i,J,—n i,—jn i,—J,—n
1 ) ) ) )
Buij = 5 (= fifn + [20 0+ FiZ i+ F35-n) ©)

with f£95, = sinc (5(i+j+2%n))cos (5(i +j)) and f‘]“n = sinc ((i+j + %n))sin (3(i+j+n)). For a
careful choice of trap length a and selection of cavity modes (e.g. a = L/4, n € {11,19,27}) there are only few
nonzero elements, while in general virtually all trap modes can be coupled. As a typical example we will choose
to pump at the two cavity eigenmodes 11 and 19 with @ = L/4. Pumping at the 11*" cavity mode frequency

A
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FIG. 2: First few particle trap eigenmodes and 19*" cavity mode (left); coupling matrices A (middle) and B
(right) between light fields and atomic modes

only couples the 2" and 4*" atom mode to the atomic ground state in a significant way, while it is the 34
and 5" motional mode for the 19*" cavity mode. Similarly, the 2"¢ and 4*® mode are connected to the 5" and
7% mode. The cavity mode functions, atomic trap eigenfunctions and matrix elements for the second case are
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5

shown in fig. 2. In addition we see that by internal scattering via the A matrix the 5'" and 7*" mode are also
populated from the 11*" field mode. Note that in addition to a finite coupling strength energy conservation has
to be fulfilled for efficient population transfer. This can be controlled via the detuning between the pumping
laser and the cavity mode, A,,, at least to some extent. Nevertheless, even in this simple generic case a two
mode picture per excitation frequency as it appears in an infinite trap size limit cannot be expected.

B. Coupling matrices for a harmonic atom trap

Note that for a square-well potential of tailored length as above, we find rather sparsely populated coupling
matrices with nonzero entries determined by the specific choice of the cavity length, trap size and pump mode.
In the more realistic case of e.g. a Gaussian trap, the matrices are, as shown in fig. 3, much more densely
populated. This considerably enlarges the necessary computational basis for quantitatively correct numerical
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!
orNWwaLa N
orNWwa Lo~

-a a L 012345678 9101112131415 12345678 9101112131415

FIG. 3: First few particle eigenmodes of an harmonic trap potential and 5-th cavity mode (left). Coupling
matrices A (middle) and B (right) between light fields and atomic modes for a harmonic particle trap
positioned at the cavity center

modeling on the one hand, but allows the study of a wider class of Hamiltonians on the other hand. While this
is certainly interesting and worthwhile to pursue, we will study the simple, more easily calculable box potential
model.

III. SELF-ORDERING DYNAMICS WITH A MONOCHROMATIC PUMP

The B coupling matrices calculated above show that photon scattering into the cavity mode couples several
motional modes already. Actually, for trapped particles, where the translation symmetry of the ground state
is lost, there are always at least two motional modes that exhibit a considerable coupling. These motional
modes are in turn coupled further to other eigenstates via the B as well as the A matrix. Of course, only if the
corresponding motional transition is also energy resonant within the width of the cavity mode, one can expect
a significant excitation of a particular mode. Based on this line of argumentation, higher order motional modes
have been widely neglected in many theoretical models so far [22], even in the bad cavity case. In the present
work, we treat the more realistic but computationally more complex case of a finite particle trap placed along
the cavity axis, so that we need to include a suitable range of contributing trap eigenstates. As the nonlinear
equations cannot be easily solved analytically, we resort to numerical solutions of the corresponding master
equation using the zvode wrapper of the numerical libraryscipy [23]. For higher dimensional problems, as it is
mostly the case if more than one cavity mode is pumped, we have to settle for QMCWEF methods which makes it
harder to obtain accurate values for entanglement and correlations but in return allows us to study the dynamics
of single trajectories which experimentally corresponds to continuous measurement of leaking photons. These
trajectories are often easier to comprehend intuitively, mostly due to the fact that they work in terms of wave
functions instead of density matrices, and therefore allow for a better qualitative insight into the underlying
processes. To examine intrinsic resonances in the response of the coupled system to find the physically most
interesting operating frequencies, we first probe the system by tuning the pump laser across the empty cavity
resonance at low intensity. As shown in the left graph in fig. 4, we clearly see a red shift compared to the empty
cavity resonance. Its maximum as well as its position changes nonlinearly with the pump strength (blue to green
to red curve) which indicates a more efficient coupling by tighter particle localization at the anti nodes of the

20



n/k =20
W0 — p/k=15
n/k=1.0

2 0 1 2 3 4 5 6
Ax n/x G

FIG. 4: Stationary average number and variance of photons scattered into the cavity mode by a single atom
initially prepared in the trap ground state as function of detuning between pump laser and cavity mode (two
pictures on the left). Photon number and variance as a function of the pump strength for different negative
detunings showing the appearance of a threshold pump strength (two pictures on the right). Here we have
chosen the case of mode 11 as discussed above.

field. As expected, we get motional heating on the blue side of the effective resonance leading to less effective
particle field coupling and line broadening. In the next subfigure to the right we show the large enhancement
of the variance of the photon number for stronger pumping, yielding a first indication of the presence of critical
fluctuations at a certain pump strength. In any case, we see a strong deviation from a classical coherent intra-
cavity field state (note the changed axis scale). The origin of these fluctuations will become much more obvious
by looking at the field Q-function which we will study in more detail in the next section on the dynamics of
the ordering transition. In the rightmost figure we show the stationary photon number dependence of the intra
cavity field as a function of the pump amplitude for fixed detuning. Operating closely to cavity resonance on
the red detuned side the transition from zero to finite field occurs at lower pump strength and much steeper
(blue line) until we end up at the blue side of the effective resonance (orange line), where ordering is connected
to heating and counteracts coherent scattering. Therefore, in the following we will always consider sufficient red
detuning of the pump fields to ensure combined ordering and cooling.

A. Single particle ordering dynamics

As indicated by the frequency scans above and also found in classical models [24], the instability of the trap
ground state against light scattering is connected to a transition to an ordered phase only if we operate well
on the cooling red side of the effective cavity resonance. Otherwise the particles are soon heated out of the
ordered state. A sufficiently large red detuning was thus also used in the Ziirich experiments [6]. For a numerical
analysis of the transition amplitude from the weakly scattering trap ground state to an ordered radiating state,
we will first start with a single particle and a single frequency model, which can be solved directly for a wide
parameter range without too much numerical effort. In this case spatial order is represented by a quantum
superposition of the single particle wave function with regularly spaced periodic maxima. Such a state could of
course not occur in any classical single particle model.

In the following we present some typical results. Clearly, as shown in fig. 4, for suitably chosen detuning, i.e.
A = —3k, we see a pronounced threshold for the pump amplitude, above which the number of scattered photons
and also the corresponding fluctuations strongly increase. Even more detailed insight in the field properties can
be gained from the corresponding Q-functions shown in fig. 5 for three typical pump strengths. We observe how
the distribution changes significantly from a vacuum like distribution via a squeezed vacuum type shape to a
clear bimodal phase space distribution, where the field is concentrated around two regions of opposite phase.
At the same time we find a concurrent fast grow of the population of the third and fifth excited trap states. For
the strongest pump even higher trap modes, in this case the 8" and 10", get substantially occupied (fig. 6).
Thus, even for a single pump frequency a Dicke-type two mode approximation will fail even for a moderate
pumping power. As expected, these modes are phase locked by the excitation dynamics so that the field state
is directly connected to a characteristic change in the position distribution of particles towards a regular quasi
periodic order as shown in fig. 7. It is particularly interesting to note, that looking at the particle density,
which exhibits a half wavelength modulation and the mode function depicted in fig. 2, one might at first expect
zero light scattering, as the overlap of the density with positive and negative sections of the mode amplitude
are equal and thus the scattering should cancel. Again, this is of course a classical argument, which is not
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FIG. 5: Stationary density plot of the field Q-function below (n = 0x) (a), at (n = 1.5x) (b) and above n = 4k

threshold (c) for a pump close to cavity mode 19 as above. The detuning is set to A = —3x and Uy = —2k.
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FIG. 6: Stationary particle eigenstate occupation probabilities for the same parameters as above. Below (a),
at (b) and above threshold (c) for a single mode.

relevant in our full quantum system. The leftmost and middle right density peak is quantum correlated to
light scattered with positive field amplitude, while the other two peaks generate a negative pump amplitude.
As the corresponding wave functions parts hardly overlap the two contributions will not cancel by interference.
Analysis of the numerical results reveals that single MCWF trajectories starting in the ground state of the trap
evolve in the long time limit to a state that can be extremely well described by

1
[the00) = E(IC)ICO +1d)| - a)), (10)

where the particle states |c¢) and |d) are orthogonal. The particle states as well as the value of a will vary
moderately among different trajectories. Hence, the steady state of the master equation is in general a mixed
state that can only be approximated roughly by p:— 0o = [Yt—00) (¥t—s00|- However, the reduced density operators
for the field as well as for the particles,

plisd = () {al + | - a)( - al) ()
parvictes _ 1= (1) = ) (el = (d) 1+ (1) +1a))(¢e + ()
AL =5 2 T 2 ' (12)
2|al?

where v = (a]a) = e~ , closely match the results of the numerical simulations of the master equation.
Overall, we can reproduce several of the results obtained for the microscopic self-ordering of a single particle in
two prescribed wells along the pump axis [25].

B. Two particle self-ordering

When more than one particle is trapped within the cavity, they will of course collectively scatter light and
thus become correlated. Their accessible Hilbert space grows very fast since both can occupy a wide range
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FIG. 7: Stationary particle position density below (a), at (b) and above threshold (c) for a single mode
showing increased ordering. Same parameters as above.

of trap states. Even without collisional interaction, the time evolution becomes much more complex in the
two particle case. Nevertheless, the average particle density, which is of central importance to light scattering,
still generally looks similar. Thus, the two-particle threshold and photon number fluctuations qualitatively do
not differ by much apart from a common shift and scaling. As indicated by fig. 8, the essence of the phase
transition properties prevails. Extra peaks in the transmission indicate different pair correlations of the atoms
as discussed in some detail in ref. [26]. These can now be visualized easily by showing the spatial density
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FIG. 8: Stationary expectation number of photons scattered into the cavity mode (leftmost graph) and their
variance (adjacent right) for two atoms prepared in the trap ground state and different pump strengths as a
function of the detunings chosen equal for both modes. The two plots on the right show the same behavior as
a function of the pump strength for different negative detunings, where self ordering is expected.

correlations. Interestingly, the system now possesses several wave functions of almost equal density distribution,
which differ only in quantum statistical properties. Let us demonstrate this in some more detail by explicitly
plotting the spatial particle-particle correlations in fig. 9. We see that in the joint spatial probability density
above threshold, as depicted on the right, the diagonal elements are very pronounced. This shows that we do
not get a simple product state of the two particles but a strong correlation between their positions. This pairing
again goes beyond a simple Dicke two mode model, which offers the same single motional mode for all particles.

IV. SIMULTANEOUS TWO COLOR PUMPING

Let us now turn to a completely new parameter regime. As we have seen above, for a single pump frequency
above threshold the particles attain a rather complex superposition of trap eigenstates, which can be split
approximately into two components corresponding to the two distinct field states of equal amplitude but opposite
phase. In this section we now allow for two simultaneously injected excitation frequencies. Both frequencies
are tuned closely to distinct longitudinal cavity modes, which are assumed to be separated sufficiently far, so
that scattering of each field can occur solely into the corresponding mode. Each of the two laser powers and
the detuning from their corresponding mode can be varied independently across the ordering threshold and for
independent injection again has two possible stationary states. As one of our central goals in this work we now
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FIG. 9: Position density distribution p,,, for 2 particles and a single pumped mode 19 below (left) and above
threshold (right) for n = 4k and A = —3k, showing a clear preference of the particles to occupy the same
wells, or at least wells with the same associated field state.

study key properties of the enriched dynamics for simultaneous operation of these pumps.

A. Stationary state manifold for two color pump

As a generic example we choose simultaneous operation on the 11*" and 19" cavity mode and a trap size of
1/4-th of the cavity length. This minimizes cross coupling matrix elements which facilitates an easier analysis
of the complexity of the dynamics. As both lasers act on the same particles, we find a competition between the
possible optimal orders for each field. It is now interesting to see for which pump ratios and strengths a single or
even both orders are at least metastable and when the system is able to find completely new spatial distributions
close to optimum for both fields. In general, besides a global optimum configuration several metastable local
scattering maxima and potential energy minima exist. We will use QMCWF simulations, allowing us to study
the multitude of quasi stationary solutions and also to retrieve important characteristics of the time evolution.
As any momentary particular order leads to a characteristic scattering, we can use the photon number to
quantify the corresponding order parameters. To get a first insight, in fig. 10 we plot the stationary averages of
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FIG. 10: Stationary photon number in mode 11 (a) and mode 19 (b) as a function of the detunings Ag, A; for
equal pump amplitudes 7 = 1x. Stationary photon number in mode 11 (¢) and mode 19 (d) as a function of
the pump amplitudes 79, 7; for equal detunings A = —3k.

the photon numbers in the two modes, first as a function of the detunings for fixed pump amplitudes, then as a
function of the two pump amplitudes for fixed negative detunings. While for preferential pumping of one field
the corresponding photon number and a spatial order clearly dominates, a finite pump at one field can either
suppress or enhance the scattering and spatial order of the other mode. For our chosen example the threshold of
mode 11 is shifted upwards by the mode 19 field, while almost no effect is visible in the other direction. For close
to equal pump strength, there are regions in parameter space where both modes oscillate simultaneously. This
can be seen clearly in fig. 11 (first two images) showing the corresponding Q-functions. A bimodal distribution
is also visible in the spatial density distribution shown in the third image of fig. 11.

Note, that no direct light scattering between the modes is possible because their frequency difference is too
large. As can be inferred from the missing vacuum contribution in the Q-functions and the dominance of the
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diagonal in the photon number distribution on the lower left, the two modes are oscillating at the same time.
Microscopically this corresponds to an atom-field state of the approximate form

%(|C>|QO)|01> +|d)] — ao)| — a1)). (13)

Each field amplitude pertains to a characteristic component of the particle density distribution, possibly

W’tﬁoo) =

5 1.0 5 1.0 0.10
4t 0.9 4 0.9 11 0.09
3t 0.8 3 0.8 18 0.08
2 { fo.7 2 0.7 3 0.07
o1 ‘ 06 _ 1 ‘ 0.6 7 0.06
= of 1Mos5 z o 05 = 6 0.05
T ’ 1 Ho4 = 1 ’ 0.4 5 0.04
—2f { Ho3 2 0.3 ;; 0.03
—3} { Ho2 -3 0.2 2 0.02
_4} { [Ho.1 —4 0.1 1 0.01

o o
Srrsogoizsdis 0 Srrsog0izsis 0 %i234567sot0mr 0

Rea Rea ng

FIG. 11: (a) Averaged Q-function of mode 11, (b) Q-function of mode 19 and (c) joint photon number
distribution probabilities p;,,n, for two simultaneously strongly pumped modes where we have chosen
no = 5K, m = 6k and Ay = A = —4k.

allowing for various orthogonal combinations. Again, the number of such states rapidly grows with increasing
particle number, so that even for such a small system size one quickly reaches the limits of classical computers.
Experimentally, much higher particle and mode numbers seem easily possible, allowing to study and simulate
Hamiltonians of the type of eq. 5.

B. Time evolution between different metastable states

So far we have concentrated on average stationary long time properties of the system to characterize the
multitude of stationary quantum states and their intrinsic correlations. It is, however, almost equally interesting
and important to study the time evolution and temporal fluctuations of the system. Due to limited space, here,
we will restrict ourselves to a single typical example when the pump is tuned somewhat above the common
oscillation threshold of the system. In this case several possible spatial configurations will compete and pure
quantum fluctuations turn out to be sufficient to induce transitions between different spatial orders. This is
presented in the final figure fig. 12 where we show the temporal behavior of a typical single trajectory. Quantum
jumps in the form of photo detection events eventually lead to a particle rearrangement between different spatial
structures, which can also be accompanied by phase reversals in the field modes as depicted in the third subgraph
from above. In some cases even transitions back to a completely disordered state where light scattering stops
almost completely can occur (see last third on the right). In the ordered time periods we observe, as shown
in the lowest graph, that the acquired state is very close to the heuristically expected and predicted cat like
quantum state of eq. 13. The parameters of this state are dynamically obtained from the momentary maxima
of the field Q-function. Note that each trajectory thus remains a coherent superposition between states of
opposite field phase and the system does not break the inversion symmetry in respect to the trap center. As
state changes can be triggered by pure quantum fluctuations, one can of course actively switch between them
by injecting corresponding signals into the cavity mode. Their stability can be increased by using higher pump
powers. All these fascinating features are, unfortunately, computationally very time consuming and beyond the
scope of this work at this point. Qualitatively such effects could be investigated in strongly mode truncated
models or by adiabatic elimination of the field dynamics.

V. CONCLUSIONS

Adding extra pump frequencies to the self-ordering dynamics of ultracold particles in a cavity field significantly
changes the dynamics and enlarges the complexity of the system from a dynamical as well as computational
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FIG. 12: Single Monte Carlo wave function trajectory for a trapped particle with a two-color pump. The
upper part shows intra cavity photon numbers and photo-detection events in the two modes, which clearly
correlates with the spatial density distribution of the particles below. In the last two plots we show the
changes of the relative field phases as well as the large momentary overlap with the heuristically expected
approximate state of the form of eq. 13 with dynamically optimized state parameters.

point of view. Even with moderate particle and mode numbers, the limits of computability are soon reached. An
alternative description in terms of an effective multi-mode Dicke model might catch essential qualitative features
of the dynamics but quantitative reliable modeling is hardly possible. By including the trap dynamics in a
consistent form we get a complex, widely tunable and very precisely controllable coupled quantum system, which
can be mapped to a coupled oscillator system with tailorable long and short range interactions. The observation
of photon scattering allows precise real time monitoring of the atomic dynamics, which can then be controlled
also by pump strength and detuning. With the help of frequency combs suitable cavity matched frequencies
are available over a very wide range of longitudinal modes without the need for individual stabilization of each
color. This should allow experimental studies far beyond Dicke physics as a very general quantum simulator.
In this work, we have mainly derived the basic Hamiltonian and only scratched the surface of the underlying
complex nonlinear dynamics by means of a few simple but typical examples. A systematic investigation is
certainly necessary and worthwhile but unfortunately beyond the scope of this work. Even more complex results
could be expected from a generalization to fermionic particles [5] or particles with several internal levels [27].
Of course, one of the most interesting aspects and motivations of this approach is the fact that only minor
additions to current experimental setups are required and the theoretical model for the current generations of
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experiments have proven to be surprisingly accurate and reliable [6, 8, 17, 28, 29].
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3. Outlook: Steady-state solutions

An interesting feature of self-organization is that in the case of a single pump
laser there are two equally likely steady state solutions. The system has to decide
spontaneously which one of them it will take on. By adding additional lasers it
seems plausible that even more possible steady states might emerge. To look for
this effect we use the semi-classical equations as well as a slightly more quantum
approach along the lines of a cumulant expansion to try to identify such solutions.

3.1. 1st approach: Semi-classical equations

For the sake of simplicity we neglect the noise term and the non-linearity Uy more
or less neglecting any quantum effects. The semi-classical equations then lead to
the following conditions for the steady states:

v; =0 3.1.1a
5 ( )
Nnngn
L= 3.1.1b
AT + iRy, ( )
02 Unl@jon) _ (3.1.1c)
8:6]‘

where every single particle sees the same optical potential

U(z) = thn(an + o)) sin(kpx). (3.1.1d)

Finding particle distributions that solve all these equations simultaneously is not
straight forward. While using an iterative fixed point approach is straight forward
there is no guarantee that it finds all possible solutions. Basically, every point
in the Nparticlenumber dimensional space has to be checked. The key observation
is that all possible optical potentials are identified by Ncavitmodes real numbers

&n = Mn(an +ay)

Ue(x) = &nsin(bn) (3.1.2)

For a fixed potential Ug, we know that in the steady state the particles have to
be located in local minima. The exact distribution among those minima does not
change the optical potential, but of course the self-consistently determined pump
strengths have to be adapted.
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3. Outlook: Steady-state solutions

Single-mode

In the case of only a single pumped mode the situation becomes especially simple.
Then the particles are either all in the maxima or all in the minima of the optical
potential depending on the sign of the parameter £&. The order parameter is then
either +1 or —1 so that the pump strength for a given optical potential parameter

A2 1 12
VNp = ,/Tg‘”\a. (3.1.3)

In Fig. 3.1 these relations are plotted and it is graphically clear that for every choice
of pump strength n > 0 there are always two possible solutions which correspond to
the previously mentioned cases of all particles sitting in the maxima or all particles
sitting in the minima.
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Figure 3.1.: Order parameter and pump strength depending on light potential pa-
rameter £ for a single mode in the semi-classical limit.

Double-mode

The situation gets much more interesting if more than one mode is pumped. We
consider in the following a system where two modes with wave number ratio % = %
are pumped as shown in Fig. 3.2a. Some of the possible optical potentials are shown

in Fig. 3.2b where the color encodes the relative strengths of the two modes. The

(a) (b)

Figure 3.2.: (a) Modes chosen for the simulation: First (red) and third (blue) har-
monic. (b) Resulting optical potentials for different choices of & and
&o. Blue if the third harmonic is dominating, red when the first har-
monic is dominating.
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3.1. 1st approach: Semi-classical equations

number of local minima depends on the exact choice of &, but for now we assume
that all particles are placed in the global minimum. As long as there is only one
global minimum the state and therefore also the order parameters (Fig. 3.3) and
the real pump strengths (Fig. 3.4) are uniquely defined by the optical potential.
Choosing a specific pump strength for n; and 72 is equivalent to selecting isolines
in Fig. 3.4. Since both conditions have to be fulfilled at the same time this amounts
to intersecting these two isolines as is indicated in Fig. 3.4(c).

Figure 3.3.: Order parameters in respect to the first (left) and third (right) har-
monic mode for different choices of light potential & and &. Blue is
completely anti-ordered, red completely ordered.
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Figure 3.4.: Self-consistently determined pump strengths for different choices of
light potential parameters & and & in respect to the first (a) and
third (b) harmonic. (c) Isolines of the self-consistently determined
pump strengths for different choices of light potential parameters &,
with all particles in the global minimum. Intersection points for the
isolines 171 = ¢ and 1y = ¢ correspond to different possible steady
state optical potentials for a fixed set of pump strengths.
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3. Outlook: Steady-state solutions

3.2. 2nd approach: 1st order cumulant expansion

For small enough systems consisting to up to only two particles and two cavity
modes it is possible to simulate the complete master equation numerically. For
the steady state of a moderately pumped system this reveals that the quantum
correlations between the light modes and the particles and especially between the
different light modes directly are rather small. Depending on the initial state and
the strength of the coupling terms this is, however, only to a much lesser extent
true during earlier parts of the time evolution. Therefore, a factorized Ansatz for
the steady state,

P =p, ®p§?>, (3.2.1)

seems justified. Tracing out all field degrees of freedom in the master equation
results in the condition

0=pp=[H, p,] (3.2.2)
for the particle density operator with effective Hamiltonian

H = H, + > " hUgahan)An + > hnp((al) + (an)) Bn. (3.2.3)

This Hamiltonian depends on the expectation values (a,) which can be calculated
in the steady state case to be

o 77<Bn>
(an) = AP — U (A, + ik (3.24)

The particle equation 3.2.2 and the equations for the cavity modes 3.2.4 are coupled
nonlinearly and solutions have to simultaneously solve all of them. Similarly to the
classical case in the previous section it is in principle possible to use a fixed point
method to find steady states. However, again it’s not assured that all solutions are
found.

Single-mode

Neglecting the Uy term and reintroducing the light potential parameter used in the
last section results in

H = H, + o ((al) + (an)) Bn = Hy + €B,

We solve the steady state particle equation 3.2.2 by determining the ground state
of the effective Hamiltonian

H(&)|Wo(E)) = Ee|To(S)),
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3.2. 2nd approach: 1st order cumulant expansion

Then the order parameter is
(B) = (Wo(&)|B|Wo(£)),

the pump parameter can be determined by

and the cavity mode is in a coherent state with
_n(©)(B)
Ao+ ik

Now to answer the question if the system has several steady states for a given pump
strength we just have to determine if 1n(£) = ny has more than one solutions for a
given 19. A few examples are shown in the figures 3.5, 3.6 and 3.7.
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Figure 3.5.: Total energy, order parameter and pump strength for varying pertur-
bation strength £ for the ground state (red), first excited state (blue)
and second excited state (green). The particles are trapped in a box
potential of equal length as the cavity and only the fundamental mode
of the cavity is pumped. As seen in the third image, for a given pump
strength there is only one possible solution.
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Outlook: Steady-state solutions
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Figure 3.6.: Total energy, order parameter and pump strength for varying perturba-

tion strength £ for the ground state (red), first excited state (blue) and
second excited state (green). The particles are trapped in a box poten-
tial of equal length as the cavity and only the first harmonic mode of
the cavity is pumped. This is equivalent to the usual self organization
situation where two possible solutions exist.
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Figure 3.7.: Total energy, order parameter and pump strength for varying pertur-
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bation strength £ for the ground state (red), first excited state (blue)
and second excited state (green). The particles are trapped in a box
potential of equal length as the cavity and only the second harmonic
mode of the cavity is pumped.



Part II.

Dipole-dipole interaction in large
spin systems
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4. Introduction

The second part of this thesis is focused on how the dynamics of a particle and
especially the emittance of photons from it is influenced by the presence of other
nearby particles.

Several different quantum mechanical systems where this effect may be of interest
are investigated. For most cases its magnitude is negligibly small compared to other
more dominating processes, however, for large particle numbers in close enough
vicinity it can be of significance.

The first example is the superradiant laser which can be modeled similarly to the
traditional laser as N-particles inside of a cavity. The crucial difference is that the
system is operated in the bad cavity limit and therefore instead of the many photons
that are traditionally needed for lasing only a few or even less than one photons
are captured inside the cavity at a time. The excitations are instead stored inside
of the particles and the cavity is mainly used to synchronize the internal particle
dynamics [1].

As second example, we investigate optical lattice clocks. Atoms containing a
state which decays very slowly into another state, i.e. a clock transition, are used
as very accurate frequency reference. Increasing the number of atoms by storing
them in an optical lattice allows a further increase of accuracy. Averaging over all
particles results in an improvement proportional to the square root of the particle
number but only if the particles are not interacting with each other [2, 3].

The general description of this phenomenon, which was derived by Lehmberg in
1970, will be sketched in the next section [4, 5]. It shows that this problem can
essentially be reduced to two mechanisms. A dipole-dipole interaction resulting
in an energy shift of the internal particle transitions and additional two-particle
decay channels describing incoherent transfer of excitations from one particle to
another via a photon. A possible consequence of this compared to the independent
particle case can be a highly enhanced emission rate of photons from the system
which is also called superradiance. Depending on the concrete distribution of the
particles also the contrary situation, subradiance, can be reached where the photon
emission rate is highly diminished. Simply by varying the geometry of the system,
i.e. changing the relative position of the particles, can completely change the system
behavior resulting in rather complex dynamics.
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4.1. Dipole-Dipole Interaction

4.1. Dipole-Dipole Interaction

When multiple atoms in close proximity interact with a light-field, the theoretical
description has to explicitly take effects into account where radiation emitted by
one atom influences the other atoms. Equivalently to the single atom case, a master
equation can be obtained where the light fields are treated as bath for the atomic
system. The derivation of this master equation was originally done by Lehmberg [1,
2] and can be found in many quantum optics books, i.e. in [3]. In the end, it turns
out that the inclusion of the light fields results in an effective interaction between
the atoms, the so called Dipole-Dipole interaction, and additionally modifies the
decaying processes. Photons are then emitted collectively by several atoms together
leading to, depending on the spatial distribution of the atoms, either an increased
or a suppressed photon emission rate called superradiance and subradiance. In the
following, a sketch of the derivation of these effects is presented, roughly following
the guidance of Gardiner and Zoller’s book “Quantum World” [3].

Fij
(@] -
G(&’O %
T; r (@] . ®
® (@]
(0]
© (@]

Figure 4.1.: System consisting of multiple atoms in close proximity interacting via
the free space light fields. Eliminating the fields leads to an effective
dipole-dipole force between the particles and to collective decay result-
ing in super or subradiance.

4.1.1. Derivation

The system under consideration consists of the particles and the light fields and is
characterized by the Hamiltonian Hi,; which can be separated into three parts,

Hiot = Hsys + Hint + Hﬁelda (411)

the particles, the interaction and the field Hamiltonian. The particles are modeled
as two level systems with transition frequency wg where all other levels only appear
implicitly as Stark shifts in these two levels.

Hyys = > hw,o] (4.1.2)

39



4. Introduction

For the electro-magnetic field we exclusively allow frequencies in a certain range
around wg defined by |lwr — wol| < 4.

Hpaa= Y Twblby (4.1.3)
Hwk—ﬁo\\«i

The atom-light interaction is obtained using the electric dipole approximation and
rotating wave approximation which leads to

Hi =ih Y (ﬁz(fj)b,ta; - nk(fj)bkaj), (4.1.4)
7
Hwk—wjo\|<5
where the sum over k = (A, E) is a summation over all k-vectors as well as the two

different possible polarizations. As can be seen in [4] the coupling strength is given

by

= wor oL
k() = — ﬁeodeg.uk(w) (4.1.5)
with planar wave functions
1 o
i (z) = Vé%“ﬂ. (4.1.6)

In the interaction picture with respect to H = Hgys + Hfelg the interaction Hamil-
tonian takes on the form

ﬁlnt = ih Z (KZ(fj)ei(wk_w“)tbLUj_ — ﬁk(fj)e_i(wk_wa)tbko—j>
k.j

2.
g —woll<6

=ihy (e = of 1) (4.1.7)

where we introduced the noise operators

fj (t) = Z /ﬁ;k(fj)eii(wkiw”)tbk (4.1.8)

k
llwg —woll <&

which obey the commutation relation

[0, 1) =t =) = 3 ma(@)rp(@)e @) (419)

k
lwg—woll <6

The Schroedinger equation of this system in the interaction picture,

S E(0) = Hi (0)0(2) (4.1.10)
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4.1. Dipole-Dipole Interaction

can be formally solved by using a Dyson series. Defining the propagation operator
Ul(t,to) as W(t) = U(t,to)¥(to) allows us to rewrite the Schroedinger equation as

%U(t’to)“l’(%» = %ﬁlm(t)U(t,to)\‘P(to» (4.1.11)

and consequently

t

. 1 -

U(t,to) =1- ’L/ dtlﬁHInt(tl)U(tlatO)
to

t 1 ~ t1 1 ~
—1 —i/ dtlﬁHInt(tl)(l —z‘/ dtgﬁﬂlm(@)U(tg,to))

to to

1 t B 1 t 5 t1 _
= 1—zh/ dt1 Hype (1) —hz/ dtlHInt(tl)/ dtz Hiyg (t2)U (t2,t0)

to to to
(4.1.12)
which gives the formal exact solution
t ~
W (t)) = (1 —z;/t dtlﬂlm(tl))l\IJ(to»
t ’ B t1 B
g | () /t dito Fi (1) (12))
t
~(1+ / iy (£lto; = of £5(0)) ) wito))
t
d T o. — 0’7"_ i
+/to tlzi: (fZ (t1)o; —o; f(t1)>
t1
| a3 ()07 = o7 £(0) 19(02). (4.1.13)
0 J

Using the assumption that the interaction is weak enough so that for a chosen
time interval At the field is not changed significantly, which is called the Born
approximation, allows us to substitute |¥(¢2)) with |¥(¢p)). In the following we
assume that the field is initially in the vacuum state which simplifies 4.1.13 to

wan) = (1+ /tAt at Y- (fl ey = of £50)) ) 19(t0))
0 J

At t1
T / dty / dt Y (o7 o7 #1001 (t2) = o o7 filtn) 1] () ().
! (4.1.14)

The commutation relation 4.1.9 implies that

Filty) £ (t2) W (t0)) = (f;‘r(t2)fi(tl) + 735t — tz)) (W (to)) = 7ij(t1 — t2)[¥(to))
(4.1.15)
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which finally allows us to rewrite 4.1.13 as

W ( (1_20 o7 /Atdtl /ttl dtaij(t —tz))!\II(to»

Yo / dt ] ()9 (to)

0

o At t1 : ;
“F;Uz 0; /to dtl/to dt?fi (tl)fj<t2)|\ll(t0)>_ (4116)

Using these results to derive a quantum stochastic calculus shows that all physical
parameters necessary to describe the system are contained in the «;; term which
we will identify as collective decay rates I';; and collective dipole-dipole shifts dw;;
connected by

At t1 1
/(; dty /0 dtg’)/ij (tl — tQ) = (§Fij + iéwij)At. (4.1.17)
Starting by performing the polarization summation occurring in %-j(t —t,

Vi (1) = Y k(@) g (F)e e
k
[lwg —woll <6

w 7 7 —i(wy—wa ) T+ik.(Ti— T ;
:Z2h€OV(\deg.€(l)|2+|deg.é(2)|2)e (Wp—wa)THik(F=T5) - (4,1.18)
;z

which can by using the relation

-

deg
e & = |deg. (610 x &) 2 = det( [ &) | . (d, &V &)
é?
degl? deg-8D dig.e?
= |0 deg 1 0 | = |degl® — |dug &V — |deg. &> (4.1.19)
é? d, 0 1
rewritten into
B _ _ —i(wp—wa ) THik.(T;—T;)
72](7)_22h60v(|deg| |dog.eF)|2) e i), (4.1.20)

K

Taking the limit from discrete modes to a continuum of modes using the substitu-

‘1/2]; — (2;)3/(112—> @/&dw/dﬁ,—ﬁ» (4.1.21)

tion
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we obtain

1 3 —i(w—wa)T T2 T k) 2\ iR (F—7,
’Yz‘j(T)ZW/dwwe ( )/dQE(\degl |y W) E ),
(4.1.22)

The angular integral can be evaluated by writing the dipole part in terms of Leg-
endre polynomials Py(z) = 1 and Py(z) = 3(32% — 1),

7 7 2 - 3 3 >
‘de!]’Q B ’deg'é‘(k”z = g’ 69‘2(5 - *‘é(deg).é(k)‘z)
2 - 1 o
= Sldegl? (1 = 3BIEF. 0 - 1))
2 . . .
= S1deg P(Ro(|E).60) — Py(je0).a®)), (4.1.23)

expressing the exponential term as a plane wave expansion,

= (2 + 1)ilji(2) P (e &) (4.1.24)
=0

where 7j; = ¥; — Z; and z = |lg||f’zj = w|7;|/c and using the integral identity

8y Py () &ldea)y, (4.1.25)

k r k de
/dQEPl(é'( ) &) P (0 liea))y — 2l+ 1

Combining all these relations allows us to solve the angular integral,
/dQE(‘degF - Ideg.é(’f)|2)ez‘k.(gi_,;j)

= 21,7 / A (Po(|5) &) — Py(|0).00))

Z (20 + 1)t (= (_( ).é("))
=0

2 7 iy
= Sldegl” Z(m +1)iji(2)

=0
/ Qg (P (|ee0). &) — Py(jeld) o)) By &)

8T, > . . ,
= 5 ldegl* (Go(2) = jo(2) Py(e") & ea)y), (4.1.26)
and therefore the commutation relation is given by

|deg
6hegm2cd

i (T) = / dwewe @9 (o (2) — jo(2) Pa(el).leo))) (4.1.27)
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At this point we can perform the time integrals as stated in 4.1.16,

At t1 At t1 )
/ dt1/ dtg’yij<t1 — tg) = /dwf(w)/ dtl/ dt26—z(w—wa)(t1—t2)7 (4.1.28)
0 0 0 0

where

72
() = i

== WW3 (]0(2) — jQ(Z)PQ(é(T).é(deg))). (4129)

Using the integral identities

t —1
/1 dtze_i(‘“_“O)(tl_tQ) = - 1 — e. (
0 i(w — wo) i(w — wo)

/At 1 At
dt - = -
0 i(lw—wp) i(w—wo)

wfwo)tl

At q e—i(w—wo)tl e—i(w—wo)At 1
t -
/0 ! i(w — wo) (w—wp)? + (w—wp)?
/ [ TP B QA d
0 i(w — wp) i(w — wo) (w—wp)
At 2sin ((w — wo) At)
~i( 2 R e ) (4130

we are left with just one integral over w,

At t 92 gin2(¥=wo At
/ dtl dtg%;j(tl — tg) = /dwf(w)(Q)
0 0

(w—wp)?
. At 2sin ((w — wo) At)
_Z/dwf(w)(w—wo B (w—wp)? )
= (%rij + 10Q;5) At. (4.1.31)

The real part of this function is straight forward to calculate since the sinc function
can be interpreted as a § function for the case dAt <« 1 and therefore

 |deg?R2

i1 = e (o(kar) = ja(kar) Pa(e).2%0))) (4.1.32)
where k, = “2 = /\2—; For the case r = 0 we retrieve the single atom decay
= |d36}fl76|§:2 which can be used to write the formula more compactly as

Tij =T (jo(kar) — ja(kar) Pa(el).&ldeo))) (4.1.33)

The second, purely imaginary term requires a more involved discussion which con-
cludes with the expression

wij = %F(no(kar) + na(kar) P () &lde0))) (4.1.34)
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Figure 4.2.: Dipole-dipole interaction energy (left plot) and collective decay rate
(right plot) for two atoms in distance r;; and various relative dipole
orientations. The dipole orientation in respect to the line connecting
the two atoms is defined by the line colors and can be interpreted using
the accordingly colored arrow diagram on the very left side.

where n are the spherical Neumann functions in physicists notation. Expressing
the Bessel functions as well as the Neumann functions in the formulas for the
spontaneous emission rates and the dipole-dipole shifts results in

3

Uiy = STFj(karij) (4.1.35a)
3

dwij = ZFGij(karij) (4.1.35b)

with the functions

Fj() = (1~ <é“>-é<dﬁg>>2)sign§ + (1 - 3(e").&en)?) <52§ - Si;g) (4.1.362)
Gij(§) =—(1 - (é"">.5(deg>)2)CO;5 (1= 3(E) &) y2) (Signf B CZES)'

(4.1.36b)
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4.2. Atomic clocks

4.2.1. A short history of time

The development of increasingly accurate time keeping devices is probably one
of the biggest endeavors in the history of human kind. Propelled by changing
and because of the increasingly demanding needs, huge efforts were undertaken
that resulted in tremendous improvements. While in the beginning the interest
in time often originated from religious reasons, the significance of clocks reached
unknown heights with the desire for better navigation on sea, which was a necessity
for the economical as well as military aspirations of the colonial powers. Despite
the invention of sufficient accurate pendulum clocks in the 17th century it took
nearly another 100 years until devices were build that were able to defy the harsh
conditions on ships - the so called marine chronometers. Over centuries pendulum
clocks were improved to their limit, resulting in the Shortt-Synchrotron clock [1]
which was the pinnacle of classical clock making and only had an error of around
one second every year [2]. For a long time, pendulum clocks stayed the undisputed
winners in the race for accuracy. Only with the invention of Quartz clocks around
1920 a new contender for the title appeared. Beside the gain in accuracy also
their smaller size and later on easier production made them the new standard
time keeping device, which was also affordable for the general public. The latest
breakthrough in technology was the development of atomic clocks, which use the
transition frequency between atomic levels as their time keeping element. Although
the first versions were inferior to the available quartz clocks [3], improvements were
achieved at incredible rates so that nowadays state of the art optical lattice clocks
only go wrong by one second after 10 billion years [4].

1 minute
per day Early mechanical clocks
1 second
per day

Advanced mechanical clocks

1 second per
thousend years

Clock error

1 second per
million years Atomic clocks

1 second per
10 million years

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Year

Figure 4.3.: Improvement of clocks over time.

4.2.2. Applications

With the construction of clocks that even after millions of years go wrong by less
than one second an outside observer might raise the question if further advancement
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is necessary or just a meaningless undertaking of scientists, desperately looking for
new challenges. Indisputably, the competition is an additional motivating factor,
but the research is mainly fueled by the desire to reach new, untouched fields
of physics. The success of modern theories which agree with the experimental
results to astonishing accuracy requires increasingly more elaborate methods to
even hope to measure deviations necessary to evolve our understanding of nature.
One of the many paths for exploration is the possibility that fundamental constants
are in defiance of their name not really constant but might vary over time and
space. In the year 1937 Dirac presented a hypothesis, also called Dirac’s large
number hypothesis, where he speculated that the gravitational constant changes
proportional to the inverse of the age of the universe [5]. Although this proposition
didn’t gain too much acceptance, it set a precedent to challenge the constancy of
all quantities that were thus far regarded as constants.

The search for new physics beyond the standard model of particle physics led to
theories that not ultimately require but at least consider changes of the fine struc-
ture constant causing a frantic search using a multitude of different experiments [6].
A promising candidate is based on comparison of atomic clocks which use distinct
types of atoms [7].

Another example is the search for the existence of gravitational waves predicted
by the theory of general relativity. Recent successful detection by the LIGO exper-
iment [8] caused huge waves in the media arousing the interest of the public. While
atomic clocks played only a minor role in this triumph other designs utilize them
as main ingredients in order to raise the sensitivity and at the same time reducing
the necessary dimensions [9] for gravitational wave sensors. This might also lead
to development of ultra-sensitive gravimeters and gravity gradiometers.

In contrast to these mainly scientific interests devices along this line of investiga-
tion have considerable practical applications. Detectors based on atomic clocks can
be used for precise measurements of the Earth’s gravity field and will undoubtedly
become the main instrument for Geodesy. Knowledge of the exact form of equipo-
tential surfaces can be used to infer density variations and therefore assist with
the search for valuable resources hidden in the depth of our planet. Relative time
inaccuracies of 10718, already achievable by top of the art atomic lattice clocks
enable detection of height differences of lcm near the surface of the earth. This
is for example sufficient to detect density anomalies of 20% over a sphere with a
radius of 1.5km in the depth of 2km [10].

4.2.3. Characteristics of good clocks in general

Probably the most intuitive way to define a measure for the quality of a clock is by
assessing the deviation of the clock from a perfect clock. Of course in absence of a
perfect clock the only alternative is to compare various imperfect clocks with one
another, preferably of different kind and use the gained information to estimate
the inaccuracy. Assuming the error will grow linearly in time it makes sense to use
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o = (4.2.1)
T

as measure instead of bothering with specifying the deviation as function of time.
In many cases this is an adequate assumption. but there are time keeping devices
which have either a great short time accuracy but are worthless on the long run
and vice versa.

All modern clocks like e.g. pendulum clocks, quartz clocks and atomic clocks rely
on some kind of oscillatory phenomenon simply because they historically proved to
be superior. For these kind of clocks the error in time can be directly related to a
frequency error
AT Aw
T w

which can have various origins. It is clear that in order to use any physical system
as clock one has to have complete knowledge of the physical theory describing it as
well as complete experimental control of all of its properties. Not understanding the
underlying theory but having great experimental mastery results in a precise yet
inaccurate clock while the inverse situation will lead to an accurate but imprecise
one. For the pendulum clock for example one has to be able to accurately determine
the length, or to be more precise, the moment of inertia around the pivot point of
its pendulum. Inadequate control over environmental influences like variations of
temperature or humidity will cause changes that will result in a drifting frequency.
Further on differences of the gravitational strength as well as damping will influence
the ticking of the clock.

It turns out that this relation is closely connected to the Q-factor which is defined
as the ratio between the initial energy of an oscillating system and the energy loss
after one cycle:

o (4.2.2)

Initial Energy

= . 4.2.3

Energy lost after one cycle ( )
While experimentally it shows that by comparing many different types of clocks
that the Q-factor is a very good indicator for their accuracy [11], this result is in
the case of pendulum clocks not immediately obvious. Including damping to the
description of the pendulum,

(4.2.4)

&+ yi 4 wi, wgz%

just leads to a reduced but well defined oscillation frequency w? = w — %72 where

of course the amplitude will damp out with ¢~37. For a real clock this energy loss
has to be compensated using a driving force, which is done by, in the context of
horology called, anchor escapements. Using a deadbeat escapement which in its
perfect form applies delta impulses at times, where z = 0, it can be shown that this
driving force results in a stable limit cycle with the same frequency as the damped
pendulum without driving [12]. The influence of the Q-factor on the quality of the
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clock enters the picture in a more roundabout way, which can be understood by
studying a damped harmonic oscillator driven by a frequency w
i+ 2vyi 4 wiz = F, sinwt. (4.2.5)
It has the steady state solution
x(t) = Asin(wt + @) (4.2.6)
with Amplitude A

VAT R

For small damping, i.e. v < wg and for driving frequencies close around the oscil-
lator frequency wqg the formula for the amplitude simplifies to

A

(4.2.7)

A2=_ "0 4.2.8
% + (w — OJO)2 ( )

which is a Lorentzian function with width /2 around wy. For pendulum clocks this
has immediate consequences. If through imperfections in the escapement mecha-
nism additional frequencies are driven, a smaller friction leads to a smaller influence
of these unwanted frequencies on the motion of the pendulum explaining the con-
nection between Q-factor and quality of a pendulum clock.

4.2.4. Basic principles of optical atomic clocks

For atomic clocks, the connection between the Q-factor and the clock error is in
some sense much easier to understand. The underlying principle is to tune a clock
oscillator like a laser to a reference oscillator, i.e. an atomic transition, as seen in
Fig. 4.4. This situation is completely equivalent to the periodically driven harmonic
oscillator investigated in the previous section where the oscillator corresponds to
the atomic transition and the harmonic driving is replaced by the laser. The
measured signal, whatever that turns out to be, depends heavily on the difference
between those two frequencies, following a Lorentzian curve. By adjusting the laser
frequency to keep the signal as constant as possible, the laser is stabilized to the
atomic transition frequency. It is clear that the narrower the resonance curve, which
corresponds to small atomic decay, the more sensitive the signal reacts to frequency
changes and the better the laser can be stabilized. For this to work the probing laser
has to be highly spectrally pure to be able to resolve the atomic resonance. This
might at first sound strange, since if the oscillator by itself already has an adequate
quality, then why do we trouble ourself with atoms that are notoriously hard to
control? The answer is two-fold. First, the frequency of the laser is determined
by a length scale - the length of the cavity used to stabilize the laser, which is
necessary to obtain such high precision in the first place. Due to our inability to
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Figure 4.4.: Basic operating principle of a typical atomic clock. A laser is tuned to
a narrow atomic transition.

produce cavities with a well enough defined length, every single exemplar of this
type of clock, while admittedly having an exceptionally constant frequency, will
show huge deviations compared to all other clocks. In other words, it would be a
clock with high precision but low accuracy. Atoms provide in this regard a universal
reference since their transition frequency is, hopefully, independent of space and
time. The second point is that although these cavities are very stable on short
time scales, on longer time scales, around 10 seconds, inevitable external influences
lead to length changes in the cavity used to stabilize the laser and consequently
to a frequency shift of the clock signal. Again atoms, unperturbed by such minor
influences, circumvent this problem by providing an unwavering, steady reference
frequency.

Despite the simplicity of the basic idea, experimentalists, confronted with the
harsh influences of the real world, struggle to realize this concept. To appreciate
the challenges that have to be overcome in the laboratory one has to examine all
the interfering physical processes in greater detail.

Spectrally pure lasers — Fabricating a laser of the necessary quality is a difficult
task [13]. Although lasers are commonly viewed as sources of incredibly coherent
light they are still inadequate to resolve the narrow lines of atomic clock transi-
tions. Utilizing an additional empty high-Q cavity, which isn’t subjugated by the
noise created by the laser’s gain medium, accomplishes the required improvements.
Essential is that the length of this empty cavity is as stable as possible which in
practice is achieved by using a specialized highly rigid material that keeps the mir-
ror distance constant [14]. Stabilizing the laser to this high-Q cavity is by itself a
nontrivial endeavor needing the capability to swiftly adjust the laser frequency to
compensate all noise processes.

Synchronization of the laser to the atomic transition — In order to determine
the deviation of the clock laser from the atomic transition various kinds of spec-
troscopy are used. Most schemes are based on Rabi and Ramsey spectroscopy [15]
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but over the years many variations have been tried out [16, 17]. The underlying
idea is always that the relative phase of the superposition of the ground and ex-
cited state of the clock transition, |¥) = |g) + €'?|e), will exactly oscillate with the
transition frequency, but only in the absence of disturbances. Due to the accurate-
ness of modern atomic clocks, even smallest outside influences result in measurable
errors, which on the one hand will be great for incredibly sensitive measurement
devices, but in this context limits the clocks accuracy to an unacceptable extent.
Therefore, each of the following effects has to be theoretically perfectly understood
and experimentally controlled.

Doppler effect Movement of the atoms was for a long time the biggest source of

error [18]. Even though some spectroscopy schemes circumvent at least the
first order Doppler shift, imperfect application and the second order Doppler
shift still make trapping and cooling of the atoms mandatory.

Magnetic fields - Zeeman effect Besides the inevitable magnetic fields imposed by

the environment, static magnetic fields are often applied purposely in order
to define a quantization axis. Either way, the atomic levels used for the clock
transition have to be chosen carefully to avoid [19] or at least provide ways
to correct the influence of magnetic fields [20].

Electric fields - Stark effect Clock transitions are usually chosen to eliminate the

influence of static electric fields arising from potential differences in surround-
ing materials, at least in first order. Next order shifts can usually be calcu-
lated to acceptable precision [21]. In atomic clocks, which use trapped parti-
cles, the AC-Stark effect caused by the trapping laser induces gigantic shifts
which have to be accounted for. However, for a carefully chosen trapping
wavelength, a so called magic wavelength, both clock states are shifted by
the same amount and the transition is unaffected. Another source of electric
fields is the black body radiation [22] emitted by the surrounding contain-
ment demanding cooling of the vacuum chamber to reach highest possible
clock accuracy.

Collisions Collisions of clock atoms with one another and collisions with back-

ground gas atoms are notoriously hard to calculate and can mostly only be
estimated experimentally. For ions, which are well separated in the trap, this
is a minor issue but in the case of neutral particles where usually several
atoms are in a common location this can be substantial [23].

Dipole-dipole interaction Contrary to collisions, which occur only between parti-
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cles in close proximity, the dipole-dipole interaction leads to interactions be-
tween well separated atoms. Albeit small for two single atoms the effect can
accumulate and can, if enough particles are involved, make a non-negligible
contribution.
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The last point is the main focus of this part of the theses and will be investigated

in great detail in the following chapters. For a much better and detailed introduc-
tion into the world of optical atomic clocks the reader is referred to the excellent
review articles [24, 25].
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4.3. Superradiant laser

As was presented in the chapter about atomic clocks, the short term accuracy and
the narrow bandwidth of the clock signal originate from a laser which is stabilized
to an empty high-Q optical cavity. Synchronization to the atomic transition is
in principle only necessary as universal reference and to compensate long-term
instabilities due to changes of the cavity length. The precision of the atomic clock
is therefore, among other things, limited by the quality of the cavity. State of the
art ultra-stable optical cavities achieve incredible small linewidths of less than 1 Hz.
However, atomic transitions utilized in the newest atomic clocks have a natural line
Q of order 10'® even surpassing the fractional instabilities of these cavities by a
factor 100 [1]. Further improvement is hindered by thermal noise [2] of the cavity
mirrors, which is notoriously difficult to remove [3].

An alluring alternative approach would be to use the naturally narrow linewidths
of the atoms directly and thereby avoiding the necessity to fight these technical
difficulties. However, due to the long lived nature of the clock transition and
the relatively small achievable particle numbers in the order of 10° the emitted
fluorescent light is too weak for any practical applications. Using the effect of
superradiance [4], that is the fact that in an ensemble of directly or indirectly
interacting dipoles the light emitted per particle can be much higher than for
a single dipole, can enhance the output power to sufficient magnitudes [1]. Of
course, this effect is worthless if the increased emission rate is accompanied by a
simultaneous increase of the linewidth of the outgoing light. However, it turns
out that utilizing this effect in various different superradiant laser setups can leave
the coherence approximately unchanged or even improve it by surprisingly large
factors [5-7]. All of these systems have in common that they operate in the bad
cavity regime, i.e. that the cavity loss is much larger than the atomic decay rate.
This leads to relatively small photon numbers, in some cases of even less than one
photon, inside the cavity. The excitations are contrary to a common laser not
stored in the cavity field but in the dipoles which use the cavity mode more or less
only to couple their dynamics. Similarly to the classical situation, already observed
by Huygens in the 17th century [8] where clocks mounted on the same wall will
interact via vibrations and adjust to a common frequency, the dipoles in the cavity
communicate with help of the cavity mode and, if the right conditions are met,
start to synchronize their oscillations. This simple picture already gives a great
intuitive explanation of the ongoing physics which also can be quantified in a more
rigorous manner.

The first model of a superradiant laser was discussed in a publication by Fritz
Haake and Mikhail Kolobov in 1993 [5], who investigate the case of many parti-
cles in close proximity, which are modeled by a three level scheme (see Fig. 4.5a).
The ensuing collective decay leads to astonishing properties for this system. For N
particles inside the cavity they predict that the intensity increases with N? com-
pared to the classical laser setup which only raises proportional to N, while at the
same time the resulting linewidth of the superradiant laser improves from being
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Laser Incoherent
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Collective A4 10)
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Figure 4.5.: (a) Three level superradiant laser model investigated in [5]. Superra-
diant decay from level |1) to |0) leads to synchronization effects and
therefore a higher laser intensity as well as decreased laser linewidth.
(b) Common two level laser model but calculated in the bad cavity
regime. The artificially introduced incoherent pump stemming from
eliminating the in praxis necessary third level has to be higher than
the spontaneous decay rate of the transition. Superradiance is intro-
duced implicitly via the cavity mode.

independent of the particle number to a 1/N scaling.

A resembling approach discussed by D. Meiser, Jun Ye, D. R. Carlson and M.
J. Holland in [1] considers the effect of superradiance induced by the cavity mode
in the common two-level laser model shown in Fig. 4.5b. In this case the required
strong particle-particle interaction is not achieved directly by the closeness of the
atoms but is mediated by the more or less infinitely ranged photon interaction
inside of the cavity. They estimate that also in this model, for realistic experimen-
tal parameters, the resulting linewidth can be even smaller than the single atom
linewidth of the clock transition. Using techniques from the atomic lattice clocks,
this setup provides much better control over the error sources that are present in
the system, which were discussed in the previous chapter, especially noteworthy in
the context of this thesis, the dipole-dipole interaction.
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Abstract:  An ideal superradiant laser on an optical clock transition of
noninteracting cold atoms is predicted to exhibit an extreme frequency
stability and accuracy far below mHz-linewidth. In any concrete setup
sufficiently many atoms have to be confined and pumped within a finite
cavity mode volume. Using a magic wavelength lattice minimizes light
shifts and allows for almost uniform coupling to the cavity mode. Never-
theless, the atoms are subject to dipole-dipole interaction and collective
spontaneous decay which compromises the ultimate frequency stability. In
the high density limit the Dicke superradiant linewidth enhancement will
broaden the laser line and nearest neighbor couplings will induce shifts and
fluctuations of the laser frequency. We estimate the magnitude and scaling
of these effects by direct numerical simulations of few atom systems for
different geometries and densities. For Strontium in a regularly filled magic
wavelength configuration atomic interactions induce small laser frequency
shifts only and collective spontaneous emission weakly broadens the laser.
These interactions generally enhance the laser sensitivity to cavity length
fluctuations but for optimally chosen operating conditions can lead to an
improved synchronization of the atomic dipoles.
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1. Introduction

An essential and characteristic property of laser light, observed since its first generation, is its
extraordinary coherence and frequency stability well below the width of the optical resonator
used. Far above threshold the linewidth is limited by technical noise of the gain medium and
the mirrors only. Continuous technological advances have brought this limit down to an incred-
ible stability below the Hz-level [1], which competes against the Q and the linewidth of long
lived atomic clock states. At this point, further technological improvements seem extremely
challenging. Therefore, it has been suggested recently [2] and to some extent demonstrated ex-
perimentally [3, 4] that an atomic clock transition could be used as a narrow band gain medium
to run a laser. Due to the very feeble individual dipole moments of the atoms such a device
can only be operated in the strong collective coupling regime, where superradiant emission into
the field mode provides for the necessary gain [5]. In this domain of operation a huge collec-
tive dipole constituted by a large number of atoms, which are synchronized via their common
coupling to the cavity field [6, 7], will build up.

The general idea of superradiant lasers and their properties have been discussed already two
decades ago [8, 9], where a unique frequency stability scaling with the inverse square of the
atom number N and squeezed output light was predicted. Their superb accuracy in the regime
of a cavity linewidth much larger than the atomic linewidth were highlighted just recently [3].
Most importantly, in this case the laser becomes very insensitive to technical noise in the res-
onator and its properties are dominated by the intrinsic stability of the collective atomic dipole.
Under favorable conditions, with only a few photons and millions of atoms present, a natural
width of the system several orders of magnitude below the 1 Hz-level could be envisaged.

A central, yet open technical problem here is the implementation of a uniform collective cou-
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pling of the atoms to the field mode as well as the optical pumping in the atomic system without
a considerable perturbation of the lasing levels, which in this case include the atomic ground
state. Thus, a very careful choice of operating parameters is required. Here, we study another
intrinsic source of perturbation in this sensitive system, namely direct dipole-dipole interaction
between the laser active atoms, as they are densely confined within the optical resonator. Simi-
lar to atom-atom collisions in Ramsey experiments [10], dipole-dipole couplings tend to induce
phase noise and decoherence of the collective atomic dipole. In particular in lattice setups at
low filling, where collisions are strongly suppressed, this should constitute the most prominent
source of noise for such a laser.

The basic phenomenon of superradiance was theoretically studied in detail, e.g. by Haroche
and coworkers [11], about 50 years ago using a variety of analytical approximation meth-
ods [12, 13]. As an important effect one finds that the decay rate of low energy collective
excitations grows linearly with the particle number N [14]. For multiply excited states the ef-
fect is increased further and the collective decay of a strongly inverted ensemble exhibits a
delayed intensity maximum largely proportional to N? as a significant deviation from the ex-
ponential decay of individual atoms [15, 11, 16]. The phenomenon has been observed in a
large number of experiments in gases and solids [17, 15] and more recently also for ultracold
quantum gases [18, 19].

As in every laser setup, we naturally have to deal with inverted ensembles. Hence, we can
expect that superradiant effects will play an important role and the assumption of individual
atomic decay at the independent free space single atom rate will loose its validity. Let us em-
phasize that the collective symmetric coupling of the atoms to the cavity mode does not require
the atoms to occupy a small volume of the order of a cubic wavelength, but simply calls for an
almost equal cavity coupling constant for all atoms. Dicke superradiant spontaneous decay, on
the other hand, is maximal for closely spaced emitters, but still plays a decisive role in more
extended geometries and in particular for regularly ordered ensembles. While this free space
superradiant interaction and decay was incorporated intrinsically in the early works on super-
radiant lasing [8], it was neglected in the more recent considerations on superradiant lasing on
ultra narrow atomic transitions [2].

In the present paper we investigate the full model for the collective decay process in a super-
radiant laser configuration. While the underlying Hamiltonian and dynamical master equations
for the coupled atom-field dynamics are well established, exact treatments of the full decay
problem for more than a few particles is hardly possible apart from some special cases. Numer-
ical simulations can be performed for somewhat higher atom numbers in the fully collective
limit. However, for more particles in a small but finite volume, collective and individual de-
cay are present and the equations immediately become very cumbersome, as the number of
occupied states within the total physical Hilbert space (growing as 2V) gets prohibitively large.
Interesting results can still be obtained for special finite configurations, which should exhibit the
qualitative consequences of dipole-dipole coupling quite well. Besides demonstrating the un-
derlying basic physical mechanisms, our study aims at direct implications for the laser linewidth
of a magic wavelength lattice laser in the superradiant regime [20, 21, 3, 7].

2. Model

We consider N identical two-level atoms held in a regular spaced configuration, e.g. in a far
detuned optical trap, each of them symmetrically coupled to a single mode of a high Q optical
resonator. Due to the inherent exposure of the atoms to the vacuum bath the ensemble is af-
fected by coherent dipole-dipole energy exchange processes and also by collective spontaneous
emission [22]. Further, we employ a transverse incoherent pump, which allows us to use the
atoms as an active medium, as well as another dissipative process, the cavity loss. Upon Born,



Fig. 1: Schematics of a lattice laser setup. A transversely pumped (pumping rate R) finite atomic
ensemble with dipole-dipole couplings €;; and collective spontaneous emission I';; inside an
optical resonator with a loss rate of k¥

rotating wave and Markov approximation we end up with a standard Lindblad type master
equation. Explicitly the time-dependence of the N-atom density matrix is governed by (7 = 1)

) .
P = ilp,H]+ Zialp)+ Ly [P) + Zia [P = Z [p), M
with the Hamiltonian
H= %Zaf—i—ggijoﬁof—ﬁ—wcaTa—i—Him @
i i#j

where 6;" and o; are the raising and lowering operators for the atomic dipole of the i-th atom
with the transition energy a, the operators a' and a correspond to the creation and annihilation
of a photon with the frequency @, in the cavity mode , Q;; denotes the resonant dipole-dipole
energy transfer between the atoms i and j, and

Hi=g)_ (ac;" +d'o;) 3)
;

represents the Jaynes-Cummings type interaction between the individual atomic transition
dipoles and the cavity mode with g being the coupling that emerges if a constant mode func-
tion is assumed. This approximation is justified in the situation where the atomic ensemble is
aligned transversely to the propagation direction of the cavity mode or its dimensions are much
smaller than the length of the resonator.

The collective atomic damping is accounted for by the Liouvillian

1 _ _ .
Zalp] =35 YT (20,- po; —o;'o; p—pcr,-+0,-) )
LJ

with generalized spontaneous emission rates I';; arising from the coupling of the atomic tran-
sition dipoles through the vacuum field [23]. The incoherent transverse broadband pumping,
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which in our model acts on each atom in the same way, leads to
R +— — ot -t
Zoump [P] =5 1 (207 po™~0; 0 p~po; o} ) ®)
1
with R quantifying the pumping rate and cavity loss with the rate k is described by

Zeav|p] = K (2apa’ —a'ap —pa’a). (6)

Observe that the collective coupling and decay matrices [Q;;] and [I';;] possess non-diagonal
elements, which have to be calculated as a function of the system’s geometry [16]. In many
other cases, due to the finite correlation length of vacuum fluctuations, these nondiagonal parts
can be safely neglected. Explicitly, for identical atoms we have [24]

ar ar
F,'j = TF(kOrij) Q,‘j = TG(kOrU) (7)

with I the single atom linewidth, ko = @y/c =27 /A and

F(&)= (1700526)¥+(1,300S29) (C(%Sf 7%)7

G(§)=~(1-cos’6) cogsg +(1-3c0s’0) (Sl»;iz§+ C(;é) 7

where & = kor; j- Here, r;; denotes the relative distance between the atoms i and j and 6 is the
angle the transition dipole draws with the vector connecting the two atoms.

®)

A crucial property of a laser is its spectrum in the steady state. In order to calculate the
spectral distribution of the light field inside the cavity we employ the Wiener-Khinchin theo-
rem [25], where

S(w,1) = / e (o} (1 4+ T)a(r)) dr. ©)

Numerically, this is achieved by at first determining the steady state pg, which can be calcu-
lated as the kernel of the Liouvillian, i.e. solving .Z [ps] = 0. Now, the annihilation operator a
is applied and we let this state evolve. After a time T has elapsed, we apply the creation oper-
ator a' and Fourier-transform the trace of this aggregate, as the Fourier transformation of the
expectation value of the field correlation function equates to the spectrum of the intra cavity
and output light field.

3. Superradiant laser dynamics with confined ensembles
3.1.  General properties of superradiant lasing

First, let us exhibit some general features of the dynamics of a laser with all atoms coupled
equally to the cavity mode in the two idealized limiting cases of (a) fully collective and (b)
individual independent spontaneous decay. Mathematically, this is implemented simply by set-
ting (a) I';; =T  for the collective case as discussed in [8] and (b) I';; = I'§;; for independent
decay as studied in [2]. Surprisingly, the fully collective case is much easier to deal with nu-
merically as the total collective spin magnitude is conserved and the Hilbert space for N atoms
is restricted to the N + 1 states of a spin-N /2 system. The effective pumping of the atoms can
also be described as an independent or collective mechanism. Here we refrain from including
dipole-dipole induced excitonic shifts of the energy levels. This assumption can be justified
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Fig. 3: Output spectrum of a fully collective laser with different atom numbers N for I' = /20
and R = k/5 compared to the empty cavity linewidth (N = 0), absolute (a) and normalized (b)

for a completely homogeneous atomic density [11] but has to be reconsidered for concrete fi-
nite size implementations. We will explicitly account for this in the finite lattice geometries
discussed below.

Fig. 2 shows the mean photon number as a function of the pump strength R and the sin-
gle atom decay rate I" for the three cases of collective pump and collective decay, individual
pump and collective decay and independent pump and independent decay for N = 4 atoms.
We see that the maximum photon number is not so different for the three cases and appears at
small spontaneous decay rates. For fully collective pump and collective spontaneous decay (fig.
2a)superradiant emission into free space limits the optimal operation regime to a lower pump
intensity, though.

Now, it is of course most interesting to look at the frequency stability or line-width of this
laser. As seen in fig. 3 the output intensity spectrum exhibits a nonlinear growth with the
atom number (green line), as expected, until it saturates (red line). Remarkably, however, the
linewidth does not narrow with the photon or atom number, but is even increased by superra-
diant spontaneous emission. Thus, the optimal case seems to be collective emission into the
lasing mode without superradiant spontaneous decay. We will investigate this in more detail in
the following sections.
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3.2.  The superradiant lattice laser

Above we have seen that collective decay and collective pump strongly change the laser dy-
namics and its properties. Besides modified decay rates governed by eq.4 in any finite size
geometry dipole-dipole interaction as given by eq.2 has to be taken into account as well. To
study the basic physical effects, in this section we will investigate three different regular geo-
metric arrangements for the laser active atoms. We compare a linear chain, where we go beyond
the single excitation and nearest-neighbor coupling limits discussed in [14], to an equilateral
triangle and a square configuration. Let us point out, that for two atoms, e.g. [26], the particular
relative arrangement is irrelevant, and therefore the system can be handled analytically.

3.2.1. A square lattice of four atoms

As a generic example we first show the photon number, the inversion of the active medium
atoms and the g(®)(0) correlation function for a fixed cavity loss k while tuning the pumping
rate R and the individual atom decay rate I" for a four atom laser in a square lattice. The chosen
lattice constant is half of the magic wavelength for Strontium, A,qeic/(229) = 0.58 [27, 20].
For the photon number shown in fig. 4a the maximum appears at a pumping ratio of R/k = 2.2,
which is equal to the result from above for individual pumping and collective decay as depicted
in fig. 2b.

In fig. 4b the expectation value of the o, operator is illustrated, where the black line represents
the crossover to population inversion. On the right-hand side of the line the atom population is
inverted, corresponding to the lasing case. Fig. 4c presents the g2(0) function, where the white
line highlights a value of g?(0) = 1, indicating a perfectly coherent light field. The area where
g%(0) < 1 could be referred to as an anti-bunching regime.

3.2.2.  Comparison of different geometrical configurations

Let us study the influence of the geometric arrangement of the particles for different numbers
of atoms and compare the results for the square discussed above to an equilateral triangle of
atoms and a three and four atom chain. In order to obtain a substantial effect despite our small
atom numbers, we choose a smaller lattice constant of a = Ay /10 and a fixed atomic decay rate
of I'/k =0.2.

In fig. 5 we show, that for the average values the atom number is more important than the par-
ticular geometric arrangement. Interestingly for four atoms one can even reach sub Poissonian
photon statistics.

Naturally, the results depend on the average distance of the atoms, which is shown in the
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the pump strength R for a square of different lattice constants a and a fixed spontaneous decay
rate ' = 0.2x

following set of pictures in fig. 6 for a square of different lattice constants a with a fixed spon-
taneous emission rate of I'/x = 0.2. As one might have expected, fig. 6 demonstrates a much
more pronounced effect when varying the distance as opposed to changing the geometry.

Overall, despite fairly strong interactions of the atoms at small distances, the laser seems to
be very robust against such pairwise perturbations, which appear to average out quite well once
the oscillation threshold is surpassed. The differences increase with pump strength where, on
average, more particles are excited.

4. Laser stability and frequency shifts for different atomic distances

Of course, the most sought after quality of a superradiant laser is its superb frequency stability
and accuracy. In the first section we have seen that collective spontaneous decay can broaden
the laser line and dipole-dipole interactions potentially shift its position. Now, we will study
this effect for a lattice laser.

4.1.  Laser linewidth and frequency shift

As is well known, the spectrum of a laser in the bad cavity limit deviates from the idealized
Shawlow-Townes result, but the center of the line still approximately follows a Lorentzian [7]
so that in our numerical analysis the linewidth and its center position relative to the bare atom
line can be determined from a Lorentzian fit to the steady state spectrum, as described in sec.
2. Therefore, the width of the Lorentzian corresponds to the laser’s linewidth while the offset
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Fig. 7: Laser linewidth (a) and frequency shift (b) for a square atom arrangement at different
distances as a function of the pump strength for a fixed atomic decay rate of I' = 0.2x

in the maximum describes the energy shift, which is the energy of the light field in the cavity
relative to the cavity ground frequency. Fig. 7 and fig. 8 present the fitted width yz and the
energy shift § for different interatomic distances and geometrical configurations as a function
of the pumping rate R. For these calculations the same parameters as above were used.

In fig. 7 we depict the linewidth and frequency shift of a laser with four atoms in a square
configuration as a function of the pump strength for different inter atomic distances. We observe
a minimum linewidth at a moderate pump strength of R/k = 1.9, which corresponds to an
operation at the maximally achievable photon number, as shown in fig. 4.

For a stronger pump the perturbations due to collective interactions dominate, though signif-
icant effects appear for very closely positioned atoms, i.e. a < A/2, only. Even with just four
atoms it is possible to achieve a linewidth significantly below the resonator’s linewidth. The
predicted frequency shift with respect to the bare atom frequency (as depicted in fig. 7) remains
very small for larger interatomic distances and reaches a maximum value when the laser is op-
erated at R/ K ~ 3, close to the maximum photon number. This could certainly be an observable
phenomenon, but it is not detrimental for the operation of such a laser.

Interestingly, for the linewidth and shift properties, geometrical effects are more important
than they are for the average intensity. A square arrangement of the atoms creates a much larger
shift than a triangular or a linear array, as can be seen in fig. 8. Note that the increased shift with
the atom number could lead to observable perturbations for larger ensembles. Again, operation
at a lower pump intensity could help to minimize the effect.

4.2.  Laser sensitivity to cavity length fluctuations

A central criterion for the stability of a laser is its sensitivity to fluctuations of the effective
cavity length, which at present is one of the main limitations of reference oscillator stabilized
lasers. Despite spectacular recent progress [28], comprehensive control at this level is still an
extraordinary technical challenge. With the atoms acting as reference oscillators less effort in
order to achieve technical stabilization is expected in an ideal superradiant laser. In the follow-
ing we will study the effect of a varying cavity frequency described by an effective detuning
(A = w, — ayp) on the average photon number (fig. 9) and the frequency mismatch between the
bare atomic transition frequency and the laser field (8, = @y — o) as seen in fig. 10 depending
on the average atomic distance. As shown in fig. 9a for closely positioned atoms the interaction
evokes a significant blue shift of the cavity frequency, generating the maximum photon number
with respect to the clock transition. For atoms in a magic wavelength lattice (fig. 9b) this shift is
much smaller and close to the interaction-free case. The detuning sensitivity of the laser output
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function of the pump strength for a fixed atomic decay rate of I' = 0.2k
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Fig. 9: Average photon number for atoms on a square with a = 49/10 (a) and a = Aagic /2 (b)
for variable cavity detuning and an atomic decay rate I' = 0.2x

spectrum in these two cases is depicted in fig. 10.

We see that the laser frequency pulling via the cavity changes with the interaction and in-
creases with pumping and the intracavity photon number. Nevertheless, as indicated by the
solid and dashed lines, the effective laser frequency change remains within an atomic linewidth
even for cavity fluctuations on the order of the cavity width. At low pump strength and small
inversion a sort of self-synchronization of the atomic dipoles via direct interactions can lead to
very strong suppression of cavity fluctuations at the expense of very little output light, while for
stronger pumping interaction effects are suppressed and the cavity drifts produce a more sig-
nificant impact on the laser frequency. Overall, we observe that by choosing optimal operating
conditions a decoupling of the cavity fluctuations from the laser frequency can be suppressed
very effectively, even in the case of atomic interactions. However, this decoupling generally
also reduces the output power of the laser.

5. Conclusions and outlook

By means of numerically solvable examples involving a few particles only, we have evaluated
the influence of dipole-dipole interaction and collective spontaneous emission on the radia-
tive properties of a superradiant laser in a lattice geometry. In general, even for fairly closely
spaced atoms, shifts and frequency uncertainties are of the order of the free space atomic
linewidth. Only for very densely packed ensembles superradiant free space decay will sub-
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Fig. 10: Frequency shift for a square atom configuration with a = A9/10 (a) and a = Aagic/2
(b) for variable detuning and a fixed atomic decay rate of I = 0.2x. The dashed line represents
6,/T = —1 and the solid line corresponds to §,/I" =1

stantially broaden the laser line and increase the sensitivity of the laser frequency to cavity
drifts. Quantitatively, the various limiting cases of a completely collective laser as opposed to
an independent atom system can lead to a different scaling behavior of the photon number and
the linewidth with substantially different photon statistics. Fortunately, for a Strontium setup
based on a magic wavelength lattice, the detrimental effects remain very small, although they
could attain an observable magnitude at high filling. At optimally chosen operating conditions
dipole dipole interaction can be exploited to reduce laser frequency fluctuations via direct phase
stabilization even at very low photon numbers.

In this work we still assumed a rather ideal and to some extent artificial pumping mechanism,
replenishing the upper atomic state by introducing the minimum necessary decoherence only,
while also neglecting light shifts from the pump lasers. Any more realistic pumping via extra
levels or an injection of excited atoms would, of course, add extra noise and has to be designed
very carefully. This is one of the major remaining challenges for the implementation of such
an optical version of the hydrogen maser. In any case, from the point of view of stability and
shifts, the operation at weak pump strength seems favorable, although the very weak output
field could be a technical challenge for practical use.
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Generalized mean-field approach to simulate the dynamics of large dissipative spin

ensembles with long range interactions
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Institute for Theoretical Physics, Universitat Innsbruck, Technikerstrasse 21, 6020 Innsbruck, Austria

We numerically study the collective coherent and dissipative dynamics in spin lattices with long
range interactions in one, two and three dimensions. For generic geometric configurations with
a small spin number, which are fully solvable numerically, we show that a dynamical mean-field
approach based upon a spatial factorization of the density operator often gives a surprisingly accurate
representation of the collective dynamics. Including all pair correlations at any distance in the spirit
of a second order cumulant expansion improves the numerical accuracy by at least one order of
magnitude. We then apply this truncated expansion method to simulate large numbers of spins from
about ten in the case of the full quantum model, a few thousand, if all pair correlations are included
, up to several ten-thousands in the mean-field approximation. We find collective modifications of
the spin dynamics in surprisingly large system sizes. In 3D, the mutual interaction strength does
not converge to a desired accuracy within the maximum system sizes we can currently implement.
Extensive numerical tests help in identifying interaction strengths and geometric configurations
where our approximations perform well and allow us to state fairly simple error estimates. By
simulating systems of increasing size we show that in one and two dimensions we can include as
many spins as needed to capture the properties of infinite size systems with high accuracy. As a
practical application our approach is well suited to provide error estimates for atomic clock setups

or super radiant lasers using magic wavelength optical lattices.

I. INTRODUCTION

Ensembles of interacting spins in various geometries
have been at the heart of quantum statistical physics
since the first models on magnetism were proposed [1].
As the spin-spin interaction is nonlinear and the cor-
responding Hilbert space grows exponentially with the
number of spins, exact analytic as well as full numeric
solutions are only possible for very special cases and ge-
ometries [2-4] or a small number of spins. The complex-
ity increases even further for an open system including
collective decay. As a very successful approximate nu-
merical approach based on the factorization of single site
expectation values, a dynamical mean-field method was
developed for efficient treatment of larger systems [5]. On
the one hand it allowed for analytical results in the large
dimensions limit [6] while, on the other hand, it soon
proved very useful for a numerical treatment in low di-
mensions. Subsequently, the general idea of the method
was successfully applied to a wide range of solid state
physics models in the very low temperature quantum do-
main [7]. Recently, this approach has proven useful in
the description of ultra-cold particle dynamics in optical
lattices [8, 9].

The present work is motivated by another, more re-
cent implementation of spin lattices based on ultra-cold
atoms or molecules trapped in an optical lattice, which
nowadays can be prepared almost routinely in the labo-
ratory with well defined filling factors and close to zero
temperature [10, 11]. When excited on an optical or in-
frared transition, the trapped particles will interact via
dipole-dipole energy exchange forming collective excita-
tions [12, 13]. In addition, optical transitions intrinsically
exhibit dissipation via spontaneous decay, which in such
a lattice becomes a collective effect leading to super- or
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sub-radiance [14]. In order to consistently treat such an
open system, one has to start from a master equation
instead of the Schroedinger equation after having traced
out the electromagnetic vacuum modes [15]. While the
interaction between a pair of spins can be rather small at
a larger distance, the collective effect of a sizable num-
ber of particles can still generate noticeable effects in this
case[13].

Besides using polar molecules, which can possess rel-
atively strong dipole moments [16], another interesting
implementation is based on using long lived atomic clock
transitions in a differential light-shift-free magic wave-
length lattice [17, 18], where one obtains extremely well
controllable and precisely measurable systems to study
even weak spin interactions [19] and collective decay
via dipole-dipole energy exchange [14]. For sufficient
densities the particles’ effective transition frequency and
spontaneous decay is modified by dipole-dipole interac-
tion [20], which in turn will influence the performance of
a corresponding clock or super-radiant laser [21].

While the extremely small dipole moment of a clock
transition keeps these interactions small, even tiny shifts
and broadenings will ultimately influence clock accuracy
and precision. Hence, reliable and converging numeri-
cal models are required to estimate these effects to many
digits, in particular as one tries to work with as large as
possible an ensemble to reduce measurement time and
projection noise. For rather small atom numbers, up to
about 10, a numerical solution of the full master equation
is still possible [20] and has showed that shifts and broad-
ening can be non-negligible. For larger ensembles at low
densities a so called cluster approach based on statistical
averaging of important small particle number configura-
tions has already produced first estimates of their scaling
with the system’s size [22]. Here, we focus on a more



generally valid approach, namely the above mentioned
mean-field plus pair-correlation method (MPC) to tackle
large systems at high densities, i.e. up to unit filling. The
long range nature of the dipole coupling is accounted for
by adding higher order corrections to the standard local
factorization approach. In particular, for cavity mediated
dipole interactions or coupling via nano-fibers even infi-
nite range interactions have to be considered [23]. The
focus of this work is put on developing the appropriate
general numerical framework to treat such extended open
spin lattices in various configurations and test their ac-
curacy and convergence properties by means of the ex-
ample of collective decay of a highly excited spin state.
This should be the basis of future more specific work on
concrete implementations of lattice clock Ramsey spec-
troscopy [24] and super-radiant laser setups [21, 25].

This work is organized as follows. First, we give a short
description of the system of coupled spins and introduce
the corresponding master equation governing their time
evolution including decay. Using generalized factoriza-
tion assumptions for the density operator of the system
we derive two approximate and numerically advantageous
methods to calculate its time evolution. In the subse-
quent section we perform calculations for large ensembles
studying the influence of long-range interactions. Here,
we add an extensive numerical analysis to characterize
the magnitude and scaling of the error of these two ap-
proximations depending on the geometry and the choice
of initial state. Finally, we use this method to simulate
systems of increasing size to study to which extend a fi-
nite sized sample can capture the dynamics of larger or
even infinite systems.

II. INTERACTING SPIN DYNAMICS

We consider a system consisting of N two-level subsys-
tems with transition frequency wgy and decay rate ~ in an
arbitrary spatial configuration. Each particle couples to
the modes of the free electro-magnetic field and therefore
all particles are indirectly coupled to one another. Math-
ematically, this problem can be simplified by treating the
electro-magnetic modes as a single bath and introducing
effective particle-particle interactions and effective decay
of particle excitations into this bath, according to [12].
The time evolution of the N spins in a rotating frame
corresponding to Y, woo} is then governed by a master
equation

. i
p=—5H.p] + L] 1)
with the Hamiltonian
ij3iA]

and Lindblad-term

1 _ _ _
Llp) = 5 3 Ty (207 pof — ot oy 0= pofar). (3)
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The dipole-dipole interaction €2;; = %’«/G(korij) and the
collective decay I';; = %’\/F(korij) can be obtained ana-
lytically with

6O = -5 (BELTE)

with o =1 — cos? @ and B = 1 — 3cos? 6, where 0 repre-
sents the angle between the line connecting atoms i and
j and the common atomic dipole orientation [12].

While in systems consisting of only very few particles
we can study the time evolution by directly integrating
the master equation, the exponential scaling of the di-
mension of the Hilbert space soon defeats any numerical
abilities. To be able to represent the state of such a high
particle number system in a computer one has to make
simplifying assumptions about the form of the density
matrix. In our following calculations we will truncate cor-
relations between the particles at a certain order which
greatly reduces the space needed to store the state of the
system in memory and allows for treating larger particle
numbers.

A. Mean-field method: product state assumption

In the first nontrivial approximation we neglect cor-
relations altogether and assume that the system is at
all times in a product state of the subsystems at each
site. The density matrix is approximated by p = @), p*)
which is also called mean-field approximation. The time
evolution of the system is then governed by the local on
site density matrices, which for two-level systems can be
obtained from a complete set of expectation values for
each spin, i.e. the expectation values of the Pauli oper-
ators (o), (oy) and (o) for a spin 1/2 system. Using
this Pauli representation we need three real numbers to
characterize the state of each of the two-level sub-systems
at a certain point in time. The resulting equations for
the local spin provide an intuitive insight into the corre-
sponding physics. Explicitly we get:

1 €T 1 T .z
> Qilotof) - 37(0k) =5 > Twilofop)

itk itk
(5a)
g Tz 1 1 2z
(o) =~ Z Qpi(ofop) — 57(”)3) -3 Z Tyilofof)
iyiFk isitk
(5b)
(07) = =i Y (ko) — (ofal)) + (1~ (7))
ik
1 - 1
+5 > Twi((ofor) + (o¥a})) (5¢)
itk

These equations still contain two-particle expectation

values of the form (af‘af ), which according to our above
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assumption can be factorized, i.e. (0‘1(7[3) = (o?)(af)
As we will see in the next section for W(,d.k inter-particle
interactions this gives a surprisingly good approximation
to the interaction induced shifts and can also account for
spatial inhomogeneities of the system.

B. Extended mean-field method including
pair-correlations (MPC)

As a next-order correction to the above mean-field ap-
proach we now include pair-correlations but still neglect
all higher-order correlations. To this end the density ma-

(,,<J,k)®

), where the first term is the previously used

trix can be approximated by p = ), p® +E].<k
®izj )

product state and the correlations are captured in the
operators p*). The correlations thus have to be chosen
to generate vanishing single particle expectation values,
ie. Tr {Uf‘p(j’k)} = 0. Deriving the equations of motion
in terms of expectation values of Pauli operators leads
to the same equations as in the mean-field case (eq. 5).
The two-particle expectation values are then determined
via a set of additional equations for the expectation val-
ues of all two-particle Pauli operator pairs of the type
(o“crﬁ ). In principle, there are nine such quantities for
any pair of particles /)(J*k'). For symmetry reasons three
of them are trivially obtained from the others. Similarly
to the mean-field in the equations for these two-particle
correlations higher order three-particle correlations ap-
pear, which based on our assumption of the form of the
density operator are again approximated by

(o8alal) m —2(0) (o) (o) + (o) (ofol) + (o] ) (o0 )

+ (o)) ofal). (6)

Although the resulting equations of motions for the two-
particle correlations are arguably bulky, we want to dis-
play them explicitly, as the form an essential basis of our
work.
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Note, that the number of equations to be solved increases
quadratically with the number of particles, as we include
all possible two-particle combinations. This is exponen-
tially slower than the growth of the corresponding Hilbert
space. In many cases one might even be able to restrict
this to nearest neighbor couplings only, but for long range
dipole or cavity mediated interactions, in which we are
interested here, no such truncations can be performed
safely. In principle the method, which in many respects
resembles the known cumulant expansion method [26],



can be extended towards higher order. However, as we
will see below, it is already very accurate for our purposes
so that we will not pursue this task.

III. NUMERICAL ACCURACY OF
MEAN-FIELD METHOD AND SECOND ORDER
CORRECTIONS

In the previous section we have presented two nu-
merical approaches to approximate the master equation
(eq. 1) by neglecting higher-order quantum correlations.
In order to examine for which conditions these assump-
tions lead to accurate solutions, we compare these ap-
proximations with the numerical solution of the full mas-
ter equation for different spatial arrangements, numbers
of particles and initial states. Additionally we also calcu-
late the case of independent particles, which allows us to
identify examples where the error of the approximation
is small due to a negligible influence of the dipole-dipole-
interaction and the collective decay.

1. Spin dynamics

To obtain a first intuitive understanding for the quality
of the different methods we compare the time evolution
of the expectation values of the Pauli operators for three
different geometries, i.e. a chain (fig. 1), a square lattice
(fig. 2) and a cube (fig. 3). As a generic physical exam-
ple, we start with a product state of all spins pointing in
x-direction. This is the state prepared in the first step
of a typical Ramsey spectroscopy procedure. It is fully
superradiant when all particles are confined in a very
small spatial volume. Clearly, the dynamics of all three
cases is significantly different, but they all share certain
features. First, the solution of the full master equation
deviates drastically from the independent particle case,
which means that the effect of the collective interaction
is significant. This deviation is almost perfectly captured
by the second order MPC solution, which is, at least vi-
sually, almost identical to the full solution of the master
equation. Surprisingly, the mean-field solution shows a
qualitatively similar behavior already, although it is no-
ticeably not as accurate. Note, that for the case of the
cube (fig. 3) both methods predict the subradiance of the
initial spin state well [24]. Let us now turn from a visual
to a more systematic numerical error estimation.

2. Systematic accuracy analysis

In the following we will perform a more rigorous, quan-
titative analysis for a large range of parameters. In order
to do this effectively we need a simple measure of accu-
racy of the different methods. A frequently used tool,
especially in quantum information, is the trace distance
which is defined as T (p,0) = %|A;| where the )\; are the

eigenvalues of the matrix representation of p — 0. For
qubits this measure has a very intuitive interpretation,
it is just half of the geometric distance of the two states
on the Bloch sphere. In fig. 4 we use this trace distance
between the solution of the master equation and the pre-
viously presented numerical methods at equal points in
time to characterize the error of the different approxima-
tions. In all our examples we initially start in a product
state, which means that the error at ¢ = 0 is always zero
and since no additional pumping is included the system
decays to the ground state and the trace distance in the
long time limit will vanish for all numerical methods. In-
stead of inspecting the variation of the trace distance over
time we will use the time-maximum of the trace distance
as a characterization of the error.

A. Geometry dependence

In this section we study the geometry dependence of
the error of the numerical methods measured by the pre-
viously introduced time maximum of the trace distance.
We distinguish between systems of different dimensional-
ity, a 1D chain consisting of 8 particles (fig. 5), a 3x3 sec-
tion of a 2D square lattice (fig. 6) and a cube as a 3D con-
figuration (fig. 7). For each of these examples we calcu-
late the dependence of the error on the distance between
the particles. Further on we vary the initial state and
the orientation of the polarization vector and show three
typical results. In the following the initial state is char-
acterized by © which measures the polar angle between a
given state towards the ground state on the Bloch sphere.

Several interesting features stand out immediately. The
bigger the distance between the particles, the smaller the
error of neglecting higher-order correlations. As can be
seen from the trace distance between the solution of the
master equation and the independently decaying case this
is to some degree an artifact of the decreasing strength of
the dipole-dipole interaction which in the far field limit
has a 1 dependency but at least for MPC the error de-
creases much faster. In nearly all cases the mean-field
approach yields a noticeable improvement, yet, when all
spins start in the excited state it reproduces the results
of independent particles only. In fact, as one can show
from the mean-field equations, in this case the time evo-
lution is completely identical, so mean-field results in no
improvement over simply ignoring the collective effects.

B. Initial state dependence

To further analyze the dependence of the error on the
initial state we consider a chain of six particles with three
different particle distances. Initially the system is in a
product state where all single particles are in the same
Bloch state. For simplicity we only consider pure states
and since the time evolution is invariant under a global
rotation around the z-axis the only remaining variable is
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FIG. 1. Time evolution of the expectation values of the Pauli operators 0., o, and 0. of the central spin in a chain consisting
of 7 spins with spin-spin distance d = 0.15X\o. The system is simulated using independent spins (red), the mean-field method
(blue), MPC (green) and by solving the whole master equation (dashed black). The dipole is orientated orthogonally to the

chain.
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FIG. 2. Time evolution of the expectation values of the Pauli operators 0., oy, and 0. of the central spin in a 2D-square lattice
consisting of 3x3 spins with nearest spin-spin distance d = 0.5X\o. The system is simulated using independent spins (red), the
mean-field method (blue), MPC (green) and by solving the whole master equation (dashed black). The dipole is orientated

orthogonally to the plane.

the polar angle ©. In fig. 8 the dependence of the error
on this polar angle is shown. For © = 0 the system is
in the ground state and the error vanishes. For a small
excitation the mean-field method gives a substantial im-
provement compared to the independently decaying sys-
tem but for a nearly totally excited state the advantage
disappears more and more. In contrast, MPC performs
convincingly for all initial states.

C. Spin-number dependence

Finally, we investigate the dependence of the error on
the number of particles in the system, i.e. a chain consist-
ing of NV particles. The result of this analysis is shown in
fig. 9a. In this double logarithmic plot the error appears
to be nearly linear but slightly shifted for varying parti-
cle numbers which leads us to the following estimate for
the error

err(N,d) = Cy * d*V. (8)

The exponent ky and the factor Cy can be extracted
from this error plot and are shown in fig. 9b and fig. 9c
respectively. The error exponent turns out to be inde-
pendent of the number of particles and is -1 for inde-
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pendently decaying spins which is not surprising since
the collective interaction in the far field drops with %
However, increasing the distances doesn’t improve the
mean-field results whereas MPC has an error exponent
of -2 and gains drastically on accuracy.

IV. APPROXIMATION OF VERY LARGE
(INFINITE) SYSTEMS

Recent research on the effect of geometry on the per-
turbation of the spin dynamics by collective interactions
was mostly limited to systems consisting of only very
few atoms. In lack of better alternatives one might be
tempted to extrapolate results obtained from these small-
sized systems to larger ensembles but in general this at-
tempt could fail miserably. Armed with the knowledge
about the accuracy of the mean-field and MPC methods
and their ability to simulate moderately large systems
we can use them to investigate how many particles are
needed to make satisfying statements about infinite sys-
tems. More precisely, we want to know how collective
spin quantities of the type & >°,(c®) will change for dif-
ferent numbers of particles. Of course, it is not a priori
clear if these expectation values will converge at all. To
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FIG. 3. Time evolution of the expectation values of the Pauli operators 0., o, and 0. of a single spin in a cube configuration
with nearest spin-spin distance d = 0.6Ao. The system is simulated using independent spins (red), the mean-field method
(blue), MPC (green) and by solving the whole master equation (dashed black). The dipole is orientated orthogonally to an
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FIG. 4. Trace distance between the density operators calculated by the master equation and density operators calculated for
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answer this question we will study two different exam-
ples.

A. Linear equidistant chain

We consider a N-particle spin chain with particle dis-
tance d and calculate the dynamics of the whole system
where initially all spins are in the (o,) = 1 state. Trac-
ing out all but the innermost spin allows us to compare
the dynamics of this single spin for a varying number of
surrounding particles. The result of this analysis for a
certain distance d after an integration time of 2y~1 is
shown in fig. 10. Fortunately, all methods yield more or
less the same result and differ significantly from the in-
dependently decaying case, indicating that the variation
for small particle numbers and the ultimate convergence
for large systems is not a numerical artifact. This re-
sult hints at the fact that a suitable number of particles
will indeed give a usable approximation of big systems.
To consolidate this claim we perform a more extensive
and quantitative test. What we actually would like to
test is how much the time evolution of the single central
spin in a chain consisting of N particles differs from the
time evolution of a spin in an infinite chain. However,
we are not aware of a method to solve the infinite chain

exactly which leaves us with the option to compare the
central spin of a N particle chain with a chain contain-
ing as many spins as numerically possible only. In fig. 11
and fig. 12, the dynamics of a 20001 particle mean-field
simulation and a 401 particle MPC simulation are used
as the best possible approximation of an infinite chain
for three different spin-spin distances, respectively. In
most cases the addition of further spins affects the cen-
tral spin less and less and is approximately linear in this
double logarithmic plot, i.e. the trace distance between
the infinite chain and the N-particle chain for a certain
distance can be estimated by T'(N,inf) = CyNX. By
fitting this function to the numerical results we can de-
termine the exponent k; and the factor Cy depending
on the distance which is plotted in fig. 13. For nearly
all distances both the mean-field method as well as the
MPC method predict that adding further particles has
an effect proportional to % only, allowing us to easily
estimate the number of particles needed to approximate
the infinite chain dynamics to a desired accuracy. How-
ever, when the spin-spin distance is close to a multiple
of the transition wavelength Ao, the dynamics of the in-
finite chain never seems to be captured by a finite size
approximation.
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B. Hexagonal lattice

With these very encouraging results for a 1D chain, let
us see, if this holds true for higher dimensional geometries
as well. Unfortunately we failed to obtain convincing
results for 3D cubic lattices, since the number of particles
needed for convergence of the numerical result turns out
to very much exceed the possibility of MPC and even of
the mean-field method. For 2D geometries at least, the
mean-field method delivers some meaningful, albeit by
far not as beautiful results. Fig. 14 shows the numerically
obtained approximations for the error exponent and the
error factor for the case of a hexagonal lattice, where
additional particles are added in rings around the central
spin. The outcome looks rather noisy, probably due to
too small a choice for the number of particles used as an
approximation of the infinite lattice. It turns out that
compared to the chain a lot more particles are needed to
reliably approximate an infinite hexagonal lattice, i.e. the
influence of additional particles reduces the error with
approximately N9, where this exponent is a rather
rough estimate.
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V. NUMERICAL COMPLEXITY OF THE
DIFFERENT METHODS

Finally we want to add some considerations on the
memory and CPU requirements of the different methods
and show that our implementations behave as expected
in this regard. When solving the master equation the
state of the system is captured as a density matrix of
dimension 22V The time evolution according to a master
equation is equivalent to a matrix-matrix multiplication
and therefore has a time complexity of O(23V). In the
case of mean-field a state can be characterized by 3N
real numbers and according to the mean-field equations
(eq. 5) the time complexity is then approximately O(N?).
For the MPC method the state consists of one mean-field
state and nine correlation matrices of the form C%B =

(U?Uf ). Using the relation C’f‘jﬁ = C;‘iﬁ means that we
need roughly % real numbers to represent one MPC
state. The time complexity is, according to the MPC
equations (eq. 7), approximately O(N?). The results of
this analysis are presented in fig. 15.
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VI. CONCLUSIONS AND OUTLOOK

We have demonstrated that an effective mean-field
method with added pair correlations provides a numer-
ically efficient and surprisingly accurate method to sim-
ulate open spin systems with general non local spin-spin
interaction and collective decay up to moderately high
particle numbers and significant interaction strength.
Particularizing to dipole-dipole interaction and collective
spontaneous decay has allowed us to establish a numeri-
cal estimate of the accuracy and scaling properties of our
methods. Furthermore we can show for 1D chains that
tractable system sizes already approach the behavior of
infinite systems allowing for an estimate of the magnitude
of the error due to the truncation of the system. For 2D
systems the lowest order mean-field approach still allows
to reach adequate system sizes to approximate infinite
systems, whereas the scaling is unfavorable to accurately
approximate infinite 3D systems. In future work, we plan
to apply these methods to study collectively enhanced as
well as suppressed decay in magic wavelength lattices for

clock atoms. The simulations should also provide us with
predictions of geometries and excitation schemes to min-
imize dipole-dipole induced shifts in order to improve the
accuracy of atomic clocks. Possible approaches would be
to analyze different geometries, use initial phase spread
rotations and spin squeezing. As an interesting exten-
sion of this model we also want to embed such spin sys-
tems inside a cavity and derive corresponding mean-field
and MPC equations for the arising infinite range inter-
actions. This should give us a basis to simulate super-
radiant lasers for larger ensembles including their inter-
action. Note, that as we are simulating an open system
anyway, including a finite bath temperature will hardly
change the complexity of these calculations and could be
used to identify temperature dependent phase transitions
in the system.
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Atoms deeply trapped in magic wavelength optical lattices provide a Doppler- and collision-free
dense ensemble of quantum emitters ideal for high precision spectroscopy. Thus, they are the basis
of some of the best optical clock setups to date. However, despite their minute optical dipole
moments the inherent long range dipole-dipole interactions in such lattices generate line shifts,
dephasing and modified decay. We show that in a perfectly filled lattice these effects are resonantly
enhanced depending on lattice constant, lattice geometry and excitation scheme inducing clock
shifts of many atomic linewidths and reducing measurement precision via superradiance. However,
under optimal conditions collective effects can be exploited to yield zero effective shifts and prolong
dipole lifetimes beyond the single atom decay. In particular we identify 2D hexagonal or square
lattices with lattice constants below the optical wavelength as most promising configurations for an
accuracy and precision well below the independent ensemble limit. This geometry should also be
an ideal basis for related applications such as superradiant lasers, precision magnetometry or long

lived quantum memories.

Since the turn of the century the technology of manip-
ulating and controlling ultracold atoms with lasers has
seen breathtaking advances [1-3]. Following the seminal
first demonstration of a quantum phase transition in an
optical lattice [4], nowadays the so-called Mott insulator
state can be prepared routinely [5, 6]. Experiments with
photo-associated ultracold molecules have reached a com-
parable control [7-10] and coherent interactions between
the atoms at neighboring sites can be tailored [11].

For some of the world’s best optical clocks [12-14],
atoms with a long-lived clock transition are prepared
in an optical lattice using a differential light shift free
(magic) trapping wavelength [15, 16]. In principle, this
provides for a Doppler and collision free dense ensem-
ble with negligible inhomogeneous broadening. However,
when excited optically emitters will nevertheless interact
via long range resonant dipole-dipole coupling [17].

Here we show that at sufficient densities the dipole in-
teraction strength surpasses the excited state lifetime and
collective excitations analogous to excitons appear [18].
For polar molecules in optical lattices they even dominate
the dynamics [19] and allow for studying generic phenom-
ena of solid state physics [1]. For clock transitions the
extremely tiny dipole moment keeps these interactions
small in absolute magnitude. Still, the exciton’s effec-
tive transition frequencies and their spontaneous decay is
governed by dipole-dipole interaction [20] deviating from
the bare atom case. This limits accuracy and precision
of corresponding clock setups. In an idealized Ramsey
sequence for a clock setup, the first laser pulse creates a
product state of all atoms prepared in a 50% superpo-
sition of ground and excited state with equal phase and
all dipoles aligned in parallel. This state features the
maximally possible dipole moment and typically exhibits
superradiance. Even a tiny single particle spontaneous
emission rate can be that strongly enhanced, that collec-
tive decay becomes a dominant factor limiting measure-
ment time and precision [21]. In current setups based
on 1D lattices with low filling this perturbation is often
negligible compared to other noise like collisions, black
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FIG. 1. (Color online) Scheme of a 2D optical lattice filled
with clock atoms interacting via dipole-dipole energy ex-
change Q;; and a collectively modified spontaneous emission
I'ij at two different lattice constants shown in blue and yel-
low. In a mean field treatment with translation invariance the
sum over all interaction terms yields two effective couplings
QT and I only, which govern the approximate system dy-
namics.

body shifts or reference cavity fluctuations. However, in
lattices with unit filling, dipole-dipole interaction shifts
are larger than the atomic linewidth and constitute a sig-
nificant inherent perturbation. Note that their absolute
magnitude scales with the atomic dipole moment and
thus strongly depends on the chosen transition.

As a key quantity to capture the collective modifi-
cations of the system dynamics, we use the decay and
phase shift of the collective dipole generated by the first
Ramsey pulse, which determines the contrast and shift
of the central Ramsey fringes. Note, that due to the
pairwise nature of dipole-dipole interactions a rephasing
pulse cannot correct these errors. Here we ignore inter-
action induced perturbations during the Ramsey pulses,
which introduce extra noise but could be reduced by very
fast pulses or improved sequences [22].

For this we numerically solve the well established mas-
ter equation for the atomic density matrix p including
optical dipole-dipole interaction obtained by tracing over



the electromagnetic vacuum field [17, 23, 24],
p=1ilp, H] + L[p]. 1)

As previously shown for small atom numbers (N < 12) a
numerical solution of the full master equation yields non-
negligible shifts already [20, 25]. As the Hilbert space
grows exponentially with atom number, the full equation
cannot be solved for ensembles of a realistic size. Since
for precision measurements we need to evaluate collec-
tive effects precisely, reliable and converging alternative
numerical methods are required. For larger ensembles at
low densities a cluster approach has produced first esti-
mates of the scaling of the dephasing with the system’s
size and density [12]. Recently, important self synchro-
nization effects through dipole coupling were studied in
a very high density limit using simplifying assumptions
for the coupling [26].

In this letter we present an extensive analysis of the
collective dynamics for fully populated lattices of differ-
ent geometries and sizes containing a large or even an
infinite number of particles. Our primary goal is to es-
timate the magnitude of the dipole phase shift and col-
lective decay as a function of lattice and excitation ge-
ometry. Besides a resonant enhancement of shifts, decay
and dephasing, we find cases where collective effects lead
to improvements of the maximally achievable measure-
ment precision beyond the independent particle level by
virtue of subradiant states. We concentrate on an ideal-
ized setup ignoring lattice shifts, thermal effects or the
hopping of atoms.

Numerically we apply an enhanced mean field ap-
proach whose validity has been extensively tested in re-
cent work [27], which we can scale to realistic numbers
up to N ~ 10° particles. If the particle distribution ex-
hibits symmetries numbers up to even 10'° are possible,
well approximating infinite systems in 1D and 2D. Its
accuracy, however, breaks down at very close distances
as it cannot capture higher order correlations. Similar
deliberations for classical dipoles have recently been put
forward [28].

Model — We consider an ensemble of N identical ef-
fective two-level atoms with transition frequency wy and
inverse lifetime y at positions r; (¢ = 1..N) interacting via
optical dipole-dipole coupling described by the Hamilto-
nian [17, 24]

H=Y" Q(rij)ofo;. (2

;i)

Here, O’,,% denotes the raising (lowering) operator of the
i-th atom and €;; = %’yG (kori;) represents the energy
exchange with kg = wo/c = 2m/Ao and riy; = |r; — 75
being the distance between atoms i and j. Collective
spontaneous emission is accounted for by a Liouvillian of
the form [17, 23]

1 _ - _
Llp) = 5 > _Tis(riy) 207 pof —ofasp—pofay). (3)
i.J

where the off-diagonal rates I';; = %'yF (kori;) introduce
super- and subradiant decay [24]. Explicitly we have

GE) = 7(100;6 +8 (“%f + %) (4b)

with @ = 1 — cos?@ and 3 = 1 — 3cos? §, where 0 repre-
sents the angle between the line connecting atoms ¢ and
j and the common atomic dipole orientation.

Mean field approximation — To study large particle
numbers we derive the equations of motion for the ex-
pectation values of the Pauli operators for the k-th atom
as detailed in the appendix A. Assuming a separable den-
sity operator and factorizing the two-particle correlations
via (o'c¥) ~ (of')(0}) for u, v € {x,y, 2} they transform
to a closed set. As shown previously [27] these equations
still capture the major part of the interaction up to a
moderate interaction strength. For more accurate stud-
ies one may add second order corrections increasing the
computational effort.

Symmetric configurations — For symmetric geometries
with each atom initially in the same state and subject to
the same effective interactions, the equations of motion
for all particles become identical and read

(57) = o)) — 5 (7~ T(0%))0),  (5)

1

(o) = 7Q(tﬁ'<0_z><0_z> _ 5(,)/ _ Fcff<(7z>><ay>’ (5b)

(69 = (14 (0%) = 5T (10" 4 07)?). (50)

Hence instead of solving a huge set of coupled nonlinear
equations we need to determine the effective couplings,
ie.

N N
et =3"0,; rf=%"1y, (6)
j=2 Jj=2

Of course, such a rigorous symmetry condition is fulfilled
for very few atomic distributions only. Then, the essence
of the interactions within the entire lattice is captured
solely by two real numbers, the effective coupling Q¢ and
the collective decay rate I°. In a clock setup one seeks
to minimize the energy shifts Q° and find configurations
with a maximally negative T, minimizing decay and
allowing for an as long as possible interrogation time.
Finite systems — Firstly, for finite symmetric configura-
tions the effective quantities can be calculated easily. The
most obvious symmetric structures are regular polygons.
This might not be the most practical example but nicely
displays the underlying physics. In Fig. 2 we compare the
parameters for a square, a ten-sided and a 100000-sided
polygon. The square shows a behavior quite similar to
the underlying functions F'(§) and G(&), while the two
larger polygons exhibit strong size dependent variations,
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particularly at integral values of d)\o emerging from the
accumulation of many 1/£ contributions. Note that even
with a relatively large atom spacing, cooperative collec-
tive effects are sizable and vary strongly with distance.

Qeff Feﬁ

1 2 30 1 2 3
d/Xo d/Xo

FIG. 2. (Color online) Distance dependence of the effective
dipole coupling Q°T and T for a square (red), a ten-sided
(blue) and a 100000-sided (green) regular polygon. The fewer
particles the closer the functions resemble the underlying cou-
plings €;; and T';;. The divergences at integral d/Ao result
from the 1/¢ terms in F(£) and G(§).

Infinite systems — In practice, extended regular sys-
tems, i.e. large periodic lattices, are experimentally more
relevant. Fig. 3 depicts the effective couplings for an
infinite chain, a square lattice and a hexagonal lattice.
For comparison, we have overlaid the results for smaller
atom numbers to demonstrate finite size effects. We ob-
serve stronger variations and again divergences at inte-
gral values of d/)\o . These manifest themselves in a much
more pronounced way at huge atom numbers and there-
fore underpin the importance of properly treating long
range interactions.

Note that for the two-dimensional square lattice and
the hexagonal lattice T'*f exhibits a broad minimum for
the effective decay close to I'*f = —1 for d < g, where
atomic decay is strongly inhibited. This favors such two-
dimensional setups for lattice clocks as subradiant decay
will dominate the system dynamics allowing for much
longer Ramsey delay times and thus offering a higher
overall precision [21]. Similarly we can identify lattice
constants with a zero effective shift increasing clock ac-
curacy. Extending these calculations to three dimen-
sional lattices, we find that the necessary atom numbers
to obtain smooth converging behavior are beyond our
current numerical capabilities. For particle numbers of
about 10'? the resulting effective quantities still fluctu-
ate strongly, predicting potential problems for such 3D
clock setups. A demonstration of this effect can be found
in the appendix C.

Tailoring atomic excitations — So far we assumed a
phase-symmetric excitation of all atoms by the first Ram-
sey pulse. In a practical excitation scheme this corre-
sponds to illumination at right angle. In general, how-
ever, the effective couplings Q°f and I will change,
when we allow for a local phase shift imprinted on the
atoms. In a 7/2 Ramsey sequence [29] the excitation
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3
phase appears on the excited state directly, i.e.
S 1
) = —( +eiA‘1’(j’1)e). 7
|¥) g 7 l9) le) (7)

In our treatment we can exploit the system’s symmetry
and absorb this phase into the effective couplings (Ap-
pendix B). For A¢ = 0 we recover the above results.
The closer the phase shift gets to A¢ = 7, however, the
more half-integral values of d\ yield minimal shifts and
the maximally negative I as seen in Fig. 4. Since the
emitted light has interfered constructively at integral and
destructively at half-integral distances for A¢ = 0, it will
do exactly the opposite at A¢ = w. Furthermore, ad-
dressing atoms transversally (A¢ = 0) seems more favor-
able at typical magic wavelength trapping distances, e.g.
d/\o ~ 0.58 for 8787 [15, 20, 30]. Again, for d < \g the
mean field approach breaks down and one should rather
turn to the Dicke model [31], reducing N two-level emit-
ters to one effective spin N/2-system [26]. Let us finally
discuss the consequences for typical cases. Fig. 5 shows
the time evolution of the average spin for an infinite chain
initialized in a symmetric Ramsey state with either no
phase shift or a phase shift of A¢ = 7 between neighbor-
ing atoms. The lattice constants have been chosen to be
approximately \g/2 as would be typical [5]. We refrain
from choosing exactly Ao/2 to avoid the 1/¢ divergence.
We observe that the dipoles’ lifetimes vary strongly, com-
paring the subradiant behavior (red) where the collective
dipole lives much longer than the natural lifetime of the
atom to the superradiant (green) regime where the ex-
citation vanishes very quickly. Additionally, to highlight
the validity of the mean field approach, we add the results
of a second order expansion simulation. Corresponding
results for a full Ramsey sequence are shown in the ap-
pendix D.

Conclusions — In densely filled optical lattices dipole-
dipole interaction and collective decay significantly
change the evolution of an induced collective dipole. Due
to the long range-nature of the coupling, sizable shifts ap-
pear even for long lived clock states despite their minute
dipole moment, which limits accuracy and precision of
Ramsey spectroscopy. Shifts and dephasing in large sys-
tems strongly depend on the dimensionality and geom-
etry of the lattice, exhibiting resonant enhancements at
particular lattice constants. While at current operating
densities for Strontium [12-14] these shifts are smaller
than other technical imperfections, they constitute in-
herent fundamental perturbations even in perfectly filled
lattice clocks.

We have identified optimal operation geometries,
which combine a negligible effective shift with a strong
suppression of decay. In particular, for a 1D lattice with
a tailored excitation angle and for a 2D hexagonal lat-
tice favorable operation parameters for future generation
clock setups were found. In this sense it seems possible
to implement a high density dark exciton based atomic
clock geometry with shifts many orders of magnitude be-
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Hexagonal Lattice

/X

d/)\o d/>\0

FIG. 3. (Color online) Distance dependence of the effective quantities Q" and I for an infinite equidistant chain, a square
lattice and a hexagonal lattice (dashed black) compared to their not yet converged finite counterparts of 10, 4 * 10 and 10°
particles respectively (solid red). Again, we find divergences at integral d/Xo owing to the 1/¢-terms in F(€) and G(&). In the

2D configurations %

setups as decay is strongly suppressed.

0.5

0.0

-0.5

FIG. 4. (Color online) Effective interactions Q°F and T for
an infinite chain with spacing a where the spins are initially
prepared with phase shift A¢ between neighboring spins. The
dashed lines indicates parameters with Q°F = 0 optimal for
an optical clock.

low a single Hz and almost unlimited exciton life times.
In 3D the interactions are particularly sensitive to the
lattice constant and boundary effects, which dominate

plateaus at —1 for d < Xo, suggesting that this parameter range will be the most favorable for clock

(o) (o%)
1 T T T T T T T T
0
o..o"
-1 1 1 1 1 — S—_—
0 1 2 4 50 1 2 3 4 5
~yt ~yt

FIG. 5. (Color online) Three different examples for the time
evolution of the spin expectation values for a chain with spac-
ing d where initially all spins are prepared in a coherent su-
perposition of ground and excited state with a phase shift of
A¢. The parameters used are d = 0.792)\¢ with A¢ = 0 (red
triangles), where Q°F = 0 and % is nearly optimal, as well
as d = 0.49)o (green squares) and d = 0.51\¢ (blue circles),
both with A¢ = 7 which are close to a I*T discontinuity. The
solid lines correspond to a solution of a second order cumulant
expansion model with 200 particles and demonstrate a very
good agreement with the infinite mean field description.

even for billions of particles rendering such setups very
challenging.

‘While for most considerations we have focused on the
case of clock transitions, the same physics is present
in a more prominent and experimentally easier observ-
able form for broader transitions. Optimizing geome-
tries will also be relevant for devices such as superradiant
lasers [32, 33] or lattice based optical memories.
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Appendix A: Derivation of the mean field equations

Starting from the full multiparticle density operator p our master equation allows to obtain the following equations
for the individual spin expectation values immediately

1 1
= > yloYoR) = 5rloh) + 5 Y Taylofo) (Ala)
itk Jiih
1 1
= > Quylofoi) = 57000 + 5 Y Tuylotoi) (A1b)
Jii#k Jii#k
Y €T z 1 xTr T Y
= 3 s ((o5ol) — (oboD)) =21+ (00) = 5 3 Tuy((ofoi) + (o¥ap)). (Alo)
Jii#k Jii#k

Assuming a spatially separable state p = @), pr leads to the lowest order mean field equations used in the letter.

Appendix B: Mean field equations with tailored excitation phase

At zero temperature the ground state p = @), (|9)((g]) is separable and in an idealized standard Ramsey procedure
the first pulse would create a product state of equal weighted superpositions p = @, 1/2 ((|g) + |e))({e| + (g])),- This
is the generic initial state we use in our work to study dipole-dipole interaction. In fact, this state possesses the
maximal collective dipole moment and therefore shows strong interactions.

Of course, in any real setup this preparation step is not perfect as interactions are present during the excitation
pulse and the excitation laser carries an intensity and phase gradient. Some of the errors can be corrected in improved
excitation schemes[21, 22]. However, particularly in extended systems a phase gradient is hard to avoid and will
strongly influence the system dynamics. Fortunately, one can show, that a known phase gradient will not complicate
the calculations too much. If we allow for the individual atomic states to bare a spatially dependent phase of A¢
on the excited state, i.e. |¢y) = % (lg) + exp(idx)le)), we can absorb this into our equations efficiently. Using the
abbreviations §%° = Qy; cos(¢y, — ¢;) and Qz‘;‘ = Qy;sin(¢pr — ¢;) we obtain the following modified equations of
motion

(63) = z QZ‘]“ Gior) Z Qi (eyok) Z 5 (Gior) Z F“r‘ (Bla)

Jii#k Jii#k Jj#k JJ#k
=Y R+ Y A elen) — sael) 5 D0 TENEen 5 Y0 TiTlelen)  (BIb)
Jii#k Jii#k Jii#k J J#k
Z Qsm (T o_k Z Qcm 5rGYY — <~;Ja_;:>)
Jii#k Jii#k
_y~ 1 in ) am .
=1+ {oR)) Z I (6760 + (5761) — 5 > Tir((Esel) — (6761))- (Blc)
Jﬁfk J:i#k

We see that the following definitions prove to be very helpful

Q= Ojeos(oe — ) B = Y Quysin(gr — ) (B2a)
Jii#k Jii#k

D = 3" Tyjeos(dr — ;) Tt = > Ty;sin(dy — o;) (B2b)
Jii#k Jii#k

Again, if we consider highly symmetric configurations where Qf = Qf and I'f = T'{ and the rotated states are initially
identical we can define the effective rotated quantities

Qcﬂ — cos _ %F“i" (B3)
f\oﬂ' — [eos 2()sin (B4)
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7
which lead to a closed set of simplified effective equations as well, i.e.

d ~x Oyeff /=y z 1 ~x l"eff ~x z
71(07) = QTGN 0%) = 57(67) + TGN (%) (B5a)
d ~ 1 1-
70" = —Q(57) (0%) — 370" + ireﬂ(fT”)(Uz) (B5b)
d, . - Lo (/2a\2 | /ay\2
207 = =y (1+ () = 317 ((6°)2 + (")?) (BSc)

Note that such a phase gradient tends to mix the real and imaginary part of the interaction terms.

Appendix C: Effective quantities for cubic lattices in 3D

In a cubic 3D lattice the number of neighbors at a given distance 7 grows approximately as 2. Hence, one cam
expect a slower convergence with distance. This problem is increased as the number of emitters to be considered
grows with the third power of the system size. In contrast to 1D and 2D, together these two scalings prevent a
convergence of the effective interaction parameters in the range of tractable lattices sizes of up to N = (10%)% = 10'2
sites. Anyway, this is beyond experimentally realistic atom numbers so that we have to live with finite size effects.

In order to demonstrate the very slow convergence of the infinite range mean field model, we present some typical
intermediate result for a 3D cubic lattice. In Fig. 6 we depict the effective coupling strengths Q°F and T for the
innermost two-level system in a cubic lattice of about 8-10° particles, i.e. 2000 particles in each direction. We obtain
strong and very rapid oscillations of the shifts as a function of the lattice constant. Notice, that 1/r-contributions as
discussed in the letter will show up for planar and cubic diagonal distances of v/2 -7 and v/3 - r as well. Increasing
the atom number further still leads to changes of this pattern, so no final conclusions about physical properties and
the behavior of a 3D cubic lattice can be obtained. However, perturbations of up to an order of magnitude larger
than the linewidth as well as strong finite size shifts can be expected. In this case it is difficult to suggest an optimal
lattice constant for a clock setup, except for avoiding certain resonances and choosing a region of about d ~ 3\/4.

T LY
0 | “J

1 1 | 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
d/)\o d//\()

FIG. 6. Effective quantities Q5T and I'¢™ as experienced for the innermost spin inside a cube consisting of 2001 x 2001 x 2001
spins in a cubic lattice configuration depending on the lattice spacing d. Even for very small changes of the lattice spacing the
mean net-effect of all other spins will change dramatically.

Appendix D: Ramsey spectroscopy

The effective coupling and decay parameters Q¢ T characterize the interaction induced perturbation of the
individual spin dynamics. Consequently, they will alter the Ramsey signal by introducing shifts of the fringes and
modifications of the maximally obtainable contrast. As the actual connection between the magnitude of these effective
couplings and their quantitative effect on the signal is nontrivial, we demonstrate the alterations of the Ramsey signal
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in the following examples. Using the previously derived equations of motion, it is straight forward to simulate the
results of an ideal Ramsey sequence. By starting with a 7/2-pulse all spins are rotated into the x-direction of the
Bloch sphere. For a time 7t the system evolves according to the equations

(57) = ~Balo) + 90" (0%) — 57(0™) + 5T (0" (o) (D1a)
(%) = Balof) ~ O (0) (%) — 57(0%) + 5T (V) o) (D1D)
(@%) = —1(1+ (07)) — %reff((af)2 +(0")?) (Dlc)

where A, = wp — wy, is the detuning between the probe laser and the atomic transition frequency. After this free
evolution a second 7/2-pulse is applied and, finally, the expectation value of 0% is measured. For a given system
characterized by the effective quantities Q°F and T the result of this measurement depends on the waiting time as
well as on the detuning A,. In Fig. 7 the outcome of this numerical experiment is shown for three different realistic
sets of effective quantities. The decisive quantity for the accuracy with regards to atomic clocks is the shift of the
fringes due to the dipole-dipole interaction which can be obtained by measuring the shift of the maxima of the Ramsey
fringes. The shifts for the chosen examples are shown in Fig. 8. On the other hand the slope of the fringes at their
roots is the determining factor for the best achievable experimental precision. The numerical results are shown in
Fig. 9. As seen in Fig. 10 the maximal shifts depend on Q°T only, while the maximal slope at zero points is governed
by T, For realistic values for the effective quantities this means the accuracy can be limited to v and the achievable

precision can vary by a factor of 5.
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FIG. 7. Simulated idealized Ramsey spectroscopy for different sets of effective cooperative interaction strengths, from left to
right: subradiant case without shift (Q°F = 0,7°% = —0.75), independent atom limit (Q°% = 0,T°" = 0) and superradiant
case with shift (Q°F = 1,T°f = 1). The colors indicate the free evolution time with cyan representing a very short time and

magenta meaning times up to 2.5y '.
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FIG. 8. Shifts of the maxima after the free evolution time ~t¢ for different sets of effective interaction strengths as above, from
left to right: (Q°F = 0,7 = —0.75), (@°F = 0,1 = 0) and (Q°F = 1,1 = 1).
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FIG. 9. Slope of the signal at the zero crossing of the first fringe after a free evolution time of vt for different sets of effective
interaction strengths as above, from left to right: (Q°F = 0,7 = —0.75), (2T = 0,7°F = 0) and (Q°F = 1,7°T = 1).
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FIG. 10. (a) Shift of Ramsey fringes depending on the effective coupling Q°% after ¢ = 15y~*

1.0

. The different lines represent different choices of I, which hardly influence the result. The fringe shifts follow the effective
mean field dipole coupling Q° almost linearly and thus can be read off from the figures in the main manuscript. (b)
Maximally achievable slope at roots depending on T*%. The result is independent of the choice of Q. Note that a negative

I improves the measurement precision beyond the independent atom value.
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8. Outlook: Spin-squeezing

We showed that by utilizing the dipole-dipole force in a carefully distributed en-
semble of atoms the system can be used to obtain frequency uncertainties that
are much smaller than the classical 1/ VN scaling. A successful alternative, which
was already proposed in 1996, is to use entanglement [1]. For a maximally corre-
lated state the frequency uncertainty can then be reduced to the theoretical limit
of 1/N. In a slightly modified model, taking realistic noise sources into account,
it was demonstrated that moderately squeezed states yield greatly enhanced clock
stability [2]. Naturally, this poses the question if combining both approaches, using
dipole-dipole interaction as well as entanglement, can lead to even better results.
Applying the cumulant expansion to investigate entangled systems might seem like
a questionable approach. Exactly the thing that facilitates entanglement, i.e. cor-
relations, is neglected in this approximation. In first order, all correlations are
excluded and describing any kind of entanglement is impossible. However, in the
second order expansion at least part of these correlations are contained and it might
be enough to capture at least parts of the important effects.

In the following we will derive the framework to perform spin squeezing in the
second order cumulant expansion formalism.

8.1. Spin-squeezing in second order cumulant expansion

The typical one-axis twisting, as was introduced by Kitagawa and Ueda in [3], can
be generated by a unitary time evolution with Hamiltonian

1
2
H=x(5) =x5z (D 1+ > o]d)). (8.1.1)
i 1J517#]
Deriving the second order correlation equations for all possible squeezing axes is
tedious work. An alternative approach is to find the equations for one specific
orientation and then use spin rotations to first rotate into a suitable coordinate

system, perform the squeezing and then rotate back. The advantage is that rotating
is described by easier obtainable equations.

8.1.1. Spin rotation
Single spin rotation

Rotation of a single spin density operator is defined by the unitary transformation

~

p=RpR™* (8.1.2)
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with rotation operator Rjg and its inverse R-L

7,0
. o . .0
Rj 9 = 1cos 5 i(71.0") sin 3 (8.1.3a)
A1 6 . . 0
Ry = ]lcosi +(7.0") sin 2 (8.1.3b)

describing a rotation of angle 6 around axis 7i.
Equivalently, these relations can be expressed as rotation of an operator,

(A) = Tr {ARpR™'} = Tr {R*ARp} = (RT'AR). (8.1.4)

Because of the diffeomorphism between the SU(2) group and the unit 3-sphere S3
(Blochsphere), spin rotations can be written as rotations of expectation values in
R3

(R'3R) = R .(0).R. (8.1.5)
with rotation matrix

nyng(l—cos@)—n.sinf  cos 9+n§(1—cos 0) nynz(l—cosf)+n,sind

cos0+n2(1—cosf)  ngny(l—cosf)+n, sinf nyn,(1—cosd)—ny sin 6
R= . (8.1.6)

n2nz(1—cos0)+ny sin @ n.ny(l—cos)—ngsinf  cosf+n?2(1—cosb)

Multi-spin rotation

Generalization to more than one spin is straight forward since the spins rotate
independently,

R=@Q) R (8.1.7)

Naturally, for single spin expectation values in a multi-spin system we regain the
previous relation

(o) =Tr {EkRpR_l} =Tr {R_l(?k}?p}
= Tr{<®R:1)5k<®Rz)p}
i %
= Tr {R; G, Rip) = (R 'GpRy) = Ry (o). Ry (8.1.8)

Rotations of correlations (k # [), as are necessary for 2nd order cumulant expansion
states, can be obtained by

(o% (~® o) =Tr {(Ek & 51)R,OR_I} =Tr {R_l((?k ® O_"l)Rp}

=Tr {R;lRZ_I(Ek ® El)RkRm} = <R,;1Rl_1(5k & 51)Rle>
— (R,' ®@ RY).(ox ® 01).(Ri ® Ry). (8.1.9)
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8.1. Spin-squeezing in second order cumulant expansion

8.1.2. Spin squeezing
The commutator used in the time evolution is for the expectation values
o H] = X [op, 3 070)] = X fop,07] 3 o7 (8.1.10)
k> N2 k> P77 N2 k' YE 70 il
ijiiF itk

which results in

(68) = —il[of, H]) = —i% (o2, 07]07). (8.1.11)
i;i#£k

Accordingly the commutator used in the time evolution for the correlations is

N2 ]
i

2

= 5 (otol o1ol] + Y [ofsollotol + 3 [ofo7]oto])
157kl B9kl

2

= 5 (ool fofso7) + [of, 7)o
+ Z [U;?,O’Z]O'ZBO';Y—F Z [0?,07]0?03). (8.1.12)
isitkl isithl

S* squeezing

Choosing a specific axis, in this case the x-axis, leads to the equations of motion
for the expectation values,

(G5 =0 (8.1.13a)
: 4x
(6]) = N2 (of07) (8.1.13b)
i;1#£k
. 4x
(6%) = N7 (olol), (8.1.13c¢)
IREDS
and for the correlations,
(oFoF) = (8.1.14a)
. 4y
(ofot) = —<5 > ((ofotol) + (oiolo?)) (8.1.14b)
iiAkl
Z .2 4X Yy _z T Yy _z _x
(ofof) = N2 ((clofal) + (o} oial)) (8.1.14c)
isikl
. 4x
(o¥oly = _W«Ulz) + Z (ofofal)) (8.1.14d)
151£kl
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8.2. Example

(8.1.14¢)

(8.1.14f)

Here, in Fig. 8.1, we show only one example that indicates that the second or-
der cumulant expansions is usable to simulate systems with moderate degree of
squeezing.

0.0 T T T T

—0.2 | N\

—0.3 | N

% —0.4 | NS

—0.8 1 1 1 1

0.0 0.2 0.4 0.6 0.8
~yT

Figure 8.1.: A chain consisting of 5 particles in distance 1.1 is initialized so that
all spins point into the y-direction. Then a squeezing along the x-
direction is performed (no squeezing - red, xT' = 7/2 - blue and xT = 7
- green). Finally, the time evolution of (o,) of the middle spin is
plotted. The solid line is the result of the second order cumulant
expansion and as comparison the dashed line depicts the result of the

master equation.
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0. Introduction

To great extent the work done in the scope of this theses was invested into creat-
ing fast, and hopefully reusable, numerical programs. As foundation, a framework
similar to the quantum-optics toolbox for MATLAB [1] and the QuTiP [2] python
library was written in the Julia language [3], named QuantumOptics.jl [4]. Admit-
tedly, this work was to some extent a duplication of the efforts already invested
into the afore mentioned projects. However, there are a few reasons why it still
was a worthwhile accomplishment. Firstly, Julia is a great language to perform
scientific numerical simulations since it is explicitly designed for it. Compared to
python the syntax is more specialized to this goal and it is most of the times also
faster. Contrary to MATLAB, it is free and it is open source. Secondly, additional
features like automatic cumulant expansion and improved enforced correctness for
combined systems were much easier to implement. Thirdly, and probably person-
ally the most important advantage is that in rewriting and rethinking the basics,
one obtains a much deeper understanding of the used algorithms and their potential
problems.

Building upon this very general framework, libraries specialized to the particular
physical problems were created. The first one, treating particles coupled to a
multi-mode cavity is MultimodeCavity.jl [5]. Most importantly it provides an easy
way to specify the concrete system and constructs the appropriate Hamiltonians
and jump operators. Additionally, simulations of the semi-classical equations are
implemented.

The second part of this theses, treating the dipole-dipole interaction in large spin
systems, is covered by the CollectiveSpins.jl [6] library. Its core function is again
to provide a painless way to define the system of interest. From there simulations,
according to a master equation or to cumulant expansions up to second order,
can be performed effortlessly in a few lines. All libraries, QuantumOptics.jl [4],
MultimodeCavity.jl [5] and CollectiveSpins.jl [6], are open source and are hosted
on github.com.
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1 Introduction

QuantumOptics.jl is a numerical framework written in Julia that makes it easy to simulate various kinds of quantum
systems. It is similar to the Quantum Optics Toolbox for MATLAB and its Python equivalent QuTiP.

One of the core concepts of QuantumOptics.jl is that all quantum objects, i.e. state vectors and operators have
knowledge about which Hilbert space they live in. This prevents many common mistakes when working with com-
posite systems and at the same time improves readability. The Hilbert spaces are defined implicitly by specifying
appropriate bases like fock bases and spin bases. These bases can in turn be combined to describe composite systems
like e.g. a particle in a cavity or a multi-spin system. Working with bases is explained in great detail in the Bases
section.

After choosing a basis QuantumOptics.jl provides many useful functions to create common Operators and States
which can be combined in all the expected ways. Consequently, constructing arbitrary Hamiltonians and Liouvillians
and specifying initial states is straight forward. These objects can be used to perform time evolutions according to
Schroedinger, Master and Monte Carlo wave function equations.

Although the main focus is on simulating dynamics of (open) quantum systems, there are nevertheless many additional
features available to calculate steadystates, the energy spectrum, eigenstates, and correlation functions.

2 Installation

The source code can be found on github at https://github.com/bastikr/QuantumOptics.jl. The git repository can be
obtained using the command

>> git clone https://github.com/bastikr/QuantumOptics.jl.qgit

To use the Julia package manager just start up the Julia interpreter and add the package via

julia> Pkg.clone ("https://github.com/bastikr/QuantumOptics.jl.git")

3 Bases

The primary purpose of bases in QuantumOptics.jl is to specify the dimension of the Hilbert space of the system
and to make sure that quantum objects associated to distinct bases can’t be combined accidentally in an incorrect way.
Many of the common types of bases used in quantum mechanics like

¢ Spin basis

e Fock basis

e Position basis and Momentum basis
* N-particle basis

are already implemented. They are treated in more detail in the section Quantum systems.
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3.1 Composite bases

Hilbert spaces of composite systems can be handled with the CompositeBasis which can be created using the
tensor function or the equivalent ® operator:

basis_fock = FockBasis (10)

basis_particle = MomentumBasis (0., 10., 50)
basis = tensor (basis_fock, basis_particle)
basis = basis_fock ® basis_particle

Most of the time this will happen implicitly when operators are combined using the tensor function.

3.2 Subspace basis

Restricting a Hilbert space to a subspace is done using a SubspaceBasis. It is defined by N, not necessarily
orthogonal states {|u)} that live in the embedding Hilbert space. However, for the following operations to work
correctly, the basis states have to be orthonormal. This can be achieved for any SubspaceBasis with help of the
orthonormalize function which utilizes the numerical stable modified Gram-Schmidt algorithm. Projecting a

state |z) into the subspace,
)y =" > lu)ulz)

u€Esubspace

results in the state |z'). This is done with a projection operator that can be obtained via the
projector (::SubspaceBasis, : :Basis) function:

b = FockBasis (5)
b_sub = SubspaceBasis (b, [fockstate(b, 1), fockstate(b, 2)1)

P = projector (b_sub, b)

x = coherentstate (b, 0.5)
X_prime = P*x

The projection operation is irreversible if the original state was not already contained in the subspace. However, it is
of course possible to represent any state contained in the subspace in the superbasis:

y = dagger (P) «x_prime # Not equal to x

3.3 Generic bases

If a needed basis type is not implemented the quick and dirty way is to use a GenericBasis, which just needs to
know the dimension of the Hilbert space and is ready to go:

b = GenericBasis (5)

However, since operators and states represented in any generic basis can be combined as long as the bases have the
same dimension it might lead to errors that otherwise could have been caught easily.

3.4 Implementing new bases
The cleaner way is to implement own special purpose bases by deriving from the abstract Basis type. The only

mandatory property of all basis types is that they have a field shape which specifies the dimensionality of their Hilbert
space. E.g. a spin 1/2 basis could be implemented as:

106



type SpinBasis <: Basis
shape::Vector{Int}
SpinBasis () = new(Int[2])
end

The default behavior for new bases is to allow operations for bases of the same type, but reject mixing with other
bases. Finer control over the interaction with other bases can be achieved by overloading the == operator as well as
the bases.multiplicable function.

4 States

State vectors in QuantumOptics.jl are interpreted as coefficients in respect to a certain basis. For example the particle
state | ') can be represented in a (discrete) real space basis {|z;) }; as ¥(z;). These quantities are connected by

[0) = U(2)l;)
and the conjugate equation
(U= W) (il

The distinction between coefficients in respect to bra or ket states is strictly enforced which guarantees that algebraic
mistakes raise an explicit error:

basis = FockBasis (3)
x = Ket (basis, [1,1,1]) # Not
y = Bra(basis, [0,1,0]

normalized

Many commonly used states are already implemented for various systems, like e.g. fockstate or
gaussianstate (: :MomentumBasis, x0,p0,sigma).

All expected arithmetic functions like *, /, +, - are implemented:

X + X

X X
2%%

y*x # In

The hermitian conjugate is performed by the dagger (: :Ket) function which transforms a bra in a ket and vice
versa:

dagger (x) # Bra(basis, [1,1,1])

Composite states can be created with the tensor (: : T, : : T) function or with the equivalent ® operator:

tensor (x, Xx)
X ® x
tensor(x, x, X)

Normalization functions:
* norm(::StateVector,p=2)
* normalize(::StateVector,p=2)

* normalize! (::StateVector,p=2)
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5 Operators

Operators can be defined as linear mappings from one Hilbert space to another. However, equivalently to states,
operators in QuantumOptics.jl are interpreted as coefficients of an abstract operator in respect to one or more gen-
erally two, possibly distinct bases. For a certain choice of bases {|u;)}; and {|v;)}; an abstract operator A has the
coefficients A;; which are connected by the relation

A= Agjlui) (s
ij

For this reason all operators define a left hand as well as a right hand basis:

type MyOperator <: Operator
basis_1l::Basis
basis_r::Basis

end

For performance reasons there are several different implementations of operators in QuantumOptics.jl, all inheriting
from the abstract Operator type:

* Dense operators
* Sparse operators
* Lazy operators

They have the same interface and can in most cases be used interchangeably, e.g. they can be combined using arith-
metic functions *, /, +, -:

b = SpinBasis(1//2)
sx = sigmax (b)

sy = sigmay (b)

sx + sy

SX * Sy

Additionally the following functions are implemented:
¢ Hermitian conjugate: dagger (::DenseOperator)

¢ Normalization: trace (::DenseOperator) norm(::DenseOperator, )
normalize (::DenseOperator) normalize! (::DenseOperator)

« Expectation values: expect (::Operator, : :DenseOperator)

¢ Tensor product: tensor (::DenseOperator, : :DenseOperator) tensor (::Ket, ::Bra)
projector (::Ket, ::Bra)

 Partial trace: ptrace (: :DenseOperator, indices) ptrace (::DenseOperator, index)
ptrace(::Ket,indices) ptrace(::Bra, indices)

For creating operators of the type A =1 ® I ® ...a;... ® I the very useful embed function can be used:
* embed (basis, indices, operators)
* embed (basis, index, op)

5.1 Dense operators

DenseOperator is implemented as:
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type DenseOperator <: Operator
basis_l::Basis
basis_r::Basis
data::Matrix{Complex128}
end

where the data is stored as complex (dense) matrix in the data field.
The full (::0perator) function can be used to convert other types of operators to dense operators.
5.2 Sparse operators

SparseOperator is the default type used in QuantumOptics.jl. The reason is that in many quantum systems the
Hamiltonians in respect to the commonly used bases are sparse. They are implemented as:

type SparseOperator <: Operator
basis_1l::Basis
basis_r::Basis
data::SparseMatrixCSC{Complex128}
end

To convert other operators to sparse operators the sparse (: : Operator) function can be used.

5.3 Lazy operators

Lazy operators allow delayed evaluation of certain operations. This is useful when combining two operators is nu-
merically expensive but separate multiplication with states is relatively cheap. A nice example is the FFTOperator
operator implemented for particles. It allows using a fast fourier transformation to convert a state from real space to
momentum space, applying a diagonal operator and converting it back. Doing this in operator notation is only fast if
the the order of operations is IFFT x (D * (FFT x ¢)). To create a Hamiltonian that uses this calculation order, lazy
evaluation is needed:

xmin = -5

xmax = 5

Npoints = 100

b_position = PositionBasis (xmin, xmax, Npoints)
b_momentum = MomentumBasis (b_position)

p = momentumoperator (b_momentum)
x = positionoperator (b_position)

fft = particle.FFTOperator (b_momentum, b_position);

H = LazyProduct (dagger (fft), p~2/2, fft) + x"2

In this case the Hamiltonian H is a lazy sum of the kinetic term p? /2 and the potential term 22 where the kinetic term
is the lazy product mentioned before. In the end this results in a speed up from O(N?2) to O(N log N).

All lazy operators inherit from the abstract LazyOperator. There are currently three different concrete implemen-
tations:

* LazyTensor
* LazySum

* LazyProduct
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6 Super-operators

If states are defined as abstract elements of the Hilbert space # then operators are mappings from this Hilbert space
to itself, X — . However, in QuantumOptics.jl states are specified as coefficients in respect to a specific basis
and therefore operators are mappings from elements of the Hilbert space in a certain basis to a elements of the same
Hilbert space but possibly in a different basis. The basis free definition is

W) = A|®)

while for a basis specific version we have to choose two possibly different bases {|u) } and {|v) } and express the states
| ) and |®@) and the operator A in these bases

0) = W ful¥)
2) =D &, (v]®)
A= Aulo)ul
The coefficients are then connected by the equation
U, = A,

As next level we now consider mappings from the space of mappings H — H to itself, i.e. (H — H) — (H — H).
In operator notation we also call these objects super-operators. With the operators A, B and the super-operator S the
basis independent expression is denoted by

A=S5B

In contrast, for the basis specific version we have to choose two possibly different bases for A which we denote as
{Ju)} and {|v)} and additionally two, also possibly different bases for B, {|m)} and {|n)}.

A= Auylv)(ul
B = Z B |n)(m|

S = Z Suumn‘v><u‘ ® ‘77’><m|

uvmn

The coefficients are then connected by

Auv = Z Suvmann

mn

The implementation of super-operators in QuantumOptics.jl is based on the basis specific concept, which means it
has to consider 4 possibly different bases. The two basis choices for the output are stored in the basis_1 field and the
two basis choices for the input are stored in the basis_r field. At the moment there are two concrete super-operator
types implemented, a dense version DenseSuperOperator and a sparse version SparseSuperOperator,
both inheriting from the abstract SuperOperator type.

Besides the expected algebraic operations there are a few additional functions that help creating and working with
super-operators:

* spre (::DenseOperator)
* spost (::DenseOperator)
e liouvillian (H,J)

* expm
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7 Quantum systems

Quantum systems in QuantumOptics.jl primarily define one or more appropriate bases and additionally provide
functions to create common associated operators and states which then can be used to implement a concrete system.
At the moment the following types of systems are supported:

7.1 Spin basis

The spin basis class and all related functions are implemented for arbitrary spin numbers. Therefore, the first step is
to choose a basis by specifying the appropriate spin number:

b = SpinBasis(3//2)

This basis can be used to create operators and states:

sx = sigmax (b)
state0 = spinup (b)
statel = sxxstate0

The definition of the SpinBasis is very simple and is more or less given by:

type SpinBasis <: Basis
shape::Vector{Int}
spinnumber: :Rational {Int}
end

All expected operators are implemented:
* sigmax
e sigmay
* sigmaz
* sigmap
* sigmam
Also the lowest and uppermost states are defined:
* spinup

* spindown

7.2 Fock Basis

To create a basis of a Fock space QuantumOptics.jl provides the FockBasis class which has to be supplied with
an upper cutoff and optionally with a lower cutoff:

Nmax = 10
bl = FockBasis (Nmax)

Nmin = 2
Nmax = 12
b2 = FockBasis (Nmin, Nmax)
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In this example even though the dimensions of the Hilbert spaces described by these bases are the same b1 and b2 are
not and mixing operators in one bases with operators in the other basis will result in an explicit error.

The definition of FockBasis is essentially:

type FockBasis <: Basis
shape::Vector{Int}
Nmin::Int
Nmax::Int

end

Many common operators are already defined:
* number
* destroy
* create
Fock states and coherent states can be created using the functions:
e fockstate
* coherentstate
Additional functions:

function gfunc (rho, alpha)
Husimi Q representation £ (|p|a).

7.3 Particle basis

For particles QuantumOptics.jl provides two different choices - either the calculations can be done in real space or
they can be done in momentum space by using PositionBasis or MomentumBasis respectively. To create a
particle basis, a left boundary iy, a right boundary x,,,,x and the number of discretization points have to be provided:

xmin = -2.

xmax = 4.

N = 10

b_position = PositionBasis (xmin, xmax, N)

Equivalently to create a momentum basis a minimal momentum p,,;;,, a maximal momentum p,,;, and again the
number of discretization points have to be specified:

pmin = 0.

pmax = 10.

N = 10

b_momentum = PositionBasis (pmin, pmax, N)

The definition of these two bases types is very simple:

type PositionBasis <: Basis
shape::Vector{Int}
xmin: :Float64
xmax: :Float64
N::Int

end

type MomentumBasis <: Basis
shape::Vector{Int}
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pmin::Floaté64
pmax: :Floaté64
N::Int

end

Since real space and momentum space are connected via a Fourier transformation the bases are connected. The
numerically inevitable cutoff implies that the functions ¥(x) and ¥(p) can be interpreted to continue periodically
over the whole real axis the specific choice of the cutoff points is therefor irrelevant as long as the interval length
stays the same. This free choice of cutoff points allows to easily create a corresponding MomentumBasis from a
PositionBasis and vice versa:

b_momentum = MomentumBasis (b_position)
b_position = PositionBasis (b_momentum)

When creating a momentum basis from a position basis the cutoff points are connected by pyin = —m/dz and
Pmax = 7/dx where dx = (Zmax — Zmin)/N. Similarly for the inverse procedure the cutoffs are i, = —7/dp and

Lmax = W/dp with dp = (pmax - pmin)/N~
For convenience a few functions make it easier to work with bases:

function spacing (b)
Distance between two adjacent points of the real space basis.

function spacing (b)
Momentum difference between two adjacent points of the momentum basis.

function samplepoints (b)
x values of the real space basis.

function samplepoints (b)
p values of the momentum basis.

All operators defined in QuantumOptics.jl can be created in respect to both bases, e.g.:

p_position = momentumoperator (b_position)
p_momentum = momentumoperator (b_momentum)

The following operators are implemented:
* momentumoperator (b::PositionBasis)
* positionoperator (b::PositionBasis)
e laplace_x(b::PositionBasis)
* laplace_p(b::PositionBasis)

And functions for creating states:

* gaussianstate (b::PositionBasis,,,):

x0 = 0.

p0 = 1.

sigma = 2

Psi_x = gaussianstate (b_position, x0, p0, sigma)
Psi_p = gaussianstate (b_momentum, x0, p0, sigma)

Transforming a state from one basis into another can be done efficiently using the FFTOperator which can be used
in the following way:
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op_fft = FFTOperator (basis_momentum, basis_position)
Psi_p = op_fft*Psi_x

7.4 N-Particles Basis

Describing systems consisting of many identical particles in a tensor product space created out of single particle Hilbert
spaces leads to the problem that not all states in this space correspond to real physical states. In this picture one would
have to restrict the Hilbert space to a subspace that is invariant under permutation of particles. However, it is also
possible to find a valid description that doesn’t first introduce redundant states that later on have to be eliminated. The
general idea is to choose an arbitrary basis {|u;) }; of the single particle Hilbert space and create the N-particle Hilbert
space from states that count how many particles are in each of these states - which will in the following be denoted as
[{n}). Of course the sum of these occupation numbers has to be identical to the number of particles. For fermionic
particles an additional restriction is that there can’t be more than one particle in one state.

This concept is captured in the abstract NParticleBasis type and in the concrete fermionic and bosonic imple-
mentations FermionicNParticleBasis and BosonicNParticleBasis.

Connection between additive single particle operator ), x; and its corresponding N-particle operator:
— T (w211
X =3 ala fuil )
ij
Connection between additive two particle operator ), +; Vij and its corresponding N-particle operator:
_ T,T
X = Zaiajakal (wi| {uj] @ |ug) |u)
ijkl

The creation of the N-particle operators is implemented in nparticleoperator_1(, : :DenseOperator) and
nparticleoperator._2(, : :DenseOperator).

8 Time-evolution

QuantumOptics.jl implements solver for dynamics of closed and open quantum systems:
* Schroedinger equation
s Master equation
* Monte Carlo wave function method (MCWF)

The interfaces are designed to be as consistent as possible to make it easy to switch between different methods.

8.1 Schroedinger time evolution

The Schroedinger equation as one of the basic postulates of quantum mechanics describes the dynamics of a quantum
state in a closed quantum system. In Dirac notation the Schroedinger equation and its adjoint equation read

. d

i3, 1V (2)) = H|¥(1)
L d
—ihg (VO] = (V)| H

Both versions are implemented and are chosen automatically depending on the type of the provided initial state (Bra
or Ket):

* schroedinger
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8.2 Master time evolution

The dynamics of open quantum systems are governed by a master equation in Lindblad form:

. 1 1 1
p=—[H.pl + > (Jipd] = 50 Tip = 501 0)
i
For performance reasons the solver internally first creates the non-hermitian Hamiltonian H,,, = H — % > ; J,j J; and
solves the equation

p= —% [Hun, p] + ; JipJ]

If for any reason this behavior is unwanted, e.g. special operators are used that don’t support addition, the function
master_h (h for hermitian) can be used.

* master (tspan, rho0: :DenseOperator,H: :Operator, J: :Vector)
* master_h (tspan, rho0::DenseOperator,H: :Operator, J: :Vector)

* master_nh (tspan, rho0::DenseOperator, Hnh: :Operator, J: :Vector)

8.3 MCWF time evolution

Instead of solving the Master equation

p= 7%[H, p} + Z («L‘ﬂJi1L - %JJJW - %p‘]if‘]i)
7

directly, one can use the quantum jump formalism to evaluate single stochastic quantum trajectories using the Monte
Carlo wave function method. For large numbers of trajectories the statistical average then approximates the result of the
Master equation. The huge advantage is that instead of describing the state of the quantum system by a density matrix
of size N? these trajectories work in terms of state vectors of size N. This is somewhat negated by the stochastic
nature of the formalism which makes it necessary to repeat the simulation until the wanted accuracy is reached. It
turns out, however, that for many cases, especially for high dimensional quantum systems, the necessary number of
repetitions is much smaller than the system size N and therefore using the MCWF method is advantageous.

Additionally this quantum jump formalism also has a very intuitive physical interpretation. It basically describes the
situation where every quantum jump, e.g. the emission of a photon, is detected by a detector and therefore the time
evolution can be completely reconstructed by an outside observer. Depending on the efficiency of the used detectors
this might be a much better description for an actual experiment.

This physical picture can be used to easily understand the actual MCWF algorithm:

1. Calculate coherent time evolution according to a Schroedinger equation with non-hermitian Hamiltonian H,;, =
H— % Zl J ZT Ji

ih%\\P(t)) = Hu|¥(2))

2. Since the Hamiltonian is non-hermitian the norm of the quantum state is not conserved and actually decreases
with time. This can be interpreted in the way that the smaller the norm of the state gets the more probable it is that
a quantum jump occurs. Quantitatively this means that the coherent time evolution stops when (¥ (¢)|¥(¢)) < p
where p is a randomly generated number between 0 and 1.

3. At these randomly determined times a quantum jump according to
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Ji| ¥ (1))
YO )
is performed.
4. Continue with coherent time evolution.
The stochastic average of these trajectories is then equal to the solution of the master equation p(t)
N

tim > N ()] = o)

N—oo
k=1
and also the stochastic average of the single trajectory expectation values is equal to the expectation value according
to the master equation

N
Jim = SO () = Tr{4p(0)}

k=1
avoiding explicit calculations of density matrices.

* master (tspan,psiO::Ket,H::0perator,J::Vector)

9 Steady state

QuantumOptics.jl implements two different ways to calculate steady states. The first one is to perform a time evolu-
tion according to a master equation until a adequate accuracy is reached:

function master (H, J; rho0, eps, hmin, Gamma, Jdagger, fout, tmp)
Calculate steady state using long time master equation evolution.

Parameters
* H - Operator specifying the Hamiltonian.
* J - Vector of jump operators.

Keyword Arguments

* rho0 — Initial density operator. If not given the |0) (0| state in respect to the choosen
basis is used.

eps — Tracedistance used as termination criterion.

hmin — Minimal time step used in the time evolution.

Gamma — Vector or matrix specifying the coefficients for the jump operators.

Jdagger (optional) — Vector containing the hermitian conjugates of the jump oper-
ators. If they are not given they are calculated automatically.

fout (optional) — If given this function fout(t, rho) is called every time an output
should be displayed. To limit copying to a minimum the given density operator rho
is further used and therefore must not be changed.

kwargs — Further arguments are passed on to the ode solver.
For smaller system sizes finding eigenvectors of super-operators is the prefered method:

function eigenvector (L)
Find steady state by calculating the eigenstate of the Liouvillian matrix.
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Parameters L — Dense or sparse super-operator.

function eigenvector (H, J)
Find steady state by calculating the eigenstate of the Liouvillian matrix.

Parameters
¢ H - Operator specifying the Hamiltonian.

¢ J — Vector of jump operators.

10 Two-time correlation functions

function correlation (tspan, rho0, H, J, opl, op2; Gamma, Jdagger, tmp)
Calculate two time correlation values (A(t)B(0))

The calculation is done by multiplying the initial density operator with B performing a time evolution according
to a master equation and then calculating the expectation value Tr{Ap}

Parameters
¢ tspan — Points of time at which the correlation should be calculated.
* rhoO - Initial density operator.
¢ H - Operator specifying the Hamiltonian.
e J— Vector of jump operators.
¢ opl — Operator at time t.
* op2 — Operator at time t=0.
Keyword Arguments
* Gamma - Vector or matrix specifying the coefficients for the jump operators.

» Jdagger (optional) — Vector containing the hermitian conjugates of the jump operators. If
they are not given they are calculated automatically.

* kwargs — Further arguments are passed on to the ode solver.

function correlation (rho0, H, J, opl, op2; eps, hO, Gamma, Jdagger, tmp)
Calculate two time correlation values (A(t)B(0))

The calculation is done by multiplying the initial density operator with B performing a time evolution according
to a master equation and then calculating the expectation value Tr{ Ap}. The points of time are chosen automat-
ically from the ode solver and the final time is determined by the steady state termination criterion specified in
steadystate.master.

Parameters
* rhoO - Initial density operator.
¢ H - Operator specifying the Hamiltonian.
¢ J — Vector of jump operators.
¢ opl — Operator at time t.
* op2 — Operator at time t=0.
Keyword Arguments

 eps — Tracedistance used as termination criterion.
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¢ h0 - Initial time step used in the time evolution.
* Gamma — Vector or matrix specifying the coefficients for the jump operators.

» Jdagger (optional) — Vector containing the hermitian conjugates of the jump operators. If
they are not given they are calculated automatically.

* kwargs — Further arguments are passed on to the ode solver.

11 Spectral Analysis

* operatorspectrum(::DenseOperator)

* operatorspectrum _hermitian (::DenseOperator)
* eigenstates (::DenseOperator)

e eigenstates_hermitian (::DenseOperator)

* groundstate

12 Examples

This notebook can be found on github

12.1 Jaynes-Cummings model

The Jaynes Cummings model is a famous theoretical model in the field of quantum optics. It describes a two level
atom coupled to a quantized mode of a cavity.

H=uwdala+ %0, +Qaos +alo_)

The first step is always to import the library

using QuantumOptics
using PyPlot

Then we can define all the necessary parameters

# Parameters
N_cutoff = 10

wc = 0.1
wa = 0.1
Q= 1.;

Describe the Fock Hilbert space and the Spin Hilbert space by choosing the appropriate bases

Bases
_fock = FockBasis (N_cutoff)
b_spin = SpinBasis(1//2)
b = b_fock ® b_spin;

O S

With the help of these bases build up the Jaynes-Cummings Hamiltonian
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]

a
a = destroy (b_fock)
at = create (b_fock)
n = number (b_fock)

nAam. 2] operators
undamental operators

sm = sigmam (b_spin)
sp = sigmap (b_spin)
sz = sigmaz (b_spin)

onian

Hatom wax*sz/2

Hfield = wc*n

Hint = Q+ (at®sm + a®sp)

H = identityoperator (b_fock)®Hatom + Hfield®identityoperator (b_spin) + Hint;

The time evolution of the system is governed by a Schroedinger equation.

W0 = coherentstate (b_fock, «a) ® spindown (b_spin)

# Integration time

= [0:0.1:20;1]
# Schroedinger time evolution
tout, Wt = timeevolution.schroedinger (T, W0, H);

The integration routine returns two objects - a vector containing points of time where output was generated (which
will in most cases be the same as the given input time vector) and a vector containing the state of the quantum system
at these points in time. These can further on be used to calculate expectation values.

exp_n = expect(n ® identityoperator (b_spin), Ut)
exp_sz = expect (identityoperator (b_fock) ® sz, Ut);

Finally we can us matplotlib to visualize the the time evolution of the calculated expectation values

figure (figsize=(9, 3))
subplot (1,2,1)

ylim ([0, 2]

plot (T, exp_n);

xlabel (L"T"

ylabel (L"\langle n \rangle")

subplot (1,2,2)

ylim([-1, 11])

plot (T, exp_sz);

xlabel (L"T"

ylabel (L"\langle \sigma_z \rangle")

tight_layout ();
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Lossy Jaynes-Cummings model

The Jaynes-Cummings model can be expanded by giving the 2 level atom a finite spontenous decay rate . The system
is then a open quantum system which is described by a master equation of the form

. i

1 1
p=—75[H.p]+ Z (Jipd} = 5L dip = 5pI ] 01)

where in this case there is only one jump operator J = /70 _.

7 = 0.5

J = [sgrt (7y) *identityoperator (b_fock) ® sm];
# Master

tout, pt = timeevolution.master (T, W0, H, J)

exp_n_master = expect(n ® identityoperator (b_spin), pt)
exp_sz_master = expect (identityoperator (b_fock) ® sz, pt)

figure (figsize=(9,3))
subplot (1,2,1)

ylim ([0, 21)

plot (T, exp_n_master);
xlabel (L"T")

ylabel (L"\langle n \rangle")

subplot (1,2,2)

ylim([-1, 17])

plot (T, exp_sz_master);

xlabel (L"T")

ylabel (L"\langle \sigma_z \rangle");

tight_layout () ;
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Alternatively we can solve the system using the Monte Carlo wave function formalism. A single trajectory shows
characteristic jumps in the expectation values.

# Monte Carlo wave function

tout, ¥t = timeevolution.mcwf (T, Y0, H, J; seed=2,
display_beforeevent=true,
display_afterevent=true)

exp_n_mcwf = expect(n ® identityoperator (b_spin), UYt)

exp_sz_mcwf = expect (identityoperator (b_fock) ® sz, Ut)

figure (figsize=(9, 3))
subplot (1,2,1)

ylim ([0, 21)

plot (tout, exp_n_mcwf)
xlabel (L"T")

ylabel (L"\langle n \rangle")

subplot (1,2,2)

ylim([-1, 1]

plot (tout, exp_sz_mcwf)

xlabel (L"T")

ylabel (L"\langle \sigma_z \rangle");

tight_layout () ;

2.0 T . . 1.0 T T T

5 10 15 20
T

For large number of trajectories the statistical average of the MCWEF trajectories approaches the solution of the master
equation.
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Ntrajectories = 10
exp_n_average = zeros (Float64, length(T))
exp_sz_average = zeros (Float64, length(T))

for i = l:Ntrajectories
tout, ¥t = timeevolution.mcwf (T, W0, H, J; seed=i)
exp_n_average += expect(n ® identityoperator (b_spin), Wt)
exp_sz_average += expect (identityoperator (b_fock) ® sz, Yt)
end

exp_n_average /= Ntrajectories
exp_sz_average /= Ntrajectories

figure (figsize=(9,3))
subplot (1,2,1)

ylim ([0, 21])

plot (T, exp_n_master)

plot (T, exp_n_average)
xlabel (L"T")

ylabel (L"\langle n \rangle")

subplot (1,2,2)

ylim([-1, 17])

plot (T, exp_sz_master)

plot (T, exp_sz_average)

xlabel (L"T")

ylabel (L"\langle \sigma_z \rangle");

tight_layout () ;

20 T T T 10 T T T
L5} — 05} :
=10 1 & oor 1
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0.0 ' ‘ , -1.0 ' ' .
0 5 10 15 20 0 5 10 15 20
T T

This notebook can be found on github

12.2 Particle in harmonic trap potential
A particle in a harmonic trap is described by a Hamiltonian of the form

52
'Y 1 2

H=—+—
2m+2mw

§72

For numerical simulations we are forced to work in a basis. For particles there are two common choices. We can either
work in real space or alternatively in momentum space.
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using QuantumOptics
using PyPlot

© trapping potential;

Npoints = 100
b_position = PositionBasis (xmin, xmax, Npoints)

e

onian in real space basis
= momentumoperator (b_position)
= positionoperator (b_position)

x 'O

H = p"2/2m + 1/2+mxw"2%x"2;

Of course we could also choose to work in momentum space:

From a PositionBasis QuantumOptics.jl can automatically infere the corresponding MomentumBasis by calculating
Pmin = 771—/(17/‘ and Pmax = 7T/d’[3 where dx = ('Tmax - :I;min)/N

b_momentum = MomentumBasis (b_position);

p = momentumoperator (b_momentum)
x = positionoperator (b_momentum)

H = p"2/2m + 1/2+xmxw”2%x"2;

However, both choices are not optimal since in real space the position operator is diagonal while the momentum
operator is a completely dense matrix and vice versa for the momentum space. Therefore, the calculation will scale
with N2 where N is the dimension of the Hilbert space. A commonly used trick is to utilize fast Fourier transformation
to convert the state of the system between real and momentum space. This allows us to always use the diagonal form
of the operators which all in all speeds up the calculations to N log N.

This idea is implemented by the FFTOperator which performs a fast Fourier transformation on the multiplied state.

a state multiplied fr side from real space

um space.

o n
op_fft = particle.FFTOperator (b_momentum, b_position);

To use this operator in a Hamiltonian we additionally need the concept of lazy operators which allow us to delay
certain operations to a later point in the simulation. E.g. the LazyProduct allows us to do A * (B x x) instead of
(A * B) * x which means for our case that the matrix-matrix product never has to be calculated directly but only two
matrix-vector multiplications instead.

op_inversefft = dagger (op_£fft)

b
I

= positionoperator (b_position)
p = momentumoperator (b_momentum)

H = LazyProduct (op_inversefft, p”"2/2m, op_fft) + w*x"2;

Finally we can simulate the time evolution according to a Schroedinger equation.
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# Initial state

x0 = 1.5

p0 = 0

sigmaO = 0.6

V0 = gaussianstate (b_position, x0, p0, sigma0);

# Time evolution
T = [0:0.5:20;]
tout, ¥t = timeevolution.schroedinger (T, W0, H);

# Plot dynamics of particle density
x_points = particle.samplepoints (b_position)

n = abs (V¥0.data) ."2
v wxx_points.”2
C = maximum (V) /maximum (n)

figure (figsize=(7,3.5))
xlabel (L"x")

ylabel (L"| \Psi(t) ["2")
plot (x_points, V/C, "k")

for U=Vt
n = abs (¥.data)."2
plot (x_points, n, "r")

end;
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1 Introduction

CollectiveSpins.jl is a numerical framework written in Julia that can be used to simulate quantum systems consisting
of spatially distributed spins interacting via Dipole-Dipole interaction, optionally coupled to a cavity.

The Geometry module allows rapid creation of arbitrary placed spins to build up very general systems as explained
in the System documentation. These in turn can then be investigated using either a complete quantum description or
cumulant expansions up to second order. The details are presented in Theoretical descriptions.
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2 Installation

The source code can be found on github at https://github.com/bastikr/CollectiveSpins.jl. The git repository can be
obtained using the command

>> git clone https://github.com/bastikr/CollectiveSpins.jl.git

To use the Julia package manager just start up the Julia interpreter and add the package via

julia> Pkg.clone ("https://github.com/bastikr/CollectiveSpins.jl.git")

3 System

The basic building blocks used in CollectiveSpins.jl are, not surprisingly, spins. They are defined by their position
and a frequency A describing a shift relative to the frequency of the rotating frame in use:

type Spin <: System
position::Vector{Float64}
delta::Floaté64

end

Defining the frequency is optional and is set to zero by default:

>>> Spin([0,0,0] delta=1)

>>> Spin([0,0,0]

— =

Combining many spins into one big system can be done by using the system. SpinCollection type. All con-
tained spins must have the same polarization axis and decay rate :

type SpinCollection <: System
spins::Vector{Spin}
polarization::Vector{Float64}
gamma: :Float64

end

For convenience one can create a system. SpinCollection without explicitly constructing the single spins first:

>>> SpinCollection([[0,0,0], [1,0,0]11, [0,0,1]; gamma=2, delta=1)

Adding a cavity can be done with the system. CavityMode type:

type CavityMode <: System
cutoff::Int
delta::Floaté64
eta::Floaté64
kappa: :Float64

end

which can be coupled to a spin collection with coupling strength g via the system.CavitySpinCollection
type:

type CavitySpinCollection <: System
cavity::CavityMode
spincollection::SpinCollection
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g::Vector{Float64}
end

4 Geometry

In order to simplify creation of various particle distributions, a few helper functions with self-explanatory names are
provided:

* geometry.chain

* geometry.triangle
* geometry.rectangle
* geometry.square

* geometry.hexagonal
* geometry.box

* geometry.cube

They can be used directly to create a system. SpinCollection:

>>> SpinCollection(geometry.chain(0.5, 6), [0,0,1]

5 Dipole-Dipole interaction

Of course the core of this library are the equations describing the dipole-dipole interaction and the collective decay
3
Lij = ST (karij)

(50.)”- = gFGij(k‘aTij)

with

Fi€) = (1 - (@00 2) T8 (1= 3.0 7) (G - 555,

Giyl6) = —(1- (ér).adw)z)% (1= 3 &) (Siéif - ‘3‘;5 ).

They are implemented in the functions:
e interaction.Omega (a,0,y)
e interaction.Gamma (a,0,7y)

To create the interaction matrices the following two shortcuts are provided:
* interaction.GammaMatrix

e interaction.OmegaMatrix
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6 Effective Interactions

Effective interactions occur in the equations of motion of large spin systems that have certain symmetries so that the
dynamics of every single spin is identical:

1

(0°) = 20"} (%) = 5 (v = T*M0™)) ("),

1

(0%) = QM (0") (%) = 5 (v = T*M(o) ) 0",

2
1

(6%) = =y(1+ (09) = 5T ((0)2 + (01)?).

These quantities encapsulate the influence of all spins onto one single spin:

The following functions can be used to easily calculate them for common examples:

effective _interaction.
effective interaction.
effective lnteraction.

effective_interaction.

effective interaction

effective interaction.
effective interaction.

effective interaction.

effective_interaction

effective_interaction.

effective interaction.

effective interaction

N
Q=30
j=2

N
et =3"ry;.
j=2

triangle orthogonal
square_orthogonal
rectangle_orthogonal

cube_orthogonal

.box_orthogonal

chain
chain_orthogonal

squarelattice_orthogonal

.hexagonallattice_orthogonal

cubiclattice_orthogonal

tetragonallattice orthogonal

.hexagonallattice3d _orthogonal

6.1 Rotated effective interactions

If we allow for the individual atomic states to bare a spatially dependent phase of A¢ on the excited state,
ie. |vn) = % (lg) + exp(i¢y)|e)), we can absorb this into our equations efficiently. Using the abbreviations

129



11. Dipolelnteraction.jl

Q5 = Qy; cos(¢r, — ¢;) and QZ‘]" = Q; sin(¢r — ¢;) we obtain the following modified equations of motion

d . in ~ s 1 1 s~ 1 Gin /~
(0% = D QNeToR) + D O (G1oR) — 51(ok) + 5 D TieTeR) — 5 D TiNeYeh)
Jii#k Jii#k Jii#k Jii#k
d . o~ i~ 1, 1 in /~ 1 .
SO == D MPEFoR) + Y TR — 5ok + 5 D TiETeR) + 5 D TieYeR)

Jii#k Jii#k Jii#k Jii#k
d e - os )~ = Ly~
ok ==Y FETED + (370 + D AP (676 — (6751))
Jii#k Jii#k
1 . R 1 ing ) eu~ Sy~
=L+ (o0) — 5 Y TP (a5a0) +(0701)) — 5 D TR ((a551) — (6)57)-
Jii#k J;i#k

We see that the following definitions prove to be very helpful

Q=) Qjcos(dn — ;) Q=D Quysin(dr — ;)

Jii#k Jii#k
D% = 3 Tyjeos(dn — ;) Tt = Y Tysin(dr — ¢;)
Jii#k Jij#k

Again, if we consider highly symmetric configurations where Qf = ch and Tf = Fi and the rotated states are initially
identical we can define the effective rotated quantities

~ 1.

Qeff — QCos _ _Tsin
2

f\cf‘f — [cos ¢ QQSm

which lead to a closed set of simplified effective equations as well, i.e.

4 6%) = 09 (0%) — 2946%) + 3T (6 (0%)
L ov) = (6% (0%) — (") + 5T (3"} (o%)
d 1

(0% = =11+ (09) = 317 (59 + (*)?)

The calculation of these quantities for a few systems is implemented by:
e effective_interaction_rotated.square_orthogonal
e effective_interaction_rotated.cube_orthogonal

e effective_interaction_rotated.chain_orthogonal

7 Theoretical descriptions

CollectiveSpins.jl provides several different possibilities to simulate multi-spin systems. A full quantum descrip-
tion is available but only possible for small numbers of spins. Additionally, approximations of different orders are
implemented using a cumulant expansion approach:

e quantum - Quantum
* independent - Oth order: Independent spins
* meanfield - Ist order: Meanfield

e mpc - 2nd order: Meanfield plus Correlations (MPC)
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All variants provide a unified interface wherever possible:
e blochstate (phi, theta)
* densityoperator (state)
* sx(state)
* sy (state)
* sz (state)
e timeevolution (T, system, stateO; fout=nothing)
* rotate (axis, angles, state)
* squeeze (axis, xT,state)
* squeezingparameter (state)

The following example should give a first idea how these implementations are used:

using QuantumOptics, CollectiveSpins
const cs = CollectiveSpins

# System parameters
const a = 0.18

const v = 1.

const e_dipole = [0,0,1.]

const T = [0:0.05:5;]
const N = 5
const Ncenter = 3

const system

SpinCollection(cs.geometry.chain(a, N), e_dipole; gamma=7y)

# Define Spin 1/2 operators
spinbasis = SpinBasis(1//2)

sigmax = spin.sigmax (spinbasis)
sigmay = spin.sigmay (spinbasis)
sigmaz = spin.sigmaz (spinbasis)
sigmap = spin.sigmap (spinbasis)
sigmam = spin.sigmam(spinbasis)

I_spin = identityoperator (spinbasis)
# Initial state (Bloch state)
const phi = 0.

const theta = pi/2.

# Time evolution

# Independent
state0 = cs.independent.blochstate (phi, theta, N)
tout, state_ind_t = cs.independent.timeevolution (T, system, statel)

# Meanfield
state0 = cs.meanfield.blochstate (phi, theta, N)
tout, state_mf_t = cs.meanfield.timeevolution(T, system, stateO)

# Meanfield + Correlations
state0 = cs.mpc.blochstate (phi, theta, N)
tout, state_mpc_t = cs.mpc.timeevolution(T, system, statel)
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# Quantum: master equation
sx_master = Float64][]
sy_master = Float64][]
sz_master = Float64][]

td_ind = Float64][]
td_mf Float64 (]
td_mpc = Float64(]

embed (op: :Operator) = QuantumOptics.embed (cs.quantum.basis (system), Ncenter, op)

function fout (t, rho::Operator)
i = findfirst (T, t)
rho_ind = cs.independent.densityoperator (state_ind_t[i])
rho_mf = cs.meanfield.densityoperator (state_mf_t[i])
rho_mpc = cs.mpc.densityoperator (state_mpc_t[i])
push! (td_ind, tracedistance(rho, rho_ind))

push! (td_mf, tracedistance(rho, rho_mf))

push! (td_mpc, tracedistance (rho, rho_mpc))

push! (sx_master, real (expect (embed (sigmax), rho)))
push! (sy_master, real (expect (embed (sigmay), rho)))
push! (sz_master, real (expect (embed (sigmaz), rho)))

end

Us_0$ = cs.quantum.blochstate (phi, theta,N)
p$_0$ = Us_0S®dagger (¥s_09%)
cs.quantum.timeevolution (T, system, p$_0$, fout=fout)

# Expectation values
mapexpect (op, states) = map(s->(op(s) [Ncenter]), states)

sx_ind = mapexpect (cs.independent.sx, state_ind_t)
sy_ind = mapexpect (cs.independent.sy, state_ind_t)
sz_ind = mapexpect (cs.independent.sz, state_ind_t)

sx_mf = mapexpect (cs.meanfield.sx, state_mf_t)
sy_mf = mapexpect (cs.meanfield.sy, state_mf_t)
sz_mf = mapexpect (cs.meanfield.sz, state_mf_t)

sx_mpc = mapexpect (cs.mpc.sx, state_mpc_t)
sy_mpc mapexpect (cs.mpc.sy, state_mpc_t)
sz_mpc = mapexpect (cs.mpc.sz, state_mpc_t)

7.1 Quantum

The time evolution of the IV spins in a rotating frame corresponding to ", woo is then governed by a master equation

. i

p=—5H.p| +Llp]

with the Hamiltonian

H = Z ﬁQijO';rO';
1517
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and Lindblad-term

1 _ _ -
Lp] = §Zl“ij(20i paj+ — O’jo'j p— pa,,faj ).

.3

The dipole-dipole interaction §;; = %'yG (kori;) and the collective decay I';; = %'yF (kori;) can be obtained analyti-

cally with
sin & cosé  siné
F(é):a—+6( ——.)
3 £ &
cos& siné  cos¢
G =-a +5 ( + >
© £ & &
witha = 1 — cos?f and f = 1 — 3 cos? ), where 0 represents the angle between the line connecting atoms i and j
and the common atomic dipole orientation.

7.2 0th order: Independent spins

Each spin evolves independently according to

7.3 1st order: Meanfield

. 1 1
1) = 3 Qualotoi) — gaiot) — 5 3 Tualoto)
i;i#k i;i7#k

g T .z 1 1 Y 4
(o) =— Z Qi(oiof) — §7<f’1€> 3 Z Lyiloiof)

iitk itk
(07) = =i Y Qua((okol) = (oFal)) +7(1 = (7))
ii#£k
1 .
P Di((ok0?) + (o¥o]))
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7.4 2nd order: Meanfield plus Correlations (MPC)

Tz Y
(oFoF) E Qj{ojoi o} E Qyj(ogoioy)
Jii#k,l Jii#k,l

~{ofof) + T (<ozaf> ~ Slot) — 3 o1))

1 1
-3 rkj<o;::afo;-”>f§ > Tylofoos)

Jii#k,l Jii#k,l
X Y _z _x
Uk"l E iy ( ‘Tkgz E Ql]("k“l%‘)
Jii#k,l Jij#k,l

~{ofol) + T (<azaf> ~ Slot) 307

1 1
~5 > Tijloiolof) =5 > Tylofoia?)

Ji#k,l J3iF#k,l
O'ko'l Z Qk]( opoioy) — <U£af(r§/)>
7337kl
+ > ((oiotey) - (oiotol))
Jii#k,l

—2y(ciof) + v ((of) + (0}))
+ rk,(<agg;f> + <aga;ﬂ>)

J;#k,l
1
+5 O Ty(loiotod) + (oiotal))
J3j#k,L
(g—lf-o'ly) — Qk‘l((gk > Z Qk] O’kO'l O"7
J53#k,l
Z Qi UkUIU —y{ora))
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Jij#k,l
3 1
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1
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Jij#k,l
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] JF#k,l
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