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Abstract

Most atomic clocks existing up to date are passive clocks, where a frequency generated

by some local oscillator is compared with a reference frequency provided by a narrow

clock transition in atoms or ions. After interrogation, a new sample of atoms has

to be prepared, which results in the dead time when the laser must be stabilized by

locking it to a mode of a high finesse ultrastable reference cavity. Such clocks have

demonstrated an excellent level of accuracy and stability. However, on short timescales

this stability remains limited by environmental and thermal fluctuations impacting

the reference cavity length. Here active optical atomic clocks can be an opportunity to

overcome this limitation. Superradiant lasers based on collective superradiant emission

of coherent light emitted by atoms placed inside an optical cavity are a viable option

providing an intrinsically precise and accurate frequency reference. At the moment the

experimental realization of continuous superradiant lasing on optical clock transitions

still remains challenging as it requires continuous loading, cooling, and pumping of

atoms within an optical cavity.

As efforts for the experimental realization of continuous superradiant lasing are

growing, this thesis focuses on theoretical studies investigating realistic models and new

ideas for superradiant narrowband lasing closely related to experimental configurations.

In the first part of this work, we investigate a superradiant laser model where, unlike

many identical atoms, the focus is on inhomogeneity among the ensemble of atoms.

The inhomogeneity is primarily associated with a distribution of the atomic resonance

frequencies leading to stimulated emission into the cavity at a range of different

frequencies. These processes are an inherent part of any laboratory experiment and

capable of disrupting the collective interaction between the atoms and the cavity field.

We show the conditions required to reach the buildup of collective atomic coherence as

well as scaling and limitations for the achievable laser linewidth. Here, we developed

an extensive numerical model of clusters with different atomic parameters using a

cumulant expansion method, which allows us to simulate realistic systems with a large

number of atoms beyond the mean-field approach. To this end, we investigate the
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ultimate stability of such active clocks, both under homogeneous and inhomogeneous

broadening effects present in a large atomic ensemble.

A challenging part of building a superradiant laser is to find a mechanism, that

achieves population inversion. The primary obstacle is the destructive nature of

superradiant lasing to a cold atomic ensemble, where one needs to have an efficient

procedure of incoherent pumping in the system or a continuous supply of excited atoms.

We propose a new scenario for creating an intrinsic light force generated inversion

by studying optical light forces acting on the atoms due to interaction with laser

light. Inspired by maser models, where ground and excited state atoms are separated

in space by means of the magnetic field, we investigate the ways to manipulate the

atoms with zero magnetic moment by optical forces. Finally, we extend the developed

framework to study self-organization, cooling and lasing in an ensemble of clock atoms.

This allows us to investigate the conditions for the laser-like emission in the vicinity

of the self-organization threshold.
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Zusammenfassung

Die meisten der bisher existierenden Atomuhren sind passive Uhren, in welchen

eine Frequenz, generiert durch einen lokalen Oszillator, verglichen wird mit einer

Referenzfrequenz eines schmalbandigen Überganges in Atomen oder Ionen. Nach

einem Experiment muss ein neues Ensemble von Atomen prepariert werden, was in

eine Wartezeit resultiert, da der Laser stabilisiert werden muss durch Eichung auf eine

hochstabile optische Resonatormode. Diese Uhren weißen eine herausragende Präzision

und Stabilität auf. Dennoch, auf kurzen Zeitskalen bleibt diese Stabilität begrenzt durch

umweltbedingte und thermische Fluktuationen, welche wiederum die Dimensionen

der optischen Resonators beeinflusst, der als Referenz dient. Hierbei bieten aktive

optische Atomuhren eine Möglichkeit, diese Limitationen zu überwinden. Sogenannte

superradiante Laser, basierend auf kollektiver superradianter Emission von kohärentem

Licht, emittiert von Atomen welche sich innerhalb eines optischen Resonators befinden,

bieten eine Möglichkeit, als präzise und akurate Frequenzstandards. Derzeit bleibt

die experimentelle Realisierung von kontinuierlichen superradianten Lasern auf einer

optischen Frequenz eine Herausforderung, da es eine kontinuierliche Beladung, Kühlung

und Anregung von Atomen in einem optischen Resonator erfordert.

Da die Bemühungen zur experimentellen Realisierung von kontinuierlichen super-

radianten Lasern zunehmen, konzentriert sich diese Arbeit auf theoretische Studien,

die realistische Modelle und neue Ideen für superradianten, schmalbandigen Lasern

untersuchen, die eng mit Experimenten verbunden sind. Im ersten Teil dieser Arbeit

untersuchen wir ein superradiantes Lasermodell, bei dem im Gegensatz zu vielen

identischen Atomen der Schwerpunkt auf der Inhomogenität innerhalb des atomaren

Ensembles liegt. Die Inhomogenität ist hauptsächlich mit einer Verteilung der atoma-

ren Resonanzfrequenzen verbunden, was zu stimulierter Emission in den Resonator

bei verschiedenen Frequenzen führt. Diese Prozesse sind ein fester Bestandteil jedes

Laborexperimentes und können die kollektive Wechselwirkung zwischen den Atomen

und dem Hohlraumfeld stören. Wir zeigen die Bedingungen, die erforderlich sind,

um den Aufbau kollektiver atomarer Kohärenz zu erreichen, sowie die Skalierung
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und Einschränkungen für die erreichbare Laserlinienbreite. Hier haben wir mithilfe

einer Kumulantenentwicklung ein umfangreiches numerisches Modell von Clustern

mit unterschiedlichen Atomparametern entwickelt, das es uns ermöglicht, realistische

Systeme mit einer großen Anzahl von Atomen über den sogenannten Mean-Field

Ansatz hinaus zu simulieren. Zu diesem Zweck untersuchen wir die ultimative Sta-

bilität solcher aktiven Atomuhren, sowohl unter homogenen als auch inhomogenen

Verbreiterungseffekten, die in einem großen Atomensemble vorhanden sind.

Ein herausfordernder Teil bei der Entwicklung eines superradianten Lasers ist ein

Mechanismus zur Erzielung einer Besetzungsinversion. Das Haupthindernis ist die

destruktive Natur der superradianten Emission auf ein gekühltes atomares Ensemble,

wo ein effizienter Mechanismus des inkohärenten Pumpens im System oder eine

kontinuierliche Versorgung mit angeregten Atomen erforderlich ist. Wir schlagen ein

neues Szenario zur Erzeugung einer intrinsischen, durch Lichtkraft erzeugten Inversion

vor, indem wir optische Lichtkräfte untersuchen, die aufgrund der Wechselwirkung

mit Laserlicht auf die Atome wirken. Inspiriert von Maser-Modellen, bei denen Atome

im Grund- und angeregten Zustand durch das Magnetfeld im Raum getrennt werden,

untersuchen wir die Möglichkeiten, die Atome mit null magnetischem Moment durch

optische Kräfte zu manipulieren. Schließlich erweitern wir das entwickelte Framework,

um Selbstorganisation, Kühlung und Laserwirkung in einem Ensemble von Atomen

zu untersuchen. Dies ermöglicht es uns, die Bedingungen für die laserartige Emission

in der Nähe der Selbstorganisationsschwelle zu untersuchen.
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1 Introduction

The properties of an atom are not only determined by its internal structure but also

by its interaction with the surrounding environment. The quantized energy levels of

an atom introduced by Bohr in 1913 are the central idea in quantum physics [1]. Later

in 1916, Einstein described the fundamental interaction processes between light and

matter in his work on emission and absorption of radiation in quantum theory [2, 3].

However, the interaction of particles with photons was still not sufficiently understood.

The formulation of quantum mechanics in its relatively modern form in 1925-1928

by de Broglie, Dirac, Schrödinger, Heisenberg, Pauli and others [4–9], together with

the later works of Schwinger, Feynman, Tomonaga and Dyson [10], who solved the

electron self-energy problem by the late 1940’s, have led to the success of quantum

electrodynamics and quantum optics in describing light-matter interactions.

1.1 Cavity quantum electrodynamics

Many atoms placed close to one another start to interact strongly with each other

and exhibit collective behavior. However, coupling light to atoms in free space such

that it couples equally to all of them can be challenging.

One way to strongly modify the interaction of an atom or a quantum emitter with

the electromagnetic field is to place it between highly reflecting mirrors of a cavity.

This allows the light in the cavity to bounce back and forth many times before escaping

through the cavity mirrors, therefore greatly increasing the coherent coupling between

light and matter. This field of research, known as cavity quantum electrodynamics

(cavity QED) has rapidly developed in the past decades and has become one of the

most important areas of research in modern quantum optics. Today, cavity QED

is studied in a wide variety of contexts including the demonstration of fundamental

effects in light-matter interaction processes [11], cavity-assisted cooling [12–14], self-

organization [15–17], collective effects with light-induced interactions [18,19], single-
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1 Introduction

photon light sources [20], micromasers [21], superradiant lasing [22, 23] and many

more. These effects are investigated among different types of quantum emitters, such

as cold atoms, ions, molecules, nitrogen-vacancy centers in diamonds, quantum dots

and other systems with discrete energy levels, which exhibit a nonvanishing dipole

coupling to the electromagnetic field.

1.2 Atomic clocks

Throughout the years our definition of the best clocks for measuring time has vastly

changed, see Fig. 1.1. From a simplest shadow or sundial clock to complex atomic

clocks, time and frequency became the most precise physical quantities available to us

to explore the laws of nature. Applications of accurate and transportable atomic clocks

vary from navigation and geopositioning to low-frequency gravitational wave detectors

and tests of general relativity [24–26], as well as radio telescope synchronization for

astronomical research [27], search for dark matter [28] and variations in fundamental

Figure 1.1: Evolution of time and frequency standards: relative uncertainty of
different clocks over the years.
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1.2 Atomic clocks

constants [26,29]. Further applications can be found in geodesy, monitoring of volcanic

activity and underground exploration of natural resources without drilling [30,31].

A clock needs a stable and accurate oscillator to calculate time by counting the

number of oscillations in a given time interval. The oscillator provides a signal of

the period T (or frequency ν0 = 1/T ) and can be characterized by its fractional

uncertainty ∆ν/ν0 = 1/Q, where Q is the oscillator’s quality factor given by the ratio

of the oscillation frequency ν0 to its uncertainty ∆ν. In atomic clocks, the oscillation

frequency is given by the frequency of a particular atomic transition ℏω0 = Ee − Eg,

where Eg and Ee denote the ground and excited energies of the clock transition.

Therefore, working with atomic clocks operating at optical frequencies, which is five

orders of magnitude higher than those of microwave clocks led to much higher precision

in measuring time. At the same time, atomic clocks have enabled the development of

universal frequency standards based on atoms or ions, where the identical isotopes

placed in the same environment feature the same internal structure and behavior,

which holds everywhere in the world unless influenced by external perturbations.

The choice of an atomic clock transition for ultra-stable clocks requires having a

narrow linewidth transition in the optical domain preferably insensitive to external

perturbations. Typically these are long-lived metastable excited states, where the

transition to the ground state is forbidden in the electric dipole approximation and only

higher-order multipole transitions are allowed. It is expected that in the foreseeable

future the definition of a second by the International System of Units (SI) will be

redefined by an optical transition in atoms or ions, replacing the existing definition

based on a microwave transition in Cs atoms [32]. Furthermore, atomic clocks can be

characterized as active or passive frequency standards, and by their frequency stability

and accuracy [33].

1.2.1 Frequency stability and accuracy

Today’s best atomic clocks reach an unprecedented level of accuracy and stability, as

shown in Fig. 1.1. Progress in theoretical and experimental science opened a way to

operate with higher frequencies, thus increasing clock precision. Mechanical clocks

with the resonant frequency (ν0) of the order of 1 Hz were followed by quartz clocks

(103 ≲ ν0 ≲ 107 Hz), microwave atomic clocks (108 ≲ ν0 ≲ 1010 Hz) and optical atomic

clocks (ν0 ≲ 1015 Hz).
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1 Introduction

The figures of merit to characterize the performance of a clock or a frequency

standard are its stability and accuracy. In Fig. 1.2 one can see the examples of a

frequency measurement that is: (a) accurate and stable, (b) accurate but not stable,

(c) stable but not accurate, (d) both not accurate and unstable. A frequency source

that gives an accurate and stable measurement outcome (Fig. 1.2(a)) can be used

as a frequency standard. However, most of the time such a precise clock can not be

completely isolated from different systematic effects coming from the environment.

These systematic shifts would result in a frequency shift presented in Fig. 1.2(c). If

this shift is carefully calculated and calibrated accordingly, this in turn can also be

used as a frequency standard.

Figure 1.2: Examples of frequency measurements representing: (a) accurate and
stable; (b) accurate but not stable; (c) stable but not accurate; (d) not
accurate and unstable output.

1.2.2 Passive clocks

Passive optical atomic clocks are the most precise scientific instruments available

to humanity, reaching an unprecedented level in measuring time and frequency. A

schematic representation of a passive clock based on neutral atoms, where the frequency

generated by a laser is regularly compared with the frequency of a narrow clock

transition, is shown in Fig. 1.3(a). The clock consists of three key components: a

reference oscillator, a local oscillator and a frequency counter. The role of the reference

oscillator plays an atomic medium with a narrow clock transition, where atoms are

contained in the ultra-high vacuum chamber and isolated from the environment.

Typically neutral atoms are cooled down to ultracold temperatures and trapped in

a magic wavelength optical lattice, which ensures no Doppler broadening and zero

light shifts on the clock transition [34]. The local oscillator is a laser, which is locked

with the Pound-Drever-Hall method [35] to the resonance frequency of an ultra-low

expansion (ULE) cavity. The output signal from the local oscillator can be tuned by
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1.2 Atomic clocks

Figure 1.3: Optical atomic clocks: passive vs active. (a) Schematic representation of
a passive clock operating in a good-cavity regime (c) on a clock transition
in neutral atoms. (b) Schematics of an active clock based on collective
superradiant emission of coherent light by atoms inside an optical cavity
operating in a bad-cavity regime (d).

an acousto-optic modulator (AOM) before it interrogates the atomic medium. After

interrogation a new sample of atoms has to be prepared, which results in the dead time

when the short-term stability of the clock is limited by the stability of the ULE cavity.

The signal from the probed transition is sent to a feedback loop, which generates

an error signal back to the laser to tune its frequency with respect to the atomic

transition frequency. Finally, the light is sent to a frequency counter, where a very

fast oscillating optical frequency is converted into a measurable electronic signal by

means of a frequency comb [36].

Such clocks have demonstrated excellent frequency stability of the order of 10−19

after one hour of averaging [37]. In other words, this means that in the lifetime of

our Universe such a clock would be off by less than a second. However, on short

timescales this stability remains limited by environmental and thermal fluctuations of

the cavity mirrors [22,38]. Here, active optical atomic clocks can be an opportunity

to overcome this limitation and become a robust and transportable alternative. This

would be especially beneficial to the measurement precision of clocks operating on

moving vehicles, such as satellites and boats.

5



1 Introduction

1.2.3 Active superradiant clocks

The best atomic clocks up to date are passive clocks. However, the development of

active clocks can provide a valuable alternative to its passive counterparts. In this case,

such an active clock alone continuously generates highly stable narrow-linewidth laser

radiation, using an ensemble of excited atoms that emit light directly at a frequency

of an atomic clock transition. In the microwave domain, such an active clock has

existed for many decades in a hydrogen maser setup [39], where population inversion

is created by coherent pumping of atoms followed by magneto-mechanical separation

of ground- and excited-state atoms in the mode volume. Unfortunately, this solution

is not possible at optical frequencies, because the magnetic gradients for a sufficient

state separation are very difficult to achieve as the length scales are several orders

of magnitude smaller in this case. At the moment, many interesting methods for

generating a continuous gain from the clock atoms are being explored with the goal of

developing active optical clocks, also known as superradiant clocks [40–45].

A superradiant clock is based on the phenomenon of collective superradiant emission

of light by atoms inside an optical cavity [22, 46]. In the superradiant regime, the

atoms constructively synchronize their photon emission in the cavity and produce a

highly coherent and stable output light at the frequency of the atomic clock transition.

A superradiant clock is schematically illustrated in Fig. 1.3(b). The atomic medium

is confined inside a single-mode optical cavity with resonance frequency ωc. Each

atom has a ground and an excited state associated with the clock transition with

frequency ωa. The system dynamics is governed by the atom-cavity coupling strength

(g), atomic spontaneous emission rate (Γ), and cavity losses (κ). Additionally, the

atoms are externally driven by a pumping mechanism (red arrow) to provide the

population inversion in the atomic medium and support the continuous gain to the

cavity mode.

The implementation of the superradiant clock is predicted to provide far better

short-term stability and robustness to thermal and mechanical fluctuations compared

to modern-day passive optical clocks [40]. Theoretical studies show that superradiant

lasing on optical clock transitions can as well give an intrinsically precise and accurate

frequency reference [22,23,40]. The superradiant clock typically operates in the limit of

low photon number operation or the so-called bad-cavity regime shown in Fig. 1.3(d),

where the coherence necessary for frequency stability is stored in the atoms rather

than the cavity field, making it robust to cavity fluctuations.
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1.3 Outline of the Thesis

In view of establishing a new outstanding and robust optical time and frequency

standard, the quest to build a continuous clock operating on a very narrow atomic

transition has been the subject of intense theoretical and experimental studies in

the past decade. In recent years, pulsed superradiance has been experimentally

demonstrated [40,47,48]. However, despite significant recent progress, the experimental

realization of a continuously operating superradiant clock still remains a challenging

task and requires continuous loading, cooling and pumping of atoms. As efforts for

the experimental realization of continuous superradiant lasing are growing, this thesis

constitutes a theoretical study of such superradiant clocks, which focuses on developing

and investigating realistic models and new ideas for continuous superradiance closely

related to experimental configurations.

1.3 Outline of the Thesis

The content of the Thesis focuses on three distinct parts. Part I provides an intro-

duction into the fundamental aspects of light-matter interactions in the absence and

presence of an optical cavity. Part II dives into cavity-mediated collective interactions

in a large atomic ensemble to investigate continuous superradiant lasing under realistic

conditions. Lastly, part III investigates optical light forces and the emergence of

self-ordering, cooling and lasing of atoms in the superradiant regime. These parts are

complemented by an introductory chapter that reviews several theoretical concepts,

useful to understand the main body of the Thesis. Readers familiar with these topics

can skip the introduction and directly select an individual chapter for reading. Below

is a compact summary of each chapter,

• Chapter 2 introduces basic concepts of light-matter interactions and cavity

electrodynamics. First, we introduce a two-level quantum system interacting

with an electromagnetic field, in particular a mode of an optical cavity, leading to

the well-known Jaynes-Cummings model. We proceed by describing dissipative

open quantum systems and derive the Master equation for many quantum

emitters coupled individually to a Markovian reservoir.

• Chapter 3 presents how superradiance emerges when two-level emitters are

positioned at small distances in free space in the absence of an optical cavity.

We then proceed by including a single-mode optical cavity and provide a basic

understanding of the superradiant laser and the bad-cavity regime. This is
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1 Introduction

supplemented by showing the methods used to calculate the dynamics and light

spectrum of the system.

• Chapter 4 investigates collective superradiant emission of light in the inhomogen-

eously broadened ensemble of two-level emitters in a cavity. Here the inhomo-

geneity is in the atomic resonance frequencies and the dynamics is calculated

using a second-order cumulant expansion, which is described in Chapter 3. We

show that for sufficiently large atom numbers under strong continuous incoherent

pumping, superradiant lasing can emerge and the laser linewidth can be orders

of magnitude smaller than the cavity linewidth while being more resilient to

cavity frequency noise.

• In Chapter 5 we explore the ultimate limit for the frequency stability in an active

optical atomic clock as opposed to a passive clock. We investigate the spectral

properties and the stability of such active clocks, both under homogeneous and

inhomogeneous broadening effects for the atomic transition frequencies. We find

that for short averaging times, the stability is limited by photon shot noise from

the limited emitted laser power and at long averaging times by phase diffusion of

the laser output. Lastly, we identify operational parameters for best long-term

stability utilizing 87Sr (Strontium) atoms as the active gain medium.

• Chapter 6 studies a continuous population inversion mechanism for superradiant

lasing. At the moment of writing, it remains an open challenge as it requires

continuous loading, cooling, and pumping of active atoms within an optical

resonator. In this chapter, we propose a new scheme for creating continuous

gain by using optical forces acting on the states of a two-level atom via bi-

chromatic coherent pumping of a cold atomic gas trapped inside a single-mode

cavity. To tackle the numerical treatment, we describe the atomic motion in a

semi-classical approximation with position-dependent light shifts which induce

optical gradient forces along the cavity axis. Finally, we identify a parameter

regime of a continuous narrow-band laser operation close to the bare atomic

frequency, which is insensitive to cavity noise as well.

• In Chapter 7 we look into spatial self-organization in a coherently driven ensemble

of clock atoms inside an optical cavity and coherent light emission from the

cavity. We focus on the spectral properties of the emitted light in the narrow

atomic linewidth regime and identify a self-organization regime where atoms

align themselves in a checkerboard pattern thus maximizing light scattering

8



1.3 Outline of the Thesis

into the cavity which simultaneously induces cooling. We calculate the spectra

of the cavity light field and investigate the conditions for the laser-like emission

near the self-organization threshold.

Lastly, we summarize the main conclusions of this Thesis and give an outlook for

future research directions and open questions in the context of superradiant clocks.
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2 Fundamental aspects of light-matter

interactions

This chapter aims to provide a compact overview of the most important theoretical

foundations and concepts that are used in the main part of the Thesis.

2.1 Two-level atom interacting with a classical field

Let us consider the interaction of an atom with a classical field, provided that the field

is monochromatic with the angular frequency ω = c|k| and the field amplitude E0,

E(r, t) = E0 cos(ωt)fk(r)ek =
E0

2
(e−iωt + eiωt)fk(r)ek, (2.1)

where fk(r) is the spatial function of the field and ek is the unit length polarization

vector. Later we use the dipole approximation and neglect the spatial variation of the

electromagnetic field over an atom, which is valid when the wavelength of the field

is much longer than the size of the atom. In our case, this is a good approximation,

since the optical wavelengths are of the order of hundreds of nm, while the atomic

size is of the order of angstrom.

Throughout the manuscript we will treat the atom as a two-level atom whose

relevant internal degrees of freedom constitute a dipolar, two-level transition with

the ground and excited states |g⟩ and |e⟩, respectively, separated by the transition

energy ℏωa. Here, we do not take into account the atomic motion, which will be

discussed in the next section. Thus, the free energy Hamiltonian of the two-level atom

reads

HA = ℏωa|e⟩⟨e| (2.2)

11



2 Fundamental aspects of light-matter interactions

and the atom-field interaction Hamiltonian in the dipole approximation is given by

HAF = −d ·E. (2.3)

Here, d is the atomic dipole operator written in terms of the distance operator re

between the electron and the nucleus as

d = −ere, (2.4)

or in terms of the atomic operators

d = ⟨g|d|e⟩(σ+ + σ−), (2.5)

where σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| is the atomic raising and lowering and operators,

respectively, and ⟨g|d|e⟩ := deg is the dipole matrix element associated with the

electronic transition, which can be chosen to be real.

2.2 Interaction of an atom with a quantized field

In order to describe the interaction of a two-level atom with light in a full quantum

picture we make use of the quantized electromagnetic field operator derived from

Maxwell’s equations [49] and written in the second quantization formalism via the

bosonic creation and annihilation operators a†k,λ and ak,λ, where the sum runs over all

possible wave vectors k and two orthogonal polarizations λ = 1, 2 of the field modes,

E(r, t) =
∑
k,λ

ek,λEk

(
fk,λ(r)ak,λ(t) + f∗

k,λ(r)a
†
k,λ(t)

)
. (2.6)

The electromagnetic field is quantized by introducing the quantization volume V and

imposing periodic boundary conditions, which determine the field amplitude for each

mode Ek =
√

ℏωk/(2ϵ0V ) with the frequency ωk = c|k|, and the normalized spatial

mode function fk,λ(r), where ek,λ is the unit length polarization vector of the field.

Here, the different states of the each field mode can be treated as the states of a

quantum harmonic oscillator and represented in a Fock space, where the Fock state

|n⟩ with n ∈ N describes a field with n photons in a particular field mode given by its

wave vector and polarization. In the second quantization picture, the field annihilation

12



2.2 Interaction of an atom with a quantized field

and creation operators are defined as

ak,λ|n⟩ =
√
n|n− 1⟩

a†k,λ|n⟩ =
√
n+ 1|n+ 1⟩,

(2.7)

which obey the bosonic commutation relation

[ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′1. (2.8)

Thus, the Hamiltonian describing the combined system of a two-level atom and the

free radiation field can be written as

H = HA +HF +HAF , (2.9)

where

HA = ℏωaσ
+σ− and HF =

∑
k,λ

ℏωka
†
k,λak,λ. (2.10)

This does not include the energy of the vacuum field ℏωk/2, since the constant terms

in the Hamiltonian only lead to the energy shift and do not contribute to the dynamics

of the system. The dipole form of the atom-field interaction Hamiltonian in Eq. (2.3)

with the quantized electric field can be expressed as

HAF =
∑
k,λ

ℏgk,λ(σ+ + σ−)(fk,λ(r)ak,λ + f∗
k,λ(r)a

†
k,λ), (2.11)

where the strength of the dipole coupling is given by

gk,λ =

√
ωk

2ℏϵ0V
ek,λ · deg. (2.12)

The spatial mode function f(r) is determined by the boundary conditions. In free

space, the mode function is a running plane wave f(r) = eikr. However, inside a cavity

the electric field needs to vanish at the surface of the cavity mirrors. In the case of a

linear cavity, these boundary conditions lead to standing waves along the cavity axis

f(r) = cos(kr), where only an integer number n of the half-wavelengths of the field fit

within a distance L between the mirrors of a high-finesse cavity, such that k = nπ/L.

13



2 Fundamental aspects of light-matter interactions

2.3 Jaynes-Cummings model

Next, for the sake of simplicity we will consider an atom placed inside a single-mode

optical cavity, such that the interaction Hamiltonian in Eq. (2.11) can be written as

HAF = ℏg cos(kr)(σ+a+ σ−a† + σ+a† + σ−a). (2.13)

Let us simplify the atom-field interaction using the rotating wave approximation as

follows. From the free energy Hamiltonian of the atom (ωa) and the cavity mode

(ωc) described as H = ℏωaσ
+σ− + ℏωca

†a one can write down the following time

dependence for the operators of the uncoupled system in the Heisenberg picture:

σ−(t) = σ−(0)e−iωat, a(t) = a(0)e−iωct. Thus, the first two terms in Eq. (2.13)

rotate at a slow frequency ω− = ωa − ωc, while the last two terms rotate at a very

high frequency ω+ = ωa + ωc. The fast oscillation terms would quickly average to

zero during the dynamics, therefore we can neglect these terms in the rotating wave

approximation [49], which is valid when the condition ωa + ωc ≫ |ωa − ωc| is fulfilled.
This leads us to the well-known Jaynes-Cummings model [50],

HJC = ℏωaσ
+σ− + ℏωca

†a+ ℏg(r)(σ+a+ σ−a†), (2.14)

which Hamiltonian captures the interaction between a two-level atom and a quantized

mode of an optical cavity.

2.4 Dissipative dynamics in open quantum systems

Spontaneous atomic decay and cavity losses play an important role in the dynamics

of combined atom-cavity systems. Below we will introduce the master equation in

the Lindblad form, which is generally used in open quantum systems to describe

irreversible and non-unitary processes, from dissipation to decoherence and quantum

measurement processes [51].

In this section, we will go through the derivation of the master equation in the

Lindblad form largely based upon the more general description provided in Ref. [52].

The approach is to find the dynamics of the system by tracing out the degrees of

freedom of the environment. In order to do this we assume that the Born-Markov

approximation is valid, therefore the resulting master equation is often called the

14



2.4 Dissipative dynamics in open quantum systems

Born-Markov master equation.

First, the full Hamiltonian of the system and the environment (called bath) is

H = HS +HB +HSB, (2.15)

where HSB denotes the interaction term between the system and the bath. In the

Schrödinger picture, the evolution of the total density matrix is given by

iℏ
d

dt
ρT (t) = [H, ρT (t)]. (2.16)

Next, we switch to the interaction picture with the density matrix ρ̃T = U †
0ρTU0,

where U0 = e−i(HS+HB)t/ℏ which is described by

iℏ
d

dt
ρ̃T (t) = [HSB(t), ρ̃T (t)], (2.17)

with HSB(t) = U †
0HSBU0. The solution of Eq. (2.17) can be formally written as

ρ̃T (t) = ρ̃T (0) +
1

iℏ

∫ t

0
dt1[HSB(t1), ρ̃T (t1)]. (2.18)

Inserting this result once more and continuing the iteration process n times,

ρ̃T (t) = ρ̃T (0) +
∑
n⩾1

1

(iℏ)n

∫ t

0
dt1...

∫ tn−1

0
dtn[HSB(t1), ..., [HSB(tn), ρ̃T (0)]]. (2.19)

We assume that the system-bath interaction is weak, therefore we stop the iteration

process at the second order in HSB, which is also called the Born approximation.

Then, we take the partial trace over the bath degrees of freedom,

ρ̃(t) = ρ̃(0) +
1

iℏ

∫ t

0
dt1TrB

{
[HSB(t1), ρ̃T (0)]

}
+

+
1

(iℏ)2

∫ t

0

∫ t1

0
dt1dt2TrB

{
[HSB(t1), [HSB(t2), ρ̃T (0)]]

}
,

(2.20)

where ρ̃(t) = TrB
{
ρ̃T (t)

}
.

Next, we consider that the initial state between the system and the bath is un-

correlated ρT (0) = ρ(0) ⊗ ρB(0). The bath is very large, therefore we approximate

its dynamics as very slow compared to the system dynamics ρB(t) ≈ ρB(0) ≡ ρB.

Therefore, the first order term in Eq. (2.20) is zero, since TrB
{
[HSB(t1), ρB(0)]

}
= 0.
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2 Fundamental aspects of light-matter interactions

Using the theorem about the derivative of an integral with a variable upper limit and

assuming that the system and the bath degrees of freedom can be factorized at all

times, the master equation can be written as

d

dt
ρ̃(t) =

1

(iℏ)2

∫ t

0
dt′TrB

{
[HSB(t), [HSB(t

′), ρ̃(t)⊗ ρB]]
}

(2.21)

The final approximation to be made is known as the Markov approximation, where

the reservoir is assumed to have a short memory, such that the two-point correlation

function is significant only when t ≈ t′ and the integration upper limit can be extended

to infinity without changing its result. The resulting Born-Markov master equation

reads
d

dt
ρ̃(t) =

1

(iℏ)2

∫ ∞

0
dt′TrB

{
[HSB(t), [HSB(t

′), ρ̃(t)⊗ ρB]]
}

(2.22)

Let us consider that the interaction Hamiltonian has the following form

HSB = ℏ
(
SB† + S†B

)
, (2.23)

where S is an operator which acts only on the system, and B is an operator acting

only on the bath. Let us insert the interaction Hamiltonian HSB(t) = ℏ
(
S(t)B†(t) +

S†(t)B(t)
)
into Eq. (2.22). After we expand the commutators and rearrange the terms

using the cyclic property of a trace one can write,

TrB
{
[HSB(t), [HSB(t

′), ρ̃(t)ρB]]
}
=

ℏ2
[
S(t)S†(t′)ρ̃(t)− S†(t′)ρ̃(t)S(t)

]
TrB

{
B†(t)B(t′)ρB

}
+ℏ2

[
ρ̃(t)S†(t′)S(t)− S(t)ρ̃(t)S†(t′)

]
TrB

{
B(t′)B†(t)ρB

}
+ℏ2

[
S†(t)S(t′)ρ̃(t)− S(t′)ρ̃(t)S†(t)

]
TrB

{
B(t)B†(t′)ρB

}
+ℏ2

[
ρ̃(t)S(t′)S†(t)− S†(t)ρ̃(t)S(t′)

]
TrB

{
B†(t′)B(t)ρB

}
.

(2.24)

In order to derive the final expression for the master equation, which we will often

make use of throughout this work let us consider the interaction of a two-level atom S

with a bath consisting of many modes B =
∑

k gkbk, where gk characterizes the

strength of the coupling between the system and bath modes. Using the Baker-

Campbell-Hausdorff formula

eABe−A =

∞∑
0

1

m!
[A,B]m, (2.25)
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2.4 Dissipative dynamics in open quantum systems

where [A,B]0 = B, [A,B]1 = [A,B], [A,B]m = [A, [A, [A..., B]]], one can calculate the

expressions for the system and bath operators in the interaction picture,

S(t) = eiHSt/ℏSe−iHSt/ℏ = Se−iωat

B(t) = eiHBt/ℏBe−iHBt/ℏ =
∑
k

gkbke
−iωkt.

(2.26)

After we insert this result into Eq. (2.24) and Eq. (2.22) one needs to calculate such

terms as ∫ ∞

0
dt′TrB

{
B†(t)B(t′)ρB

}
e−iωa(t−t′) =∑

j,k

gkgj

∫ ∞

0
dt′TrB

{
b†kbjρB

}
ei(ωkt−ωjt

′)e−iωa(t−t′),
(2.27)

where
TrB

{
b†kbjρB

}
= ⟨b†kbj⟩ = δjknk

TrB
{
bkb

†
jρB

}
= ⟨bkb†j⟩ = δjk(nk + 1),

with nk =
1

eβℏωk − 1
, β =

1

kBT

(2.28)

for a thermal bath of bosons which obey the Bose-Einstein distribution. Next, we use

the relation ∫ ∞

0
dt′e±iϵt′ = πδ(ϵ)± iP

(1
ϵ

)
(2.29)

where P denotes the Cauchy principal value of the integral, which corresponds to the

Lamb frequency shift and is assumed to be very small compared to ωa and can be

neglected. Thus, the integral in Eq. (2.27) is equal to∫ ∞

0
dt′TrB

{
B†(t)B(t′)ρB

}
e−iωa(t−t′) =

γn̄

2∫ ∞

0
dt′TrB

{
B(t′)B†(t)ρB

}
e−iωa(t−t′) =

γ(n̄+ 1)

2
,

(2.30)

where γ = 2π
∑

k |gk|2δ(ωk − ωa), and n̄ is the particle density in the reservoir.

Finally, the master equation in the interaction picture reads

d

dt
ρ̃(t) =

γ(n̄+ 1)

2

(
2Sρ̃(t)S† − S†Sρ̃(t)− ρ̃(t)S†S

)
+
γn̄

2

(
2S†ρ̃(t)S − SS†ρ̃(t)− ρ̃(t)SS†). (2.31)
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2 Fundamental aspects of light-matter interactions

Switching back into the the Schrödinger picture,

dρ

dt
= − i

ℏ
[HS , ρ] +

γ(n̄+ 1)

2

(
2SρS† − S†Sρ− ρS†S

)
+
γn̄

2

(
2S†ρS − SS†ρ− ρSS†), (2.32)

which is known as the Lindblad equation or the master equation in the Lindblad form.

2.4.1 Lindblad master equation

Thus, the dynamics in open quantum systems is governed by the master equation for

the system density matrix ρ, which can be written as

dρ

dt
= − i

ℏ
[HS , ρ] + L[ρ], (2.33)

where the first term describes the coherent dynamics of the system, whereas the

second term represents the dissipative processes in the system given by the Liouvillian

superoperator L[ρ]. In this chapter, we have shown that within the Born-Markov

approximation the dissipative dynamics can be described by the Liouvillian in the

standard Lindblad form,

L[ρ] =
∑
i

γi
2

(
2SiρS

†
i − S†

i Siρ− ρS†
i Si

)
, (2.34)

where the sum runs over all given dissipative channels and γi is the rate of a given

dissipative process associated with the jump operator Si.

2.4.2 Decay processes

In the following, we will consider the individual spontaneous decay of atoms with the

decay rate Γ into vacuum modes (particle density n̄ = 0), which can be written as

LΓ[ρ] =
Γ

2

∑
i

(2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i ). (2.35)

Similarly, the cavity decay with the loss rate κ can be derived, which reads

Lκ[ρ] =
κ

2
(2aρa† − a†aρ− ρa†a). (2.36)
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2.4 Dissipative dynamics in open quantum systems

2.4.3 Dephasing processes

Quantum systems interacting with the environment experience external perturbations

which are inevitably imprinted on the system leading to effects such as dephasing. In

the case of active atomic clocks, it is particularly important to model the influence

of external electric and magnetic field fluctuations, as well as the fluctuations of the

cavity mirrors. We can model these dephasing processes by the white noise frequency

fluctuations, which two-time correlation function is given by the Dirac delta function

⟨ξ(t)ξ(t′)⟩ = γdδ(t− t′), (2.37)

where γd is the characteristic frequency of the noise.

The fluctuations of the atomic transition frequency due to external perturbations

can be described by the atomic dephasing via the Lindblad term Lν [ρ] [53], with the

atomic dephasing rate ν and the jump operator σ+σ−. Similarly, one can show that

thermal and mechanical fluctuations of the cavity length lead to the fluctuations of

the cavity resonance frequency given by Lξ[ρ] with the cavity dephasing rate ξ and

the jump operator a†a for a single mode cavity.
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3 Collective superradiant emission of light

3.1 Superradiant emission in free space

Many interesting open problems in quantum science are a consequence of interacting

particles, i.e. they change their collective behavior due to mutual interactions. For

dipolar atomic ensembles in free space, the direct dipole-dipole mediated interactions

between the atoms can significantly modify the radiative properties of the collective

atomic ensemble, if the distances between atoms are less than λ0, the wavelength of

light that is resonant with the atomic transition. Superradiance [46] is a landmark

example of cooperative behavior in quantum optics where closely spaced atoms coupled

to the same radiation field modes can synchronize with each other and form a collective

dipole, which can emit an intense burst of light. The peak intensity of the emitted

light eventually becomes proportional to the square of the number of atoms N , as the

distance between the atoms decreases. In Fig. 3.1 we show the total emission rate

for N initially fully excited two-level atoms in the so-called Dicke limit [46], i.e. with

inter-atomic separation a = 0, where Γij = Γ. In this case, the total photon emission

is evaluated as

I(t) =

N∑
i,j=1

Γ⟨σ+
i σ

−
j ⟩. (3.1)

In this limit, the dynamics is given by ρ̇ = LΓ[ρ] written in the rotating frame of the

atomic frequency ωa, and is governed by a Liouvillian of the form

LΓ[ρ] =
Γ

2

N∑
i,j=1

(2σ−
i ρσ

+
j − σ+

i σ
−
j ρ− ρσ+

i σ
−
j ), (3.2)

with Γ being the spontaneous decay rate for a single atom. Due to the symmetry

of the problem, this can be mapped to a system of N energy states, so-called Dicke

states, instead of having to compute 2N states. In this case we obtain N jump

operators S−
m = |m − 1⟩⟨m| and associated state-dependent transition rates Γm =

21



3 Collective superradiant emission of light

m(N −m+1)Γ, where m denotes the excitation number. The emission rate now reads

I(t) =
∑

m Γm⟨S+
mS−

m⟩. Thus, the evaluation of the superradiant decay dynamics of

many emitters becomes possible and is shown in Fig. 3.1. Finally, we note that the

largest decay rate occurs when the system is in the N/2-excitation state, m = N/2,

with ΓN/2 = N/2(N/2 + 1)Γ ∝ N2Γ. This superradiant burst of photon emission
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Figure 3.1: The photon emission (normalized by NΓ) as a function of time for a
fully excited ensemble of N atoms in the Dicke limit. The black dashed
line shows the photon emission of N non-interacting atoms decaying
exponentially over time. We note, that the peak photon emission occurs
at tmax ∼ log(N)/(NΓ). Right-hand side: The maximal photon emission
rate as a function of the atom number shows the peak photon emission
rate exhibits a quadratic scaling with N .

occurs due to the synchronization of all dipole phases in the atomic ensemble. In the

next section we shall see how this can be readily realized when the atoms are placed

inside an optical cavity.

3.2 Superradiant laser

Similar to the synchronization process which emerges in free space superradiance, we

will briefly discuss in this section superradiant lasing, as it occurs for a sufficiently

large number of atoms coupled to the same cavity mode. We use a simple laser model

here to illustrate the basic equations necessary to understand the methodology of this

Thesis. It accounts for a single-mode cavity interacting with N identical two-level

atoms, where the decay and pumping processes are described in terms of the Liouville

operators. The master equation for the system density matrix reads

dρ

dt
= − i

ℏ
[H, ρ] + Lκ[ρ] + LΓ[ρ] + LR[ρ], (3.3)
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where LΓ[ρ] and Lκ[ρ] are described in Eqs. (2.35) and (2.36) representing individual

atomic decay and cavity losses, respectively. To observe a steady-state superradiance

we introduce an incoherent pumping process in the system, which effect is described

by the pumping rate R and the corresponding atomic raising operators σ+
i to create

continuous population inversion among the atoms,

LR[ρ] =
R

2

∑
i

(2σ+
i ρσ

−
i − σ−

i σ
+
i ρ− ρσ−

i σ
+
i ). (3.4)

The many-body Hamiltonian of the atomic ensemble interacting with a single-mode

optical cavity is described by the Tavis-Cummings model

H = ℏωa

N∑
i=1

σ+
i σ

−
i + ℏωca

†a+ ℏg
N∑
i=1

(σ+
i a+ σ−

i a
†), (3.5)

where we assume that all atoms are identical with the same atom-cavity coupling

strength g. Note, that because of the symmetry of the problem, we can define collective

operators S± = N−1
∑

j σ
±
j and Sz = N−1

∑
j σ

z
j , where σz

j = σ+
j σ

−
j − σ−

j σ
+
j is the

inversion operator for a single atom j. One can calculate the time evolution of the

system by solving the master equation or using the cumulant expansion method

described in the methods section below. Crucially, a nonzero collective atomic dipole

⟨Sz⟩ develops above the pumping threshold when a critical number of atoms is reached,

a signature of atomic dipole phase locking in the collective strong coupling regime

when CN ≫ 1, where the single-atom cooperativity parameter C = 4g2/(κΓ). The

single-atom cooperativity is a dimensionless quantity that describes the ratio of the

atomic photon emission rate into the cavity mode versus the cavity losses and the

atomic photon emission rate into the free space. In the bad-cavity regime, the cavity

decay rate κ is much bigger than g and Γ, thus the cooperativity parameter for a

single atom is usually much smaller than one.

While photons spend very little time in the cavity, they play an important role

mediating interatomic interactions between the atoms before leaving through one

of the cavity mirrors. Thus, the phases of the atomic dipoles synchronize via the

cavity mediated coupling, which leads to the buildup of a collective dipole among the

atoms and coherent emission into the cavity. At low photon numbers, the coherence

necessary for frequency stability is stored in the atoms rather than the cavity field.

Consequently, the output frequency becomes robust to cavity fluctuations, which is the

main limitation of conventional good-cavity lasers. This can be shown if we compare
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the spectral linewidth in the good- and the bad-cavity regimes. In the good-cavity

regime, the cavity linewidth is much narrower than the bandwidth of the gain medium,

namely κ ≪ Γ. In this case, it can be found that the linewidth of the light exiting the

cavity is given by ∆ν ∝ κ/|⟨a⟩|2, which is the well-known Schawlow-Townes linewidth

for lasers [54]. In the superradiant regime, it has been shown in Ref. [22, 55] that

the minimum linewidth of the superradiant laser can reach ∆ν ≈ CΓ, which has the

potential to be much smaller than the natural linewidth of the atomic transition. For

instance, in the case of 1S0 → 3P0 clock transition in 87Sr, theoretical predictions

suggest that the ultimate linewidth can be way below 1 mHz [22].

3.3 Methods

3.3.1 Cumulant expansion method

Finding the exact solution of the master equation (2.33) analytically is almost never

possible. Unfortunately, the exponential growth of the Hilbert space with the atom

number also does not allow us to obtain the numerical solution of the density matrix

evolution for many atoms. However, often we are only interested in finding the

expectation values of some specific system operators. From the master equation (2.33)

one can derive the time derivative for a system operator expectation value ⟨O⟩ in the

Heisenberg picture and after some manipulation using the cyclic permutation property

of the trace

d

dt
⟨O⟩ = i⟨[H,O]⟩+ κ⟨D[a]O⟩+ Γ

∑
i

⟨D[σ−
i ]O⟩+R

∑
i

⟨D[σ+
i ]O⟩, (3.6)

where D[c]O =
(
2c†Oc− c†cO −Oc†c

)
/2.

For instance, we can choose a set of operators {a, σ−
i } to obtain a system of

Heisenberg equations of motion. However, the time derivatives of their expectation

values will couple to expectation values involving more complex operators, namely

⟨a†a⟩, ⟨σ+
i σj⟩ and ⟨aσ+

i ⟩. In order to obtain a closed set of equations, only correlations

between operators up to a certain order should be considered, while all higher-order

correlations are expanded in terms of lower orders. This approximation can be

described in a systematic fashion, using the so-called cumulant expansion. More

generally, the joint cumulant of an N -th order correlation ⟨O1...ON ⟩ can be expressed

as an alternating sum of products of their expectation values and is compactly written
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as [56]

C(O1, ..., ON ) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

〈∏
i∈B

Oi

〉
(3.7)

where π runs through the list of all partitions of {1, ..., N}, B runs through the list

of all blocks of the partition π and |π| is the number of parts in the partition. An

approximation can be made by setting C(O1, ..., ON ) = 0, which allows to express

⟨O1...ON ⟩ with correlations of order N − 1 and lower. For instance, the expansion of

expectation values involving three operators reads

⟨O1O2O3⟩ ≈ ⟨O1⟩⟨O2O3⟩+ ⟨O2⟩⟨O1O3⟩+ ⟨O3⟩⟨O1O2⟩ − 2⟨O1⟩⟨O2⟩⟨O3⟩. (3.8)

This introduces an error since the third and higher-order correlations are neglected.

However, as we present in Fig. 3.2, in a bad-cavity regime there is a good agreement

between the full master equation and the cumulant expansion solution. We note that

the cumulant expansion becomes exact when its order equals to the number of atoms

in the system.

Figure 3.2: Comparison of the master equation solution (blue line) with the second-
order (orange line) and fourth-order (red line) cumulant expansion dy-
namics for the mean intracavity photon number (left) and the popu-
lation inversion (right) for N = 6 atoms. Parameters: (∆, g, κ,R) =
(0, 4Γ, 4Γ, 16Γ).

In Fig. 3.2 we calculate the dynamics of the mean intracavity photon number ⟨a†a⟩
and the population inversion on the lasing transition ⟨sz⟩ as a function of time (in

units of Γ) to show the comparison of the master equation solution (blue line) with

the second order (orange line) and the fourth order (red line) cumulant expansion

approach.
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3 Collective superradiant emission of light

3.3.2 Spectrum of the cavity light field

To find the spectrum of the cavity output field we make use of the quantum regression

theorem [57] and calculate the first-order correlation function g(1)(τ) = ⟨a†(t0+τ)a(t0)⟩.
If we choose t0 = tend, such that tend is an arbitrary moment in time when the

cavity photon dynamics has reached a stationary state, we can calculate ∂τg
(1)(τ) =

⟨∂τa†(τ)a(0)⟩ via the master equation or using the cumulant expansion approach

above, which in turn allows us to find g(1)(τ). According to the Wiener-Khinchin

theorem [58] the spectrum can be found as the Fourier transform of the first-order

correlation function,

S(ω) = 2ℜ
{∫ ∞

0
dτe−iωτg(1)(τ)

}
. (3.9)

Figure 3.3: First-order correlation function dynamics (left) and cavity output spec-
trum (right) for N = 6 atoms obtained from the master equation solution
(blue line) versus the second-order cumulant expansion (orange line).
Parameters are the same as in Fig. 3.2.
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Background: Theoretical studies of superradiant lasing on optical clock

transitions predict a superb frequency accuracy and precision closely tied

to the bare atomic linewidth. Such a superradiant laser is also robust

against cavity fluctuations when the spectral width of the lasing mode is

much larger than that of the atomic medium. Recent predictions suggest

that this unique feature persists even for a hot and thus strongly broadened

ensemble, provided the effective atom number is large enough.

Methods: Here we use a second-order cumulant expansion approach to

study the power, linewidth and lineshifts of such a superradiant laser as a

function of the inhomogeneous width of the ensemble including variations

of the spatial atom-field coupling within the resonator.

Results: We present conditions on the atom numbers, the pump and

coupling strengths required to reach the buildup of collective atomic coher-

ence as well as scaling and limitations for the achievable laser linewidth.
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Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling

Conclusions: We show how sufficiently large numbers of atoms subject to

strong optical pumping can induce synchronization of the atomic dipoles

over a large bandwidth. This generates collective stimulated emission of

light into the cavity mode leading to narrow-band laser emission at the

average of the atomic frequency distribution. The linewidth is orders of

magnitudes smaller than that of the cavity as well as the inhomogeneous

gain broadening and exhibits reduced sensitivity to cavity frequency noise.

doi: 10.12688/openreseurope.13781.2

4.1 Introduction

Collective stimulated emission of coherent light by atoms inside an optical cavity

is a fundamental phenomenon studied for decades in quantum optics [22,46,59–63].

Even very recently a large number of theoretical and experimental studies focused on

continuous superradiance [22, 23, 63–70], aiming at the development of a superradiant

laser [40,41,47,48,71–73]. Such a superradiant laser typically operates in a bad-cavity

regime, where the cavity mode is much broader than the natural linewidth of the

atoms providing the gain. In the limit of low photon number operation the coherence

necessary for frequency stability is stored in the atoms rather than the cavity field.

This makes the laser frequency insensitive to thermal and mechanical fluctuations of

the cavity, which is the main limitation for conventional good-cavity lasers [38, 74]. In

recent years pulsed superradiance has been experimentally demonstrated [40,47,48,73]

and a number of new theoretical ideas have been proposed [75–77]. However, the

experimental realization of a continuous wave superradiant laser has not yet been

achieved.

Effects such as frequency broadening in the gain medium are an inherent part of any

experiment. Such processes are capable of disrupting the collective interaction between

the atoms and the cavity field. In this work, we aim to offer a comprehensive study of

these potentially detrimental effects. To this end, we study a model of a superradiant

laser and focus on inhomogeneity among the atomic ensemble. The inhomogeneity is

primarily associated with a distribution of the atomic resonance frequencies leading

to stimulated emission into the cavity at a range of different frequencies. Similar

differences in the atom-field coupling due to variation in the atomic positioning are

also included in the system.
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4.2 Model

We numerically investigate the dynamics of an atomic medium with a wide range

of resonance frequencies and show how the intensity of the pumping rate can lead

to cooperative effects among the atoms such that superradiant lasing is achieved.

Furthermore, we consider atoms to have different coupling strengths to the cavity. We

also study the laser sensitivity to cavity noise.

4.2 Model

We consider an ensemble of N incoherently pumped two-level atoms inside a single

mode optical cavity as shown in Figure 4.1. In a bad-cavity regime, where the cavity

relaxation rate exceeds the natural linewidth of the atomic transition by many orders

of magnitude (κ ≫ Γ), the system constitutes a generic model of a superradiant

laser. The i-th atom couples to the cavity field with the coupling strength gi and

has a resonance frequency ωi which might be shifted from the unperturbed atomic

transition frequency ωa. Assuming that the cavity is on resonance with the unperturbed

atomic transition frequency, we describe the coherent dynamics of the system by the

Tavis-Cummings Hamiltonian in the rotating frame of the cavity,

H = −
N∑
i=1

∆iσ
+
i σ

−
i +

N∑
i=1

gi(aσ
+
i + a†σ−

i ). (4.1)

Here, ∆i = ωc−ωi, σ
+
i = (σ−

i )
† = |e⟩i⟨g|i denote the raising and lowering operators of

the i-th atom, where |g⟩ and |e⟩ are the atomic ground and excited states, respectively,

and a† (a) is the photon creation (annihilation) operator of the cavity mode. The

dissipative processes of this system are described by the Liouvillian terms

Lκ[ρ] =
κ

2
(2aρa† − a†aρ− ρa†a)

LΓ[ρ] =
Γ

2

∑
i

(2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i )

LR[ρ] =
R

2

∑
i

(2σ+
i ρσ

−
i − σ−

i σ
+
i ρ− ρσ−

i σ
+
i ),

(4.2)

representing the loss of photons through the cavity at the rate κ, the spontaneous

atomic decay with the single-atom spontaneous emission rate Γ, and the individual

incoherent pumping with the pump strength R. Thus, the full dynamics of the system

is determined by the master equation for the density matrix ρ in standard Lindblad
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Figure 4.1: Schematic illustration of the system. The atomic medium is placed
inside the optical resonator which has a resonance frequency ωc. Each
atom features a ground and an excited state separated by the transition
energy ωa. The transition couples to the cavity mode (g) as well as the
environment (Γ). Additionally, the atoms are incoherently driven from
the side (R) such that they can provide gain to the cavity mode.

form

ρ̇ = −i[H, ρ] + Lκ[ρ] + LΓ[ρ] + LR[ρ]. (4.3)

Since the exponential growth of the Hilbert space with the number of atoms renders

the solution of the master equation (4.3) intractable for N ≫ 1, we use a cumulant

expansion method [22,56]. First, we write down the equations for operator averages

describing our system, which for a given operator O reads

d

dt
⟨O⟩ = i⟨[H,O]⟩+ κ⟨D[a]O⟩+

Γ
∑
i

⟨D[σ−
i ]O⟩+R

∑
i

⟨D[σ+
i ]O⟩,

(4.4)

where D[c]O =
(
2c†Oc− c†cO −Oc†c

)
/2. We note that in some cases (mentioned in

the description of the results) we additionally include cavity dephasing and atomic

dephasing described by the terms ξ⟨D[a†a]O⟩ and ν
∑

i⟨D[σ+
i σ

−
i ]O⟩, respectively. The

cavity dephasing accounts for the effective noise imposed on the system by thermal

fluctuations of the cavity mirrors, whereas the atomic dephasing models perturbations

on the lasing transition.
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4.2 Model

To obtain a closed set of differential equations we use the cumulant expansion

method [56] up to second order:

d

dt
⟨a†a⟩ = −κ⟨a†a⟩+ i

N∑
m=1

gm⟨aσ+
m⟩ − i

N∑
m=1

gm⟨a†σ−
m⟩

d

dt
⟨aσ+

m⟩ = −
(
(κ+ Γ +R+ ξ + ν)/2 + i∆m

)
⟨aσ+

m⟩+ igm⟨a†a⟩ − igm⟨σ+
mσ−

m⟩

− 2igm⟨a†a⟩⟨σ+
mσ−

m⟩ − i

N∑
j;m̸=j

gj⟨σ+
mσ−

j ⟩

d

dt
⟨σ+

mσ−
m⟩ = igm⟨a†σ−

m⟩ − igm⟨aσ+
m⟩ − (Γ +R)⟨σ+

mσ−
m⟩+R

d

dt
⟨σ+

mσ−
j ⟩ = igm⟨a†σ−

j ⟩ − igj⟨aσ+
m⟩ − 2igm⟨a†σ−

j ⟩⟨σ
+
mσ−

m⟩+ 2igj⟨aσ+
m⟩⟨σ+

j σ
−
j ⟩

− (Γ +R+ ν)⟨σ+
mσ−

j ⟩.

(4.5)

In order to calculate the spectrum of the cavity light field we make use of the Wiener-

Khinchin theorem [58], which states that the spectrum can be computed as the Fourier

transform of the first-order correlation function g(1)(τ) =
〈
a†(τ)a(0)

〉
,

S(ω) = 2ℜ
{∫ ∞

0
dτe−iωτg(1)(τ)

}
. (4.6)

We use the quantum regression theorem [57] to write down the set of differential

equations for the two-time correlation function, which in matrix form reads,

d

dτ


⟨a†(τ)a(0)⟩
⟨σ+

1 (τ)a(0)⟩
...

⟨σ+
N (τ)a(0)⟩

 = A


⟨a†(τ)a(0)⟩
⟨σ+

1 (τ)a(0)⟩
...

⟨σ+
N (τ)a(0)⟩

 , (4.7)

where

A = −


κ+ξ
2

−ig1 . . . −igN

ig1⟨σz
1⟩st Γ+R+ν

2
+ i∆1 . . . 0

...
...

. . .
...

igN ⟨σz
N ⟩ 0 . . . Γ+R+ν

2
+ i∆N

 . (4.8)

We obtain the laser emission spectrum by taking the Laplace transform of Eq. 4.7,

where the initial conditions are the steady-state solutions of Eqs. 4.5, for example

⟨a†(τ = 0)a(0)⟩ = ⟨a†a⟩st.
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Figure 4.2: (a) The mean photon number and (b) the linewidth (in units of κ) as func-
tions of the number of atoms N and pumping rate R for the parameter
set (∆, g,Γ, ξ, ν) = (0, 0.002κ, 0.001κ, 0, 0). (c-d) The cut through the
white dashed line in (a-b) for R = 0.05κ. (e-f) The mean photon number
and the linewidth as functions of the atom-cavity coupling strength g and
pumping rate R. Additional cavity dephasing occurs at the rate ξ = κ.
Parameters: ∆ = 0,Γ = 0.001κ,N = 5× 104. (g-h) The cut through the
white dashed line in (e-f): the ultra-narrow linewidth is robust to cavity
dephasing ξ = κ (red solid line) in the regime where the photon number
is low. For the blue dashed line atomic dephasing was added to the
system with the rate ν = 10Γ.

In this section, we suppose that all atoms in the ensemble are identical with the

same detunings {∆i} = ∆ and couplings {gi} = g to the cavity mode. This reduces

the problem to a set of four differential equations in Eqs. 4.5. The mean intracavity

photon number and the laser linewidth ∆ν (the FWHM of the spectrum) are depicted

in Figure 4.2 as functions of the number of atoms, pumping rate, and atom-cavity

coupling strength. Superradiance is expected in the parameter regime where the

single-atom cooperativity parameter C = 4g2/(κΓ) < 1, but the system is in the

collective strong coupling regime [22], where CN ≫ 1. Figures 4.2(a-d) show the

emergence of the superradiant regime as the number of atoms increases. Above the

lasing threshold the collective emission of light with an ultra-narrow linewidth is

observed. In this collective regime the phases of the atomic dipoles are synchronized

via photon exchange through the cavity which leads to the buildup of a collective

dipole among the atoms.

A key feature of such a laser is its insensitivity to thermal and mechanical fluctuations
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4.2 Model

Figure 4.3: The linewidth of the emission spectrum of N = 5× 104 atoms as a scan
over cavity dephasing (ξ) and atomic dephasing (ν). The optimal para-
meters are taken from Fig. 4.2(f), where the system is in the superradiant
regime for (∆, g,Γ, R) = (0, 0.001κ, 0.001κ, 0.01κ).

of the cavity length, since the coherence is primarily stored in the atoms rather than

in the cavity field. To show the robustness against cavity noise we include cavity

dephasing with the rate ξ in the equations. In Figure 4.2(f) we scan the linewidth over

the coupling strength g and pumping rate R for an ensemble of N = 5× 104 atoms.

In the superradiant regime, the laser linewidth is less than the natural linewidth of

the atomic transition and approaches the value ∆ν ∼ CΓ, which can be well below

1 mHz for the 1S0 → 3P0 transition in 87Sr, as has been pointed out in Ref. [22].

Furthermore, we study the influence of noise on the laser linewidth in more detail. In

Figure 4.3 we scan the linewidth over both cavity and atomic dephasing, where the

other parameters of the system correspond to the superradiant regime. One can see

that the linewidth of the superradiant laser can be extremely robust to noise sources

within a wide range.

So far the results are based on the idea of absolutely identical atoms. In the next

sections, we focus on inhomogeneity within the atomic medium. In particular, we will

consider the atoms to be subject to distinct frequency shifts and different couplings to

the resonator mode.
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4.3 Atomic ensembles with inhomogeneous broadening

While the individual atoms in free space are identical and have the same transition

frequencies in principle, in practice they are often subject to individual perturbations

introducing local lineshifts, e.g. from trapping within the cavity, motion, or optical

pumping. Specifically, it can be an inhomogeneous trapping lattice or pump lasers

with a Gaussian profile. Doppler shifts would have similar broadening effects in ring

cavities, whereas in a standing-wave cavity they would generate a time-dependent

atom-field coupling which we do not consider here. In this section we study the overall

effects of inhomogeneous broadening of the gain medium on the laser properties.

In contrast to the case of identical atoms, where the atom number in Eqs. 4.5 and

4.7 only enters as a constant factor, the inhomogeneity among atomic frequencies

requires keeping track of the time evolution of each atom separately. For the solution

of the collective dynamics one then needs to solve O(N2) equations. This is only

possible for a limited atom number and we thus have to resort to further approximation

methods in order to treat larger ensembles. As a possible approach to approximate a

large ensemble with a continuous frequency distribution we combine several atoms in

subgroups representing their average atomic frequencies, which we call clusters, see

also Refs. [69, 70, 78]. Each atom in a cluster is assumed to be completely identical

to all other atoms in the same frequency cluster. This preserves the central physics

of the inhomogeneous broadening, but at the same time substantially reduces the

number of equations.

First, we simulate N = 5 atoms in five clusters centered at ∆m = ωc − ωm, where

∆m ∈ [−κ : κ]. Note that this is equivalent to M = 5 frequency clusters each

containing a single atom. At low excitation the resulting cavity output spectrum

then consists of precisely five spectral lines at the frequency of each cluster. Basically,

these are five independent lasers using the same cavity mode simultaneously. If we

increase N and set the number of atoms per cluster according to a Gaussian normal

distribution with the standard deviation σ = κ, the structure of the spectrum in

Figure 4.4(a) will remain unchanged, with each peak becoming more pronounced. In

particular, in Figure 4.4(b) we observe growing collective emission among atoms of

the same cluster so that the linewidth of each peak becomes smaller as the atom

number in the corresponding cluster increases. In Figure 4.4(c) we show how more

and more lines appear as we increase the number of clusters up to M = 201 until the

output merges into a single broad emission line. Note that an increase of the collective
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4.3 Atomic ensembles with inhomogeneous broadening

Figure 4.4: Cavity output spectra for weakly driven atomic ensembles composed
of several discrete clusters with varying atomic frequencies. (a) M = 5
clusters of atoms with the detunings ∆m = [−κ;−κ/2; 0;κ/2;κ] for
different total numbers of atoms N = 5, ..., 5000. (b) A zoom-in showing
the narrowing of the central peak in the spectrum from (a) around
the resonance frequency. (c) Transition of the spectral distribution
from discrete to quasi-continuous for an increasing number of clusters.
Parameters: (g,Γ, R) = (0.002κ, 0.001κ, 0.01κ).

coupling to g
√
N ∼ κ or a randomization of the individual cluster detunings do not

lead to any substantial difference in the spectral profile of the laser. Hence, one can

expect a single broadened peak in the emission spectrum in the more realistic case of

a large ensemble of atoms with a continuous frequency distribution.

So far we limited investigations to weak incoherent pumping in order to avoid

significant additional broadening of the atomic linewidth due to pumping. However,

this broadening effect can actually aid the buildup of coherences between the clusters.

When the pumping is strong enough such that the distinct spectral lines overlap, the

discrete spectral lines of the clusters merge into a single central peak (see Figure 4.5).

In other words, more intracavity photons and broader individual atomic gain lines

ultimately lead to a dramatic narrowing of the laser line. We attribute this effect to

a dynamical phase transition from the unsynchronized phase of the dipoles to the

synchronized one. Note that an analogous phenomenon has previously been studied

in Ref. [79] for two mesoscopic ensembles of atoms collectively coupled to a cavity

with opposite detunings. Furthermore, we show how an atom number imbalance at a

particular frequency in Figure 4.5(b) and overall atom number fluctuations modeled

by slight random deviations from a Gaussian distribution in Figure 4.5(c) lead to a

shift of the spectral lines. However, in the synchronized regime the lineshift of the
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Figure 4.5: Cavity output spectra of a large inhomogeneously broadened ensemble
of N = 104 atoms for different pumping rates R = 0.001κ (grey),
0.01κ (blue), 0.02κ (orange), 0.05κ (red). The ensemble is represented by
M = 31 clusters with the number of atoms per cluster chosen according to
a Gaussian normal distribution (a) with the standard deviation σ = 0.1κ,
(b) when adding particle imbalance at ∆ = 0.027κ, (c) with overall atom
number fluctuations. The emission intensity is normalized and the other
parameters are chosen as ∆ ∈ [−σ : σ], g = 0.002κ, Γ = 0.001κ.

central peak is much smaller than its linewidth.

The collapse of the emission spectrum into a single central line occurs at a critical

pump strength Rc. This critical value strongly depends on the overall width of the

frequency distribution, but shows almost no dependence on the number of subensembles

M and the total number of atoms N . The critical transition pump strength is shown

for different standard deviations σ of the atomic frequency distribution in Figure 4.6.
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4.3 Atomic ensembles with inhomogeneous broadening

Figure 4.6: Critical value of pumping above which the collective superradiant regime
is established depending on the standard deviation σ of the atomic
frequency distribution. The data points show the numerical results for
an ensemble of N = 102 (red dots) and N = 104 (blue circles) atoms
sampled by M = 31 clusters. For comparison we plot the linear (solid
line) function Rc = 0.4σ as a linear approximation to the data points.
Parameters: ∆ ∈ [−3σ : 3σ], g = 0.001κ,Γ = 0.001κ.

The data points show the numerical results for an ensemble of N = 102 (red dots)

and N = 104 (blue circles) atoms sampled by M = 31 clusters. For comparison, we

also plot the linear (solid line) function Rc = 0.4σ. We calculate the critical pumping

by computing the spectrum for different R. We then determine the critical value

of the pump strength as the value at which the spectrum has only a single local

maximum, i.e. all separate peaks have merged into a single spectral line. We find a

linear dependence for large inhomogeneously broadened ensembles while for narrow

ensembles a significantly lower pump strength is required.

Once the laser is operating at a single distinct emission frequency, we can characterize

the properties of the output light by the linewidth and the average photon number. The

results for different distributions of atomic frequencies are shown in Figure 4.7, where

∆ ∈ [−3σ : 3σ] and Γ ≤ 3σ ≤ κ. Figure 4.7(a) illustrates how a narrow linewidth

appears for different σ as the number of atoms increases. Note that we chose a

pumping strength well above the critical value for a wide atomic frequency distribution

(red line). The sharp decrease of the linewidth is accompanied by an increase in the

average photon number as can be seen in Figure 4.7(b). This is indicative of a lasing

threshold being crossed at a certain number of atoms.
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Figure 4.7: (a) Laser spectral linewidth and (b) mean photon number for inhomo-
geneously broadened ensembles with different standard deviations σ and
spectral widths of atomic frequencies ∆ ∈ [−3σ : 3σ], where σ = κ/300
(green line), σ = κ/30 (blue line), σ = κ/3 (red line) as a function of
the total number of atoms. The number of clusters is M = 31 with
the number of atoms per cluster chosen according to a Gaussian nor-
mal distribution. The dashed lines represent the results including an
additional spatial variation of the atom-field coupling g(x) = g0 cos(kx).
The ensemble is comprised of M = 11 frequency clusters and K = 5
clusters of different couplings. The couplings are chosen such that
the effective coupling strength geff =

√
(
∑

m g2m)/K ≡ g. Parameters:
g = 0.001κ, g0 = 0.0013κ, Γ = 0.001κ.

4.4 Inhomogeneously broadened ensembles with variable

coupling strength

Up to now we have assumed that the atoms are perfectly positioned inside the cavity

such that they couple equally to the cavity mode. Let us now include spatial variations

of the atom-field coupling within the resonator. We consider the ensemble of atoms

with the position-dependent coupling strength g(x) = g0 cos(kx), where g0 is the

coupling constant, k = 2π/λ is the cavity mode wave number and x represents the
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4.4 Inhomogeneously broadened ensembles with variable coupling strength

position of an atom. In order to describe the atom-field dynamics we use a similar

cluster approach as before. We assume equidistant positions for different clusters

xm ∈ [0, ..., λ/4) and corresponding couplings gm(x) = g0 cos(kxm) = {g1, g2, ..., gK},
where K is the total number of clusters. Note, that the sign of the coupling is irrelevant

in our system, therefore we only consider couplings with gm > 0.

The dashed lines in Figure 4.7 show the results for M = 11 frequency clusters and

K = 5 clusters of different couplings. As can be seen in Figure 4.7(a), for atoms with

different couplings to the cavity mode the dependence of the linewidth on the number

of atoms remains roughly the same as for atoms equally coupled to the cavity. This

holds as long as the effective overall coupling strength geff =
√
(
∑

g2m)/K is constant.

Thus, the linewidth is essentially unaffected by atoms having different couplings to

the cavity.

Finally, let us include cavity dephasing in order to describe lasing in a large

inhomogeneously broadened ensemble in the presence of cavity noise. The spectral

linewidth and mean photon number under strong cavity dephasing at the rate ξ = κ

are depicted in Figure 4.8 (blue dashed line). Note that establishing coherence in such

a largely broadened ensemble requires sufficiently strong pumping. This subsequently

leads to a large number of photons in the cavity mode making the setup sensitive

to cavity fluctuations, see Figure 4.2(f). However, additional atomic dephasing can

actually relax the constraint on the pumping, since both incoherent pumping and

atomic dephasing are closely tied to the same physical effect of broadening the

atomic emission line. Thus individual atomic dephasing induce additional atom-atom

coupling by enlarging the overlap of distinct spectral lines, which finally leads to better

synchronization. Adding atomic dephasing to the system at the rate ν = 0.01κ allows

for maintaining collective interactions in the ensemble and at the same time enables a

reduction of the pump strength by one order of magnitude to R = 0.005κ. In the low

photon number regime, a linewidth on the order of the natural atomic linewidth Γ

can be achieved in the presence of strong atomic and cavity dephasing (dash-dotted

grey line).

The presented results can be reproduced by using the source code

N atoms M clusters Delta.jl (see Software availability) [80]. The file contains an

example of the cluster approach written in Julia version 1.5.0 using the parameters in

Figure 4.5. Numerical simulations were performed with the open-source framework

Differentialequations.jl [81]. The toolbox QuantumCumulants.jl [82] has been used

to check the equations and verify the second-order cumulant expansion. The graphs
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Figure 4.8: Laser linewidth (upper panel) and mean photon number (lower panel) for
an inhomogeneously broadened ensemble with spatially varying coupling
for σ = κ/30, ∆ ∈ [−0.1κ : 0.1κ] and R = 0.05κ (solid line). Adding
various cavity dephasing at the rate ξ = κ (dashed blue line) and
ξ = 0.01κ (dotted magenta line) we can identify an optimal atom number,
above which the cavity noise overwhelms the linewidth narrowing due
to large photon numbers. The dash-dotted grey line shows the results
when adding additional atomic dephasing at the rate ν = 0.01κ. This
additional broadening allows synchronization of the individual clusters
in the weak pumping regime R = 0.005κ ultimately leading to a smaller
linewidth.

were produced using the Matplotlib library [83].

4.5 Conclusions

We studied superradiant lasing when the gain medium is subject to substantial

inhomogeneous frequency broadening and variable coupling. In extensive numerical

simulations based on a second-order cumulant expansion we were able to confirm

previous predictions that sufficiently large numbers of atoms subject to strong optical
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pumping can induce synchronization of the atomic dipoles over a large bandwidth.

This generates collective stimulated emission of light into the cavity mode leading

to narrow-band laser emission at the average of the atomic frequency distribution.

The linewidth is orders of magnitudes smaller than that of the cavity as well as the

inhomogeneous gain broadening and exhibits reduced sensitivity to cavity frequency

noise. We determine the operational conditions and, in particular, the best pump rate

to choose for achieving the smallest linewidth for a given atom number and cavity. The

minimum occurs not at very low photon numbers but at intracavity photon numbers

reaching a significant fraction of the atom number.

Typically, full synchronization requires fairly strong pumping, which increases the

effective atomic linewidth. We determined the minimum pump strength to achieve

collective phase-locked oscillation of all atomic dipoles. Interestingly, some individual

line-broadening effects such as atomic dephasing can actually induce synchronization at

significantly lower pump rates. Furthermore, our simulations also show that variations

in the atom-field coupling strength induced by the cavity mode structure play only a

minor role for the laser stability and noise. In fact, they can be compensated by an

increase of the effective overall coupling using a larger atom number or stronger pump.

In the present work, we did not take into account collisions or dipole-dipole inter-

actions between atoms. The effect of dipole-dipole interactions have been studied

in a small-scale full quantum model in Ref. [23] and do not appear too detrimental.

Moreover, collisions could even have a positive effect on synchronization [84] but

a quantitative prediction is complicated. So far our model is still based on a very

simplistic effective pump description via an individual, independent and equal pump

rate for each atom. More detailed studies of optical pumping schemes including the

shifts induced by the pump light will be at the center of future studies.
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4.6 Supplemental material

4.6.1 Cross-correlations between atoms in different clusters.

As we refer to in the main text, we model a continuous atomic frequency distribution

with the standard deviation σ by choosing equidistant cluster detunings ∆m with the

number of atoms per cluster Nm given by a Gaussian distribution with the standard

deviation σ. The Heisenberg equations for an ensemble of N atoms sampled by M

clusters can be written as

d

dt
⟨a†a⟩ = −κ⟨a†a⟩+

M∑
m=1

igmNm⟨aσ+
m⟩ −

M∑
m=1

igmNm⟨a†σ−
m⟩

d

dt
⟨aσ+

m⟩ = −
(
(κ+ Γ +R)/2 + i∆m

)
⟨aσ+

m⟩+ igm⟨a†a⟩ − 2igm⟨a†a⟩⟨σ+
amσ−

am⟩

− igm⟨σ+
amσ−

am⟩ − igm(Nm − 1)⟨σ+
amσ−

bm⟩ −
M∑

j;m ̸=j

igjNj⟨σ+
mσ−

j ⟩

d

dt
⟨σ+

amσ−
am⟩ = igm⟨a†σ−

m⟩ − igm⟨aσ+
m⟩ − (Γ +R)⟨σ+

amσ−
am⟩+R

d

dt
⟨σ+

amσ−
bm⟩|a̸=b = igm⟨a†σ−

m⟩(1− 2⟨σ+
amσ−

am⟩)− igm⟨aσ+
m⟩(1− 2⟨σ+

amσ−
am⟩)

− (Γ +R)⟨σ+
amσ−

bm⟩
d

dt
⟨σ+

mσ−
j ⟩|m ̸=j = −i(∆m −∆j)⟨σ+

mσ−
j ⟩+ igm⟨a†σ−

j ⟩(1− 2⟨σ+
amσ−

am⟩)

− igj⟨aσ+
m⟩(1− 2⟨σ+

ajσ
−
aj⟩)− (Γ +R)⟨σ+

mσ−
j ⟩,

(A1)

where indices a, b refer to an atom, and m, j are cluster indices. The last equation

describes the cross-correlations between atoms in different clusters. Next, we study

the phase and the amplitude of these correlations as the system reaches the steady-

state. In the weak pumping regime, the correlations are zero and therefore there

is no coherence between the distinct spectral lines of the output spectra in Figure

4.4. However, in the synchronized regime shown in Figure 4.5(a) for R = 0.05κ, the

existing cross-correlations of the m-th cluster with the other clusters j = m..M are

presented in Figure 4.9(a).

Let us follow these correlations as the system goes from the unsynchronized phase to

the synchronized one. We study the magnitude of cross-correlations between the first

(outer) cluster and the central cluster in Figure 4.5(a) as a function of the pumping

strength. The correlations are zero in the weak pumping regime and grow with the
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Figure 4.9: Cross-correlations between the 31 clusters presented in Figure 4.5(a). (a)
Real and imaginary part of ⟨σ+

mσ−
j ⟩ correlations between atoms in the

m-th and j-th clusters on the complex plane for R = 0.05κ. (b) The
magnitude of the cross-correlations between atoms in the first and the
central clusters as a function of the pumping strength.

pumping strength as shown in Figure 4.9(b). The function reaches its maximal value

when the ensemble is fully synchronized. However, as pumping continues to grow the

correlations decrease due-to growing dephasing imposed by pumping.

4.6.2 Data availability

• Figshare: Superradiant laser Figures. https://doi.org/10.6084/m9.figshare.15321819

[85]

• This project contains the following underlying data: Data used in Figures 2-8.

All data have .jld2 file extension using JLD2.jl data package in Julia

• Data are available under the terms of the Creative Commons Zero ”No rights

reserved” data waiver (CC0 1.0 Public domain dedication)

4.6.3 Software availability

• Source code available from: https://github.com/by-anna/Clusters

• Archived source code at time of publication: https://doi.org/10.5281/zenodo.4916393

[80]

• License: MIT License
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Active optical frequency standards provide interesting alternatives to their

passive counterparts. Particularly, such a clock alone continuously gener-

ates highly-stable narrow-line laser radiation. Thus a local oscillator is not

required to keep the optical phase during a dead time between interroga-

tions as in passive clocks, but only to boost the active clock’s low output

power to practically usable levels with the current state of technology. Here
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Ultimate stability of active optical frequency standards

we investigate the spectral properties and the stability of active clocks,

including homogeneous and inhomogeneous broadening effects. We find

that for short averaging times the stability is limited by photon shot noise

from the limited emitted laser power and at long averaging times by phase

diffusion of the laser output. Operational parameters for best long-term

stability were identified. Using realistic numbers for an active clock with
87Sr we find that an optimized stability of σy(τ) ≈ 4 × 10−18/

√
τ [s] is

achievable.

doi: 10.1103/PhysRevA.106.053114

5.1 Introduction

Modern-day optical clocks are passive frequency standards [86], where the frequency

of a laser pre-stabilized to an ultra-stable optical cavity is periodically compared with

the frequency of a narrow and robust clock transition in a sample of trapped atoms

(or ions). The measurement sequence includes an interrogation time, during which the

phase of the laser is imprinted to the atomic sample, and a dead time, when the laser

pre-stabilised to an ultra-stable macroscopic cavity keeps the frequency, playing the

role of a flywheel. Such a clock has demonstrated an excellent stability at the level of

6.6× 10−19 after 1 hour of averaging [37], however, on shorter timescale this stability

is limited by thermal and mechanical fluctuations of the length of this ultra-stable

cavity. This problem may be overcome with the help of an active optical frequency

standard based on a laser operating deep in the bad-cavity regime [22,87], where the

linewidth of the cavity is much broader than the linewidth of the gain. The gain of

such a laser can be formed by forbidden transitions in alkaline-earth atoms, the same

as used for passive optical lattice clocks. Similar to a hydrogen maser, the frequency

of such a laser is determined by the frequency of lasing transition and is robust to

fluctuations of the cavity length, which improves the stability on shorter timescales.

In the present paper we study the stability that can be attained with such a laser and

compare it with the one of a passive optical clock based on an atomic ensemble with

similar characteristics. For the sake of definiteness, we consider the model of two-level

laser with continuous incoherent repumping [22]. Bad-cavity lasers based on other

schemes, such as atomic beam lasers [87], optical conveyor lasers [88], and lasers with

sequential coupling of atomic ensembles [89] should have similar characteristics, up to
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some numerical factors. In Section 5.2 we present general expressions for the short-term

stability of a secondary laser phase locked to a low-power narrow-line continuous-wave

bad-cavity laser. In Section 5.3 we calculate the linewidth of the bad-cavity laser’s

Lorentzian spectrum and discuss how this linewidth depends on the natural linewidth

of the lasing transition in the employed gain atoms, on inhomogeneous broadening

and dephasing of the atomic transition, on the number of atoms providing the gain,

and on parameters of the cavity. We optimize the cooperativity as well as the rate of

incoherent pumping to attain a minimum linewidth at a given atomic number and

cavity finesse. We express these optimized parameters as well as the linewidth and the

respective number of intracavity photons via characteristic properties of the atomic

ensemble. In Section 5.4 we estimate the achievable performance for ensembles of

atoms trapped in an optical lattice potential and compare the respective frequency

stabilities that can be obtained with the help of active and passive frequency standards

based on such ensembles.

5.2 Active optical frequency standard and its stability

The spectral characteristics of a bad cavity laser’s output field E can be described by its

power spectral density SE(f). It can be obtained from the two-time correlation function

R(τ) with the help of the well-known Wiener-Khinchin theorem, see equation (5.21)

in Section 5.3.3 and [66]. In first approximation R(τ) may be described by an

exponentially decaying function that corresponds to a Lorentzian lineshape of SE(f)

centered at an ordinary frequency f0 = ω0/(2π) with half-width ∆f = ∆ω/(2π). Such

a signal has white frequency noise with a single sided spectral power density Sy(f) of

fractional frequency fluctuations y = ∆ω/ω0 equal to

Sy(f) =
∆f

πf2
0

=
2∆ω

ω2
0

, (5.1)

corresponding to a spectral power density Sϕ(f) of phase fluctuations

Sϕ(f) =
∆f

πf2
= 2∆ωf2, (5.2)

and Allan deviation

σ′
y(τ) =

√
∆ω

ω2
0τ

. (5.3)
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In addition, due to the finite rate of emitted photons, the field of power P shows

quantum fluctuations, leading to a limited signal-to-noise ratio expressed as the ratio

of signal power to power of the noise per unit bandwidth SNR = P/(ℏω0) [90]. Theses

fluctuations appear as white amplitude and phase noise of the signal. When the

active-laser output is heterodyned with an ideal powerful and perfectly stable cw laser,

the amplitude noise is usually of no importance to the frequency stability, and the

power spectral density of white phase noise Sϕ amounts to

Sϕ(f) = SNR−1 =
ℏω0

P
, (5.4)

with the corresponding Allan deviation [91,92]

σ′′
y (τ) =

1

τ

√
3ℏfh
ω0P

. (5.5)

As the Allan deviation would diverge for white phase noise with unlimited bandwidth,

the noise is set to zero for frequencies above a cut-off frequency fh (in ordinary

frequency units) to obtain a finite value. In practice this low-pass behavior can appear

from the bandwidth of a phase locked loop using the heterodyne signal.

To avoid the dependence on the arbitrary cut-off frequency, in this case the modified

Allan deviation is often used:

modσ′′
y (τ) =

1

τ3/2

√
3ℏ

2ω0P
. (5.6)

Adding the random walk noise of the phase associated with damping of two-time

correlation of the cavity field and the white phase noise associated with shot noise in

the number of emitted photons results in the overall Allan deviation

σy(τ) =
√

(σ′
y(τ))

2 + (σ′′
y (τ))

2 =

√
∆ω

ω2
0τ

+
3ℏfh
ω0Pτ2

. (5.7)

and the overall modified Allan deviation

modσy(τ) =
√

modσ′
y(τ)

2 +modσ′′
y (τ)

2 =

√
∆ω

2ω2
0τ

+
3ℏ

2ω0Pτ3
. (5.8)

At short averaging times τ it is determined by the bad-cavity laser’s output power P

and at long times by its linewidth ∆ω.
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The contribution σ′′
y(τ) (5.5) to the total instability σy(τ) is associated with the

photon shot noise. Its influence depends on the bandwidth of the feedback loop to

phase lock a secondary laser with good short-term stability to the bad cavity laser

(see discussion in Section 5.4). The contribution σ′
y(τ) (5.3) is more fundamental in

that sense that it does not depend on the properties of the secondary laser and it

limits the stability on longer timescale.

In the next section we consider a generic model of a two-level bad cavity laser with

incoherent pumping and find general expressions for the minimum linewidth ∆ω and

the necessary set of optimized parameters.

5.3 Linewidth of a bad cavity laser

In this section we overview the dependence of the linewidth on the characteristics of

the bad-cavity laser with continuous incoherent repumping and estimate the minimum

linewidth which can be achieved in such type of laser. First we consider a two-level

model of a bad-cavity laser with incoherent pumping, as studied in [22]. Such a laser

has two lasing thresholds Rmin and Rmax; below the lower threshold Rmin the pumping

is not enough to create the necessary inversion for the lasing and above the upper

threshold Rmax the pumping destroys the coherence, thus also preventing the coherent

emission. In the homogeneous case (i.e., when all atoms contributing to the gain

have exactly the same parameters, such as coupling strength with the cavity field,

transition frequency, dephasing rate, etc.), and when the laser operates far from the

lower and the upper lasing thresholds, the linewidth ∆ωmin of such a laser can be

estimated [22] as

∆ωmin ≈ Cγs = 4g2/κ. (5.9)

Here κ is the decay rate of the energy of the cavity field, g is the coupling strength

between the laser field and the atomic transition (the Hamiltonian is presented in

expression 5.11), γs is the spontaneous rate of the lasing transition, and C = 4g2/(κγs)

is the cooperativity parameter. It may seem that one should just take the cooperativity

C as small as possible to minimize the linewidth. However, expression (5.9) is valid

only if the pumping rate R is much bigger than the lower and much smaller than

the upper lasing thresholds Rmin and Rmax respectively. Accurate expressions for

these thresholds in the homogeneous case will be derived in section 5.3.2. One may

see from expressions (5.32) and (5.33) that both lasing thresholds approache each
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other when the cooperativity C decreases at a given number N of atoms. Therefore,

a minimum linewidth is attained in such a range of parameters where the condition

Rmin ≪ R ≪ Rmax is not fulfilled anymore and where the estimate (5.9) is not valid.

Thus we need to find a more accurate estimate for ∆ωmin.

The spectral properties of a continuous-wave laser can be derived from the two-time

correlation function of its output field R(τ) = ⟨â†(t0+τ)â(t0)⟩, which in the bad-cavity

regime is directly proportional to the correlation of the atomic coherence [22]. In the

present paper we limit our consideration to a model where the laser gain is formed

by N two-level atoms subjected to incoherent pumping and coupled to the cavity

field. Such a two-level model can correctly represent the dynamic of a real multilevel

superradiant laser with continuous repumping and single lasing transition, if the

lifetimes of the intermediate levels are much shorter than any other timescale in the

system except, may be, the decay rate of the cavity field [93]. Because the Hilbert

space describing such a system grows exponentially with atom number N , one has to

use some approximation to reduce the problem size. We restrict our consideration to a

second-order cumulant approximation, following [22] and [94], which allows calculating

both output power and spectrum of the superradiant laser. In subsection 5.3.1 we

briefly overview the model and explain the most important details of the calculation.

In subsection 5.3.2 we consider the particular case of a homogeneous system, where

all the atoms are equally coupled to the cavity field and share the same transition

frequency and all other parameters. We obtain analytical expressions for the output

power and the linewidth in this simplest case and perform a qualitative analysis of

their dependencies. In subsection 5.3.3 we study the linewidth quantitatively, both for

the simple homogeneous model and for a more realistic model with inhomogeneous

coupling of the atoms to the cavity field and inhomogeneous broadening of the lasing

transition.

5.3.1 Inhomogeneous system: description of the model and equations

We consider an ensemble of N two-level atoms confined in space (for example, with

the help of an optical lattice potential) and interacting with a single cavity mode, see

Figure 5.1. We neglect dipole-dipole interactions between different atoms as well as

collective coupling of the atoms to the bath. The averaged value of an operator Ô
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Figure 5.1: Level diagram of a 2-level atom coupled to the cavity field. Here δ′k is
the shift between the cavity and the atomic transition frequency, R is
the incoherent pumping rate, γs is the spontaneous decay rate, γ′ is the
dephasing rate of the atom, κ is the energy decay rate of the cavity field,
and ξ is the cavity dephasing rate.

describing such a system can be written as

⟨dÔ⟩
dt

=
i

ℏ
⟨[Ĥ, Ô]⟩+ ⟨ ˆ̂L[Ô]⟩. (5.10)

The Hamiltonian Ĥ in the rotating frame can be written as

Ĥ = ℏ

δcâ†â+
N∑
j=1

gj(σ̂
j
egâ+ â†σ̂j

ge) +
∑
j

∆j σ̂
j
ee

 , (5.11)

were â† and â are field creation and annihilation operators, index j runs over the

atoms, σ̂j
αβ = |αj⟩⟨βj |

⊗
k ̸=j 1̂k are single-atom transition operators, |αj⟩ and |βj⟩

run over ground |gj⟩ and excited |ej⟩ states of jth atom, gj is a coupling coefficient

between jth atom and the field, ∆j is the shift of the transition in jth atom caused by

some non-homogeneous effects, and δc is the shift of the cavity resonance frequency

from the frequency of our rotating frame.

The Liouvillian term describing the dissipative process is equal to

ˆ̂L[Ô] = κ
ˆ̂D[â]Ô + ξ

ˆ̂D[â†â]Ô +

N∑
j=1

[
γs

ˆ̂D[σ̂j
ge]Ô +Rj

ˆ̂D[σ̂j
eg]Ô + γ′j

ˆ̂D[σ̂j
ee]Ô

]
, (5.12)

where
ˆ̂D[p̂]Ô = p̂†Ôp̂− 1

2(p̂
†p̂Ô + Ôp̂†p̂) is a Lindbladian superoperator. Here κ is the
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decay rate of the energy of the cavity mode, γs is the spontaneous decay rate of the

upper lasing state, ξ is the dephasing rate of the cavity field, Rj and γ′j are the rates

of incoherent pumping and dephasing of jth atom.

The closed set of differential equations for the stochastic means of system operators

can be written with the help of a cumulant expansion up to the second order and the

phase invariance as in [94]

d

dt
⟨â†â⟩ = −κ⟨â†â⟩+ i

N∑
j=1

gj(⟨σ̂j
egâ⟩ − ⟨â†σ̂j

ge⟩), (5.13)

d

dt
⟨σ̂k

egâ⟩ = −
[
κ′k
2

+ iδ′k

]
σ̂k
eg + igk

[
⟨â†â⟩(1− 2⟨σ̂k

ee⟩)− ⟨σ̂k
ee⟩

]
− i

∑
j ̸=k

gj⟨σ̂k
egσ̂

j
ge⟩,

(5.14)

d

dt
⟨σ̂k

ee⟩ = igk

[
⟨â†σ̂k

ge⟩ − ⟨σ̂k
egâ⟩

]
− (γs +Rk)⟨σ̂k

ee⟩+Rk, (5.15)

d

dt
⟨σ̂k

egσ̂
l
ge⟩ = −

[
Γ′
kl + i∆lk

]
⟨σ̂k

egσ̂
l
ge⟩ − igk⟨â†σ̂l

ge⟩(2⟨σ̂k
ee⟩ − 1) + igl⟨σ̂k

egâ⟩(2⟨σ̂l
ee⟩ − 1),

(5.16)

where κ′k = κ+ ξ +Rk + γ′k + γs, δ
′
k = δc −∆k, Γ

′
kl = γs + (Rk +Rl + γ′k + γ′l)/2 and

∆lk = ∆l−∆k. These equations can, in principle, be solved numerically. However, the

number of equations scales quadratically with the number of the atoms. For practical

simulations of ensembles with tens of thousands of atoms, one needs to group the

atoms into M clusters, where all Nj atoms of jth cluster are considered as identical.

Also, if the rate κ is much larger than all the evolution rates of atomic polarizabilities,

it is convenient to perform an adiabatic elimination of the fast variables ⟨â†â⟩, ⟨â†σ̂ge⟩,
⟨σ̂egâ⟩. Then one may express

⟨â†â⟩ =

[
κ−

∑
k

4Nkg
2
kκ

′
k

κ′2k + 4δ′2k
[2⟨σ̂k

ee⟩ − 1]

]−1

×
∑
k

4gkNk

κ′2k + 4δ′2k

κ′k
gk⟨σ̂k

ee⟩+
∑
j

N ′
j,kgjℜ(⟨σ̂k

egσ̂
j
ge⟩)

 +2δ′k

∑
j

N ′
j,kgjℑ(⟨σ̂k

egσ̂
j
ge⟩)


(5.17)
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and

⟨σ̂k
egâ⟩ =

2

κ′k + 2iδ′k

igk

[
⟨â†â⟩(1− 2⟨σ̂k

ee⟩)− ⟨σ̂k
ee⟩

]
− i

∑
j

N ′
j,kgj⟨σ̂k

egσ̂
j
ge⟩

 . (5.18)

Here the sums are taken over clusters instead of atoms, Nk is the number of atoms in

the cluster, and

N ′
j,k =

{
Nj , j ̸= k

max(0, Nk − 1), j = k
(5.19)

Substituting expressions (5.17) and (5.18) into equations (5.15) and (5.16), and solving

them numerically, one can find the steady-state values of ⟨σ̂j
egâ⟩ and ⟨σ̂j

ee⟩, if only the

atomic dipoles get synchronized. Then one may express the steady-state values of

⟨â†â⟩, ⟨σ̂j
egâ⟩ and ⟨â†σ̂j

ge⟩ with the help of equations (5.17) and (5.18). The output

power P of the laser is equal to

P = ηℏω0κ⟨â†â⟩, (5.20)

where η is the relative transmission of the outcoupling mirror, and ω0 is the angular

frequency of the laser radiation.

Finally, let us discuss how to calculate the spectrum of the superradiant laser.

According to the Wiener-Khinchin theorem, the spectral density SE(f) of the signal

can be obtained as a real part of Fourier transform of the 2-time correlation function

R(τ) = ⟨â†(t0 + τ)â(t0)⟩:

SE(f) ∝ Re

∞∫
0

R(τ)e−2πifτdτ. (5.21)

In an established steady-state regime ⟨â†(t0 + τ)â(t0)⟩ = ⟨â†(τ)â(0)⟩ ≡ ⟨â†â0⟩, where
â† = â†(t), and â0 = â(0). To find this function, one needs to solve the set of equations

obtained with the help of the quantum regression theorem

d

dt
⟨â†â0⟩ = −

[
κ+ ξ

2
− iδc

]
⟨â†â0⟩+ i

∑
k

Nkgk

〈
σ̂k
egâ0

〉
, (5.22)

d

dt
⟨σ̂k

egâ0⟩ = −
[
γs +Rk + γ′k

2
− i∆k

]
⟨σ̂k

egâ0⟩ − igk

〈
σ̂k
z

〉
⟨â†â0⟩. (5.23)

where
〈
σ̂k
z

〉
=

〈
σ̂k
ee

〉
−
〈
σ̂k
gg

〉
. Substituting here the established time-independent values
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of ⟨σ̂k
z ⟩ into (5.22) and (5.23) and performing the Laplace transform, one obtains a set

of linear equations of the form (A + I s) · X = B, where I is identity matrix,

A =


κ+ξ
2 − iδc −iN1g1 · · · · · · −iNMgM

ig1
〈
σ1
z

〉 γ+R1+γ′
1

2 − i∆1 · · · 0 · · · 0
...

...
. . .

...

igM
〈
σM
z

〉
0 · · · 0 · · · γ+RM+γ′

M
2 − i∆M

 ,

B =


⟨â†â⟩s
⟨σ̂1

egâ⟩s
...

⟨σ̂M
eg â⟩s

 , X =


L{⟨â†â0⟩}(s)
L{⟨σ̂1

egâ0⟩}(s)
...

L{⟨σ̂M
eg â0⟩}(s)

 ,

(5.24)

L{f}(s) =
∫∞
0 f(t)e−stdt is the Laplace transform, and the subscript s denotes

“steady-state”. Using the connection between Laplace and Fourier transforms, one can

calculate the power spectral density of the bad-cavity laser output

SE(f) ∝ Re
[
L{⟨â†â0⟩}(2πif)

]
. (5.25)

From the power spectral density obtained with the help of (5.24) and (5.25), one

obtains the lasers’s full linewidth at half maximum ∆f = ∆ω/(2π).

5.3.2 Homogeneous case: analytic expressions and qualitative

considerations

In this section we consider the simplest case of a bad-cavity laser with homogeneous

gain, i.e., the situation when all the atoms have the same transition frequency ωa,

pumping and dephasing rate R and γ′ and coupling strength g to the cavity field.

The steady-state solution and the linewidth for such a simple system in second-order

cumulant approximation can be found analytically or semi-analytically. This analysis

has been partially performed, for example, in [22], and here we overview the main

results and derive a few new useful relations. The correspondence between our notation

and notation used there is the following: R = w, γs = γ, γ′ = 2/T2, and g = Ω/2.

First, from equations (5.13) – (5.15) one may easily express that in the homogeneous
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case

⟨â†â⟩s =
N(γs +R)

2κ

(
R− γs
R+ γs

− ⟨σ̂z⟩s
)

(5.26)

⟨σ̂1
egσ̂

2
ge⟩s =

⟨σ̂z⟩s(γs +R)

2Γ′

(
R− γs
R+ γs

− ⟨σ̂z⟩s
)
, (5.27)

where Γ′ = γs + R + γ′, κ′ = κ + ξ + Γ′. Substituting these expressions into

equation (5.17), one may obtain, after some algebra, the following quadratic equation

for ⟨σ̂z⟩s:

⟨σ̂z⟩2s
(
N(γs +R)

2κ
+

(N − 1)(γs +R)

2Γ′

)
+

(R− γs)(κ
′2 + 4(δc −∆)2)

8g2κ′
− 1

2

−⟨σ̂z⟩s
[
(R+ γs)(κ

′2 + 4(δc −∆)2)

8g2κ′
+

1

2
+

(R− γs)

2

(
N

κ
+

N − 1

Γ′

)]
= 0.

(5.28)

Solving this equation, we obtain the steady-state values ⟨σ̂z⟩s, as well as ⟨â†â⟩s and

⟨σ̂1
egσ̂

2
ge⟩s with the help of (5.26) and (5.27).

Further in this Section we suppose, for the sake of simplicity, that all the atoms are

in resonance with the cavity (δc = ∆ = 0), and that the cavity dephasing rate ξ is

negligible (ξ = 0). Then the equation (5.28) simplifies to

⟨σ̂z⟩2s
(
N(γs +R)

2κ
+

(N − 1)(γs +R)

2Γ′

)
+

(R− γs)κ
′

8g2
− 1

2

−⟨σ̂z⟩s
[
(R+ γs)κ

′

8g2
+

1

2
+

(R− γs)

2

(
N

κ
+

N − 1

Γ′

)]
= 0. (5.29)

Consider the equation (5.29). First, taking N ≈ N − 1 and neglecting γs, R and g

in comparison with κ, one may express its approximate solutions as

⟨σ̂z⟩s,1 ≈
κΓ′

4g2N
, ⟨σ̂z⟩s,2 ≈

R− γs
R+ γs

, (5.30)

and only the first solution gives ⟨â†â⟩s ̸= 0. This solution allows us to estimate the

lasing thresholds. Substituting (5.30) into (5.26), one may find that lasing is possible,

i.e., ⟨â†â⟩s > 0, only if

R− γs
R+ γs

>
κ(γs +R+ γ′)

4g2N
=

γs +R+ γ′

NCγs
, (5.31)
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where we have introduced the cooperativity parameter C = 4g2/(κγs), in order to

find limits of the pumping rate R:

Rmin =
NCγs − γ′ −

√
(NCγs − γ′)2 − 8γ2sNC

2
− γs,

Rmax =
NCγs − γ′ +

√
(NCγs − γ′)2 − 8γ2sNC

2
− γs.

(5.32)

With γs, γ
′ ≪ NCγs it gives

Rmin ≈ γs
NCγs + γ′

NCγs − γ′
,

Rmax ≈ NCγs − γ′,

(5.33)

in correspondence with [95].

The spectrum for the homogeneous case can be found from the set of linear equations

(5.22) and (5.23) where, instead of performing the Laplace transform of the solution,

we can just calculate ∆ω as ∆ω = 2|λ|. Here λ is the eigenvalue with smallest absolute

value of the matrix of this system (which can be easily proven by Fourier transform of

exponentially decaying term in ⟨â†â0⟩). Taking κ ≫ |λ|, one may express

∆ω = Γ′ − 4g2N⟨σ̂z⟩s
κ

. (5.34)

One may see that to calculate the linewidth one has to go beyond the semiclassical

approximation: indeed, an attempt to substitute ⟨σ̂z⟩s,1 from (5.30) into (5.34) gives

∆ω = 0. The straightforward way to calculate ∆ω is to solve the quadratic equa-

tion (5.29) exactly, however, the result occurs to be too bulky for simple qualitative

analysis. Instead, we calculate a correction to the approximate solution (5.30), ex-

panding the coefficients of equation (5.29) into Fourier series. After some algebra we

get

∆ω ≈ Γ′(Γ′ +NCγs)

2⟨â†â⟩sκ
− Γ′

N
. (5.35)

In the limit γs, γ
′ ≪ R ≪ NCγs it gives ∆ω ≈ Cγs. This result has been reported

in [22] as a minimum attainable linewidth at given cooperativity C. We can not,

however, take C arbitrary small, otherwise we get into situation where Rmin > Rmax,

and lasing becomes impossible. The minimum value of C, above which the lasing is
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5.3 Linewidth of a bad cavity laser

still possible, can be found from equalizing Rmin and Rmax in (5.32), which gives

(NCminγs − γ′)2 = 8NCminγ
2
s . (5.36)

At γ′ = 0 this minimum value is Cmin = 8/N . Moreover, at very small C the condition

γs, γ
′ ≪ R ≪ NCγs also can not be fulfilled, and the optimal value of C, where the

minimum linewidth is attained, is larger than (but proportional to) Cmin.

We can conclude that the minimum attainable linewidth ∆ωmin is proportional to

γs/N . Therefore, it is convenient to express ∆ω in units of γs/N as a function of

CN . Also, from expressions (5.26) and (5.30) we note that the dimensionless value

⟨â†â⟩κ/(Nγs) does not depends on κ and N at given values of CN , R/γs and γ′/γs.

Figure 5.2: Dependency of linewidth ∆ω on repumping rate R for a homogeneous
system at different values of CN for different values of number N of
atoms and finesse F of the cavity. (a): N = 104, F = 104. (b): N = 105,
F = 105. In both cases the atomic dephasing rate is γ′ = 0.1 s−1 and the
cavity length is lcav = 10 cm, which corresponds to κ = πc/(F lcav) ≈
9.4× 105 s−1 and κ ≈ 9.4× 104 s−1 respectively.

5.3.3 Minimized linewidth

In this subsection we investigate in more details the dependence of the optimized

spectral linewidth ∆ω on various parameters of the superradiance laser. First, we

consider the homogeneous case. In Figure 5.2 we present the linewidth ∆ω for different

values of CN as function of incoherent repumping rate R, calculated according to the

method described in subsection 5.3.2. One may see that, being expressed in units of

γs/N , all the linewidths show a quite similar behavior, except near the lower and the

upper lasing thresholds.

For any of the curves, similar to the ones presented in Figure 5.3, we can find
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Figure 5.3: Dependency of minimum attainable linewidth ∆ωmin, the optimal re-
pumping rate Ropt in units of γs ((c),(d)), and the respective intracavity
photon number ⟨â†â⟩opt multiplied by κ/(Nγs) ((e),(f))) on the para-
meter CN for different values of atomic dephasing γ′. The graphs are
for different values of number N of atoms and finesse F of the cavity:
(a, c, e): N = 104, F = 104. (b, d, f): N = 105, F = 105. In (a) and (b)
the asymptotic CN behavior is indicated by a black line.

the minimum linewidth ∆ωmin, obtained at some optimal repumping rate Ropt. In

Figure 5.3 we present the dependency of these minimized linewidths on CN for

different values of the atomic dephasing rate γ′, number N of the atoms and the cavity

finesse F . Note that the value ∆ωmin expressed in units γs/N as well as the optimal

repumping rate Ropt does not depend on N (i.e. the optimized linewidth ∆ωmin is
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5.3 Linewidth of a bad cavity laser

inversely proportional to N at a given value of CN). Similarly, the ratio of ⟨â†â⟩ ·κ to

Nγs corresponding to the minimized linewidth as well as the optimal repumping rate

Ropt depend on the atomic dephasing rate γ′ but not on F or N . In this example the

cavity length lcav has been taken as lcav = 10 cm, although the results are not sensitive

to variations of the cavity length as long as the laser operates in the bad-cavity regime,

as discussed in section 5.4.

We should also note that the value ⟨â†â⟩ · κ/(Nγs) has a simple physical interpreta-

tion: it is the ratio of number of photons emitted from the cavity mode (in case of

perfect outcoupling mirror η = 1) to the single-atom spontaneous emission rate γs

multiplied by the number of atoms. Near the maximum of the output power this ratio

is proportional to N , however, near the minimum of the linewidth it is independent on

N . In the absence of atomic dephasing, the minimum attainable linewidth (optimized

by both the repumping rate R and the cooperativity C) is about ∆ωopt ≈ 64γs/N .

Up to now we calculated the linewidths in the frame of a fully homogeneous

model. However, in real systems different atoms may expect different level shifts, they

may expect different dephasings due to interaction with environment, and different

pumping rates. Last but not least, different atoms can be coupled differently with

the superradiance cavity field. This happens particularly when the atoms trapped

within the magic optical lattice created inside the superradiance cavity are coupled to

the standing-wave mode of the same cavity, because of the mismatch of the magic

wavelength trapping the atoms and the wavelength of the superradiance mode, see

expression 5.43 in section 5.4. The spectral linewidth of the superradiance radiation

can be calculated using the method described in subsection 5.3.1.

In Figure 5.4 we present the dependencies of the minimum attainable linewidth

∆ωmin and the intracavity photon number ⟨â†â⟩ on cooperativity CN , calculated for

repumping rates Ropt which minimise the linewidth. We grouped the atoms into

M = 21 cluster containing equal numbers of atoms. Coupling coefficients gj for jth

cluster were taken proportional to cos(π(j−0.5)
2M ); all the other parameters are the same

for all the clusters, also ∆j = δc = ξ = 0. The cooperativity C is defined according to

CN =
∑
j

4g2j
κγs

. (5.37)

For comparison, we present the dependencies of ∆ωmin and ⟨â†â⟩opt calculated

according to the homogeneous model. One can see that the homogeneous model slightly
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Figure 5.4: Dependency of minimum attainable linewidth ∆ωmin in units of γs/N
(a), and the respective intracavity photon number ⟨â†â⟩opt multiplied
by κ/(Nγs) (b) on the parameter CN for a system with inhomogeneous
cosine-modulated coupling (thick curves) system for different values of
atomic dephasing rate γ′ at N = 105, F = 105. The cavity length is
lcav = 10 cm. Thin curves represent the linewidths and the intracavity
photon numbers calculated according to the homogeneous model, the
same color and style corresponds to the same value of γ′.

Figure 5.5: Dependency of minimum attainable linewidth ∆ωmin in units of γs/N
(a), and the respective intracavity photon number ⟨â†â⟩opt multiplied
by κ/(Nγs) (b) on the parameter CN for a system with inhomogeneous
cosine-modulated coupling for different values of broadening ∆0 at N =
105, F = 105. The atomic dephasing rate is γ′ = 0 (thick curves), and
γ′ = 12γs (thin curves; only for ∆0 = 12γs and ∆0 = 120γs, the same
color-style encoding corresponds to the same values of ∆0). The cavity
length is lcav = 10 cm.

underestimates the attainable linewidth and overestimates the intracavity photon

number, both by a factor of about 1.4 near the optimally chosen CN . Particularly, at

γ′ = 12γs the minimum linewidth s ∆ω ≈ 4.3× 102 γs/N for inhomogeneous coupling,

and ∆ω ≈ 3.1× 102 γs/N for homogeneous coupling.
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Figure 5.5 shows the minimised linewidth ∆ωmin for a system where not only the

coupling of the atoms to the cavity mode is inhomogeneous, but also the lasing

transitions in different atoms have different shifts ∆j . Such shifts can be caused by

variations of environmental parameters over the atomic ensemble. Here we considered

the simplest case where the atomic detunings ∆j are evenly distributed over 11 clusters

between ±∆0, and the couplings are also distributed over 7 clusters; therefore we

have 77 clusters in total. At γ′ = ∆0 = 12γs the minimum attainable linewidth

∆ωmin ≈ 7× 102 γs/N , whereas increasing ∆0 to 120 γs would increase the linewidth

to about ∆ωmin ≈ 4.65× 103 γs/N .

Finally, it is useful to consider the dependence of the linewidth ∆ωopt - doubly

minimized both in R and CN - on the dephasing rate γ′ and on the inhomogeneous

broadening ∆0. By fitting the result of the simulations we obtain the estimated

linewidth in the form

∆ωopt ≈ (90γs + 30γ′ + 35∆0)/N. (5.38)

Expressing the linewidth via the more useful dispersion of the shifts ∆′
0 = ∆0/

√
3 for

the flat distribution assumed in the simulations, gives approximately

∆ωopt ≈ (90γs + 30γ′ + 60∆′
0)/N (5.39)

Similarly one can find approximate expressions for the optimal pumping rate Ropt,

for the collective cooperativity CNopt, and for the intracavity photon number, where

the smallest linewidth ∆ωopt is achieved:

Ropt ≈ 5γs + 1.13γ′ + 1.5∆′
0 (5.40)

CNopt ≈ 25 + 5.5
γ′

γs
+ 20

∆′
0

γs
(5.41)

⟨â†â⟩opt ≈
N

κ

(
0.9γs + 0.25γ′ + 1.45∆′

0

)
(5.42)

5.4 Estimation of attainable stability

To perform quantitative estimations, we need to consider realistic parameters of the

atomic ensemble. The double forbidden 1S0 ↔ 3P0 transition (clock transition) in

61



Ultimate stability of active optical frequency standards

fermionic isotopes of alkaline-earth-like atoms (Be, Mg, Ca, Sr, Zn, Cd, Hg and Yb)

seems to be a good choice for optical clocks with neutral atoms. This transition is

totally forbidden in bosonic isotopes and becomes slightly allowed in fermionic isotopes

by hyperfine mixing. These atoms can be trapped in a the magic-wavelength optical

lattice potential and pumped into the upper 3P0 lasing state. In an active optical clock

the clock transition should be coupled to a high-finesse cavity in the strong cooperative

coupling regime, which is problematic for wavelengths of about 458 nm (corresponding

to clock transition in Mg) and shorter. Therefore, Ca, Sr and Yb with wavelengths

of the clock transition λ equal to 660, 698 and 578 nm, respectively, are the most

feasible candidates for the role of gain atoms in active optical clocks. In the present

paper we will primarily perform our estimations for the 87Sr isotope, because, first,

this element is the most used one in modern optical clocks with neutral atoms and its

relevant characteristics are the most studied among all the alkaline-earth-like atoms.

Second, the natural linewidth of the clock transition in 87Sr (γs = 8.48× 10−3 s−1 [96])

lies between the linewidths of 43Ca (2.2 × 10−3 s−1) and Yb (43.5 × 10−3 s−1 and

38.5× 10−3 s−1 for 171Yb and 173Yb respectively) [97].

The finesse F of the best cavities at a wavelength of 698 nm can reach values of up

to 106, however, it is quite difficult to build such a cavity. More feasible finesse values

would range from tens to hundreds of thousands. For the sake of definiteness, we take

F = 105 as a typical parameter.

The coupling strengths gj between the lasing transition in the jth atom and the

cavity field can be estimated as

gj ≈
1

wc

√
6c3γs
lcavω2

0

cos(k0zj), (5.43)

where k0 = ω0/c is the wave number of the cavity mode, wc is the cavity waist

radius, and zj is the z-coordinate of the jth atom along the cavity axis [98]. For

the sake of simplicity, here we neglect the dependency of the coupling strength g on

the distance from the atom to the cavity axis proportional to exp(−(x2j + y2j )/w
2
c )

(which can be relevant for atoms trapped in 2D or 3D optical lattices as well as

for relatively hot atomic ensembles in shallow 1D optical lattice). Note that the

cooperativity C = 4
∑

j g
2
j /(Nκγs) does not depend on the length of the cavity lcav

but only on the cavity finesse F and the cavity mode waist wc, because both g2j
and κ are inversely proportional to lcav. Therefore, the cavity length lcav is not a

very important parameter, as long as the energy decay rate κ = πc/(lcavF) of the
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cavity mode is much larger than the linewidth of the laser gain. For the calculations

performed in section 5.3 we take lcav = 10 cm, which corresponds to a decay rate

κ = 9.42× 104 s−1 ≈ 2π × 15 Hz at F = 105.

Let us first compare the ultimate stability of an incoherently pumped active optical

frequency standard with the stability of a quantum projection noise (QPN) limited

passive frequency standard, assuming the same number of trapped atoms in both

standards and no inhomogeneous broadening or decoherence. The fundamental

limit of the superradiant laser linewidth is then ∆ω ≈ 90 γs/N , as follows from

expression (5.39). This corresponds to a short-term stability

σy,lim(τ) ≈
1

ω

√
90γs
Nτ

≈ 9.5

ω

√
γs
Nτ

. (5.44)

For passive optical clocks the quantum projection noise limited stability σy,QPN,Rams

and σy,QPN,Rabi for Ramsey and Rabi interrogation schemes respectively can be

estimated as [37,86]

σy,QPN,Rams(τ) =
1

ω
√
NTpτ

, (5.45)

σy,QPN,Rabi(τ) ≈
1.69

ω
√
NTpτ

, (5.46)

if the total Rabi or Ramsey interrogation time Tp is much longer than all the other

durations required for state preparation and measurement, and if it is much shorter

than the excited state lifetime 1/γs. Comparing equations (5.44) with (5.45) and (5.46)

one may see that at the same atom number the ultimate stability (5.44) attainable with

an active optical clock with incoherent pumping can be matched by the QPN limited

stability of a passive clock, at interrogation times of Tp = 1/(90 γs) ≈ 0.011/γs for

Ramsey, and at Tp = 1.692/(90 γs) ≈ 0.032/γs for Rabi interrogation. For clocks using
87Sr these times are Tp = 1.31 s for Ramsey, and Tp = 3.74 s for Rabi interrogation.

For the 1S0 ↔ 3P0 transition in 173Yb the corresponding times are 0.25 s and 0.72 s

respectively, and for 43Ca 5.05 s and 14.4 s .

A more realistic comparison between the achievable stability of the active and

passive optical frequency standards must include additionally dephasing of the atomic

transition, as well as imperfections of the local oscillator in a passive clock . The

transverse dephasing rate γ′ = 2/T2 of the atomic transition is limited by Raman

scattering of photons from the optical lattice potential [99], and by site-to-site tunneling
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of the atoms [100]. In a shallow cubic 3D optical lattice with 87Sr [101] an optimized

coherence time T2 ≈ 10 s was achieved, which corresponds to γ′ ≈ 0.2 s−1. This

decoherence time may be even further reduced with the help of technically more

challenging setups , such as using of optical lattices with increased lattice constants

formed, for example, by interfering laser beams at different angles or by optical tweezer

arrays [101] . Moreover, collisions with residual background gas also destroy the

coherence and reduce the trap lifetime. From this point of view, γ′ = 0.2 s−1 seems to

be a good estimate for the minimum atomic decoherence rate that can be achieved

without extraordinary efforts. Assuming an inhomogeneous broadening ∆0 of the

atomic ensemble of ∆0 ≈ 2π × 15 mHz ≈ 0.09 s−1, one may estimate the optimized

linewidth ∆ωopt of the superradiance laser as ∆ωopt ≈ 10/N s−1, corresponding to a

stability of a 87Sr active clock

σ′
y(τ) =

1

ω

√
∆ω

τ
≈ 1.17× 10−15

√
N τ

. (5.47)

For N = 104 it results in an instability of 10−17 at 1 s of averaging, and of 10−18

after 100 seconds, whereas a bad-cavity laser with N = 105 atoms would provide an

instability of σ′
y(τ) ≈ 3.7× 10−18/

√
τ [s].

Let us now compare this stability with the one that can be attained in a passive

clock with the same number of atoms. An ideal quantum projection noise-limited,

zero dead time, passive 87Sr optical clock can attain such a stability at interrogation

times of Tp = 0.1 s for Ramsey, and Tp = 0.29 s for Rabi interrogation, as follows

from equations (5.45) and (5.46). These interrogation times are short compared to

the inverse inhomogeneous broadening and to the decoherence time of the atomic

ensemble as estimated above, thus, these effects would not yet limit the passive clock.

However, in a passive optical clock based on the sequential discontinuous interrogation

of the clock transition in single atomic ensembles, the frequency fluctuations of the

local oscillator contribute substantially to the instability due to the Dick effect [102].

For example, in ref. [37] the contribution to instability σy,Dick from this Dick effect

was on the level of σy,Dick ≈ 3.8× 10−17/
√
τ [s] (see Fig. 5.7). Such a level of stability

has been obtained with a local oscillator laser pre-stabilized to an elaborate 21 cm

cryogenic silicon resonator at 124 K. The bad cavity laser can provide similar stability

at a linewidth ∆ω ≈ 0.01 s−1, that can be attained with N = 104 atoms and a

dephasing rate γ′ ≈ 1.5 s−1, or with N = 105, γ′ ≈ 5 s−1 (T2 = 2/γ′ = 0.4 s), if

the inhomogeneous broadening ∆′
0 is much less than the dephasing rate. Therefore,
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Figure 5.6: Spectral power density of phase fluctuations Sϕ for an active clock with
104 atoms (blue line), 105 atoms (dashed red line) and for a commercial
cavity stabilized laser (green dash-dotted line)

the short-term stability of an active optical frequency standard may match and even

significantly exceed the stability of passive clocks limited to the noise of local oscillator

via the Dick effect. On the other hand, the quantum projection noise-limited stability

of a passive clock based on a similar atomic ensemble can be still better than the one

of the passive standard.

We should note, that the Dick effect in passive optical clocks can be avoided (or

at least significantly suppressed down to contributions of finite-length π/2 pulses)

by an interleaved, zero dead time operation of two clocks [103]. When comparing

two clocks using the same atomic transition, the Dick effect can also be eliminated

and the interrogation time extended to beyond the coherence time of the laser by

using synchronous interrogation [37, 103, 104] of the two atomic ensembles. In the

extreme case, comparing different parts of the same cloud, a fractional instability

of σy ≈ 4 × 10−18/
√

τ [s] could been achieved [105]. Similarly, comparing clocks on

operating on different atomic transitions, differential spectroscopy [106] or dynamical

decoupling methods [107] can be employed.

At the optimum stability the output power P of the bad cavity laser amounts to a

photon flux of P/ℏω0 = ηκ⟨â†â⟩ ≈ ηN(0.9γs +0.25γ′ +1.45∆′
0), see expressions (5.20)

and (5.42). Taking η = 0.5 and parameters of the atomic ensemble listed above

(γs = 8.48× 10−3 s=1, γ′ = 0.2 s=1 and ∆′
0 = ∆0/

√
3 ≈ 0.054 s−1), the photon flux at
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Figure 5.7: Stability of the 87Sr active clock output expressed as Allan deviation
σy with fh = 10 Hz for N = 104 (blue solid line) and N = 105 (red
dash-dotteded line). The corresponding modified Allan deviation mod σy
is shown by the cyan dotted line and the yellow dotted line. The different
slopes are due to contributions from photon shot noise and atomic phase
diffusion. For comparison, the stability of a Dick effect limited passive
clock as discussed in the text is shown as green dash-dot-dot line.

the optimized cooperativity and pumping rate will be about 680 s−1 for N = 104 and

6800 s−1 for N = 105.

This output power of the active clock is usually too small for practical application,

thus a suitable secondary laser needs to be phase locked to the weak output to boost

the available power. The bandwidth of this phase-lock depends on the stability of the

(shot noise limited) active clock and the stability of the free running secondary laser.

In Fig. 5.6 the phase noise of the superradiant laser output for 104 and 105 atoms

is shown in comparison to the phase noise of a commercial laser system, based on a

5 cm long cubic cavity (Menlo Systems OFR-cubic FS-XTAL [108]) with fractional

frequency instability modσ ≈ 10−15 . For best overall performance, the bandwidth

should extend up to the crossing between the phase noise curves of the secondary

laser and of the superradiant laser. In the example shown here this crossing is around

10 Hz in agreement with our previous choice of a 10 Hz cut-off frequency fh for the

white phase noise contribution to the Allan deviation.

The Allan deviations for the superradiant laser output are shown in Fig. 5.7.

Including the phase locked laser would only cap the strong increase of the stability
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towards short averaging times and limit the instability to values of 10−15 below 0.1 s.

Besides the fundamental limit to the stability from the superradiant laser’s linewidth,

also the stability of the active clock may degrade due to a drift or fluctuations

of the environmental parameters, such as the bias magnetic field. For example,

the Zeeman shift of the π-transition |3P0,m⟩ → |1S0,m⟩ in 87Sr amounts to about

∆ω/B = 2π · 1.10 Hz/µT ·mF [109], that results in a shift of about 2π × 4.95 Hz/µT

for transition between the two stretched states |3P0,m = 9/2⟩ and |1S0,m = 9/2⟩.
For example, to attain a 10−18 level of relative uncertainty of the clock transition

frequency, one has to decrease the uncertainty of the bias magnetic field to below

87 pT. In passive clocks the linear Zeeman effect is usually canceled by taking

the average between Zeeman transitions with opposite shifts alternating from one

interrogation cycle to the other. This method eliminates drifts and slow fluctuations

of the bias magnetic field but can not cancel fluctuations on timescale below a single

interrogation cycle duration. In contrast, active clocks may operate on two Zeeman

transitions simultaneously, generating two-frequency laser radiation from both π-

transitions between pairs of stretched states |3P0,m = 9/2⟩ → |1S0,m = 9/2⟩ and

|3P0,m = −9/2⟩ → |1S0,m = −9/2⟩. The arithmetic mean of both these frequencies

will be robust to fluctuations of the first-order Zeeman shift, as well as of a vector Stark

shift from the lattice field. Both transitions can contribute independently to lasing, if

they both interact with the same mode of the cavity and if they are detuned from

each over far enough to neither get synchronized nor significantly affect each other.

This condition can be easily attained under realistic conditions: for example, a bias

magnetic field B = 1 G = 0.1 mT splits these two transitions by about 2π×1 kHz. This

splitting is less than the linewidth κ of the cavity (estimated above as κ ≈ 2π×15 kHz

at lcav = 10 cm and F = 105), but it is much larger than the optimized pumping rate

Ropt ≈ 0.35 s−1 [95, 110], as estimated from equation (5.40).

5.5 Conclusion

In this paper we studied the ultimate frequency stability that can be obtained with

active optical frequency standards. We investigated the dependence of the linewidth

of a bad-cavity laser with incoherent pumping on its parameters and obtained an

estimated minimum linewidth (Eq. 5.38) under optimized conditions. We showed that

the instability σy,Dick ≈ 3.8 × 10−17/
√
τ [s] of a passive optical frequency standard

associated with the Dick effect for one of the best local oscillators pre-stabilized to
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a cryogenic Si cavity [37] can be matched by a bad-cavity laser with N = 105 87Sr

atoms with coherence time T2 ≈ 0.4 s. As active optical frequency standards are not

degraded by the Dick effect associated with dead time and noises of the local oscillator,

they can outperform “traditional” passive optical frequency standards in stability.

Also, active optical frequency standard may play a role as local oscillators in future

passive optical clocks. Even if their short-term stability is poorer by small factor than

the quantum projection noise limited stability of a passive optical clock with a similar

number of clock atoms, the stability can still be significantly better than that of a

good-cavity laser pre-stabilized to an ultra-stable cavity, as used in modern passive

optical clocks.
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The implementation of a superradiant laser as an active frequency stand-

ard is predicted to provide better short-term stability and robustness to

thermal and mechanical fluctuations when compared to standard passive

optical clocks. However, despite significant recent progress, the experi-

mental realization of continuous wave superradiant lasing still remains an

open challenge as it requires continuous loading, cooling, and pumping of

active atoms within an optical resonator. Here we propose a new scenario

for creating continuous gain by using optical forces acting on the states of

a two-level atom via bichromatic coherent pumping of a cold atomic gas

trapped inside a single-mode cavity. Analogous to atomic maser setups,

tailored state-dependent forces are used to gather and concentrate excited-

state atoms in regions of strong atom-cavity coupling while ground-state

atoms are repelled. To facilitate numerical simulations of a sufficiently

large atomic ensemble, we rely on a second-order cumulant expansion

and describe the atomic motion in a semi-classical point-particle approx-

imation subject to position-dependent light shifts which induce optical
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gradient forces along the cavity axis. We study minimal conditions on

pump laser intensities and detunings required for collective superradiant

emission. Balancing Doppler cooling and gain-induced heating we identify

a parameter regime of a continuous narrow-band laser operation close to

the bare atomic frequency.

doi: 10.1088/1367-2630/ad0750

6.1 Introduction

In view of establishing a new outstanding and robust optical time and frequency

standard the quest to build a continuous superradiant laser operating on a very

narrow atomic transition has been the subject of intense theoretical and experimental

research in the past decade [22, 23, 40, 55, 66, 70, 75, 94, 112, 113]. These studies are

also fueled by the remarkable operating characteristics and relative simplicity of its

microwave analogue, the hydrogen maser [114,115]. Recently pulsed superradiance

has been experimentally observed using laser-cooled atomic ensembles [47, 71, 116].

Some proof of principle setups based on magneto-optical trapping demonstrated quasi-

continuous operation on kHz transitions [41, 43]. The major remaining challenge is to

achieve sufficient gain via continuous inversion on the relevant clock transition without

significantly perturbing the atomic levels.

One straightforward approach which is currently pursued is based on a continuous

ultracold beam of excited atoms passing through an optical resonator [40, 42, 44,

45, 72, 75, 117–120]. In the past years, considerable progress has been made in this

direction, yet the main challenge is to create a sufficient inverted atomic flux needed

for collective superradiant emission. As an alternative, some calculations suggest

optimized multilevel pumping schemes, where a careful choice of laser powers and

detunings minimizes the transition level shifts at reasonable pumping rates [93]. Still

this needs many lasers, which have to be combined to pump and cool the atomic

ensemble simultaneously in order to keep the density of the active gas constant.

As in a standard micromaser, where population inversion is created by coherent

pumping of atoms followed by magneto-mechanical separation of ground- and excited-

state atoms in the mode volume, one could look for an analogous scheme for an

optical setup. As the length scales are several orders of magnitude smaller at optical

frequencies, the magnetic gradients for a sufficient state separation are very difficult to
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achieve and also potentially shift the clock transition in a detrimental way. However,

one could make use of state-dependent optical forces, and thus excitation and separation

could be done by suitably designed laser fields. At the same time, it has already been

shown in previous experiments on BEC formation in Strontium that dressing lasers

can create large enough optical level shifts in a dimple configuration to manipulate

only a chosen sub-ensemble of the atoms with an extra laser without affecting the

majority of the unperturbed atoms outside the dimple [42].

Here, we suggest a new scenario for creating an intrinsic light force generated

inversion mechanism. The idea is to combine the internal degrees of freedom of atoms

with the motional ones to create the necessary inversion. We will study configurations,

where pumping and gain occur in different spatial regions of the cavity by taking

into account atomic motion and state-dependent forces resulting from a spatially

dependent periodic drive of the transition. After all, an inverted ensemble of only

very weakly perturbed atoms can be created in regions of strong atom-cavity coupling.

For sufficiently many atoms we show that this should lead to collective narrow-band

lasing close to the bare atomic transition frequency.

A detailed quantum description including the necessary number of atoms to achieve

sufficient gain at low excitation powers goes beyond the available computational power

to numerically simulate the coupled atom-field dynamics. Therefore, we have to resort

to approximations and only limited atom numbers from which we are able to extract

predictions for scaling towards larger ensembles. Hence we treat the atomic motion

semi-classically and use a quantum description only for the internal atomic dynamics

and the cavity field. As it has been observed for instance in Ref. [121], a semi-classical

description of motion shows a good agreement with the full quantum description,

where the external degrees of freedom are quantized. Still, we have to make use of a

cumulant expansion approach [56] for studying larger atom numbers.

The paper is organized as follows. First, in Sec. 6.2.1 we introduce the spatial

light shifts and optical forces present in the system. In Sec. 6.2.2, we present the

system overview and calculate the coupled atom-field dynamics under the coherent

laser drive. It is then shown in Sec. 6.2.3, that a bichromatic coherent drive can lead

to a continuous narrow-band laser operation. We extend the model for an ensemble of

atoms with light force induced inversion in Sec. 6.3. We start with the full quantum

approach in Sec. 6.3.1 and proceed with the second-order cumulant expansion in

Sec. 6.3.2 in order to describe the collective atomic dynamics and spectrum of the

light field in the cavity.

71



A superradiant two-level laser with intrinsic light force generated gain

6.2 Model definition

6.2.1 Light shifts and forces

A two-level atom coherently driven by a laser detuned from the atomic resonance

frequency experiences energy light shifts [122]. Under this drive the ground and excited

states of the atom are no longer eigenstates of the system. The Hamiltonian of the

atom (ωa) under the coherent laser drive (ωΩ) in a rotating frame of the laser field

can be written as (ℏ = 1)

Ha = −∆aσ
+σ− +Ω(σ+ + σ−) = −∆a

2
1 − ∆a

2
σz +Ωσx, (6.1)

where ∆a = ωΩ − ωa, Ω is the transition Rabi frequency, and σx = σ+ + σ−, σz =

σ+σ− − σ−σ+ are the Pauli matrices. It is known that any 2x2 Hermitian matrix can

be expressed in a unique way as a linear combination of the Pauli matrices

H2×2 = h01 + h⃗σ⃗, (6.2)

with all coefficients being real numbers h0 = const, h1 = h sinΘ cosϕ, h2 = h sinΘ sinϕ,

h3 = h cosΘ, where h = |⃗h| =
√
h21 + h22 + h23. It is easy to show that the eigenvalues

of this matrix are

E± = h0 ± h, (6.3)

and the corresponding eigenvectors can be expressed as an effective rotation of the

uncoupled states,

|+⟩ = sin
Θ

2
exp (

iϕ

2
)|g⟩+ cos

Θ

2
exp (− iϕ

2
)|e⟩

|−⟩ = cos
Θ

2
exp (

iϕ

2
)|g⟩ − sin

Θ

2
exp (− iϕ

2
)|e⟩.

(6.4)

Therefore, the eigenvalues of the Hamiltonian (6.1) can be written as

E± = −∆a

2
±
√
Ω2 +∆2

a/4, (6.5)

with the corresponding eigenstates known as the dressed states,

|+⟩ = sin
Θ

2
|g⟩+ cos

Θ

2
|e⟩, |−⟩ = cos

Θ

2
|g⟩ − sin

Θ

2
|e⟩, (6.6)
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Figure 6.1: Schematics of the system. (a) Two-level atoms (ωa) inside a single-mode
cavity (ωc) are coherently driven by a laser (ωΩ) with the Rabi frequency
Ω(x), where Γ is the single-atom spontaneous emission rate, g(x) is the
atom-cavity coupling, and κ is the cavity loss rate. (b) Eigenvalues of the
Hamiltonian given in Eq. (6.1) under a spatially dependent coherent laser
drive Ω(x) = Ω cos(kx) with the negative detuning ∆a = ωΩ −ωa, where
yellow arrows show a dipole force acting on the states of the two-level
atom as described in the main text.

where tg Θ = − 2Ω
∆a

.

Let us now consider a two-level atom moving in one dimension along the axis of a

linear cavity, as schematically presented in figure 6.1(a). When the atom is illuminated

by a laser whose Rabi frequency has a spatial periodic distribution Ω(x) = Ω cos(kx)

formed by a standing wave with the wavelength λ = 2π/k the energy shifts can be

plotted as shown in figure 6.1(b). This creates a mean dipole force ⟨F ⟩ = −⟨∇H⟩
acting on the atom, which has the opposite sign for |+⟩ and |−⟩ states. In this regard

one could think of a population inversion scheme shown in figure 6.1(b). An atom

located at position (1) with some non-zero initial velocity is pumped by the laser into

state (2) and experiences the dipole force as it continues to move. This force pushes

the atom to position (3) where there is no force acting on the atom. If this process

occurs at a faster rate than the lifetime τ ∼ Γ−1 of the excited state, then the atom

emits a photon with the frequency close to the bare atomic transition frequency and

undergoes the transition into state (4) where it is dragged by the light force left or

right to position (1) and the process repeats itself.

Thus, such a scheme could be used to spatially separate the region of pumping from

the lasing in the system. In other words, we create the population inversion in the

specific regions of the cavity, those regions where we would like to have a maximal
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coupling to the cavity.

6.2.2 Semi-classical master equation for the coupled atom-field dynamics

A stable laser operation requires a continuous inversion mechanism to keep the

population inversion on a lasing transition. In the previous section, we introduced the

scenario for creating effective inversion on a lasing transition using light forces. While

in principle many possible geometries to achieve this purpose can be investigated, we

will restrict ourselves here to a simple generic case, where the underlying mechanisms

can be studied in detail. Hence we consider a 1D motion in a single-mode Fabry-Perot

cavity with a sine wave laser mode and apply a standing cosine wave pump field.

Ground-state atoms will be trapped and cooled close to the antinodes of the cosine

mode. Atoms excited to the upper level at these points are pushed towards the nodes

of the cosine mode, where they maximally couple to the cavity sine mode. Let us

identify a parameter regime, which leads to the desired local inversion and gain. In

other words, one needs to find a regime of stable narrow-band lasing at the bare

atomic frequency, with a linewidth that is much smaller than the cavity linewidth

and that is well distinguished from the other light sources present in the cavity. This

requires several conditions to be ensured:

• κ > Γ - the system is in the bad-cavity regime, which provides the low intracavity

photon number operation and thus reduced sensitivity to cavity noise;

• ∆a < 0, and |∆a| > Ω - the driving laser is far red-detuned from the atomic

transition frequency to minimize the amount of coherently scattered photons from the

drive into the cavity;

• 2
√
Ω2 +∆2

a/4 > κ - the maximal light shift in equation (6.5) is larger than the

cavity linewidth to spatially separate the region of pumping (1-2) from the lasing (3-4)

in figure 6.1(b).

The Hamiltonian of the two-level atom subjected to a coherent drive inside a single-

mode optical cavity can be described by the Jaynes-Cummings model in the rotating

frame of the drive

H = −∆aσ
+σ− −∆ca

†a+ g(x)(a†σ− + aσ+) + Ω(x)(σ+ + σ−), (6.7)

where ∆c = ωΩ − ωc is the laser detuning from the cavity mode, g(x) = g sin(kx)
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and Ω(x) = Ω cos(kx) are the atom-cavity interaction strength and Rabi frequency,

respectively, which are functions of the atomic position along the cavity mode with

the wave number k. The quantum dynamics of the open atom-cavity system can be

described by the master equation for the system density matrix ρ in the Lindblad

form

ρ̇ = −i[H, ρ] + Lκ[ρ] + LΓ[ρ], (6.8)

where the loss of photons through the cavity mirrors and individual atomic decay are

given by

Lκ[ρ] =
κ

2
(2aρa† − a†aρ− ρa†a)

LΓ[ρ] =
Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−),

(6.9)

with the cavity loss rate κ and single-atom spontaneous emission rate Γ, respectively.

In order to approximate the atomic motion and light forces acting on the atom, we

include the semi-classical equations of motion in the system description,

˙⟨x⟩ = ⟨p⟩/m = 2ωr⟨p⟩/k2a
˙⟨p⟩ = −⟨∇H⟩,

(6.10)

where ωr = k2a/(2m) is the atomic recoil frequency given by the atomic mass and

wave number of the atomic transition. Here we neglect the effects of momentum

diffusion arising from spontaneous emission. One could account for these effects by

going beyond the mean-field approach in calculating the position and momentum,

which would substantially increase the amount of equations in our simulations. At

the same time, in the ultimate case of a superradiant laser, the emission rate Γ is

usually very small compared to other parameters, such that spontaneous emission

recoil should only lead to minor corrections in the atomic dynamics.

First of all, we would like to calculate the coupled atom-photon dynamics in the

cavity. For a non-moving atom under a coherent drive the solution is known as the

damped Rabi oscillations eventually leading to population of the excited state by no

more than fifty percent [123], i.e. no inversion. However, due to atomic motion and

forces acting differently on the states of the atom, the local population inversion can

become positive in certain positions.

For the remainder of this work, we set the cavity mode to be on resonance with the

bare atomic transition frequency and select a recoil frequency value that facilitates

rapid cooling for an adequate representation of the results. We consider a linear cavity
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Figure 6.2: Atomic dynamics and lasing under the coherent drive with |∆a| < Ω.
Parameters: κ = 20Γ, g = 4Γ, Ω = 30Γ, ∆a = −10Γ, ωr = 6Γ.

with a cosine wave pump Ω(x) = Ω cos(kx) and a sine wave cavity mode with the

coupling strength g(x) = g sin(kx), where k = ka is the cavity mode wave number.

Since we are in the parameter regime where κ > Γ and g < κ, the Hilbert space of the

photon field can be truncated at low photon numbers. Figures 6.2-6.3 show the atomic

dynamics and lasing under the coherent drive for two different cases of |∆a| < Ω and

|∆a| > Ω. The position and momentum of the atom are given in units of π/k and

ℏk, respectively, in figures 6.2(a)-(b). The mean photon number in the cavity and

atomic inversion are shown as a function of time in figures 6.2(c)-(d) and a function

Figure 6.3: Cooling and trapping of an atom in the cavity under the coherent drive
with |∆a| > Ω. Parameters: κ = 20Γ, g = 4Γ, Ω = 10Γ, ∆a = −20Γ,
ωr = 6Γ.

76



6.2 Model definition

of position in figures 6.2(e)-(f).

In the case of |∆a| < Ω, we have found the parameter regime, where atomic cooling

is balanced by heating from the driving laser, see figures 6.2(a)-(b). Starting from a

given initial momentum, the atom experiences laser cooling until it reaches a quasi-

stationary state. As seen in figure 6.2(a), the atom oscillates between a particular

node and the neighboring antinodes of the driving field while the atomic inversion

⟨σz⟩ = ⟨σ+σ−⟩ − ⟨σ−σ+⟩ in figure 6.2(f) becomes positive towards the points of the

maximal coupling strength. Followed by photon emission and a maximum in average

photon number in figure 6.2(e) this dynamics is close to the ideal scenario depicted

in figure 6.1(b). The results demonstrate that in principle the above scenario may

take place, unfortunately this can not be used as a good pumping scheme due to the

fact that mostly scattered photons from the drive will dominate the cavity output

spectrum.

On the other side, after studying the case of |∆a| > Ω, we have observed that the

drive from a single laser is never sufficient enough to create the desired population

inversion. As presented in figure 6.3, in this case the applied far-detuned drive results

in strong cooling for the atom and there is no inversion on the lasing transition at any

point. Therefore, one may think of the idea of adding an extra laser drive to populate

the excited state, with the parameters particularly chosen and optimized to ensure

the above conditions in the cavity.

6.2.3 Two-level dynamics with a bichromatic coherent drive

In the previous section, we have indicated the parameter regime of our interests in

the context of the superradiant laser. We observed that the driving from a single laser

is not sufficient to create the desired population inversion on the lasing transition. In

this section, the idea is to use this laser exclusively to create the spatial light shifts, as

depicted in figure 6.4(a). In order to populate the excited state we introduce the second

laser drive η(x) = η cos(kx) into the system. The frequency of the second laser drive

is now tuned to the resonance with the dressed states given by equations (6.5)-(6.6),

however not at their maximal light shifts, but at the points where the dipole force

acting on the atom is close to its maxima, see figure 6.4(b). This allows the excited

atom to reach the lasing position more efficiently since there is strong acceleration

from the force. We expect that a combination of these laser drives acting together can

lead to collective narrow-band emission, provided that optimal driving intensities and
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Figure 6.4: (a) The schematics of an atom under the bichromatic coherent drive.
(b) Dipole force acting on the dressed states of the atom.

detunings are found. However, the master equation becomes significantly more difficult

to solve as the second laser drive does not allow to eliminate the time dependence in

the Hamiltonian. Thus the Hamiltonian of the system in the rotating frame of the

first laser can be written as

H2 = H + η cos(kx)(σ+ei∆ηt + σ−e−i∆ηt), (6.11)

where ∆η = ωΩ − ωη. Note, that if the laser drive is not strong enough it will not

be able to create population inversion. On the other hand, a strong laser drive will

produce both a lot of coherently scattered photons and strong heating in the system.

In order to find the dynamics of the system we solve the master equation (6.8) with

the Hamiltonian (6.11). It is then the Rabi frequency and detuning of the second laser

which have to be scanned and mutually adjusted.

Figure 6.5 shows the atomic dynamics and lasing under the bichromatic coherent

drive in the regime, where the light from the second drive pushes the atom to move

along the cavity axis such that the atomic momentum reaches its quasi-stationary

state, see figures 6.5(a)-(b). This results in a linear motion of the atom, where it is

being pumped at the maximal driving intensity and continues to undergo the inversion

scheme depicted in figure 6.1(b). As the atom moves, the atomic inversion becomes

positive in the vicinity of the unperturbed bare atomic transition frequency, which is

followed by the photon emission, as can be seen in figures 6.5(d)-(f). Figure 6.5(c)

shows the mean photon number in the cavity (blue), which can be split into the

laser part (orange) and coherently scattered part (green). The coherently scattered

field amplitude is phase dependent as it comes from the coherent laser drive and its
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Figure 6.5: Atomic dynamics and lasing under the bichromatic coherent drive. Para-
meters: κ = 20Γ, g = 4Γ, Ω = 10Γ, ∆a = −20Γ, η = 8Γ, ∆η = −25Γ,
ωr = 6Γ.

intensity can be calculated as |⟨a⟩|2, while the incoherently scattered field from inverted

atoms is phase independent. To obtain the laser part we subtract the coherently

scattered part from the total photon number. Furthermore, one can see a stable laser

operation with the oscillations of the photon number around the mean value. This

example demonstrates how the specially tuned bichromatic coherent drive can lead to

continuous lasing with intrinsic light force induced inversion.

6.3 Collective dynamics with light force induced inversion

6.3.1 Full quantum approach

An extension of the full quantum model to an ensemble of atoms remains feasible only

for a small atom number due to the exponential growth of the Hilbert space. Here

we present the results for the case of N = 8, where we truncate the Hilbert space of

the field in the cavity at low photon numbers. We choose the initial atomic momenta

to be randomly distributed around a selected velocity as |p0m| ∈ {p0 − ϵ, ..., p0 + ϵ},
which is of the order of several ℏk and x0m = mπ/k for m = 1..N , see figure 6.6. In

addition, even when initial atomic momenta are one or even two orders of magnitude

larger than ℏk one can observe the laser cooling process. As such atoms do not

contribute to the desired lasing until they get cold enough, it substantially reduces

the efficiency of the scheme. On the other hand, atoms with the initial velocity close
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Figure 6.6: (a) Dynamics of N = 8 atoms under the bichromatic coherent drive.
(b) Mean photon number in the cavity depending on time (in units of Γ).
(c) The position dependence of the atomic inversion during the stable
final stage of the time evolution. The initial distribution of momenta
|p0m| ∈ {2, ..., 2.5}ℏk and positions x0m = mπ/k for m = 1..N . The
parameters are the same as in figure 6.5.

to zero immediately become trapped in the potential minima and do not contribute

to the dynamics as well. Therefore, the ideal initial conditions would be to primarily

reduce the temperature of atoms and perform a velocity selection. As the atoms move

one can see the stabilization of photon emission and increase in the mean photon

number. Figure 6.6(c) shows how the atomic inversion changes with the position

similar to the case of a single atom in figure 6.5.

6.3.2 Second-order cumulant expansion

Next, we would like to extend our model to an ensemble of N ≫ 1 atoms subjected to

the bichromatic coherent drive, as described in the previous section. As each atom

in the ensemble behaves differently depending on its initial position and momentum,

Figure 6.7: Atomic dynamics and lasing in the ensemble of N = 100 atoms under the
bichromatic coherent drive. The parameters are the same as in figure 6.5.
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6.3 Collective dynamics with light force induced inversion

the numerical solution of the master equation (6.8) with the Hamiltonian given in

Eq. (6.11) becomes challenging. In order to describe a large ensemble of atoms we

make use of the second-order cumulant expansion [56] to write down the closed set of

the Heisenberg equations for the system operators [94]:

d

dt
⟨a⟩ = −(κ/2− i∆c)⟨a⟩ − ig

∑
j

Nj sin(xj)⟨σ−
j ⟩

d

dt
⟨σ−

m⟩ = −(Γ/2− i∆am)⟨σ−
m⟩+ ig sin(xm)⟨a⟩(2⟨σ+

mσ−
m⟩ − 1)

+ i(Ω + ηei∆ηt) cos(xm)(2⟨σ+
mσ−

m⟩ − 1)

d

dt
⟨a†a⟩ = −κ⟨a†a⟩+ ig

∑
j

Nj sin(xj)(⟨aσ+
j ⟩ − ⟨a†σ−

j ⟩)

d

dt
⟨aσ+

m⟩ = −(
κ+ Γ

2
+ i∆am − i∆c)⟨aσ+

m⟩+ ig sin(xm)(⟨a†a⟩ − 2⟨a†a⟩⟨σ+
mσ−

m⟩ − ⟨σ+
mσ−

m⟩)

− ig
∑

j;m̸=j

sin(xj)⟨σ+
mσ−

j ⟩ − i(Ω + ηe−i∆ηt) cos(xm)⟨a⟩(2⟨σ+
mσ−

m⟩ − 1)

d

dt
⟨σ+

mσ−
m⟩ = −Γ⟨σ+

mσ−
m⟩ − ig sin(xm)(⟨aσ+

m⟩ − ⟨a†σ−
m⟩)

− i(Ω + ηei∆ηt)) cos(xm)⟨σ+
m⟩+ i(Ω + ηe−i∆ηt)) cos(xm)⟨σ−

m⟩
d

dt
⟨σ+

mσ−
j ⟩ = −Γ⟨σ+

mσ−
j ⟩ − igm sin(xm)⟨a†σ−

j ⟩(2⟨σ
+
mσ−

m⟩ − 1)

+ igj sin(xj)⟨aσ+
m⟩(2⟨σ+

j σ
−
j ⟩ − 1) + i(Ω + ηei∆ηt)) cos(xj)⟨σ+

m⟩(2⟨σ+
j σ

−
j ⟩ − 1)

− i(Ω + ηe−i∆ηt)) cos(xm)⟨σ−
j ⟩(2⟨σ

+
mσ−

m⟩ − 1)

d

dt
⟨xm⟩ = 2ωr⟨pm⟩/k2

d

dt
⟨pm⟩ = −2g cos(xm)ℜ{⟨aσ+

m⟩}+ 2Ω sin(xm)ℜ{⟨σ+
m⟩}

+ η sin(xm)(⟨σ+
m⟩ei∆ηt + ⟨σ−

m⟩e−i∆ηt),

(6.12)

where m = 1..N and ℜ is used to denote the real part of an expectation value of an

operator. Figure 6.7 shows the solution of equations (6.12) for N = 100 atoms with the

same distribution of initial positions and momenta as used in the full model considered

in the previous section. The resulting dynamics becomes much more complicated to

describe, but one can see a similar behavior with the case of a single atom. Although

a small part of atoms gets cooled down and does not contribute to the lasing process,

the majority of atoms display the lasing we are interested in. In figure 6.7(b) one can
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Figure 6.8: Spectrum of the cavity light for the ensemble of N = 40 (left panel)
and N = 100 atoms (right panel) presented in figure 6.7. The emission
intensity is normalized and the inset shows a zoom-in of the central peak
profile (blue line). The red line in the inset shows the spectrum under
cavity dephasing with the rate ξ = 10Γ.

see continuous lasing from the atoms reaching the order of one photon on average in

the cavity. We expect fluctuations in the photon number to be mitigated in the case

of significantly larger atomic ensembles, where each atom only weakly contributes to

the emission process. However, due to the number of equations growing as O(N2) we

are limited to a system of a few hundred atoms.

Let us calculate the spectrum of the light in the cavity. According to the Wiener-

Khinchin theorem [58] the spectrum can be found as a Fourier transform of the

first-order correlation function g(1)(τ) = ⟨a†(t0 + τ)a(t0)⟩,

S(ω) = 2ℜ
{∫ ∞

0
dτe−iωτg(1)(τ)

}
. (6.13)

Here, we use the quantum regression theorem [124] to write down a set of differential

equations for the first-order correlation function, where t0 is normally given by the

time the system reaches its steady state. However, since in our case the dynamics

does not have a steady state, we have to include these equations in the full sys-

tem of equations (6.12) and average it over a set of equidistant initial conditions

g1(0) = ⟨a†a⟩(t0)|t0=tend
chosen from the final stage of the dynamics.

After the averaging process one can see the resulting spectrum, as presented in
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figure 6.8 for N = 40 and N = 100 atoms. The spectrum averages quite well already

after several averaging steps and reveals the main spectral peak coming from the

atoms at the frequency close to the bare atomic transition, which linewidth is below

the natural linewidth of the atomic transition Γ. The inset shows a zoom-in of the

central peak profile which broadening can be attributed to the emission from different

atoms at slightly different frequencies (blue line). The red line shows that the resulting

spectrum is robust to cavity fluctuations in the presence of moderate cavity noise with

the dephasing rate ξ = 10Γ.

Additionally to the central peak, there are numerous sidebands located left and right

from the atomic transition frequency. They appear to be independent of the number

of atoms, coupling constant, and Rabi frequencies of the lasers. We associate them

with the motion of atoms with a constant velocity, which is observed in figure 6.7(a).

One can calculate the frequency of these motional sidebands as

ωSB = ωa ± ω± = ωa ± 2π
v

λ
, (6.14)

where v/λ = ωrp/(πk). Since the atomic motion is linear one can write

ω± = ±2ωr⟨p⟩st

k
. (6.15)

Substituting the real parameters used in figure 6.8 into equations (6.15) we calculate

the frequencies w±, which agree well with the central frequencies of the sidebands

observed in the spectrum.

6.4 Conclusions and outlook

We have studied population inversion and gain within an optical cavity in a cold

ensemble of coherently driven two-level atoms with an intrinsic light force generated

inversion mechanism. Using numerical simulations of the coupled atom-field dynamics

we have found the operating conditions producing continuous narrow-band emission

close to the unperturbed atomic line. In the limit of low photon number operation, the

central frequency is largely insensitive to cavity fluctuations. Note, that the driving

field has to be far-detuned from the atomic resonance such that there are no pump

laser photons coherently scattered into the cavity. As we have shown, adding an extra

specially tuned driving field significantly improves the performance of the system.
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At this point our simulations are limited to a few hundred atoms since we use a

second-order cumulant expansion as a minimum model to reliably predict the laser

spectrum. Much higher output laser power with a cleaner spectrum can be expected

for realistic atom numbers of up to a million, where each atom only needs to contribute

very weakly to the gain and thus less pump power is required for lasing. Unfortunately

such system sizes are beyond our present numerical capabilities. Similarly, a reliable

evaluation of the photon statistics, as for instance the calculation of the second-order

correlation function g(2)(τ), requires even higher-order expansions thereby limiting

the tractable atom number even further.

Conceptually, the chosen example setup constitutes a minimalist implementation

of a superradiant laser requiring only a single standing wave pump field and a single

mode within the cavity to facilitate trapping, pumping, and lasing simultaneously.

Via state-dependent light forces atoms excited at the antinodes of the pump standing

wave are drawn towards its nodes, where the coupling to the cavity mode can be made

maximal by a suitable mode choice. The operating principle here is reminiscent of

maser implementations, where in order to implement gain one uses coherent excitation

and magnetic separation of the excited state fraction. In our model, the excited state

separation is facilitated by differential optical gradient forces, which typically are

much stronger than magnetic gradient forces for neutral atoms.

Eventually more complex geometries involving higher-order transverse modes and

special state-dependent optical guiding fields can be envisaged for better performance

to increase gain and pump efficiency. As there is a large number of options here, we have

restricted ourselves to only one generic implementation to exhibit the basic principle

more clearly. Future more refined models need to be developed in collaboration with

a specific experimental implementation.

Acknowledgements

We acknowledge funding from the L’OREAL Austria Fellowship ”For Women in
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Active atomic clocks are predicted to provide far better short-term stability

and robustness against thermal fluctuations than typical feedback-based op-

tical atomic clocks. However, continuous laser operation using an ensemble

of clock atoms still remains an experimentally challenging task. We study

spatial self-organization in a transversely driven ensemble of clock atoms

inside an optical resonator and coherent light emission from the cavity. We

focus on the spectral properties of the emitted light in the narrow atomic

linewidth regime, where the phase coherence providing frequency stability

is stored in the atomic dipoles rather than the cavity field. The atoms

are off-resonantly driven by a standing-wave coherent laser transversely to

the cavity axis allowing for atomic motion along the cavity axis as well

as along the pump. In order to treat larger atom numbers we employ a

second-order cumulant expansion which allows us to calculate the spectrum

of the cavity light field. We identify the self-organization threshold where

the atoms align themselves in a checkerboard pattern thus maximizing
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light scattering into the cavity which simultaneously induces cooling. For

a larger driving intensity, more atoms are transferred to the excited state,

reducing cooling but increasing light emission from the excited atoms.

This can be enhanced via a second cavity mode at the atomic frequency

spatially shifted by a quarter wavelength. For large enough atom numbers

we observe laser-like emission close to the bare atomic transition frequency.

doi: 10.48550/arXiv.2407.16046

7.1 Introduction

Building a continuously operating superradiant laser, which constitutes the core of a

next-generation active optical atomic clock, has been an integral part of developing

more robust and accurate timekeeping devices in the last two decades, both theoretically

and experimentally [22, 23, 40, 55, 66, 70, 75, 94, 112, 113, 126–128]. The continuous

clock operation on a narrow-linewidth atomic transition is of particular interest for

frequency metrology, precision measurements and quantum sensing [105,129].

Various advances in this direction, such as pulsed superradiance [47, 71, 73], con-

tinuous lasing proof of principle experiments on kHz transitions [41, 43, 118], conveyor

belt setups [42,44,72,117,120] or more complicated multi-level pumping protocols [93]

have been reported in the last years. However, a continuous superradiant laser on an

optical transition remains challenging and has not been realized yet.

In contrast to the conventional mechanism of self-organization operating in the

far-detuned dispersive regime [15–17,130–134], where the atoms are never excited by

the pump laser but act as light scatterers into the cavity creating their own trapping

potential, we excite the atoms and leverage state-dependent light forces created by the

pump laser and the light scattered into the cavity mode. In this way the atoms will

acquire an excited state population while subsequently moving through field minima

resulting in an almost unperturbed atomic transition frequency. At this point, the

atoms will serve as the gain medium for our laser by means of stimulated emission.

Methodologically expanding our previous work in ref. [135], we employ a second-

order cumulant expansion [22,56, 82] that allows for the treatment of experimentally

realistic system sizes, while still capturing the essence of the involved physics as

suggested by comparison to full quantum simulations for a small atom number. The
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Figure 7.1: Schematic illustration of the system. An ensemble of clock atoms is
trapped within a red-detuned standing wave transverse to a Fabry-
Perot optical cavity with one mode red-detuned close to the pump field.
The atomic transition couples to the cavity (g), the pump (Ω) and the
environment (Γ) allowing for collective resonant scattering from the
pump to the cavity mode with losses characterized by a decay rate (κ).
Light forces via collective scattering will modify atomic motion in the
xy-plane and eventually induce 2D atomic ordering, cooling and lasing.

spatial degrees of freedom are treated in a semi-classical phase space approach where

we include atomic motion along the cavity axis as well as along the direction of the

orthogonal coherent pump.

7.2 Model

We study the dynamics and self-organization of atoms having a narrow atomic linewidth

in a so-called intermediate bad-cavity regime, where the cavity linewidth (κ) is bigger

than the linewidth of the gain medium (Γ). In the limit of small photon numbers,

the phase coherence accounting for frequency stability is stored in the atoms rather

than in the cavity field. In the absence of an incoherent pumping mechanism for the

atoms, we aim for conditions under which the atomic dynamics in the cavity leads to

continuous lasing close to the bare atomic transition frequency.

We consider a basic model for self-organization in a linear single-mode cavity (ωc),

as depicted in fig 7.1. The two-level atoms (ωa) are illuminated off-resonantly (ωΩ)
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by a coherent standing-wave laser drive Ω cos (ky) transversely to the cavity axis and

experience a dipole light force affecting their spatial degrees of freedom in the cavity.

The phase of the scattered light is determined by the particles’ position and as the

driving strength surpasses the self-organization threshold one can observe the atoms

arrange themselves into one of two regular checkerboard patterns thus maximizing

scattering into the cavity. This can be shown from the solution of the master equation

for the density matrix (ℏ = 1),

ρ̇ = −i [H, ρ] + Lκ [ρ] + LΓ [ρ] , (7.1)

with the Hamiltonian in the rotating frame of the laser drive, which can be written as

H = −∆a

N∑
i=1

σ+
i σ

−
i −∆ca

†a+
N∑
i=1

g(xi, yi)(aσ
+
i + a†σ−

i )+
N∑
i=1

Ωcos(k′yi)
(
σ+
i + σ−

i

)
,

(7.2)

where ∆a = ωΩ − ωa, ∆c = ωΩ − ωc, σ+
i = (σ−

i )
† = |e⟩i⟨g|i denote the raising

(lowering) operators of the i-th atom with ground state |g⟩ and excited state |e⟩. The
ladder operator a† (a) is the photon creation (annihilation) operator of the cavity

mode and atoms experience a position-dependent coupling to the cavity g(x, y) =

g cos (kx)e−y2/w2
0 . We describe the atomic motion in the xy-plane by semi-classical

equations,
˙⟨x⟩ = 2ωr⟨px⟩/k2a, ˙⟨y⟩ = 2ωr⟨py⟩/k2a,

˙⟨px⟩ = −
〈∂H
∂x

〉
, ˙⟨py⟩ = −

〈∂H
∂y

〉
,

(7.3)

where ωr = k2a/(2m) is the atomic recoil frequency given by the atomic mass m and

wave number ka = ωa/c of the atomic transition. Since the laser is not very far

detuned from both the cavity and the atomic transition frequency we suppose that

k ≈ k′ ≈ ka and measure the distances in units of the atomic transition wavelength λ.

The Liouvillian in the standard Lindblad form represents the decay processes

Lκ[ρ] =
κ

2
(2aρa† − a†aρ− ρa†a)

LΓ[ρ] =
Γ

2

N∑
i=1

(2σ−
i ρσ

+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i )

(7.4)

describing individual spontaneous atomic emission with the rate Γ and cavity losses

with the rate κ.
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Figure 7.2: Dynamics. (a-b) (x,y) motion of N = 100 atoms in the parameter regime
of self-organization, (c) mean intracavity photon number in the coarse
of time, (d) mean kinetic energy (black line) and inversion averaged over
the atomic ensemble (red line) depending on time. Parameters: g = 1Γ,
κ = 10Γ, Ω = 5Γ, ∆a = −20Γ, ∆c = −10Γ, w0 = 1000λ, ωr = 1Γ. The
curves show concurrent trapping, cooling and self-ordering via collective
light scattering into the cavity mode.

In the self-organization regime, atoms scatter light into the cavity in such a way

that the resulting field simultaneously traps and cools the atoms keeping them in

an organized pattern, which is stable on a long time scale. More precisely, in the

dispersive regime the following two conditions have to be met [17],

δ = ∆c −
1

∆a

N∑
i=1

g2(xi, yi) < 0, (7.5)

stemming from the effective cavity frequency due to the presence of the atoms. Cavity

cooling is ensured when the effective cavity detuning δ is negative. In the case of

positive detuning, the atoms acquire kinetic energy from the driving light resulting in
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Figure 7.3: Self-Organization. Atomic trajectories in the xy-plane (red color) during
the final stage of the dynamics in the regime of self-organization presented
in fig. 7.2 plotted on top of the light intensity distribution. A checkerboard
pattern of trapped atoms emerges in the xy-plane.

cavity heating. The second condition [130],

2
√
Ng′Ω

|∆a|
>

(κ/2)2 + δ2

2|δ|
, (7.6)

with g′ =
√∑

i g
2(xi, yi)/N the averaged atom-field coupling over the ensemble,

corresponds to the pumping threshold above which the atoms tend to self-organize in

order to minimize their energy in the potential resulting from the interference between

the cavity and the pump field. In this work, we will examine these conditions as we

move away from the dispersive regime towards the saturation of the atomic transition.

The full master equation description does not allow to numerically calculate many

atoms due to the exponential growth of the Hilbert space with the atom number. Hence,

in order to simulate the system dynamics and spectrum of the light field in the cavity

for an ensemble of many atoms we use a cumulant expansion approach [22,56,82]. We

restrict ourselves to the second-order cumulant expansion and assume that the higher-

order correlations are negligible, i. e. ⟨ABC⟩C ≈ ⟨A⟩⟨BC⟩+ ⟨B⟩⟨AC⟩+ ⟨C⟩⟨AB⟩ −
2⟨A⟩⟨B⟩⟨C⟩. Thus, we start from the Heisenberg equations for operator averages
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describing our system, which for a given operator O reads

d

dt
⟨O⟩ = i⟨[H,O]⟩+ κ⟨D[a]O⟩+ Γ

∑
i

⟨D[σ−
i ]O⟩, (7.7)

where D[c]O =
(
2c†Oc− c†cO −Oc†c

)
/2. Using the second-order cumulant expansion

we obtain a closed set of equations describing our system,

d

dt
⟨a⟩ = −(κ/2− i∆c)⟨a⟩ − i

∑
j

g(xj , yj)⟨σ−
j ⟩

d

dt
⟨σ−

m⟩ = −(Γ/2− i∆a)⟨σ−
m⟩+ ig(xm, ym)⟨a⟩(2⟨σ+

mσ−
m⟩ − 1) + iΩcos(kym)(2⟨σ+

mσ−
m⟩ − 1)

d

dt
⟨a†a⟩ = −κ⟨a†a⟩+ i

∑
j

g(xj , yj)(⟨aσ+
j ⟩ − ⟨a†σ−

j ⟩)

d

dt
⟨aσ+

m⟩ = −(
κ+ Γ

2
+ i∆a − i∆c)⟨aσ+

m⟩+ ig(xm, ym)(⟨a†a⟩ − 2⟨a†a⟩⟨σ+
mσ−

m⟩ − ⟨σ+
mσ−

m⟩)

− i
∑

j;m ̸=j

g(xj , yj)⟨σ+
mσ−

j ⟩ − iΩcos(kym)⟨a⟩(2⟨σ+
mσ−

m⟩ − 1)

d

dt
⟨σ+

mσ−
m⟩ = −Γ⟨σ+

mσ−
m⟩ − ig(xm, ym)(⟨aσ+

m⟩ − ⟨a†σ−
m⟩)− iΩcos(kym)(⟨σ+

m⟩ − ⟨σ−
m⟩)

d

dt
⟨σ+

mσ−
j ⟩ = −Γ⟨σ+

mσ−
j ⟩ − ig(xm, ym)⟨a†σ−

j ⟩(2⟨σ
+
mσ−

m⟩ − 1) + ig(xj , yj)⟨aσ+
m⟩(2⟨σ+

j σ
−
j ⟩ − 1)

+ iΩcos(kyj)⟨σ+
m⟩(2⟨σ+

j σ
−
j ⟩ − 1)− iΩcos(kym)⟨σ−

j ⟩(2⟨σ
+
mσ−

m⟩ − 1)

d

dt
⟨xm⟩ = 2ωr⟨pxm⟩/k2

d

dt
⟨ym⟩ = 2ωr⟨pym⟩/k2

d

dt
⟨pxm⟩ = 2gk sin(kxm)e−y2m/w2

0ℜ{⟨aσ+
m⟩}

d

dt
⟨pym⟩ = 4g

w2
0

cos(kxm)yme−y2m/w2
0ℜ{⟨aσ+

m⟩}+ 2kΩsin(kym)ℜ{⟨σ+
m⟩},

(7.8)

where m = 1..N , g(xm, ym) = g cos (k⟨xm⟩)e−⟨ym⟩2/w2
0 , and ℜ{⟨O⟩} is used to denote

the real part of an expectation value of an operator. The resulting solution gives us the

time evolution of the atomic positions and momenta, as well as the mean intracavity

photon number ⟨a†a⟩ and the population inversion ⟨σz⟩ = ⟨σ+σ−⟩ − ⟨σ−σ+⟩, which
are shown in fig. 7.2 for N = 100 atoms. We can plot the atomic trajectories in

the final stage of the dynamics to show the emerging checkerboard pattern in the

self-organization regime, as presented in fig. 7.3.

In fig. 7.4 we calculate the time-averaged order parameter and mean photon number
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Figure 7.4: Self-Organization (Laser Drive). Absolute value of the order parameter
(left) and mean photon number (right) scans for N = 100 atoms depend-
ing on the cavity detuning (∆c) and driving strength (Ω). Parameters:
κ = 10Γ, g = 1.5Γ, ∆a = −20Γ, w0 = 1000λ, ωr = 1Γ.

Figure 7.5: Self-Organization (Cavity Coupling). Absolute value of the order para-
meter (left) and mean photon number (right) for N = 100 atoms de-
pending on the cavity detuning (∆c) and atom-cavity coupling strength
(g). Parameters: κ = 10Γ, Ω = 5Γ, ∆a = −20Γ, w0 = 1000λ, ωr = 1Γ.
The white dashed line indicates the zeros of the effective cavity detuning
calculated at each point according to eq. (7.5). White rhombus markers
show different parameter sets used in fig. 7.7 for the calculation of the
cavity field spectra.

in the cavity mode during the final stage of the dynamics as a function of the cavity

detuning and the driving strength. In order to obtain a comprehensive parameter

scan we restrict ourselves to the first-order cumulant expansion (mean-field solution),
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which does not allow for calculating the spectral properties of the light field but

substantially reduces the number of equations in eqs. (7.8). Both the second-order and

the mean-field solution are in good agreement with each other as well as with the full

master equation solution for small atom numbers. Above the pumping threshold one

can observe self-ordering, where particles organize in a regular checkerboard pattern

characterized by the order parameter

Θ =
1

N

N∑
i=1

cos(⟨kxi⟩) cos(⟨kyi⟩) −→ ±1 (7.9)

corresponding to one of the two possible realizations of the checkerboard. Increasing the

driving strength further towards saturation leads to cavity heating and the expulsion

of atoms from the cavity. Therefore, in the following we choose an intermediate

optimal value of the driving Rabi frequency and present the scan over the atom-cavity

coupling strength for Ω = 5Γ in fig. 7.5. The white dashed line indicates the zeros of

the effective cavity detuning in eq. (7.5) calculated at each point of the parameter scan.

Across the line, the effective cavity detuning changes its sign and becomes positive

resulting in cavity heating. White rhombus markers indicate different parameter

choices used for the calculation of the cavity field spectra shown in fig. 7.7, which is

discussed in the following section.

In fig. 7.6 we present the expectation value of the kinetic energy per atom,

⟨Ekin⟩ =
1

N

N∑
i=1

⟨pxi⟩2

2m
+

⟨pyi⟩2

2m
(7.10)

averaged over time during the final stage of the atomic dynamics. One can clearly

see the sharp transition between the atomic cooling and heating regimes. However,

this transition happens significantly further away than one would expect from the

zeroes of the effective cavity detuning indicated by the white dashed line. In the upper

left region of the plot, where the cavity frequency approaches the atomic frequency,

one can observe an extended region of cavity cooling and self-organization. Here, the

cavity field as well as the atomic dynamics become more noisy but ordering persists.
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Figure 7.6: Cavity Cooling. Kinetic energy in eq. (7.10) presented as a function of
the cavity detuning (∆c) and atom-cavity coupling strength (g). The
kinetic energy upper limit is set to 10ℏωr for a better resolution in the
cooling region. The parameters are the same as in fig. 7.5 with the white
dashed line indicating the zeros of the effective cavity detuning.

7.3 Cavity output spectrum

Even in the regime when the system dynamics has stabilized to a quasi-stationary

state, the atomic motion creates additional fluctuations of the photon number around

its average value. These fluctuations are significant for a small number of particles

in the simulation but become less pronounced the larger the atom number is. In

order to find the spectrum we make use of the quantum regression theorem [57] and

calculate the first-order correlation function g(1)(τ) = ⟨a†(t0 + τ)a(t0)⟩. According to

the Wiener-Khinchin theorem [58] the spectrum can be found as the Fourier transform

of the first-order correlation function,

S(ω) = 2ℜ
{∫ ∞

0
dτe−iωτg(1)(τ)

}
. (7.11)

We examine the cavity output spectrum at each point of the scan in fig. 7.5 searching

for narrow emission or lasing close to the bare atomic transition frequency with a

particular interest in the region around self-organization. We use the second-order

cumulant approach in eqs. (7.8) combined with the equations for the dynamics of the
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7.3 Cavity output spectrum

Figure 7.7: Spectra. Normalized spectral distribution of the cavity output field
for N = 100 atoms in different parameter regions depicted by white
rhombus markers in fig. 7.5. An increased spectral intensity and a very
narrow dip in the spectrum appear in the vicinity of the bare atomic
transition frequency close to the self-organization threshold. Parameters:
(a) ∆c = −6Γ, g = 0.9Γ; (b) ∆c = −9.5Γ, g = 1.5Γ; (c) ∆c = −18Γ,
g = 3.5Γ; (d) ∆c = −3Γ, g = 0.6Γ; (e) ∆c = −10Γ, g = 0.8Γ; (f)
∆c = −18Γ, g = 0.8Γ, κ = 10Γ, Ω = 5Γ, ∆a = −20Γ, w0 = 1000λ,
ωr = 1Γ.

first-order correlation function in order to compute the spectrum [94]. In fig. 7.7 we

present the spectra of the cavity light field for an ensemble of N = 100 atoms obtained

for different parameter sets indicated by white rhombus markers in fig. 7.5.

In the ordered regime, a coherent peak at the pump frequency is dominant in

the spectra, accompanied by motional broadening. In the case of perfect ordering

presented in the spectrum in fig. 7.7(a), one can resolve the motional sideband peaks

as all atoms in the ensemble oscillate around their trapping positions in the same way.

Additionally, in fig. 7.7(b) we present the spectrum in the area of the maximal photon

number given in fig. 7.4 for g = 1.5Γ. Above the main region of the self-organization,

both the cavity field and atomic dynamics become rather noisy. Here, we do not
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Figure 7.8: Filter Cavity Mode Spectra. (a) Spectra of the filter cavity mode output
for a coupling strength g = 2Γ and different atom numbers N . (b)
Same as above for varying coupling strength g and N = 20 atoms.
The operating parameters are: κ = 10Γ, Ω = 5Γ, ∆a = ∆c2 = −20Γ,
∆c = −10Γ, w0 = 1000λ, ωr = 1Γ.

observe any spectral features close to the atomic frequency even in the extended region

of self-organization, as shown in fig. 7.7(c).

Of particular interest are the spectra in the parameter region where the self-ordering

threshold has not been fully reached. In fig. 7.7(d)-(f) we observe an increased spectral

intensity close to the atomic transition frequency, which we associate with the emission

from the excited atomic fraction. Because the atoms in this region are not perfectly

ordered, they undergo complex dynamics as they continue to move, oscillate, and jump

from one field antinode to another. Note, that the dipole light force has the opposite

sign depending on the atomic state. Thus, in case of the red-detuned laser drive, the

ground-state atoms are drawn to the field maxima whereas the excited-state atoms

are expelled from these regions. In this case, the excited atoms can subsequently move

through the field minima and emit photons that will be visible in the spectrum near

the bare atomic frequency. Moreover, in fig. 7.7(e)-(f), we find that the spectra reveal

a narrow absorption minimum at the atomic frequency, which can be associated with

the atomic antiresonance [136,137]. In the self-organization regime, the position of

this minimum becomes shifted above the bare atomic frequency. We attribute this to

the energy light shifts that atoms experience being trapped around the field antinodes.

Along with the main cosine mode of the cavity it is interesting to study the spectra
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when we introduce an additional sine mode into the system resonant to the atomic

transition frequency. This sine mode will play the role of a filter for the light coming

from the atoms. Interesting behavior occurs when the atoms are close to but not quite

in the self-organization regime as they not only oscillate around their position as in

fig. 7.3 but can jump from one antinode of the field to another, thereby increasing the

emission probability into the sine mode. Of course, there is much less light going into

the filter mode than there is light in the main mode of the cavity.

The second mode makes the simulation for the spectra much more computationally

demanding substantially increasing the amount of equations in the system described

by the Hamiltonian

H ′ = H −∆c2b
†b+

N∑
i=1

g sin(kxi)e
−y2i /w

2
0(bσ+

i + b†σ−
i ), (7.12)

where ∆c2 = ωΩ − ωc2 and b†, b are the photon creation and annihilation operators in

the second cavity mode. In fig. 7.8(a) we fix the cavity coupling strength to g = 2Γ

and increase the atom number up to N = 40 atoms. One can observe the normal

mode splitting when the condition g
√
N > κ is fulfilled. Similarly, fixing the number

of atoms and changing the coupling constant leads to a splitting in spectra depicted

in fig. 7.8(b).

7.4 Conclusions

In this work, we have studied spatial self-organization and spectral properties of

the emitted light in a transversely driven clock atom ensemble coupled to a linear

Fabry-Perot optical cavity. Our simulations demonstrate that cavity cooling and

atomic self-ordering via collective scattering also appear in the bad-cavity limit where

the atomic linewidth is much smaller than the cavity linewidth and of the order of

the recoil frequency. Under a strong drive, state-dependent light forces induced by

the driving laser and the light scattered into the cavity allow for the atoms to acquire

excited state population while subsequently moving through the field’s minima. In

the self-organization regime, a dominant spectral peak in the cavity output stems

from coherent light scattering at the pump frequency and is surrounded by motional

sidebands. When the self-organization threshold has not been fully reached, we

observe an increased spectral intensity as well as a narrow antiresonance close to the
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unperturbed atomic transition frequency, which can be useful for clock spectroscopy.

Finally, in order to provide for a continuous frequency reference, the light coming

from the excited atomic fraction can be filtered via a second cavity mode spatially

shifted by a quarter wavelength and tuned to the bare atomic transition frequency.

We anticipate that this will lead to laser-like emission for sufficiently large ensembles,

which, unfortunately, goes beyond our simulation capabilities, but is readily available

in experiment [44].

Data availability

Numerical simulations were performed with the open-source framework Differentiale-

quations.jl [81] and QuantumOptics.jl [125] in the Julia programming language. The

graphs were produced using the Matplotlib library [83]. All raw data are openly

available at https://doi.org/10.5281/zenodo.12796758.
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8 Conclusions and Outlook

In this thesis, I theoretically investigated collective dynamics and lasing in active

optical atomic clocks based on two-level quantum emitters interacting with quantized

light fields in a planar optical cavity.

The first two projects of my thesis focused on the collective superradiant emission of

coherent light in an ensemble of clock atoms subjected to inhomogeneous broadening

effects. The inhomogeneity is primarily associated with a distribution of the atomic

resonance frequencies among the ensemble. This effect can lead to a disruption of

the collective interaction between the atoms. Here, we showed that strong optical

pumping can induce synchronization of the atomic dipoles over a large bandwidth,

provided that the critical atom number is reached. We saw that including a variation

of the atom-cavity coupling among the ensemble only presented itself as a scaling

factor in the effective coupling strength and did not show a substantial difference

compared to the homogeneous coupling case. We developed an extensive numerical

model of clusters with various atomic parameters using the second-order cumulant

expansion method, which allowed us to simulate realistic systems with a large number

of atoms beyond the mean-field approach. In the following, this model provided a

basis for the investigation of the spectral properties and stability of active clocks in

realistic systems with inhomogeneous broadening. In this study, we identified optimal

operational parameters for achieving the ultimate frequency stability of active optical

clocks in the superradiant lasing regime. We showed that the spectral linewidth under

optimized conditions can be smaller than the natural linewidth of the atomic transition

even in the presence of moderate inhomogeneous broadening and dephasing processes.

In order to ensure continuous-wave operation in superradiant clocks, it is necessary

to realize a continuous population inversion mechanism which excites the atoms. We

proposed a new scenario for creating an intrinsic light force generated inversion and

gain in the ensemble of coherently driven atoms inside an optical cavity. In this part,

we performed extensive numerical simulations in an ensemble of a few hundred atoms,

where we used the cumulant expansion approach together with the semi-classical
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equations of motion to investigate the atomic dynamics and spectra of the cavity

light field. Here, tailored state-dependent forces were used to gather and concentrate

excited-state atoms in regions of strong atom-cavity coupling while ground-state atoms

were repelled. We found the optimal operating conditions between the external atomic

dynamics and driving fields that provide continuous narrow-band emission close to

the unperturbed atomic line, which central frequency is largely insensitive to cavity

fluctuations.

Next, we extended the developed framework to study self-organization, cooling

and lasing in an ensemble of clock atoms. In the bad-cavity regime, we analyzed the

self-organization behavior and cavity output spectra as functions of the laser-cavity

detuning and the driving strength. Of particular interest to us were the spectra in the

regime where the self-ordering threshold has not been fully reached. While the atoms

can jump there from one field antinode to another, we presented the conditions for

the laser-like emission in the vicinity of the self-organization threshold. In the future,

it could be interesting to extend this study to large atomic ensembles, which goes

beyond our simulation capabilities, but is readily achievable in experiment.

Future research questions could involve the effects of dipole-dipole interactions and

collisions in a dense atomic ensemble, which could lead to frequency noise and mutual

interaction forces heating up the system. The quantum mechanical description of

atomic motion could provide further insights into the many-body quantum dynamics.

However, this would substantially increase the complexity of the problem as the Hilbert

space would grow drastically. As we did not focus on a particular superradiant laser

experiment, further investigations with more refined models have to be developed in

collaboration with a specific experimental setup.
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[76] S. B. Jäger, H. Liu, A. Shankar, J. Cooper, and M. J. Holland, “Regular and

bistable steady-state superradiant phases of an atomic beam traversing an optical

cavity,” Physical Review A, vol. 103, no. 1, p. 013720, 2021.

[77] M. A. Norcia, A. W. Young, W. J. Eckner, E. Oelker, J. Ye, and A. M. Kauf-

man, “Seconds-scale coherence in a tweezer-array optical clock,” arXiv preprint

arXiv:1904.10934, 2019.

[78] K. Debnath, Y. Zhang, and K. Mølmer, “Collective dynamics of inhomogeneously

broadened emitters coupled to an optical cavity with narrow linewidth,” Physical

Review A, vol. 100, no. 5, p. 053821, 2019.

[79] M. Xu, D. A. Tieri, E. Fine, J. K. Thompson, and M. J. Holland, “Synchron-

ization of two ensembles of atoms,” Physical review letters, vol. 113, no. 15,

p. 154101, 2014.

[80] A. Bychek, “Clusters,” https://doi.org/10.5281/zenodo.4916393, 2021.

[81] C. Rackauckas and Q. Nie, “Differentialequations. jl–a performant and feature-

rich ecosystem for solving differential equations in julia,” Journal of Open

Research Software, vol. 5, no. 1, 2017.

109



Bibliography

[82] D. Plankensteiner, C. Hotter, and H. Ritsch, “Quantumcumulants. jl: A julia

framework for generalized mean-field equations in open quantum systems,”

Quantum, vol. 6, p. 617, 2022.

[83] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science

& Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[84] B. Zhu, J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. J. Holland,

and A. M. Rey, “Synchronization of interacting quantum dipoles,” New Journal

of Physics, vol. 17, no. 8, p. 083063, 2015.

[85] A. Bychek, “Superradiant laser figures,” Figshare, ht-

tps://doi.org/10.6084/m9.figshare.15321819.v1, 2021.

[86] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic

clocks,” Rev. Mod. Phys., vol. 87, pp. 637–701, Jun 2015.

[87] J. Chen, “Active optical clock,” Chinese Science Bulletin, vol. 54, pp. 348–352,

Feb 2009.

[88] G. A. Kazakov and T. Schumm, “Active optical frequency standards using cold

atoms: Perspectives and challenges,” in 2014 European Frequency and Time

Forum (EFTF), pp. 411–414, 2014.

[89] G. A. Kazakov and T. Schumm, “Active optical frequency standard using

sequential coupling of atomic ensembles,” Phys. Rev. A, vol. 87, p. 013821, Jan

2013.

[90] M. C. Teich and R. Y. Yen, “On the signalâtoânoise ratio for optical heterodyne
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