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Einleitung

Der Einsatz von Lasern fiir das Einfangen und Kiihlen neutraler Atome ist in
vielen Labors auf der ganzen Welt zur Routine geworden. Die wachsende Be-
deutung dieses Gebiets wurde mit der Verleihung des Physiknobelpreises im Jahr
1997 an Steven Chu, Claude Cohen-Tannoudji und William D. Phillips ersichtlich.
Atome mit einer Temperatur von wenigen pK stellen einen idealen Ausgangspunkt
fur weitere experimentelle Arbeiten auf dem Gebiet der Quantenoptik dar, wie
z. B. Priizisionsmessungen atomarer Ubergangsfrequenzen zur Herstellung ultra-
genauer Uhren. Fiir solche Messungen benotigt man sehr langsame Atome die sich
in einem sehr kleinen Raumbereich befinden. FEin weiteres Beispiel ist die Herstel-
lung eines neuen Aggregatzustands der Materie (Bose-Einstein-Kondensat), wofiir
den beteiligten Forschern (Eric A. Cornell, Wolfgang Ketterle und Carl E. Wie-
man) der Nobelpreis fiir Physik 2001 zugesprochen wurde. Noch in seinen Anfangen
befindet sich das Gebiet der experimentellen Quanteninformation, das sich mit der
Implementierung der zahlreichen theoretischen Vorschldge zum Bau eines Quanten-
computers beschéftigt.

So grof} die Fortschritte auf dem Gebiet der Laserkiihlung neutraler Atome auch sind,
gibt es immer noch einige ernste Probleme: Die meisten der experimentell eingeset-
zten Kiihltechniken verwenden die spontane Emission eines angeregten atomaren Zu-
stands als Zerfallskanal zur Abfiihrung der mechanischen Energie des zu kiihlenden
Atoms. Dies erfordert aber die Existenz eines geschlossenen atomaren Ubergangs, d.
h. nach einem Fluoreszenzzyklus muf} sich das Atom wieder im Startniveau befinden.
Andernfalls kommt es zu einer Umverteilung der atomaren Population auf Energie-
niveaus, die fiir die Kiihllaser nicht erreichbar sind und der Kiihlzyklus wird unter-
brochen. Das ist die Ursache dafir, daf§ keines der herkémmlichen Kiihlverfahren
auf Molekiile anwendbar ist, da es zwischen allen molekularen Energieniveaus Kop-
plungen durch Vibrations- und Rotationszustande gibt.

Hier setzt das in der Arbeitsgruppe von Prof. Helmut Ritsch in den Jahren 1996-2001
vorgeschlagene Resonatorkiihlen an. Die Grundidee des Resonatorkiihlens besteht
darin, die zu kiihlenden Teilchen (wobei es sich auch um Molekiile oder ein Bose-
Einstein-Kondensat handeln kann) an das Lichtfeld eines optischen Resonators hoher
Giite anzukoppeln. Dadurch gewinnt man zweierlei:

1. Man ersetzt den atomaren Zerfallskanal durch die Resonatordissipation,
wodurch die Notwendigkeit eines geschlossenen atomaren Ubergangs entféllt.
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2. Es zeigt sich, dafl in einem Resonator hoher Giite ein sisyphus-artiger
Kiihlmechanismus basierend auf der Resonatorreaktionszeit auftritt. Einzige
Bedingung fiir eine hohere Effektivitat dieses Kiithlverfahrens im Vergleich zum
Dopplerkiihlen ist eine starke Kopplung zwischen Resonatorfeld und Teilchen.

Meine Doktorarbeit beschéftigt sich mit den Konsequenzen dieser beiden Effekte.
Kernstiick meiner Dissertation sind die sechs Publikationen, die wahrend der drei
Jahre meiner Tatigkeit als Forschungsassistent am Institut fiir Theoretische Physik
in Innsbruck entstanden sind. Wo dies angebracht erschien, habe ich zusatzliche
Kommentare in Form von Einleitungen zu den einzelnen Publikationen geschrieben.

Die vorliegende Arbeit ist wie folgt aufgebaut: Teil I umfafit vier Publikationen und
beschaftigt sich mit dem Entwickeln einfacher Modelle zur Resonatorkiihlung, wobei
das Arbeitspferd der theoretischen Quantenoptik, das Modell des Zwei-Niveau-Atoms
verwendet wird. Ein breites Anwendungsspektrum unserer Idee ergibt sich aus der
Anwendbarkeit des Kiihlverfahrens auf Ensembles von sehr vielen Teilchen, wie in
den letzten zwei Publikationen dieses Teils gezeigt wird.

In Teil I wird das Verfahren auf Atome mit komplizierteren Ubergingen erweit-
ert. In den beiden Publikationen dieses Teils zeige ich, dal zahlreiche Schwach-
stellen bereits bekannter Kiihlschemata fiir den freien Raum (Polarisationsgradien-
tenkithlung, VSCPT) in einem Resonator behoben werden.



CHAPTER 1
Introduction

1.1. Overview

Using lasers to cool and trap neutral atoms has become routine in laboratories all

over the world in the last years. Atoms cooled to a few uK can be used as a starting
point for further experimental work, e. g. precision measurements of atomic tran-
sition frequencies which is needed for the operation of ultra-precision clocks. For
any such measurement atoms with very small Dopplershifts confined to a very small
region of space are needed. Cold trapped atoms have also enabled experimentalists
to achieve Bose-Einstein-condensation (BEC), thus opening an exciting new field
for further research. This was rewarded by the Nobel prize in 1997 (Steven Chu,
Claude Cohen-Tannoudji and William D. Phillips) and 2001 (Eric A. Cornell, Wolf-
gang Ketterle and Carl E. Wieman). Another promising field is the experimental
implementation of theoretical Quantum Information schemes for which cold atoms
in perturbation-free environments are needed.
Nevertheless there are processes inherent to optical cooling schemes that limit the
reachable steady-state temperature and density. In most of the schemes sponta-
neous emission from the excited atomic states is used as a dissipation channel to
get rid of the motional energy of the atoms. This directly introduces momentum
diffusion via the random number and direction of the spontaneous emission events
involving atomic recoil. In addition the scattered photons can be reabsorbed to fur-
ther increase the diffusion. Furthermore the applicability of these cooling schemes
is limited to atoms with a closed optical transition, i. e. a transition where sponta-
neous decay always returns the atoms to the same initial level which is essential for
the ongoing of the optical cooling process. In molecules no such closed transition
exists due to the existence of vibrational and rotational couplings between all of the
energy levels. As an alternative one could use the dissipative dynamics of a cavity
field instead of a Sisyphus effect using the internal atomic structure as has been
suggested [1, 2, 3] and partly experimentally confirmed [4, 5, 6].

In this thesis I present a detailed investigation of this cavity cooling scheme re-
sulting from the work I have done during my PhD studies in the work group of Prof.
Helmut Ritsch at the Institute of Theoretical Physics in Innsbruck.

This thesis is organized as follows: It consists of two parts and a total of six chapters.

In part I, after a short qualitative overview on atom cooling I study the mechanical
light effects on one (chapter 3) or many (chapter 4) neutral two-level atoms in op-
tical resonators.

11



12 1. INTRODUCTION

In part II, I discuss cavity cooling for atoms with several degenerate sublevels in
their ground- and excited states. Chapter 5 presents a generalization of polarization
gradient cooling to atoms interacting with several degenerate cavity modes. Chapter
6 discusses dark state cooling inside a cavity and shows that many of the problems
connected with free space VSCPT can be overcome in a resonator.

1.2. Two level atom in the field of a single laser mode

As the interaction of a two-level atom with a single laser mode is the building block
of quantum optics let us recapitulate the most important facts. In the interaction
picture with respect to the laser frequency wp the Hamiltonian reads

H=hA,le){e| + hgVI (o' +07) (1)

In order to properly describe also the incoherent part of the system dynamics,
we have to include a reservoir for the atomic spontaneous emission and deal with
the master equation for the reduced atom-field density operator p. Using standard
quantum optics assumptions and methods one gets:

g
p= —ﬁ[H, pl+ Lp

Lp=-T (aTa’p — 20 pot + paTU*) . (2)

I, = —2TIL +igV1 (peg — pye)

[T, =21, — igVT (peg — pye)

pge= (=T + i) pge — igV/T (Il — 11, (3)

Setting the left hand side of eqs.3 to zero we obtain the steady-state values for
the populations

1
11, =
9 142sI
sl
e — 4
1+ 2s] (4)

where we have defined the saturation parameter per photon

g2
S= A7 (5)

For very high saturation 1 < s/ we see that Il = 1/2 and II, = 1/2.
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CHAPTER 2
Atom cooling

2.1. What is cooling?

Atom cooling means decreasing the phase-space volume accessible for atoms, in
other words increasing the phase-space density. In laser cooling this is done by
shining laser light on atoms. Why laser cooling? Only the development of tunable
light sources that emit their photons within a very small frequency band (i. e. a
laser) allowed the first experimental realization of laser cooling in 1982 by Phillips
and Metcalf [7].

The cooling process consists of two parts, slowing down and trapping atoms. Slowing
down an atom means to decrease its kinetic energy by a velocity-dependent force. In
order to get rid of the kinetic energy of the atom a dissipation channel is needed. In
the conventional free space cooling schemes spontaneous emission from the atomic
excited states is used. Due to the random nature of the spontaneous emission
events a "heating” mechanism is inevitably introduced. This restricts the achievable
steady-state temperature of the cooling process.

Trapping atoms means to restrict the atomic motion to some trapping volume. For
this position-dependent forces are needed to push/attract the atoms to a minimum
of the potential energy.

In the next section we will give an overview on the most important cooling schemes
in free space. As there is an extensive literature on this field in the form of research
papers [8, 9], review articles [10, 11, 12, 13, 14] and monographs [15, 16, 17| we will
focus on presenting a physical picture for each of the schemes. For computational
details the reader is referred to one of the works cited above.

2.2. Cooling schemes in free space
2.2.1. Doppler cooling

The conceptually simplest cooling scheme is Doppler cooling. It relies on the
photon recoil connected to the absorption of a photon by an atom. Fig. 1 shows
the Doppler cooling cycle. A two-level atom in its ground-state absorbs a photon
with momentum hk. The atom is excited and has increased its momentum by hk
in the direction of the absorbed photon. The kinetic atomic energy is dissipated by
spontaneous emission and the atom returns to the initial ground state where the
cycle starts over again. Due the to isotropic nature of the spontaneous emission
process the mean momentum of the atom is not changed. As the direction of the
emitted photons is random the atom experiences a random walk around its mean

15
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Ficure 1. Doppler cooling cycle. In order to repeat this cycle a closed
optical transition is needed.
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FiGURE 2. Doppler cooling in one dimension. The atom is moving in a
red-detuned standing wave.

position. This leads to an increase in the mean-squared atomic momentum (P?) and
thus to heating. The competition between cooling and heating processes leads to
a steady-state temperature around kg1 = AI', which is the so-called Doppler limit
(see below).

In order to slow down an atom one has to use a setup with two counterpropagating
laser beams of equal frequency wy, (see fig. 2):

As the atomic absorption rate is frequency-dependent (see fig. 3), for resonant
absorption the frequency of the incident light must match the atomic transition
frequency. For red-detuned light (A, = w;, — w, < 0) an atom moving to the right
sees the counterpropagating light with a frequency wy; + kv due to the Doppler
shift, and the copropagating laser light with frequency w;, — kv. Thus more photons
are scattered out of the counterpropagating beam leading to a decrease of atomic
momentum. Optimal cooling is provided for A, = —I', which gives in the low
saturation limit s/ < 1 the maximum cooling force for a slowly moving atom,
kv < I averaged over one wavelength

JDopp = —hk*Isv. (6)

In this limit the friction coefficient 3 = hk*I's depends linearly on the saturation
and thus on the intensity. The velocity capture range is given by kv =TI
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FIGURE 3. Atomic absorption rate versus w. It can be described by a
Lorentzian with full-width at half-mean of 2I" centered at wy.

As mentioned above an important requirement on the sample that should be
cooled is the existence of a closed optical transition. In order to achieve appreciable
kinetic effects one needs to scatter lots (=~ 10%) of photons. In order to stop a Na
atom escaping from an oven at 600 K with a velocity around 900 m/s one needs to
scatter about 30000 counterpropagating photons. (Each photon recoil corresponds
to a velocity change of 0.03 m/s.) If the transition is not closed, population is
transferred to states not accessible to the cooling lasers. This excludes molecules
from Doppler cooling due to the existence of rotational and vibrational couplings
between all of the energy levels.

The stochastic nature of photon absorption and emission gives rise to an increase

in (K2 ). Hence there is a competition between heating and cooling processes that

limits the achievable steady-state temperature. Defining the diffusion coefficient as
NS

2D = %AP (t) (7)

where AP2(t) = ([P(t) — (P(t))]*) and defining the friction coefficient § by

f=—pv
we see that
dP 15
-~ __Fp
dt m
d_P2 - %pQ
dt m-

and from the definition of the diffusion
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dp?
— =2D.
dt
Heating and cooling processes cancel in steady state so that
EPQ =D.
m

Accordingly we obtain for the final steady-state temperature

kT _P*_ D )
2 2m 2B

For Doppler cooling this becomes kgT = hl', the so called Doppler limit. For
Rb® we get T ~ 141pK.

2.2.2. Sisyphus cooling

We have seen in the previous section that an atom moving in a red-detuned
standing wave experiences a cooling force. This is only true however as long as
the intensity of the light is not too high (saturation parameter sI < 1). For high
intensity the dependence of the force on the sign of the detuning is reversed: one
finds that atoms are heated for negative detuning and cooled for positive detun-
ing. Dalibard and Cohen-Tannoudji presented a beautiful physical picture for this
behaviour [9] that is based on the dressed atom approach:

The total Hamiltonian describing the combined system laser field and two-level
atom can be written as the sum of a free Hamiltonian H, and an interaction Hamil-
tonian H;

Hy = hw,le)(e| + hwra'a
Hi=hgvn+1(a'o” +0o'a)
H=H,+ H; (9)
For weak coupling one can treat the effect of H; by perturbation theory. The
eigenstates of Hy are unchanged and the interaction couples these states to each
other. In the strong coupling regime, where H; dominates H, atom and light have

to be viewed as a single quantum mechanical entity. Thus one should switch from
the eigenstates of Hy (bare states) to the eigenstates of H, the so-called dressed

states, given by
e i iy L el PR
=\ T, 9" 20, "
Qn+Aa Qn_Aa
|—n)=— W|€an>+\/w|g,n+1> (10)

with eigenenergies
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FIGURE 4. Bare states (left) and dressed states (right). The dressed states
at photon number n are bunched into well-separated two-dimensional man-
ifolds &, separated by the energy of one photon fwy. The dependence of
Q,, on the photon number n in the manifold is neglected by assuming a
laser beam in a coherent state with a Poissonian distribution for n with a
width An much smaller than the average number of photons.

h a h
By = hwpn + M b

where

Qn=+/A2 +4g2 (n + 1). (12)

Physically these dressed states are linear superpositions of atomic and laser field
states. Fig. 4 shows how the bare states of the atom-laser mode system correspond
to the dressed states. The energy split AQ2 between |+, n) and |—, n) depends on the
atomic position z, since, e. g. for a standing wave mode g = g cos kz,.

Fig. 5 shows three adjacent dressed state manifolds for positive detuning A, versus
the laser standing wave. At a node of the light field g vanishes and the two dressed
states |+,n) and |—, n), respectively become the unperturbed bare states |g,n + 1)
and |e,n) separated by hA,, while at antinodes of the standing wave the splitting
between |+,n) and |—,n) becomes largest. Note that the contamination of |4, n)
by |e,n) is highest at antinodes, while |n, —) is maximally contaminated by |e, n)
at nodes. Spontaneous emission by the atom causes radiative transitions between
dressed levels of adjacent photon manifolds. Since both dressed states |+, n) and
|—, n) of &, are contaminated by |e, n) and both dressed states |+, n—1) and |—, n—1)
of £,_1 are contaminated by |g, n), four transitions between &, and &,,_; are allowed:
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(13)

Consider now an atom moving in a blue-detuned laser field (fig. 5). Let us follow
the exemplary trajectory of an atom that starts at a node of the standing wave in
|+,n 4+ 1). It climbs uphill to the antinode of the field where its spontaneous decay
rate is maximal, because the contamination of |[4+,n + 1) by |e,n + 1) is maximal.
It may jump either into |4+, n) or into |—,n). A transition to |+, n) does not change
the mechanical energy of the atom, while a jump into |—,n) transfers the atom to a
potential valley, from where it has to climb a hill again!. |-, n) is most unstable at
a node of the standing wave, so the atom will have maximum probability to decay
to the lower manifold &£, 1, and so on. Clearly this leads to a decrease of the average
atomic kinetic energy and thus to deceleration of the atom.

!This explains the denomination Sisyphus cooling referring to the ancient greek myth.
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FI1GURE 5. Sisyphus cooling in a blue-detuned standing laser wave. The full
line represents an exemplary trajectory of the moving atom. The vertical
wavy lines refer to spontaneous emission events. The atom sees on average
more uphill parts than downhill parts and is therefore decelerated.

2.2.3. Sub-Doppler cooling

In 1988 researchers at the National Institute of Standards and Technology, Wash-
ington were surprised to find that they had cooled sodium atoms to tempera-
tures much lower than the Doppler limit AI', even approaching the recoil limit
kpTre. = hk?/(2m) at very low laser powers [18]. It took theoreticians almost a
year to find a possible explanation for these unexpected low temperatures [19, 20].
The broad outlines of the argument were the following:

The friction force experienced by an atom moving in a laser field is due to the
existence of an internal time scale 7 that describes how fast the atom can adjust
its internal state to the variation of the field induced by the atomic motion. In a
two-level atom there is only one such time-scale, the radiative lifetime of the excited
state
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1
Trad = f (14)

For atoms with several Zeeman sublevels in their ground state (e. g. alkali atoms),
there is another internal time scale, which is the optical pumping time

(15)

characterizing the mean time it takes for an atom to be transferred by a floures-
cence cycle from one Zeeman sublevel to another, where I = E~E™ is the laser
intensity. At low laser power, 7o/ < I' and we have

Trad <K Tp- (16)

This means that non-adiabatic effects can occur at velocities kv =~ ~y/ much
smaller than those required for Doppler cooling kv =~ I', which explains the exis-
tence of a friction force for very slow atoms. Furthermore a laser field not only leads
to optical pumping between different Zeeman sublevels of the groundstate but also
to lightshifts that can be different for each of the sublevels.

In the next two sections we will give a short overview on two different types of
sub-Doppler cooling, associated with two different types of polarization gradients.

a. Polarization gradient cooling: Lin | Lin. In this section we consider
atomic motion in the field of two counterpropagating plane laser wave modes with
equal amplitudes and orthogonal linear polarization (see fig. 6)

—

B+ = (¢, + e~:¢,)

=& (e, +€,)coskz +i(€, —€,)sinkz]. (17)

X

L WS s S
AN A

FIGURE 6. Polarization of laser field along z-axis for a lin L lin setup.

The polarization of the electric field changes, when one moves along the z-axis:
In kz = 0 it is linear along €, + €,, in kz = 7/4 it is circular (¢7), in kz = 7/2
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linear along €, — €, circular (¢7) in kz = 37/4 and linear again in kz = 7 along
— (€ +€y).

Mme-32  me-1/2 mE12 mg3)2

A
1\/%\/_3\/_3\/%1

mg=-1/2 mg=]/2

FIGURE 7. Level scheme and Clebsch-Gordan coefficients for a J; =1/2 —
Je = 3/2 transition.

Let us consider the simple case of a J;, = 1/2 — J. = 3/2 atomic transition
(fig. 7). For this transition there are two Zeeman sublevels |g_1/2) and [g1/2) in
the groundstate and four Zeeman sublevels in the excited state. Since the Clebsch-
Gordan coefficients of the various transitions between ground and excited state are
not the same, and since the nature of the polarization changes with z, it can be
easily shown [21], that the two light shifted energies of |g_1/2) and |g;/2) have the
spatial dependence displayed in fig. 8: the |g_;/2) sublevel has the largest shift for
a o~ polarization, the |g1/2) sublevel has the largest lightshift for a o+ polarization
and both sublevels are equally shifted for a linear polarization. Fig. 8 also shows
how this gives rise to a Sisyphus type cooling effect due to the time lag 7, caused
by optical pumping.

For a slowly moving atom (kv < ~voI) the cooling force is linear in velocity
f = —pLv with the friction coefficient

By =220
Yo

284
= hk T (18)
which is independent of the laser intensity I = |£]2. Choosing I' < A, the
friction coefficient is much larger than the optimal friction coefficient for Doppler
cooling Bpepy = hk*Is. Eq. 18 also shows that the weakness of the dipole force is
compensated for by the length of the optical pumping times, since Uy < 1 is divided
by vo which is also small, since the optical pumping time is very long. However the
velocity capture range of this new friction force, given by kv = v,/ is much smaller
than the corresponding one for Doppler cooling.



24 2. ATOM COOLING
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FIGURE 8. Low intensity Sisyphus cooling in the linLlin configuration.
The transition rate from |g; /2) to |g_1 /2> via the excited state is maximal
at the places where the energy of |g; /2> is the highest, and vice versa for
|9—1/2). Therefore the atom leaves one of the oscillating potential curves
at the top of one hill and is transferred to the valley of the other potential
curve. In other words, because of the time lag 7, the atom sees on average
more uphill parts than downhill ones. Here the atomic velocity has been
chosen such that the atom travels over one wavelength A/4 in a relaxation
time 7, which gives the maximal value for the cooling force.

b. Polarization gradient cooling: oc"-0~. Choosing a setup where the two
counterpropagating waves have polarization o~ and o™ respectively,

E+ =& (eikze—»+ 4 e—z’kszé»_)
=—iV2€E (€ysinkz + €, coskz)
= —i\/ﬁgé’y(z’), (19)

where €. = F1/v/2(€, + i€,), we see that the polarization of the laser field is
always linear along €y and rotating in the x — y plane as one moves along the z-axis.

As the field amplitude is position-independent in this setup, the light shifts of the
groundstate sublevels remain constant when the atom moves along the z-axis and
there is no possibility of a Sisyhus effect. In this section a different type of cooling
scheme is described, depending on a highly sensitive motion-induced population
difference in the groundstate sublevels even for very small velocities. The simplest
atomic transition to observe this type of cooling is J;, =1 — J. = 2 (see fig.10).

An atom moving along the z-axis with velocity v sees a linear polarization along
€y rotating around the z-axis in the z-y-plane with a frequency —kv. Transforming
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FIGURE 9. Polarization of laser field along z-axis for a -0~ setup.

Mg=- 2 Mg=-1 mg=0 me:] M= 2
1 1
V6, 3
N 2 —~

V2 3 V2
1 1
vz \|/ve

mg—-1 mg—O mg:]

FIGURE 10. Level scheme and Clebsch-Gordan coefficients for a J, =1 —
Jo = 2 transition.

into a comoving rotating coordinate system the laser polarization keeps a fixed
direction. In addition Larmor’s theorem tells us that in this moving rotating frame,
an inertial field parallel to the rotation axis will appear. This leads to a new term
in the Hamiltonian equal to

Hyo = kv J,. (20)

It can be shown [21] that this additional term leads to a population difference in
the eigenstates of .J, proportional to kv. Choosing red detuning (A, < 0) it can be
shown that |g_) is more populated than |g, ) for an atom moving toward z > 0. Since
there is a six times greater probability that an atom in |¢g_) will absorb a o~ photon
propagating toward z < 0 than that it will absorb a ¢ photon propagating toward
z > 0, it follows that the radiation pressures exerted by the o and o~ waves will
be unbalanced. The atom will scatter more counterpropagating ¢~ photons than
copropagating o photons and its velocity will decrease. For a slowly moving atom
the friction coefficient can be calculated to give

L= hk? 12
B Uo
r
= hk*—. 21
A (21)
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FIGURE 11. Level scheme and Clebsch-Gordan coefficients for a J, =1 —
J. = 1 transition.

As in the lin L lin setup it does not depend on the laser intensity /. Comparing
B, with 8, = hk?Uy/~o we see that 3, is much smaller as we assume I' < |A]. A
detailed calculation taking into account heating processes shows however [21], that
a steady-state temperature of the same order and below the Doppler limit can be
reached in both cooling schemes, since the diffusion coefficient for the -0~ setup
is much smaller than the corresponding one for lin L lin.

2.2.4. VSCPT

All cooling mechanisms discussed so far rely on spontaneous emission to dissipate
the kinetic energy of the atom. In all of these schemes spontaneous emission never
stops, therefore the random recoil due to the emitted photons and the corresponding
single photon recoil energy Er.. = h*k?/(2m) appears to limit the reachable steady-
state temperature to the so-called recoil temperature

(22)

This shows that in order to reach sub-recoil temperatures spontaneous emission
has to be "switched off” at some point. As we will show qualitatively in this section,
the existence of the phenomenon of velocity selective coherent population trapping
(VSCPT) for a J;, =1 — J, = 1 atomic transition in a o™-0~ laser setup allows for
the cooling of atoms to temperatures well below the recoil temperature approaching
T =0.

The Hamiltonian for this system after adiabatic elimination of the excited atomic
state can be written as

H=Uol/2[|g-1){g-1] + |91)(01] —

e’%]““lgqﬂgl! . e2ikza‘gl><g71”.
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This Hamiltonian has two eigenstates, namely the dark state? with eigenvalue
Aps =0

o) =% (7% lg_y) + €% |g,)) (23)

and the maximally coupled bright state with eigenvalue Aggs = Uyl

rm:% (7% ]g_y) — e*2e)gy) (24)

For an atom at rest the total population is pumped into |1)pg) as this state
does not couple to the light field. It can be shown [22] that for a moving atom a
motional coupling kv appears between |1ps) and |¢pg). This contamination of the
dark state by the bright state leads to a non-vanishing fluorescence rate Ry of the

perturbed state |1 pg). This effect is proportional to kv/(Upl) so that the variation
of Rp with v occurs in a very small velocity range v ~ Uyl /k around v = 0:

(2kv)?T
91
for v < dv which does not depend on A,. Calculating the force on a moving

atom in such a setup shows that the dipole force and radiation pressure cancel each

other exactly leading to f;,; = 0. However the fact that Ry varies rapidly within dv

together with the observation that the momentum diffusion coefficient varies also

rapidly with v around v = 0, since it is based on the random exchanges of mo-
mentum associated with fluorescence cycles, leads to a new cooling mechanism that
can be considered as an optical pumping process in velocity space: An atom with

v > ov that undergoes a fluorescence cycle may end up with a velocity v < dv. Thus

momentum diffusion transfers atoms with a velocity at which they absorb light to

a region dv in velocity space around v = 0 where they remain trapped since all

fluorescence stops.

Rp(v)= (25)

A detailed full quantum mechanical treatment where the external atomic degrees of
freedom (position, momentum) are quantized, shows [22] that the correct trapping
states are linear superpositions of states that differ not only in |g_1) and |g;) but also
in the momentum |p + hk) for |g;) and |p — hk) for |g_1), since a photon absorbed
by |g—1) has momentum +%k and a photon absorbed by |g;) has momentum —#hk.
For a long enough interaction time Tj,; between laser and atoms one can expect
to find a two-peaked momentum distribution centered around +hk with a width of
dp < 1/+/Tins. Choosing a larger Tj,; decreases dp and increases the weight of both
peaks since the atoms have more time to be pumped in momentum space towards

ZNote that it is not the different sign of the Clebsch-Gordan coefficients for the transitions
between |g_1) and |g1) to |eg) that allows for the existence of a dark state uncoupled to the light
field, but the non-existence of levels |e4 (s, 1)) to which [g+1) would otherwise couple. In fact the
role of |¢pg) and |[¢pg) would simply be interchanged had the Clebsch-Gordans the same sign.
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p=0.

Hence this new type of cooling mechanism that is based on a combination of mo-
mentum diffusion and VSCPT is only limited by the interaction time T},; and is
independent on the sign of the detuning A,. It has however some serious limita-
tions: As there is no cooling force that pushes the atoms to p = 0 cooling times are
rather long in 3 D. VSCPT needs a closed optical transition and spontaneous atomic
relaxation to reach the final dark states. Hence the reabsorption problem strongly
limits the final atomic density and temperature. In chapter 6 we will present a gen-
eralized dark state cooling scheme which strongly diminishes these disadvantages of
free-space VSCPT.

Sub-recoil cooling based on VSCPT has been observed experimentally in 1988 [22]
where a one-dimensional temperature below the recoil limit of the chosen atoms has
been reached.

Doppler c. Polarization gradient c. VSCPT | Cavity c.

lin_Llin c—6
Closed optical
fonstion Yes Yes Yes NoO
2 2& 2& 2l.(Q 2
B| hkls | n2 onkgs | 0 ks
Veapt. I'/k Yol/K Uol/k — k/K

kg T T Noskl <N 0 Tk

FiGURE 12. Table comparing friction coefficient 3, velocity capture range
Veapt. and steady-state temperature 7' for the low-intensity cooling schemes
discussed in chapter 2 and cavity cooling, discussed in chapter 3.

Fig. 12 concludes our brief qualitative overview on free space cooling techniques
for neutral atoms in the low saturation limit by summarizing the most important
parameters for each of the schemes and comparing them to the ones obtained for
cavity cooling that is discussed in the next chapter.



CHAPTER 3
Single atoms in optical resonators

3.1. Introduction

It has been known for many decades that the radiative properties of an atom
are changed inside a resonator [23], but it was only in the last decade that the
modification of mechanical light effects by such a cavity came into the focus of
interest of several research groups [4, 5, 6]. Partly this was due to the fact that in
order to observe such effects experimentally, resonators with a very high finesse are
needed.

In the 1990’s cavities with a finesse > 100000 became experimentally feasible, and
the present technical status is such that already one photon inside a cavity can exert
a detectable force on an atom. On the other hand very cold atomic samples have
to be available to allow for large interaction times with the resonator. This became
possible after the development of efficient laser cooling and trapping techniques for
neutral atoms, such as the Magneto-Optical Trap (MOT).

Typically in a cavity-QED experiment cold atoms are released from a MOT with
a temperature of a few uK [4, 5, 6]. So far all experiments have been done using
standing wave resonators. Although one might not expect any new mechanical
effects in a ring resonator setup, it can be easily seen that this is not true: In a
standing wave cavity the boundary conditions for the resonator field call for a node
of the electric field E at the cavity mirrors (assuming perfect mirror conductivity).
Thus the phase of E is fixed with respect to the mirrors, while the mode amplitude
is a dynamical quantity that can be modified by the presence of an atom [3].

An atom moving along the standing wave of a resonator can be understood as a
dielectric substance with position-dependent coupling to the cavity field. At a field
node atom and cavity are uncoupled while the coupling gets maximal at antinodes
of the standing wave. The intracavity photon number is maximal if the cavity is
pumped resonantly. When the pump frequency wp does not match the cavity eigen-
frequency wc, less light is trapped in the resonator. Fig. 13 illustrates how this leads
to a intracavity photon number that depends on the position of the atom. Parame-
ters have been chosen such that the empty cavity is on resonance with the external
pump field. At the antinodes the cavity is shifted maximally out of resonance by
the atom leading to a minimum of the photon number in the resonator.

In a ring cavity the boundary condition of a field node is replaced by the periodic
boundary condition E(0) = E(L), where L is the resonator length. This does not fix
the phase of the intracavity field which is now subjected to the influence of an atom
too. In order to get a physical understanding how this works let us assume that

29
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FIGURE 13. Photon number (thick line) and standing wave in a standing
wave resonator versus z,. At antinodes the cavity is shifted maximally out
of resonance by the atom leading to a minimum in photon number.

there is an atom at position z, on the axis of a ring resonator pumped from one side
only. This means that only one of the two frequency-degenerate counterpropagating
running waves has a non-zero photon number in the absence of an atom.

pump field
ORI

scattered field

FIGURE 14. Photons scattered by an atom at z, create a standing wave
to the left of the atom. This standing wave is dragged along as the atom
moves to the right.

An atom at position z, will scatter photons out of the pumped mode. Some of
these photons will be coherently redistributed to the unpumped mode, thus the
atom creates a standing wave on top of the injected running wave, not necessarily
with a potential minimum at its position (fig. 14).

The phase of the scattered standing wave depends on z, and a moving atom drags
the standing wave along with its motion. For a moving atom, cavity decay cannot
instantaneously adjust the field amplitudes a4 to the values they would obtain in
steady state for an atom at rest at z,. There is a certain time-lag, given by T, = 1/k,
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where k is the cavity decay rate. Fig. 15 shows that a moving atom will experience
a non-zero gradient of the local intensity which can either lead to an acceleration or
deceleration of the atom, depending on the chosen parameters (see chapter 3.5).

steady-state value

time-lagged field

FIGURE 15. A moving atom experiences a non-zero gradient of the local
intensity due to the cavity time-lag.

On the other hand if there are several atoms interacting with the cavity each of
the atoms drags its scattered field along with its motion. As each atom can feel the
other atoms by their scattered fields this will lead to collective motional effects. We
will show below that this can be used as a quantum bus, i. e. to share information
on a quantum level between these atoms, as has first been suggested by Hemmerich
24].

3.2. Model

In this chapter we describe the motion of a single two-level atom in the field of
two counterpropagating running plane wave modes with field amplitudes . Each
cavity mode is assumed to be driven at pump rates n4 and frequency wp. The cavity
decay rate is denoted by k. vy = I'g?/(I'?> + A2) is the spontaneous emission rate
per photon by the atom and Uy = A,g?/(I'? + A2) is the frequency shift induced by
the atom for each mode. The intracavity field E can be split into the positive and
negative frequency parts and written as

E(Z,t)=E*(Z,t)e “rt 4+ E~(Z,t)e™r!
EY(Z,t)=E& (ar(t)e* + a_(t)e ") &,

B = (E+)T , (26)

where £ = T 18 the electric field per photon

For an atom moving into the positive z-direction ay («_) is the copropagating
(counterpropagating) cavity mode.
The equations of motion for the cavity fields read

de=(—K — v+ 1 (A — Up)) ax — (0 + i) e ™ 4, (27)
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where the excited atomic state has been adiabatically eliminated and A¢ = wp —
we. The force on the atom can be calculated by the gradient of the interaction
hamiltonian (see section 3.5.3 for more details).

3.3. Mechanical light effects

Let us now come back to the mechanical light effects inside a ring resonator. The
total force acting on an atom can be easily understood:

ftot :frp + fdip
f'rp = 2hk/70 (aj—a-‘r - oziOt_)
fdip _ 277,]{?[]02 (OéiOé,(ZiQikZa —at &+€2ikza) (28)

It consists of two parts. The dipole force fg;,, comes from the interaction of the
reactive atomic dipole moment induced by o with a_ and vice versa. It is non-zero
only if the atom is detuned from the pump field (A, # 0) and can be written as the
gradient of the intracavity intensity at the position of the atom times U

(29)

d __
faim = —hUq <@E E+>

Za

The radiation pressure f,, is caused by the dissipative component of the atomic
dipole moment induced by a interacting with o and vice versa. In the case of
only two counterpropagating waves it is the difference of radiation pressures exerted
separately by o, and a_. In general a ring resonator can be pumped with different
pump rates for a; and a— modes, 4 and n_. Let us study the two instructive special
cases of one-sided pump (n_ > 0, n, = 0) and symmetric pump (n. =n- =n).

3.3.1. One-sided pumping

Let us neglect cavity dynamics as a first step. Of course this is only correct for
an atom at rest. For a single running wave mode interacting with an atom in free
space one would expect f,, # 0, f4zp = 0, as there is no intensity gradient in a plane
wave. However eqs. 30 show that there is a non-zero reactive force inside a ring
resonator stemming from coherent redistribution of photons between the pumped
and unpumped modes.

kYo — Ay
frp = —2hl€"}/0I 1+ 2W
UQKJ -+ VOAC

where
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2
n-
(270 + K)Z + (QUO — Ac)2

is the photon number at the position of the atom. The free space situation
corresponds to the limit where vy, Uy, A¢c < k together with I fixed to some constant
value. We see that fg;, goes to zero as expected and radiation pressure assumes its
free space value f,, = —2hkyol.

I =

(31)

3.3.2. Symmetric pumping

In an empty symmetrically pumped cavity there is an equal number of photons
in a; and a_. Thus, neglecting the atomic backaction on the field, there would be
no net radiation pressure. However every time a photon is coherently redistributed
between «; and a_ by the atom, the photon numbers become unbalanced (fig. 16).

oo
a
S NN
O - O'\/\/\/\b
AD= 2hk
P of

———

fdip

FiGURE 16. Coherent redistribution of photons causes different photon
numbers for a4. This leads to a net radiation pressure force.

This gives rise to a non-zero radiation pressure even for symmetric pumping as
can be seen in eqs. 32.

Uok + 0
K2+ AZ

kv — 2A.Uy

frp =4hkyoI sin 2kz,

sin 2k z, (32)

where I = 2n%/[(270 + x)? + (2Uy — A¢)?]. In the free space limit this leads to the
expected result f,, = 0 and f4), = 2hkUp[ sin 2kz,.

As can be expected the forces are modified for a slowly moving atom. Let us focus
on the dipole force which will be much larger than radiation pressure in the limit
Yo K Up. It is straightforward to find an expression for the friction coefficient, i. e.,
the linear velocity dependence of the force for small velocities (kv < k) due to the
cavity dynamics, by expanding the field amplitudes in the form oy ~ o + kv/ral.
Eq. 28 then gives to first order in v
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fdip = f((i)zp + f;ipv
for the dipole force. This force acting on the atom can now be averaged over one

—
wavelength. In a symmetrically pumped cavity we get of course fgip =0 and

fd' A 16hk32U02/{] AC — Uo |:1 _9 AcUO :|
ip .

TR+ (20 — Ac)? K2+ AZ K2 + A ! (33)

Fortunately it is also possible to calculate the field amplitudes for arbitrary ve-
locity v by solving eqs. 27 analytically. Setting A, = 0 to increase readability we
get

K+ 1 (Up £ 2kv) B iUyeF2ik(zo+ot)

Each mode has a contribution from the other one that is multiplied by a phase
depending on the atomic position z,. The first part in eq. 34 is the contribution from
the pump light, shifted out of resonance by the moving atom, e. g. a is frequency
shifted by an amount of Uy — 2kv. With eqgs. 34 the dipole force for arbitrary
velocity v can be written as the sum of the force exerted by the copropagating and
the counterpropagating light alone.

a4 =

(34)

R 4hkrUgn?
i (K2 + 2Upkv)” + 4K2Q22
f—,\ _ 4hkrUZn?
- (K2 — 2Uokv)” + 4K2Q2
Y — W—
Jaip =f+ +f- (35)
or
- —32hkr3US kv N

(k2 + 2Uokv)® + 4r202] [(r? — 2Wokv)” + 4K2Q2
where Q% = (kv)? + U2,

Fig. 17 shows the typical odd structure of the dipole force with respect to v. fg,
reaches its maximal value around kv &~ /2 which gives the velocity capture range
of the cavity dipole force. As k < I' in experiments, the cavity force is effective at
velocities much slower than the free space Doppler force. Furthermore one would
have to choose a red detuning between pump and atom (U < 0) to achieve cooling,
while in a cavity Uy > 0 is the correct choice if A¢ = 0. A more thorough comparison
between cavity force and Doppler force is given in the next section.
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FIGURE 17. Mean dipole force fg;, acting on the atom versus its velocity
for Uy = k, Ac = 0 and n = k. fy (f-) is the force exerted by the
copropagating (counterpropagating) beam alone.

3.3.3. Comparison between Cavity cooling and Doppler cooling

How effective is cavity cooling compared to conventional Doppler cooling? For a
slowly moving atom (kv < k) the force on the atom can be shown to be linear in v.
For a correct choice of parameters this leads to a friction coefficient. In the optimal
parameter regime, where Ag = —k, 2Uy — A¢ = 0 (pump detuned to half-width
of cavity lorentzian, atom shifts cavity into resonance) and I' < A,, eq. 33 can be
simplified to give

EA = —hk*I5(2g/K)v, (37)

where sI = n*UZ/(g*k?) is the saturation parameter. Comparing this with the
well-known doppler friction force in free space

Foop = —hk2 sv, (38)

it can be seen, that for g > k (strong coupling regime) the cavity force is larger
by a factor of (2¢g/k)?. This friction coefficient can be used to estimate the cooling
time 7¢, defined from the exponential decrease of the kinetic energy of the atom

E(t) = (E(O) - %) e~t/me 4 % (39)

where 7 = m/(2|f|). For g > k the cooling time inside a ring resonator
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-1 2
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av — <\ = 40
T s <2g> o
is smaller by a factor of (k/(2g))? than in free space, where we have

-1

WRec
TC,Dopp = fS (41)

and wpe. = hk?/(2m) is the recoil frequency.

The reachable steady-state temperature in a ring resonator with 2 modes can be
calculated to give kgT = hrk/2. For k < I' this can be lower than the Doppler
limit kT = hAI'. We conclude that the modification of mechanical light effects in a
ring resonator can be used to achieve faster cooling of atoms (if g > k) to a lower
temperature (if £ < I') than in free space. While it would seem that x should be as
small as possible compared to I and g, one should not forget that the velocity range
where cavity cooling works is given by kv ~ k. This means for smaller £ atoms
precooled to a lower temperature have to be used.

3.4. Quantum gate

Another promising aspect of the interaction between a ring resonator and neutral
atoms is the possible implementation of Quantum computation schemes. In 1999
Hemmerich suggested [24] to use cold atoms trapped in a ring resonator to build
a quantum logic gate. A similar proposal had already been suggested by Cirac
and Zoller [25] in 1995 for ions. The central idea is to use the internal degrees
of freedom of each particle in a string of atoms as qubits in the sense of Quantum
information. In an ion trap coulomb repulsion strongly couples the ions to each other
thus permitting the generation of entanglement between different qubits needed to
build e. g. a controlled-NOT gate. However the strong coupling between ions and
electric field noise in the endcape electrodes leads to a decoherence time in the order
of milliseconds. Additionally this system is not scalable in the number of particles.
It seems to be experimentally impossible to go beyond a few 10 ions, which limits the
practical applicability of this proposal. Optical lattices filled with neutral atoms on
the other hand would have much more favorable properties. Decoherence time due
to spontaneously emitted photons can be up to seconds. Furthermore high loading
rates (up to 10 % of available lattice sites occupied) seem to be reachable within the
next few years, which means easy scalability.

At first sight the only problem seems to be the complete lack of direct atom-atom
interactions between atoms at different lattice sites. An optical lattice constituted by
the standing wave of a symmetrically pumped ring resonator would easily overcome
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this obstacle: Assume that there are N atoms trapped around nodes of a blue-
detuned cavity field A¢ = 0, Uy > 0 *. The position of the n-th atom can be written
as kz, = %ﬂ' + €,, where ¢, < 1 is the deviation of the n-th atom from the
nearest cavity node. By focusing lasers on one of the atoms it can be kicked out of
its equilibrium position. As the coupling between cavity and atom gets non-zero,
the cavity field starts to notice the atom and gets dragged along with its motion.

The intracavity intensity can be written as

2

_ 4n
<E E+> = m COS2 (kz — ,U/ECM) (42)

where the factor p has been defined as

2U,N)?
N "
K* + (2UON)
Now all of the atoms will feel a non-zero local intensity gradient and hence a force
equal to

d
on=—TUy { —E"E*
fdzp,n UO <dZ >

(see fig. 18).
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FIGURE 18. An atom is kicked out of its equilibrium position at a field
node. The intracavity phase is shifted resulting in a non-zero intensity
gradient at the positions of the other atoms.

Writing down the equation of motion for the deviation of the n-th atom from its
equilibrium position

IAn additional conventional lattice in the remaining two dimensions perpendicular to the res-
onator axis would have to be used in a 3 D setup. Alternatively one could choose a red detuned
cavity which leads to higher spontaneous emission rates and decreased coherence times.
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€n + W(%En = WgﬂECM (44)
w2 _ Shsz(ﬂ]Q
0 mK/Z )

where wy is just the usual oscillation frequency of an atom in a harmonic potential
of strength Uyn? /2. One can calculate the possible vibrational modes by making the
ansatz €, = (,e“"t. Defining the center of mass of the individual displacements by
€M = % Zgil €, one can see that there are two different types of modes: A center
of mass mode with wey = wpy/1 — 0 and relative motion modes with w, = wy.
Let us illustrate this for N=2. The center of mass mode corresponds to two atoms
oscillating in phase, hence the individual drags of the atoms on the cavity field add
up (fig. 19).

Ficure 19. Two atoms oscillating in phase. Their individual drags on the
field add up and the intracavity intensity is shifted.

The relative motional modes correspond to the atoms oscillating 7 out of phase,
hence their individual drags on the field cancel each other. Each atom oscillates
without noticing the presence of the other one (fig. 20).

A\

Ficure 20. Two atoms oscillating 7 out of phase. Their individual drags
on the field cancel and the intracavity phase is not shifted to first order in
€.

Obviously the center-of-mass mode would be used in any attempt to build a
quantum gate.

In which regime should the resonator be operated as a Quantum Gate? One
would like to have clearly separated individual and CM frequencies, so p should not
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be too small. Fig. 21 shows that NU ~ x would already give weps/wo = 0.6 which
should be experimentally acceptable. On the other hand cavity dynamics must not
be neglected.
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FiGURE 21. Frequency of the vibrational center of mass mode normalized
to wg over UgN. A, =0, k = 1.
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FIGURE 22. NUy = 2k, K = 1. Overdamped CM-oscillation (left) and
almost undamped relative oscillation (right).
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FIGURE 23. NUp = 0.2k, k = 1. Damped CM-oscillation (left) and rela-
tive oscillation (right).

Figs. 22 and 23 show widely differing damping rates for the different mode types
due to cavity-induced friction. The numerical solution shows that the CM-mode is
overdamped already for NU; = 2k. NU, < k would have to be chosen in order
to have enough time to operate the quantum gate. Hence the optimal parameters
for cooling (NUy = k) and for the operation of a quantum gate (NUy < k) do not
coincide. Future work should clarify how this can be changed using atoms with a

more complicated level structure allowing e. g. dark states with respect to the light
field.



3.5. PUBLICATION 1: COLD ATOMS IN A HIGH-Q RING CAVITY 41

3.5. Publication 1: Cold atoms in a high-Q ring cavity

Cold atoms in a high-() ring cavity

Markus Gangl and Helmut Ritsch

Institut fiir Theoretische Physik, Universitat Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria.

Abstract:

We investigate the coupled dynamics of N two-level atoms in the field of a weakly
pumped multimode high-Q cavity. While the field mode amplitudes are coupled by
the atoms depending on their positions, the motion of the atoms is influenced by
the radiation pressure and dipole force induced by the total intracavity field. In
the strong coupling regime, where the atom field coupling ¢ dominates the atomic
and cavity decay rates (I', k) strong correlations between the atoms themselves and
between the atoms and the light field build up. For suitable operating conditions
an efficient motional cooling of the atoms occurs. At the example of two atoms
coupled to two counterpropagating modes in a ring cavity, we show that this can
lead to a strong binding force between atoms trapped at a large distance at
different antinodes of the cavity field.

PACS number(s): 32.80.Pj, 42.50.Vk, 42.50.Lc

Published as Physical Review A 61, 043405 (2000).
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3.5.1. Introduction

Cavity-QED, i.e. the coupled quantum dynamics of a few atoms and field modes,
has been a subject of intense research for several decades. The modified radiative
properties of atoms inside optical cavities have already been studied back in 1946
by Pourcel [23] and a vast amount of theoretical and experimental effort was de-
voted to variations of the Jaynes-Cummings model. However, only recently with the
availability of very cold atomic sources in connection with high-Q cavities [4, 5, 6]
the dynamical aspects of the atomic motion (forces) inside a cavity field have been
studied. In a series of papers by Parkins and co-workers [26, 27, 28] and ourselves
[1, 2, 29, 30] many interesting properties of the motional dynamics of a single atom
in a single high-Q cavity have been revealed and partly also have been experimen-
tally confirmed [31, 32]. Extensions to two and more atoms have been discussed in
some detail as well [29, 30]. In a recent paper Hemmerich [24] pointed out that a
system of several atoms coupled to two counterpropagating modes in a ring cavity
could provide for a new possibility to realize quantum logic gates similar to ion trap
systems [25]. Here we will generalize our previous models to N atoms commonly in-
teracting with M nearly degenerate cavity modes. In principle these could be various
transverse modes in a quasi-planar or quasi-spherical cavity or various propagating
modes in a ring cavity or several crossed cavities. This leads to a mode coupling
which strongly depends on the momentary atomic positions implying effects such
as phase locking and amplitude redistribution. Hence the total field reflects the
atomic positions, which could be monitored by analysing the transmitted field. For
cold moving atoms the intracavity field creates of course significant position depen-
dent forces which in turn then modify the atomic motion. This can lead to energy
exchange between atomic motion and the field as well as between the motion of
different atoms. Besides such average forces, spontaneous emission, cavity decay
and pumping will also create random forces yielding momentum diffusion and field
intensity fluctuations. We will investigate and discuss several aspects of this rather
involved dynamics in the following steps:

In section II we extend our previously developed simple classical model of a mas-
sive dipole in a high-Q cavity to N particles coupled to M modes and discuss a
few basic aspects. Some of the key new physical properties of this system are then
discussed in section III at the example of a two-level atom interacting with two
quantized running waves inside a weakly driven ring cavity. We present the equa-
tions of motion for the two cavity modes in the good-cavity regime (I' > k) and
calculate the average forces and momentum diffusion. We show the emergence of a
new friction force which is based on the position-dependent phase of the intracavity
field and compare it to the Sisyphus-type force arising in a standing-wave cavity.
In section IV we study the collective dynamics of N atoms inside the two mode
ring cavity and dicuss the strong motional correlations, which build up during the
cooling process due to the cavity-mediated interaction.
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3.5.2. Classical N-atom and M-mode model

Let us consider N linearly polarizable particles of mass m sitting at positions x,,
coupled to M nearly degenerate weakly driven cavity modes with mode functions
um (%) and decay rates k. In close analogy to Ref.[29] we then find the following
equations for the mode amplitudes ay(t) and induced atomic dipole moments s, (t),
where 3(Z,t) is the polarization density.

ut) = (i, — K)au(t) + i%%(t) + (45)
()= [ V(. (@

B(Z,t) = hpreOV D sa(t)0%(E — F)
5u(t) = (18 — T)sut) + = [ 222§ 0 (Dt (7o), (46)

2wpm \ 2¢V —

where A, = wp —wy is the detuning between pump and atom and 2I" denotes the
spontaneous emission width of the atomic excited state. We will assume the same
driving frequency wp and decay rate x for all modes. Assuming weak excitation and
sufficiently large damping I', we can adiabatically eliminate the polarization and
obtain

ar(t)=— (kK —iA.) au(t) — (70 + iUp) Z Z Vi (%) e () + 1 (47)

n=1 m=1

where the induced effective mode frequency shifts U, and dampings ~, are given
by

A,

Up = mg (48)
I 2
Yo = mg (49)

where we have defined g* = e*/4eomV.

On the one hand we see that through the term V,,,;(Z,,) we get a position dependent
mode coupling induced by the atoms, which leads to dynamical phase locking. On
the other hand the induced optical dipole force on the n-th particle is then just
proportional to the total intensity gradient and depends on the relative field phases.
This yields the following equations of motion:
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2

Pat)=—Uy | V (51)

M
Z QU (T)
m=1

Fo(t) = Pu(t)/m. (52)

Hence we see that different particles and modes will exhibit a strongly correlated
motion. Obviously if all particles sit at the nodes or antinodes of the self consistent
steady state solution of the field, all the forces vanish and we get a steady state for
the motion of the atoms. Depending on the signs of the detunings this state can
also be stable against small perturbations and we get a set of collective vibrational
modes for the atoms. The excitation of a single particle will hence spread out over
the whole system building up well defined particle and mode correlations. As the
field modes are damped through their own losses x and the position dependent
photon scattering rate 7g, the system evolution is non conservative and energy is
extracted or fed into the particle motion. So besides optical trapping, there is also
the possibility of cooling. The analysis of the time evolution of the field will thus
provide ample information on the particles positions and motions.

3.5.3. Atoms in a ring cavity

Let us now proceed to a more refined description of the dynamics but reduce the
complexity a bit. First let us study a single two-level atom moving in the field of two
frequency-degenerated counterpropagating plane running wave modes u (), u_(z)
inside a ring cavity. Here we include incoherent processes like spontaneous emission
(') and cavity decay (k) in our model via coupling to external reservoirs. For
simplicity we consider only the atomic motion along the axis of the cavity and use
a so called semiclassical approach for the center of mass dynamics, where only the
expectation values of the atomic position and velocity enter our equations. This
can be expected to be valid as long as the energy connected to the equilibrium
temperature kg7 is much larger than the recoil energy Er = h?k?/2m, so that the
atomic coherence length is much smaller than a wavelength. Each cavity mode is
assumed to be driven with a monochromatic field of frequency wp at pump rates
N+, n—. These simplifications now provide for the possibility to discuss some key
aspects of the motional mode coupling in a largely analytically solvable model. A
graphic scheme representing our model is shown in fig. 24.

The intracavity field E can be split into the positive and negative frequency parts
and written as

—

E(X,t)=EM(X, t)e “rt 4 EO(X, t)ert
EM(X, 1) =€ (a1 ()™ +a_(t)e ™) &,

B ( gm)* ’ (53)
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FIGURE 24. Two-level atom moving in a weakly driven ring cavity with
losses from spontaneous emission I and cavity decay k.

where & = */ZJT@ is the electric field per photon and a4 _ denotes the photon

annihilation operator of the (+,—)-mode. The Hamiltonoperator governing the
unitary evolution of our system using dipole and rotating-wave approximation in a
frame rotating with the pump frequency wp then reads (h = 1):

H=Hy+ Hac + Hp
Hy=-A,0l67 — A, <a1a+ + aia_>

Hic=yg (ala’eiikx + aTa+eikX> +9 (aT_a’e““X + aTa,e’ikX>

Hp=—in_ (a_ — aT_) — 4 (a+ — ai) , (54)

where the atomic and cavity detunings are defined as A, = wp — we and g =
—de,€ is the atom-field coupling, which is assumed to be equal for both modes
(i.e. we assume the same polarization and geometry for both modes). In order
to properly describe also the incoherent part of the system dynamics, we have to
include reservoirs and deal with the master equation for the reduced atom-field
density operator p. Using standard quantum optics assumptions and methods one
gets:

, l
p=—7H pl+ (La+ Lo, +Lo ) p
Lap=-T (clo"p(t) — 20 p(t)o' + p(t)olo™)
Lop=—kK (alaip(t) — 2a4p(t)al + p(t)alai> : (55)

As a first instructive step, let us write down the corresponding equations for the
expectation values of the atomic and mode operators
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(@) = (e = k) {as) —ige ™ (o7) + 1y
(0-) = (i8c = k) (a-) —ige™™ (") +n
(67)=(iAg = D) (07) + 2ig (e"**(0.ay) + e ™ (0.a_)) (56)

which indeed look very similar to Egs. 46 obtained in the previous section. How-
ever, we have a hierarchic coupling to products of higher operator number, which
of course prevents a simple direct solution. As we will primarily investigate the
strong-coupling regime with very weak pumping, we will truncate our Hilbert space
H = {|g,0,0),|g,1,0),]g,0,1),|e,0,0)} to states of one quantum of excitation at
most. It can be easily shown, that in this regime products of system operators
factorize [33],

(okos) = (al){a), 67)
1
(0.0) = =3 as),

which of course greatly simplifies the problem. Note that similar factorization can
be performed, if one assumes the fields to be in a coherent state of sufficient ampli-
tude. This property is, however, not exactly preserved during time evolution and
hence only approximately valid. Nevertheless, for most of the properties discussed
in the following, the results turn out to be very similar.

In this case the expectation value of the force operator f = (F') in the semiclassical
limit is then given by [14]

d
f={=gxHac)
— d —ikx d ikx
=— ((aia >@e ey (0Ta+)%ek ) . -
d . d .
T =\ Y ikz T Y —ikzx
g <(a_a >dx€ + (o a,>dxe ) . (58)

Again we assume weak atomic excitation and that the internal atomic time-scale
is much faster than the external and the cavity time-scale, so that we can eliminate
the excited atomic state to obtain

(07 b = T () e () (59)

Inserting this into the equations for the mode amplitudes we find
(ax) = (= =20 + i (Ac = Up)) (ax) — (v +ilo) (az)e ™™™ +ny,  (60)
where (61)

A
_ 2 _ a 2
%_r2+Agg and to = r2+Agg '
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Note that we now have a mode coupling of fixed absolute value, whose phase
depends on the atomic position. In the steady state this will hence lead to a position
dependent phase locking of the two fields. This is different from a standing-wave
cavity, where the field geometry is independent of the atomic positions [1]. The
force acting on the atom can be split into two different contributions as follows:

f = pr + fdip
frp =20k ((alay) = {ala )
faip = 2hkUy1 <<(ILG_>6_2ikx“ _ <aT_a+>62ikI“> (62)

The first part f,, proportional to the photon scattering rate -, has a rather simple
interpretation as the sum of the two radiation pressure forces independently induced
by the two counterpropagating modes. For a balanced situation it gives no average
contribution as in a standing wave, but relative intensity fluctuations will induce
extra diffusion. Note that in contrast to free space the amplitude of the modes is of
course affected by the atom inside the cavity. The second part fg;, can be rewritten
as —Ug (7% ETVEM) | _ . and thus is proportional to the total intracavity intensity
gradient. This contribution to the total force creates an effective optical potential
and is identified as the dipole force. For the case of an atom at rest we can explicitly
calculate the steady state field amplitudes and obtain:

(=K =70 +i(Ac = Vo)) ny + (70 + iUp) n-e >k
(/{ + 2’70 +1 <2UO - Ac)) (ZAC - ’{)

(—k =70+ 1 (A — Up)) n- + (0 + iUo) 14 €2
(K’ + 2’70 +1 (QUO - AC)) (ZAC - /i)

(a)=

(a-) =

This can be inserted in Eqs. 62 so that we end up with

2hk’70
frp= 2 2 2 2
(K2 + A2) (270 + K)" + (2Up — AL)°)
[ (7 —n?) (K* + 2K70 — 2A.Up + A2) —
dnin- (Upk + 70A.) sin kaa}
4hkU
fdip = 0

(K2 4+ A2) (270 + 1) + (20p — A.)°)
[77+777 (/12 + 2Ky — 2A.Uy + Ai) sin 2kx, +

(172 = n2) (Uor +70A) | (64)
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Let us now study the two instructive special cases of one-sided (3.5.4) and of
symmetric pumping (3.5.5).

3.5.4. One-sided pumping

In the first case we set n_ > 0,717, = 0, so that there will be no light in the coun-
terpropagating mode initially. During the interaction time photons are scattered by
the atom into the empty mode. As this is in part a coherent process, it gives rise to
a standing wave structure on top of the injected running wave field inside the cavity
(second term on the r.h.s of eq. 65) as one finds:

(EW) = (=K +i0:) (BEM)) =2 (30 +ily) (BW)) |, cosk (z — za) +
n_e—ikx (65)

Obviously for a fixed atom the phase of these ripples depends on the atomic
position. Hence if these modulations do not have a simple maximum or minimum
at the atomic position, the atom will see a field intensity gradient and a force. This
explains the surprising result of a non-zero contribution of the dipole force acting on
the atom even for single sided pump. Note that the steady state force for single sided
pump is position-independent, as one can expect from the translational symmetry
of the setup. Surprisingly it turns out that depending on the chosen detunings, the
atom can sit on either side of a field maximum, yielding a force along or opposite to
the radiation pressure force, which of course always points along the injected field.
Interestingly a sufficiently slow moving atom will drag the standing wave along with
its motion. Hence it feels a constant acceleration (its like surfing on a self created
co-moving wave). Elaborating this picture a bit further, one finds that for a faster
moving atom there will be a time-lag in the self-adjustment of the cavity field to the
atomic position and the relative atom field position gets velocity dependent. For a
certain limiting velocity the atom will sit in a co-moving potential minimum and no
longer feel the dipole force. Hence within certain limitations one gets a final atomic
velocity independent of the initial velocity.

Note that the very same mechanism also provides for a strong long distance atom-
atom interaction, as the co-moving wave can be felt by any other atom somewhere
in the cavity. We will elaborate on this in more detail in section 3.5.6.

3.5.5. Symmetric pumping

The second typical case which we discuss here is symmetric pumping n- = 7, =7,
where the external fields create a standing wave with fixed phase inside the cavity.
As can be seen from eq. 66 the presence of the atom will lead to a spatial shift of
this standing wave phase in steady state.
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Figure 25. The atom is cooled while moving along the cavity standing
wave until its kinetic energy gets so low that it is trapped in a potential
well where it is finally damped to p = 0. T = 3k, g = 5k, A, = 10k,
Ac=0,ny=n_=r=1.

2
(B = N coskr —
K — 1A,

2 (70 + 1Up) 2n cos kx,
k—1A. K427 —i(A. —2U))

cosk (x — x4) (66)

Similarly to the nonvanishing dipole force for single sided pumping the radiation
pressure force does not vanish for symmetric pumping due to the position dependent
redistribution of light. This can be viewed as follows: If the atoms sits at a certain
position where the dipole force pushes it to the right, photons will be scattered from
the right to the left running wave, which will acquire a higher steady state intensity.
Hence at this point the radiation pressure forces will not cancel any more yielding a
net force towards left opposing the dipole force. This behaviour is strongly different
from the free space standing wave case and induces extra friction and diffusion. Note
that all average forces on the atom only cancel if the atom is at a node or antinode
of the injected wave. Comparing the cooling force on a moving atom with the one
in a standing wave cavity we see that the atom is much more rapidly slowed down
to zero momentum in the ring cavity as compared to a standing wave cavity (see

fig. 25) as the motional coupling influences the position and the intensity of the
intracavity field.

a. Friction force on a slowly moving atom. As can be expected the forces
are modified for a slowly moving atom. Fortunately, it is straightforward to find
an expression for the friction coefficient, i. e., the linear velocity dependence of the
force for small velocities (kv < k) due to the cavity dynamics. We expand the
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field operators in the form (ay) &~ (a%) + kv/r(al) and insert this into egs. 60 to
compare equal orders of v. To first order in v we get:

0
fdip = fdz‘p + QipU
_ 10
fTP —Jrp + QrpV.
This force acting on the atom can now be averaged over one wavelength. In a

e
symmetrically pumped cavity we get of course fgip = f5 =0and

Shk*n*U,
Qg = 2 : 205 o\ 2 (5% + 2190 — 24Uy + A7) (67)
(K2 + A2)% (5 +270)" + (2Up — A.)°)
—8hk?*n?
o = 700 2 (Ugti + 70,) (68)

(K2 + A2)* (5 + 270)" + (20p — A.)°)

where

B=2v (v +Us — (k+ v)* + (Ae — U0)2) +4Us (k + %) (A — Up) .

The total friction coefficient is then agy” = OzdipA + a_TpA.

Figs. 26 and 27 show numerical examples for the dipole and the radiation pressure
friction force in a symmetrically pumped cavity. Comparing these figures with our
previous results in a standing wave cavity [2] the most striking difference is the far-
stretched appearance of the dipole friction force with respect to A,. We think that
this difference is due to the fact that the physical origin of the dipole force lies in
the spatial shift of the intracavity field, while in a standing wave cavity the physical
origin is the position dependence of the amplitude of the cavity field. Furthermore
we see again that the areas of cooling and heating are interchanged in the dipole
and the radiation pressure friction force, as we have already mentioned before for an
atom at rest in a symmetrically pumped cavity. In Fig. 28 we show the sum of both
friction forces. It can be seen that the areas of cooling and heating are the same as
for the dipole friction force because the radiation pressure friction force approaches
zero faster than the dipole force for large detunings. Interestingly even for very
large atomic detunings A, ~ 100I', where spontaneous emission is strongly reduced,
one can get a significant cavity induced friction force on the atom. This implies a
much larger capture range for the injected particles and could prove important for
applications in cooling molecules.
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F1cure 26. Contour plot of the dipole friction force. n— = ny =k =1,
g =5k, =3k.
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Ficure 27. Contour plot of the radiation pressure friction force. n_ =
Ny =rk=19g=>5k,1 = 3k.

b. Analytic solutions for a moving atom. An interesting limit of this model
is the case of a large atomic detuning A, so that spontaneous emission plays almost
no role in the dynamics. Setting vy = 0 and assuming that the velocity of the atom
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F1GURE 28. Contour plot of the total friction force. n— =ny =k = 1,
g =5k, I' = 3k.

does not change much as it moves over a wavelength, we can find analytic expressions
for the time evolution of the fields (a4 ) for arbitrary initial conditions.

<CL+> _ e—(/ﬁ-iUo—i-ikv)t

(Cy(t) + (a4 (0))) (cos Ot + z% sin Qt) -

(C_(t) + (a—(0))) i%e_%k“") sin Qt]

<a7> — e—(n+iUo—ikv)t

(C_(t) + (a—(0))) (cos Qt — z% sin Qt) —

(Co(8) + (@ (0))) i%emo sin Ot

with
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iU 6_%]%077, e(n-l—iUo—ik:v)t
Colty=
(k+ iUy — ikv)” 4+ Q Q
(k4 iUy — ikv) sin Qt — Qcos Q| + 1} +
T+ (k+ilo+ikv)t - - )
(m+ﬂk+mm?+m{ ’ (K + il +ikv) - ..
kv ) 1kv . .
coth—vstt +Q stt—i-ﬁcoth — (k4 Uy + 2ikv)
Z'U062ikmon €(K+iUo+ikv)t
C_(t)= : — o
(k + Uy + ikv)” + Q Q

(k + iUy + ikv) sin Qt — Q cos

+1}+

s (k+illo—ikv)t |
(k + iUy — ikv)® + Q2

(k4 iUy — ikv) <COS Ot + zk‘ﬁv sin Qt) +
. ikv ) )
Q (sm Ot — oy o8 Qt) ] — (k + iUy — 2ikv) } (70)

and Q = {/(kv)> + U2. We see that the atom dynamically couples the right to
the left running wave, yielding a velocity dependent periodic redistribution of the
light between the two directions in form of damped Rabi-oscillations of the mode
amplitudes with a coupling Upe 2**« and an effective detuning of kv. Of course
due to momentum conservation this yields a periodically alternating force on the
atom. If these forces are non-negligible we get rather complicated combined atom
field oscillations.

c. Steady-State Momentum Distribution and Temperature. Lets now
turn back to the kinetic equations for the atom. Besides the average forces dis-
cussed above we find force fluctuations, which lead to momentum diffusion. Similar
to the case of laser cooling in a free standing wave field we can calculate the total
diffusion coefficient Dy = D, + Dg;, for an atom at rest [2]. Averaged over one

wavelength Dmt/\ with n, =n_ =n we find
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Ficure 29. Contour plot of the total diffusion averaged over one wave-
length. n=x =1, g =5k, I' = 3k.

A 81k (K + 70) (U5 +15) 2
tot — 9 9 2 o~ (71)
(k2 +A2) (279 + K)” + (2Us — A.)Y)
Using eq. 66 the total averaged diffusion coefficient can be written as
A 2 Ug + 7 A
Duo” = (210 (5 +70) 3-8 (EOE) [, (72

showing contributions proportional to the square of the potential U, and the
photon scattering rate 7.
In the regime where the incoherent scattering is much smaller than the coherent

. oL —\ L
one (Y < K, Up) the dominant contribution to Dy, comes from the redistribution

of photons between the two cavity modes at a rate Ug/x((E() E®)) |x:xa)/\.

Note that this quantity is rather important in context with possible applications
in quantum information processing, as it gives the heating rate out of the atomic
groundstate and limits the coherence time of the vibrational atomic motion.

With the friction coefficients calculated earlier, it is easy to estimate the steady
state temperature using

A

Dy,
tt)\ (73)

—Olot

kpT =
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In the regions where we have cooling for slow velocities, the denominator of ex-
pression 73 is positive (e. g. Uy > 0, A. = 0), and we get the following rather simple
expression for the final temperature:

(U2 +3) (5 + 270)° +4U3)
2Uok (Ko + 292 + 2U@)

kBT =h (/i + "}/0) (74)

Considering kT as a function of Uy we see that kT ~ hlU, (1 + vo/k) for k, v <
Up. The final temperature is thus limited by the single photon light shift. Hence we
cannot expect effective trapping in the single photon case. Nevertheless for a good
cavity the temperature can be much below the Doppler limit.

3.5.6. N atoms in a ringcavity

Lets us now further extend our model and discuss the N-atom dynamics in such
a twomode ring cavity. Fortunately for a given set of atoms at positions {z,} the
field equations for the mode amplitudes are modified only in a very simple manner,

namely we have to replace e¥2#%e by the collective sum S0 eF2%#n and ~o, Uy by
NﬁYOa NUO

(az) = (=K = No + i (Ac = NU)) {ax) — (30 + il0) {ag) Y €™ 4 e (75)

n=1

Analogously to eq. 65 we can write the equation of motion for the positive part
of the electric field operator as

Mz

(EWMY = (=K + i) (ED)Y — 2N (o + ilp) cosk (v — ) +

m =z,
n:l

2ncos kx (76)

a. Two atoms. It is rather instructive to write this down explicitly for two
atoms using center of mass xoy = % and relative x, = 19 — x1 coordinates

(ax)=(—K — 27 + i (A — 2Uh)) (ax) — 2 (7o + iUh) (ajF)ejFQik””CM cos(kx,e) +
N+ (77)
We see that the coupling between the atoms and the cavity field has now a

position-dependent magnitude as well as a position-dependent phase. For both
atoms at rest it is easy to calculate the steady state values of the cavity modes
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[—li — 2’70 +1 (AC — 2U(]>] (. + 2 (70 + ZU()) n,e_ZikaM COS(k’LETeZ)
{ [/{ + 47y cos?(kxper/2) 4 i (AU cos?(kxper /2) — Ac)] .

[ = (k5 + Ao sin® (ke /2)) + i(Ae — 4Up sin® (kyer/2))] }

[—k — 270 4+ i (Ar — 2Up)] n— + 2 (o + iUg) 0y €2*%cn cos (ko)
{ [/i + 470 cos?(kxper /2) + i (AUy cos? (ke /2) — AL) ] .

= (B Ayosin®(kxpa/2)) + i(Ac — 4Up sin® (k2 /2))] } (78)

(ay) =

(a_)=

Similarly to the previous section we get for the stationary forces on atoms 1(2)

Frn = Fopa =20k ({alas) = (ala))
fdip, ) = 2RkUoi ((aia_>e—2ikw1(2> — (a1a+)62ikx1<2>> (79)

Inserting the stationary values of (a4 ) the forces on each atom can be written as

Qhk’}/o
(1 + Ao cos2 (ke /2))2 + (4T cos? (ke /2) — A))?)] -

froye = { :

(5 o sin (kg /2)) + (A = AU sin (ke /2))"] |
{ [(Kc +2790) 4 (A — 2U,) — 4 (v +U3) cosz(lmrel)] (nr—n") —

8nn- (Upk + Y0A.) cos(kx,er) sin(?k:xoM)}
2hkU,
[(HJ + 470 cos?(kxrer /2))? + ((4Up cos? (ke /2) — AC))Q} .

fdim(z) = {

. [(/i + 4 sin2(k;xml/2))2 + (AC — 40U, sin2(k:xm/2))2] }

{ (ni + 773) 28in 2k, [Uo (A — 2Up) — Y0 (K + 270)] —
(ni — 773) 4 cos® kxrer (VoA + Ugk) +
nan— [16 (7§ + Ug) cos 2kz g sin ke —
2sin 25y (K + 4ro + A2 — 4U5A.)] | (80)
One clearly can see the strong influence of the atoms on each other even if they
are at large distance. It is only the relative position in the standing wave which is

important. In particular the extension of one atom out of its equilibrium position
is immediately felt by the second atom. Similar effects occur as well for the friction
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forces yielding to collective cooling or heating, as outlined in some examples in the
next section.

b. Linear chain of N atoms. Let us return to the general case of N atoms
interacting with the two cavity modes. Of special interest to the field of quantum
information is the linear chain of atoms interacting with each other via the cavity
standing wave. This can be realized e. g. by using blue detuned light (A, > 0, A, =
0) because then atoms are low-field seekers and will get trapped around the nodes
of the intracavity field. A transversal confinement could be achieved by adding laser
beams to create a conventional free-space lattice in the remaining two dimensions
perpendicular to the cavity axis.

With the atoms located around the nodes of the standing wave we can expand their

2n—1

positions by kx,, = #5=7 + €,, where the €, denote small displacements around the

potential minima which implies eF?%*%» ~ — (1 F 2i¢,,) Defining the center of mass

of the small displacements by ecp = % Zivzl €, one can calculate the back-action
of the atoms on the cavity field, neglecting the cavity dynamics as a first step. This
means that the cavity field is assumed to adjust itself immediately to the atomic
positions. By making this crude assumption we neglect of course any damping of
the motion of the atoms by friction forces.

Our calculation shows that the only effect of the atoms is to shift the cavity
standing wave pattern at an amount of pecy,

4 2
(ECVEE) = an cos? (kz — peca) (81)

where the factor u has been defined as

_ 2UyN (2UpN — A,)
K2 + (UGN — A,)*

(82)

Note that p approaches unity very fast for increasing UyN. Furthermore the
better the cavity (smaller k) the more the intensity gets shifted.

To establish the equations of motion for the trapped atoms we calculate the dipole
force acting on the n-th atom by taking the local derivatives of the potential at the
site of each atom.

d
fdip,n:_U0<%E( )E(+)> ’:p:mn
 AkUgp?

=T A sin2 (kx, — pecnr) (83)

Expanding eq. 83 around the field nodes gives the equation of motion for the
displacement of atom n under the influence of the dipole force in the form



o8 3. SINGLE ATOMS IN OPTICAL RESONATORS

(DCM/(’OD
o
o

0 5 10 15
U,N (units of hi)

Ficure 30. Frequency of the vibrational center of mass mode normalized
to wog over UyN. A, =0, k = 1.

En + Wien, =wipecn (84)
8hk2Uyn?
2 o?
— O ol 85
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wp is just the usual oscillation frequency of an atom in a harmonic potential of
strength Upn?/ (k% + A?). Using a normal mode ansatz in the form ¢, = (,e™n!
we can investigate the mode spectrum of the collective oscillations. There are two
different kinds of modes: Type (1) fulfills Zf:]:l Br = 0 which means that there is
no center of mass motion. The frequencies of all of these modes are degenerate and
just given by w? = w2, i. e. each particle oscillates in a well defined phase with the
others so that the individual effects of the dragging of the field by each of the atoms
cancels in sum. If we perturb one of the atoms all of the others will immediately feel
this through a shift of their potential wells with the change of the center of mass.
Of course, the more atoms we have, the smaller this shift induced by a single atom
gets. This can be explicitly seen by looking at the second mode type (2), which
satisfies 32| B, = Nf, (center of mass mode) with frequency w2, = w2 (1 — ).
Note that as p approaches unity, the cavity field follows the motion of the center of
mass without delay. The atoms always stay in the vicinity of the field nodes and
consequently weys approaches zero because the restoring force goes to zero. (see
fig. 30).

With this the general motion of the n-th atom can be written as a linear super-
position of the two types of modes:

en(t) = (€,(0) — ecnr(0)) cos wot + ecar(0) coswenst (86)

Of course incoherent effects in this motion will lead to damping/amplification
of these vibrational excitations. We have done some numerical studies to include



3.5. PUBLICATION 1: COLD ATOMS IN A HIGH-Q RING CAVITY 59

mn | rm u yu
I

I

0 50 100 0 100 250
fime [units of(ic")] fime [units of(ic")]

Ecm(Q. UL)

FIGURE 31. NUy = 2k, K = 1. Overdamped CM-oscillation (left) and
almost undamped relative oscillation (right).

€cm [g- u)
8reI [O' U.]

time [units of(i")] time [units of(i")]

F1GuRE 32. NUj = 0.2k, k = 1. Damped CM-oscillation (left) and rela-
tive oscillation (right).

the effect of the friction forces on either type of oscillation. In general one finds
that the modes with no center of mass oscillation (w? = w?) are only very weakly
damped, while the center of mass motion (w?,; = w3 (1 — x)) is in the overdamped
regime even for moderate values of UyN (see fig. 31). Only for small values of the
effective potential the CM-mode shows real oscillations as shown in Fig. 32. (In
these simulations we have restricted ourselves to 2 atoms although the results stay
basically the same for a larger number of atoms.) Fast damping of the center of
mass mode means of course that the two atoms get perfectly anticorrelated in their
motion around the field node. This of course implies exchange of energy and phase
information at a large distance.

For a discussion on how the coupled dynamics between the atoms could be used

to implement a quantum information processing scheme see the work of Hemmerich
24].
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3.5.7. Conclusion

The generalization of the dynamical cavity cooling model to more modes and more
atoms provides for a great deal of new physics with several possible applications to
multiparticle cooling, the study of nonlocal interactions and the controlled genera-
tion and manipulation of classical and quantum correlations. This could provide for
an interesting basis for many experiments in quantum information processing and
quantum measurement theory. As compared to ion traps one could expect much
higher particle numbers and higher coupling strengths at the expense of a shorter
effective interaction time and less control of interaction strength. Of course a gen-
eralization to a Bose-condensate as atomic medium|[34, 71] seems straightforward,
although technically not so simple. In this context the dipole force acceleration
mechanism discussed in section 2 could provide for a controlled fast output coupling
mechanism. Another important application seems to be the cooling and trapping of
molecules with a sufficient effective optical dipole moment in the spirit of stochastic
cooling via the induced cavity dynamics. As the cooling occurs without the need
of spontaneous emission one can avoid the problems connected to the vibrational
spreading of the wavefunction in this case.
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3.6.1. Introduction

Versatile manipulation of the center-of-mass dynamics of neutral atoms is today
possible with a large variety of techniques. Trapping, guiding, and coherent split-
ting of atomic wave packets have been demonstrated in numerous experiments. The
miniaturization of these components and their combination into matter wave cir-
cuits, yielding powerful devices on compact “atom chips” [35, 36], is in progress.
Efficient and practical methods for state-selective and non-destructive detection of
a single neutral atom are actually in high demand.

The basic concept of single-atom detection consists in coupling the atom strongly
enough to another physical “sensor” system. An apparent choice for the sensor
is the electromagnetic field where the atom acts as an absorber or phase shifter.
The possibility of nondestructive measurement rests on this latter, dispersive effect
[37]. By sufficiently detuning the radiation frequency from the atomic resonance,
the atom cannot absorb photons from the field, and remains in an only weakly
perturbed internal state. Spontaneous emission, and the accompanying “noisy”
mechanical effects (heating) are reduced in nonresonant interaction. However, the
phase of the detection field is shifted providing the basis of the detection schemes
38].

As the dipole moment of a single atom is rather small the atom field interac-
tion has to be enhanced by “recycling” the radiation field in a resonator with high
Q quality factor. Several cavity QED experiments have recently been performed
(39, 40, 31, 41] where the following scheme was implemented. A weak stationary
field is sustained in a single-mode of a microscopic cavity driven resonantly by an ex-
ternal monochromatic source. The outgoing field transmitted through the cavity is
monitored by a photodetector. An atom, crossing the cavity, shifts the cavity mode
frequency out of resonance, which yields a dip in the transmitted signal. Changes
as large as two orders of magnitude of the resonant transmission have been observed
for a single atom passage [39].

In this paper we study a generalization of these single-atom detection schemes
to multimode cavities. As a particular example we use circulating fields in a ring
cavity (or alternatively the evanescent fields of a high Q-microsphere) and propose
a detection mechanism based on dispersive atom-field interaction. The underlying
physical mechanism here is the atom-induced phase-locking between different cavity
modes. The scheme is shown to be suitable for monitoring the atomic motion inside
the cavity and the signal can be simply read off an intensity sensitive detector.
There is no need for the homodyne technique as it were the case for monitoring the
instantaneous phase shift induced by the atom in a single-mode cavity [42]. The
necessary conditions for detecting a single atom are elucidated and compared to
that of previously demonstrated schemes using a single-mode cavity. The central
condition turns out to be invariant under an appropriate rescaling of the detuning
and the photon number. Thus the proposed scheme allows for an operation regime
involving large photon numbers where high temporal resolution can be achieved.
After deriving some analytical estimates for fringe contrast and detection time scales
we investigate the system behaviour in different regimes by numerical simulations.
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FiGURE 33. The multimode cavity detection scheme. The field in the
ring cavity comprises two running wave modes (pumping 7; and 72, re-
spectively). In the cavity, there is a moving atom A and an absorber (D,
“detector”) in a fixed position. Both the atom A and the detector D cou-
ples the counterpropagating modes by backscattering. In addition, they
introduce extra losses via spontaneous emission into lateral modes.

3.6.2. Semiclassical model

Let us consider a ring cavity in which the radiation field is composed of two,
frequency and polarization degenerate, counterpropagating running wave modes.
We can restrict the model to one spatial dimension without masking any important
physical effect relevant to the detection problem. The positive frequency part of the
electric field can be decomposed into

EF(rt) =i Z \/;ZMT‘C/,e“a,,(t)f,,(r)ei“’t : (87)

v=1,2

where the mode functions read

filr)=€*" . folr) =" (83)

The slowly varying amplitudes «;(t) and asy(t) have been defined in a rotating frame
fixed to the frequency w of the driving fields. This external source can be, in general,
detuned from the mode frequency, by A¢ = w — we.

The internal dynamics of a two-level atom located in the ring cavity is governed
by the Hamiltonian

Ha=—hAsoi6- —ihg 3 (@ fo(Ra)os —aifi(Ra)o) . (89)

v=1,2

where the detuning is Ay = w — w4, g = \/w./26hV |éd] is the coupling constant
to the field modes and R, is the position of the atom. The operators 6. are the
usual raising and lowering atomic operators. We restrict our study to nonresonant
interaction, i. e., when the detuning A 4 is much larger than the coupling constant g.
The atom is subject to incoherent relaxation processes described by the damping rate
['4. We assume that the evolution of the internal atomic state can be adiabatically
eliminated in the nonresonant regime. Then the atom is, at any instant, in a quasi
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stationary state determined by the actual position R4, with induced dipole

) Uy + Ty
<O-*> = T 1 Oél/fl/(RA) ’ (90)
g(1+s) V=Z1,2
where
2 2
g Ay g T4
U= —5—=, Iop=———. (91)
A%+ T A% +T%

The saturation s is given by s = na/ns., i. e. , the ratio of the photon number
na = | > a,f,(Ra)|* at the atomic position and the saturation photon number

nsat = (A% +T%)/2¢% For nondestructive detection of the atom, the saturation s
must be kept low in order to avoid spontaneous emission.

The two modes contribute to the atomic polarization, and in turn, the atomic
dipole can radiate into both of them. Hence, the atom (or any other particle with
suitable dipole moment) couples two different field modes via photon scattering.
This model can easily be generalized to more contributing modes, e. g. , modes with
different transverse profile.

The total system under study is schematically depicted in Figure 1. The specific
feature is that it contains an output coupler at a fixed localized position. It is a
resonant (unsaturated) medium absorbing photons from the cavity field, and can
therefore be viewed as a detector. Indeed, we will use the fluorescence of this “ab-
sorber” simply modeled by another two-level atom as our measurement signal. The
effective coupling constant, analogous to I'g in Eq. (91), is denoted by ~ here.

The dynamics of the field amplitudes under the effects of the moving atom, the
absorber, and the pumping is described by the coupled equations [3]

. B Uy Iy
— A~ — _
) =+ _z( C 1+8) (Fc+'y+1+8)}a1

[iUy+To _y, .
e 2ikR A +’Y€ 2ikRaps Qs ,

| 1+
. [ U Iy
= A —_— -
Qo = Mo+ _z( c 1+S) (H+7+1+S)}O@
[iUo + T 2ikRa 2ikRap
B e P thtiabs , 92
1+s ‘ e “ (92)

where R, is the position of the absorber. The external pumping is represented
by the terms 7;9. It is normalized such that the stationary photon number is
n*/k? in a resonantly driven empty cavity. Let us remark that in general there can
be additional mechanisms coupling the counterpropagating modes of a ring cavity
(impurities, mirror imperfections, etc.). For the sake of simplicity, we assume these
effects negligible compared to the coupling by the atom.

Equations (92) contain the atomic position which is itself a variable. The atomic
motion will be treated semiclassically, which is a good approximation as far as the
coherence length of the atomic de Broglie wavepacket is much shorter than the
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wavelength of the radiation field. In this case, the center—of-mass dynamics follows

Ra=Va,

. U, , r

Vi= _2‘/;“1——1—03 (alazeQ’kR“‘ — c.c.) + QVTGCl—_sS (|041|2 — |a2]2) , (93)
where V,... = hk/m is the recoil velocity. In the latter equation, the first term repre-
sents the dipole, the second term is the radiation force exerted on the atom. These
equations do not contain the effect of random recoils accompanying a spontaneous
emission. To be consistent with this simplification, only the low saturation regime,
s < 1, can be studied with this semiclassical model.

Equations (92) and (93) form a closed set of equations. A general analytical
solution has not been found so far. We will solve this semiclassical model numerically.
Beforehand, we calculate the steady—state solution, which gives us an insight in the
dynamics for slow enough atoms.

3.6.3. Competitive phase—locking

Let us suppose that the atom moves on a given trajectory and the field can adapt
itself to the actual atomic position. The condition for the validity of this approach
can roughly be formulated as k > £V, i. e. , on the time scale of the field relaxation
the atomic displacement is small compared to the wavelength.

The steady—state solution of Egs. (92) can easily be determined in the low satu-
ration regime. Note that the saturation parameter s depends on the field amplitude
variables, yielding a nonlinear set of equations in (92). However, we concentrate
only on the nonresonant interaction regime between the atom and the fields. In this
regime the saturation is automatically small, s < 1, and it is a reasonable approx-
imation to neglect the saturation effect. The resulting set of coupled equations is

linear, having the solution
ar) _ Ly (m (94)
65 D 2

A~ “iAc=Up)+r+y+Ty —(ily+ Loje 2Fia — e 2ihfiar 95)
— (iU + To)e?*fia — qe2bllers —i(Ac —Up) + i+ +To )’

and D = det A. We will need the modulus of the determinant, which is
D2 = (k% + 25y + U2)” + 4U2~? cos® 2k(Ra — Rups) - (96)

In the detection scheme the radiation field is far detuned from the atomic reso-
nance, Ay > I'4, in order to avoid significant atomic excitation. As a consequence
Uy > Ty, and it is enough to take into account the dispersive coupling of the modes
in the nondiagonal terms of matrix A. In the diagonal terms, I'y is generally neg-
ligible compared to x. The detuning A¢ can be chosen so that one atom pulls the
mode frequency into resonance with the pump, i. e. Ag = Uj.

where
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Let us suppose that only mode 1 is pumped (7, = 71, 7o = 0). Then the electric
field is composed of three terms:

E(H('r’) - % K“ 1 ,Y)eikr_ ierik(QRAfr) _ ,Yeik(ZRabsfr)} . (97)

The first term originates directly from the source. The second and the third terms
represent the backscattered waves radiated coherently by the atom and by the ab-
sorber, respectively. The double-centered backscattering gives rise to an interference
in the backward propagating field. As both mode 1 and mode 2 can then be excited,
a standing wave pattern is superimposed on the pumped, running wave field. The
position of the fringes is determined by the competitive phase locking exerted by
the atom and by the absorber. The absorber alone would fix the phase so as it sits
in a node (seeks for minimum field). However, the atom can drag the standing wave
pattern and induce a modulation in the local field at the absorber position.

The absorber scatters photons at a rate 2. Thus the measurable signal, the
fluorescence, is proportional to the local intensity at the absorber. The intensity
ECE®)(Ry,) can be expressed in terms of photon number as

2 .92/,2 2
2
- |77\2 k2 (k* 4+ US) 1+ /<;U02
K |D|? k2 4+ U

where |n|?/k?* gives the order of magnitude of the photon number in the cavity,
the next factor is close to one in most of the cases of interest, and finally, the last
term describes the oscillations as a function of the atom-detector distance. The
oscillatory behaviour of the local intensity n.,s permits to measure the position
(modulo \) and the velocity of the atom. As the atom moves along the cavity
axis, the detector experiences a perfect contrast corresponding to the maximum
visibility 1, if kK = Uy. This is evidently a sufficient condition for an ideal detection
scheme. The visibility does not depend on the absorption rate 7. Since the atom
shifts the cavity mode frequency by Uy, the above condition implies a frequency shift
comparable to the mode linewidth, i. e. , the possibility of detection also by using
the frequency pulling effect.

Let us analyze how to maximize the single-atom dispersive effect described by
Up. In the nonresonant regime A, > 'y, one can approximate Uy ~ ¢g?/A4. To
increase Uy, the field must be tuned as close to the resonance as possible without
exciting the atom. Suppose that the excited state population is tolerated below a
given saturation s < 1. The requirement of low saturation is necessary to avoid
atomic excitation accompanied by noisy mechanical effects on the atomic motion.
It is then necessary to have n,, ~ 2¢g?/A% < s/n, (n4 is the photon number at
the atom). The largest Uy, being about UJ"™ =~ g+/s/na, corresponds to small
photon numbers. However, if the field intensity is very low, the detection needs a
long time to accumulate enough photons to reconstruct the signal induced by the
atom. In the following section we present an operation regime appropriate for single-
atom detection, where many photons are involved. The detuning A, is very large
and Uy is considerably reduced (Uy < & resulting in a visibility much less than 1),
nevertheless, the resolution of the intensity oscillations predicted in Eq. (98) can be

sin2k(Ra — Raps) | (98)
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fulfilled provided g > £/+/s. In this way we can detect a small phase shift of a large
amplitude signal.

3.6.4. Limit of small phase shift effect

In what follows we calculate the fluorescence signal detected by the absorber in
the limit of very large detunings yielding Uy < k. The expression (98) for the local
field intensity at the position of the absorber can be expanded to power series of the
small parameter Uy/k. On keeping just the leading order, one gets

2
Nabs = |Z—|2(1 + 2’}//&)72 l:l + QTIJO sin 2]{(RA — Rabs)‘| . (99)
In fact, the resolution of the intensity oscillations requires that the amplitude is
larger than the quantum noise inherent to the radiation field. Hence, the consider-
ably reduced visibility (2Up/k < 1) can be compensated by increasing the photon
number by strong pumping |n|?. On the other hand, the intensity is limited in order
to keep the saturation s low. The intensity at the atom,

[n|? 25+ 97 \ 2(k + 7)Y
I 2T Ny L EWEY o ok(Ra — Rus)| s (100
AR R PR e (4 )7 77 2R = B (100

is at most n = |n|?/k?. Thus the pumping is limited by |n|>/x? < ngat-

Let us denote the time resolution of the detection by 7. We assume the ideal
case when the detector collects all the photons scattered by the absorber (some
collection efficiency could be taken into account, nevertheless it can be quite large
using for example a single-molecule probe glued on a fiber tip [43]), that is n =
n2y7(1 + 2v/k)~2 photons on average. The associated quantum fluctuations, on
assuming a coherent field, is approximately /7. The amplitude of the modulation
due to the atom is 4Uy/k times the average. This signal should be larger than the
intrinsic quantum noise, which leads to the criterion

2/2v/kK
Kk < 2U, \/nm'm )
The last fraction can be maximized to 1 by choosing v = /2. In the limit of large
detuning, A4 > T'4, the maximum allowed photon number is n &~ sA%/2¢?, and
Uy ~ g* /A 4. From these scaling laws it follows that /nU ~ g\/% is independent
of Ay. Eq. (101) can then be transformed into the general condition for observing
a single atom

(101)

K < gV 2SKT . (102)

The time resolution 7 of the measurement is a crucial parameter. In one hand,
it is possible to accumulate the signal for long periods 7 > x~!. Without the
atom, the absorber sits in a minimum field. Hence the presence of the atom yields
an increase of the fluorescence regardless of the atomic position and motion. The
detection time 7 can then be as long as the interaction time which is limited by
I';' to avoid spontaneous atomic decay. On the other hand, owing to the large
photon number in the cavity, the atomic motion modulo A/2 along the cavity axis
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could be completely mapped to the fluorescence signal. To this end, 7 must be short
enough to resolve that the moving atom pushes a node or an antinode of the induced
standing wave pattern to the absorber. In the adiabatic limit, 7 ~ x~! provides a
sufficient temporal resolution. Then the condition (102) leads to k£ < g+/s which,
as was already shown at the end of the previous section, is equivalent to Uy > k at
very low photon numbers, n4 ~ 1. However, it is not always possible to choose a
detuning as close to the coupling as A4 ~ 3¢ corresponding to s = 0.1. For example,
this is the case when g < I'4, since the nonresonant excitation requires I'y < Ay.

In the experiments [40, 31] using the frequency pulling effect, the observation of
the atomic signal has been accomplished by increasing the time window 7. The very
weak transmitted intensity collected in periods of hundreds of x~! was necessary to
overcome the intrinsic noise. In fact, the operating point can be pushed towards
high photon numbers in the standing-wave cavity experiments as well. Instead of
applying resonant driving, the source should be detuned to have A, ~ x/v/3. On
the slope of the Lorentzian resonance curve, even if Uy < &, a small modulation Uy
could be amplified by increasing the photon number. Apart from some numerical
factor of the order of 1, the same condition (102) can be derived for detecting a
single atom. Nevertheless, for both the frequency pulling and the phase-locking
effect, the option of detecting the atom at a weak visibility is no longer possible
when the technical noise becomes dominant.

3.6.5. Numerical solution

The complete dynamics can be solved by integrating numerically the equations
(92) and (93). The numerical calculation includes also the effect of saturation.
As an example we chose the 5281/2 ~ 52P3/2 transition of Rb at 780 nm. The
dipole relaxation rate is I'y = 3 MHz, the recoil velocity is V.. = 6 mm/s. As an
initial condition for the velocity v4 = 0.6 m/s is taken (for comparison, the Doppler
velocity characteristic of this transition is vp = 0.4 m/s). We consider a cavity with
k=10"s"1tand g =4-10"s7!. Note that the coupling constant is comparable with
the dipole damping rate 'y = 1.85-107 s71. However, the condition (102) is fulfilled,
hence the atom could be observed in principle.

Figures 2 and 3 show the time evolution of some relevant quantities of the atom-
cavity system for two different settings of the detuning and the pumping parameters.
In order to get a better understanding of the dynamics, the evolution is presented
on a time scale longer than required for the detection itself. In the first example
(Fig. 2), the field is tuned close to the atomic resonance, Ay = 1.6 - 108s™!, which
corresponds to Uy ~ k. The saturation photon number n,, is about 8, thus the
intracavity photon number must be kept below 1 in order to avoid atomic excitation
(n = 15). In the second example (Fig. 3), the detuning Ay is set to 1.2 - 109s71
which is very large compared to the coupling constant g. The saturation photon
number is then high (ng, = 450), which allows for pumping as many as 40 photons
in the cavity (n = 60).

The local intensity at the absorber is depicted in Figs. 2a and 3a. The measurable
fluorescence signal is proportional to this quantity. In the first case the signal to noise
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FIGURE 34. Time evolution of the atom-cavity system. Time is given in
units of ps. (a) The photon number at the position of the absorber; (b)
the photon number at the position of the atom; (c) the atomic velocity in
m/s; (d) backscattered photon number at the output mirror. Important
parameters are x = 10, 7 = 18.5, g = 40, A4 = 160 (all in units of 105s71),
and n = 15. This setting corresponds to x = U.
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FIGURE 35. Same as Figure 2, but with Ay = 1.210%~!, = 60, corre-
sponding to the limit k > Uj.

ratio is almost 1. Nevertheless, when the atom pushes an antinode to the absorber,
the local intensity becomes 1 in units of photon numbers. The single photon must
be detected in a time k! = 0.1us, which is a quite rigorous requirement. In the
second case (Fig. 3a), the photon number at the position of the absorber oscillates
around 9 with an amplitude 4. For comparison, the quantum noise limit would be
only 3. The intensity at the position of the atom (Figs. 2b and 3b) exhibits strong
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oscillations, however, it remains always below 1.6 and 40, corresponding to s ~ (.2
and s =~ 0.08, respectively for the first and second case.

From Figs. 2¢ and 3¢, representing the time evolution of the atomic velocity Vy, it
becomes evident that the cavity field has an important mechanical effect on the atom.
The average deceleration is due to the dipole force. It originates from the coherent
redistribution of the photons between the two counterpropagating modes. Because
of the single-sided pumping, the redistribution process is not balanced, hence the net
force in a given direction. Let us stress that the center-of-mass dynamics of the atom
is a coherent evolution. The detection introduces just a minimum irreversibility in
the atomic motion, according to the low saturation parameter s. In a given setup
with well defined geometrical conditions, the momentum transfered to the atom can
be compensated after the detection process is accomplished.

The increase of the oscillation period in the measured signal (Figs. 2a and b)
reflects the deceleration of the atom. Thus the detection also provides information
in vivo about the atomic velocity. The visibility of the signal does not change
considerably as the atomic velocity decreases. This proves that the field can follow
adiabatically the center—of-mass dynamics in the entire velocity range involved.
The period is 1 pm, thus the 7 = k! resolution is enough to monitor the atomic
motion. When the atoms are injected into the cavity in a given, controlled direction,
the dipole force slows down rapid atoms to the Doppler velocity range. This leads
automatically to the highest possible visibility of oscillations corresponding to the
adiabatic motion limit.

Finally, in Figs. 2d and 3d the photon number in the mode 2 is presented. This
field results from the superposition of the fields backscattered by the atom and by
the absorber, which gives rise to interference for varying distance between the two
sources. The interference fringes have a very high contrast for parameter settings
such as v ~ Uy, e. g. our second example. The backscattered intensity is easily
measurable from the output power. The plots 2d and 3d can be considered as
alternative signals for the single-atom detection.

3.6.6. Conclusions

We presented a multimode cavity scheme for detecting a single neutral atom with
imposing only a minimal irreversible evolution on its internal state and motion.
The proposed scheme relies on far off resonance dispersive interaction, and is very
sensitive as it locks the phase of two counterpropagating field modes in a ring cavity,
without changing the total photon number. The condition for observing the atom
is shown to be invariant under a properly chosen scaling of the detuning and the
photon number in the cavity. When operating in the large detuning and large
photon number regime, high temporal resolution can be achieved that allows for the
monitoring of the atomic motion in the cavity.

Sufficient detection sensitivity can be achieved if the atom-field coupling constant
g is at least a few times the mode linewidth x. This condition requires small mode
volumes and good mirrors, i. e. a microscopic ring cavity. One possible option
would be the use of the degenerate counterpropagating whispering gallery modes of
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a microsphere. Close to the surface of the microsphere, the evanescent field-atom
coupling can be much larger than x and the atomic linewidth I'4 [44, 45]. Here
the single—atom phase locking effect is also strong enough to dominate the coupling
of the running wave modes due to the Rayleigh backscattering on impurities [46].
The absorber can be implemented by using eroded fiber tips [47] locally coupled to
the sphere. The application of microspheres is also promising because they could
possibly be integrated in complex atom chips [36]. These chips permit to guide cold
atoms in a well controlled way and to make them collide with the evanescent field of
the microsphere, which could be an experimental realization of the scheme presented
in this paper.
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CHAPTER 4
Cavity cooling of many atoms

4.1. Scaling laws for many atoms

In the previous chapter we have shown that for a single particle strongly cou-
pled to a high-Q optical cavity motional energy can be extracted from the particle
using the dissipative dynamics of the cavity mode. We showed that cooling times
much shorter than in free space and temperatures well below the Doppler limit are
possible without relying on atomic spontaneous emission. In this chapter we study
the possibility of applying cavity cooling to an ensemble of N atoms coupled to M
modes inside a coherently driven high-Q optical resonator.

The scaling properties of this cooling scheme for many atoms depend on the tem-
perature of the atoms. Different results are obtained for ensembles of well-trapped
particles and for free particles with large kinetic energies.

Starting with a flat initial distribution of atoms in space with large kinetic ener-
gies it was shown numerically by Horak et al. [48] that the single-atom cooling time
given in section 3.3 is still valid in the many-atom situation. This might be sur-
prising at first sight but can be understood easily: Each atom leads to fluctuations
in the cavity field and is influenced by the fluctuations induced by itself as well as
those induced by the other atoms. Assuming a temperature kg1 > AUyl so that
the atoms are not trapped, all fluctuations induced by the N — 1 other atoms on
one atom average out due to the anharmonicity of the light potential and only the
atom’s own fluctuations will be correlated with its motion resulting in an apprecia-
ble mechanical effect. In other words, although every atom feels all the other atoms
through their influence on the cavity field it will be cooled individually with a time
scale comparable to the single particle cooling time. Experimentally, however it is
not possible to use the parameters of section 3.3 (A¢c = —k, MNUy — A¢ = 0) for
this optimal situation for an arbitrary number of atoms. If the same (small) value
of Uy was used in the one and N particle situation and all other parameters except
N were kept constant too, the steady-state temperature would remain constant as
long as NUj, < k. For larger N the cavity is shifted into positive detuning where the
friction force changes sign and the atoms are not cooled anymore but accelerated.
This shows that for the many atom case the parameters have to be rescaled such that
NU, and the optical potential depth oc Uy(n/k)? are constant meaning Uy oc 1/N
and o v/N. Consequently the cooling time for N particles Te.cav(N particles)
scales linearly with the number of particles
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T0,cav(N particles) = N7¢ cqy (1 particle). (103)

As soon as the atoms get cold enough (kgT < Upl) so that they experience a
harmonic potential correlations between the atoms build up leading to collective
atomic motional modes as has been shown in section 3.5.

Numerical simulations (see sections 4.4, 4.5) and the work of Horak et al. [48]) show
exactly this behaviour: As long as the atoms are hot enough not to be trapped,
cooling progresses individually. After the atoms are trapped the center-of-mass
component of their collective motion gets damped away rapidly and some of the
atoms end up in a steady state where they do not couple to the light field any more
(relative motion modes).

4.2. Experimental realization of many-atom cooling

At the moment (December 2001) an experimental group led by A. Hemmerich
in Hamburg is preparing an experiment to detect collective motional modes of cold
neutral atoms trapped in a high-Q optical cavity (see section 3.4 and [24]). They
want to cool and trap Rb®® atoms loaded from a MOT in a high finesse ring res-
onator [49]. Rb® has a recoil frequency wpe. = 27 - 3.8 kHz and an atomic dipole
moment around d = 17.37 - 1073% Cm for its 780.2 nm transition. The electric field
inside the cavity has a decay rate of kK = 100 kHz and the electric field per photon

& = Z‘:—"; ~ 3.44 V/m. Together with the dipole moment this gives a Rabi fre-

quency per photon of g = d€/h ~ 27 - 90.5 kHz. Thus one can expect forces in the
resonator that are stronger by a factor of (2¢g/k)? ~ 130 compared to free space.
For N = 107 atoms the cavity is phase-shifted by a total amount of NU; = —150
kHz which shows that NUy ~ —«k.

Choosing A¢ = —k and 2N|Uy| = k one is in the optimal cooling regime and
the formulas obtained in section 3.3 show that a steady-state temperature of T, =
2’;—2 ~ 380nK can be reached in the resonator which is much below the Doppler
limit of RV*®, Tpopp = 141K and around the recoil limit T, = 380nK, where our
semiclassical results are not valid anymore (see next section). The cooling time for
N = 107 particles is of the order of 7¢ ~ 3.3 - 10" - 1/(%)? s. Increasing the laser
intensity (as long as s/ < 1) reduces the time needed and a cooling time below a

second seems to be realistic.

4.3. Tight binding regime

For ultracold atoms kT < hwge. a full quantum mechanical description where
the atoms are treated as a quantum gas is needed. In section 4.5 we present some
of the results obtained in such a treatment. It is interesting to note that this full
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quantum mechanical model gives the same qualitative results as our more semiclas-

sical approximation of section 3.5 with the only difference that the optical potential
Up is multiplied by a correction factor d,,, equal to

WRec
Som =11 — 104
; - (104)

due to the finite width of the atomic wavefunction.
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4.4. Publication 3: Collective dynamical cooling of neutral
particles in a high-Q optical cavity

Collective dynamical cooling of
neutral particles in a high-()
optical cavity

Markus Gangl and Helmut Ritsch

Institut fiir Theoretische Physik, Universitat Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria.

Abstract:
We show that an ensemble of two-level atoms commonly coupled to a single,
driven, damped high-(@) cavity mode could be cooled and trapped via the
correlated dynamics of cavity field and the atomic motion. For sufficiently large
detuning between the atoms and the field, spontaneous emission plays no role in
the dynamics and the cooling scheme can be applied to all particles with a
sufficient optical dipole moment. The time scale of this collective cooling process
increases with the particle number and can be optimized by suitably tailoring the
pump field amplitude and frequency. The key properties of the underlying
mechanism are discussed using a linearized model, where one can derive a closed
set of equations for certain ensemble averages and the field. The results are then
compared with N-particle dynamical simulations of the full equations.
PACS numbers:32.80.Pj,32.80.Lg,42.50.Vk
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4.4.1. Introduction

Laser cooling of neutral atoms has proven very successful to obtain very cold
ensembles of neutral atoms. Nevertheless there are limitations in the final phase
space density and the atomic species to which it can be applied. Almost all of the
optical cooling methods developed so far are linked to atomic spontaneous emission
to provide for irreversible energy extraction out of the system. This creates the
need of a closed optical level scheme and poses the problem of light reabsorption.
Recently, we have shown that for a single particle strongly coupled to a high-Q)
optical cavity the dissipative dynamics of the cavity mode can be used to extract
motional energy from the particle. The procedure does not rely on spontaneous
emission and allows final kinetic energies well below the Doppler limit[1, 2]. In an
alternative approach Raizen and coworkers[50, 51] discussed stochastic cooling of an
ensemble of trapped atoms using a sequence of momentum measurements and light
induced kicks. In this work we investigate the possibility to apply cavity induced
dynamic cooling to an ensemble of neutral particles, which are commonly coupled
to a single cavity mode via their optical dipole moment. As a first guess one could
expect, that the method should not work for a large number of independent particles
as they move uncorrelated. Hence their influence on the cavity mode would just
cancel on average. However, we will demonstrate in this work that this argument
is only partly valid and that these ideas can also be generalized to a multiparticle
system on the basis of the fluctuations of ensemble averages.

According to their momentary position distribution the particles induce a certain
total phase shift (i.e. refractive index) inside the mode volume, which shifts the
cavity resonances. As all the particles are coupled to the same modes, the total
induced frequency shift of a particular mode compared to its empty cavity value
is a collective property of the particle ensemble, which contains information on
the position distribution. This frequency shift determines the effective detuning
between this cavity field mode and an externally applied pump laser field with fixed
frequency. Hence we get the following coupled atom-field dynamics: On the one
hand the average distance of the particles from the field antinodes (i.e. the points
of maximal atom field coupling) influences the intracavity intensity. On the other
hand the intracavity light field induces an optical potential for the atoms, which
influences the particle motions and modifies their position distribution. The central
idea is now to use this interplay in a controlled way to extract motional energy
from the atomic cloud, without inducing spontaneous emissions or particle loss.
Note that this scheme possesses a close analogy to stochastic cooling as a collective
property of the ensemble (i.e. the total potential energy of the atoms) is used for
a feedback mechanism onto the ensemble. In contrast to the conventional approach
the feedback in our case is, however, automatically contained in the system evolution
via the cavity field dynamics and does not require external control.
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4.4.2. Model

Let us consider a large number N of two-level atoms with resonance frequency wy
and mass m interacting with a single cavity mode field E(x, t) = &(a(t)exp(—iw,t)+
cc)u(z) with eigenfrequency w, and amplitude «(t). Here € gives the electric field per
photon. The cavity is externally driven by a laser field of amplitude n and frequency
wp and damped with a field decay rate k. We assume that the detuning A, =
wp — wy between the atomic transition and the field is large enough, so that we can
adiabatically eliminate the upper state yielding only a small spontaneous decay rate
v(z) and an effective optical potential U(x). Following the standard procedure of
adiabatic elimination of the excited atomic state, we obtain the following expressions
for these quantities at the position x; of the i — th particle:

BV ES L

r
7(%‘) = Az—mgqu(xi) = 70U2(37i)7

U(z;) cu?(z;) = Ugu®(z;) (105)

where ¢g(z) = gou(z) = —d€u(x) gives the position dependent atom-cavity mode
coupling. Here u(z) is the normalized cavity mode function and I" the spontaneous
half width of the atomic transition and d the atomic dipole moment.

In the following we assume y(x;) < k, which can be obtained for large enough
detuning A, and we will use a semiclassical approach treating the atomic positions
and velocities as c-numbers. This is of course only valid as long as the temper-
atures are not too low. In principle an extension to a very cold atomic ensem-
ble (condensate), where one needs a quantum description of the atomic motion is
straightforward[34, 60] but beyond our scope here. The equations of motion for
the normalized field mode amplitude a and the atomic polarizations in the weak
excitation limit then read[29]:

(t) = (1Ac = r)a(t) — ZZ g(xi){o; (1)) +n
(0 (1)) = (180 = D)o~ (1)) —ig(wi)a(t), (106)

where A, = wp — w, denotes the detuning between the pump field and the empty
cavity mode and o; denotes the atomic lowering operator of the i — th two-level
atom. Note that this is true for any particle with a suitable optical polarizability.
After adiabatic elimination of the polarization dynamics, we obtain the following
set of equations:
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d=(—rk—F+iA.—iU)a+n
, d

'i:_ —U T=x;
b=l Ly,
_Dbi

gi= 2t (107)

where 7 = SN y(x;) and U = YV, U(x;) are the total mode losses and fre-
quency shift commonly induced by all atoms. p; denotes the momentum of particle
1. Note that recoil due to spontaneous emission is not contained in these equations.
As it is well known it averages out but leads to momentum diffusion [2], which is as-
sumed to be small here. Similarly Doppler cooling (heating) plays only a negligible
role under these conditions and is not included.

Let us emphasize here that the force exerted on an atom at position x; is pro-
portional to the square of the intracavity mode function u(x;) and the intracavity
intensity (photon number) I = |a|*, which depends on the positions of all of the
other atoms. This of course correlates all the particles and can be seen as a sort of
long distance interaction. We will use here a simple plane standing wave configura-
tion g(x) = gosin(kx), so that for A, > 0 (blue detuning) atoms are pushed towards
field nodes, which tends to decrease atom field interaction. For red detuning A, < 0
they are pushed towards field antinodes, where they maximally interact with the
field. If the total intracavity photon number changes during the atomic motion over
one wavelength, the averaged net dipole force is nonzero and the particle energy is
not conserved.

For a single strongly coupled particle all this entangled dynamics is theoretically
fairly well understood and has been proposed as a possibility to cool and trap a
particle[1, 2]. The efficiency of this mechanism has also been experimentally con-
firmed to a large extend recently[58]. Let us now discuss the behavior for many
particles with a correspondingly weaker individual coupling. As all the particles
interact with the same mode, correlations between them will build up and they
cannot be considered as independent. Hence we cannot expect to simply find indi-
vidual cooling of each particle. Naturally a straightforward solution of the nonlinear
N-particle equations (107) is rather complicated. Fortunately the spatial dynam-
ics of the particles enters the field mode equation only via the collective quantities
{#,U}, which gives some hope for finding a not too complicated behavior for suitable
operating conditions.

In order to get some physical understanding of the ongoing processes, we will now
further simplify the model and discuss as a starting point the special case of a rather
cold ensemble of N particles in a far blue detuned standing wave. This allows us to
expand the optical potential around the nodes to obtain:
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N
Urlp) a7 (108)
=1
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Introducing the collective quantities V, = SN 22V, = S p? and V,, =
Zi]\il x;p;, we then find the following closed set of differential equations (again dis-
regarding spontaneous emission):

a(;) = (1A — iUV, — r)a(t) +1n

Ve =2V,,/m
Vap=Vp/m = 2|’ UyV,
V,=—4|al’ UyVsp.

Note that for vanishing ensemble average values of x;, p; these quantities just
correspond to the variances of the atomic position and momentum distribution and
are related to the mean energy of the whole ensemble. Similar equations can also be
derived for a red detuned standing wave by expanding the potential around the field
antinodes, but as the atoms sit at field maxima in this case, spontaneous emission
poses more severe limitations.

Although still not analytically solvable these equations look rather simple and can
help to understand the collective atomic dynamics. Let us first note that besides
the obvious steady state solution V, =V, = V,,, = 0, = n/(k + iA.), where all
particles sit exactly at the field nodes, there exists a second nontrivial steady state
for any given V., which reads:

n
(/{ + lAc - ZUO‘/;;) .

Hence for certain conditions the influence of the motion of the particles on the
field mode dynamics simply cancels and nothing happens. (These values are closely
related to thermal equilibrium. Note that the steady state equations are not uniquely
solvable for V,, as a function of V, !) In other cases one gets an oscillatory behavior
of the collective atomic variables. Depending on the chosen parameters energy is
extracted out or fed into the common atomic motion.

One of the most interesting features of these equations is their scalability. Increas-
ing the particle number by a factor r, dividing the interaction potential U, by r and
increasing the pump strength 7 by 1/ leads to identical solutions for properly scaled
initial values. Hence we can scale up the model to a large number of particles being
cooled at the same rate. Interestingly this scaling corresponds to an enlargement of
the field mode volume with an adjustment of pump strength to maintain the same
local intensities. Let us further emphasize here that the number of particles only
enters via the initial conditions.

Vip =0, V, =2]a]* UyV,, a = (109)
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FIGURE 36. (a) Variances V, (solid line) ,V, (short-dashed line) and in-
tracavity intensity I (dashed line) as a function of time for an interaction
potential of Uy = 0.03k and resonant cavity pumping A. = 0. (b) Variance
V. for different values of the cavity detuning A. = 0 (solid line), A, = &
(dotted line) and A, = —k/2 (dashed line).

As can be expected from the one-particle results cooling will occur in the case
Uy > 0 and A, = 0. This is shown in the following figures. In Fig. 1la we show the
collective variables V,,, V,, and the intensity I as a function of time for rather weak
coupling Uy = 0.01x and weak resonant pumping A. = 0 with amplitude n = 2x.
We use a finite V,, and V,, = 0 as initial condition corresponding to a slow cold
atomic beam entering the cavity through a narrow slit as e.g. in an atomic fountain
experiment[5, 32]. Clearly V, decreases by about one order of magnitude within 300
inverse cavity lifetimes and the system tends towards a nonzero steady state. In
Fig. 1b we demonstrate the detuning dependence of this behavior by plotting V()
for three different values of the cavity detuning. While for positive A, = k (dotted
line) we find heating of the atomic ensemble, negative detuning A. = —x/2 (dashed
line) even leads to improved cooling as compared to the resonant case A. = 0 (solid
line).
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F1GURE 37. Comparison of the variance V,, as a function of time obtained
from the linearized theory above (solid line) with a direct numerical solution
of the full equations for N=1000 atoms (dotted line) and 250 atoms (dashed
line) for the same potential Uy = 0.05x, detuning A, = 0 and the same
initial variances V, = 30,V, =V, = 0.

Hence a careful choice of the operating conditions can significantly improve the
system efficiency. Note that after some time the system comes close to the nontrivial
steady state and cooling slows down considerably when the system approaches a
steady state. This unwanted behavior can be removed by a change of the pump
field strength or detuning after a certain cooling time. Similarly one could use a
more sophisticated feedback scheme for the pump amplitude and frequency as a
function of time and intracavity intensity[52].

Let us now return to the full potential and numerically solve Eqs. (107) for various
particle numbers and parameters. As this requires a rather large numerical effort we
will limit our particle numbers to 1000 and present the results only for some typical
values and compare it to our previous simple model. Let us first start with a rather
cold ensemble in a blue detuned light field, which is resonant with the cavity mode.
Fig. 37 shows the time evolution for the full equations as compared to the linearized
version, which agrees the better the more localized the particles are initially (in fact
we choose N=1000 particles (dotted line) and N=250 particles (dashed line) with
the same initial value of the collective spread V).

As a second example we consider an ensemble of atoms in a red lattice. The results
of the corresponding simulation for N = 1000 particles is shown in Fig.38. Initially
the energy of many particles is larger than the potential depth, i.e. those particles
are initially not trapped. For a sufficiently long time of the order of 10°x7!, we see
a substantial drop of the mean energy (curve (a)), while the average field intensity
(curve (c)) increases. Note that the position spread v/V, (curve b) increases faster at
the beginning, where many particles are not confined to a potential well and reaches
almost a steady state for long times, when most of the particles are trapped. This
trapping also shows up in the initial and final energy distribution drawn in Fig. 39.
Note that it is the correlated fluctuations of field and atomic position distributions,
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Simulation for N=1000 particles and U0=-0.002k
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FIGURE 38. Time evolution of mean energy(a) mean spatial width /V,, (b)
and field mode photon number I (c¢) (arb. units) as a function of time for
N=1000 particles in an attractive potential Uy = —0.002x and for negative
detuning A, = —2k.
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FIGUuRE 39. Initial (filled bars) and final (empty bars) energy distri-
bution (in units of hx) for N=1000 particles in an attractive potential
Up = —0.002k, and for negative detuning A. = —2k. The insert shows the
initial (circles) and final (crosses) phase space distributions projected on
one half wavelength.

which is responsible for the energy extraction from the system. These fluctuations
are only barely visible in Fig. (38c) as they are rather small and fast on the plotted
time-scale.

In order to make the phase space compression more visible we have inserted a
graph of the initial (circles) and final (crosses) phase space distribution in Fig. 39.
Clearly the distribution shrinks in momentum as well as in position space (Actually
the position is plotted relative to the nearest field minimum.)
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In general we have shown that collective dynamic cooling provides an alternative
method to enlarge the phase space density of a cold atomic sample without particle
loss and avoiding the spontaneous emission reabsorption problem. In principle one
does not require a closed transition but a sufficient optical dipole moment and a high-
(@ optical cavity. One of the main problems of this process seems to be the rather
long time-scales needed for the cooling process. This certainly can be substantially
improved by more refined cooling strategies and feed back type manipulation of the
cavity pump. Naturally a 3D generalization in the red detuned case is straightfor-
ward, as one automatically finds transverse confinement. The blue detuned case is
more delicate in 3D and would require either a setup using higher order doughnut
modes[53, 54] or some other extra (magnetic) confinement. Nevertheless the method
seems to work sufficiently well in principle to provide an alternative cooling scheme
for particles, where conventional methods are not applicable.
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Abstract:

We discuss a scheme to cool, trap and manipulate an ensemble of polarizable
particles moving in the field of a multimode optical cavity via the correlated
dynamics of the field and the particle motion. Using a large detuning between the
atoms and the field, spontaneous emission plays a negligible role in this dynamics
and the cooling scheme only requires a sufficiently large optical dipole moment.
Increasing the particle number slows down the cooling process but it can be
accelerated using an increasing number of field modes with higher pump
amplitudes. For the special case of a two mode ring cavity and assuming small
deviations of the particle positions from the potential minima, the frequencies and
damping rates of the vibrational excitation modes can be explicitly calculated. We
find a rapid damping of the center of mass motion and relatively slow damping
rates for the relative particle oscillations. These predictions agree quite well with a
quantum treatment of the atomic motion as used for the excitations of a
noninteracting Bose gas (at T=0) inside the cavity field. Due to the position
dependent mode coupling the cooling process in a multimode configuration in
general happens much faster than for a standing wave geometry. These analytical
results are confirmed by N-particle simulations of the semiclassical equations and

show even enhanced damping due to the anharmonicity of the full potential.
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4.5.1. Introduction

Laser cooling of neutral atoms has seen dramatic improvements towards lower and
lower temperatures and higher phase space densities [55, 56, 57]. Nevertheless there
are limitations in the final phase space density and the atomic species to which it can
be applied, as most schemes rely on spontaneous emission to provide for irreversible
energy extraction out of the system. As an essential ingredient this creates the need
of a closed optical level scheme and poses the problem of light reabsorption. This
severely limits the applicability to molecules (rotational and vibrational couplings)
and atoms with no suitable closed transition. Lately Raizen and coworkers [50, 51]
proposed stochastic cooling of an ensemble of trapped atoms using a sequence of
ensemble momentum measurements via Bragg scattering followed by controlled light
induced kicks. This method provides for an alternative in principle but there are
some practical limitations (mainly time) on this scheme. As a related option we
recently suggested the use of a strongly coupled high-Q) optical cavity field to extract
motional energy from a cloud of trapped polarizable particles. The procedure relies
on cavity damping and allows final average kinetic energies well below the Doppler
limit [1, 2]. The scheme has been shown to work well for single atoms [58, 59]. As
one might expect it can be generalized to trap and manipulate a Bose condensate
[60] inside a cavity in the small saturation regime. In principle the system works as
follows: Due to their momentary positions the atoms experience a certain position
dependent lightshift, the gradient of which is of course the dipole force experienced
by the atoms. The sum of all of the lightshifts for the atoms is just equivalent to the
frequency shift of the cavity resonance induced by the atoms. Hence this frequency
shift is a collective property of the atomic ensemble and can be used for backaction
on the atoms via the pump field. In its simplest form one uses a constant pump
of fixed frequency. The atom cavity system is then dynamically shifted in and out
of resonance with the pump depending on the momentary atomic positions. This
dynamically changes the intracavity intensity and forces on the ensemble. Choosing
the right parameters motional energy can be extracted from the atoms. This process
can be even enhanced by using a suitable feedback scheme of the intracavity intensity
on the pump or an auxiliary light field to apply some extra forces [59, 26, 28, 61].
Some key properties of this mechanism for a single high-@) cavity mode have been
investigated before [2]. In this work we generalize this system to several nearly
degenerate cavity modes commonly involved in the dynamical cooling process of
many atoms. Again we work in the low saturation limit and assume large atom-field
detunings, so that spontaneous emission plays no role and the model is valid for any
sufficiently polarizable particle. As a major difference to the single mode approach
the atoms now influence the intensity and the relative phases of the intracavity
modes. Light can be scattered between the various modes without any input-output
coupling. For a single particle in a ring cavity a strong enhancement of the cooling
has been predicted [3], as small shifts of the particle positions couple more efficiently
to relative phase shifts of the two counterpropagating fields than to intensity changes.
Generalizing this to many particles the effect should be clearly visible in the center
of mass motion in the ensemble. Going beyond a simple harmonic approximation for
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the potential wells should even enhance this effect as the relative particle oscillations
are not separable any more.

This work is organized as follows: In section II we define a classical model and
present the coupled equations for N particles coupled to M cavity modes. In section
IIT we specialize to the case of N two-level atoms in a symmetrically driven ring
cavity and in a semiclassical approach we derive some approximative results for the
eigenfrequencies and damping rates obtained for small oscillations of the particles
around their steady state positions and compare these to the case of a Bose-Einstein
condensate (BEC). The system dynamics and parameter dependence of the full N
particle dynamics using numerical simulations are then presented in section IV.

4.5.2. Classical model

Let us consider a large number N of linearly polarizable particles with electric
charge e, resonance frequency w,, mass m and positions &, interacting with a cavity
field of several (nearly) degenerate eigenmodes

M
E(Zt) =Y & (am(t)um(P)exp(—iwct) + cc) (110)

m=1
with mode eigenfrequency we and mode amplitudes a,,(t). Here £ gives the
electric field per photon and u,,(Z) are the normalized cavity mode functions. The
M cavity modes are externally driven by laser fields of amplitude 7; and frequency
wp and the modes are damped with a field decay rate ;. Solving for the combined
dynamics of the mode amplitudes ay(t) and the induced atomic dipole moments
sn(t), we obtain the following expressions, where 3(Z,,t) is the polarization density

and T, denotes the position of the n-th particle:

Q) = (i — ki)au(t) + i%ﬁl(w + (111)

$n(t) = (iAg — T)sn(t) + 2ifm, / 2}:; > () (7). (112)

with

fult) = / 4V B(E, 1)} (7).

B N
B(T, 1) = y /m D sa(t)0%(E — F).
n=1

Here A, = wp — we, A, = wp — wy, is the detuning between pump and atom and
21" denotes the spontaneous emission width of the atomic excited state. We will
assume the same driving frequency wp and decay rate s for all modes. Presumably
this is not the best possible case but the main features of our model can be well
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demonstrated in this limit. Assuming weak excitation and sufficiently large detuning
A,, we can adiabatically eliminate the polarizations s, (t) and obtain

at)=—(k —id) au(t) = (Yo +iUo) Y Y Viu(En)am(t) +m  (113)

n=1m=1
where the induced effective mode frequency shifts Uy and dampings v, are given
by

A, 9
-2 114
b= m? (114)
I 2
- 11
Vi (Z) = (2 (Z,), (116)

with g% = e%/4epmV . Note that 7, scales as 1/A? for large detunings whereas Uy
scales as 1/A,. If the detuning A, is very large we can therefore neglect the small
spontaneous emission rate vy compared to the induced optical potential Uj.

On the one hand we see that through the term V,,;(#,) we get a position depen-
dent mode coupling induced by the atoms, which leads to dynamical phase locking.
On the other hand the induced optical dipole force on the n-th particle is then just
proportional to the total intensity gradient. Hence in contrast to the single mode
case, the force strongly depends on the relative field phases in addition to the inten-
sities. This difference will turn out to be very important for the scaling properties
of the involved cooling dynamics.

The corresponding equations of motion for the momenta p,, and positions Z, of
the atoms are then as follows:

2

pu(t)==Uo [ V (117)

M
Z A Uy (T)
m=1 7=z,

T (t) = Pu(t)/m. (118)

In the limit of small saturation this classical model, Egs. (113), (117) and (118),
corresponds to the so called semiclassical approach treating the atomic positions and
velocities as c-numbers but describing the internal atomic dynamics and the cavity
field quantum mechanically. This is of course only valid as long as the temperatures
are not too low. In principle an extension to a very cold atomic ensemble (conden-
sate), where one needs a quantum description of the atomic motion is straightforward
[60, 34] and we will include some of the corresponding results for comparison later.

4.5.3. N particles in a two mode ring cavity

Let us now discuss the N-atom dynamics in a ring cavity. For a single particle or
a few particles this entangled dynamics is theoretically fairly well understood and
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has been presented in some detail [3, 24]. We will discuss here the behavior for a
large number of particles with a correspondingly weaker individual coupling. As all
the particles interact with the same modes, correlations between them will build up
and they cannot be considered as independent. Hence a simple naive scaling cannot
work and in general we have to solve the full N-particle equations.

We thus specialize our model to the case of only two counterpropagating travelling
wave cavity modes with amplitudes oy and mode functions uy(x) = exp(Likx)
being excited. This implies a sufficiently large transverse and longitudinal mode
spacing and Equation (113) then reads

N
by = (=K — Ny +i(A; — NUp)) s — (Yo + i) o Y eT>*n 4, (119)
n=1
where we assumed a unique pumping rate n for both modes. From this we get
the equation for the positive frequency part of the total electric field (110)

ED(2) = (—k +iA,) EF)(z) —

N
2N (o + iUp) Z EWM(x,) cosk (x — x,) 4 21 cos k. (120)
n=1

In order to get some physical understanding of the ongoing processes, we will now
further simplify the model and discuss as a starting point the special case of a rather
cold ensemble of N particles sitting near the antinodes of a far blue detuned field
and we will assume that the detuning A, is large enough to neglect .

With the atoms located around the nodes of the standing wave we can expand
their positions by kz,, = 2”2_ L1+ €,, where the ¢, denote small displacements around
the potential minima which implies eT?*%» ~ — (1 F 2ie,). Defining the center of
mass of the small displacements by ecp = % Zivzl €, one can calculate the back-
action of the atoms on the cavity field, neglecting the cavity dynamics at a first
step. This means that the cavity field is assumed to adjust itself immediately to the
atomic positions. With this assumption we neglect, of course, any damping of the
atomic motion by friction forces, which contradicts our initial intention. However,
for weak enough damping, this should be valid for short timescales and will allow
us to classify the vibrational excitations.

In this limit the total intensity of the cavity light field only depends on the col-
lective quantity ecy,

4 2
il 5 cos? (kx — pecar) (121)

I(x) = E(_)(x)E(+)(x) = A2

where the factor p has been defined as

 2UGN (2UpN — A,)

. 122
K2+ (2UN — A,)° (122)



92 4. CAVITY COOLING OF MANY ATOMS

Hence the effect of the atoms is to shift the cavity standing wave pattern by an
amount of pecy,. Note that p approaches unity very fast for increasing UyN. In
this limiting case the center of mass always coincides with a field node and atomic
phaselocking dominates over the external pumping.

To establish the equation of motion for the center of mass we calculate the dipole
force acting on the n-th atom by taking the local derivatives of the potential at the
site of each atom,

dl 4hkUgn? .
Jaipm = —an(l’n) = W()Ang sin 2 (kz, — pecnr) - (123)

Expanding Eq. (123) around the field nodes and adding up these single-atom con-
tributions gives a rather simple equation of motion for the center-of-mass coordinate
ecy in the form

éonr + w1 — pecar =0 (124)
where
8hk2Uyn?
2 o7
= U 12
“o m (k2 + A2)’ (125)

would be the oscillation frequency of a single atom in a potential well for a fixed
externally given field. Hence, the center of mass oscillates in the light field of a
ring cavity with a reduced frequency w2,, = wi(1l — p). This is due to the spatial
shift which the optical potential experiences because of the moving center of mass.
Note that as pu approaches unity, the cavity field follows the motion of the center
of mass without delay. The atoms always stay in the vicinity of the field nodes
and consequently wepy approaches zero because the restoring force goes to zero, see
fig. 40.

In the harmonic approximation discussed here, all other collective atomic modes,
i.e., those comprising the relative motion of the atoms, decouple from the light field
and simply oscillate at the bare frequency wy. The coupling of these modes to the
light by the anharmonicity of the potential will be discussed in the next section
using a numerical integration of the full model.

Relaxing the assumption of a very large cavity decay rate x, the cavity field
does not adiabatically follow the atomic positions, but changes with a finite delay
time. This effect gives rise to damping or amplification of the atomic vibrational
excitations. We have done some numerical studies to include the effect of the friction
forces on the center of mass motion. We find that this oscillation is strongly damped
regime even for moderate values of UyN, see fig. 41. Only for very small values of
the effective potential the center-of-mass mode shows real oscillations as shown in
Fig. 42. Again this is in strong contrast to the single standing wave mode case, where
small oscillations are only very weakly damped. For the numerical simulations we
have restricted ourselves to 2 atoms as the results are very similar for a larger number
of atoms. Fast damping of the center-of-mass mode of course means that the two
atoms get perfectly anticorrelated in their motion around the field node. Hence the
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F1GurE 41. NUy = 2k, Kk = 1. Overdamped CM-oscillation (left) and
almost undamped relative oscillation (right).

atoms exchange energy and momentum, as well as oscillation phase information at
a large distance. For a discussion on how this effect could be used to implement a
quantum information processing scheme see the work of Hemmerich [24].

Let us now derive an analytic expression for the damping rate of the center-of-
mass motion in the limit where this damping is much slower than the oscillation
frequency. We use the result for the friction force on a single atom in the field of

a ring cavity [3] and incorporate this into Eq. (124) for the center-of-mass motion
This yields

Eonr + 29 friceon + Weneom =0, (126)

where
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FIGURE 42. NUp = 0.2k, k = 1. Damped CM-oscillation (left) and rela-
tive oscillation (right).
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FIGURE 43. Damping constant ;. of the vibrational center of mass mode
over Uy. A.=0,n=1,k=1.

(K2 + (2NUy — A,))

The friction coefficient was derived assuming a prescribed atomic velocity wv(t)
in the limit where the atomic motion is slow compared to the cavity decay rate
kv < k. Equation (126), which holds only for 74, < wen, simply describes a
damped harmonic oscillation around the field node. In fig. 43 we plot this damping
constant as a function of Uy. One can see clearly a maximum of ¢, around Uy =~ k.
As the optical potential increases the damping constant goes to zero as the time lag
between the atomic motion and cavity response causing this damping effect vanishes.

One of the most interesting aspects of the N-atom system dynamics is their scal-
ability. For a standing wave cavity field [3] we have seen that increasing the particle
number by a factor r, dividing the interaction potential Uy by r and increasing the

Vfric = W,
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pump strength n by /r leads to identical equations for the mean kinetic and poten-
tial energy of the atoms coupled to the field dynamics. This allows to scale up the
system to higher particle numbers by increasing the cavity volume and the pump
field. Although we cannot explicitly show such a behavior here, we see that the
number of atoms enters the oscillation frequency only via the parameter p, which
contains only the combination UyN. Hence the dynamics can be expected to be
very similar if we keep Uy/N as well as the intracavity intensity constant. Thus by
changing the pump intensity we now can expect to have an extra handle on the
cooling time scale. This could be very helpful for very large particle numbers, where
the cooling process could get rather slow. We will discuss this in some more detail
in the next section.

Let us now get back to analytically solvable cases and compare these results with
the dynamics of ultracold atoms, more specifically, a temperature T=0 Bose-Einstein
condensate subject to a ring cavity field [60]. For this one has of course to leave the
semiclassical picture and treat the external motion of the atom quantum mechani-
cally. The corresponding Schrodinger equation has then to be solved together with
the cavity field equations, i.e. we have:

%ai(t) =[iA. — iNUy — k] ax(t) — iNUy(eT**)az + 1, (128)

A2
(e, 0= {4 Ngwala, O + Us s (06 + o (e[ Jo(a, 1)(129)

The only change in the equation of motion (128) for the field modes is that the
sum over all particles in Eq. (119) is replaced by the corresponding expectation value
taken with the momentary matter wave function. The equations for the particle
dynamics (117) and (118) are replaced by the non-linear Schrédinger equation (129)
which includes the effects of atom-atom interactions in the condensate via the binary
collision rate g.oy.

For a comparison with our results here we will neglect atom-atom interactions and
therefore set g.,; = 0. Moreover, for simplicity we will assume a resonant cavity,
A, = 0. In the Lamb-Dicke limit (harmonic approximation for the optical potential)
the stationary ground state of Eqgs. (128) and (129) can be calculated analytically
and yields the harmonic oscillator frequency

2 16U0an2 1— N2U0wR
Wo = K2 4772 ’

(130)

where wg = hk?/(2m). We see that the finite width of the wave function leads to
a small modification compared to the value (125) for N point-like particles. It is
then straightforward to calculate the spectrum of collective excitations, that is, the
eigenfrequencies of small deviations of the wave function and the cavity fields from
their respective ground states in a linearized model. In the limit of x > wy we find
the following analytic expressions for the oscillation frequency 14, and the damping
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rate v, of the lowest excited mode:

AN2UZ(1 — 2x)
V1 =Wy 1-— /{2—{—4N2U02(1—M—R)27 (131)

wo

AN?UR(1 — )
K2+ AN20UZ(1 — =5)2]2°

wo

T :wg’%[

(132)

Although derived via a quite different approach we see that the results of this fully
quantum model agree with the classical results for the center-of-mass frequency
wewm and the corresponding damping rate ¢, up to corrections of the order of
(1 — wr/wp) which are related to the spatial width of the wave function. We thus
can expect our cooling scheme to work also at very low temperatures and maybe
even provide for an alternative to evaporative cooling on the route to BEC.

4.5.4. Numerical simulations

Let us now return to the exact expressions for the lightshift potentials and numer-
ically solve Egs. (113), (117) and (118) for various particle numbers and parameters.
As this requires a rather large numerical effort we will limit our particle numbers
to 1000 and 1D motion and present the results only for some typical values. It can
be seen from the equations quite easily that in a 1D plane wave situation the cases
of red and blue detuning are equivalent, if one neglects the contribution of spon-
taneous emission. In practice this assumption would be more easily fulfilled in the
blue detuned case, where the atoms are trapped near the nodes of the field, while
in a focused red detuned field one would have the advantage of a builtin transverse
confinement. As we are mainly interested in the general performance of the cool-
ing as a function of various parameters as atom number N, pump strength n and
detuning A., we will restrict ourselves to the simplest case of counterpropagating
plane waves with symmetric pumping.

Let us start with a cold atomic ensemble in a blue detuned light field. The pump
field is assumed almost resonant with the two counterpropagating cavity modes
of the empty cavity. In Fig. 44 we show the time evolution of the positions and
momenta of N=1000 particles according to the full equations (117) and (118). We
start with a cold cloud of particles initially located near antinodes of field (potential
maximum)(see crosses). After a surprisingly short time (tf = 10/k) the center of
mass position and momentum of the cloud has damped out and the particles are
located around the antinodes of the field (potential minima) (see dots). The cooling
now proceeds on a much slower timescale. At time ¢ = 300/« the cloud has again
compressed in position and momentum space (circles). For better visibility we have
only plotted 250 randomly chosen particles out of the ensemble. Note that only very
few particles are not cooled.

The time evolution of the average kinetic energy as well as the intracavity field
are shown in Fig. 45. We find a rather faster exponential decrease of the average
kinetic energy, while the particles get more and more localised near the nodes and
the average intracavity field increases. At the same time the relative field phase
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FIGURE 44. Numerical solution of the particle momenta and positions for
N=1000 atoms for Uy = 0.001x, A, = —0.5x and n = 150k at kt = 0
(crosses), kt = 10 (small dots) and st = 300 (circles). In this figure 250
randomly chosen atoms are displayed. The solid line denotes the unper-
turbed optical potential.

TimeAevquTion of kinetic energy and field for N=1000
x 10

ﬁd infensity (a. u.)

4

Kinetic energy (a. u.)

Field phase (rad x 106]

0 100 200 300 400 500
t/k

F1GURE 45. Time evolution of the total kinetic energy, as well as the field
intensity and phase for N=1000 atoms for Uy = 0.001x, A, = —0.5x and
1 = 150k.

between the two running waves fluctuates, which leads to fluctuations of the field
nodes. This behaviour is quite different from the standing wave cavity case and
leads to strong additional damping.

An important factor concerning the usefullness of this approach is the time scale
of the cooling. Fortunately it is possible to speed up cooling by stronger pumping.
This is demonstrated in Fig. 46, where we compare the time evolution of the kinetic
energy of 300 particles for the same operating parameters and initial conditions
except for three different pump strengths n = (50,80, 110)x. We see that the time
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FIGURE 46. Time evolution of the total kinetic energy for N=300 atoms
for Uy = 0.003k, A, = —0.5k and three different pump strengths n =

(50,80, 110).
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FIGURE 47. Position and momenta of N=300 atoms for Uy = 0.003x, A, =
—0.5x and three different pump strengths 7 = 50k (circles), 80« (crosses),
110x (dots) at time xt = 500 for the same initial conditions. In this figure

50 randomly chosen atoms

are displayed.

after which the particles have lost half of their kinetic energy is approximately
inversely proportional to the pump strength. The corresponding final phase space
distributions at time xt = 500 are shown in Fig. 47.

In the next graph we show the dependence of the cooling time on the particle
number. For this we choose N=300 and N=100 particles with the same value of the
collective coupling Uy N and again compare the time evolution of the mean kinetic
energy. Clearly a significant slowing of the cooling process with particle number
gets visible. Of course this effect can be compensated by choosing more suitable

operating conditions.
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F1GURE 48. Time evolution of the total kinetic energy for N=300 atoms
and N=100 atoms for the same value of UyN = k, A. = —0.5x and strength
n = 80k.

4.5.5. Conclusions

In general we have shown that collective dynamic cooling provides an alternative
method to enlarge the phase space density of a cold atomic sample without particle
loss and avoiding the spontaneous emission reabsorption problem. In principle one
does not require a closed transition but a sufficient optical dipole moment and a high-
(@ optical cavity. Using a multimode setup as e.g. a running wave cavity, we can
considerably speed up the cooling process and lower the stringent requirements on
cavity technology and cooling time. Hence the method seems to work sufficiently well
in principle to provide an alternative cooling scheme for particles, where conventional
methods are not applicable. In principle the final temperatures predicted by the
semiclassical model are very low and are not limited by the recoil. The corresponding
approximative quantum results for very cold particles seem to agree reasonably well
with these predictions. Using more refined setups as quasiconfocal or quasispherical
cavities or even microsphere resonators should provide further enhancements of the
cooling and allow for generalisations to full 3D setups.
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Part 11

Multilevel atoms in optical resonators






CHAPTER 5

Polarization gradient cooling inside optical
resonators

5.1. Introduction

We have already discussed in chapter 2 how the existence of an internal atomic

time-scale 7p = 1/(7/) in an atom with a degenerate groundstate that can be much
larger than the radiative time-scale 7 = 1/I" can lead to cooling effects at very low
velocities kv < I' and laser power s/ < 1.
On the other hand in chapter 3 we showed that even without relying on spontaneous
emission one can achieve cooling of a two-level atom at such low velocities by the
use of an optical resonator which introduces the cavity reaction time 7, = 1/k. In
a high-Q) cavity, where k < g it was shown that cooling times

-1 2
T — WRec i
C,Cav As (29)

much lower than in free space where

(133)

TC,Dopp =

(134)

and steady-state temperatures kg1 = hx below the Doppler limit kg7 = hl' can
be reached.

In the present and the following chapter we will investigate how the mechanical
light effects on a multilevel atom (J, =N — J.=N+1land J, =N — J. = N,
respectively) are modified inside a ring resonator that is prepared in a o*-0~ laser
setup. For a J, = N — J. = N + 1 atomic transition we will show that free-space
polarization gradient cooling is dramatically changed due to the backreaction of the
induced atomic dipole on the cavity field.

A J, =N — J. = N atomic transition is known to show the phenomenon of velocity
selective coherent population trapping (VSCPT) that together with momentum dif-
fusion leads to cooling of atoms well below the recoil limit kgTr.. = (hk)?/(2m). We
will show in section 6 that by generalizing this cooling scheme to the interaction of an

103
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atom with the laser modes of a ringcavity most of the problems of free space VSCPT

e long cooling times,
e need of closed optical transition and
e final atomic density limited by photon reabsorption

can be solved.

Let us give a short mathematical account how to describe the interaction of a
Jy = Ng = J. = N, atomic transition with the laser field of a ring cavity given
by

E=Etewrt 4 Feiwrt (135)

where

E* =& (Aé, + Bé.) (136)

and

A= a+6ikz + a_e—ikz
B=p " 4 p_e = (137)

Here we have used the right and left circular unit vectors € = F1/v/2(€, +ié,).
By defining the projectors on the groundstate and the excited state

Jg
2= > |9m)(gm]
m=—Jg
Je
Pe= Z |em) (€m (138)
m=—J,

we can write the atomic density operator as

P=Pgg + Peg + Pge + Pee (139)

where p;; = P,pP; (i,j = e, g). The atomic dipole operator can be written as

D=D*+ D~
DY =d(S.é, +5_¢.), (140)

where S; and Sj are the atomic lowering operators for 0= and 7 polarized light,
respectively. In a J, =1 — J. = 2 atomic transition they read
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S, = %yglxea 4 %Wen + o) {ea]

5 = %rglxeor " %\goxelr T lgi)es]

1 2 1
So:ﬁfgfﬁ(e—ﬂ + \/;!90><€0| + E\glﬂel\- (141)

In the rotating wave approximation valid for optical frequencies the dipole-interaction
Hamiltonian

H=-D-E
=D -E*— D" E- (142)
reads
Hy=g(A'S, + B'S_) +g (ASL + BS') (143)
where ¢ = —d€& is the Rabifrequency per photon for an atomic transition with

unity Clebsch-Gordan coefficient.
Thus the system Hamiltonian can be written as

H=-A,P, +gG +gGt, (144)
where we have defined G— = A*S, + B*S_, G+t = (G™)". Dissipation via sponta-
neous atomic decay is included by using the standard master equation approach
) ?
p=—7IH plLp
Lp=—T(P,p+ pP. —25,pSt —25_pST —25,pS)). (145)

As we are only interested in the low laser power s/ < 1 and low velocity kv < I’
regime the excited atomic states can be adiabatically eliminated yielding

Peg =~ _ iA, Gy (146)
e
Pee = mG+ngG_ (147)
Pgg = —0{G~G", Pggt+ — iUy G=GT, Pag] + 270 Z SZGJF/)ggGiSJJr (148)
1=0,—,+

The cavity field is pumped from one side by o polarized light only and from
the other side by o~ polarized light with pump strength 7. In a cavity Maxwell’s
equations show that we have to take into account the backaction of the induced
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atomic dipole moment on the cavity field as a source term in the equation of motion

for E+

E=(—k+iAo) BT — 2igcosk(z — z)d" + 1 (€, + e ) (149)

where d* = (DV).

equations

For the four cavity field amplitudes we get the following

( )
q_ = (—r +ilc)a_ —ige™**=(S,)
B =(—r+idc)B. —ige ™ (S.)
B= (—k +iAg)B- —ige™(S_) +n

(150)

Note that the o polarized cavity modes a. couple to (S, ) and the o~ polarized
cavity modes [+ couple to (S_) only.

In the next section we will use these equations to calculate the evolution of cavity
and atomic variables for a J, = 1/2 - J. =3/2 and a J, = 1 — J. = 2 atomic

transition.

In the remainder of this section we want to give a more physical description of
the changes that arise inside a cavity compared to free space for a J, =1 — J. = 2

atomic transition.

First let us calculate the expectation value of the induced dipole moment for a

slowly moving atom.

Starting from eq. 140 we see that we have to calculate (Sy) by using

and noting that

we get

(824) =Tr(Spey)

tg
:_F_—Z’AGTT(SiG+ng) (151)

y=1

y=1
S,.8")Y=1/6p,_ and

)=1/6p (152)
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(S.) = —% [A(1/6T1_ +1/2T1y +T1,) + 1/6Bp, ]
(S-) =+ _igm [B(1/6IL, + 1/20Ty +T1_) + 1/6Ap_] (153)

For an atom at rest we can insert the steady-state values for the atomic ground-
state populations and Zeeman coherences

I, =13/34
I_=13/34
I, =4/17
py_ =5/34e% = (154)

defined by Tl = (gx1]pgglg1), Tlo = (golpgglgo)s p+— = (91]pgglg—1) and noting
that

—

Ef (z4) = A(24)€, + B(z,)é-
_ Ui
= 20/ (A — 2071700 ¢

we get the expected result of an induced atomic dipole moment oriented along
the local pump field polarization

g e Mg ) (155)

df = pEy (za) (156)

where we have defined the complex atomic polarization p by

10/17ig
I'—iA,
For a slowly moving atom kv < min(vyo|A°|?, k) we make the ansatz
A A% 4 pA
B~B° +vB? (157)

and

I ~ TG + oIl
Py~ (CO +iC) ¥ 4 y(Ch + iC})e?h=
This gives the correction of the induced atomic dipole moment to first order in v

& =pEf(za) + z'g(J;)e; x B (za), (159)
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where (J!) = TIL — TIL. TInterestingly di has a component perpendicular to
the polarization of the local pump field and proportional to the difference in the
population of the two Zeeman groundstate sublevels IT% to first order in v. Analytical
expressions for the first order corrections of the field amplitudes and atomic variables
are given in section 5.6.4.

A simple physical picture for the unequally populated groundstate sublevels can
be given by first order perturbation theory in the limit where I' < A,,.

Using the effective Hamiltonian defined by

Heﬂ‘ - hUoGiG+
— KU, (|A|25+51 +|BI?S_St + AB*S_S! + A*Bs+si) (160)
and using again eqs. 157 for the first order corrections in v of the cavity fields we

can define the unperturbed Hamiltonian H, for an atom at rest and the Hamiltonian
H, caused by the perturbation by

Hy=hUs[ (A1 +1B°%) /2Ig0) (90| +

(1A°1/6 4+ B°?) lg-1){g—| + (|A°[* +|B°[*/6) |g1) (o] +

1/6 (A°(B®)*[g1)(g-1| + (A°)*B°(g_1)(1]) ]
Hy=5/6hU, [(AN)*A° + AN(A")] J. +

1/6hU, [(Al)*AO _ Al(AO)*} (e—Zikza|gil><gl‘ _ €2ikza’gl><gil|)
H=H,+ H, (161)

where J, = |g1){g1] — |9-1){g-1| and z, = vt. Transforming into a comoving coor-
dinate system by T'(t) = e~*"/: we get the time-independent transformed Hamil-
tonian H = T(t)HT"(t) + kvJ, which reads

Ho=hUo|A°[|g0) (gol + 7/6 (Ig-1){g-1] + lg1){gn|) +
1/6 (I91)(g-1] + lg-1){g1]) ]
Hy = {hk+5/6hU, [(A')* A" + AN (A%} J. +
1/6hU [(A")*A” — AN(A%)"] (lg-1) (9] = lg1){g-1) - (162)
where we have used B%(z,) = A%(z,)e " and B'(z,) = —A'(24)e”** to re-
place all B’s by A’s. It is easy to see that the eigenstates of H, are
1
V2
~ 1
0 =— — g 163
[¥a) 7 (lg1) = lg-1)) (163)

with eigenvalues EY = 4/3U|A°)? and EY = Up| A°|.

[98) = —= (l91) + |9-1))
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In the comoving coordinate system the perturbation caused by the atomic motion

is time-independent and perturbation theory gives the first order corrections for the
eigenstates

58) = G -+ 5/6U0 [(A) 47+ A1) -

1/6U, [(A)A° — AM(A%)'] }165)

) = —m{k +5/6U, [(A')*A° + AN (A%)] —

1/6U5 [(A1)*A° = AY(A°)] ) (164)

and eigenvalues E& = 0 and £y = 0. One can see that the wavefunctions are
perturbed while the eigenenergies are not modified to first order in v. It is now
obvious that contrary to the eigenstates for the atom at rest [¢/%) and [¢9), |dg)
and |14) contain different proportions of |g11) which explains the imbalance in

groundstate sublevel population I14; for a moving atom. The perturbed symmetric
eigenstate reads e. g.

1 3kv

st = 5 |1+ e
s B A+ 40 = (40 = ) lan) +
3kv
-

ﬁ (5((A1)*A0 + AI(A(J)*) B ((Al)*AO i Al(AO)*)):| |g1>} (165)

This shows that new physical effects not present in two-level atoms arise inside
a cavity for atoms with degenerate groundstates. The free-space results found by

Cohen-Tannoudji et al. [21] can be recovered by neglecting cavity dynamics, i. e.
setting A! = 0.
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5.2. Publication 5: Cavity-assisted polarization gradient
cooling

Cavity-assisted polarization
gradient cooling

Markus Gangl and Helmut Ritsch

Institut fiir Theoretische Physik, Universitat Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria.

Abstract:

We show that light forces acting on atoms with degenerate groundstates are
dramatically increased by the use of an optical ring resonator in a -0~ setup.
We generalize our previous results obtained for two-level atoms inside optical
cavities to atoms with degenerate ground and excited states. It is shown that
well-known free space polarization gradient cooling is modified by the backaction
of the induced atomic dipole on the laser field. We present a detailed model that
allows the calculation of the friction coefficient and shows the existence of a cooling

force even for very far detuned lasers which makes this mechanism a candidate for
the cooling of molecules. PACS number(s): 32.80.Pj, 42.50.Vk, 42.50.Lc

to be submitted
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5.3. Introduction

The preparation of ultra-cold atoms for use in fundamental experiments that
probe the quantum nature of matter [62, 63, 64] has become a field with ever grow-
ing importance, as can be seen in the light of the 1997 and 2001 Nobel prizes. A
variety of cooling schemes to reach the low temperature regime has been investigated
theoretically [1, 8,9, 14, 22| and experimentally [4, 5, 6]. Each of these schemes how-
ever has problematic aspects that limit the reachable final temperature and atomic
density in the trap. Doppler cooling, the very first mechanism exploited to cool
atoms is limited by the random direction of the spontaneously emitted photons that
are used to dissipate the kinetic energy of the atoms. This limit can be overcome
by a more sophisticated laser setup together with the utilization of the existence of
a very long internal time-scale for atoms with several degenerate Zeeman levels in
their groundstate. A detailed investigation shows a spatially varying laser polariza-
tion to be essential for this cooling scheme leading to the denomination polarization
gradient cooling. With this scheme temperatures lower than the Doppler limit by
two orders of magnitude can be reached. Here the inherent heating process is con-
nected to the recoil momentum of a single photon absorption-emission cycle. Going
beyond this so called recoil limit is possible for certain atomic transitions [22, 70]
but connected to serious practical problems such as long cooling times in three di-
mensions. A joint problem of all of the above cooling schemes even above the recoil
limit is their dependence on spontaneous emission for dissipation which requires a
closed optical transition. Hence none of these cooling schemes can be used to cool
and trap molecules where no such closed transition exists due to vibrational and
rotational couplings. Also the achievable final atomic density in the trap is lim-
ited by photon reabsorption. In some previous work [65] we have shown how these
two problems can be overcome by the use of one or several degenerate resonator
eigenmodes to dissipate the atomic energy. We found that in the strong coupling
regime a significant reduction of cooling times as well as temperatures well below
the Doppler limit are possible for any polarizable particle including molecules and
Bose-Einstein-condensates. In this work we generalize our cavity cooling scheme
for a two-level atom to atoms with several degenerate Zeeman sublevels in their
ground and excited states moving in a -0~ laser setup. We investigate how the
well known free space polarization gradient cooling mechanism is modified by taking
into account the backaction of the atom on the cavity field.

This work is organized as follows: In section 5.4 we introduce the model of an atom
with a degenerate ground- and excited state interacting with the radiation modes of
a high-Q ring cavity. In section 5.5 we study the equations of motion for the com-
bined dynamics of the cavity modes and an atom with a J; = 1/2 — J. = 3/2 and
a J, =1 — J. = 2 transition, respectively. In section 5.6 the friction force is cal-
culated analytically and the physical origin of its various contributions is discussed
in the two limiting cases of an adiabatically following atom and cavity, respectively.
Finally numerical results for the force for arbitrary velocities of the atom are dis-
cussed.
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5.4. Model

In this section we develop the equations of motion for the combined dynamics of an
atomic transition connecting two level manifolds |g) and |e) with angular momentum
J, and J. respectively, coupled to the modes of a high-Q ring cavity. For simplicity
we will approximate the modes by plane running waves and consider only the motion
in one dimension. Generalization to three dimensions is, however, straightforward.
The intracavity field can be decomposed in two counterpropagating modes for each
polarization yielding Et = &£(aye® + a_e )&, + £(Be** + f_e~*2)&_ or in
shorthand EY = Aé, + Bé_, where &, = —J5(¢, + i¢,), & = J5(&, — i€,), and

E = Vhwp/(2¢)V) is the electric field that one would associate with a photon in
a quantum mechanical description of the light field. Here a4, S+ are the classical
cavity mode amplitudes.

The system Hamiltonian for the internal atomic dynamics coupled to these fields
in the rotating wave approximation can be written as

H=—A,P.+g(A*S, + B*S_) + g(ST A+ S B) (166)

or in shorthand H = —A,P, + ¢G~ + gG*, with ¢ = —d€ denoting the Rabifre-
quency for atomic transition with unit Clebsch-Gordon coefficient per photon and
atomic dipole moment d, A, = wp —w, being the detuning between pump and atom

and P, = Z;{j:_JS lem)(em| being the projector on the excited atomic states and
P, = Z,{f:_Jg |gm) (gm| being the projector on the atomic ground states.

To include dissipation via atomic decay we use a standard master equation ap-
proach

) i

p=—7H o+ Lp
Lp=—T(P.p+ pP. —2S. pSt —25_pST —25,pSh). (167)

where 2I" is the atomic linewidth. Decomposing the density operator as p =
Pgg + Peg + Pge + Pec, With p;; = PpP;, where 4,7 = e,g9 we get the equations of
motion for the ground state manifold and the excited state manifold respectively as
well as for the optical coherences between them

Pgg = —19G" peg + 2.gpgeG—F + 2F(‘S’Opeesg + S—pees1 + S+pe€51)
Pee = igpegG_ - Z.gc;—i_pge — 2I'pee

peg=—19G" pgg +19pecGT + (1As — T')peg (168)

Adiabatic elimination of the excited atomic states in eq. 168 yields
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g "

Peg =T _ iAaG Pgg (169)
g2

Pee = mG+P99G_ (170)

pag=—10{G G, pyg}s — iUG[G™GF, pgg + 270 > SiIGTpg,G=Sf (171)

l:07_1+

where vy = I's is the spontaneous emission rate per photon and Uy = A,s is the
optical potential per photon. For the adiabatic elimination to be valid the saturation
parameter s = ¢g/(A2 4 T'?) times the photon number has to be much smaller than
one. In section 5.6 we will have to demand additionally that kv < I' where v is the
velocity of the atom.

The fields are treated classically and hence described by a c-number amplitude o
for each mode. Incorporating the slowly varying envelope approximation and the
rotating wave approximation, Maxwell’s equations provide

(—r +ilc)ay — zge TSy
(ki +iBc)a — ige(S,)
(= )
(= )

K+ iAc) By —ige* = (S)
K+ iAc) B —ige® (S_) +n

(172)

for the amplitudes of the 4 cavity modes. n denotes the pump rate of the cavity,
2k is the cavity linewidth, A¢ = wp — we the detuning between pump field and
cavity field and z, is the position of the atom. Analogous to the fields we describe
the center-of-mass motion of the atom by a classical variable z,. This description is
adequate for not too cold atoms (Awgeeon < kgT).

5.5. System Dynamics

Let us now turn to specific examples. Instead of using a general J — J + 1
transition, we will consider the two generic examples 1/2 — 3/2 and 1 — 2. This
contains all the relevant physics and reduces the size of the equations.

5.5.1. J, =1/2 = J. =3/2
Choosing J, = 1/2 and J. = 3/2 (fig. 1) we can specialize our results of section
5.4

with the generalized atomic lowering operators for right-, left- and linear polarized
light (with respect to the cavity axis z)
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mg=-3/2 mg=-1/2 mg=1/2 me=3/2

2| 1 12
1 - =/ 7= /= /1
\/;\/5 3\/;

=- =1/2
mg 1/2 mg /

FIGURE 1. Level scheme for a J;, = 1/2 — J, = 3/2-transition.

1
S+ — ﬁ|gil/2><€1/2| + |gl/2><63/2|

S_= |9—1/2><€—3/2| + \/—|91/2><€ 1/2|

2
So= \/;’91/2><61/2| + \/;|91/2><€1/2’ (173)

and egs. 171 we can calculate the equations of motion for the expectation val-
ues of the populations of the eigenstates of J., II_ = (g_1/2|pggl9-1/2) and I, =

<91/2|ng|91/2>

IT_ = —4/970(|A]* + | B[)IL_ + 4/9,| B|?
T, = —4/970(J AP + |BI2)TL, + 4/97|A? (174)

Note that any initial ground state coherence between |g_1/2) and |gi/2) decays to
zero as there is no coherent coupling between these two states because of angular
momentum conservation. Therefor incoherent one-photon processes are the only
mechanism for population redistribution.

Inserting the steady state atomic populations

(S:) =~ 0 AL +10)
(S.)= —F_"—QMGB(H +1/311,) (175)

in eqgs. 172 we get

by = (—r +iAc)ay — (0 +ilo) (oy + e ) (1/311 + 1Ly ) + 1

a_ = (—r +iAc)a_ — (0 +iUo)(a_ 4 aye®™ ) (1/311_ 4 I1,)

By = (=K +iAc)By — (o + iU0)(By + Be**)(IL. +1/3114)

B = (—k +iA0)B- — (o + iU0) (B + Bye®®)(IL + 1/3TL,) + 7 (176)
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mg=-2 mg=-1 mg=0 me:] mg= 2
1 1
V& 3
N [2 = /1
vz V3 V2
1 !

vz \/V2

mgf—1 mg—O ng

FIGURE 2. Level scheme for a J, =1 — J. = 2-transition.

which shows that changes in the groundstate sub-level populations affect the phase
and amplitude of the cavity modes.

Note that the differently polarized field modes a4 and (4 do not couple to each
other. This can be seen clearly by calculating the steady state of eqs. 174 and
eqgs. 176 for the atom at rest at position z,

I =1/2

n° =1/2

ao . Ui —I<L—2/3’)/0+i(AC—2/3U0)
* —/i—i-iAC H+4/370 —i(AC —4/3U0)
o n 2/3(vo + iUp) €=

N —K + ZAC K+ 4/3’}/0 - Z(AC - 4/3Uo)
I 2/3(v0 + ilg)e k=
* —I{—|—7:Acl€—|—4/3’70—i(Ac—4/3Uo)
50— n —k —2/3v +i(Ac — 2/3U))
T —k+iAc k+4/3v0 —i(Ac —4/3U)

(177)

Due to translational symmetry we find equal populations independent of z,. Sim-
ilar to the two state case for strong coupling x, 79 < Uy we find a standing wave field
with a node at the atomic position. Note that the o-polarized field at the position
of an atom at rest A°(z,) = af e + a e *2 = pett=e /(k 4+ 4/3y) — i(Ac — Up))
relates to the o~ -polarized field B°(z,) = e + 072 = pe=F=e /(k + 4 /3~ —
i(Ac — Up)) by A%(z,)e e = BY(z,)et .

5.5.2. J,=1—J, =2

Let us now turn to the next example 1 — 2. Here coherent coupling decouples
the system into a V and a W subsystem, allowing ground state coherences to build
up. For this transition (fig. 2) the atomic lowering operators read



116 5. POLARIZATION GRADIENT COOLING INSIDE OPTICAL RESONATORS

S, - %m_lxea 4 %|go><e1| + lg:){ea]

5 = %|gl><eo| " %Lﬁ(ﬁ(el\ T lgi)e—s]
1 2 1
So= E|g—1><6—1| + \/;|go><€o| + E|91><61| (178)

The population equations then are

I = —5/1870| APTL_ + 1/18~| BI*TL; + 1/27| BI* Iy —
(1/97v + 1/6iUy) A*Bp,— + ce.

I, = —5/18y| BI*TL; + 1/1870|A|*TI_ + 1/27,|A|*TI, —
(1/970 — 1/6iUy) A*Bp— + cc.

o= —1/220(|AP + [ By + 2/970|APTL + 2/970|BITL, +
2/9vA*Bp,_ + cc.

b= —5/6v0(|AP + | B, — i5/6U(|AP — [ B, +1/290B" ATy +
1/6(~o + iUp) B* ATL, + 1/6(0 — ilUg) B AL (179)

where I1. = (g-1]pgglg-1), Ho = (golpgglgo)s L = (g1lpgglgr), p—+ = (9-1lpgglgr)
while for the field amplitudes we now find

ay = (—k+iAc)ay — (yo +iUo)[(ay + a_e2* =) (1/611_ + 1/200y + I1,) +
1/6(By + B-e 2 )p, T+
d_ = (—k +iAc)a_ — (o +iUo)[(a— + aye? ) (1/611_ + 1/2I1y + I1,) +
1/6(8_ + Bre™=)p, ]
By = (—k +i8c)By — (0 + iU)[(Bs + B_e™25)(1 /611, +1/2TTy +TL) +
1/6(ay +a_e > )p ]
Bo=(—k+iAc)B- — (yo +iUp)[(B- + Bre®™)(1/6I1 + 1/200y + I1_) +
1/6(a + ape®™)p ]+ (180)
The amplitudes of the differently polarized modes are now connected by the
atomic groundstate coherence p,_. Obviously there is a mechanism for atomic
population transfer via a stimulated two-photon process even for the vy — 0 case
in the J;, =1 — J. = 2-transition. Later we will show that this allows for a new
mechanism to cool atoms in an efficient way even for large atomic detunings A,

where only cavity dissipation is present.

We can again calculate the steady-state for the combined system atom and cavity
to find
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I, =13/34
M =13/34
Ty =4/17
Py = 5/34€2ikza
0 n —k — 10/17y0 + i(Ac — 10/17Uy)
T TR A R+ 20/1T90 — i(Ac — 20/170,)
N n 10/17(yo + iUp) e2k=e

—K + ZAC K+ 20/17’70 - Z(AC - 20/17U0)

g " 10/17(yo + iU )e~2k=
T k4 iAc K+ 20/17y — i(Ag — 20/17U,)

 —k+iAc K+ 20/17y —i(Ac — 20/17Up)
Again the populations are position independent and also independent of ~, and

Uy. We see that egs. 177 and 181 yield the same results for the fields, if we take
account of the different Clebsch-Gordon coefficients.

5.5.3. Forces

Let us now turn to the light forces induced by the field. Following the standard
semiclassical treatment [14] the expectation value of the force operator reads

f==g(Tr(VGTp) +Tr(VG p)) (182)

For an atom at rest we simply insert the steady state value for the optical coher-
ences to find for a J; = 1/2 — J. = 3/2-transition

f=fep + Jaip
Fop=2k0([e |2 — o P)(1/3TL + L) + 200(|B: 2 — |8_[2)(IL +1/311,)
faip=2RkiUy(a’La_e 2% — o* e )(1/311- + I1;) +
2hkiUy (8% B_e 2F* — B* B, e*™=e)(I1_ + 1/311;) (183)

Here f,, denote contributions stemming from incoherent photon scattering out
of the cavity proportional to vy. f4;, denote contributions from coherent photon
redistribution between the modes proportional to Uy. Clearly although we have a
standing wave formation all forces vanish for an atom at rest and symmetric pump as
one would expect from translational symmetry. Hence the atoms are not drawn to a
specific position and see a constant adiabatic potential. However this symmetry will
be broken for a moving atom and forces will appear, which depending on parameters
can accelerate or decelerate a moving particle. This is similar to the free-space case,
which can of course be recovered by setting a— = S, = 0 and neglecting any time-
dependence of o, 5_.
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For a J, =1 — J. = 2-transition we find

frp=2Rkyo(|os [* — o [?)(1/611- + 1/21To + IT,) +
2hkyo(|B+* — 18- *)(TL- + 1/210, + 1/611,) +
13 hko(Fos — Fra_) +
1/3p,_hkyo(a’.By — a8

faip=2RkiUg(a’ta_e 2% — o ay e )(1/611_ + 1/210y + I1;) +
2hkiUy (8% B_e 2F2e — B* B e*F=e)(I1_ + 1/211y + 1/611,) +
1/3p4_ihkUy(a’ f_e 2% — o* B, k) —
1/3p_4ihkUy(ay B *Fe — a_ Bt e~ 2k=e) (184)

Comparing eqgs. 183 and 184 we see that the additional terms in eqs. 184 are
caused by two-photon transitions between modes of different polarization mediated
by the groundstate coherences p,_ and p_,. In free space only the first and the
third term on the last line in egs. 184 would be present since all other terms contain
unpumped modes of radiation (a_,5,).

5.6. Moving atom

In this section we will turn to the more interesting aspect of the influence of the
cavity on the cooling properties.

For the coupled system atom and cavity there are 3 different time-scales: T, =
1/k, Tr = 1/T and T, = 1/(v0|A°?).

T, = 1/k is the cavity time-lag, T = 1/T is the radiative life-time of the excited
atomic state and T, = 1/(79]A°|?) is the optical pumping time (atomic time-lag).

For adiabatic elimination of the atomic excited state manifold and low cavity pho-
ton number |A°|? the inequality &, 9| A°|* < T must be fullfilled. Due to the three
time-scales there are several different parameter regimes to be studied depending on
their relative size.

5.6.1. Adiabatic following of cavity dynamics

Let us first look at the case of large atom-pump detuning and a slow atom with
a 1 — 2 transition. If 7| A°]* < k and kv < k the cavity field will follow the atom
adiabatically, in this regime we can neglect any time lag of the field modes as long
as kv < k. Inserting steady-state values 181 we obtain for the force on the atom
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20/17(/43’70 — AcUo)
k2 + AZ
20/17(U0/€ + ’YQAc)
k2 + AZ
20/17(kyo — AclUy)
K2+ AZ
20/17(UOI€ + ’)/oAc)
K2 + AZ

faip = —2/30kUo| A°*C; | 1 +

5/3hkUy| A°|*(J.)

Fop = 5/3hk30 AP ( ) [1 -

2/3hk~o| A°)2C; (185)

which gives as a total force of

20/17(kyo — AclUy)
k2 + AZ

20/17(U0li + Ac’}/g)
K2+ AZ

f=2hkyo(J) A |1 +

_I_

5U5 —
30,

Note that the part that is multiplied by 1 in the first term of the expression for
the force is just the result obtained in the original work by Cohen-Tannoudji et al.
[14] in the free-space regime. Noting that ay = 3. and a_e 2% = 3, ¢%*2 we see
that the bracket in the first term is just |ay|? — |a_|?, which results from a modifi-
cation of radiation pressure in a ring resonator. The second term is proportional to
i(apar e 7 — ot o_e** %) and does not appear at all in free space (lack of counter-
propagating modes of equal polarization). It describes the dipole force exerted by
the co-moving standing wave created by the atom. This term becomes dominant
for 7o < Up. As (J.) depends on |A°? like 1/|A°? and C; = —vo/(2Up)(J,) it
can be seen, that in this limit the total force fg;, + f,p is independent of the in-
tensity. Obviously f,, < fap if 70 << Up as opposed to the situation in free-space,
where radiation pressure is stronger than the dipole force even in this case. The
explanation is of course that in free-space the stimulated redistribution processes
that are the origin of the dipole force are limited to a finite number of steps in the
case of a ot-0~-configuration [14]. In a cavity this argument is no longer correct.
There can be an unlimited number of redistribution events due to the existence of
a counterpropagating beam for each of the two polarizations.

For a very slow atom (kv < |A°*yy) eq. 186 specializes to

hk (J.)|A%?

(186)

kv 30 Uo’)/o 20/17(/‘17@ — AcU())
= Qhkryo— —
S =200 1 TR + 52 K2+ AZ
5U02 — ’}/3 ]{I_U@ U()’Y(] 20/17([]0/‘1 + Ac’)/g)
3Uo 7 17 (UE +573) K2+ AZ

hk

(187)
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Al .

/2 / kz

FIGURE 3. Cavity electric field in a o™-0~ setup, modified by an atom at
position kz, = 0 and kz, = 7/2 respectively. The field scattered by the
atom has a cosine envelope and a polarization along the local pump field.

which is clearly independent of the intensity |A°[2.

Here we have used

()= 30 Uoo kv
AT (UG + 5%) A%

In the case of a 1/2 — 3/2-transition we will show later (section 5.6.3) that in
this limit there is no force on an atom.

The effect of the atom on the cavity field is easy to see (eq. 189 and fig. 3). The
first term is the pump field which is of linear polarization rotating around the z-axis.
The atom creates a standing wave field with polarization parallel to the field at its
position and a phase dependent on its location. This scattered field is dragged by
the atom as it moves along the z-axis. E. g. for the atom at position kz, = 0 the
scattered field is polarized along the y-axis while it has a polarization along the
x-axis if the atom sits at kz, = 7/2. The total field inside the cavity is the sum of
the pump and scattered field.

(188)

Et= L(sm kze, + cos kzé,) —
R — 1QA¢
20y + U neosk(z — z,)

in kza€y kz.€,) (189
17%—2'Ac/£+20/1770_Z'(AC_2O/17UO)(81H Za€y + cos k2,€,) (189)

5.6.2. Adiabatic following of the atomic dynamics

In the good cavity limit where k < 7y the atomic variables will follow adiabatically
the evolution of the cavity fields as long as kv < 7| A°|?. Hence we cannot expect
any atom mediated force terms for either transition. Consequently eqs. 183 for a
1/2 — 3/2-transition simplify to

fro=Nky0d/3(|or [* — a—[* + |54 [* — [B-?)
Faip=hkiUpd/3 [(of o + BB )e ™™ — (aay + B2 B, )e"™™]  (190)
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FIGURE 4. Cavity line profile. A moving atom can shift the counter-
propagating pumped cavity mode in resonance.

Obviously all modes are weighted by the same combination of steady-state atomic
populations and Clebsch-Gordon coefficients. Differing photon numbers can only be
expected for a moving atom which produces a velocity-dependent index of refrac-
tion. Copropagating modes will experience a refraction index different from coun-
terpropagating ones due to the Doppler-shifted cavity frequencies. This will result
in non-zero cavity-mediated dipole- and radiation pressure forces on the atom in
either transition.

Eqgs. 184 simplify to

Frp = B0 115/102(Jay 2 — | |2 + 8,2 — |8 [2) +
5/102e 2" hkryo(Bray — Bra-) + 5/102e** % Ak (ot By — o B-)
faip = hkiUp115/102 [(aa_ + BLB-)e ™ — (o ay + B By )e* ]
5/102e* i hkUy (o e 25 — o* B e*Fe) —
5/102e 2" hkUy(ay 527 — o B e ?kee) (191)
We get additional force terms due to the steady-state atomic ground state coher-
ences in both f,, and fgz,. While we have photon redistribution between modes of

equal polarization only for a 1/2 — 3/2-transition, stimulated Raman transitions
between |g_1) and |g;) can transfer photons between o™ and ¢~ polarized modes.

5.6.3. Full dynamics

In the intermediate regime between the two previous limiting cases (k &~ vy or
70 < k and kv & k) we have to deal with the combined time-dependence of cavity
and atomic expressions. For this one can still get analytical results in the limit of
a slow atom (kv < min(yy|A°|%,x)). This allows one to find a qualitative picture
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FIGURE 5. a) Copropagating modes are shifted out of resonance and coun-
terpropagating modes are shifted into resonance by a moving atom. b)
Cavity fields for an atom at rest (top), kv = 79 (middle) and kv = &k
(bottom). Ac = —1.2T", Uy = —0.1T", 79 = 0.1T, x = 0.3

of the interaction between a multilevel atom and the cavity modes (choose A¢ < 0,
Uo < 0)

An atom at rest with equally populated ground state levels shifts all cavity modes
closer towards resonance, but still the pump is red detuned with respect to the cav-
ity. An atom moving in positive z-direction shifts the counterpropagating modes
B_, a_ into resonance while the copropagating modes «,, [, are shifted out of
resonance even further (fig. 4). Hence the o~ -polarized light intensity gets larger
than the o™-polarized and the atom is optically pumped into IT_. If the population
was completely pumped into this state, the coupling between atom and o -polarized
cavity modes gets weaker, leading to an increase in o™-polarized light intensity and
increased redistribution to II,. Therefore the combined system atom and cavity
reaches a steady state with a non-zero population difference and different intensities
for both polarizations of the intracavity field. The force on the atom in this steady
state is exerted mostly by the o~ -polarized light (fig. 5). For the 1/2 — 3/2 tran-
sition this forces are caused by one-photon transitions only, for a 1 — 2 transition
there are additional two-photon processes at very low velocities, even for 7o = 0. In
free space these two-photon effects lead to a time-lag between the induced atomic
dipole vector and the local electric field leading to the well known polarization gra-
dient cooling effects described by Cohen-Tannoudji [14]. Equivalently an atom with
very small 79 moving in a cavity experiences a non-aligned cavity field due to the
non-zero cavity reaction time if s is not too large.

5.6.4. Friction forces

Let us now study the limit where T},; < T, where T.,; = 1/(kv), that is a
slowly moving atom, more carefully. To this end we expand the cavity fields in
the form A ~ A° + vA', B ~ BY + vB! and the atomic groundstate populations
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as II. ~ % +oIl}. Fora J, =1 — J. = 2 transition we have additionally
pr_ 2 (CO+iCP)eka 4 (Ol +iC})e?*= In this subsection we will set Ag = 0 in
order to increase readability of our results.

We note that the population imbalance (J,) = II, —II_ can be written as (J,) =
—2Il_v for a slowly moving atom. Using symmetry considerations we see that
BY(z,)e?**e = A%(z,)e **@ and Bl(z,)e**s = —Al(z,)e ** . Furthermore we note
that C? =0 and C} = 0.

Hence we have the following two algebraic equations for the first order corrections
inv fora J, =1/2 — J. = 3/2 transition

1 _ 1 1y+ 20 1/ A0\«
1_[7———2‘140|2 [(A AT+ AT (AY) }
1 AP +ily) e @%
A =TT 4/3070 & i00)] (4/3 I+ 3k‘>, (192)

where A = ne**e [(k + 4/37y + i4/3Us). Note that an unbalanced groundstate
population is only due to a time-lag in the cavity response for a 1/2 — 3/2-transition.
Hence one cannot expect any non-trivial kinetic effects in the limit where the cavity
fields follow the atom adiabatically. This explains our previous result of section 5.6.1.
We get the following three equations for a J, =1 — J. = 2 transition

Uy 15 .
M= 200t 22 {50 (A% A0 4 e A% A0 _ e
-0 T 1020 AP [5%( + ) +ilh Cc)}
Uy 6 k 5 Us .
cl=_20m 2 — (A A 4 ce) — (A AC — ce
i T T T 3dy|A0  3[A%P102 LO< +ee) =i Cc)]
2A° (o + iUp) 10
1_ 5/6kITL —ik/6C) +i—Fk 193
/4;[/1—1—55/51(704—2'(]0)]( [ORIL — ir/6CT + iz ) (193)

with corresponding AY = net*? /(k + 20/17v + i20/17Uj).
Note that we recover the equations found by Cohen-Tannoudji by setting A = 0,
i. e. neglecting any atomic influence on the cavity field.

a. J,=1/2 > J, = 3/2.
_8/3hk;2v|A0|2ﬂH1

Jro K2|b|? 3k~
[4U§n2 +28/3v2K? — 3/4K* + 160/9k0 (72 + UZ) 4 256/27(72 + U§)2]
—8/3hk20|A°2 (8 ., .

Faip = e SR UGR? (5 +4/330) +

16/9U0 [(18 + UZ) (5 +8/3%0) + w(UF + 3/ 2305 + 313)] } (194)

where
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b=r+4/3(y0 +ilp)
A0 — geikza
4/3kUy

' =
(K +4/37)(k + 8/37v) + 32/9U¢

(195)

for 9 > 0.

Obviously radiation pressure f,, is caused solely by the cavity-induced II*, while
there is a second term in the expression for the dipole force fg4;, that is the cavity-
induced force, as for a two-level atom in a ring cavity.

In the strong coupling regime where k, vy < Uy, we get I1_ = 3k/(8Up) and we
receive for the friction forces

_ G4 kU A

frr =15 e (196)
48 hk2U0’AO’2 64 hk’2’)/0U0|A0|2

o= T2 (197)
48 hk2Uy| A°|2

fror = g%v (198)

The total force f;, is just the result we obtained in the corresponding limit for
a two-level atom in a symmetrically pumped ring cavity if we replace 4/3Uy by U.
This means that in the limit where s, vy < Uy, the radiation pressure force that is
caused by the motion-induced population difference and the corresponding part of
the dipole force cancel each other.

b. J;, =1 — J. = 2. In the limit of a slowly moving atom, the general friction
force can be thought of as a contribution of cavity mediated terms (proportional to
|A°?) and atomic mediated terms (independent of |A°|*). Thus for high intensity
|A°? the cavity mediated force terms (egs. 198) will dominate, while for small
intensity the cavity-modified terms in eqs. 186 will prevail.
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_ 2hkryou] AO?

fro= i {5/6#111 [6600/512(73 +Ug) — 230/51y0k —

2% — 13200/51%4% ] +

K2 /6C} Uy (230/51 + 13200/51%0 ) +

5510
5—11—7ka [10/55m2 +240/51 k70 + 13200/512 (73 + Ug)] }
fiy =~ g 5/OR° LU (230/51f<; +13200/51 70) .

K?/6C} [6600/512(73 + U3) — 230/517pk — 2K% — 13200/51273} +

55 10
ok [(24055/51270 +350/51K) (42 + U2) +
120/51k(~2 — U2) + 230/55/{270} } (199)

where

3

| 0|2:(5+20/17%) + (20/170,)2
|b]* = (k + 55/517)* + (55/51Up)?

[\

We did not insert our result for C’i1

-1
o + T3 (0 + U) (s + 55/5170)|

§
3

10k 1500k , , 55
{34|A0\2 ~ Sz 0 T 00 (ﬂ * 5_1%) *

6875
m =1 2
3 [ " 512|b|2<73+U3>H 200

and II_



126 5. POLARIZATION GRADIENT COOLING INSIDE OPTICAL RESONATORS

3 {100(598 + UF) — b [90m70 + 5162 + 602 (35 + U3)] |

It = 201
- ul + u2 ( )
5

50 , 0,
ul= 9 {% + W<5%w + fiUo)} {70 + W(% +Uy)(k + 55/51%)]

18 102|b|2 51|b|2
w =Ko + 55/51(7g + Ug)
as the expressions for the forces are already complicated enough.

In the regime where k, vy < Uy, the expressions for the forces again reduce to the
corresponding ones for a two-level atom.

12 10 25
w2 = Yo [1 + (w— 570@} [2 +10=—-55/51(75 + U(?)}

5.6.5. Far off resonance force

a. J, =1/2 — J. = 3/2. Expanding eqgs. 174 to first order in velocity shows
that II1 = 0 for 7 = 0, hence we get only the second term in the expression for the
dipole force (eq. 183)

fm —8/3Nhkv| A2
e apP

which again is a similar result to the one we received for a two-level atom in a
symmetrically pumped ring cavity [3]. Hence in the strong coupling limit, cavity
enhanced cooling should work also for high detuning.

32/9U3 (202)

b. J,=1— J. = 2. For this transition we get a non-zero population imbalance
for 7o = 0. Setting |A%? = 1 eqgs. 199 specialize to

30k
I =
YT
4k
1__ 2.2 2 2.2 2
12k
(Al)*AO +c.c.= —m(l + q>
1\* 40 2Zk
(AT A° = c.c.= — (11 + 360) (203)

where we have defined the dimensionless parameter

—512K* — 1225U2K7 + 180025 U4

T 512k + 138250242 + 180025260

512

q

to simplify the notation of our results.
For the force up to first order in velocity we get



5.6. MOVING ATOM 127

—_— O(\
2 N -
£ N\ :
(@] \‘\\ //
=)
o -0,2}
&) \
8 \
o4 . 7 L
0 0.5 1
kv/T"

FIGURE 6. Total force plotted against the velocity for a 1/2 — 3/2-
transition. x = 0.31", Uy = —0.31", v9 = 0.011', Agc = —1.2T".

_ 16k3v
30 - 342Uk (K% + (55/51U4)?)

fdip =
q(=512k* + TT75UF K* + 552 /512046 - 1800) +

(—=51%k* + B5375UZK* + 55% /512U, 8400) (204)

which is clearly different from the corresponding expression eq. 202 for a 1/2 —
3/2-transition. For k < U, we see that ¢ = 1/6 which leads to the result eq. 202
which we obtained already for a 1/2 — 3/2-transition with the corresponding
Clebsch-Gordon coefficients. For Uy < k (bad cavity limit) we get ¢ = —1 and
consequently fg, = 0. In the absence of any atom-mediated force terms there is no
force on the atom as the cavity-mediated ones vanish in the bad cavity limit.

5.6.6. Velocity dependence

Solving eqs. 183 for a J, = 1/2 — J. = 3/2-transition or egs. 184 for a J, =
1 — J. = 2-transition numerically for a moving atom we can study the variation
of the forces with the velocity v. An intensity |A°/* = 1 and mass m = 10hk?/T
(Rb® would have a mass of 6.2 in these units) has been chosen in all of the plots.
A lower photon number would stress the force terms independent of the intensity
while a higher photon number would lead to dominating cavity mediated terms that
are linear in intensity.

Note that in all of the subsequent plots the conventional free-space Doppler cool-
ing, situated at kv = I' has been neglected. For U, < 0 it would add a decelerating
force in this high-velocity regime.

Fig. 6 shows the total (radiation pressure and dipole) force acting on an atom
that is blue detuned with respect to the pump field (A, < 0) but red detuned with
respect to the cavity modes (A, — Ag > 0) for a 1/2 — 3/2-transition.
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FIGURE 8. Dipole-, radiationpressure-, and total Force plotted against the
velocity for a 1 — 2-transition inside a ring resonator (left) and in free
space (right) respectively. k = 0.3T", Uy = —0.1T", 9 = 0.02T", A = OI".

Comparing this with fig. 7 we see that there is an additional structure at kv = ~q
for a 1 — 2-transition. This is exactly the atomic mediated part (cavity-modified
polarization gradient force) which we found in section 5.6.1. Fig. 8 (left hand side)
shows essentially the same plot but with Uy > 0 and A¢ = 0. The dipole force
faip and the radiation pressure force f,, are shown additionally to the total force
fiot- It can be clearly seen, that the atomic mediated force at kv =~ 7, still leads to
deceleration while the cavity mediated force at kv ~ x accelerates the atom. The
right hand side of fig. 7 was obtained by modifying eqs. 184 to recover the free-space
situation of [14]. Our results are in accordance with the the ones in this previous
work. Furthermore as we have chosen |Uy| = 5y the dipole force in the cavity setup
is always larger than radiation pressure. Due to the lack of counterpropagating
modes of equal polarization allowing unlimited stimulated photon transitions, f,,
is always larger than fg;, in free space. Additionally the force in the cavity is
always larger than the force in free-space for corresponding velocities which shows
the enhancement of kinetic light effects in resonators.
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5.7. Conclusions

We have shown that the induced dipole of an atom with a degenerate groundstate
moving in a ot-0~ cavity laser field leads to significant changes in the mechanical
friction coefficient even in the bad-cavity regime where cavity dynamics is negligible.
Although we have included spontaneous atomic emission in our model it was shown
that even for a very far detuned laser field considerable mechanical light effects still
exist. Hence this cooling scheme is in principle suitable for any polarizable particle
including molecules and Bose-Einstein condensates. It can also be expected that
interesting multi-particle effects arise which could be used to implement quantum
computational schemes.
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CHAPTER 6
VSCPT inside a ring cavity

6.1. Introduction

As we have already mentioned in section 2.2.4 velocity selective coherent popula-
tion trapping in free space has some serious problems: The achievable cooling times
are relatively long due to the lack of a cooling force and VSCPT needs a closed
optical transition and spontaneous atomic emission to reach the final dark states
which also limits the final density and temperature. In the next section 6.2 we will
show that a generalized dark state cooling scheme involving high-Q cavity fields can
overcome these disadvantages of free space VSCPT.

6.1.1. Cooling phases

In principle a full treatment of VSCPT has to be based on a quantum description
of atomic motion.

For practical calculations however the atom-field dynamics can be split into two
phases:

1. Precooling towards temperatures somewhat above the recoil temperature (need-
ing a large number (> 10%) of photons to be scattered).

2. The final VSCPT step which requires only one (or very few) spontaneous jumps
to reach the velocity selective dark state.

While phase 2 definitely requires a quantum description, a semiclassical descrip-
tion is adequate in phase 1. The validity of a semiclassical treatment for cavity
induced cooling above the recoil limit (but even much below the Doppler limit) has
been shown in some earlier work by us by direct comparison of semiclassical calcula-
tions and full quantum Monte Carlo wavefunction simulations (see e. g. section 4.5).
These methods could in principle be also applied here.

The central goal of the the next section 6.2 is to show that a strongly improved
precooling phase going far below the Doppler limit without spontaneous emission
should be feasible using high-Q ring cavities. As cooling time is a central bottleneck
of VSCPT, this makes it an ideal basis for the final VSCPT step and should greatly
enhance the overall performance. For this part a semiclassical treatment is sufficient.

131
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6.1.2. Role of the cavity for the final VSCPT cooling phase

It is rather obvious at least for quasi 1D cavity geometry, that the periodicity of
the cavity field limits cavity induced cooling to the recoil temperature. However,
one could argue, that the cavity would negatively influence the final VSCPT step
and prevent the system from reaching sub-recoil temperatures.

In order to clarify this objection and put our arguments on firmer ground, we have
used a quantum description of the atomic motion with the following results:

In general it turns out that the cavity only plays a significant role and leads to
dissipation when the relevant time scales are comparable with the cavity photon
lifetime. However, for a realistic setup one always has kvg.. < Kk, so that one
can adiabatically eliminate the cavity dynamics in the VSCPT regime and the field
always adjusts to the momentary atomic state. Hence no further cooling can be
expected.

This argument can also be made more explicit. Expanding the atomic wavefunc-
tion in terms of plane waves

o0

(D))= > (calg-1,p + nhk) + dulgr, p — nhk)) (205)

n=—oo

one finds, that the backward scattering term for the cavity field amplitude van-
ishes, if the momentum width of the wavepacket is smaller than the recoil momentum
(i. e. a delocalised wavepacket larger than a wavelength will not coherently backscat-
ter the light). Hence in the subrecoil regime only the pumped fields persist as in free
space. This is true for any internal atomic state (dark and bright state). The final
cooling step hence involves only the usual o*-0~ field configuration. The situation
then is largely identical to the free space situation, which is fairly well understood
and has been treated extensively in literature [22], so that we do not need to include
it again in this work in detail.

Nevertheless, in the next section we included some more explicit considerations
and calculations to substantiate this point. Following the lines of the original
VSCPT treatment by C. Cohen-Tannoudji [22], we present the equations for a
moving atom with a velocity distribution narrower than a single recoil momen-
tum op < hk. Atomic motion still couples the dark and bright internal states with
respect to the momentary fields so that the standard VSCPT mechanism is still
present. Nevertheless, our calculation shows one small difference to the free space
case. While an atom in the VSCPT dark state completely decouples from the field
and stays in this dark state an atom in the bright state will phase shift the intracav-
ity field and induce some dynamics, which will transfer it slowly to the dark state.
In principle this enhances the effective dark volume in phase space and speeds up
cooling. However, in practical situations kvg.. < k this process is too slow to be
significant.

In addition, the cavity still enhances the effective field present, which simply
rescales the light intensity and increases the number of spontaneous emission events.
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In this sense the cavity will also lead to enhanced effective cooling rates in this
ultracold limit.

Nevertheless, the final step in the VSCPT process can only occur via spontaneous
populations of v = 0 dark state.

Note that the situation should be different in a high-Q wide angle spherical cavity
setup which, however, seems to be hard to realize in practise.

6.1.3. The role of many atoms

As we have shown in some earlier work [3] and in chapter 4 cavity induced cooling
can be extended to several atoms. In general they will influence each other via the
field, which gives limitations on the number of atoms and cooling time scale. Of
course such a behaviour must also be expected in this model. However, the existence
of a dark state strongly reduces these limitations, as an atom in the dark state does
not see the field any more and hence should not contribute in the dynamics. In
addition it should stay in the dark state as long as the field changes adiabatically
with respect to the internal time scale given by the atom field coupling, which
requires sufficiently strong cooling fields.

Unfortunately we have to admit, that a full N-atom quantum calculation for mul-
tilevel atoms required to clearly prove this claim, seems impossible at the moment.
Nevertheless even using the scaling properties for the two-level case to get some
estimates gives encouraging results.
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6.2. Publication 6: Cavity-mediated dark-state cooling
without spontaneous emission

Cavity mediated dark state cooling
without spontaneous emission

Markus Gangl and Helmut Ritsch
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Technikerstr. 25, A-6020 Innsbruck, Austria.

Abstract:
We extend the concept of dark state cooling to enclose the fields in a high-Q
resonator. Choosing a sufficiently large detuning between the atomic transition
and the driving fields, spontaneous emission during the cooling process is largely
suppressed and the energy dissipation occurs dominantly via cavity decay. For a
ring cavity with two degenerate counterpropagating waves of opposite circular
polarization the final dark state is identical as in free space. However, we find a
strong cavity mediated force with a large capture range as a precooling mechanism.
In this scheme spontaneous emission is only important for the final jump to the
dark state in the dynamics and the reabsorption problem is strongly reduced. In
principle the scheme could also be applied to molecules with a suitable transition.

PACS number(s): 32.80.Pj, 42.50.Vk, 42.50.Lc

Published as Physical Review A 64, 063414 (2001).
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Laser cooling of atoms has been a very active field of research for many years
culminating in the 1997 Nobel prize. A variety of cooling schemes has been proposed
to get to lower and lower temperatures. Nevertheless there are processes inherent
to optical cooling schemes that limit the reachable steady-state temperature and
density. Quite generally, spontaneous emission from the excited atomic states is
used as a dissipation channel to get rid of the motional energy of the atom. This
directly introduces momentum diffusion via the random number and direction of
the spontaneous emission events involving atomic recoil. In addition, the scattered
photons can be reabsorbed to further increase the diffusion.

Some more sophisticated cooling schemes making use of the internal structure of
the atom, as e. g. polarization gradient cooling [21], lead to stronger friction forces.
Temperatures below the Doppler limit kg1 ~ hI', where 21" is the atomic linewidth,
can be achieved. As an alternative it has been suggested [1, 2, 29, 30, 3, 66] and
partly experimentally confirmed [67, 68] that instead of a Sisyphus effect using the
internal atomic structure the dissipative dynamics of a cavity field can be exploited
to get cooling to a temperature kg1 ~ hk, where 2k is the cavity linewidth, which
can be below the Doppler limit as well.

All of these schemes mentioned so far are limited by the recoil energy connected
with the spontaneous emission of a single photon. Apart from reaching BEC by
subsequent evaporative cooling only the utilization of so called dark atomic states
as in the VSCPT scheme proposed and demonstrated by Cohen-Tannoudji et. al
allowed temperatures well below this recoil limit. This is one of the most promising
approaches to reach all optical BEC. Nevertheless the scheme has limitations, which
prevented success so far. In particular dark states are quite fragile with respect to
perturbation and the cooling time in 3D is rather long. VSCPT needs a closed optical
transition and spontaneous atomic relaxation to reach the final dark states [69].
Hence the reabsorption problem strongly limits the final density and temperature.

In this work we theoretically investigate a generalized dark state cooling scheme
implying high-Q cavity fields, which strongly diminuish these disadvantages of free-
space VSCPT. In particular we find an efficient sub Doppler precooling mechanism,
where the system evolves towards the zero-momentum eigenstate via cavity induced
dissipation and the reabsorption problem is cured by strongly reducing spontaneous
emission. Of course there is some price to pay in form of a more complex setup and
a limited cooling volume.

We study an atom with a J, = 1 to J. = 1 transition as depicted in Fig.1
coupled to the counterpropagating modes of a high-Q ring cavity. It is well known
that it has a dark eigenstate for any spatial light field configuration with a fixed
frequency w;[70]. Using the Clebsch-Gordon-coefficients for this levelscheme we can
write the generalized atomic lowering operators for o,, o_ and linear polarized
light as S, = —1/v2(lg-1)leo] + lao)erl), S- = 1/v/2(g1){eol + lgo)(e-1]) and
So = 1/V2(|g1){er| = lg-1)(e]).

The intracavity field can be decomposed in two counterpropagating modes for
each polarization yielding E* = £(ay e 4+ a_e #%)&, + £(B.e* + f_e~*2)é_ or
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FIGURE 9. Cavity setup and level scheme for a J, =1 — J, = 1-transition.

in shorthand E+ = A€, + Be_, so that the system Hamiltonian for the internal
atomic dynamics and the fields can be written as

H=—A,P.+g(A*S, + B*S_) + g(St A+ ST B) (206)

with ¢ = —d€ denoting the Rabifrequency for atomic transition with unit Clebsch-
Gordon coefficient per photon, A, = wp —w, being the detuning between pump and
atom and P, being the projector on the excited atomic states. To include dissipation
via atomic and cavity decay we use a standard master equation approach

o
p=—7IH pl+Lp

Lp=—T(P.p+ pP. —25,pSt —25_pST —25,pS}). (207)

Adiabatic elimination of the excited states in eq. 207 yields the following equations
for the populations of the ground-state levels II_, Ily, II, and the ground-state
coherence py_1 41

[T = —70/2|APTL. +70/2|BI*TLy + /2| BI* Ty +
iUy /2(A*Bpgig—1 — AB*pg_1,41)
[T, = —70/2|BI*ILy + 0/2| APPTL. + 70/2| ATl —
iUo/2(A"Bpgi,g—1 — AB"py_1,41)
o= —0/2(|A]” + [B*)IL
Pg—1,91 = —0/2(|A]* + |B|2>pg—1,gl -
iUo/2(JA* = |BI*)pg-141 +
iUo/2A"B(IL, — 1) + 1/29,A"B (208)
where Uy = A,g?/(I'* + A2) is the optical potential and vy = T'g?/(I'? + A2) is the

incoherent photon scattering rate into non-cavity modes. Similarily the equations
for the cavity-modes read [3]
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K+ iAo — (0 + iUp) /2
(g + e (I + 1) —
By +b-e 2zkza)pgl,g—1] +1
K+ ilc)a — (0 +ilo)/2
(o + ape®™ ) (T + Ip) —
B+ ™) pg g 4]
K+ 1A:) B+ — (0 +1Up) /2

(Bs + Be2k=)(I1, + ) —
2ikz,1)

ap +a_e Pg—1.91)

K+ iAc)B- — (o +ily) /2
(B= + Bee™ ) (114 +11,) —
2Zkza)pg—1,gl] + 7, (209)

where we haven chosen to pump only one polarization for each propagation di-
rection with amplitude 7. 2z, denotes the atomic position, A¢c = wp — we is the
detuning between pump and cavity modes and k is the cavity decay rate. Note
that modes of different polarizations are coupled by stimulated Raman processes
via the coherence between the two ground state sublevels |g_;) and |g;). So far
these equations do not contain atomic motion and the atomic position enters only
as a parameter in these equations. As long as one deals with not too cold atoms such
a semiclassical treatment [21, 2, 14] has proven rather successfull. In our case the
applicability is, however, limited to the initial CP'T precooling phase. As outlined
in the last paragraph in the ultracold VSCPT regime the model has to be refined
and a quantum description of the external atomic motion is mandatory [71].

Let us first calculate the combined atom field eigenstates. Assuming large detun-
ing and weak saturation we can now adiabatically eliminate the upper atomic states
and drop the m = 0 ground state to arrive at a simplified Hamiltonian reading

= (=
[
(
(=
[
(
(=
[
(
(=
[
(

a_+age

He=Uo/2[|APg-1){g-1| + | B*|g1)(g1] —
A*Blg_1)(g1] — AB*|g1){g-1l]

For any given pump amplitude n this Hamiltonian has two eigenstates, namely
the dark state with eigenvalue Apg =0

1
VIAPZ +[BJ?

ay = f_=n/(k —iA.), a_ =, =0,
and the maximally coupled bright state with eigenvalue Ags = Uy(|A|* + |BJ?)/2

[Wps) = (Blg-1) + Alg1)) (210)
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1
[Vps) = \/w (A*[g-1) — B*[g1))
o, =B = Kk —iAc + (70 +ilo)/2 .
(K —iA) (K + 70 +i(Uo — Ar))
o (Yo + iUp) ek )
0 2(k A (K + 0 + iU — Ae))
g, = (o + 1Up)e k= . (211)

2k —iA) (k70 +i(Uo — AL))

As could be expected the field dynamics decouples from the atom in a dark state
and the reflected components («a_, 3, ) are zero, while they are nonvanishing for
the atom in a bright state. This opens a new dissipation channel for the bright
state besides spontaneous emission, as the reflected components decay. It is very
interesting to notice that for any prescribed field configuration (even with non-
zero (o, 54)) an internally dark atomic state exists. However, as no new photons
are scattered into (a_, ;) by the atom in this case, this state is not stable with
respect to cavity decay. Hence the reflected amplitudes decay and the atom is slowly
transferred to the dark eigenstate of the total Hamiltonian. This process strongly
enhances the effective filling rate of the stable dark state and can also be expected
to diminish the perturbation between different atoms in the cavity.

Let us now turn to an atom in its bright state and calculate the intracavity steady
state field explicitly

E= - +77iUo (sin kzé, + cos kzé), +
U,
=2 sin k(2 — 24) (0 k2a@y — sin k2,8, )). (212)
K

The induced atomic dipole moment is orthogonal to the polarization of the pump
field at the position of the atom as can be understood easily. Choosing the polar-
ization of the pump field at the position of the atom as the quantization axis, the
dark state becomes |gy) with a polarization parallel to that of the pump field. An
atom in the orthogonal bright state possesses a dipole moment orthogonal to this,
which determines the scattered field polarization. Note that the phase as well as
the polarization of the scattered field depend on the position of the atom and that
the atom always sits at a node of the scattered field. This is a generalization of
the situation of a two-level atom in a ring-cavity, where the light is scattered always
with a polarization parallel to that of the pump field and creates long range intensity
modulations [3].

In a free space (07,07) setup the expectation value of the force on an atom
in a bright or dark state is zero. One finds only momentum diffusion induced by
spontaneous emission. Including cavity dynamics this is not true and we calculate
the following expressions for the force on an atom at rest within the cavity
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frotat = fpot + finter—pol
Joor = ko(Jors |* — Ja—|*) (T +ITo) +

hEyo (1841 — |B-[*)(TLy +TTo) +
ihkUp (o a_e %2 — o* oy ™) (11 + T1p) +
IRKUN(BL6 2% — B2 3, ¥ )(IT, + Tio)

finter—pot = —Pg1,g—1[Rkyo (L By — ™ ) +
ihkUg(a B_e™H% — o* B, e**=)] —
po-1,g1[Mkvo(y B3 — o B7) —
ihkUy (g B €25 — o B% e~ 2F=e))] (213)

Here f,, is just the usual combination of radiation pressure and dipole force
weighted by the respective populations that appeared already for a two-level atom
inside a ring-cavity [3] for each pump polarization individually. In addition finter—poi
describes these forces for processes connecting the two modes of different polariza-
tions. These are driven by the ground-state coherence. Naturally, no force is found
for an atom in its dark state at rest completely decoupled from the light. However,
in analogy to VSCPT in free space a moving atom in an internal dark state now
couples to the bright state and hence starts to redistribute photons between the
different cavity modes and also scatters light spontaneously into non-cavity modes.
The relative contribution of these two contributions can be changed by choosing an
appropriate atom-field detuning. Depending on the choice of parameters this will
lead to cooling or heating of the atomic center of mass motion, which is still present
without spontaneous emission (79 = 0). In general the kinetic energy loss is very
fast as we will see in the numerical calculations below. Interestingly, for an initially
dark atom the lowest order momentum dissipation term is quadratic in velocity,
so that we have no cavity induced friction linear in velocity. Note, however, that
the validity of the semiclassical formulas is limited to the regime above the recoil
temperature.

Let us now turn to the dynamic semiclassical model and demonstrate the cooling
properties of the system by numerical solution of Eqs 208 and 209 together with the
semiclassical kinetic equations for atomic motion.

Fig. 10 shows the deceleration of a moving atom from an initial momentum of
60hk to the vicinity of zero momentum without spontaneous emission, where the
semiclassical theory breaks down. Fig. 11 shows how an atom that is initially in
its dark eigenstate at rest evolves back into it after receiving a momentum kick.
To be more realistic we have included a small spontaneous emission rate v, = 0.1
but the number of incoherent emission events for the whole process Neounts can be
calculated by

NCounts (T) = /OT dtRF (t) (214)
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F1GURE 10. Cooling of a multilevel atom. Momentum (left) and popula-
tion of dark and bright state (right). 7o = 0, k = 30T, n = 30", Uy = —6T,
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FiGURE 11. Cooling of a kicked dark atom with x = 30I', v = 0.1,
n = 30T, Uy = —6I', A, = 0 (left). Evolution of the dark state (upper) and
bright state (lower) population of the atom (right).

where Rr = v0(]A|? + | B|*)llgs denotes the fluorescence rate of the atom. For
the chosen parameters we find Neggunis(50) = 0.91. Hence we have less than a single
spontaneous emission event, while the momentum has been reduced by several tens
of recoils.

As mentioned before, the semiclassical theory breaks down close to the recoil limit.
For atoms with a momentum spread of dp ~ Ak one has to go to a quantum de-
scription of the external atomic motion. As the cavity fields couple only momentum
eigenstates with a momentum difference of 0 or of 2Ak, we generalize the standard
VSCPT ansatz and set |¢(p)) = > o _ (cnlg—1,p + nhk) + d,|g1,p — nhk)) for
the wavefunction with given momentum p. The cavity induced dynamics will then
only couple different coefficients ¢,, d,, for the same p. Assuming that in the initial
state only the the coefficients (c_; and d_; corresponding to the states |g_1, p — hk)
and |g1,p + hk) are nonzero, the Schrodinger equations for the atomic amplitudes
together with the equations for the cavity fields (eqgs. 215) read:
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ay = (—r +i(Ac — Uple_1*/2))ay +
iUo/2¢" 1d_15_ + 1
= (—r +i(Ac — Uplc_1*/2))a
By =(—k +i(Ac — Upld_1[*/2)) B¢
Bo=(—k+i(A; — Upld_1|*/2))B- +
iUo/2d" jc_1aq 4+
¢ =—i((p — k)*/(2m) + Uy /2]y |*)c—1 +
iUy/2d_q07 B
d_y=—i((p+k)*/(2m) + Us/2|B_*)d_1 +
iUo/2c_1 5" oy (215)

We see that in this regime only the externally pumped fields (a4,5_) are coupled
by the atom, while we have no backscattering to the counterpropagating modes a_,
B+, which will simply decay to zero. At the same time for zero («_,3;) also the
other coefficients (¢, d,,) decouple and remain zero. This can be easily understood by
noting that the coupling between counterpropagating fields of the same polarization
(egs. 209) averages to zero for an atom delocalized over a wavelength. Hence once
the atom has reached the subrecoil regime, we get the well known motion induced
bright-dark coupling as for the free space case and cavity induced cooling will stop.
For very slow atoms kp/m < k and a realistic cavity decay rate wyecoq < K the
cavity field will adiabatically follow the atomic dynamics[21] and one cannot expect
any cavity induced momentum dissipation. Hence the final cooling step can only
be achieved by spontaneous emission. However, as in the semiclassical regime, an
atom jumping to a bright state with p ~ .0 can be adiabatically transfered to
the corresponding dark state without spontaneous emission. This leads to some
enhancement of the capture volume even in the ultracold limit. The situation could
be substantially improved for a 3D cavity geometry, but such a setup seems rather
unrealistic.

In summary we have found that applying a high-Q optical cavity for the cooling
fields two central limitations of dark state cooling, namely photon reabsorption
and unefficient precooling, can be strongly reduced. As the final dark state of the
atom in the cavity field is the same as for free space VSCPT state, comparably low
temperatures at higher densities are expected using this scheme. This renders this
setup as a possible candidate for all optical BEC or a CW atom laser. In addition due
to the strongly reduced number of spontaneous emission events necessary to reach a
state close to the final dark state, the method could also be applied to systems with
some leakage out of the closed CPT cycle. Even if one does not aim for the quantum
regime of cooling the setup could be helpful for efficient cooling of molecules where
vibrational and rotational redistribution of population has to be avoided and one
needs a significant velocity capture range. Let us finally remark, that an interesting
but yet open question in this respect is the appearance and possible usefulness of
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correlated long range multiatom dark states, which could be efficiently populated in
this setup.
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