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2 Introduction and QOutline

2.1 Introduction

It is an old idea that light can exert forces on inert matter. No lesser than Johannes
Kepler proposed, in his work De Cometis from 1619, the theory that it is the sun’s
radiation, which causes the tail of a comet to point away from the latter. As a
consequence of Maxwell-Lorentz theory of electrodynamics, light, conceived of as an
electromagnetic wave, exerts a force—the so-called Lorentz force—on charged particles
of matter. In terms of the charge ¢ and the electric and magnetic fields E, B it is
given by

F = q[E(r,t) + 1t x B(r,?)]. (2.1)

In this equation, the velocity 1 of the charge was to be understood to be relative
to some material medium, the luminiferous aether, in which electromagnetic waves
exist and which was thought to provide an absolute system of coordinates, but with
the advent of Einstein’s Special Theory of Relativity (STR), it was interpreted as
the velocity of the charge with respect to some arbitrary inertial observer. As atoms
and molecules are known to be overall electrically neutral aggregates of charged
particles such as electrons and protons, they too—within the framework of Maxwell-
Lorentz electrodynamics— couple to an electromagnetic wave through higher order
moments of their charge distribution. Furthermore, even if a molecule or atom is
supposed not to possess permanent multipole moments, the Lorentz force caused by
an electromagnetic wave accelerates the oppositely charged constituents differently
and thus gives rise to induced moments. It is in this way that the phenomenon of
electromagnetic forces on neutral pieces of matter (henceforth called light forces)
received a classical theoretical explanation. The theory of Maxwell and Lorentz was
soon confronted with serious difficulties, because the stipulated material medium in
which electromagnetic fields were supposed to propagate refused to be detected by
experiments, most notably the Michelson-Morley interferometer experiments, only
some twenty-five years after the publication of Maxwell’s equations in 1861-62. This
unpleasant situation was remedied by STR by abolishing the Newtonian notion of
absolute time and space and a radical reformulation also of the laws of mechanics.
However, it was precisely the attempt to explain the very existence and stability of
atoms and molecules as dynamical systems of point-like charges interacting via forces
mediated by the electromagnetic field, which met insurmountable difficulties, even
when the Maxwell-Lorentz theory was supplemented by STR. The reason is that if a
point-charge executes accelerated motion (again, relative to some inertial system of
coordinates), Maxwell’s equations or, more precisely, Lorentz’ retarded solution to



Maxwell’s electromagnetic field equations, predict that this charge irreversibly radi-
ates electromagnetic energy. Hence, in order to upkeep the principle of conservation
of energy the particle must experience a force—sometimes called radiation-reaction
force! —such that the work done by the latter accounts for the loss of energy by
radiation. Due to such considerations it became generally accepted that the clas-
sical Maxwell-Lorentz theory would have electrons orbiting a nucleus continually
loose energy and finally collapse into the core, hence making stable atoms impos-
sible. The discovery of sharp spectral lines of light absorbed by atomic gases and
the famous photoelectric effect revealed further deficiencies of the classical theory of
electromagnetism, the latter prompting Einstein to introduce the notion of quanta
of electromagnetic energy (nowadays commonly called photons), thus lending cre-
dence to Planck’s “desperate” step a few years earlier of assuming a quantization
of electromagnetic energy in order to explain the observed spectral energy density
of thermal radiation emanating from cavities. The further course, which physics
took is well-known, and by the work of some of the greatest minds the world saw
the birth of the marvelous mathematical edifice, which together with a plethora of
so-called correspondence rules is known as Quantum Theory. It cannot be doubted
that this theory was and still is outstandingly successful in predicting and repro-
ducing observable phenomena with unrivaled quantitative precision. In the context
of electromagnetism and more specifically within the subfield of Quantum Optics,
with which also this thesis is concerned, the theoretical description of the Laser and
its subsequent realization is an achievement, which cannot be overestimated. The
advent of this device opened up the road to the controlled manipulation of atoms
and other small particles by the forces of light, which has since become an indis-
pensable and routinely used experimental tool. One of the most fruitful application
of light forces consists in the trapping of atoms and cooling of their motional degrees
of freedom. The quantum mechanical account of the light force exerted on an atom
is, in a manner analogous to the classical theory, attributed to the interaction of the
induced atomic dipole with the quantized radiation field. Its analysis leads to the
distinction of two separate components of this force. The first is called the radiation
pressure force and is due to the recoil a particle suffers if it absorbs a photon from
the field and thereby undergoes a transition to an excited state. It is this force which
is used to great effect in the well-known laser-cooling schemes. The second compo-
nent is called the dipole force and is connected to the appearance of a spatially
varying optical potential caused by the dynamic Stark shift of atomic energy levels.
Unlike the radiation pressure force, the dipole force can be substantial also for light
which is not in resonance with any atomic transition and, as it does not involve
absorption, can be used to create conservative spatially periodic potentials to trap

!This force cannot, however, be given by (2.1), because the fields created by a point-particle are
divergent at its location, rendering the expression for the Lorentz force meaningless and is but
one of many infinities, which appear in modern physical theories making them needful of so-called
“renormalizations”. The problem of combining the notion of point-charges and fields mathematically
soundly is an issue, which has—according to the opinion of the author—not yet received a satisfactory
solution and it seems doubtful that such a solution even exists.



atoms by counter-propagating laser beams. Such light induced dipole potentials are
known as optical lattices [1] and play, in combination with cold atoms, an important
role in the experimental study of certain related aspects of more complex and less
controllable solid-state systems. Thus far we have only considered the influence of
“external” electromagnetic fields on particles. However, as radiation impinges on a
particle, it will be partly absorbed (giving rise to the radiation pressure force) and
re-radiated as well as scattered (accompanied by the dipole force). If a particle is
placed between the mirrors of a cavity, this scattered and re-radiated light is re-
flected back and forth and can therefore interact again with the particle, leading to
a dynamical coupling between the atomic and electromagnetic degrees of freedom.
A particularly interesting consequence of this coupling is the possibility to achieve a
continual extraction of kinetic energy from the particle due to the work done by the
dipole force, which arises from that part of the field, which having been previously
scattered off the laser by the particle is being back-reflected by the mirrors. This new
method of cooling an atom was first published by Horak et al. in 1997 [2] and has
since received considerable attention in subsequent publications [3]. The main rea-
son, why this scheme is of interest, can be understood if it is compared to standard
laser cooling: being based on the dipole force it does not require closed spontaneous
emission-repumping cycles and in principle is applicable to any sufficiently polariz-
able type of particle, such as, for example, a molecule. New phenomena appear if
not a single particle, but a whole ensemble of particles is allowed to simultaneously
interact with one or several selected modes of an optical cavity. Among the most
noteworthy is the so-called selforganization of a laser illuminated cold gas, which is
placed between the mirrors of an optical resonator, allowing for a collective coupling
of the particles through the light scattered off the laser beam and into a mode of
the cavity. This effect, first predicted by Domokos and Ritsch in 2002 [4] and con-
firmed experimentally shortly afterwards in 2003 [5], is akin to a phase transition.
A cold gas, which is originally spatially homogeneous on a scale of the wavelength
of a selected near-resonant (w.r.t.the illuminating laser) cavity mode and therefore
scatters only a negligible amount of light into the resonator, spontaneously, upon
crossing a specific threshold of the intensity of the illuminating laser, reorders into
a periodic pattern, whereby the amount of light scattered into the cavity mode is
greatly enhanced. In the final state, the forces, which hold the particles in place,
are caused precisely by the dipole force due to the enhanced scattering. This self-
consistency is the reason why the transition has been called selforganization. In
general, the collective nature of the dynamical interaction of polarizable particles
with radiation gives rise to interesting dynamical effects, of which some aspects will
be studied in the present thesis.



2.2 Qutline of the Thesis

2.2.1 Content of the second Chapter

A cold gas of polarizable particles moving in the optical potential of a standing wave
high finesse optical resonator acts as a dynamic refractive index. For a sufficiently
strong cavity pump the optical forces generated by the intra cavity field perturb the
particles’ phase space distribution, which shifts the optical resonance frequency and
induces a nonlinear optical response. By help of mean field theory, we predict that
beyond the known phenomenon of optical bistability one finds regions in parameter
space, where no stable stationary solution exists. The atom-field dynamics there
exhibits oscillatory solutions converging to stable limit cycles of the system. Applied
to a zero-temperature Bose condensate or a thermal gas one finds a strikingly similar
behavior, if one simply replaces the recoil frequency by an appropriately chosen
thermal frequency. The content of this chapter is largely based on a publication by
the author [6].

2.2.2 Content of the third Chapter

In this chapter we study the spatial selforganization and cooling of a dilute cold
gas of laser-illuminated polarizable particles inside an optical resonator. Deriving a
non-linear Fokker—Planck equation for the particles’ phase-space density allows us
to treat arbitrarily large ensembles in the dispersive limit and explicitly calculate
friction, diffusion and the selfconsistent statistical equilibrium states. In addition,
we determine the selforganization threshold and thereby find the equilibrium phase
boundary in closed form. The equilibrium velocity distribution of a gas in the un-
ordered phase is found to be a ¢g-Gaussian with a steady-state temperature deter-
mined by the cavity linewidth and detuning. The phase space distribution for a gas
deeply within the selfordered phase turns out to be thermal and we give the cor-
responding temperature. Numerical simulations using large ensembles of particles
confirm the analytical threshold condition for the appearance of an ordered equi-
librium state, where the particles are trapped in a periodic pattern and can have
energies close to a single vibrational excitation. The material presented is an adap-
tation and extension of [7] co-authored by me. All the calculations where performed
individually by each author for the case of the unordered phase. The remaining
calculations, extending the theory to selforganized ensembles is due to the present
writer. Almost all the numerical simulations where done exclusively by Wolfgang
Niedenzu.

2.2.3 Content of the fourth Chapter

In this chapter we generalize the kinetic theory derived in chapter 3 to the quantum
mechanical regime. We find important corrections to the semi-classical results treat-
ing both Bosons and Fermions. The work presented here has not been published.
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2.2.4 Content of the fifth Chapter

Here we study the dynamics of a multispecies mixture of laser-illuminated polariz-
able particles moving inside an optical resonator. Above a certain pump threshold
the collective enhanced scattering of laser light into the cavity induces a phase tran-
sition from a homogeneous spatial distribution to a common crystalline order. We
analytically show that adding particles of any mass and temperature always strictly
lowers the minimum pump power required for selfordering and trapping. This allows
to capture and trap new species of atoms, molecules or even polarizable nanoparticles
in combination with proven examples, for which a high phase-space density is readily
available. Cooperative light scattering mediates effective energy exchange and thus
sympathetic cooling between different species without the need of direct collisional
interaction. The predicted ordering thresholds and cooling timescales are in range of
current technology for particles with a wide range of mass, polarizability and initial
temperature. The content of this chapter can basically be found in [8]. The primary
contribution of the author to this work consisted in the analytical calculations. The
numerical implementation and analysis is due to Wolfgang Niedenzu.

2.2.5 Content of the sixth Chapter

Collective off resonant scattering of coherent light by a cold gas induces long-range
interactions via interference of light scattered by different particles. In a 1D con-
figuration these interactions grow particularly strong by coupling the particles via
an optical nanofiber. Above a threshold pump laser intensity we predict a phase
transition from a homogeneous density to a self-sustained crystalline order. In the
dispersive regime we determine the critical condition for the onset of order as well
as the forms of gas density and electric field patterns above threshold. Surprisingly,
there can co-exist multiple stationary states with distinct density profiles. This chap-
ter is a slightly extended version of the journal article [9] by the writer of this thesis.
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3 Nonlinear Atom-Field Dynamics in
high-Q Cavities: from a BEC to a
Thermal Gas

3.1 Introduction

Based on the surprisingly fast progress in the experimental technology of laser cool-
ing and manipulation of dilute atomic gases as well as optical resonator and laser
stabilization technology, it is now experimentally possible to confine larger and larger
numbers of colder and colder atoms within the mode volume of stabilized very high
finesse resonators[10, 11]. For slow enough particles the optical dipole force induced
by the intracavity field significantly influences the atomic motion even in the dis-
persive limit at very large detunings, where absorption and spontaneous emission
only play a minor role. In this limit the dispersive scattering of the particles simply
acts as a dynamic refractive index changing the intracavity field evolution[12, 2, 13].
The resulting complex coupled atom-field dynamics leads to a wealth of interesting
physical phenomena and applications[14, 15], which can be analysed theoretically
using a wide range of models of very different complexity.

In previous work we have developed a new approach based on a classical phase
space density description of the particles involving a corresponding Vlasov equation
together with classical equations for the field mode amplitudes[16]. This approach
is particularly suitable to describe very large particle numbers dispersively coupled
to a single or a few driven cavity modes, when spontaneous emission and direct
interparticle interaction play only a minor role. Related approaches to cold atom
dynamics have put forward also by other groups[17, 18].

It has been known theoretically and experimentally for some time now, that the
particles in this case act as a nonlinear optical medium through their motional
response to the field, even though they are only weakly excited in the regime of linear
polarizability at this frequency and intensity [19, 20]. Even for the conceptually most
simple case of a single-mode standing wave resonator, the coupled atom-field system
can exhibit optical bistability. For a BEC in such a cavity self pulsing solutions were
experimentally found[21]. They can be qualitatively well described via a fairly simple
two-mode expansion for the atomic mean field dynamics as a nonlinearly coupled
oscillator model[22]. This model was shown to be mathematically equivalent to a
typical optomechanical setup of a high finesse resonator with a single field mode
and a movable mirror at one end. Here we study the appearance of a very similar
behavior for a general thermal gas in resonator and show that we can treat both
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limits of very low and high temperatures in a unified mean field model.

3.2 Model and Basic Equations

n K

Figure 3.1 Schematic drawing of the physical system.

We consider a large number N >> 1 polarizable (point-)particles of mass m inside
a standing wave cavity and coupled to a single mode at wavelength A thereof. In
the dispersive regime, where the frequency of the electromagnetic field is far from
any atomic resonance, the cavity photons induce dipole forces on the particles and
the distribution of particles in turn shifts the cavity resonance through their dipole
moments, thus giving rise to a nonlinearly coupled system. The dynamical quantities
of the mean field type model we are about to examine in this chapter are the phase
space (quasi-)distribution f(z,v,t), which is the Wigner transform of the reduced
one-body density matrix pp1(z,2’,1),

f(z,v,t) = % /e*”m”/hppﬂ (CE + g,x — ;,t) dz, (3.1)
and the complex cavity field amplitude, the average of the annihilation operator:
a(t) = (a(t)). The arguments of the Wigner distribution, f(z,v,t), refer to the
coordinate along the resonator axis, x, the particle velocity in that direction, v, and
time t. The particular zeroth moments of this distribution with respect to velocity
and position represent the spatial number density of particles and the distribution
of velocity respectively. That is to say

n(x,t)dz = dx/f(:r,v,t)dv (3.2a)

is equal to the expected fraction of particles within an interval of size dx around =,
whereas

F(v,t)dv := dv/f(a:,v,t)dx (3.2b)

represents the expected fraction of particles having a velocity within an interval of
size dv around v. As detailed in the appendix, in the limit of large particle numbers,
the phase space density obeys Wigner’s equation:

Of | Of  10® fla,v+vr) — fla,v—vp)

E + U% - Eaix 21}R = 0, (33&)
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where vg = %@ denotes the so-called recoil velocity and we have introduced the
optical potential

® := hlp|al? cos? (kx). (3.3b)
The cavity mode amplitude satisfies
: . NUy [ A
a=[-rk+i(A.— NUy/2)|a — i 5 a/ dv/ f(z,v,t) cos(2kx)dx +n. (3.3¢)
—00 0

Note that we can, in the last equation, without loss of generality restrict the spatial
integration to the interval [0, \] and impose periodic boundary conditions on the
(quasi-) distribution

flz+X\uv,t)= f(z,v,t) (3.4)

due to the periodicity of the optical potential. The coupling constant Uy can take on
positive as well as negative values depending on whether the particles in question
are weak- or strong field seekers respectively. It can bee interpreted as measuring
the optical potential per photon. The constant A, denotes the detuning between the
pump laser frequency and the resonance frequency of the selected cavity mode. As
can be seen, only the effective detuning ¢ := A, — NUy/2 enters the equations of
motion, which corrects the bare detuning by the shift coming from the spatially ho-
mogeneous part of the gas density. Finally, x denotes the decay rate of the resonator
mode and 7 the pump strength related to the external driving laser.

The coupled system of time-dependent equations (3.3) is evidently highly nonlin-
ear. This circumstance, however, does not exhaust the difficulties associated with
it. Even the more modest endeavor of investigating stationary states is troubled by
the fact that Wigner’s equation allows for an infinite number of possible forms of
equilibrium distributions for a given cavity mode amplitude. The reason is found in
the mean-field nature of the present model, which lacks an entropy production mech-
anism. Hence, within the context of the chosen model, any hypothetical stationary
state depends on the entire history of the dynamics resulting in its realization.

Before we present a way to cope with the above issues in a more or less satisfac-
tory manner, let us give but one concrete example of a possible form of steady-state
distributions allowed by (3.3). An obvious choice is given by the class of separable
equilibrium phase-space densities, that is such distributions, which can be written
in the form of a product

f(z,v) = n(z)F(v). (3.5)
A density of this kind may be justifiably said to represent a classical state of the
gas, since by the properties of n(z) and F(v) as stated in (3.2), it has to be positive
throughout all of phase space and can thus be interpreted as a conventional proba-
bility distribution thereon. Substituting the ansatz (3.5) into the first of equations
(3.3), it is not at all difficult to show that the sought for densities are given by

P(x)
2aFERr

n(x) =ng exp (— ), (3.6a)
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F(v) =e *[Ip(a)d(v) + i I,(a)(0(v + nug) + d(v — nug))], (3.6b)
n=1

where Eg := h?k?/2m denotes the recoil energy, I,, the modified Bessel functions
of the first kind, ng a normalization constant and a > 0 represents a dimensionless,
real-valued constant of separation, making the separable equilibria a one-parameter
family of solutions. The spatial probability density (3.6a) is reminiscent of the clas-
sical Maxwell-Boltzmann distribution with 2aEr playing the role of the thermal
energy kpT'. The distribution of velocities as given by (3.6b), however, clearly re-
flects the quantized nature of the interaction of the polarizable gas with the cavity
photons. It is entirely localized on integer multiples of the recoil velocity vg, which
is the incremental velocity imparted on a particle upon scattering a photon. The
particular form of the velocity distribution implies furthermore that a phase space
density belonging to this class may be reached from some initial condition repre-
senting a gas forming a Bose-Einstein condensate.

Returning to our previous train of thought we repeat that even though (3.6) rep-
resents an exact class of stationary Wigner distributions, there is nothing to rec-
ommend the investigation of this particular family of solutions otherwise. We can,
however, circumvent both the issue of non-Markovian time evolution and the in-
tractable degree of nonlinearity by restricting ourselves to examining some of the
consequences of (3.3) in the limit of a shallow optical potential. Since in this case
the spatial inhomogeneity of the particle (quasi-) distribution will be small, we may
write

f(z,v,t) = fo(v) +0f(x,v,t), (3.7)
where fp(v) denotes an assumed homogeneous bulk distribution and Jf designates
a small deviation therefrom. The above assumption implies that J f approximately
satisfies the linearized Wigner equation

(6(?15 + v;l) 5f = _Uo\204\2 sin(2kx) (fg(v +wvg) — fo(v — UR))- (3.8)

Note however, that due to the large number of particles present, even a small spatial
modulation of the gas density may nevertheless be accompanied by a considerable
shift in the cavity resonance, giving rise to great variations in the magnitude of the
cavity mode amplitude. Thus a similar, linear approximation regarding the equation
of motion for « is thereby precluded. A closer inspection of the resulting simplified
equations reveals that the only spatial Fourier mode of the deviation d f, which is
actually coupled the cavity mode amplitude « is the one having a periodicity of \/2.
Hence, defining

A ,
o(v,t) ::/ 5f(z,v,t)e2*2dg (3.9)
0
and the velocity distribution of the unperturbed background, Fy(v) := Afy(v), we

are left with
09

5 T 2ikvo =

’L'U0|O£’2

(Fo(v+ vr) = Fo(v - vr)) (3.10a)
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&= (—ﬁ+i5)a—iN2an/oo Re{¢(v,t)} dv+n (3.10b)

Note, that the velocity variable enters only parametrically and that for every fixed
velocity class v, ¢(v,.) satisfies the differential equation of a driven harmonic oscil-
lator with a natural frequency given by 2k|v|.

3.3 Stationary States

Let’s turn to the determination of the steady states (¢g, ag) of (3.10a)-(3.10b). From
(3.10a) one easily finds that every stationary particle mode ¢g(v) is related to the

steady-state photon number Iy := |ag|? via
Q}RU()IO 1 AFO
= — 3.11
do(v) = 05D, (3.11)
where we have defined the difference quotient % via
AF F — Fo(v —
0 — O(U + vR) O(U UR) ) (312)
Av 2UR
Substituting this expression into the steady-state version of (3.10b) we get
NU? ®© 1 AF
0=(—k+1id)ag — ingk % v [m Y A’UOdU + . (3.13)

Whenever the temperature of the bulk is nonzero, we can define a scalar function F
and a thermal velocity vy such that

Fy(v) = vt F(v/vr). (3.14)

To shorten the notation, let us furthermore introduce the factor

J(vp/vr) = 5] onfor

1 /oo 1 F(utvr/vr) = F(u—vafvr) | (3.15)

From (3.13) one obtains the steady-state condition for the photon number Ij in form
of a cubic equation

2
NUZJ
Iy |K*+ (5 — 10“’320) =’ (3.16)
4w
Here, we have in addition introduced the recoil frequency wg := hk?/2m and the

thermal frequency wr = kvp. Clearly, equation (3.16) can have up to three distinct
real solutions. A typical response curve is depicted in figure 3.2. In the interval of
effective detuning designated by the letter A the system allows for several possible
steady states at once. Which one of these (if any) can be attained? Needless to say,

17
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Figure 3.2 Normalized steady state photon number versus effective detuning 6/« for
N =10, Uy = 0.04k, = 18k, wr = k, wr = 0.5- 1073k and a Gaussian velocity
distribution.

an indispensable condition for any steady solution (¢g, Ip) to actually represent a
physical state of the system, is the requirement that a small but otherwise arbitrary
deviation from equilibrium does not entail a growth in time of this deviation. A
general investigation of the linear stability properties of steady states defined by
(3.13) will therefore shed some light on the above posed question. Let us therefore
proceed to establish the necessary and sufficient conditions for a given steady state
solution to be stable or unstable.

3.4 Stability Analysis

3.4.1 Analysis of the Linearized Equations

The starting point of our analysis will be equations (3.10a)-(3.10b), linearized around
a steady state solution. Hence, let us write

¢(U> t) = ¢0('U) + (S(Z)(U, t)> (3'17)
a(t) = ag + da(t) (3.18)

and substitute these decompositions into the equations of motion. By keeping only
terms that are linear in the deviations d¢ and d«, we obtain

¢ . o ivgly o wo  AFp
rr + 2ikvogp = 5 (apda™ 4+ o) Ao (3.19)
da = (—k+iA)da — iNUO ao/ Re {0¢(v,t)} dv, (3.20)
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wrNU2ZJ

4w%
pertaining to the given equilibrium. It is advantageous to introduce the Laplace
transforms with respect to time of d¢, §¢*, da and da*. To keep the notation to a
minimum, we will not introduce new symbols for the transformed quantities. Intro-
ducing the susceptibility

_ NUZvr /oo (AF()/AU AFQ/AU) &

8 —oo \ 8 + 2ikv s — 2ikv

where we have set A := § — Iy , which represents the effective detuning

X(s) : (3.21)
where s denotes the complex frequency on which the Laplace transformed quantities
depend, we obtain the following linear system of equations:

3+/§—Z‘A—IX(3) CVQX(S) Sor B I
< ag?x(s) 0 54K+ 2A + IOX(s)) : <5a*> = (é) ) (3.22)

where (11, I2) denotes an initial value contribution. Let D(s) designate the determi-
nant of the matrix on the left hand side of this last equation, i.e.

D(s) = (k + 5)* + A% — 2iATyx(s). (3.23)

We will henceforth call the function D(s) dispersion relation. As explained at length
e.g. in [16], instability of the given steady state is equivalent to the existence of zeros
of the dispersion relation with a positive real part. On the other hand, absence of
such zeros implies linear stability.

3.4.2 Limit of a Gas at Zero Temperature-BEC

Before we direct our attention to the limiting case of a classical gas at finite temper-
ature, let us briefly take a closer look at the opposite limit, namely that of bosons at
zero temperature forming a condensate (BEC). In that case, the velocity distribution
of the bulk is given by

Fy(v) = 0(v), (3.24)

implying that all particles are at rest. Any steady state photon number can be
calculated from (3.16) with the replacements: J — —1 and wr — 2wg. In order to
make contact with the method of analysis used in other works, we decompose the
solution of equation (3.10a) according to

d(v,t) = ¢1(1)6(v — vr) + - (£)6(v + vr) + do(v, 1), (3.25)

where ¢q is a solution of the homogeneous equation. This last contribution can be
neglected for sufficiently smooth initial conditions due to rapid “phase mixing”, i.e.

oo .
/ do(v,0)e 2y - 0, as t — oo (3.26)
—0o0

by the Riemann-Lebesgue Lemma. The delta functions appearing in (3.25) imply
that the interaction of the condensate with the cavity field creates only particles with
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velocities given by +wvg, which corresponds to the scattering of exactly one resonator
photon and makes the meaning of the adopted approximation rather transparent in
the present case. Defining the position-like variable

#(t) = Re {64 (1) + 6_ (1)}, (3.27)
one easily verifies that equations (3.10) are mapped onto
i+ (dwr)?z = —wrlslal? (3.28a)

&= (—f-erié)a—iNUO

ox +n, (3.28b)

which are precisely the equations used to study the dynamics of a weakly ex-
cited BEC inside a standing wave cavity obtained by a Gross-Pitaevskii equation
approach[23]. Thus it is seen that the present formalism includes the latter as a
special case. The stability of steady states is governed by (6.23), in which the sus-
ceptibility takes on the simple form

. inNUg 1
N 2 52 + (4&)3)2‘

x(s)

(3.29)

As this special case has already been treated, we limit ourselves to the remark that

2
no steady state with A =6 + ]\;ggf > 0 is stable. This also means that a positive
effective detuning, § > 0, automatically implies instability. We will see in the next

section that such a situation does not prevail for a gas at finite temperature.

3.4.3 Thermal Gas - Classical limit

Let us now investigate the dispersion relation for a gas at nonzero temperature in
more detail. Note, that as it stands, (6.23) together with (3.42) are defined only for
Re(s) > 0. To find the boundary in parameter space, which separates unstable from
stable equilibrium states, we need to find the limiting form of the dispersion relation
as Re(s) — 0. To this end we recall the Plemjel formula

1 P
li = o (x — ). 3.30
e—1>I(§l+x—y:tie x_yq:m (z-v) ( )

Here and elsewhere, P denotes the cauchy principal value. Setting s = v 4 iw and
writing sloppily x(w) = lim,_,o+ x(s), we find
>] . (3.31)
o

It does not make much sense to try to extract general (i.e. true for arbitrary Fy)
consequences of (6.23) and (3.31), for even if the stability boundary could be found
analytically in terms of a function I§"* = I§"(5, N, Uy, . ..), we would still have to

AR

w Av
2k

_NU(?UR
8k

(o) = 1 / vAFy/Av J 72r<AF0

i Av

i Joe (w/2k)2 — 027"
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find the intersection of this curve with the one specifying the actually possible combi-
nations (Ip,d,...) (defined by (3.16)), and this is obviously a hopelessly complicated
task. We will therefore concentrate on the physically most relevant velocity distri-
bution, namely on the thermal distribution. Well above the condensation threshold,
it is given by the classical Maxwell-Boltzmann distribution, which reads

1
Fo(v) = ﬁe*@/“T)Q. (3.32)

In this regime, the thermal velocity by far exceeds the recoil velocity, vy > vg, such
that we may replace the difference quotient by a derivative

AFy . dFy(v)

Ao o (3.33)

in all relevant equations, including (3.10a). This enables the evaluation of the in-
tegral in (3.15) with the result J = —2. Finally, we should state the condition,
that the deviation of the actual particle (quasi-) distribution from the homogeneous
background be small, namely

2 2
muv Upw
Wplaf? « T2 or 4L 2000 (3.34)
2 K% wp

which simply means, that the potential energy per particle must be much smaller
than the corresponding kinetic energy. We will not try to solve the stability problem
fully analytically (which is impossible), but use graphical and numerical methods
where necessary instead. Using (3.31) and writing lim,,_,o+ D(s) = Dy(w) +iD;(w),

we find NU2AL
Do(w) = 12 4+ A2 — 2 NV Iowr (1 — “Da (“’)) (3.35)

2
W wr 2wT

NU2ATywpr w —( E
——————e¢

Di(w) = 2kw — /7 W) (3.36)

Qw% wr

Here, Da(x) denotes Dawson’s integral which is defined as
Da(z) = e * / et dt (3.37)
0

Note, that the dispersion relation belonging to a thermal velocity distribution can
now be seen (upon substituting A — ¢ and UZly — 4n?) as being identical to the
one considered in [16]. Therefore all the results exactly carry over to the present
case: A given steady state Iy is unstable if and only if we have

Dy (wo) >0 (3.38a)

for all wq such that
D;(wo) = 0. (3.38Db)
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3.4.4 Graphical Solution of the Stability Problem

In order to extract the information included in the general criterion (3.38), we will
resort to graphical means. In order to do so, we note, that the two conditions D; =
0, D, =0 define a function

Iy = I§(A) (3.39)

(the dependence on the other parameters is understood implicitly), with the prop-
erty, that a steady state Iy is unstable if and only if I > I§"*. Hence (A, I§"(A))
defines the stability boundary in the parameter-space spanned by (A, Iy). However,
the detuning A depends on the given equilibrium photon number and is thus not a
freely variable quantity. Using, that

NUOZ(,UR

0=A—
Qw%

Iy (3.40)

we can nonetheless parametrically plot the stability boundary, i.e. the mapping

NUEwr
2

A~ (A —
QwT

IS“(A)JS“(A)) (3.41)
in the space of interest, namely the one spanned by (4, Iy). Together with the response
curve defined by (3.16), this allows to analyze the stability properties of the system.
Consider again the set of parameters used to plot figure 3.2. Figure 3.3 depicts
the response curve and regions of instability defined by (3.16) and (3.39) for two
different values of the pump parameter. Clearly, there exists an interval of effective
detunings, wherein two distinct steady photon numbers are both linearly stable.
Such a state of affairs is known as bistability. Perhaps more surprising however is
the existence of an interval, where there can be no stable steady state at all (fig
3.3b)! To summarize the possible behavior of the system when varying the pump
strength, we can state that below a certain value, the response curve is single-valued
and lies entirely in the stable domain. Above that value, we find multi-valuedness
and a region of bistability (fig 3.3a). Only upon crossing a second threshold does the
completely unstable interval appear (fig 3.3b).

3.5 Long Time Behavior

3.5.1 Classification

Whenever a (or two) stable steady state(s) is (are) available, we expect the system
to relax to it (or one of them) starting from arbitrary initial conditions. How does
the system behave for parameters that allow for no stable steady state? To answer
this question and to see whether the first guess is correct, we discretized and solved
(3.10a)-(3.10b) numerically. Figure 3.4a depicts the time averaged photon number
(divided by the maximally possible) for different effective detunings for the usual set
of parameters. It is clearly visible, that this averaged photon number deviates from
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Figure 3.3 Response curve (red) and regions of instability (shaded) for n = 13« (a) and
1 = 18k (b). Those parts of the response curve, that lie inside the unstable region (red
dashed), correspond to linearly unstable steady states. The black dashed line separates
the parameter space into positive and negative values of the equilibrium detuning A.
The intervals designated A correspond to bistability, the interval designated B supports
no stable steady state at all. All other parameters as in figure 3.2.
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Figure 3.4 a: Response curve (stable parts solid red, unstable parts dotted) and time
averaged normalized photon number (blue circles) versus effective detuning. A devia-
tion from the response curve occurs only inside the unstable interval [—3.3,0], where
the system exhibits limit cycle oscillations. b: Limit cycle frequency versus detuning.
Parameters as usual.

the steady state photon number only for detunings within the unstable interval,

confirming our calculations. To our surprise and for generic sets of parameters, the



system exhibits limit cycle oscillations within the completely unstable interval.
Unlike in the case of a collisionless BEC, where oscillatory solutions depend on the
initial conditions, these are true limit cycles independent of the initial conditions.
This difference may be attributed to the phenomenon of “phase mixing” of the
infinite number of oscillators in the classical case, which mimics dissipation. The
“observed” frequencies of the latter versus detuning are shown in figure 3.4b. For the
chosen parameters, these frequencies are of the order of the thermal frequency. If the
underlying steady state is weakly unstable, the corresponding limit cycle oscillation
is almost monochromatic. Figure 3.5 depicts these oscillations of the photon number
for two different detunings inside the unstable interval. As visible, the photon number
varies almost harmonically with time. Associated to these oscillations is a standing
density wave formed by the particles.

(1a) (1b) (1c)
250 1 1 T
0.8 T ] 10
150 06 1 6
|a|2 Im(o)
0.4
0 Lo -6
0 20 40 60 &0 0 1 2 3 4 5 6 7 %5 0 5 10 15 20
Kkt frequency [x] Re(a)
(2a) (2b) (2¢)
300 1 , ‘ : 15
0.8 , 10
200 0.6 5
|a|2 Im(a)
0.4 » 0
100 02 5
0 A -10
0 20 40, 60 80 o 2 4 5 0 5 10 15 20
Kl frequency [k] Re()
Figure 3.5 (a) Photon number as a function of time for § = —k (upper row) and
d = =3k (lower row) and (b) normalized power spectrum. (¢) Shape of the limit cycle.

All additional parameters as in fig 4.37.

In figure 3.6 we compare the numerical solution of the reduced model with the
solution of Vlasov’s equation (3.76) for the same parameters as in figure 3.5. The
agreement between the two models is excellent, confirming the validity of the ap-
proximations we introduced.

3.5.2 Limit Cycle Frequency Close to Threshold

As mentioned, one finds numerically, that for parameters such that the steady state
with A > 0 is weakly unstable, in its place there exists a periodic oscillation (limit

24



250
200 1ol
150 /g
2
|| \é/ 5
100 =
50 , o
15 20 25 0 5 10 15
Kt Re(a)

%o 15 20 25 0 5 10 15 20
Kt Re(a)
Figure 3.6 Comparison between the reduced (3.10)(blue) and the Vlasov model (3.76)

(red). Apart from a phase shift, the results are almost identical. All parameters as in
fig 4.37 and fig 3.5.

cycle), which is almost monochromatic. This enables us to construct these cycles in
a perturbative manner. Without loss of generality, we may assume, that the sought
for solution satisfies

X(8) = /_ O:O Re {6(v, 1)} dv ~ xo + X1 cos(wt) (3.42)

and
lat)? = 1(t) = I, ™" (3.43)

with real coeflicients xo and x; and I, = I*,, € C. Of course, w denotes the sought
for limit cycle frequency. Substituting (3.42) into (3.10b) and using

v cos(e) — Z Jn(x)ei”“’, (3.44)
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we obtain the Fourier coefficients of the photon number in terms of w, xg, x1 as

T () Tmn (M52

—K 4+ 1A —imw] [—k — A — i(n — m)w]

L) = S | . (349)

where A = § + %. In order to link xg,x1 to the photon number coefficients

I, self-consistently, we must evaluate the response of the particles to an applied
intensity varying like 3, I,,e™ in the form ¢ = Y, ¢, (v)e™ ", ie. we have to
solve

v RU ()In 8F 0
2kv) ¢y, = —_—. 3.46
(@ + ko), = E0 0 (3.46)
Note carefully, that we cannot simply divide this equation by nw + 2kv to obtain the
solution because of the singularity at v = —w/2k. Instead, we have to regard ¢, (v)
as a generalized function to obtain
vrUoI,, (O0Fp(v) P )
Onlv) 2 ( ov  nw+ 2kv + hn(v)0 (nw + 2kv) (347)

where P denotes the Cauchy principal value and h,(v) is arbitrary. As a remedy to
this uniqueness problem, one may introduce collisions characterized by a collision
frequency and let this frequency go to zero in the end. Alternatively, one may replace
et lim el (3.48)
y—0+
which means to consider the intensity as turned on infinitely slowly from the in-
finitely remote past. In either case the arbitrariness is lifted and we get

. OFp(v)
B (v) = . 49
() =ir 20! (3.49)
From this solution we find
vrUply /OO 1 3F0(1)) UowrdJ
=— - dv = I .
X0 2k oo U Ov v QW% 0 (3.50)
and oFy(v)
Uypvr /OO %dv OFy
- L | —2& a2 %w/2k) ], 51
X 4k ( —oo W/2k 4+ v "o (w/2k) (3:51)
where I, = I) + I} and I, = i(I) — I7).
As we have chosen f02 /e X (t) sin(wt)dt = 0, we have additionally
oo 9Fo(v) dv OF
v 0
o0, 0 w2k, 3.52
b/_oo w/2k+v T ov (w/2k) ( )

By means of (3.45), equations (3.50), (3.51) and (3.52) constitute three equations
for the three unknowns w, xq, x1 characterizing the limit cycle solution we wish to
find. To simplify the problem at hand, let us assume, that the cycle be such, that

NUpx1

1. 3.53
| < (3.53)
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Then we may use, that for n > 0: J,(z) ~ 5 (£)", if |2| < VI+n and J_, =
(—1)"J,, and we have the expansion
(0)

NU, 2
Xo =Xy + X(()z)(w) < 4£)X1> +..., (3.54)

where X[()O) solves

0 _ UowrJ n?

Xoo = Tou2 k2 4 AT

(3.55)

with Ag =6+ N on(()o) /2. This last equation of course implies, that to lowest order
the time averaged shift of the cavity resonance frequency in the cycle is the same
as the one corresponding to the unstable steady state. With these results, one may
write

1 0\ VUox1 3 o, (NUox1\?
I = 1Y (w,x) o +1§><w,xg>>( o )+ (3.56)
where 20
9
1w = T (3.57)

T (K2 + A (K2 + AZ — w? + 2ikw)
Now, to get the cycle frequency w, we solve (3.52) with (3.56) to lowest order in

the small quantity. This yields the dispersion relation for limit cycles just above
threshold as

oo 9Fo(v) v OF
2 — 0 = (2 4 A - )2 (w/2k 3.58
o [ e = (6 A w2k, (3.58)
which, for a thermal distribution, is the equation determining the frequency of os-
cillations of perturbations of the unstable steady state. Unfortunately, the transcen-
dent equation (3.58) cannot be solved in closed form. But in the special case that
w K wr = kvr we find

N

Note, that as Ag (if positive) is monotonously increasing with increasing effective
detuning J, so is the limit cycle frequency. In figure 3.7 we compare the prediction
of (3.58) to the numerically determined limit cycle frequency for parameters such
that the equilibrium state is weakly unstable throughout most of the interval of
detunings supporting limit cycle oscillations. Note the good agreement as well as
the confirmation of the result that the time averaged photon number equals the
corresponding steady state value.

1
W= \//@2 + A2 ST (3.59)

3.6 Conclusions and Outlook
The nonlinear dynamical response of a high-Q optical cavity filled with a cold gas

of polarizable particles can be treated by an effective Vlasov type mean field ap-
proach over a surprisingly large range of temperatures from close to zero (BEC)
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Figure 3.7 Response curve and numerically determined limit cycle frequency (blue tri-
angles) vs. theoretical frequency from (3.58) (green dashed). The blue circles show
the time averaged photon number. Parameters: N = 10°, wyr = &, wg = 1073k and
Uo = 0.05k.

to a thermal gas. In both cases density waves of the medium are strongly coupled
to the intracavity field dynamics. Besides the well-known optical bistability effect
concurrent with a hysteresis effect, we can clearly identify the regions in parameter
space, where no stable stationary solutions exists and time evolution converges to
a periodic limit cycle. Its frequency is characteristic for the temperature and gas
properties and can be explicitly calculated in the BEC limit or close to threshold
for a thermal gas. In both cases such oscillations have been reported experimentally
and thoroughly studied[21, 24, 25]. The observations agree well with our model. In-
terestingly, the effect is predicted to persist at much higher temperatures creating a
nonlinear response in a linearly polarizable medium. As to its practical observability
a few critical remarks are in order. All of our calculations concerning the long-term
fate of the system are based on a reduced model of the dynamics, in which the over-
all distribution of velocities remains invariant, amounting to a neglect of any change
in kinetic energy of the gas. However, a coherent oscillation at some frequency w as
predicted in this work will inescapably lead, on a classical level, to a strong accel-
eration of such particles as possess resonant velocities v ~ 4w /2k. Therefore, one
might reasonably expect the cycle frequency to drift in time. This in turn would
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continuously increase the number of particles affected resonantly and lead to an
irreversible heating of the gas, thereby pushing it towards temperatures, where a
stable steady state becomes again available and the oscillation ceases. Alternatively,
it is also thinkable that the field-gas dynamics becomes chaotic through the acceler-
ation of resonant particles. By this line of reasoning we are lead to conclude that, in
the absence of a collisional redistribution of energy or thermostatting, the predicted
limit cycle oscillations could very well turn out to be a transient phenomenon. Nev-
ertheless, a gas with a non-negligible rate of collisions could show a qualitatively
similar but stable behavior.

In the long run the system thus represents a well controllable and experimentally
implementable toy system to study generic nonlinear dynamics in the transition
range from classical to quantum mechanics. Adding extra modes or atomic species
will allow to extend its scope and complexity in many directions.

3.7 Appendix: Quantum and Classical Mean Field Limit

Here we show, how the mean field Wigner equation and its classical counterpart,
namely Vlasov’s equation, can be obtained from the quantum mechanical equations
for N — oo polarizable particles coupled to one or more resonator modes. When
spontaneous emission is neglected, the Heisenberg equation of motion for the particle
field operator 1/3(3:, t) in the strong trapping approximation reads

8 ~ Zh 82 ~ 1 A A
—) = —— —d 3.60

8tw 2m Oz2 v ih ¥, (3.60)
wherein & = @(x, a1y...,apn) = ®T is the potential at the location z created by the
photons of the M > 1 modes. Let us introduce the phase space density operator

f(z,p) = 27171/6_"”/5 Pt (x — ;) " (33 + ;) dz, (3.61)

where p = mv is the momentum. Taking its expectation value it may be noted that

£ 1 —izp/h ? ?
(f(x,p)) = %/e 1D/fpp71 (y; + Cikae 2) dz. (3.62)

Hence, ( f (z,p)) is the Wigner transform of the one-body reduced density matrix
ppi(z,2') = (@T(x' )@@(x» and therefore equal to the phase space quasi-distribution
f(z,p) considered in this chapter, expressed in terms of the momentum instead
velocity. To derive the equation of motion for the phase space density operator, let
us write for the sake of brevity

Uy =P(x+2/2), bp=d(x=+2/2). (3.63)
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Then it follows from equation (3.60) that

A o o [ 2 (31 s = 2 (1) 64) +
+%¢T_¢S+ (64 -0-)] (369

Here, we have used that the potential and the field operator commute. The first of
these two terms may be written as

2ih 1 . 0% . 82 «
&t L —ipz/h Y T _
m 2nh /dze <¢ 022 Y+~ (1/) ) ¢+>

= [z ($ 2y — o (1)) =

m 2mh
_ 1 —z‘pz/h<TA _ 9 (ot A>_
=P [zl (b - 2 (9) ) =
N 8 N o
N A —ipz/h t v T _
e f 4o (I e+ g (91) )
__P9;
= maxf(a:,p). (3.65)
To handle the second, define
_ —iqz
Ul(z,q) =5 h/dz (z+ 2/2) — D(x z/2)) . (3.66)
Then one obtains
—ipz/h)\T ), _
27Thm/dze Pl (&) - /U (z,q)f(z,p — hq)dg. (3.67)

Thus the equation of motion for the phase space operator reads

of _»of /
-I- - + [ Uz, q)f :1: ,p — hq)dq = 0. (3.68)

In case of a single standing wave resonator mode, the optical potential is given by

A

®(z,4) = hUpa'a cos?(kzx). (3.69)
In this case one can easily evaluate (3.66) and finds

- Ui

Uz, q) = 7%*@ sin(2kz) [6(k 4 q) — 6(k — q)] - (3.70)

The equation for the phase space density operator thus reads:

of paf U 5 ;
o RO Doitasinahe) [Fw.p+ ib) — flap— 0] =0, (37)
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To arrive at a self-contained model this equation is to be supplemented by the
Heisenberg-Langevin equation for the annihilation operator @ of the cavity mode:

o= (—k+iA)a —iloa / dz / F(z,p) cos(2kz)dp + 1 + Gin, (3.72)

where a;,, represents the quantum noise caused by the loss of photons through the
mirrors. The mean-field limit N — oo can be found by decomposing both the cavity
mode annihilation operator @ = o + da and the phase space operator f = f + 6f
into their expectation values and fluctuations, with (6a) = (6 f) = 0, then taking the
expectation value of (3.71) and (3.72) and neglecting all correlations. This procedure
leads to Wigner’s equation (sometimes called the Quantum Vlasov equation) for the
expectation value of f (z,p)
of  paf U

or T oo T o ol sin(2k) [f (@, p+ hk) — f(z,p — k)] = 0 (3.73)

and similarly

&= (—r+ilAc)a — iUQ% /dx / f(z,p) cos(2kz)dp + 7. (3.74)

These are the basic equations employed in this chapter. The question naturally arises,
under which conditions the neglect of correlations constitutes a valid approximation.
Note also that at the given level of sophistication, there exists no difference between
bosonic and fermionic particles. We will have to say more about these issues in the
next chapter. If we further assume that the typical particle momentum is much
larger than the recoil momentum hk, we can expand

of h2k* 0% f
Then (3.73) becomes
of  p9f 24 of _
5 + . + hkUp|al” sin(2kx) o 0, (3.76)

which is Vlasov’s equation. Hence, the classical model employed for example in [16]
and also in this work can be recovered as a limiting case of Wigner’s mean field
equation and is expected to be accurate if kgT > h%k?/2m, i.e. if the thermal
energy (or kinetic energy per particle) of the gas is much higher than the recoil
energy.
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4 Kinetic Theory of Cavity Cooling and
Selforganisation — Classical

4.1 Introduction

A dilute cold gas of polarisable particles can be manipulated in a controlled way us-
ing the light forces induced by a sufficiently strong laser far off any internal optical
resonance [26]. For a free-space laser setup this force generates a conservative optical
potential for the particles with a depth proportional to the local light intensity. As
the forces are generated via photon redistribution among different spatial directions,
the particles in turn alter the field distribution and act essentially as a spatially vary-
ing refractive index. While this backaction can safely be ignored in standard optical
traps [27], it was shown to have a significant effect if the light fields are confined
within an optical resonator enhancing the effective particle-light interaction [3].
For transverse illumination a threshold pump intensity where this coupled particle-
field dynamics can lead to spatial selfordering of the particles into a regular pattern—
resembling very closely a phase transition—was theoretically predicted and experi-
mentally confirmed [4, 5, 28]. Due to cavity losses this dynamics is dissipative and
thus can constitute a new cooling mechanism for a very general class of polaris-
able objects [29, 30]. Extensive simulations using fairly large numbers of particles
with large detunings predict that already with current molecular sources and cav-
ity technology a useful phase-space compression could be achieved [31]. However,
particle-based simulations cannot be applied to sufficiently large particle numbers
and laser powers for the whole parameter range of interest. As an alternative, a
mean-field approach based on (Wigner’s or) Vlasov’s equation [16] for the particles’
phase-space distribution provides a description for arbitrarily large ensembles. This
theory has proven capable of determining the conditions necessary for the spatial
selfordering of a gas to occur and to describe various dynamical aspects of gas-cavity
systems (as shown for example in the previous chapter), but due to its inherent ne-
glect of dynamical correlations the basis for both the cavity cooling mechanism and
uniquely defined equilibrium states has been lost. We have already remarked on the
lack of an entropy production mechanism of mean-field models in the last chap-
ter and the difficulties associated with the resulting non-Markovian dynamics. The
present chapter attempts to provide a remedy for this problem exemplified in the
case of a transversally illuminated gas of polarisable particles interacting with a
single mode of an optical resonator. Focusing on a semi-classical model, we adopt
methods from plasma kinetic theory to extend the Vlasov kinetic theory to include
correlations, leading to a non-linear Fokker—Planck equation for the statistically av-
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eraged microscopic phase-space distribution, which includes friction and diffusion
and allows to predict cooling time scales and the unique steady-state distribution.
In the next chapter we extend the theory to the quantum domain.

4.2 Semiclassical equations of motion

y

Figure 4.1 An ensemble of particles is illuminated by a transverse standing-wave laser
and scatters light into the resonator (effective pump strength 7). Above a threshold
pump intensity the particles selforganise in a periodic pattern. Cavity losses are char-
acterised by the decay rate .

We consider N polarisable particles moving along the axis of a lossy standing-wave
resonator assuming strong transversal confinement. The particles are off-resonantly
illuminated by a transverse standing-wave pump laser and scatter light, whose phase
is determined by the particle positions, into the cavity. The quantum master equa-
tion describing this system can be transformed into a partial differential equation
for the Wigner function [13]. Truncating this equation at second-order derivatives
(semiclassical limit) yields a Fokker—Planck equation, which for positive Wigner
functions—excluding all non-classical states [32]—is equivalent to the Ito stochastic
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differential equation (SDE) system

dxj = vj dt (4.1&)
1 09(zj, )
N
da=|i|Ac.—Uo Zsin2(kx]~) — k| adt—
j=1
N K
—in Z sin(kx;) dt + \/; (dWy +idWs), (4.1c)
j=1
with the single-particle optical potential
®(z,a) = hUpla|? sin®(kz) + hn(a + a*) sin(kz). (4.2)

Each particle has the mass m; z; and v; denote the centre-of-mass position and
velocity of the jth particle, respectively. Uy is the light shift per photon and k
the cavity decay rate; the associated input noise is taken into account by the two
Wiener processes dW; and dWs. Here we have neglected momentum diffusion caused
by spontaneous emission, which is valid for large ensembles and large detunings [30].
The transverse laser standing wave gives an effective position-dependent pump of
magnitude n of the field mode a with wave number k. This laser is detuned by
A¢ = wr, — w, from the bare cavity resonance frequency. We will focus on the weak-
coupling limit N|Up| < |Ac| throughout much of this chapter. Refer to fig. 4.1 for a
schematic view of the system.

We used the scheme proposed in [33, 34] for the direct numerical integration of the
SDE system (4.1). However, for analytical predictions and the description of very
large ensembles, a continuous phase-space description as described below proves far
more suitable.

4.3 Derivation of the Classical Kinetic Theory

Now that the stage has been set and the model sufficiently elucidated, we will develop
the formalism for the announced extension of the previous mean-field Vlasov kinetic
theory, which permits the investigation of the long-term dynamics and equilibrium
of polarizable particles inside a standing-wave cavity. This section is unavoidably
rather technical and lengthy, but the reader may skip it without danger and jump
directly to section 4.4, as the main concepts will be reiterated there.

The semi-classical equations of motion as stated in equations (4.1) can be refor-

mulated in an equivalent way by introducing the microscopic (or Klimontovich)
phase space density fx(z,p,t). This object is defined in terms of the Newtonian
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trajectories of the particles {z;(t),p;(t)} as

N
fi(@,p,t) ==Y 8(x —;(t)d(p — pj(1)), (4.3)
j=1

where we have used the momentum p = mwv rather than the velocity variable and
note that

/ fx(z,p,t)dxdp = N. (4.4)

Apart from this section we use the above mircroscopic distribution function but
multiplied by N~!, which however should not cause to great a confusion. The des-
ignation “microscopic” phase space density is well-deserved, because fx(x,p,t)dzdp
is equal to the actual number of particles located around the phase space point
(z,p) =: z at the particular instant of time. With its help the equations of motions
can be recast in the form

dfx

o T {fx,h} =0, (4.5a)
a=(—K+iAc)a— %/fK gj* dz + VK€, (4.5b)

where h := p?/2m + ® denotes the one-body Hamiltonian and {, } the ordinary
Poisson bracket

_0fog 9fdyg

{f.g}:= 91 0p  Opor (4.6)

As they stand, equations (4.5) represent nothing but a peculiar way of describing
the dynamics of the system and offer no advantage over the original formulation
in terms of computational effort. Being interested in the behavior of the system
when the number of particles is large, we do not care about the details of a single
realization, which is determined by the set of initial positions and momenta, the
particular realization of the noise process and the initial value of the cavity mode
amplitude. Rather, we aim at a statistically averaged description of the gas-cavity
system under the assumption of similar initial conditions. In many cases of many-
body problems, where one is interested mainly in studying equilibrium situations,
Gibbs’ statistical mechanics provides an ideal tool. In the present case, however, the
openness of the system, that is the loss of light through the mirrors, prevents us
from utilizing the latter. Therefore, we seek inspiration from the discipline known as
kinetic theory. What follows is in essence an adaption and application of methods
used in this field to the present model system. Let us decompose the microscopic
phase space densities and the mode amplitude according to

fK($apat) :f(l',p,t)+5f($,p,t) (47&)
a(t) = a(t) + da(t), (4.7b)

where f(x,p,t) := (fx(x,p,t)) and a(t) := (a(t)) denote the statistical average over
an ensemble of suitable (i.e. similar) initial conditions
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z;(0),p;(0),a(0) and realizations of the white noise process §. Accordingly, we may
split the optical potential & = (®) + §P, such that

2
h=2" 4 (®)+60 = H+s0 (4.8)

- 2m
Let it be noted that we will always approximate
(®(x,a,a")) ~ ®(z, a,a™), (4.9)

that is, we will neglect terms stemming from mode-mode correlations. Then, by
taking the average of (4.5a), we have

of
S+ HY =~ ((6£.60)). (110
If we neglect the correlation on the r.h.s., we recover the mean-field Vlasov equation,

of pof 0vaf
ot * mox Ox dp 0, (4.11)

which is a valid approximation to the system for short enough times. The meaning
of “short enough times” or initial stage of the time evolution essentially depends
on the number of particles N. The crucial assumption, which allows to go beyond
Vlasov’s theory, is that this initial stage is terminated by a mean-field steady-state
and that the system will afterwards, driven by particle-field correlations, “slowly”
(the meaning of which will be made clearer later on) relax to it’s true equilibrium
state by passing through a sequence of mean-field steady states. As we will see later,
numerical simulations of the N-body equations (4.1) confirm the validity of this
assumption. In this context, it is helpful to note that an arbitrary averaged dis-
tribution function f(x,p), which corresponds to an equilibrium solution of Vlasov’s
equation, necessarily depends on the phase space coordinates (z, p) only through the
one-body Hamiltonian H (z,p) as defined in (4.8). This fact, known as Jeans’ the-
orem, is an immediate consequence of the steady-state equation {f, H} = 0, which
in the present one-dimensional setting implies f = f(H).

To repeat, we shall henceforth postulate that after the lapse of some initial mean-
field stage described by Vlasov’s equation (4.11), the averaged distribution depends
only on the instantaneous Hamiltonian and preserves this form during the course of
its further evolution in time, i.e.

f(z,p,t) ~ f(H,1). (4.12)

Note that we say instantaneous, because in fact we have

H = H(x,p,a(t),a*(t)), that is, the Hamiltonian depends on time through the av-
erage value of the mode amplitude. Hence, in order to effectively implement the
assumptions about the long-term dynamics just outlined, a change in variables from
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(x,p) to some new pair containing as one of its variables the Hamiltonian or some
function thereof suggests itself naturally. An obvious choice of transformation, which
fulfills this and furthermore, being canonical, preserves the Poisson bracket, is given
by (z,p) — (I,0), the latter denoting instantaneous action-angle variables corre-
sponding to the Hamiltonian H. Here we need to make a few remarks on the scope
and limitation of the endeavor we are about to embark on. The introduction of
action-angle variables is, in the most general case, not entirely trivial. The averaged
optical potential may possess up to three distinct minima inside the interval [0, A],
thereby dividing the single-particle phase into up to four different regions: three or
less regions of trapped particle orbits and an additional region of passing particle
orbits. The action-angle variables will have to be defined in all of these regions sep-
arately for a given value of the averaged mode amplitude «. The problem enters
when we bear in mind that particles can cross from one region to another and that
regions can even appear and disappear multiple times in the course of time. The
theory we are about to develop does not attempt to deal with these issues. Instead,
it will allow us to identify the processes which drive the evolution of the system for
a given division of phase space and, in certain simple cases, will enable us to find
equilibrium states.

Now, upon changing variables we find

o7 olor 00r o _ 0 gy 0\ o, a0y
ot Tatol Tarae T ae —ar\Y a0 ) " a8\ a1 ) (4.13)
wherein Py

denotes the nonlinear orbital frequency. In the new variables, the assumption that the
system passes sequentially through mean-field equilibrium states can be conveniently
stated in the form

f(L,0,t) ~ f(I,1), (4.15)
because the action variable I depends on (x,p) only through the Hamiltonian H.

Using the approximation (4.15) in (4.13) we obtain after averaging over the angle
variable 0, denoted by an over line,

af 0 06D
— = —(0f— ). 4.16
ot 0l < ol > ( )
Here we have used that 9,1 = 0 as can easily be shown. Meanwhile, the averaged
mode amplitude « is, in keeping with the assumption of a “slow” relaxation, to be
calculated self-consistently from the equilibrium equation
in
Kk — 16

o =

f sin(kx)dzdp, (4.17)
where we have defined the effective detuning

d:=A.—Up / f sin?(kz)dzdp. (4.18)
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If the description of the system in terms of averaged quantities (f, «) is to be mean-
ingful, the deviations from the mean values (¢ f, da) ought to be small in some sense.
This second major assumption will be quantified by using a linearized form of the
equations of motion for the fluctuations, with the result

00f | 6] _95%9f
ot o0 T 06 oI

(4.19a)

d& = (—k +10)dcx — i/&f (77 sin(kz) + alp sin2(k:a:)) dz + VK€, (4.19b)

where we have neglected terms of the order of 9,10 f and 0,60 f, with the justification
that they are products of the time variation of a “slow” quantity with a “small”
quantity and are thus of higher order. Now we need to express everything in terms
of the action-angle variables. Using that all functions are 2m-periodic in the angle
variable, we can write

[e.e]

50 = > h(Bu(I)da+ An(I)sa*) ™ = Z@ (4.20)

n=—oo
wherein the orbit-averaged amplitudes

1 2w

An(I) := o ) (77 sin(kz) + Upa sin2(k:x)> e~m%49, (4.21a)
Lo K 2 —inf
B,(I) := %/0 (n sin(kz) + Upa™ sin (lm)) e ""dé (4.21Db)

appear. Expanding also the fluctuations of the microscopic distribution function

f(1,6,1) an (I,t)e™m?, (4.22)
we finally arrive at

o _ _ﬂzmm{(f*@ ) (4.232)
ot a1 nEnlf oo

Ofn of
9 + inwf, = ind, "o (4.23b)
56 = (= -+ i8)da —2miN Y [ fiAndl + Ve, (4.23¢)
56" = (= — id)da +2miN 3 [ fiBudl + V€, (4.234)

The solution of this set of coupled equations is obviously a formidable task and the
reader is forgiven if he begins to loose patience and wonders, where all of this should
lead to. Therefore, we will now outline the route taken in this work as clearly as
possible. Let us suppose, that there exists a separation of time scales characterizing
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the evolution of the averaged distribution function f on the one hand and the relevant
dynamical correlations

Crn(1,t) :==Im {(fr®,)} (4.24)

on the other hand. By this we mean the following: Let us fix some instant of time ¢ >
0 and introduce a new, “fast”, time variable 7. Then we set f,(I,t,7) := f,(I,t+7)
and likewise for all other dynamical quantities as well. Now, assume there is some
time 7'(t), such that approximately f(I,t+ 7) ~ f(I,t) for all t < 7 < T(¢).
Furthermore, assume that there exists also a “damping time” 74(t) < T'(t), such
that the correlations Cy,(I,t,7), calculated from the equations of motion for the
fluctuations (4.23b)-(4.23d) together with the approximation f(I,t,7) =~ f(I,t),
have reached a unique limiting form, if 7' > 7 > 74, depending on ¢ only via f(I,t),
ie.

Cn(I,t,7) = Cp(I; f(t), T> 714 (4.25)

With these presuppositions the notion of a “slow” relaxation employed up to now
has been given a more precise meaning. Under such conditions, it is obvious that we
can approximate the equation of motion for the averaged distribution (4.23a) by

af o

ot EJ(I; f(@)), (4.26)
where the probability current is given by
T(L f(8) = =2 nCu(l; f(1). (4.27)
n>0

Equation (4.26), in which the correlations have been “adiabatically” eliminated and
which therefore involves only the averaged distribution at the given instant of time
itself, will constitute the sought for Markovian kinetic theory. That the above as-
sumptions do in fact hold (at least far from the selforganisation threshold) will
become more plausible by the considerations of the following subsection. The reason
for this essentially lies in the fact that the dynamical equations (4.23b)-(4.23d) are
identical to the linearized Vlasov equation and the corresponding equation for the
mode amplitude. This allows to draw the conclusion, that if the averaged distribution
function is linearly mean-field stable, any sufficiently smooth “initial” fluctuation will
decay in time 7 at a rate characteristic of f(I,t), which will be seen to provide the
stipulated damping time scale 743. The decay of fluctuations is also responsible for
the existence of a unique functional C,(I; f(¢)).

4.3.1 Calculation of the Correlation Functional

Let us now see how this is done by performing the necessary calculations, which
are tedious but otherwise quite straight-forward. To this end, we take the Laplace
transform w.r.t. the fast time 7 of the conjugate of (4.23b) to obtain

_fltr=0)  of/0r

*(I,t,Q
a1, 9) Q —inw Q —inw

(A*da + Bisa®),  (4.28)
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where €2 denotes the complex frequency on which the Laplace transformed variables
depend. Here, the “initial” value of the fluctuation appears. Bearing in mind that

0f = fk — fand

N
fx(1,6,t) Z 5(0 —0;(1)), (4.29)
we have for n #£ 0
(Lt = 0) = — NM I(t))em?i® 4.30
fn(’vT_ )_271']\7]; ( _J())e ( )

and f¥_o(I,t,7 = 0) = 0. Henceforth we shall suppress the slow time variable ¢.
Substituting (4.28) into the Laplace transformed equations (4.23c) and (4.23d) we
obtain the linear system of equations

Yo" J 13
D(Q) - <5a*> — (i) + VK <§> : (4.31)

where
[+ R—i0+x1(Q) x2(9)
D) := ( () Q+r+id—xa(Q)) (4.32)
“(1,0) (—A,
( ) =27 Z/Q_mw ( )d] (4.33)
and
X1 |"4n|2
x| of/o1 | A,B*
i =27 FLZ / “ine | A58 dr. (4.34)
X4 |Bn|2

The above system of equations is easily inverted to yield

o -1 Jl 5
) [@onfl

with the inverse matrix

_ 1 Q+rKk+1i0— x4 —X2
1) —
D™ () = ( s Q+H_Z.6+X1>, (4.36)

The very important linear response function (also called dispersion relation in this
work) D(Q) is defined as the determinant of ID(€2) and is given by

D(Q)=(Q+ /-i)2 +6% + Q4+ r+i0)x1 — (Q+ K —100)x4 + x2x3 — X1X4- (4.37)
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Splitting the components of the fluctuating optical potential ®,,(I,Q) = ®F(I,Q) +
®N(I,9) into particle- and noise- contributions, we immediately find

dr(1,0) = 2mhz/ S Izlmw Upn (I, T', Q)T (4.38a)
oN(1,Q) = h/m / Q - (iz%) H(Q) <§(Z;))> , (4.38D)
fP(1,0Q) = Q_mw —ing [@F (I, %)%, (4.38c¢)
*N(1,Q) = —in sf j; / Z{u [@N (1, 0"))*, (4.38d)
wherein
Unin (1, 1',0°) = (ﬁz%) H(Q) (‘iﬁé{))) , (4.39)

with H(Q) := D~!(Q) and we have made use of the fact that ¢} (I,) = [¢, (I, Q2%)]*.
Furthermore we have Fourier analyzed the white noise according to

&(r) = /_O:o ¢ (u)e™ du (4.40a)

- / £* (w)e™ du, (4.40b)
with the nonvanishing correlations given by
2 (E(w)E" () = d(u + ). (4.41)

From (4.38) we must proceed to calculate the correlations Cy, (I, Q, Q) := <f;: (1,Q)P,(1, Q)>
To this end we note that

a0 (T, 0)) = o=t FLOST — I') 4 R (I, 1 (4.42a)

L0 F (I 0) = 5 b fLOST — T+ R (1 10). (4:42)

The first contributions stem from the uncorrelated part of the N-body probability

distribution
N

PHC(117017“'7IN79N7t):

(4.43)

while the second contributions arise from particle-particle correlations present at
time t. It is evidently impossible to know the latter without having already solved
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the whole problem of time evolution. However, a detailed knowledge of those contri-
butions will turn out to be unnecessary, if only we assume them to be smooth func-
tions of the actions (I,I"). The O(U) contribution to the correlations C, (I, €, ),

denoted C,gl)(l, Q, Q), is given by

Un,fn(lalv Q*) + (1)

W _;
CW = inf(I) @t TR (4.44a)

where C%) denotes the contribution due to {R,,/}. The O(U?) contribution to the

same correlations, denoted 07(12) (I,9,€Q), is given by

c) =

o 2 0f , , Ui (L, I, Q) U (I, I, Q)] ,
=2 or 2 /f(I)(Q—inw(I))(Q+imw(I’))(Q—imw(I’)) *

+CP (4.44b)

with an analogous meaning of 07(5 ), Finally the noise-induced part of the correlations
are given by
h2k Of [o° N (I,Q)* - Ny (I, Q%)

o (1, 2.) = —ing 57 | i@ i) (@ ),

wherein we have defined the vector
N, (I,%) :=HT(Q) (B”(I )> (4.45)

and the dot denotes the ordinary (real) scalar product. It remains to perform the
inverse Laplace transformation

1 \2 pvtico o, [TTi° o -
Co(I,7) = () / Qe T[ AT Cu (1,0, Q). (4.46)
Y Y

2me —ioco —ioc0

Obviously we cannot perform the inversion exactly. However, let g(€2) be the Laplace
transform of some function g(7), such that

(7)) = — /7+iooneQTg(Q) (4.47)
Y

and v > 0 is greater than the largest real part of any singularity of g(£2). Assume
that g(€2) can, up to a finite number of poles 2 = 0, be analytically continued into
the entire complex plane. Then, by deforming the contour, we can write

1 —I'r > . —iWwT Qr
g(1) = 3¢ [m g(—I' +iw)e "“Tdw + zk: Resq—q, {g(Q)e } , (4.48)
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where I' > 0 arbitrary and Resq—q, denotes the residuum at the pole € = . Here
it is important to realize that asymptotically, for 7 — oo, the first term vanishes
due to the Riemann-Lebesgue Lemma, such that

g(T) ~ Z Reso—q, {g(Q)eQT} , T — 00. (4.49)
k

The time needed for the first term in (4.48), the “transient”, to be negligible depends
on the regularity of g(€2), but in what follows, we will assume that this time defines
the shortest scale. It is evident from equations (4.44) that the poles of the functions
of which we have to take the Laplace inverse are either purely imaginary, or originate
from the zeros of the analytically continued linear response function D(£2). Therefore,
we must presuppose, in order to obtain a definite limiting form of C,,, that all the
zeros of the response function have a negative real part, i.e. f(I,t) is linearly Vlasov-
stable. The inverse of the smallest of these real parts can thus serve to define the
“damping time” 74 spoken about previously. With these things said, we can perform
the inverse transformation using the asymptotic formula (4.49) to obtain

CWV = inf (DU, _n(I,1,inw), (4.50a)

c? = —27721'712% Zn/f(]’)|Unm(I, I inw) 26 (nw + mw')dI’ + real, (4.50b)
2

CN = —in——ZZ|N,(I,inw)|* + real, (4.50¢)

where we have made use of the fact that asymptotically

e

~imd(x), T — o0 (4.51)
and w' := w(I’) as well as w = w([). Note that the “initial” correlations C%’Z)

vanish as 7 — oo on the transient time scale, because we assume R, (I,I',t) to
be a smooth function of (I,1’), as mentioned before. Hence, under the condition
of a linearly Vlasov-stable distribution function, a unique limiting form of C), (I, 7)
indeed exists and is given by

Calls £(8)) = hf (DRe (U (1, T, ines)} — (452)
_ 27r2h2% ;n / PO U (I, T ines) 26 (nw + me!)dT = (4.53)

"’k Of

—_— ) 2
n—3 aI\Nn(I,mwﬂ. (4.54)

4.3.2 General Form of the Kinetic Equation

Collecting the results of the previous subsection we can write the equation of the
kinetic theory (4.26) in the form of a nonlinear Fokker-Planck equation

af @ of

= =31 (ff + Dfﬂ) : (4.55)
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with the “drift” coefficient

F(I; f(t) == =2 nRe{Un,—n(I,I,inw)} (4.56)

n>0

and the “diffusion” coefficient

D(I; f(t)) == 4n°R* > n2/f(I’)\Unm(I,I’,mw)y?é(nw + mw’)dI’+
n>0,m
+ 2k Z n|N,(I,inw)?, (4.57)
n>0

both of which depend on the distribution function in a functional manner. The
reason, why we have put the terms “drift” and “diffusion” in quotation marks is that
if (4.55) is brought to the standard form of a Fokker-Planck equation, it actually
reads

of o 1P

— + — (F(I; =-—— (D(; 4.
4 S (D) = 557 (DU DY), (458)
where the proper drift is given by
oD
F=- — 4.
F+ i (4.59)
and the proper diffusion by
D =2D. (4.60)

This equation will form the basis for the investigations following in the next sec-
tions. In closing this derivation we wish to point out that it would be a mistake to
think of the kinetic theory just developed as superseding the mean-field description
represented by Vlasov’s equation. Rather, both theories are to be viewed as comple-
menting each other. Indeed, Vlasov’s equation provides a satisfactory description of
the initial phase of the systems time evolution, whereas the Fokker-Planck equation
models the later stages thereof. The factor, which determines when the former stage
ends and the latter begins is given by the number of particles.

4.4 Mean-field description, instability threshold

For those readers, who have spared themselves the pain to read through the pre-
vious section, we will briefly recall the main concepts necessary to understand the
present section. The semiclassical SDEs (4.1) are equivalent to the Klimontovich’s
equation [35]

Ofx , Ofx 10P0fk

ot TV8r mow o 0 (4.61)

together with an evolution equation for the field mode amplitude a obtained re-
placing the sums in eq. (4.1c) by the integrals N [[ o fx(z,v,t)dzdv. fx(z,v,t) is
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the so-called Klimontovich or microscopic distribution function. Its initial condition
reads

fx(z,v,0) 25 x —;(0))0(v — v;(0)). (4.62)

As this function is highly 1rregular, the above reformulation has no computational

merit by itself, but provides an ideal starting point for a statistical treatment. To

this end we decompose every quantity (fk, a and ®) into its smooth mean value
and fluctuations,

fx(z,v,t) = f(z,v,t) +0f(x,v,t), (4.63a)

a(t) = a(t) + da(t), (4.63b)

with (§f(z,v,t)) = (da(t)) = 0. The statistical average (o) is over an ensemble of
similar initial conditions {(z;(0),v;(0))} and a(0), as well as over the realisations of
the white noise process mimicking the input noise for the cavity field.

We can distinguish two basic phases the system can be found in: Whenever there
is, on average, no cavity field, a = 0, we shall speak of the system as being in the
unordered phase. Conversely, if a mean cavity field is present, we shall say that the
system is in the ordered phase.

For the smooth ensemble-averaged Klimontovich distribution, called one-particle dis-
tribution function, we find upon substituting the decomposition (4.63a) into (4.61)
the following equation of motion

of , of 10<<I>>3f:<65‘1’65=f>.

ot %_E Oox Ov oxr Ov

Neglecting all correlations in eq. (4.64) leads to Vlasov’s equation (see (4.11)), which
becomes exact in the limit N — oo [16].

(4.64)

In the context of this mean-field description, the unordered phase characterized
by a = 0 is infinitely degenerate. Every spatially homogeneous phase space dis-
tribution, f(z,v) = f(v), is a stationary solution of Vlasov’s equation. With this
simple observation however, the conclusions obtainable from mean-field theory are
not yet exhausted. Because for some stationary distribution to represent a physical
state of the system it has to be insensitive to perturbations and not all solutions
f(xz,v) = f(v) with @ = 0 are necessarily stable. Indeed, for any (dimensionless)
symmetric velocity distribution defined by g(v/vr) := Avp f(v) and a negative effec-
tive detuning 0 := A, — NUO/2 < 0 we find, that if the inequality

P d 4.65
k:BT / —25 &> h|o| ( )
holds, any small perturbation of the homogeneous equilibrium triggers a self-organisation

process. Here, P denotes the Cauchy principal value and we have defined the ther-
mal velocity v% := 2kgT/m. For a Gaussian distribution, corresponding to a gas
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at thermal equilibrium the integral evaluates to one. The relation (4.65) has been
derived by methods presented in [16]. There it was shown that the threshold can be
computed from the zeros of the dispersion relation (Re(€2) > 0)

D(Q) = (Q+r)* + 6>~

—1hko

Nn? 00( Ovf Ovf

om oo \Q+ikv Q— ikv) dv. (4.66)

Note that this dispersion relation is contained in the definition of the linear response
function introduced in the previous section in equation (4.37) as a special case.

To sum up we can say that according to mean-field theory, the unordered phase
is infinitely degenerate and consists of all spatially homogeneous phase space distri-
butions, which are dynamically stable in accord with the criterion (4.65).

4.5 Kinetic equation for the unordered phase

The multiplicity of phase space distributions corresponding to the unordered phase
within mean-field theory reflects the latter’s incapability to correctly capture the
behavior of the gas on longer time scales. It is thus inherently unsuited to determine
the equilibrium of the system. Therefore, let us now return to eq. (4.64), which for
weak spatial inhomogeneity—as expected in the unordered phase—approximately
reads

ot~ v Ox (4.67)
where the overbar denotes the spatial average. This last equation is really but a
special case of the more general equation (4.16) of the last section for the case of a
vanishing average mode amplitude o = 0. The right-hand-side correlation function
can be computed using established methods from plasma physics as in [35] (as de-
tailed in the previous section) when the fluctuations evolve on a much faster time
scale than the average values, which are considered “frozen”. This is justified as long
as the system remains far from instability. For symmetric distributions and o = 0
the general non-linear Fokker—Planck equation (4.55) takes the simple form

NN priin}

%F + (%(A[F]F) = a% <B[F]§UF) (4.68)

for the velocity distribution F'(v,t) := Af(v,t), with the coefficients given by

2hkdkn? kv
A[F] == 4.
L] m | D(ikv)|2 (4.69)
h2k2 2 2 52 k‘2 2
B[F] ;= DR AT A O7 4 Y (4.69b)

2m? |D(ikv)|?
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Note that the coefficients functionally depend on the velocity distribution F' through
the dispersion relation D(iw) := lim.o D(e + iw). A and B represent the deter-
ministic part of the equations and the field noise, respectively. All cavity-mediated
long-range particle interactions are encoded in the dispersion relation. Note that
very far below instability threshold the full dispersion relation (4.66) reduces to
D(ikv) ~ (ikv + k)% + 62, which implies that collective effects are negligible.

4.6 Equilibrium distribution

As pointed out above, Vlasov’s equation renders every spatially homogeneous phase
space distribution stationary. This degeneracy is no longer present in the solution of
the Fokker-Planck equation, as friction and diffusion will modify an initially stable
but otherwise arbitrary homogeneous distribution. Therefore, let us inquire into the
form of equilibrium predicted by (4.68).

Normalisable steady-state solutions of eq. (4.68) exist only for negative effective de-
tuning 0 < 0, where light scattering is accompanied by an extraction of kinetic energy
from the motion of the scattering particle. On the other hand, for positive effective
detuning the gas is heated. Interestingly, the unique solution of the steady-state
equation can be found in closed form and is given by the non-thermal g-Gaussian
velocity distribution function (also known as Tsallis distribution and closely related
to Student’s ¢-distribution) [36, 37]. Defining the so-called g-exponential

1

exp,(z) = [1+ (1 — q)z]", (4.70)

we can write the equilibrium distribution in the suggestive form

muv?
F(v) oc exp, <_2/<:BT> , (4.71)
with w
g:=1+ ﬁ (4.72)

and the recoil frequency wg := hk?/2m. We have defined an effective temperature-
like parameter T' via

k2 +6%  hk
kT =h—— = —. 4.73
] el (4.73)
The latter minimum value of T" appears for § = —k and is known as the cavity-

cooling limit temperature.

The parameter ¢ or equivalently the ratio |§|/wgr determines the shape of the dis-
tribution and gives rise to further restrictions. Normalisable solutions exist for
|0] > wr/2, the second moment (kinetic energy) only for |§| > 3wgr/2. The case
|0| = wgr corresponds to a Lorentzian distribution. For |§|/wg — oo, i.e. ¢ — 1, the
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distribution (4.71) converges to a Gaussian distribution with kinetic temperature
kTkin := m <v2> given by the parameter kgT' defined in eq. (4.73), which justifies
the usage of the designation of “temperature” above. In figure 4.2 one can see an
example of a solution featuring a marked deviation from thermal equilibrium, i.e. a
prominently g-Gaussian behaviour (¢ = 1.4). The main difference lies in the much
longer tail of (4.71) as compared to a Gaussian distribution. Tsallis distributions
have already been observed experimentally in dissipative optical lattices [38].

e 9 T T K T T
= 8 L A 4
X - L / Y SDEs i
S 6 Gaussian -----
= i g-Gaussian @ ]
25 .
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Figure 4.2 (Colour on-line) Normalised g¢-Gaussian velocity distribution for § =
—2.5wg obtained by integrating the semiclassical equations (4.1) up to wrt = 5N (solid
line) compared to the theoretically predicted ¢-Gaussian (4.71) (circles). The Gaussian
(dashed line) is plotted for the temperature (4.73). The kinetic temperature differs con-
siderably from eq. (4.73), kgTkin = 2.5kpT. Parameters: N = 5000, NUy; = —0.1lwg,
VN7 = 1800wgr, £ = 100wg and A, = —2.55wr. Ensemble average over 25 initial
conditions and 10 realisations of the white noise process.

Having found the unique equilibrium state corresponding to the unordered phase,
we can use the stability criterion (4.65) to determine the phase boundary, that is
the curve in parameter space, where the spatially homogeneous equilibrium (4.71)
becomes dynamically unstable. By inserting the ¢-Gaussian into (4.65), we find that
the unordered phase ceases to exist if

K24+6%2 [ 2 s—_x 2
vV N VNP i = ——— | —— = e — 4.74

For a Gaussian and § = —«, which implies k¥ > wg, this criterion may be reformu-
lated as

N|Uo|Vopt > hr?, (4.75)

where Vi is the optical potential depth created by the pump laser. If the con-
dition (4.74) is satisfied, we conclude that there exists no spatially homogeneous,
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stable equilibrium state at all and consequently we expect the system to eventually
selforganize.

Based on these considerations we predict the occurrence of dissipation-induced self-
organisation if the self-consistent relation (4.74) is fulfilled. That is, any initially
stable, unorganised distribution will loose kinetic energy (by cavity-cooling) and
eventually selforganise. Contrary to the self-organisation process of an initially un-
stable state (well described by Vlasov’s equation), which is abrupt and accompanied
by a strong increase of the gas’ kinetic energy, dissipation-induced self-organisation
is characterised by a much slower buildup of the photon number and monotonous
cooling. The diagram shown in figure 4.3 visualizes the possible fates of an initially
homogeneous gas.

homogeneous inhomogeneous

stable unstable

selforganised
quasi-
equilibrium

initial stage
uonenba AOse|A

final stage

n<n.

<l
uonenba youe|d-Jex04

disordered selforganised

equilibrium equilibrium

Figure 4.3 Evolution to equilibrium for an initially homogeneous gas. An initially un-
stable state evolves quickly towards a mean-field steady state. An initially stable state
may nonetheless become selforganized in equilibrium due to dissipation.
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4.7 Kinetic equation for the selforganised phase

Let us now direct our attention to the case of a non-vanishing average cavity mode
amplitude, i.e.to a gas which has crossed the selforganisation threshold. Using action-
angle variables [39, 40], we can also in this case derive a Fokker—Planck equation
similar to eq. (4.68) [8]. The reader interested in the details is advised to study section
4.3.1. For convenience, we will briefly recap the main steps. We limit ourselves here
to the discussion of the weak coupling limit

N|U| < |Acl, (4.76)

in which the shift of the cavity resonance frequency caused by the gas can be ne-
glected and we can use § and A. interchangeably. In this limit the mean optical
potential can be approximated by

O (z,a,a”) ~ hn(a + o) sin(kx). (4.77)

Returning to (4.64), we perform a canonical transformation of variables (z,p =
mv) — (I,0). Here, I denotes the one-body action based on the ensemble-averaged
Hamiltonian function

2

* p *
H =—+® 4.
(.p.000%) = 4 @z, 00%), (4.78)
and can be expressed as
1 /
= }{ V2m [H — @ ()] da'. (4.79)

0 denotes its canonically conjugate angle variable

oS

=— 4.
0 o (4.80)
obtained from the generating function
5= j:/ V2m [H — o)) do’. (4.81)

Although (4.78) is immediately recognized as the Hamiltonian function of the simple
mathematical pendulum and the above well-known integrals can be written down
in terms of elliptic functions, no particular insight is gained by this and hence we
refrain from doing so. The reason for the above change of variables is found in the
observation that at the end of the initial, mean-field governed dynamics, the one-
particle distribution depends on the phase space coordinates (z, p) solely through the
ensemble-averaged one-body Hamiltonian function H(z,p) and thus on the action
variable alone. From that point onwards, it is slowly modified by the dynamical
correlations in such a way that the system evolves towards statistical equilibrium in
a sequence of mean-field steady states [40]

f(z,p,t) ~ f(I,t). (4.82)
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The general equation (4.55) for the distribution function takes on the following
simplified form
of 9
ot~ oI

and the quasi-stationary ensemble-averaged mode amplitude is determined by the
implicit equation

(af+ Bg +C[f, 1) (4.83a)

2T
Ac +ik

a= Nn/f([) go(I, ) dI, (4.83Db)

wherein

1 2w i
gu(l, Q) = — / sin(ka) e~ 9. (4.84)
21 Jo

The r.h.s. of equation (4.83a), describing the redistribution of particles among the
orbits characterized by different values of the action I, consists of two contributions
originating from fluctuations and decay of the mode amplitude as in (4.68)
oo 2,2, |2
Alf] = —4hAckw S 1T 190

— 4.85

2. [D(inw)P (4.85)
B[f] = h*k 3 M (KJ2 + A2 + n2w2) (4.85b)

B it | D(inw)|? )

and a generalized Balescu-Lenard operator [41, 42, 39|
8f 8f
! !

prm— 4.

C[f, f] Z / W (1, 1) e () —mez )ar', (4.85¢)

n,m=—oo

with the cross-section

w N — 822 A2 1" [gn (D) [*lgm (I')|? n8 (nw(I) — mew(I’
nm (L, ") == 8m°h*AZN D (inw (1) |[D(ima (1)) § (nw(I) (I). (4.85d)

Here, w(I) = 0H/0I denotes the nonlinear orbital frequency. The linear response
function D(iw), defined generally in (4.37), assumes the comparably simple form

. n gn

drl . (4.86)
The appearance of the additional term (4.85¢c) as compared to (4.68) is rather in-
triguing, because it can be interpreted as describing a collision-like process between
pairs of gas particles occupying resonant orbits (I, I’), as can be seen from the con-
dition nw(I) = mw(I’) in the cross section (4.85d). We will have occasion to explore
some of its consequences in the context of a multispecies gas examined in chapter 6.
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4.8 Equilibrium distribution

Unfortunately, the general form of the equilibrium phase space distribution corre-
sponding to the ordered phase cannot be obtained from (4.83a) due to its formidable
complexity. If, however, we restrict attention to strongly organised equilibria, where
a harmonic approximation for the potential becomes valid, the steady-state solution
can be found and is given by a thermal distribution

f(z,p) o< exp (— kijﬂ) : (4.87)

with a kinetic temperature depending on the linewidth x, the detuning and the trap
frequency wp := w(I = 0),

K2+ 62 + 4w

kgTiin = h 4.88
B-Lkin 4|(5’ ( )
The trap frequency is related to the cavity mode amplitude via
wi = 4nwr (|Real) (4.89)
and can be approximated by
U n?
w2 ~ VNnwg | — + 5 —-1]~N (4.90)
e Ne

in the far-detuned regime where |§| > wg; 7. is the self-consistent critical value de-
fined in eq. (4.74). As the temperature depends explicitly on the laser power, higher
pump strengths result in deeper trapped ensembles with increased kinetic energy.
Note that this system has the interesting property that the more particles we add,
the deeper the optical potential gets as is the case for self-gravitating systems [43].
At this point we have to remark that an increased kinetic energy does not necessarily
imply a “hotter” gas. Indeed, if we assume the case that the trap frequency is much
larger than the cavity linewidth, wg > &, the minimal value of the thermal energy
is found to be

kpTiin| . = huwo (4.91)

min
and is attained for a detuning § = —2wg. As kpTiin is equal to the expected energy
per particle in the mean optical potential, this implies that all particles are close to
their ground state. The equilibrium trap frequency of course depends itself on the
detuning as seen in (4.90), which gives rise to the criterion

§ = —2wy = —2¢/2Nn?wgr (4.92)

for such (near) ground state cooling.

The discussion of (strongly) selforganised equilibrium states would be incomplete
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without stating their stability properties. Without going into the details, we note
that an investigation of the linear response function (4.86) reveals that for negative
detuning and 8f < 0 (as for (4.87)) an equilibrium is stable if and only if

-1
K2 4 62

Nn? <
TS grfs]

3 90201 41 (4.93)
0

w OI

Applying this criterion to (4.87), we find that such a strongly organised state is
stable if

2 3—q NUC ql

32 g 1 Nn?. (4.94)

N7
As one can show that the assumption of strong trapping requires |§| > wgr and
hence g ~ 1, we conclude that the found solutions are dynamically stable as soon as
the unordered phase ceases to be so. Therefore we can, for large enough detunings,
exclude the possibility of a coexistence of the ordered and unordered phases.

4.9 Equilibrium phase diagram

The order parameter defined as

tl;m // sin(kz) f(z,v,t)dzdv (4.95)

is an adequate measure of particle localisation in equilibrium as it is zero for a com-
pletely homogeneous distribution and plus/minus one for the perfectly selforganised
phase (i.e. d-peaks), the sign depends on whether the odd- or even wells are pop-
ulated [28]. In fig 4.4 we depict its behaviour as a function of the pump strength.
Initially, the particles were spatially homogeneously distributed with a (stable) Gaus-
sian velocity distribution; self-organisation sets in because of the cavity cooling effect.
Hence the branching point is given by the self-consistent threshold (4.74).

For the strongly organized phase, where the distribution function is a thermal state
with temperature (4.88), the order parameter reads (in harmonic oscillator approx-
imation)

kg Tiin
O—+ (1 - wR> . (4.96)
Its maximum value is limited by the detuning and the recoil frequency, ® —
+ (1 —wr/|0]) for n — oco. This corresponds to a Gaussian spatial distribution with
width k2(Az)? = 2wgr/|d|. Let us also briefly investigate the opposite limit of pump
strengths slightly above threshold. Solving the self-consistency equation

_ —Nné|
00 g2 4§52

Re (a) (4.97)
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Figure 4.4 (Colour on-line) Order parameter (4.95) as function of the pump strength
obtained from egs. (4.1) in the long-time limit (wgt = 50N). The red dashed line
is given by eq. (4.96), the black dashed line around the critical point corresponds to
eq. (4.98). Parameters: N = 1000, NUy = —wr, & = 100wgr, A. = NUp/2 — & (i.e.
d = —k) and kpTp = 110ER. Ensemble average of 20 (away of the critical point) and
60 (around the critical point) noise trajectories, respectively, for one initial condition.

perturbatively around the critical point for a thermal state yields

o~+2/1 1 (4.98)
Ne
and thus a critical exponent of 1/2, as already predicted in [28]. Let it be noted,
however, that the present kinetic theory does not in fact predict a thermal state
close to threshold, which could explain the rather poor agreement visible in figure
4.4. We have not found it worthwhile to solve (4.83a) in the limit of weak spatial
inhomogeneity in order to improve upon (4.98).

Summarizing the findings of the present work, the equilibrium phase diagram is
sketched in figure 4.5. For small |4|/wgr the ensemble will always remain weakly or-
ganized (i. e. a small spatial modulation on top of a homogeneous background) above
threshold as the necessary prerequisites for a strongly organized equilibrium—and
hence the validity of equation (4.88)—cannot be fulfilled. We wish to point out once
more that the phase diagram could not have been obtained by means of Gibbsian
equilibrium statistical mechanics, due to the dissipative nature of the system.

4.10 Cooling time

Let us take a closer look at the cooling time 7. If one chooses to define the latter as
the time characteristic for the kinetic-energy equilibrisation, the following picture
presents itself.
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Figure 4.5 (Colour on-line) Schematic view of the phase diagram in the weak-coupling
limit (N|Up| < |A¢]) for k£ = 100wg. Equilibrium solutions exist only for § < —wg/2,
the Lorentzian corresponds to the case |§| = wgr. For large values of the detuning |d],
strongly organized equilibria exist already for pump strengths slightly above the critical
value, cf. also figure (4.4).

First we treat the case of a fixed ensemble size and variable pump strength. The drift
term A+0, B in the non-linear Fokker-Planck equation (4.68)—scaling as ~ 1% /wr—
might suggest the conclusion that the larger the pump strength the shorter the
cooling time. However, numerical simulations (cf. figure 4.6) prove this expectation
to be somewhat misleading. The situation is worst for initially unstable ensembles.
Hence, it seems a plausible requirement that selforganization has to be avoided to
realize the optimal cooling time. Accordingly, as a rule of thumb we may state that
the latter is achieved for a laser power which renders the desired gas temperature
critical. Hence the optimal cooling time is estimated from equation (4.68) to be

kUTO
Topt =~
PET 4 /TR

(4.99)

assuming a Gaussian and § = —x for simplicity. This estimate is valid for kv, > &,
where T is the initial temperature.

For a fixed n, all ensembles composed of N < N, particles experience in a good
approximation the same cooling time 7 ~ wg /n? for reaching the minimal temper-
ature (4.73). N. is the critical particle number rendering the given 7 critical. Note
however, that this time scale is suboptimal for all ensemble sizes except N = N..
Refer to figure 4.9. For initially stable ensembles the cooling rate is approximately
the same until the instability point is reached.
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Figure 4.6 (Colour on-line) Kinetic temperature for N = 500 and different pump
strengths. Parameters: k = 100wgr and § = —k. The initial instability threshold is
at n = 10n.. Ensemble average over 5 initial conditions with 5 noise trajectories.

Let us point out that the above definition of cooling in terms of kinetic energy
is inadequate for a gas in the organized phase, because it is mot kinetic energy,
which is dissipated, but rather action (or total energy). Nevertheless, kinetic en-
ergy as an observable does provide a numerically convenient means to monitor the
system’s approach to equilibrium. And regardless of the suitability of the employed
definition of cooling, the results depicted in figures 4.6 and 4.9 seem to corroborate
a deterioration of equilibrisation efficiency above threshold. This observation merits
a more detailed analysis of the cooling rate for selforganized ensembles. If we neglect
collective effects, the Fokker-Planck equation (4.83a) predicts a maximal cooling rate
for a detuning A, = —2wy, precisely the detuning for which also the lowest energy
can be reached. Hence, at first sight it seems that the observed worsening of cooling
efficiency above threshold is due only to off-resonant detuning. Surprisingly, this is
not the whole story. To render the discussion more quantitative, let us define the
cooling rate v as

- —<;I>§t (H), (4.100)
where
(H) = 21 / H(I)f(D)dI (4.101)

denotes the expected energy per particle in the averaged optical potential. To esti-
mate the cooling rate, we will assume a strongly organized (non-equilibrium) thermal
state

wp ol 1

T = — (] 4102
srvmg L s ) (4.102)

fI) =
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with some temperature T, such that (H) = kgT > kpTkin. Using (4.83a) we find

wo o0

~ g o AIEDAL (4.103)

v

because the Balescu-Lenard term vanishes for strongly organized states. For what
follows it is very convenient to introduce the transmission function S,(w) for the
energy stored in the real part of «, which can be computed from the linear response
of the gas-cavity system to a weak time-harmonic driving at a frequency w relative
to the driving laser and is given by

K2+ (Ac — w)?

@) = D)

(4.104)

Ignoring collective effects amounts to the approximation D(iw) ~ (iw + k)% + A2 in
(4.104) and corresponds to the assumption of perfectly random phases 61, ..., 0y of
the particles. With its help we can write the cooling rate as

h o0
7= 16020, [ oD [S,(2) — Si(~20)] F(T)L, (4.105)
ksT Jo
where w = w(I) ~ wy (1 —3 ffni O) denotes the orbital frequency and

g2 (I)|? ~ L I? (4.106)
92 16 \ muwy ’

is the (only relevant) coupling coefficient. It thus appears that the cooling rate is
proportional to a weighted average of the difference of the transmission at the two
frequencies wy, + 2w(I). This has its origin in the fact that a given gas particle
induces, due to its oscillatory motion inside the optical potential, a time-harmonic
fluctuation in the real part of a at a frequency close to +2wy relative to the driving
laser (motional sidebands). Note that for A. < 0, we have S, (w) > S,(—w) for all
frequencies and thus certainly v > 0. In figure 4.7 we plot the cooling rate (4.105)
with and without collective effects in units of x as a function of detuning for fixed
ratios 1/n. and T /Tin. The resonance at A, = —2wy is completely absent if back-
action is taken into account. The deterioration of the cooling rate shown in this
figure is typical for all parameters. It is interesting to look at the cooling rate for
(near) ground state cooling, which requires A, = —2wy. Without collective effects
we obtain the estimate

4/3 2/3
Wy n
~ T = , 4.107
y~ri (1) (1107)
where 7 := ];zBT%.F' Obviously, the cooling rate for a fixed pump strength gets worse

for larger ensembles, but for a given number of particles it can be made arbitrarily
large by increasing 7. If we take the collective effects into account, we find that
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Figure 4.7 Cooling rate (4.105) versus detuning with (blue) and without (green) collec-
tive effects for a fixed ratios n/n. = 10 and T/Tiin = 50. The maximum at A, &~ —2wq
disappears due to collective back-action, causing the cooling rate to be much less than
expected. Further parameters: N = 100, wg = 0.01x.

for a given temperature relative to the final one, 7, there exists an optimal pump
strength, which scales like 7gpt ~ IV —1/2_ for which
! (4.108)
~y N .
Thus, it seems that collective effects seriously spoil the cooling efficiency for large
ensembles and cannot be overcome by increasing the pump strength. In fact, in-
creasing the pump strength indefinitely causes v — 0.

To see why this is so, it is instructive to have a look at the transmission func-
tion S, (w). Figure 4.8 depicts the transmission function with and without collective
effects for a thermal phase space distribution and a detuning A, = —2wy. From the
figure we see that at this detuning, particle induced fluctuations at wy, + 2wq are in
resonance with the bare cavity and thus maximally amplified, which explains why
this detuning leads to optimal cooling without collective effects. If the latter are
taken into account, the picture is radically changed. Due to collective back-action,
the motional sidebands are actually always strongly suppressed! The reason for this
suppression lies in the fact that for strongly trapped ensembles, the orbital frequen-
cies of all the particles are nearly equal and they are thus close to resonant, which
leads to a partial anti-synchronization of their motions. In the singular limit of a
perfectly harmonic mean potential, anti-synchronization is in full effect and the par-
ticles get trapped in a “dark state”, where no light is scattered into the sidebands
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Figure 4.8 Transmission function (4.104) for a thermally selforganized gas out of equi-
librium without (green) and with (blue) collective effects. In the latter case the motional
sidebands, which have frequencies close to +2wy relative to the pump laser are strongly
suppressed. Parameters: A. = —2wy, k = 0.45wq, 7 = 10n., T = 50Tkin.

and no further dissipation of energy is possible.

Let us briefly mention another aspect of the scaling of the Fokker—Planck equa-
tion (4.68) particularly useful for numerical simulations. Fixing v/ N7 for different
particle numbers yields a cooling time 7 ~ N/wg. Numerical simulations of the
semiclassical equations (4.1) confirm this result, cf. figs. 4.10 and 4.11. There we
have depicted the temperature evolution for the pump strength being a fixed frac-
tion of the critical value 7. for two different particle numbers, i.e. /Nin; = v/Nans.
In fig. 4.11 the threshold (4.65) is surpassed during the time evolution.

In order to verify the Fokker—Planck equation (4.68), we consider the equation

o
%kBTkm = —2m /_OO v <—AF + Bgf) dv. (4.109)
for the kinetic temperature kgTyi, := m <v2> and close it by assuming F'(v,t) to be a
Gaussian velocity distribution with temperature kg7yi, for all times. This assump-
tion is well justified for large detunings |6| > wgr and its predicted temperature
reproduces the results obtained from the SDEs (4.1) quite well, cf. fig. 4.10. The
main difference between the curves stems from the relatively small particle num-
bers in combination with pump values close to threshold, where the hypothesis of
separated time scales used to derive eq. (4.68) is no longer valid due to long-lived
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Figure 4.9 (Colour on-line) Kinetic temperature for fixed pump strength and N =
{100, 500, 1000, 1750}, from bottom to top.. Parameters: n = 28wgr, £ = 100wg and
d = —k. The self-consistent threshold (4.74) is surpassed for all curves; the ensemble
with N = 1750 is initially unstable. Ensemble average over 25 (N = 100) and 8 (higher
particle numbers) initial conditions, respectively, and 5 noise trajectories.
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Figure 4.10 (Colour on-line) Comparison of the kinetic temperature obtained from the
SDEs (4.1) and as solution of eq. (4.109) for two different particle numbers and constant
V/N1). As expected, both ensembles evolve on a time scale ~ N/wg. Parameters: NUy =
—0.0lwg, k& = 100wg, A = NUy/2 — & (i.e. § = —k) and vV N7 = 80wr = 0.8V N7j..
Ensemble average of 50 (N = 100) and 2 (N = 1000) initial conditions, respectively,
and 50 realisations of the white noise process.
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Figure 4.11 (Colour on-line) Temperature evolution above the self-consistent thresh-
old (4.74). The homogeneous distribution is stable until the relation (4.65) is satisfied.
This also limits the validity of eq. (4.109). Parameters: NUy = —wr, & = 100wg,
A. = NUy/2 — & (i.e. § = —r) and VNn = 200wr = 2V Nne. As vV Nn = const., the
photon number scales only ~ N and not ~ N? (superradiance effect). Furthermore,
the equilibrium temperature is the same for both ensembles. The simulations were per-
formed up to wrt = 40N and revealed a temperature kgTyi, ~ 0.57x, which agrees
very well with the theoretical prediction (4.88). Ensemble average of 50 (N = 250) and
25 (N = 1000) initial conditions, respectively, and 10 realisations of the white noise
process.

fluctuations.

Of course, a thorough investigation of the validity of eq. (4.68) would require a
numerical integration thereof. However, in steady state, all results of numerical sim-
ulations of the SDE system (4.1) were found to be in excellent agreement with the
predictions of the kinetic theory, both, below (e. g. fig. 4.2) and above (e. g. fig. 4.11)
threshold.

4.11 Conclusion and Qutlook

Collective light scattering from a dilute gas of cold particles into a high-Q) resonator
mode under suitable conditions leads to friction forces and cooling of particle motion
even below the selforganization threshold. We have found that, as long as the col-
lective light shift is small enough, arbitrarily large ensembles of polarizable particles
can be cooled to very low energies without the need for a cyclic optical transition
and direct interparticle interactions. Surprisingly, for a gas, which has crossed the

62



selforganization threshold, the cooling rate is predicted to be strongly diminished as
compared to uncorrelated particles by collective suppression of motional sidebands.

One can easily envisage a combination of many species within the cavity to com-
monly interact with the same pump and cavity fields as a generalized form of sym-
pathetic cooling without the need of direct interparticle interactions. This general-
ization will be studied in chapter 6.

4.12 Appendix

Here we will supply some details concerning the derivation of (4.87). First note that
if the selfconsistent optical potential is strong, that is its potential depth is large in
comparison to the energy per particle, we can assume

2I
x(1,0) = x0 + 4| " sin(0), (4.110)

where xy denotes position of the minimal potential energy, depending on the sign of
the real part of the averaged mode amplitude. From this we obtain, for even n

2
o (1 ”>| (a.111)

mwo

lgn(D)? =

and |g,(I)|* = 0 for odd n. The assumption of strong trapping implies

k| — <1 (4.112)
mwo
and hence the only relevant “transition” amplitude is in fact |g2|?>. Therefore, the
sums in (4.85) and (4.85c) contain in effect only terms with n = £2 and m = £2.
The first thing that follows is that the Balescu-Lenard term vanishes identically.
Indeed, due to the positivity of w(I), the only non-zero term in the double sum are
those with n =2, m =2 and n = —2, m = —2. Using the expansion

w(I) ~ wo +wjl (4.113)

we have approximately

4 4
nle2(D] 1 :
woo(I,1') ~ 872K2AZN L9201~ 5(1—1 4.114
(&1 | D(2iw(I))[? |wy =1 (1Y

and w_Q_Q(I, I,) = —w_Q_Q(I, I’). Hence,

Clf, f] ~ 4/w22(I,I’)(gJ;f(I’) = % (D)dI’ =0, (4.115)

because the integrand vanishes for I = I’. Thus the steady state equation reduces

to
d A 4A w
—Inf=——=~ .
dr B " (k% + AZ + 4w?)

Approximating w ~ wg and noticing that H ~ wpl the result (4.87) follows.

(4.116)
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5 Kinetic Theory of Cavity Cooling and
Selforganisation — Quantum

5.1 Introduction

The kinetic theory developed in the previous chapter rests on classical equations of
motion. As such it should be a valid description of the system as long as the energy
of the gas is not too low. Taking into account that the relevant energy scale for the
interaction of the gas particles with the cavity photons is fixed by the so-called recoil
energy

ER .= — = hwg, (5.1)
m
we can expect that the criterion for the breakdown of classical theory will be
(H) < Er, (5.2)

where (H) := 2n [ H(I) f(I)dI denotes the expected energy per particle in the mean
optical potential. It is the purpose of this chapter to investigate, in how far the
classical results obtained previously have to be modified, when quantum effects are
taken into account. The quantum mechanical description rests on the Hamiltonian

. e . | .
H = —nAata —I—/\I/T(.%) <_2m8x2 + &(z,a, aT)> U (z)dz, (5.3)
where A
d(x,a,a") ~ hn(a’ + a) sin(kz) (5.4)

is the quantized optical potential. Hence, we have from the beginning, for simplicity,
assumed a weak collective shift as in (4.76), because our main aim is a comparison
with the classical results of the previous chapter. Also, we have excluded direct
interactions between the particles. If one wishes to retain them, a term

0= / B ()0 (o Yu(x — o) B (2) (2 )da'd, (5.5)

with a pair-interaction potential u(x — z’) must be added to the Hamiltonian. For
the sake of definiteness, let’s choose the particles to be bosons

[(2), ¥T(2")] = 8z —a') , [FT(2), (@) = [F(2), (z)] =0.  (5.6)

The case of fermionic particles can be treated without any major modification.
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The following derivation is heavily inspired by the corresponding classical treat-
ment and almost every single step can be traced back to its classical version as
presented in the previous chapter. Nevertheless, the author of this thesis believes it
to be an original piece of work.

To begin with, we need some dynamical variable to play the réle of the Klimon-
tovich distribution function. The field operator \if(x) is unsuited as it depends on
only one variable and furthermore, as we know, a mean-field treatment involving
(@) leads to Gross-Pitaievskii’s equation, which is valid only at zero temperature.
Fortunately, we don’t have to search long for the desired object because quantum

mechanics freely provides one, namely the (operator) density matrix
plz, ) = Wi(2) (). (5.7)

The quantum expectation value of this operator yields the position matrix elements
of the reduced one-body density operator p;:

(p(x,2")) = (z[pa]2’). (5.8)

With the help of the operator density matrix we can formulate the fundamental
Heisenberg-Langevin equations of motion, which will constitute the starting point
for the derivation of a quantum kinetic theory in the form

. Op (8 02 . X

h— = —— - A @ A A(I) / )

! ot 2m (69@2 ox'? p+ o(x) po(z'), (5.9a)
% = (=K +1Ac)a — %/ %ﬁ(x, x)dzx + aip, (5.9b)

where @ denotes the cavity mode annihilation operator we have included cavity decay
and vacuum fluctuations

(@i (D)ol (1)) = 266(t —t'). (5.10)

All other noise-correlations vanish. In what follows we will, as in the classical case,
adopt periodic boundary conditions, such that the operator wave-function satisfies

A A

U(rx+L)=V(x) (5.11)

for L > 0 some integer multiple of a wavelength. This implies, of course, that p(z, x)
is L-periodic in both it’s arguments.

5.2 Quantum Mean-Field Limit

We shall first investigate the so-called mean-field limit in order to erect the quantum
kinetic theory as a super-structure upon it. To this end we take the expectation value
of equations (5.9) and neglect all correlations to obtain

L Op n? [ 02 0?
Zh& =3 (8@‘2 ~ 5 p+®(x)p— pd(z') (5.12a)
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i—? = (=K + 1A )a — in/p(az, x) sin(kx)dz, (5.12b)
where
d(z,a,a*) = (®(z,a,a")) = hn(a* + a)sin(kz) (5.13)
and, here and from hence onward,
p(z,2") = (p(z,2)) (5.14)
as well as
a = (a). (5.15)

It is easy to verify that every "pure state* p(z,2’) = ¢} (2')pn(z) in which ¢, solves
the time-independent Schrodinger equation
h? 9pn
2m 0z?

is a stationary solution to the first mean field equation. If « is non-vanishing, we
know from Bloch’s theorem that these solutions can be written as

@n(m) = eiqmuq,s(x)v (5.17)

where q is the quasi-wavenumber, restricted to the first Brillouin zone, and s denotes
the so-called band index. us 4 is a A = 27 /k-periodic function, us 4(z + ) = us 4(z).
If there is no mean cavity field, « = 0, and the gas is in the unordered phase, the
wave-functions are simple momentum eigenstates, i.e.

=+ (I)(.T}, «, a*)@n = EnSOn (516)

1 iPnT
on() = e /n, (5.18)

where p,, denotes the momenta compatible with the periodic boundary conditions.
Therefore, in what follows, n = (s,q), if a # 0 and n = p, else. Hence, the most
general stationary solution is a convex combination, or mixture, of "pure states*

p(x,2') = faph (@) on() (5.19)

with >, fn = N, the total number of particles. The coefficients f,, > 0 are called the
occupancies of the states ¢,. In operator notation we can thus write a mean-field
stationary reduced one-body density operator as

=" fuln)inl (5.20)

i.e.the states |n), defined via ¢, (z) = (x|n), are eigenvectors of p;. Therefore, every
stationary mean-field density matrix is necessarily diagonal, when represented in
terms of the eigenstates of the single particle Hamiltionian that corresponds to the
average optical potential. This represents a strong resemblance to the classical case,
where every distribution function depending on the action variable alone was a mean-
field steady state. Remembering the Bohr-Sommerfeld correspondence principle of
the old quantum theory, which (somewhat loosely) states that every action that is
an integer multiple of the elementary quantum of action /& corresponds to a quantum
energy eigenstate, the analogy is near perfect.
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5.3 Fundamental Suppositions

In analogy to the classical case, we assume that the long-term dynamics, driven by
field-particle correlations, is such that the one-body density matrix is always close
to some mean-field steady state and hence diagonal in the eigenbasis of the single
particle Hamiltonian that corresponds to the momentary average optical potential:

pla,a’ 1) = fut)on (@', (@, 1), (5.21a)
where
H(t)pn(x,t) = Ey(t)on(z,t). (5.21b)
Here we have introduced the one-body averaged Hamiltonian
n? 92
H(t) := ~ 9 a2 + O(z, at), a”(t)). (5.22)

This assumption is the quantum mechanical analog of (4.15). For the sake of clarity,
we have explicitly written down the time dependence of the wave-functions and the
mean values of the creation and annihilation operators. We shall mostly suppress
this dependence hereafter. In summary, this means we assume that after a ”short®
mean-field stage of the time evolution, the one-body density matrix has assumed
the form (5.21a) and preserves it during the ”slow* approach to equilibrium. This
ansatz, which can be viewed as a form of ”variation of the constant®, is the key to
the development of a quantum kinetic theory as it was the key to the development
of the classical theory. In addition, we assert that the fluctuations around the mean
values are, in some sense, small and fast-varying in comparison with the mean values.

Let us now explore the consequences of these suppositions in some detail. To this
end we expand the density matrix according to

pla,a’) = blbn 05 () on (@) =1 @i (@) n (). (5.23)

Here, the operator IA)L creates a particle in the state ¢,. Let it be pointed out that
this step exactly corresponds to the introduction of action-angle variables in the
classical treatment. Let us also decompose the operator density matrix elements
and the cavity mode annihilation operator in the usual manner

Pmn = Pmn + 5ﬁmn7 (5243)
a=a+da (5.24b)

into mean values and fluctuations.

As a side note let us remark that the restriction to a motion of the gas parti-
cles along the resonator axis is, for the derivation of a kinetic theory valid in the
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quantum mechanical regime, a mere matter of convenience. The situation is different
in the classical regime, where we found the existence of action-angle variables to be
indispensable and which is guaranteed only in a one-dimensional setting.

Inserting these decompositions into (5.9) we find

a/3nl

ih
ot

+ ihz (PmiCmn + PnmCmp) =
m

= ( pnl Z (ﬁmlé(i)mn - 5(i)lmﬁnm) ) (525)

m

wherein the fluctuating optical potential is defined as §® := & — (®) and the matrix
elements are given by

- / 0% ()6 (2) o () dz (5.26)
and o
Crn 1= (szf(sv)gpn(x)dx. (5.27)

Taking the average of equation (5.25), we obtain the following equation of motion
for the occupancies f, = (Pnn) = Pnn

(5.28)
Now, if we exploit our assumption about the form of p, namely that pnm ~ frndnm,
we finally find

h

Ofn 1 a . R a
o= %j (6% nm0pnm ) = (0pmndPrmn )] (5.292)
where we have used the conservation of norm to conclude that c,, = 0. In keeping
with the assumption of a slow evolution of the occupancies, the averaged mode
amplitude is to be calculated from the quasi-stationarity equation

Oé(t) - —H—FZA Zgnn fn (529b)

which finds its classical counterpart in (4.83b). Here we had occasion to introduce
the transition matrix elements

Imn = /cpfn(a:) sin(kz)pn (z)dx, (5.30)

which correspond to (4.84). Concerning the fluctuations we assume once more that,
because of their "smallness“, we can linearize their equations of motion to the effect
that ~

ddpmn

ih
BA

+ (B — En)0pmn = (fm — fn)0®rm (5.31a)
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dda

= = (TEHIA)0E = 0D Gmndpmn + din, (5.31b)

nm
where, in addition, we have neglected terms proportional to ¢;xdpmn, because they
are products of the time derivatives of the slowly evolving wave-functions with fluc-
tuating density matrix elements and thus of higher order.
From (5.29) we see that the number of particles is conserved if and only if [§®,n, 6 fmn] =
0. The approximations that we introduced concerning the fluctuations will violate
these commutation relations in the course of time. Therefore, we shall use a sym-
metric form of equation (5.29), such that number conservation is guaranteed:

Ofn 1 5 R
where {, } denotes the anticommutator and use has been made of the fact that
(@m0 pnm) = ((3pmndbmn)') = (6Pmnd Prn)*. (5.33)

5.4 Conditions for a Quantum Kinetic Theory

Our goal is once again to find, starting from the above equations, some functional
Jn, such that in place of the first equation in (5.32) we can approximately write
Ofn

Sr = Tul{ a0} (534

This means, we want to find a Markovian master equation approximation to the
dynamics of the occupancies, where the latter assume the role of the classical dis-
tribution function f(I). In complete analogy to the classical theory, one can show
that such an approximation indeed exists, provided that

I. The limit L/A — oo is assumed, where L denotes the quantization length.
II. The one-body density matrix is mean-field stable, i.e. the analytic continuation
of the response function D(Q2) (see (5.44) below) has no zeros with positive real part

and all its zeros have a sufficiently negative real part.

III. It is assumed that the correlations of the fluctuating density matrix can be
written as

<5ﬁab(t)5ﬁ0d(t)> = fa(t)[fC(t) + 1]5ad50b(1 - 5ab) + Ca,b,c,d(t)a (5-35)
such that
Ca,b,c,d(t) = Csa,...,sd (Qaa -5 4d; t) (536)
is a smooth function of the quasi-momenta ¢, ..., g (or momenta, if o = 0).
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Condition I, namely the limit of many potential wells L/\ — oo, ensures that
we have a continuous manifold of states within each band, which is necessary that
certain expressions akin to Fermi’s Golden Rule make sense. To clarify condition IT
we denote by v(t) < 0 the largest real part of all zeros of the analytically continued
dispersion relation D. Then, condition II means that we require that

A(0)] 3 max | ()] Ful0)]. (5.37)

It implies that there is no Markovian Master equation approximation in the vicinity
of the selforganization threshold (because there v — 0) and guarantees a separation
of timescales of evolution between the f,,’s and the correlations everywhere else.
It may be called the Markovian condition proper. Condition III is sufficient for
the correlations to depend on the f,(¢)’s alone and it is at this point that the
quantum statistics of the particles enters. It has been written down for bosons, but
the fermionic case can easily be covered by replacing the assumption III by

<5ﬁab(t)5/3cd(t)> = fa(t)[l - fc(t)]‘sad‘scb(l - 5ab) + Ca,b,C,d(t)- (538)

Here, Cy p c,q includes all correlations, which are not due to the bosonic (or fermionic)
exchange symmetry (exchange-correlations). It presents a straightforward general-
ization of the classical (4.42). Note that only Condition I has no classical analog,
because classically there is already a continuum of states.

Given these conditions we can, as in the classical case, introduce the new fast time
7, solve (5.31) neglecting the dependence of f,, Fy, gnm on the fast time scale and
evaluate the correlations on the r.h.s of (5.32) in the limit 7 — oo to obtain them
as the sought for functional J,,[{ fm (¢)}]
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5.5 Quantum Master Equation

We do not report the lengthy calculations necessary to follow the procedure outlined
above, because they are not essentially different from those performed in the classical
case. Instead, we will state only the end result for the nonlinear master equation,
which approximates (5.32). For Bosons it can be cast in the form

O fn

ot = Z (Tm—mfm — Thsmfn + C(fm, fn)) (5.39a)

m

wherein appears the quantum analog of the classical Balescu-Lenard operator

C(fm, fn) = Z w(n,n’sm,m')x

n'm/’

X [fmfm’(fn + 1)(fn’ + 1) - fnfn’(fm + 1)(fm’ + 1)]7 (5'40)

with a cross section given by

w — A27742£ ’gmnP ’gm/n/|2 5(En B Em + En’ _ Em’) (541)
"B | D (iwmn)| | D (iwmrm )|

and the transition probabilities per unit time Ty,—n[fn] := Brm(1 + fr), where

2 |gmn|2

DBl p T (Aot em)’) (5.42)

Bpm = 2k1
Here, the transition frequencies are defined as
1
Wmn 1= ﬁ(En —Ep) =wp —wp, (5.43)

and the quantum linear response function is given by

D(Q) = (Q+ 1) + A2 + 20200 S [gum? m (5.44)

To summarize: we have found a nonlinear Markovian master equation for the popu-
lations f,, of the states ¢, (), which are eigenstates corresponding to the momentary
expected optical potential. The latter is determined by the value of the expected cav-
ity mode amplitude, which in turn depends on the instantaneous spatial distribution
of the gas.

5.6 Discussion and Physical Interpretation

As we shall see presently, all the terms appearing in this quantum kinetic equation
lend themselves easily to a fairly transparent physical meaning, somewhat in con-
trast to the classical case.
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Let us start with the expression for Ty,—n[fn] = Bnm(l + fn), that is the tran-
sition probability per unit time from some state |m) to some other state |n). The
most obvious observation is that this probability depends on the occupancy of the
final state f,, and finds its explanation in the bosonic statistics of the gas particles,
which favors the occupation of some state already occupied. This bunching effect is,
of course, responsible for the existence of a Bose-Einstein condensate. For Fermions,
the corresponding transition probability is given by Ty, —n[fn] = Bnm(1— frn), clearly
reflecting Pauli’s principle. T,—,n[fn] does, however, also depend on all the occu-
pancies collectively through the linear response function D(iw,,) evaluated at the
corresponding transition frequency, a feature it shares with the classical drift and
diffusion coefficients as can be seen from (4.85). To clarify the meaning of the pref-
actor By, let us for the moment forget about the dependence of the linear response
function on the state of the gas and take D = Dy,ye in the defining equation (5.42),
with

Dhare(Q) := (2 + 5)* + AZ. (5.45)

Then, simple algebra reveals that the bare prefactor may be written in the form
27
Bpae = ﬁ‘vnmPPO(WL — Wimnn)- (5.46)

Here we have defined the bare cavity density of modes

1 K

po(w) == ;ma (5.47)

where wy, and w. denote the driving laser- and cavity resonance frequency, respec-
tively and we have introduced also the transition matrix element V,,,, := Angnm =
hn(n|sin(k&)|m). The alert reader will have already recognized that the bare pref-
actor expresses nothing else but Fermi’s Golden Rule for the process of a particle
scattering a pump laser photon into the cavity while undergoing a transition m — n,
the probability per unit time of which is proportional to the density of states for the
scattered photon at its frequency w and the latter is given by w = wy, — wmy, due to
the conservation of pre- and post-scattering energy:

E, + hwp, = B, + hw. (5.48)

Returning to the full expression (5.42) we may thus rewrite it in the form of Fermi’s
Golden Rule 5
T
Bym = ﬁ|Vnm|2pO(wL - Wmn)X(Wmn)a (549)
where the dimensionless correction factor

- |Dbare(iw)|2

X(w) = D(iw)? (5.50)

has been introduced.
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The expression (5.46) allows a very useful visualization of the cavity-cooling phe-
nomenon as shown in figure 5.1. There one can see the (bare) cavity density of modes
and the two frequencies at which photons corresponding to some particular transi-
tion n <> m are scattered. The photon with higher frequency comes along with a
downward, i.e. energy-decreasing transition, the one having a frequency below the
laser frequency stems from an energy-increasing or upward transition. In optome-
chanics, these two frequencies w = wy, &+ wy,, are called sidebands. One notes that
for a laser frequency lower than the cavity resonance frequency (or red detuning,
A, < 0) the direction of transition corresponding to a removal of energy from the
particles always dominates. It becomes also evident that if the transition frequency
is smaller than the cavity linewith x (unresolved sideband regime), the optimal de-
tuning is given by A. = —k. In the reverse case (resolved sideband regime), optimal
cooling of that particular transition requires a detuning A. = —|wy,y,|. Hence the
importance of correctly choosing the detuning to optimize cooling efficiency becomes
easily understandable. Furthermore, the bosonic enhancement factor 1 + f,, shows
that if low energy states are already populated by some particles, the rate of cooling
increases even more. This is a genuine quantum statistical effect and has no classical
counterpart.

Let us now proceed to the discussion of the quantum Balescu-Lenard operator
as given by equation (5.40). It has the standard form for a two-body process with
cross section defined in (5.41) and evidently describes a process that takes two par-
ticles, initially in the states |m), |m'), into the final states |n), |n') (or vice versa),
while conserving the total energy as seen by the appearance of the delta function.
This is completely analogous to the resonance condition found in the classical treat-
ment. Using the definition of the bare cavity density of modes, we can rewrite the
cross section in the form

273 A2

C

BA ﬁ|vﬂm|2|vn’m"2po(WL — W) po(WL — Wnrpr ) X

X X (Wmn )0 (Wimn + wmrmr ). (5.51)

w =

From this expression we see that the cross section is proportional to a product of
mode densities, which leads us to conclude that there are two scatterings involved
in the given process. We have not succeeded in giving a fully satisfactory interpre-
tation thereof but we will call the process resonant (due to the transition frequency
resonance condition) pair-scattering (because it is a pair of particles, which scatters
coordinately).

It is worth remarking that the Bose distribution

1

frn = T T (5.52)
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Ad

Figure 5.1 Bare cavity density of modes (black dotted line), driving laser frequency
(green vertical line) and the two photon sidebands (red and blue vertical lines) from
some transition n <> m. The right hand sideband corresponds to a cooling- the left
hand sideband to a heating scattering process. For red detuning as depicted the heat-
ing sideband is suppressed due to the lack of available modes. For blue detuning the
situation is reversed.

is invariant under such pair-scattering events. To prove this well-known fact we use
the simple identity

1 1
1 = .
e (+el‘—1> pr— (5.53)

to find

Frnfor (Fa 4+ 1) (far +1) = fafur (fn + 1) (o + 1) M@ —@mten—wm)/ksT (5 54)

Because of the conservation of energy during resonant pair-scattering, the exponen-
tial equals unity and thus C(fy,, fn) = 0. Therefore, these events can plausibly be
expected to favor the establishment of a thermal distribution of particles among the
levels of the average potential.

In concluding this section we wish to point out that the linear response function
given by (5.44) represents the quantum mechanical generalization of the classical
one. As such, its zeros determine, whether or not a given state of the gas f, is
stable.
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5.7 Unordered Phase

Let us now have a closer look at the master equation, which rules the time evolution
of the gas in the unordered phase, where there is no average field inside the cavity. As
previously stated, the eigenstates of the one-body Hamiltonian (5.22) are momentum

eigenstates

on(z) = \}Ee”’“/ . (5.55)

The transition matrix elements g,,, are easily evaluated

1
Imn = 272 [5 (pn — Pm + hk) - 6 (pn —Pm — hk)] (556)

and express the conservation of overall momentum during the scattering of a cavity
photon. Hence, only states with momenta p, p’ that satisfy p’ = p & hk are coupled.
Consequently, in any stationary solution, the occupancies f(p) with 0 < p < hk
remain undetermined. This is in striking contrast to the classical situation, where
we found that below selforganization threshold the equilibrium state is uniquely de-
termined, i.e. independent of the history of the system’s evolution.

We observe that the dispersion relation of free particles

J
hw(p) = — .
(=1 (557)
leads to the transition frequencies
k

w(p) —w(p £ hk) = $%(2p + hk) = F(kv £ wgr). (5.58)

Let’s introduce the semi-classical drift and diffusion coefficients

kp/m
a(p) == —2hk kN?ANget—— 5.59
) " A Dlikp/mP? (55
B2k kn? k%2 + A2 + (kp/m)?

b(p) := U (kp/m) (5.60)

2 | D(ikp/m)[?

the current

7(9) = S 5 ) 1o+ 1)) + 1) + £+ W+
Mo K2 k1) - )] (5.60)

and focus, as in the classical treatment, on symmetric momentum distributions
f(=p,t) = f(p,t). In this case, the quantum Balescu-Lenard operator vanishes iden-
tically and the Master equation (5.39) assumes the simple form

of

S = J(p) — J(p— k). (5.62)
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Let us check, whether this equation reduces to its classical counterpart (4.68) if f(p)
is slowly varying over an interval of length hk. We shall call this case the unresolved
recoil regime (or bad cavity limit). Its opposite we term resolved recoil regime(or
good cavity limit). Under this assumption, a Taylor series expansion is justified and
we obtain

0 n2k? 62

J(p) = J(p — hk) = k5T (p) = —5=5 537 (p) + O(h*k?) (5.63)
and
I0) = )L+ ) + 5@+ D)+ b o+ O, (56
such that equation (5.62) becomes
o= o (e @I+ 1) + b)) + O, (5.65)

The quantum dispersion relation may be easily shown to reduce to its classical
counterpart in the said limit and hence, to order O(h3k?), we indeed recover the
classical equation provided we additionally require the occupancies to be small,
f(p) < 1, and remember that p = mv as well as the relation between the velocity
distribution and the occupancies in the continuum limit L/\ — oo, namely

FM=£%ﬂm (5.66)

It is interesting to retain the bosonic correction factor 1+ f(p) in the kinetic equation
(5.65) and investigate, how the steady state solution (which is again unique) looks
like. This corresponds to the situation that the momentum distribution is extended
over many intervals of length hk but there are still sufficiently many particles to
render the quantum statistical correction non-negligible. With the help of the g¢-
deformed exponential defined in the previous chapter in (4.70), we find

fe(p) = 12 (5.67)

)
-1 P _
Z XDy ( 2kaT> 1

where, exactly as in the classical solution,

WR
=1+ 5.68
q A (5.68)
and 2, A2
K+
T=h——F .
kp h 1A (5.69)

The equilibrium solution (5.67) may be termed a g-deformed Bose distribution and
generalizes the classical g-Gaussian found in the last chapter. The parameter z is
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determined by the number of particles and can, due to the suggestive form of (5.67),
be called the fugacity. The case of Fermions leads instead, in the aforementioned
unresolved recoil regime, to a g—deformed Fermi-distribution

fr(p) = ! 5 , (5.70)

21 exp, (%fw) +1

as could have been guessed. Needless to say, both (5.67) and (5.70) reduce to the
ordinary Bose- and Fermi distributions for large detuning, i.e. if |A¢| > wg.

The normalization condition ), f(pn) = N becomes, in the continuum limit,

. flp)dp = —+ (5.71)

/oo _ 27hN

and is thus seen to involve the density N/L. This constitutes a major difference
as compared to the classical case, where the actual density of the gas played no
role, only the absolute number of particles. From (5.66) we can also learn, that
the quantum statistical corrections featuring in (5.65) become noticeable only for
sufficiently high densities, more precisely if

NA
— 21 5.72

L ~ ) ( )
that is, if there is more than a single particle per wavelength.

We have not performed a dynamical stability analysis of either (5.67) or (5.70),
but it can be done making use of the semi-classical criterion given in (4.65), be-
cause, in the continuum limit, the quantum linear response function reduces to its
classical form in the recoil unresolved regime. Such an endeavor, which would yield
the generalized phase boundaries for both Bosons and Fermions, has to await some
more opportune time.

5.8 Selfordered Phase

In the case of a non-vanishing averaged optical potential, that is in the case of a gas
in the ordered phase, the eigenstates of (5.22) can, as mentioned before, be written
down in terms of Bloch wave-functions

(pn(x) = eiqxuq,s(x)v (573)

where ¢ is the quasi-wavenumber, restricted to the first Brillouin zone, s denotes
the so-called band index and us4(x) is a A-periodic function. Like in the classical
regime, the solution of the master equation becomes tractable only for a gas deep
within the selfordered phase, i. e. for particles strongly trapped in the self-consistent

78



momentum distribution

T T T
------ numerical sol.
—— ¢-Bose distr.

— . = ¢-Gaussian distr.

-25

25

momentum distribution

T T
------ numerical sol.
—— ¢-Fermi distr.
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Figure 5.2 Examples of quantum equilibrium momentum distributions in the recoil
unresolved regime and unordered phase for Bosons (upper plot) and Fermions (lower
plot). The blue dotted curves depict the numerical solution of the master equation
(5.62) and can hardly be distinguished from the theoretical predictions (5.67) and
(5.70) (red curves). For the chosen ¢ = 1.4 and 20 particles per wavelength there
exists both a marked deviation from thermal equilibrium and from the semi-classical
prediction (green dashed-dotted curve). The parameters are N = 5000, x = 6wg and
A; = —2.5wg in both cases.

optical potential. In this regime, we can assume that the Bloch wave-functions are

approximately given by

on(z) o

1

N

Z eiqwj@bs (z — xj)»
Tj

(5.74)
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where ny, = L/ denotes the number of potential wells and z; = xo + jA = 29 + R;
the position of the jth site. The wave-functions designated by s(z) are taken to
be the oscillator eigenfunctions, an approximation commonly referred to as tight-
binding approximation. If we ignore the weak dependence of the transition matrix
elements on the quasi wave number, we get, omitting terms proportional to 6, 405 s
(because they drop from the master equation anyway)

|Gnne |2 = (0] sin(k2)|n)|? = 6.9 Ts.s, (5.75)

where we have defined

o0 2,2 2
Ts o = </—oo ¢5($)k:21/18/($)dx> . (5.76)

This overlap integral is non-zero only if s’ = s + 2n for some integer number n and
can, in fact be taken as coupling only s,s — 2 and s,s + 2, i.e. nearest levels with
equal parity.

We will now show that the under these conditions stationary solution of the master
equation is given by the thermal distribution. To this end, we first ignore the quan-
tum Balescu-Lenard operator and look for the steady state without it. Introducing
the inverse temperature 3 via

2 2
—2fhwo .__ K® + (AC + 2“‘)0)
O A (5.77)

where wy denotes the trap frequency defined in equation (4.90), the reduced steady-
state master equation is equivalent to

fora(a) — e 20 fo(q) + (1 — e 270) (q) fiv2(q) = 0. (5.78)

The solution to this equation is easily found to be the Bose-distribution for flat

bands
1

(9 = s — 1 (5.79)

On the other hand we know from (5.54), that the Balescu-Lenard term vanishes
if the distribution is of the form hy(gq, 3) = [e?(Fs(@=#) — 1]=1 regardless of the
value of 3. Hence, in the limit of very deep potentials, where F4(q) — fiwps we have
fs(q)/hs(q, ) — 1 and thus (5.79) represents the equilibrium solution of the com-
plete master equation as well. If the whole argument seems a little strange to the
reader, let him consider that for strictly flat bands the cross section (5.41) becomes
ill-defined and hence the above detour was necessary.

Therefore, as in the semi-classical theory, the equilibrium distribution for the strongly
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Figure 5.3 Thermal energy (in units of fiwg) versus detuning in the selfordered phase
according to classical- and quantum theory. The trap frequency was chosen to be wy =
10k.

selforganized phase is thermal. However, quantum theory predicts a thermal energy
71, which is given by

k2 + (A, — 2w0)2 -
kT = 2o [m (KQ PR Rl )| # (5.80)

where kpTiin is the classical result. This alone shows that the terms “temperature”
and “thermal” should not be taken too seriously in the context of this open and
dissipative system and bear their names only for reasons of similarity. Figure 5.3
depicts both the classical and the quantum thermal energies as functions of the de-
tuning, assuming a fixed trap frequency.

A remark is in order. As the interaction couples only even states or odd states,
we find that the equilibrium is actually given by a mixture of two thermal distri-
butions for the odd and even states respectively, having the same temperature but
possibly different chemical potentials.

Even though the classical temperature deviates from the quantum-mechanical tem-

perature, it is important to recall that there exists no equipartition in the latter
theory and hence the quantum energy is not equal to kgTq. It is therefore interest-
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ing to look at the equilibrium energy per particle
Uq = ]1]; hewo (5 + ;) fs(q) (5.81)
for low densities and compare it to the classical value determined by
Ug = 2r / wol f(I)dI (5.82)

with f(I) given by (4.87). As remarked in the previous chapter, Uc = kpTki, due
to equipartition. The result is shown in figure 5.4. Curiously, the classical prediction
deviates from the corresponding quantum prediction most strongly for detunings,
where the energy attains its minimum value in both cases, i.e. at A, = —2wq. The
reason for the factor of two is that a photon must bridge an energy gap of 2hwy,
because only states thus far apart couple due to the parity- and overlap constraint.
Contrary to the classical theory, quantum theory predicts (close to) ground state
cooling.

This discrepancy is, at first sight, fairly disconcerting, because for deep potentials,
where the harmonic approximation is valid, semi-classical- and quantum theories
should, for low densities, be equivalent. The resolution of this conundrum lies in
the degeneracy of the quantum-mechanical equilibrium pointed out above. Again,
the number of particles occupying odd states Noqq and the number of particles
occupying even states Neven are not fixed individually, only the total number of
particles N = Nyqd + Neven. In the above comparison, we have chosen them such
that the chemical potentials of the two populations are equal. If, instead, we choose
the equilibrium to be the one where Nygq = Neven = N/2, we find, for low densities,
where Bose statistics can be replaced by Boltzmann statistics

1 4 e~ 2Bhwo K2+ A2 w?
Q 01 _ 6_2Bhw0 4|AC‘ + ’AC| C? ( )

wherein we have made use of (5.77). Thus the discrepancy evaporates and we realize
that the semi-classical kinetic theory singles out this particular case from among the
infinitely many quantum equilibria. However, if there exist also direct interactions
between the particles, we may plausibly expect an equalization of chemical potentials
and thus ground state cooling as in figure 5.4.

5.9 Conclusions and Outlook

We have generalized the semi-classical kinetic theory of polarizable particles inter-
acting with a mode of a high-() resonator presented in the previous chapter to the
fully quantum-mechanical regime. This has resulted in a very lucid interpretation of
the cavity cooling effect and has revealed important corrections to the semi-classical
predictions both for Bosons and Fermions, even though the discussion presented in
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Figure 5.4 Energy per particle versus detuning in the selfordered phase according to
classical and quantum theory (for Bosons) for a density of one particle every ten wave-
lengths. The classical curve approximates the quantum curve asymptotically but differs
from it close to the minimal energy, attained at A. = —2wq, where quantum theory
predicts ground state cooling. The trap frequency was chosen to be wy = 10k.
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this chapter can by no means claim to be exhaustive. We have found that quantum
kinetic theory agrees with its semi-classical counterpart in the appropriate limiting
cases, thereby raising confidence in both theories.

If the computational cost of a numerical solution of the semi-classical SDEs is a
hindrance to effectively study this many-body problem numerically, the situation is
much worse for the corresponding quantum model. Indeed it seems fair to say that
for a reasonable number of particles a direct numerical simulation is forever out of
reach. Hence, the value of effective descriptions as the one developed in this chapter
should be self-evident. In this respect we wish to point out that the way to arrive at
a quantum kinetic theory chosen in this work is particularly suited to many-body
systems with collective interactions and can easily be adapted to be applicable to
other models of this type.
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6 Cooperative Selfordering and
Sympathetic Cooling of a Multispecies
Gas in a Cavity

6.1 Introduction

Laser light induced forces are routinely used to manipulate polarizable particles
from atoms and molecules [44] to larger objects such as nanoparticles, micro beads
or even protozoae [45]. Laser trapping and cooling, however, is limited to a finite
class of atomic species, very few kinds of molecules [46] or isolated vibration modes of
nanomechanical objects [47]. Cooling requires specific setups with specifically chosen
laser frequencies and configurations for any species, so that their number only slowly
increases with time [48].

In principle, selforganization and cooling by coherent light-scattering in cavities
gives a general alternative to trap and cool any kind of polarizable particles within an
optical resonator [29, 30, 49]. In practice, however, the required phase-space densities
and laser intensities have so far only been achieved for atomic ensembles [50, 51, 52],
where theoretical expectations of fast sub-Doppler cooling were even surpassed [5],
but the required phase-space density to achieve selfordering and trapping has not
been reached for molecules or nanoparticles [30, 53].

As solution we propose to put ensembles of different species simultaneously into
the same optical resonator. We predict that under suitable conditions all species are
simultaneously trapped and cooled using only a single laser frequency and optical
resonator. Our central claim is that the simultaneous presence of any additional
species always increases the collective light scattering and improves trapping and
cooling. As a particularly interesting case we study a mixture of a dense atomic
ensemble with a smaller ensemble of heavier molecules or nanoparticles. Even when
it is impossible to reach the selforganization threshold for the latter alone, combined
trapping and sympathetic cooling can be readily achieved in cooperation with the
atoms. Due to the nonlocal interaction the different particles might even be located
at different regions within the cavity. This setup opens a novel possibility to si-
multaneous multispecies trapping and cooling without the need of a tailored laser
configuration for each species. This can be improved further, using several cavity
modes simultaneously [30].
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Figure 6.1 (Colour online) Ensembles of particles within a cavity illuminated trans-
versely by a standing wave laser resonant with the cavity mode. Above threshold the
particles order in regular tubes optimizing Bragg scattering into the mode.

6.2 Model

Consider a dilute gas consisting of S kinds of N, polarizable point-particles of mass
ms within the overlap region of a high-@Q optical resonator mode and a standing-wave
pump laser tuned close to resonance with a cavity mode (figure 1). In this chapter
we return to a semi-classical description. According to this view, the particles scatter
light into and out of the cavity mode and the resulting interference pattern creates
dynamical optical potentials guiding the particle motion. For simplicity we approx-
imate pump and cavity field in the interaction region by plane standing waves and
consider motion along the cavity axis only. This suffices to describe the essential
physics of selforganization and cooling [28, 50, 31]. A practical experimental imple-
mentation can be envisaged by confining the particles by two crossed standing-wave
pump lasers into a lattice of 1D tubes along the cavity axis [54, 49]. Extension to
3D motion and field geometries are straightforward and are expected to induce only
minor quantitative changes [31]. The model used in this chapter is, of course, a
straight-forward extension of the one used in chapter 4. In terms of the effective
pump amplitudes 7, the light shifts per photon Up s, and the semi-classical cavity
mode amplitude a, the optical potentials along the cavity axis are given by [28§]

By(x,a,a*) = hns (a + a*) sin(kz) + hly s|al? sin? (kx), (6.1)

which lead to the one-body Hamiltonian functions hs(z, p, a,a*) = %—I—@s (z,a,a"),
determining the dynamics of an individual particle belonging to the sth species
through the canonical equations of motion [13]. hs depends parametrically on the
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cavity field amplitude a, which in turn is driven by the light scattered collectively by
all the particles and by white noise &, modeling vacuum fluctuations. As detailed in
refs. [7, 16], for a statistical treatment of the dynamics it is convenient to redefine the
state of the particles of the sth species {z;,(t),pj,(t)} in terms of the Klimontovich
distribution [55]

Ns
fiespit) 1= i D 8z, ()03, (1) (62)

s Js=1

Then the mode amplitude evolves according to

.S
. i Ohs
0 = (it = W)= YN, [ Gz ficlwpity dadp + Vi €, (6.3)

where x denotes the cavity decay rate and A, = wp — w. the detuning between
pump- and cavity frequency. We decompose the Klimontovich distribution accord-
ing to fi(z,p,t) = fs(x,p,t) + 0 fs(z,p,t), where fs(z,p,t) := (fi;(z,p, 1)), averaged
over an ensemble of suitable initial conditions and the realizations of the white
noise, is called one-body distribution function. Note that fs(z,p,t)dzdp is equal to
the expected fraction of particles of the sth species in a phase space volume dxdp
around the point (z,p) at time ¢ and the average over its fluctuations vanishes,
(0fs(x,p,t)) = 0. Likewise we decompose the mode amplitude into a = « + da,
where a = (a). The one-body distribution functions exactly satisfy

ofs . p Ofs a<¢>s>afs_<aaq>saafs>,

ot ' mg 0x  Ox op \ Ox Op

in which predominantly the r.h.s. describes statistical correlations. For Ny — oo
these tend to zero and we recover the Vlasov (or mean-field) kinetic theory. There,
(Ps(z,a,a")) is replaced by ®4(x,a,a*) and the r.h.s. of (6.4) is set to zero, such
that spatially homogeneous particle distributions scatter no light into the mode and
constitute an equilibrium state at zero cavity field [16], exactly as in chapter 4.

(6.4)

6.3 Multispecies Selforganization Threshold

Following [16], the multispecies selforganization threshold is obtained as the bound-
ary of dynamical stability of spatially uniform distributions in case of negative ef-
fective detuning § := A, — %ZS NgUp,s < 0, by an analysis of the linearized Vlasov
equation [56]. For convenience we rescale the uniform equilibrium distributions as
fos(p) = (Lmsvs)_le(ﬁ) in terms of a typical velocity vs and the cavity length
L. Assuming a strictly monotonous decrease in |p|, as fulfilled by all relevant dis-
tributions (e.g. Gaussian, Bose-Einstein, ¢-Gaussian, etc.), a given set of spatially
homogeneous distributions is unstable if and only if

S 2 2 2
N o —1dG, KZ2+6
> (P/ du) > (6.5)

= oo 2u du

87



with kgTs = msvf /2 and P the Cauchy principal value. For thermal (i.e. Gaussian)
momentum distributions the integral in (6.5) is unity and the threshold condition
assumes the simple form
ZS: Ngn?  K? 4462
kpTs h|o|

(6.6)

s=1
This threshold formula is one of the central results of the present work. Above
threshold, density perturbations and the electric field amplitude grow exponentially
and evolve, if the light shift is not too large, towards an ordered quasi-stationary
state (figure 6.2) with growth exponent v > 0 fulfilling

S 2
Ngnzhd [ udGg/du
+ 2 +52 _ s
(v + &) Z 2k5Ts J_oo (7/k05)2+u2 U

s=1

(6.7)

Note that, while the r.h.s. of equations (6.5) and (6.6) only depends on cavity pa-
rameters, all terms in the sum on the Lh.s. are manifestly positive and proportional
to the pump intensity. This has the important consequence that inserting any extra
particle species into the cavity will lower the power needed to start the selforganiza-
tion process, regardless of temperature or polarizability of the added particles. Note
that we neglect absorbtion of the pump beam, consistent with our assumption of a
dilute and optically thin gas. At higher temperatures, where (kvs)? > k2 + 62, the
field amplitude’s growth rate is, from (6.7), given by

S g 1/2
vy=—-K+ (Z T Nyn? — 52> : (6.8)
s=1 s

We thus find strong sympathetic enhancement, i.e. the field grows faster the more
species contribute such that the required power and time needed for selforganization
is lowered by combining several species.

6.4 Long-Term Dynamics and Equilibrium

For a large but finite number of particles, the Vlasov kinetic theory, which neglects all
dynamical correlations, provides an accurate description on a time scale essentially
fixed by the solution of equation (6.7). The long-term evolution of the system and
in particular its statistical equilibrium state are, on the other hand, governed by
precisely these correlations [7] as shown in the previous two chapters for the case of
a single species. In this section we shall deal with this stage of the time evolution in
the limit of weak coupling, i.e.

> No|Ups| < |A], (6.9)

where we can neglect the terms hlUp s|a|? sin?(kx) in the averaged optical potentials
(6.1), rendering them linear functions of the mode amplitude.
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Figure 6.2 Concurrent selforganization of two species, initialized above the combined
threshold. Species one (orange) is initialized well above, species two (blue) far below
its proper threshold. (a) Final position distributions (periodic boundary conditions).
(c,d) Initial (dashed) and selforganized (solid) momentum distributions obtained from
numerical stochastic particle simulations (SDEs) [7]. Circles: theoretical predictions
obtained from Vlasov kinetic theory assuming the adiabatic invariance of the action
variables (6.13) as in [57]. (b) Growth of the order parameters O, = | [ f, sin(kz)dzdp|
to predicted values. Parameters: Ny = 10%, Ny = 500, mo = 10mq, kgTh = 10*hx,
kgTs = 2.5 x 10%hk, m = 2.4k, N2 = 27.4x and recoil frequency wgr,1 = 107 2k.
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This is seen as follows: The mode amplitude « can, from its equation of motion
be estimated as )
o o 120 Nstis

. 6.10
—K 410 ( )
with the help of this estimate we find for the potential
I3 N, . :
(®y) ~ W <2(5 sin(kz) 4+ U zT: NT% s1n2(kx)> . (6.11)
If we use that o
| g’, (6.12)
Ns U5 |

we see that the second term in the brackets is much smaller than the first if
1/23°, N;|Uj| < |6], which yields (6.9). Using the same estimate for «, we see
that |o||Ug| < ns if 3, Np|Uj| < VK2 + 0%, which is also satisfied if (6.9) is.

As in the case of a single species we perform, for each species separately, a canoni-
cal transformation of variables (x,p) — (I, 0s). Here, I denotes the one-body action
based on the ensemble-averaged Hamiltonian function, which satisfies Hy(z, p, o, o*) :=
(hs(z,p,a,a*)) = hs(x,p,a,a*) in the weak coupling limit.

1
g:i%f¢%um—@¢mmﬂ (6.13)
and 6, its canonically conjugate angle variable

0S5,

03 = a7 >
0l

(6.14)

obtained from the generating function Sy = £ [* /2m4 [Hs — (®s(2’))] dz’. The rea-
son, to repeat what has been said in previous chapters, for doing this is that at the
end of the initial, mean-field governed dynamics, the one-particle distributions de-
pend on (z, p) solely through the ensemble-averaged one-body Hamiltonian functions
and thus on the actions alone. This assumption is strongly supported by numerical
results, see for example figure 6.2. From that point onwards, they are slowly mod-
ified by the dynamical correlations in such a way that the system evolves towards
statistical equilibrium in a sequence of mean-field steady states [40]

fs(z,p,t) ~ fs(Is,t). (6.15)

A straight-forward generalization of (4.55) and in particular (4.83a) of chapter 4,
yields the set of coupled nonlinear Fokker-Planck equations describing the system’s
long-term evolution as

s ¥
o+ 2 Cls: 1) (6.16)

r=1

ofs 0
ot OI,

(Asfs + By
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The slow evolution of the ensemble-averaged mode amplitude is again taken into
account by the implicit equation

2
s s Is, Is, 1
v N [ 1) gos(lss) (6.17)
wherein L
In.s(Is, @) ::—/ sin(kx) e~™% d6,. (6.18)
21 Jo

The r.h.s. of equation (6.16), describing the redistribution of particles among the
orbits, consists of drift and diffusion terms originating from fluctuations and decay
of the mode amplitude

= n ns‘gn S|2
Aglfs] = —4hAckw —_— (6.19)

e ‘ sn;oo | D(inws)|?
B — ;2 - ”2773|9n,s|2 2 A2 2 2 6.20
=15 3 (Dl (< + A+ ) (6:20)

n=—0oo

and a generalized Balescu-Lenard operator [41, 42, 39]

of. of, N,
C[fsafr] = Z /wnm IsaI; f fr 82{ fs)dlra (621)

n,m=—0oo

where the cross section is given by

n? 02| G |

m IS I/ _8 2h2A2
w ( ) r) ™ |D(ans)”D(me )|

nd (nws — mw,.) . (6.22)

Here, ws(Is) = OH,/0I, is the nonlinear orbital frequency and a prime denotes the
function at I, = I/. For spatially uniform ensembles I, — p/k and the expressions
for A; and B; given in [7] are recovered. The linear response function D(iw) is given
by

6fs n|gn,s|2
Ol w+ nws — 10

S )
D(iw) = (iw + k)* + AZ —47hA > > N, dI, . (6.23)

s=1n=—o0

and characterizes the system’s collective response. We do not deny that all the above
is just a simple extension of what has been derived in chapter 4. Nevertheless, the
present situation of multiple species does give rise to interesting consequences go-
ing beyond the previously treated case. Let us recall that the particle distribution
functions fs(Is,t) always have to be strongly Vlasov stable in order for (6.16) to be
valid. This assumption breaks down close to the selforganization threshold and thus
(6.16) is valid only away from the transition point.

As we have pointed out above, the evolution equations for the different species are
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coupled. This coupling is two-fold. First, through the value of the mode amplitude «
and the linear response function, both of which are determined jointly by the states
of all the species. Secondly, through the interaction contained in the Balescu-Lenard
operators (6.21), which quantify the energy and momentum exchange between par-
ticles of like and different species and involve resonant orbits I,., I, with nw, = mws.
In chapter 5 we have baptized the process giving rise to these terms resonant pair-
scattering. It is, in effect, akin to a pair-collision albeit entirely nonlocal. The ap-
pearance of the linear response function function also reveals that the remaining
particles participate collectively as a medium in that process. These quasi-collisions
can be used for efficient sympathetic cooling as demonstrated below. The source of
the remaining terms in (6.16) involves only single scattering events and subsequent
loss through the cavity mirrors. It is worth remarking that the quasi-collision op-
erator (6.21) vanishes for thermal distributions with equal temperatures, and thus
the quasi-collisions can be expected to favor the establishment of global thermal
equilibrium.

As for a single species, stable equilibria of (6.16) exist only for A. < 0. Below thresh-
old, that is in the unordered phase, they are homogeneous with vanishing field and,
independent of the number of species, ¢-Gaussian momentum distributions:

frea(p) o expy, (i) (6.24)
’ * \2mgskpT
where
kT = h Iw (6.25)
and 1
exp,(u) = [1 +(1- q)u} e (6.26)

is the g-exponential with parameter ¢, = 1 + wr s/|A¢|. For gs — 1 the distribution
becomes an ordinary Gaussian. The recoil frequencies are given by wg s := hk? /2m
and kpT denotes a “thermal” energy with a minimum of hx/2 for A, = —k.

This is seen as follows: First note that due to the coupling of the individual Fokker-

Planck equations the determination of the joint equilibrium is not as trivial as for a
single species. However, using the artifice of the following “free energy” functional

F = ZNS (/ Us Fsdv +/ Fs In(Fy) dv) = ZNS‘FS (6.27)

where F(v) denotes the velocity distribution of the s-th species and

v = [

/

)dv’ ~ In (KZQ + A2+ kzvg) , (6.28)

As(v
Bs(v')
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the equations of motion (6.16) in case of a vanishing mode amplitude a = 0 can be
cast into the form

OF, 0 1 ) F, OF, F, F,
at_gaMDl?[Bstav( ) ZC‘S’"< )] (629

Mg mr ov

where cg 1= AwrsA2N,n2n2. Making use of the simple identities

1 A, 1 A,
s 6.30
my, B,  mgs By ( )
and n 4
Nycsr =2 = Nycpg— 31
SCST BS TCT'S BT., (6 3 )
we find
dF Z / O0Fs 8F
N SF, at
0Fs 0 Ng F,. OF, FS oF,
Z/ OF, (%IDF[ v )—l—Zc ( M My (91))1 Y
-2 [ plp () ¢
\DI2
MsCsr 1 F, OF, F OF
+§T: 2 FFT<m78v Mg 8v>]dv
<0. (6.32)
The derivative vanishes only if for all species s, there holds 2 ‘;“;S = 0,Us +
F S_lavF s = 0 and simultaneously also n% 861*; ro— %aai s = (). These tWO conditions fix

the unique steady state and they are equivalent to

OF;
A F, + B, 225 =, 6.33
+ ov (6.33a)

Fs OF, F OF
my Ov ms OU

=0. (6.33b)

It is not immediately evident that these conditions are mutually compatible. How-
ever, solving the first equation (6.33a) we find F, = e~Us and substituting this
solution into the second equation (6.33b), we find that it is indeed satisfied using
again the equality (6.30).

Hence, the reason for the fact that in the unordered phase the equilibrium state

of a given species is unaffected by the presence of others is the vanishing of resonant
interspecies scattering C|[fs.eq, freq] = 0.
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Sufficiently deep within the ordered phase, the equilibrium distributions are, once
more, well approximated by Maxwell-Boltzmann distributions

—H
6.34
fucalp) o< exp (). (630
with kinetic temperatures
(r”) 0.
kpTy, = — = kgT : 6.35
BLkin M B + ‘Ac‘ ( )

and trap frequencies wg,s = 4nswr s|Re | proportional to the cavity field generated
commonly by all species. Therefore, unlike below threshold, the equilibrium of a
given species is by this fact affected by the presence of the others. However, as in
the unordered phase, interactions due to resonant pair-scattering do not affect the
equilibrium of a given species. The reason for this somewhat disappointing circum-
stance is as follows. If the kinetic temperatures (6.35) of two given species are very
different, this implies that the trap frequencies experienced by these two species are
also very different and there can be no resonant pair-scattering between the two,
precisely because of the lack of resonance in this case. In the reverse case of similar
trap frequencies on the other hand, the effect of pair-scattering on the distributions
(6.34) can be shown to be negligibly small and vanishes identically for exactly equal
trap frequencies as remarked before.

Figure 6.3 shows the formation and properties of a two-species selforganized steady
state. The initial increase of the kinetic energy originates from the fast growth of the
cavity intensity due to instability and is followed by cooling in the trapped state.

6.5 Sympathetic Cooling

Hence, as we have seen above, resonant pair-scattering between particles of different
species has no effect on their steady states. This implies that from an observation
of the equilibrium alone the existence of this process cannot be inferred. The ap-
proach to equilibrium, however, is indeed influenced by that very process, i.e. the
energy exchange between different sorts of particles via resonant pair-scattering can
in fact reduce the cooling time for any species in the presence of another via sym-
pathetic cooling. At this point it is necessary to clarify the notion of cooling. The
lessons learned in the previous chapters lead us to associate with cooling a reduc-
tion of the extension of the sth species in one-body phase space. As the quantity
(Js) == [ Jsfs(Is)dIs, with Js = I for transient and J; = I;/2 for trapped orbits,
provides a measure of this extension, cooling therefore corresponds to a decrease of
(Jg).1

'Recall from chapter 5 that also the Bohr-Sommerfeld correspondence principle between integer
multiples of & of the action variable and quantum mechanical energy eigenstates suggests this
definition.
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Figure 6.3 Selforganized steady-state momentum distributions of (a) species one and
(b) species two with ms = 10m;. (¢) Kinetic temperatures and the photon number.
Dashed lines: theoretical predictions. Dash-dotted line: maximally possible photon num-
ber. Parameters: N; = 300, No = 200, v/Nim = /Nang = 600wr,1, £ = 100wr 1,
0=—rand Er = hwg,1.
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The case of interest here consists of a system of two species, a first one (species
1) acting as a coolant for a second species (species 2). Numerical simulations ex-
hibit an invariance (as in figure 6.2) or even an increase of the occupied phase space
volumes during selforganization triggered by an initial instability (i.e. if the system
starts above threshold (6.5)) and there is only a small energy exchange between
deeply trapped ensembles, if the resonance condition wp 1 ~ wp 2 is not satisfied.

However, sympathetic cooling can be achieved by initializing the system below the
joint threshold, such that resonant interspecies scattering can remove kinetic energy
from the second species, which is then dumped by the first species by ordinary cav-
ity cooling. The condition for this to happen efficiently is, by (6.22), that the two
species possess not too dissimilar thermal velocities, i. e.

kgTy  kpTh
mi meo '

(6.36)

Particles of a heavier species 2 at a higher temperature will therefore be able to
resonantly scatter with those of a lighter species 1 at a lower temperature, which
is quite fortunate, given that ordinary cavity cooling efficiency deteriorates with in-
creasing mass.

Indeed, the energy flow per particle from species two to species one (the coolant),
(21, for two spatially homogeneous ensembles can, from equation (6.21), be esti-
mated as

3
2

) 2N1772n 2hA2 hwg 2 mlTQ}
Q21 =~ \/ 1 - )
21 = + A2 k‘BTl moTy ’ (6 37)

if we assume that the first species is already cold, i.e. 2kgT}/hx < K/wgr 1, and the
joint system is far from instability. Energy evidently flows from the warmer to the
colder species at a rate which is maximal for a detuning A. = —k.

The process of sympathetic cooling continues until the point of joint selforgani-
zation is reached and the lighter particles are trapped. At this point, interspecies
scattering is expected to cease because of the absence of mutually resonant particles.
From here on, the lighter particles provide a continuously deepening potential for
the the heavy species, which subsequently gets trapped as well.

This process is shown in figure 6.4 and provides a very satisfactory confirmation
of the above scenario and hence the existence of resonant pair-scattering. Figure 6.5
depicts the result of a numerical simulation of the extreme case of a single, very
heavy particle resonantly cooled by an ensemble of lightweight and cold particles.
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Figure 6.4 Time evolution of the kinetic energy per particle (lower red pair of curves)
and phase space volume (J) (upper blue pair) of a heavy species alone (dashed lines) and
in the presence of a lighter species (solid lines). The rising solid curve depicts the intra-
cavity intensity (a.u.) for sympathetic cooling. The threshold and enhanced cooling
due to resonant pair-scattering with particles of the second species is clearly visible.
The inset depicts the distribution of the heavy particles at final time. The vertical lines
are the action values separating trapped from untrapped particle orbits. In the case
of the presence of the second species, almost all particles are finally trapped, whereas
in the other case, almost no particle is trapped. Parameters: N; = 1500, Ny = 100,
mao = 80my, vV Nim = 400wr 1, v/ Nane = 245w 1, £ = 100wgr 1 and A, = —k.
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Figure 6.5 Cooling of a single heavy particle of mass ms = 2000m; (blue curve) by
a small ensemble of one hundred lightweight and cold (kgTy, ~ 5hr/2) particles of
mass m; without direct interactions. The red dashed-dotted curve shows the reduction
of kinetic energy of the single heavy particle in the absence of the coolant species,
i.e. ordinary cavity cooling, which is rather inefficient for the chosen parameters. The
strongly enhanced cooling rate serves as an excellent proof for the reality of resonant
pair-scattering. The flattening of the curve coincides with the onset of selforganization
of the coolant species and the capturing of the heavy particle. The plot shows an
average over 100 realizations yet without vacuum noise. Parameters: N7 = 100, Ny = 1,
12 = b ~ 0.87k, k = 100wr 1 and A; = —k.



6.6 Conclusions

In summary we have shown that if the selforganization threshold can be reached with
a certain species, any species can be added and will be trapped and cooled as well.
The final temperatures are only limited by the resonator linewidth and, importantly,
the cooling time of a given species can be reduced by means of resonant energy
exchange with a second, already colder and lighter species. Because the general
cooling and selforganization effects have successfully been demonstrated in single-
species experiments [5, 10, 15], we are confident that the multispecies generalization
proposed here is well within reach of current technology. New phases can also be
expected in the case of a crystallization of a multispecies quantum gas close to
absolute zero [58]. We expect that simultaneous additional cooling of one species
will help to cool all others under the right conditions.
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7 Light-Induced Crystallization of Cold
Atoms in a 1D Optical Trap

7.1 Introduction

Figure 7.1 Cigar-shaped atomic gas alongside optical nanoguide

The astonishing experimental accomplishments in the optical control and manip-
ulation of cold atomic gases in the past decade now allow to deterministically load
them in precisely controlled optical traps of almost any shape down to effectively
zero temperature. A particular fruitful example are periodic optical lattices in which
many intriguing phenomena of solid state physics can be studied with unprecedented
isolation and control[1].

In contrast to conventional solids, however, the spatial order and lattice geometry
is fixed by the external lasers and does not appear from a self consistent atom-
field dynamics, as the back-action of the atoms onto the confining light fields is
generally negligible[59, 60]. Local lattice perturbations do not propagate and me-
diate long range interactions as phonons do in solids. This changes for spatially
tightly confined fields as in small optical resonators or optical micro-structures[61],
but experimentally it is very challenging to implement and load microtraps close to
optical microstructures where atom field coupling is sufficiently enhanced[62, 63, 64].

In an important step Rauschenbeutel and coworkers, however, recently managed
to trap atoms in an array of optical dipole traps generated by two color evanescent
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light fields alongside a tapered optical fiber[65], where the backaction of even a sin-
gle atom on the propagating fiber field is surprisingly strong[61, 66]. This setup was
improved with higher control and coupling by other groups recently[67, 68]. With
the atoms firmly trapped within the evanescent modes, field mediated atom-atom
interaction and collective coupling to the light modes play a decisive role in this a
setup[69].

Already a decade ago it was theoretically predicted[70] and experimentally confirmed|[5,
52, 71] that light scattering within optical resonators induces self-ordering of atoms
in regular patterns maximizing collective coupling to the cavity[72, 58]. This phase
transition can be directly monitored from the super-radiant light scattering [5, 71]
and appears also at zero temperature as quantum phase transition from a super-
fluid to a supersolid[52]. In an recent proposal Chang and coworkers predicted, that
nanofiber-mediated infinite-range dipole-dipole coupling allows stable regular pat-
terns of laser illuminated atoms trapped along the fiber[73]. The stable configura-
tions, characterized by minimal dipole interaction energy, assume surprisingly com-
plex configurations and exhibit characteristic collective light scattering.

Here we develop a generalized mean-field model to study the properties of light-
scattering induced crystallization of a laser illuminated ultracold gas in an elon-
gated 1D trap as depicted in Fig.7.1. The atoms, trapped parallel to the fiber, are
illuminated at right angle by a laser of frequency wy,, far detuned from any atomic
resonance so that spontaneous emission only plays a minor role and the polarizability
« has a negligibly small imaginary part.

7.2 Model Equations
The illuminating laser field
E; = (&1(x)e ™t +c.c)er (7.1)

gives rise to the field E; scattered by the atoms. Neglecting effects, which cause the
polarization of the scattered field to be different from that of the the laser, e, and
retardation, it can be written as

E, = (E(x,t)e ™t 4 c.c)ep. (7.2)
Its envelope &(x,t) satisfies Helmholtz’s equation
V2Es + ki (n% + x)E = —kIXEL. (7.3a)
Here, np(x) denotes the refractive index profile of the optical fiber and

p(x,1)
€0

X(x,1) ==« (7.3b)
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is the susceptibility of the particles. In describing the dynamics of the latter, we
will employ mean-field theory. For a gas at finite temperature, we take the one-body
distribution function F(x,p,t) of the gas to satisfy Vlasov’s equation

OF p OF 0 oF

where Ur denotes the prescribed dipole trap potential and
b= —« ’gs + 5[,‘2 (7.4)

the optical potential due to pump laser and scattered field. The gas density p is
obtained from the momentum integral p(x,t) = [ F(x,p,t)d3p over the one-body
distribution function.

As detailed in the appendix, for strong radial confinement the atomic one-body
distribution approximately factorizes into a longitudinal and a transverse part,

F(X7p7t) = f(zap27t)FJ_(XJ_>pJ_)7 (75)

where F'| is the Maxwell-Boltzmann distribution for the transverse degrees of free-
dom:

F = le exp l—ﬁ (pi + UL(XL)>‘| ) (7.6)

2m

[ denotes the inverse thermal energy and U, the radial confining potential.

In the absence of atoms the fiber supports only a single relevant TE mode, which
— within the framework of the present scalar theory — is supposed to possess a
propagation constant f3,, 2 kr and a normalized transverse mode function u(z,y)
extending outside the fiber [65, 73]. The dominant forces on the particles along the
z—direction are due to photon scattering into and out of the fiber. As long as the
local atomic susceptibility stays small enough, the radial mode function of the fiber
can be expected to be only weakly perturbed and we can set

Es(x,t) ~ VA E(z, t)u(z,y) (7.7)

with the cross section defined by

-1
A= (/ deLd2pLu2FL) ) (7.8)

Integrating over the transverse degrees of freedom we finally arrive at a onedime-
sional, effective description of the longitudinal dynamics

i

S+ (Bn+ kIX) B = —kiXEL, (7.9)
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of _p.of 9 of

22 (U =0 7.9b
8t+m8z 82( +¢d)8pz ’ (7.9b)

where E,. is the real part of £ and
6= —a(|BP + 2ELE, ) (7.10)

denotes the effective dipole potential. The effective laser field is given by
EL = \/Z /dQ.’IJJ_dQPJ_gLUFJ_ (7.11)
and the local atom-fiber coupling is governed by the effective susceptibility

- a [
X = 7/ f(z,pz, t)dp: (7.12)
€A J_o
proportional to the atomic line density.

It is important to realize that we must supply (7.43a) with appropriate bound-
ary conditions. As we assume no sources at infinity, the scattered electric field is
purely outgoing there. Therefore we impose Sommerfeld’s radiation conditions

OE(z,1)

5 +ifnFE(z,t), z— +oo (7.13)

on the solutions to (7.9).

7.3 Equilibrium States

In analysing equilibrium solutions of the equations (7.9), we are confronted, like
in the previous chapters, with the problem of infinitely many possible mean-field
solutions. Indeed, every phase space distribution of the form

2m

f(z,ps) = F < LA ¢>d> (7.14)

is a stationary solution of (7.9b). We will restrict ourselves here to such stationary
solutions, which correspond to a gas in thermal equilibrium[28], the particles being
distributed according to a Maxwell-Boltzmann distribution

fuB(z,ps) = 7~ Le—B@2/2m+0) eﬁa(‘E|2+2ELET)‘ (7.15)

This is the form of distribution which is singled out in case of the gas being in con-
tact with a thermal reservoir at temperature 7. !

!Those readers, who fear that using Vlasov’s equation and assuming of a thermal reservoir consti-
tutes a bit of a contradiction, we refer to the comments at the end of section 7.9.1 of the appendix.
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Substituting the effective susceptibility (7.12) obtained from a thermal distribu-
tion (7.15) into the effective Helmholtz equation (7.43a) leads to a highly nonlinear
equation for the self-consistent electric field. For simplicity we take the external (i. e.
non-selfconsistent) part of the potential to be given by

1
U(z) = imwng, (7.16)

such that the gas has a (very large) thermal extension

l, = = — 717
Sl > B = (7.17)

and take the pump laser amplitude to be independent of position,
ie. EL(z) = EL.

7.4 Normal Phase
With these assumptions one easily sees that the trivial, zero-field solution

B(z) m——L B0, as /Ay — 00 (7.18)

ot G

and the quasi-homogeneous density

fap(2,p2) = Z " exp[=B(pZ/2m + U(2))], (7.19)

here called normal phase, always solves Helmholtz’s equation.

Here, we had occasion to introduce the important dimensionless parameter

k; N«
Co = ==

= 5 A (7.20)

which will be called collective coupling parameter. The ratio ki /B, < 1 is deter-
mined by the refractive index profile of the fiber. The second factor has the form of
a susceptibility, albeit with a density N/Vig, where the reference volume is given by
Ve = AL A rather than the real space volume occupied by the gas. This implies that
even though we assume the gas to be dilute and hence the local gas-fiber coupling
to be weak (y < 1), the collective coupling to the fiber can nevertheless be large.

As visible from (7.18), the limit [,/\,;, > 1 is necessary to get a well defined non-
scattering normal phase. It may be viewed as the thermodynamic limit appropriate
for this system. Let us also point out that the exact form of the trapping potential
U(z) plays no role for the better part of the present theory, as long as a relation
analogous to (7.17) holds. As will be seen presently, no parameter referring to the
trapping potential will appear in any of the expressions given below.
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At this point we would like to emphasize that the existence of some trapping poten-
tial, which confines the gas to an arbitrarily large but finite volume, is nevertheless
essential. In commonly encountered many-body systems, where pairs of particles
interact via some finite range potential, it is a useful idealization to consider the
(thermodynamic) limit of infinitely many particles distributed over an infinite vol-
ume with a finite density, because in this limit surface effects become negligible
without loosing any essential feature of the behavior of the bulk. In the present
system, however, the coupling between gas particles is mediated by photons prop-
agating arbitrarily far along the fiber and can therefore not be said to have some
finite range. Consequently, the real space density does not determine the behavior of
the gas (see also (7.20)). Furthermore, scattered light eventually leaves any sample,
no matter how large, at some point and propagates to infinity. This, however, is a
surface effect par excellence, which cannot be eliminated without loosing the ability
to describe the actual system even in an idealized manner.

7.5 Stability of the Normal Phase

Before investigating the possibility of selfordered solutions, it is meet to first examine
the dynamical stability of this normal phase, using the Helmholtz-Vlasov equations
(7.9), linearized around the unordered state

82 9 k:2
G +ARE =B / f1(zp=, t)dps, (7.21a)
ofi p.0fr dUOf OELE, O fup

vz _ = =_9 . .21b
ot + m 0z dz Op, “ 0z Op, (7 )

Here, f1(z,p.,t) represents a small deviation from the normal phase, such that the
complete distribution function is given by f(z,p.,t) = fup(z,p2) + f1(2,p2,t). We
seek solutions to (7.21), which are of the form

fi(z,pz0t) = (2, p2)e™ + 9% (2, p2)e ™, (7.22a)

E(z,t) = a(2)e’t + b*(2)e* . (7.22b)

In this Ansatz, (¢, a,b) will be referred to as normal mode and s = v + iw as the
complex valued mode parameter. Whenever v > 0, the deviation from equilibrium
defined by the normal mode increases exponentially in time, causing the eventual

destruction of the normal phase. The existence of such a mode implies dynamical
instability.

As shown in the appendix, one finds that if (7.22) is to solve (7.21) and satisfy
the radiation conditions (7.13), the mode parameter s must satisfy D, (s) = 0 for
some n € Z, where

& ELafnp/apz
Dy(s) = (2n+17r—|—z€0A // Ll g g (7.23)
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This condition first demands w = 0, that is any normal mode is purely growing. Let
us introduce the effective pump strength
aE?
£:=—L
kgT
which is the ratio of the two relevant energy scales of the system measuring kinetic-
and potential energy respectively: the thermal energy of the gas kgl and the dipole
energy of a single induced dipole in the external laser field, aE% = dEp, where
d = aF1, denotes the induced dipole moment. Then we then see that there exists at
least one (family of) normal mode(s) with a positive growth rate v > 0, if and only
if

(7.24)

>

2o
Hence the first important observation is that beyond this pump threshold (7.25),
the normal phase ceases to be stable and no longer represents a physically realizable
state of the system. Let us remark that the effective pump strength e

An investigation of the equations D, (s) = 0, however, reveals more. It is found
that the normal phase supports exactly n > 1 (families of) growing modes with
growthrates v1 > ... > v,, i.e. it is exactly n-fold unstable if

! Ee. (7.25)

ge <e < (14 2n)e,, (7.26)

Let us now turn to the study of ordered thermal solutions of (7.9) for € > e..

7.6 Selfordered Thermal Equilibria

Due to the smallness of the local effective susceptibility y, the real and imaginary
parts of the electric field envelope E,, E;

Eri(2) = ari(2) cos(Bmz + ¢ri(2)) EL, (7.27)

can be assumed to behave almost harmonically with phases ¢,, ¢; and amplitudes
ar,a; that vary slowly on a scale defined by 3,.!. These amplitudes and phases are
directly related to the complex amplitudes of the more familiar decomposition into
left and right propagating waves,

E = (Ey(2)ePm* + E_(2)e %) Ey, (7.28)
via ' ‘
Fidr 4 ja et (7.29)

A perturbative analysis of the steady-state Helmholtz equation as indicated in the
appendix reveals, that

Ei =a,e

a?+a? 1

0= TN = (B P+ B, (7.30)
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proportional to the sum of locally right- and left propagating photons, is spatially

constant, i. e. % = 0, and will thus serve us as order parameter. Let it be remarked
that this conservation law holds for every mean-field stationary gas distribution and

is not restricted to thermal equilibrium.

Fortunately, it is possible to obtain explicit approximate solutions for the steady-
state scattered field in the weak collective coupling regime, {y < 1, as well as in the
strong collective coupling regime (5 > 1.

Let us first consider the weak collective coupling regime, where scattering from the
laser into the fiber and vice versa dominates over scattering within the fiber. The de-
mand to satisfy the radiation conditions (7.13) leads to the equation(s) determining
the order parameter(s)

20011 (26V/O) = (2m + 1)VOI(2eVO), m € Ny, (7.31)
where I, denotes the kth modified Bessel function of the first kind.

As quite a surprise one observes that the solution is not unique. On the contrary,
for
ge <e < (14 2n)e,, (7.32)

there exist n different solutions ©,,. Thus, by comparison with (7.26) we see that
each growing mode of the unstable normal phase corresponds to some selfordered
thermal state.

As the phase of the outgoing scattered light is not determined, each solution of
(7.31) corresponds to an infinite family of solutions of (7.9) with the periodic den-
sity modulation slightly displaced under a slow envelope. The appearance of this
degeneracy of course corresponds to breaking of a continuous symmetry. It is im-
portant to note that the point of first appearance of an ordered family of solutions,
€ = g, exactly coincides with the point where the normal phase becomes unstable.
All this is confirmed by a numerical solution of the underlying equations (7.9). Fo-
cusing on the region close to the first branching point, we find the behavior of the
order parameter to be given by

O ~e—¢g, €>¢. (7.33)

This means that close to threshold the intensity of the light scattered off to infinity
behaves on the principal branch in the same way as in the case of cavity-assisted
selforganization[28].

Let us now turn to the strong collective coupling regime. Again, each possible value
of the order parameter corresponds to an infinite family of stationary solutions and
any nonzero value for © satisfies

42m+1) P

Coe = (©)K[Q*(©)0?%, m € Ny, (7.34)
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where we have defined

1+ 20
P(O) = -2 .
©) =0 (7.35)
14 26O 4+ 2¢
QO =~ 60 (7.36)

and K denotes the complete elliptic integral of the first kind. Once again, there
are n families of ordered solutions whenever the generalized pump strength ¢ lies in
the interval defined by (7.32). Furthermore, we find that according to perturbation
theory, the order parameter is bounded by

0 < 4. (7.37)

Numerical studies of this system indicate convincingly that the validity of this bound
is not limited to the strong collective coupling limit and holds for the whole range
of parameters.

The existence of this upper bound has an important implication. The reader will
have noticed that the critical effective pump strength . approaches zero if we let
the number of particles and hence the collective coupling strength (o grow with-
out bound. This seems to state that in that limit we can have an ordered state at
infinitesimal laser power. The reason why this conclusion is erroneous lies in the ob-
servation that the intensity of the field scattered to infinity is proportional to ©E7
and hence approaches zero in the above limit due to (7.37). Thus, the “ordered” state
assumed by the gas under such conditions is really but an infinitesimal modulation
of the unperturbed density of the normal phase.

The order parameter corresponding to the principal branch behaves as

o=

O1~ (e—¢e.)2, €>e¢, (7.38)

if (o > 1, in stark contrast to the behavior seen in the weak collective coupling limit.

Even though the co-existence of multiple selfordered thermal solutions, i.e. a de-
generacy of thermal equilibrium, has been explicitly shown only for the weak- and
strong collective coupling regimes, we have good reason to expect the phasediagram
to be as depicted in figure 7.2. This expectation rests, firstly, on numerical studies
of the steady-state Helmholtz equation and, secondly, on the connection between
growing modes and the number of selforganized stationary states given by (7.26).
The latter seems to indicate that every unstable mode of the normal phase gives
birth to some selfordered equilibrium. It should be noted, however, that while we
have here shown the existence of multiple families of selfordered thermal solutions
of the Vlasov-Helmholtz equations, nothing has been said about their dynamical
stability properties, which remains an open and highly nontrivial problem.

The behavior of the order parameters as determined from the relations (7.31) and
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Figure 7.2 Phasediagram in terms of the principal parameters, the collective coupling
strength (o and the effective pump strength . The red curve shows the phase boundary
between the normal (unordered) and the selfordered phases. The numbers indicate the
corresponding degeneracy of the thermal equilibrium solution which equals the number
of growing modes supported by the (unstable) normal phase.

(7.34) is shown in figure 7.3. In the weak collective coupling limit we see that the
order parameter belonging to the principal branch dominates and that increasingly
higher branch numbers possess smaller and smaller orderparameters. Indeed, from
(7.31) we deduce that as e — oo we have

VOn 1 (7.39)

_>
200 -1

which explains why we have plotted v/© /(2(y) for the weak collective coupling regime
rather than ©. This difference hence allows to distinguish the different thermal
solutions by the light they scatter to infinity. In the strong collective coupling limit
we note, however, that all branches of the order parameter converge to the limiting
value ©,, = 4, implying that the intensity of light scattered off to infinity becomes
equal. Figures 7.4 and 7.5 illustrate some properties of the first three of five co-
existing thermal solutions in the strong collective coupling regime.
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Figure 7.3 Branches of the order parameter vs energy ratio according to (7.31) and
(7.34) for m = 0,...,3 in the weak collective coupling regime (a), with ¢, = 0.05 and
in the strong collective coupling regime (b), with (o = 75/7. Note that in the latter
regime all branches converge. The multi-valuedness seen for the higher order branches
is most probably an artifact of the approximations used to derive (7.34).

7.7 Phase Boundary for a Quantum Gas

Before closing the main body of this chapter, we would like to throw a brief prelim-
inary look on the system in the limit of zero temperature. Assuming the particles
to be Bosons forming a condensate, it is simple (with the help of (7.113) of the
appendix) to derive the zero temperature extension of equations (7.9):

O*E . -
S+ (B2 +KIX) B = —kiXEL (7.40a)
ihaﬂ+h—282—¢—(‘|w|2+U+¢)w—o (7.40Db)

ot  2m 022 g )y = '
where now
- o 2

= — . 41
X= A || (7.41)
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Figure 7.4 Properties of the principal (n = 1) of five coexisting thermal solution ac-
cording to the analytical solution of (7.85) in the strong collective coupling regime with
¢o = 150/7 and € = 9.5e.. The upper plot (1a) shows the atomic density along the
fiber, while the plot labeled (1c) depicts the local fraction of right Ny (blue curve) and
left N_ (red curve) traveling photons. The plot labeled (1b) depicts the magnitudes of
two parts of the optical potential (7.10). The blue contribution arises from scattering
between pump laser and fiber while the brown contribution area originates from photon
redistribution within the fiber. The latter dominates core region causing a density mod-
ulation with a period of roughly one half of A,,, = 27/3,,. In this region the fractions
of right- and left propagating photons are seen to be equal. The reason why there is
only a density modulation and not a proper lattice visible is found in the small value
of the effective pump strength ¢ ~ 0.1, which however is required in order that the
analytical solution be valid. Numerical studies show that all the features displayed by
the analytical solutions are preserved for larger values of the effective pump strength,
except that the modulation grows into a proper lattice.

The normal phase is, in analogy to the classical theory, defined as F(z) ~ 0 and
V(z,t) = np(z,t) 1= do(2)e *¥, where ¢o(z) denotes the ground state in the po-
tential U(z) and A the corresponding ground state energy. In order to find the
boundary which separates the unordered, normal phase from selforganized states,
we have to determine the conditions under which the normal phase is dynamically
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Figure 7.5 Properties of the next two thermal solutions (n = 2, 3) for the same param-
eters as in figure 7.5. Obviously, the number of regions, where the modulation has a
periodicity of half a wavelength is equal to 2n — 1, which is a generally valid law outside
the weak collective coupling regime ({y = 1)

unstable. Setting
b(z,t) = e (go(2) + d1(2,1)) (7.42)
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and linearizing (7.44) around the normal phase, we obtain

’E k2 apy
ﬁ + BmE = — goA EL, (743&)
L T S P [gp1 — 20ELE,]¢ (7.43b)
at 2m 822 gpnp 1= gpl LLr|P0, .

where pnp = |tnpl® = |dol%, p1 = ¢hd1 + dod} and we have neglected the terms
U¢1 and hfd¢; as being of higher order. We seek again normal mode solutions, i.e.
solutions of the form

o(z,t) = (¢+(z)e’ﬂmz + gb*_(z)e‘iﬂmz) et (7.44a)
E(z,t) = (EJr(z)eme + Ei(z)e_’ﬂmz) e, (7.44b)
where ¢4 and Ey are slowly varying amplitudes and ~ > 0.

It is not difficult to show, as in the classical case, that there exist exactly n > 1
(families of) growing normal modes if and only if

1< 2eq < 1+ 2n, (7.45)

where the quantum effective pump strength

o O‘EJ%  pnp(2) Gpnp(2) -
£qQ = Fion [m N (1+ Ton ) dz (7.46)

and the recoil frequency

hﬁQ
= 1 7.47
wWR = (7.47)

have been defined. We wish to point out that the criterion (7.45) is valid only as
long as eq > 0. To treat also the case of a negative effective pump strength is not
difficult, but will not be presented here. For repulsive two-body interactions we can
immediately infer that

eq<——, g=0, (7.48)

with equality only for g = 0. Hence, the effect of such collisions is seen to strictly
raise the threshold for instability, which could have been guessed. For attractive
interactions on the other hand, we find

eQq>—=, g<Oo. (7.49)

Thus, for a gas with attractive two-body interactions, the threshold is lower as
compared to a noninteracting gas or a gas with repulsive interactions. This finding
is entirely reasonable, as mutually attracting particles will by that fact comply more
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readily in the selfordering process. If we estimate p,p ~ % =: ng, where lpr > A\,
denotes the effective extension of the gas inside the trap, we obtain

ozE% 1
EQq~ —=————. 7.50
Q™ Ton 11 m (7.50)

From this expression we see that, for attractive interactions, if the interaction energy
approaches the recoil energy,

gno — —hwg, (7.51)

we have eq — oo and hence the threshold for instability becomes infinitesimally
small. This circumstance may be attributed to the occurrence of resonance and
could be tested experimentally. If we neglect the correction due to two-body inter-
actions, (7.45) is equivalent to the classical result (7.26), if the thermal energy kgT
is replaced by the recoil energy hwg.

In conclusion, the present analysis has shown that also at zero temperature, contra-
dicting the classical theory, there is a finite pump threshold for the appearance of
selfordered states, except at resonance gng + hwr = 0, where the normal phase is
unstable even at infinitesimal laser power, because the energetic cost to maintain a
density modulation of A,,-periodicity is compensated by a corresponding gain due
to the attraction.?

7.8 Conclusions and Outlook

Similar phenomena, called optical binding, were observed with laser illuminated
small beads in liquids[74] in 1D and 2D geometries. More interestingly, in anal-
ogy with cavity assisted self-ordering we expect a corresponding quantum phase
transition at zero temperature, where the threshold is determined by the recoil- and
interaction energy, replacing thermal energy as the relevant energy scale. This should
have distinctly different properties as compared to a 1D prescribed optical lattice.
Obviously, even without presence of the fiber, the interference of the scattered fields
by two distant atoms can induced long range forces and ordering. As part of the
scattered field is lost this leads to a higher threshold, but for a sufficiently dense gas
the trapped atoms themselves form a fiber-like guide for the scattered light, thus
enhancing long-range interactions. Preliminary calculations on the basis of a simple
model system seem to confirm this conjecture. One could even speculate that the
trapping field for the 1D confinement could be unnecessary and be provided by the
light guided by the atoms. The predicted ordering phenomena might also be related
to recent observations of collective scattering in dense atomic vapors[75, 76] where
light induced selfordering mechanisms play an important role.

2The validity of this conclusion depends on the correctness of the neglect of the terms Ug; and
hQ¢1 in (7.43b) and may well be erroneous.
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7.9 Appendix

7.9.1 Linear Stability of the Normal Phase

In this part of the appendix, we will give the details of the linear stability analysis
of the normal phase. We allow for a slow variation of the pump laser amplitude with
position. Inserting the normal mode ansatz (7.22) into equations (7.21), we find that
it must satisfy

oy dU oy dEL A0 fup
oY SNl Aair'L 52
v 0z dz Jp, +sy @ dz Jp, (7.522)
2
T4 g = —2p, 510 " lepd (7.52D)
€0

Here, v, = p,/m and A(z) := a(z) + b(z) and both a and b are solutions of the same
equation
d2

12 +Bna=—Er Z/_OO ¥(z,p2)dp-. (7.53)

and therefore differ only by a solution of the homogeneous equation. Defining B(z) =
a(z) — b(z), we have

B(z) = 2B, ¢Pm* 4 2B_e~m2, (7.54)
Solving (7.52) exactly is neither possible nor necessary. First not that due to the
assumed slow variation of the trapping potential, the term fliU gd’ is of higher order
and can be neglected. Secondly, we can write

A(z) = 24, (2)€Pm* + 2A_(2)ePm?, (7.55a)
$(2,0,p) = Vi (2,p:)e0m% +1h_(z,p.)e” P2, (7.55b)
where AL and ¥4 are slowly varying amplitudes. We immediately find
. Ofn /apz
2) = F22pmak — 2L E )
V(2. p2) = F2ifmaBLAs 0.5, (7.56)
Substituting this approximate solution into equation (7.52b) we obtain
dA
Ti + B+ (2)Ax =0, (7.57)
where ,
k > 0 fop/Op-
/B:E — ’L.OéEQ JAY af p/ap dpz (758)

LeoA | oo s+ 1, Bm

Hence, the solutions read

As(z) = 0) exp ( / B+(z dz> (7.59)
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We have S1(—z) = p+(z) and also, due to the symmetry of the normal phase’s
distribution function, 5_(z) = —f4+(z). Returning to a(z) and b(z) we have

a(z) = (A4 (2) + By) €% 4+ (A-(2) + B-) e "%, (7.60)
b(z) = (Ap(2) — By) e + (A_(2) — B_) e7m=, (7.61)

To be a valid solution, the electric part of the normal mode must satisfy Sommerfeld’s
radiation conditions (7.13). They demand that

Zgrfoo (Ax(z) + B£) =0, (7.62a)
lim (As(z) —Bs) =0, (7.62b)

It is easy to show that these conditions lead to a condition for the mode parameter,
given by D, (s) = 0 for some integer n, where

Do(s) = (2n+ D) — 2 / B, (2)dz, (7.63)
0
which can also be written in the form

. e ELafnp/apz
Dy(s) =(2n+ 1) Z eoA // s T B —=————dp,dz, (7.64)

which is equation (7.23). Introducing the parameter

_ EOA / E2(2)pap(2)dz > 0, (7.65)
we find dF/d
Dy(s) = (2n+ )1 — zg/ dez, (7.66)

where fup(2,p.) = pnp(2)Fup(pz). Using the symmetry of the momentum distribu-
tion of the normal phase Fy,(p.) = Fup(—p2), the first of the radiation conditions,
i.e. Im(Dy,(y 4+ iw)) = 0 can be cast in the form

00 (0 anp/de B
Vw/o [V + (W + Bmv:)?][v2 + (W = Brvz)?] dp: =0, (7.67)

which, for v # 0, can only be satisfied if w = 0 as stated above. This leaves us with
the following equation for the growth rate

* v, anp/dpz
Gt O =pne [

Realizing that the rhs.is a positive, monotonicly decreasing function of the growth
rate, we conclude that this equation has exactly n solutions v4 > v > ... > v, >0
if and only if

dp.. (7.68)

© 1 dF,
1< — Pdp, <1+2 )
<BM/OOUZ Gdp < 1 2m, (7.69)
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which yields (7.26) if we take FEr(z) = Ef, a constant.

For those readers who feel (understandably) a bit uneasy about the fact that the
author has used Vlasov’s equation to analyze states of the gas which actually re-
quire a thermal reservoir to maintain them, we will add a few remarks, which should
disperse all worries. If we indeed assume a reservoir present, the equation of motion
for the gas density p(z,t) appropriate for this situation is, in the overdamped limit,
given by Smoluchowski’s equation

o 10 (0 kT %

where yg denotes the dynamical friction and T the temperature of the reservoir.
This equation has the property, that the only steady states possible are the Maxwell-
Boltzmann equilibria

p(z) = le*B(U‘Hﬁd)’ (7.71)

Z

where 3 = (kgT)~!. This is exactly the type of equilibrium considered in this work
and hence all the results concerning selfordered thermal solutions remains valid if
we replace Vlasov’s- by Smoluchowski’s equation. It is also not at all difficult to
perform a linear stability analysis of the normal phase using the linearized Smolu-
chowski equation and the result is again (7.26). The growth rates of the unstable
normal modes depend, of course on the dynamical friction and thus differ from those
determined by Vlasov’s equation (see (7.68) above), but the main conclusion, that
is their number, remains untouched. Alternatively, in the opposite limit one can
justify the use of Vlasov’s equation in the linear stability analysis performed above
by arguing that it is valid for short enough times if the bath-induced friction and
diffusion are weak. For a system in between these two regimes, we cannot exclude
that the conclusions of this section may indeed have to be modified.

7.9.2 Perturbation Theory for Selforganized Equilibria

Here we indicate, how the results of the present work concerning selfordered equi-
libria can be obtained in a systematic manner by means of canonical perturbation
theory. Helmholtz’s equation with a stationary (not necessarily thermal) gas density
p in the source term reads

0’E k2o

2
z = E =
+ B oAl

o (E + EL)p. (7.72)

It is important to note that for every stationary solution of Vlasov’s equation (7.9b),
which necessarily takes the form f(z,p.) = F(p?/2m + ¢4 + U), we have for the
corresponding density

o) = [ P /2m 4 4+ Udp. = 9(6a+U) (7.73)
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for some positive function g. Let G denote the antiderivative of g, i.e. G’ = g, and
let us define the canonical momenta

M, := 0.F,. (7.74)

Then, the above equations for the real and imaginary parts of the selfconsistent field
are the canonical equations of the following Hamiltonian

1 k?
H =5 I+ I+ (B + ) = —Glga+ Ul (7.75)
which has the physical interpretation of being proportional to the energy density of
the scattered electric field. It can be written as the Hamiltonian of two uncoupled
resonant oscillators, Hy, plus a coupling, H = Hy + H1, where

k?

H, = —
! 260 A

Glga + U], (7.76)

which part we shall consider a perturbation due to the smallness of the effective
susceptibility (7.12). Let us introduce action-angle variables (J,, J;, ¥, 1;) for the
unperturbed part Hy via the prescription

1/ /Bm * sin (1) (7.77a)

I, ; = \/2BmJri cos(¢r). (7.77D)

Then we find the transformed Hamiltonian as H = Ho(J)+eH;(J, 1, €z), where now
Hy(J) = B (Jr + J;) and we have introduced a purely formal expansion parameter
€. The explicit dependence on z is due only to the external trap U(z) and thus
weak. Next we will seek a canonical transformation, effected by the mixed variables
generating function S = S(J, 4, z) to new variables (J, 1) = (J,, Ji, 1y, 1;) according
to

J=V,S, ¢=V;8 (7.78)
and leading to the new Hamiltonian
aS
K=H+ — 7.7
+ 0z’ (7.79)

which we wish to make as simple as possible. To exploit the assumed smallness of
H;, we express the generating function as

S=J-¢+eS +eS+..., (7.80)

appropriate for a near-identity transformation. Likewise expanding the transformed
Hamiltonian K = Ky + €K1 + ..., we find

Ko(J) = Hy(J), (7.81a)
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Ko, 6) = 3 9ot 4 Hi(J, 0, e2), (7.81b)
k=rz Q/)k

and so forth. Setting € = 1 and introducing the unperturbed trajectories 1;,«,1-(( ) =
Yri + ¢, we find

Sl(‘]_ﬂZ(C)vz) - Sl(jai)wz) =

- 5; /04 [K1(J,0(¢),2) = (T, 9(¢), 2)] d¢'. (7.82)

Imposing the periodicity of the generating function in the angles leads to the solv-
ability condition

[ [Ba.9(0,2) = Hu(J,5(0),2)] de =0, (7.53)

which must be satisfied by any potential k7. Now we use our freedom to choose K
to be a function of the phase difference only, K1 = K;(J, A, z), where A := ), — ;.
Then it is easy to see, that (7.83) demands

o 1 27 _ _
Ki(T,A, 2) /D Hy(J,C+ A, ¢, 2)dC. (7.84)

T or

In this way we end up with the new and simplified Hamiltonian, to first order in the
perturbation given by K (J, 1, z) = Ho(J) + K1(J, A, z). As this new Hamiltonian
depends, by construction, only on the phase difference A, we immediately obtain
an integral of motion, © := J, + J;, proportional to the order parameter, which
is the total number of quanta of excitation in the left and right propagating field
components. Therefore, the number of degrees of freedom is reduced to just two,
namely A and D := J, — J;, whose equations of motion are the canonical equations

WA _a

= 7.85
dz _ dD’ (7.852)
dD dH
= - 7.85b
= X’ (7.85b)
pertaining to the Hamiltonian
. _(e+D e-D -
H(D,A,Z) = 2K1 ( —; s 2,A,Z> (786)

and can be solved in the weak and strong collective coupling limits respectively.
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7.9.3 Strong-Trapping Approximation

In this part we will first show how the effective onedimensional Vlasov equation for
the reduced atomic phase space distribution f(z,p,,t) can be obtained from per-
turbation theory. Afterwards we will give a corresponding reduced description of a
bosonic gas a zero temperature.

As we have exclusively considered onedimensional situations in this thesis, the fol-
lowing derivations are relevant for the entire work and not just for this last chapter.
It is mainly for this reason that we have decided to include them.

Classical Case

As stated in the main body of this chapter and depicted in figure 7.1, we assume
that the trapping potential Ur = U(z) + U, (x1 ) be such that it provides strong
trapping in the two spatial directions (x,y) =: x; orthogonal to the fiber axis of
symmetry and a far weaker in the latter’s, the z—direction. In this case, equation
(7.3¢) can be considerably simplified. To this end, let us define V := ®; 4+ U and
keep in mind that to a good approximation OU, /0% > 0®4/0x ], such that we can
neglect the latter. Next, to signify the fact that the transverse trapping is strong,
let us introduce a formal expansion parameter €, which will be set equal to unity in
the end. Then (7.3c) assumes the form

OF p,0F 0OV OF 1(p. OF 0U_ OF)\ _
ot mdz 0z0p, ¢ ( ) =0 (7.87)

E'ﬁxl B 8xl'8pL
Now, realizing that the transverse and longitudinal dynamics take place on very

different time scales, we introduce an auxiliary fast time variable 7 := t/e and
expand the distribution function according to

F(x,p,t) = Fo(x,p,t,T) + GFl(X, p,t,T)+ ... (7.88)

Substituting this expansion into (7.87), we find that the lowest order equations are
given by
OF° OFY 9U, OF°
gL g 9P 9y, (7.89a)
or m 0x i ox i 8p 1

OF! piaFl_ﬁUL aFl__ OFO_'_&@FO_@iVOFO (7.89b)
or m 0x, O0x, Op. ot m 0z 0z Op, |~ '
To solve the first, we introduce the radial orbits
ZS[XJ_a PJ_] = (XS [XJ_a pJ_]a PS[XJ_7 PJ_]) via
00X 1
= 7P87 .
95 - (7.90a)
0P oUu |
= —— .90b
9s X, (7.90D)
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with the initial condition Zg[x,,p1] = (x1,p1). The first equation (7.89a) then
states that the zeroth order distribution function is invariant along the radial orbits
on the fast time scale

0
7FO(ZT7 ZyPzy by 7—) =0 (791)
or

and the second

FO  p, OF° Jal
B ) D, 0 oV o > (7.92)

—ZFYZr, 2 pat )= — | —— + 2 22
gr [ (Zr 2Pz to7) <8t+m82 9z Op.

As Uy is supposed to provide trapping, it is clear that for every (x,,p,) there
exists an orbital period 7', such that Zp = Zg. If we therefore integrate the second
equation over one orbital period and use that F° does not change according to the
first equation, we find the integrability condition as

OFY p,0F (1 [ToV OFO
v e (1), 5ee) G o o

Therefore, in the strong trapping approximation, F' ~ FY and (7.93) represents its
equation of motion to lowest order, where the transverse coordinate and momentum
enter only as parameters. The equation of motion may also be written in the form

OF p,dF 9 OF
ot + mos 02 U+ <(I)d>7_) . =0, (7.94)

where
(), ( / Bo(X[x1,p1], 2 t)dr. (7.95)

To simplify matters even more, we will assume that the radial confinement is so
strong that we can safely replace the average

(@), = By(x.10, 2, 1) = / dp, / &2z Ba(x, t) F(x, p, t), (7.96)

where x denote the transverse coordinates of the trap axis of symmetry. The
reduced Vlasov equation (7.94) is then solved by the product F' = fF', that is

F(X7 p,t) = f(zapzat)FL(XLapL); (797)

where F'| is a rather arbitrary function of the integrals of motion of the transverse

Hamiltonian
PL

Hy =~ +Ui(x1) (7.98)
and f(z,p.,t) satisfies the effective Vlasov equation
of  p-0f 0 of
A e R o = )
5t T . 5, Ut (%) o, (7.99)
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where
(@) (2.1) 1= [ a1@axt) [ dpiFi(xs o). (7.100)

In this work we have made the physically reasonable assumption that F| is given
by the thermal distribution

F| =Z  exp[-BH,]. (7.101)

Quantum Case

The theory employed in the main body of this chapter is appropriate for a dilute gas
at a sufficiently high temperature. As the temperature approaches zero, however,
it has to be replaced by a quantum mechanical description. In this part of the
appendix we consider an ultracold gas of Bosons, which we take to be describable
by a macroscopic wave-function W¥(x,t) satisfying Gross-Pitaevskii’s equation

ov  h?

ihr + 5 V0 ~ (91w + Ur + @4) ¥ =0, (7.102)
where g measures the strength of two-body interactions. Here, the gas density is
given by p(x,t) = |¥(x,t)|?. As in the classical treatment, we introduce a formal

expansion parameter to signify the strength of the transverse trapping to obtain

ov h2 0?w

1| R
Bt 2m 922 +(glvP+v)w - € lmvi\p B UL\D] (7.103)

as € — 0. Likewise, we introduce again a two-scale ansatz
U(x,t) = Wo(x,t,t/e) + eVUq(x,t,t/€) + ... (7.104)

into the equation and equate order by order to get

vy  R?
haao o VRT — UL =0 (7.105)
-
vy R 0Ty B U
ihot o=V = ULl = —ih o — oS0 (91wol + V) Wy, (7.106)

etc., where 7 := t/e is considered an independent variable. We solve the first equation
by
To(x,t,7) = Y(z,t)Po(xL )e ™07, (7.107)

where @ is the groundstate corresponding to the energy hAwg of the lowest order
transverse Hamiltonian )
h
HL———VLwLUL (7.108)
and which we assume to be non-degenerate. In the second equation we introduce
the decomposition

= Y (e, )Py (x e, (7.109)

123



where ®,(x ) are eigenfunctions of (7.108) and 1y = v to get

maa% — hwyap, = e~ o7 / S[p)|Po®rd%z (7.110)
T
wherein - R o2
— _sp_ T 2 2
S[] = —ihr — o + (glvlP@o + V) v (7.111)

In (7.110) only the v = 0 equation is problematic due to resonance. In order to have
W, non-secular and thus to have a meaningful expansion, we must demand that the
driving term vanishes identically, i.e.

/ S[p)|Pe®yd?z, = 0. (7.112)
This gives the effective Gross-Pitaevski equation for the longitudinal wave-function
P(z,t) as
oy h? 0%

iy + 5= — (U + U + (@) v =0, (7.113)

where the effective collision parameter is given by
g:= g/ |®o[*d%z (7.114)
and the effective dipole potential reads

(@) = / |0 (x1 )|*d%2 ) (7.115)
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