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Abstract

Whenever optically trapped particles modify substantially the propagation of the trapping light
field, the field will mediate an interaction between them. In this Thesis we explore the dynamical
effects of this interaction for atoms trapped in high-Q cavities and for large optical lattices.

We start with a study of the simplest setup where this interaction can occur: two atoms trapped
in a single-mode high-Q standing wave cavity which is fed by laser light, with the atoms con-
strained to move along the cavity axis. We simulate the motion of the atoms by stochastic differ-
ential equations using a model previously developed in the group of Helmut Ritsch. We find that
whenever cavity cooling is expected to be effective, the motion of deeply trapped atoms develops
correlations: the two particles oscillate in their potential wells with a 90◦ relative phase shift. This
mode of motion is very weakly coupled to the cavity and thus these correlations seriously limit the
efficiency of cavity cooling. The final temperature in these cases corresponds to the Doppler limit.

We also investigate a cavity cooling setup where the field-mediated interaction plays a con-
structive role: the dynamics of many atoms in a standing-wave cavity, where instead of feeding
the cavity directly, the pumping laser is directed at the atoms. As previously predicted and exper-
imentally observed, above a laser power threshold the atoms form one of two stable lattice-like
patterns that produce superradiant scattering into the cavity. We present here a detailed study of
this self-organization phenomenon. A simple mean-field model is used to derive analytical formu-
las for the threshold and the details of this phase transition. We also perform numerical simulations
of the dynamics revealing that, on a laboratory timescale, a hysteresis masks the mean-field be-
haviour. Simple physical arguments are used to explain this phenomenon and to derive expressions
for the observable threshold. Above a certain density of the atoms a limited number of “defects”
appear in the organized phase and influence the statistical properties of the system. We also study
the scaling of the cavity cooling mechanism and the achievable phase-space density with the atom
number. We then apply the mean-field model to a ring cavity, and map out the phase diagram of
thermodynamic states of (i) uniform distribution, (ii) self-organized Bragg lattice, (iii) lattice with
defects, and (iv) instability.

We address the question of how to model the dynamics if the collective back-action of the
trapped particles is so large that they not only influence the occupation of the cavity mode, but
the very shape of the mode function itself. The dependence of the mode function on the atomic
positions has to be calculated by solving the Helmholtz equation, in the simplest 1-dimensional
model systems this is straightforward with the transfer matrix method. We comment on recent
attempts to derive the steady state of a regular distribution of atoms inside a pumped standing-
wave cavity. We point out that the approach based on the minimization of the dipole Hamiltonian
leads to nonphysical conclusions. Deriving the optical forces via the Maxwell Stress Tensor, we
find that the steady state of the atoms corresponds to a regular lattice, and that no bistability of the
kind predicted in the literature should occur.

We explore the dynamics of a 1-dimensional optical lattice due to optomechanical coupling.
We derive the force on a disk-shaped cloud of trapped particles including the back-action on the
trapping light, and analyze its relation to the standard perturbative approach giving the “dipole
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ii ABSTRACT

force” and “radiation pressure”. Unexpectedly, we find that the pump asymmetry, i.e., the ratio of
power in the two beams used to trap the atoms, plays a key role in the dynamics of this system.
We calculate the self-consistent lattice constant for both red and blue detuned lattices and find
that it decreases – by the same amount in the two cases – as the pump asymmetry is increased.
We find that the vibrations of the trapped atoms are coupled by the field-mediated interaction,
and in the presence of asymmetry, this results in traveling wavelike collective oscillations. By
increasing the size of the lattice or the pump asymmetry, these can destabilize the lattice even in
the overdamped limit. We present a detailed derivation of the lattice vibration eigenmodes using
the transfer matrix method, which reveals that the instability is enhanced resonantly at certain
settings of the asymmetry.

Finally, in this Thesis we include some of the research work done during the PhD years which
is not related to optomechanical coupling. We propose the entanglement potential (EP) as a mea-
sure of nonclassicality for quantum states of a single-mode electromagnetic field. It is the amount
of two-mode entanglement that can be generated from the field using linear optics, auxiliary clas-
sical states, and ideal photodetectors. The EP detects nonclassicality, has a direct physical in-
terpretation, and can be computed efficiently. These three properties together make it stand out
from previously proposed nonclassicality measures. We derive closed expressions for the EP of
important classes of states and analyze as an example of the degradation of nonclassicality in lossy
channels.



Zusammenfassung

Wenn immer mit Licht gefangene Teilchen die Ausbreitung des Fangenlichtes im wesentlichen
verändern, dann wird das Lichtfeld zwischen ihnen eine Wechselwirkung vermitteln. In der vor-
liegenden Dissertation betrachten wir die dynamische Effekte dieser Wechselwirkung für Atome
in optische Hohlraumresonatoren und für grosse optische Gitter.

Wir beginnen mit einer Studie der einfachste Konfiguration, wo diese Wechselwirkung auf-
treten kann: zwei Atome, die in das Lichtfeld eines single-mode Hohlraumresonators mit hohem
Gütefaktor gefangen sind, und die sich nur entlang die Achse des Resonators bewegen können.
Wir simulieren die Bewegung der Atome durch stochastische Differentialgleichungen. Wir stellen
fest, dass wann immer eine wirksame Hohlraumkühlung erwartet ist, die Bewegung der tief gefan-
genen Atome wird korreliert sein: die zwei Teilchen oszillieren in ihren Potenzialtöpfen mit einer
relativen Phasenverschiebung von 90◦. Diese Art von Bewegung ist nur sehr schwach gekoppelt
an der Resonator und folglich begrenzt diese Wechselwirkung ernsthaft die Leistungsfähigkeit
des Resonatorkühlungs. In diesen Fällen entspricht die endgültige Temperatur der Doppelschen
Grenze.

Wir untersuchen auch eine Konfiguration, wo die vom Lichtfeld vermittelte Wechselwirkung
eine konstruktive Rolle spielt: die Dinamik vielen Atomen in eine Stehwelle-Resonator, wo anstatt
die Hohlraum direkt zu pumpen, ist die Laser an den Atomen anrichtet. Wie bereits vorhergesagt
und experimentell beobachtet, oberhalb einer Schwelle der Laserleistung bilden die Atome eine
der zwei stabile Gitter-Muster, die superradiante Streuung in den Hohlraum ergiebt. Wir stellen
hier eine detaillierte Studie über diese Selbstorganisation. Mit einem einfachen mittelfeld Modell
können wir analytische Formeln für die Schwelle und die Einzelheiten dieser Phasenübergangs
ableiten. Wir fhren auch numerische Simulationen der Dynamik durch, und finden, dass auf
die Zeitskala des Experiments verdeckt ein Hysteresis das mittelfeld Verhalten. Mit einfachen
physikalischen Argumente können wir dieses Phenomän erklären und Ausdrücke für die wahr-
nehmbare Schwelle ableiten. Ab einer bestimmten Dichte der Atome erscheint eine begrenzte An-
zahl von “ Fehler” der selbstorganisierten Gitter und beeinflussen die statistischen Eigenschaften
des Systems. Wir studieren auch die Skalierung des Hohlraum-Khl-Mechanismus und die erreich-
bare Phasenraumdichte mit dem Anzahl der Atome. Dann wenden wir die mittelfeld Modell zu
einem Ring-resonator an, erstellen die Phasendiagramm der thermodynamischen Zustnde von (i)
die gleichmige Verteilung, (ii) selbstorganisierte Bragg-Gitter, (iii) Gitter mit Mngeln, und (iv) die
Instabilitt.

Wir gehen auch der Frage nach, wie der Dynamik modelliert wird, wenn das kollektive rck-
Aktion der gefangenen Teilchen so gro ist, dass sie nicht nur Einfluss auf die Besetzung der
Modusfunktion, aber auf die Form selbst der Funktion haben. Die Abhngigkeit der Modusfunk-
tion von der atomaren Positionen soll mit der Lsung der Helmholtz-Gleichung berechnet werden,
in 1-dimensionalen Modell-Systemen ist das einfach durch dem Transfer-Matrix-Methode. Wir
kommentieren neue Versuche zur Ermittlung der Steady-State einer regelmässigen Verteilung von
Atomen in einem gepumpten stehende-Welle Hohlraum. Wir weisen darauf hin, dass die Min-
imierung der Dipol Hamiltonian zu nichtphysikalische Schlussfolgerungen fhrt. Nach Ableitung
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iv ZUSAMMENFASSUNG

der optischen Krfte durch die Maxwell-Stress-Tensor, stellen wir fest, dass die Steady-State der
Atome einem regelmäigen Gitter entspricht, und dass es keine bistabilität der Art, der in der Lit-
eratur vorausgesagt wird, auftreten sollte.

Wir erforschen die Dynamik einer 1-dimensionalen optischen Gitter wegen der optomech-
anische Kopplung. Wir leiten die Kraft auf einen scheibenfrmigen Wolke gefangenen Partikeln,
und analysieren seine Beziehung zu den perturbativen Standardannäherung von “ Dipol-Kraft”und
“Strahlungsdruck”. Unerwartet stellen wir fest, dass die Asymmetrie der Pumpe — das Verhltnis
der Energie in den zwei Lichtstrahlen die die Falle erzeugen — spielt eine zentrale Rolle in der
Dynamik des Systems. Wir berechnen die Gitterkonstante fr beide rot und blau verstimmte Git-
ter und finden, dass es sich verringert — um den gleichen Betrag in den beiden Fllen — als die
Asymmetrie erhht wird. Wir stellen fest, dass die Schwingungen der gefangenen Atome durch
dem Feld-vermittelte Interaktion gekoppelt sind, und in Anwesenheit von Asymmetrie, ergeben
sich reisenden wellenartigen kollektive Schwingungen. Durch die Erhöhung der Gröe des Git-
ters oder die Asymmetrie der Falle, knnen diese Schwingungen zur Destabilisierung des Git-
ters führen, auch in den oberdämpften Grenzfall. Wir präsentieren eine detaillierte Ableitung
der Gitter-Vibrations-Moden mit Hilfe der Transfer-Matrix-Methode, die zeigt, dass die Instabilitt
resonant zu bestimmten Einstellungen der Asymmetrie erhht wird.

Schlielich sind in dieser Dissertation auch einige unserer Ergebnisse erhalten, die keine direkte
Zusammenhange mit Optomechanische Kopplung haben. Wir schlagen die Verschränkungspotential
(EP) als Mass für die nichtklassizität Quanten-Zustnde eines Modes des elektromagnetischen Felds
vor. Es ist die Menge der zwei-Modus Verschränkung, dass aus dem Zustand mit linearer Op-
tik, klassischen “ancilla” Zuständen, und idealen Photodetektoren generiert werden kann. Das
EP erkennt nichtklassizität, hat eine direkte physikalische Deutung, und kann effizient ausrech-
net werden. Diese drei Eigenschaften zusammen machen die EP einzigartig zwischen den bisher
vorgeschlagenen Massen der nichtklassizität. Wir leiten analytische Ausdrcke fr die EP wichtige
Klassen von Zustände ab, und als Beispiel fr dessen Anwendung analysieren wir die Verminderung
der nichtklassizität in verlustbehaftete Kanle.
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Introduction

0.1 Optical manipulation of matter

The interaction of light and matter is one of the central topics of physics. Since the earliest days
of science, matter has been used in a variety of ways to tailor the motional state of light. The
associated theoretical and experimental techniques, which form the subject of optics, have been at
the heart of physical research as well as numerous technological achievements ever since. Clearly,
this interaction is reciprocal, and light also changes the kinematical state of material particles.
However, it is only in the last three decades, following the development of the laser, that the use
of light as a tool to manipulate the motional state of material particles has revolutionarized atomic
physics and biophysics.

Although “radiation pressure” has been thought by many to play a role in directing the coma
of comets opposite to the Sun, its existence has only been experimentally verified at the turn of
the 19th-20th century by Lebedev, Nichols and Hull [1, 2, 3]. The development of the laser, an
intensive and coherent source of light, has enabled physicists to explore the forces due to light in
more detail. In 1970, Ashkin has used a focused Gaussian beam to trap transparent latex spheres
in water [4]. Apart from the expected “push” of the laser photons bouncing off the spheres, he has
also found that the beads were “pulled” by light to the center of the beam, which he could explain
with geometric optics and momentum conservation. Further experiments and theoretical work
have led to the characterization of these two types of radiation pressure acting on sub-wavelength
particles: the “scattering force” pointing in the direction of net photon flux, and the “dipole force”
pointing along the intensity gradient. The possibility to trap, hold, and stretch microscopic objects
without direct physical contact has invigorated biological research as well as physics. Since 1987,
when Ashkin et al. [5] used “optical tweezers” to trap tobacco viruses and living bacteria, optical
forces have been applied to, e.g., the manipulation of chromosomes, mechanical characterization
of molecular motors and cell organelles, and to test the cancerousness of cells [6].

The fact that atoms can be deflected or accelerated by the “scattering force”, the resonance
radiation pressure due to absorption and subsequent spontaneous emission of photons, has already
been shown as early as 1933 [7]. As realized in 1975 by Hänsch and Shawlow [8], because of
the Doppler effect this force can be used to cool the motion of atoms. For this so-called Doppler
cooling, atoms are irradiated from all sides by lasers whose frequency is slightly red-detuned with
respect to the atomic resonance. Atoms are then always more likely to absorb photons from the
lasers they are moving towards, as those are blue-shifted by the Doppler effect. Due to momentum
conservation, each such absorption event decreases the kinetic energy of the atom. The precise de-
scription of this and other optical manipulations schemes, accounting for the vacuum fluctuations,
required the extension of the theory of light-induced forces to the motion of single atoms. This
work was initiated in 1980 by Gordon and Ashkin [9], with crucial insights provided by Cohen-
Tannoudji, Dalibard, and coworkers [10]. In the 1985, the groups of Phillips and Metcalf have
used the scattering force to “stop” a beam of atoms emanating from an oven, which could then be
trapped by inhomogeneous magnetic fields and cooled by Doppler cooling in what is known as a
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2 INTRODUCTION

Magneto-Optical Trap [11]. In 1997, Chu [12], Cohen-Tannoudji [13] and Phillips [14] have been
given the Nobel prize for the “development of methods to cool and trap atoms with laser light”
(for a review, see [15]).

Optical manipulation of the motion of atoms has led to the realization of degenerate quantum
gases, and predictions dating from the early days of quantum mechanics could be checked. The
creation of Bose-Einstein Condensates (BEC) [16, 17] has been awarded with a Nobel prize (Ket-
terle, Cornell and Wieman, 2001) and has stimulated a great amount of interest. More recently,
ultracold Fermi gases have also been realized, and are used to study the BEC-BCS (Bardeen-
Cooper-Schrieffer pairing) transition. Using the standing-wave interference pattern of several laser
beams to trap (ultra-) cold atoms, “optical lattices”, artificial crystals can be created and used to
model important theories of solid-state physics [18].

0.2 Opto-mechanical coupling, cavities

Note the two complementary ways in which light and matter act on each other. In optics, matter
is an inert tool that is used to manipulate the direction of propagation or wavelength of photons.
Passing through an optical setup, a photon encounters many atoms, each of which only influence
the motion of the photon slightly. The overall effect, however, can be very large. In “atom op-
tics”, light is a tool that is used to deflect, accelerate, decelerate, or cool material particles. The
intensive laser fields contain many photons, each of interacts with the atom at most once, giving
it a slight momentum kick. What happens when both aspects of the kinematics of light-matter
interaction are present, if light is deflected by and deflects matter considerably at the same time?
In this regime, commonly referred to as “opto-mechanical coupling”, light conveys a mechanical
interaction between the material particles. The effects of this interaction form the subject of this
Thesis.

The central idea to access the regime of “opto-mechanical coupling” for atoms is to recycle
the photons, so that each photon is very likely to meet the same atom several times over. This can
be achieved by enclosing the system between highly reflective mirrors that form an optical cavity.
Inside such a high-Q optical cavity photons can bounce as many as 108 times before exiting the
system. This enhances the sensitivity of cavities to the presence of atoms, and permits their use as
“microscopes” [19]. On the other hand, even a single photon can trap and hold an atom between
the cavity mirrors [20, 21]. If both of these effects are present, in the so-called strong-coupling
regime, single atoms can be cooled efficiently with the use of cavities.1.

The dynamics of atoms trapped in a high-Q cavity can be treated with simple and robust
mathematical techniques [25]. These rest on two pillars: the quantum description of the light-
induced forces for the atoms [10], and the quantum optics techniques (Master equation, Wigner
function) treatment of the single quasi-resonant mode (or, in some cases, more modes) of the cavity
central to cavity quantum electrodynamics [26]. This fruitful approach has given many insights
into the ways cavities can be used to control atomic motion, and can be used to describe the light-
mediated interaction between trapped atoms. In some schemes, this interaction has been predicted
to be detrimental to cooling efficiency. In other setups, however, it has been predicted [27] and
oberved [28] to lead to a “crystallization” of the trapped atoms giving a spectacular advantage for
both trapping and cooling.

If the number of atoms in the cavity is so large that they distort the mode functions themselves,
the above mentioned approach breaks down. Apart from being of theoretical interest, this so-called
“Super-strong coupling” regime is now approached by experiments where BEC’s are loaded into

1A closely related idea is to use the cavity field to cool the motion of a vibrational mode of one of the mirrors
themselves [22, 23, 24]
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cavities [29]. In this case, the light-induced forces cannot be easily described in terms of exchange
of excitations between some fixed cavity modes, since such fixed modes are inappropriate. Thus
new ways of describing the dynamics are called for. One can turn to the description of light-
induced forces on microscopic particles. Here, the influence of the particles on the light field is
much more complicated than that of the essentially pointlike atoms, the Maxwell equations have
to be solved including high-order multiple scattering events. Some attempts have been made to
define “potentials” for the particles, but in the general case the forces have to be calculated via the
Maxwell stress tensor. The phenomenon of “optical binding” of microspheres [30] has shown that
optomechanical coupling can play a decisive role in the dynamics. Recently, this effect is explored
in more depth in the complicated 2-dimensional motion of trapped microspheres or of rods.

0.3 Outline of the Thesis

In the first part of the Thesis we investigate atoms trapped in optical cavities with the theoretical
tools reviewed in [25].

In Chapter 2 of this Thesis, published in Phys. Rev. A, 70, 013414 (2004) [31], we discuss the
motion of two atoms trapped in the same high-Q Fabry-Perot cavity. Using one of the standard
approaches described in [25] for the description of the dynamics we ask what correlations build
up between the motion of the atoms and how these affect the cooling efficiency. Simulating the
atomic motion with classical noisy dynamics based on the Heisenberg-Langevin equations we map
the parameter space to find the amount of correlations and the achievable final temperatures.

In Chapter 3 of this Thesis, published in Phys. Rev. A 72, 053417 (2005) [32], we present a
detailed study of the self-organized buildup of an optical lattice predicted in [27]. Here we use the
other approach of [25] leading to classical ordinary differential equations where the field is kept
explicitly as a dynamical variable. Using simple theoretical arguments we derive thresholds on the
laser power necessary for the “crystallization” to occur. We then perform extensive simulations and
find that the simple mean field picture needs to be modified: on laboratory timescales a hysteresis
occurs, and at high intensities atoms trapped at minority sites also modify the results.

In Chapter 4, published in Europhys. Lett. 74 (2), 254-260 (2006) [33], we apply the mean-field
model of light-mediated interaction to a gas of cold atoms trapped in a ring cavity and pumped
directly by laser light. Instead of two distinct superradiant patterns, there is here a continuous
manifold of “crystallized” phases. We map the occurence of various thermodynamic phases as
functions of the control parameters.

The second part of the Thesis contains our contribution to the physics of the “super-strong
coupling” regime.

In Chapter 6 we reproduce our critique of the analysis of a model system for the “super-strong
coupling” regime by Meiser and Meystre, published in Phys. Rev. A 76, 057801 (2007) [34]. We
show that modeling the atomic dynamics based on optical potentials is flawed. We calculate the
optical forces in this simple setup in two ways, and obtain simple formula. We show that these
lead to results that contradict those based on the minimization of the optical potential in a cavity
as well as in free space.

In Chapter 7 we analyze the dynamics of a one-dimensional optical lattice due to optomechan-
ical coupling. This Chapter has been submitted to Phys. Rev. A, and the essence of the results was
published in Phys. Rev. Lett. 98, 203008 (2007) [35]. We supplement the model of [36], where
the optical lattice is a stack of 2-dimensional disk-shaped clouds of atoms, by the formulas for the
forces on these clouds. We detail the connection of these forces to the “dipole force” and “radi-
ation pressure” forces which act on single atoms. We find that the “asymmetry”, or the relative
power of the two trap beams creating the lattice, is a control parameter having an important influ-
ence on the dynamics of the lattice. We show that the reduction of the lattice constant predicted
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in [36] and observed in [37] can be enhanced by orders of magnitude by switching to asymmetric
pumping. Even more interestingly, the asymmetry alters the field-mediated interaction between
the atom clouds. As a spectacular consequence, we show that asymmetrically pumped optical lat-
tices become dynamically unstable above a certain size, even if viscous friction forces are applied
to stabilize the lattice. We find that asymmetry alters both the equilibrium and the dynamics of
blue detuned lattices in the same way as red detuned lattices.

In the third part of the Thesis we report on some of the research done during the years of the
doctoral studies which does not concern the dynamics of atoms, published in Phys. Rev. Lett. 94,
173602 (2005) [38]. We define the Entanglement Potential (EP), a quantitative measure of “non-
classicality” of the quantum state of a single mode of a bosonic field (e.g., light in a cavity). We
show that it has advantegeous properties, and as an application, we use it to study how nonclassi-
cality is lost during dissipation into vacuum.



Part I

Optomechanical coupling in a high-Q
cavity
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Chapter 1

Background

In this Chapter we introduce some key concepts forming the background of the work summarized
in the first Part of the Thesis. Although the later Chapters discussing our results are self-contained,
and start with their own introductory Sections, we here sketch the concepts behind our work, as
well as provide some useful references.

1.1 Interaction of atoms with light

1.1.1 Two-level atoms

Atoms are characterized by external (position x̂ and momentum p̂ ) and internal (electronic, nu-
clear, etc.) degrees of freedom. We assume the simplest case, where the internal variables can be
reduced to two stationary energy levels separated by ~ωA. At the beginning of the experiment the
atoms are prepared in the “ground state” |g〉. Laser photons can induce real or virtual electronic
transitions to an “excited state” |e〉. It is supposed that the only allowed transition from |e〉 is back
to |g〉 (either stimulated by the laser photons, or via spontaneous emission). If this cannot be en-
sured, e.g. for molecules, which can decay into other rovibrational states, we require that there be
only virtual transitions to the upper state |e〉, whose occupation should be small throughout the ex-
periment. Furthermore, the state |g〉 is assumed to be stable: there are no allowed transitions for its
spontaneous decay. Using standard notation, the fermionic deexcitation and excitation operators
are

σ̂ = |g〉 〈e| ; σ̂† = |e〉 〈g| (1.1)

Since neither of the stationary states |g〉 and |e〉 have a dipole moment, the 2 × 2 matrix of the
dipole moment operator can have no diagonal elements. With a suitable choice of 3D coordinate
system, this operator is given by d̂ = d

(
σ̂ + σ̂†

)
.

1.1.2 Light modes

To discuss the interaction of the atom with the light, one needs a good choice of coordinates for
the (optical frequency) electromagnetic field. In other words, a modal decomposition of the field
is necessary, so that the (orthogonal) modes best fit the problem at hand. For the modes of the field
orthogonal to the mode of the laser, the “vacuum modes”, the choice of modes is a matter of taste.
A popular choice is the set of plane waves:

Ê(x) = i
∑

j

Ej âjεje
ikjx + h.c., (1.2)

7
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with âj being the annihilation operator, kj the wavevector, εj the polarization vector, Ej a normal-
ization constant of the jth mode. The sum runs over a discrete set of modes in a finite, but large
quantization volume L3. Instead of following fully the dynamics of the vacuum operators âj ,
within the Markov approximation, their effect on the system of interest is included by the addition
of Liouvillean terms [26].

Continuous wave lasers excite specific modes, which can often be approximated by plane
waves [10]:

EL(r, t) = ε(r)E(r) cos[ωLt+ Φ(r)], (1.3)

with ε(r) the polarization, E(r) the the amplitude, and Φ(r) the phase of the laser field in r. In
the usual classical approximation, EL is not treated as an operator, but as a complex number-field,
corresponding to the quantum state of the mode being an eigenstate of the photon annihilation
operator, a coherent state. The intensive laser beam is perturbed only slightly by the atoms, and
thus is not a dynamical variable.

If the atoms are inside high-Q optical resonators, the choice of the mode for the field is fixed
by the geometry of the resonator. As a simple case, in standing-wave cavities, the electric field is
given by

Ê(r) = Eεâf(x) + h.c., with f(x) = cos(kx). (1.4)

Here the explicit form of the mode function f(x) is largely simplified, many details, most notably,
the transverse structure (e.g., TEM00) are dropped - for a full description, consult [39]. In many
cases of interest (specifically, confocal or ring cavities), it is necessary to include more cavity
modes, with a straightforward generalization of the above formula. Although the mode function of
the cavity is fixed, the occupation of the mode is a dynamical variable: these modes occupations are
to be quantized, and the corresponding “photon” annihiliation operators â are dynamical variables.
The normalization constant is E =

√
~ωc/2ε00V , with ωc denoting the resonance frequency of the

cavity and V the effective mode volume. Thus small cavity volumes give large electric fields per
photon, which results in a strong atom-photon interaction.

1.1.3 Quantum Master Equation

To derive a tractable model of the two-level atom coupled to the light field, some standard ap-
proximations are done. The size of the atom is much smaller than a wavelength, and thus the
light-matter interaction can be treated within the dipole approximation, a term to the Hamiltonian
d̂Ê(x̂), with Ê denoting the total electric field. The only modes that play important roles in the
dynamics have frequencies much closer to ωA then to 0 or 2ωA, allowing the rotating wave ap-
proximation: a replacement of (σ̂+ σ̂†)(â+ â†) by the Jaynes–Cummings term (â†σ̂+ σ̂†â), with
the mode and atom indices suppressed for convenience. Finally, as mentioned above, due to the
large (infinite) size of the vacuum, information entering it does not come back to the system, this
is the Markov approximation. This allows the separation of the system from the environment. The
former consists of the atoms (their internal and external degrees of freedom) and the occupation
of the cavity mode(s), the quantum state of the system given by a density operator ρ. The latter is
constituted by the vacuum modes, whose effects on the system are included via the standard Li-
ouvillean superoperator technique. In the appropriate interaction picture called the rotating frame,
the dynamics of the system is then given by a quantum master equation

ρ̇ = − i
~
[Ĥ, ρ] + Lρ. (1.5)
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The dipole Hamiltonian for N atoms moving in a single-mode cavity reads

Ĥ =
N∑

k=1

[
p̂2

k

2m
− ~∆Aσ̂

z
k − i~

(
ηt(x̂k)σ̂

†
k − η∗t (x̂k)σ̂k

)]
− ~∆câ

†â− i~η
(
â− â†

)
− i~

N∑
k=1

(
g(x̂k)σ̂

†
kâ− g∗(x̂k)â†σ̂k

)
, (1.6)

and the Liovillean superoperator is given by

L%̂ = κ
(
2â%̂â† − â†â%̂− %̂â†â

)
+ γ

N∑
k=1

(
2
∫
d2u N(u)σ̂ke

−ikAux̂k %̂eikAux̂k σ̂†k − σ̂†kσ̂k%̂− %̂σ̂†kσ̂k

)
. (1.7)

Here, ∆A = ω − ωA and ∆C = ω − ωC are the atomic and cavity detunings, respectively.
Two classical lasers are included, with effective pump strengths (Rabi frequencies) η for the laser
feeding the cavity, and ηt for the one irradiating the atoms directly. The two are assumed to have
the same frequency and be phase stabilized with respect to each other, this determines the phase of
the complex ηt. The coupling strength (single photon Rabi frequency) of the atoms to the cavity
mode is given by the position-dependent g(x̂) = (d ·ε)Ef(x̂). It is important to note that it is only
through this coupling that the Hamiltonian depends on x̂ explicitly.

1.2 Adiabatic separation of the timescales. External dynamics of the
atoms

For the internal dynamics (assuming that the atoms are fixed or flying through the cavity without
noticeable mechanical effects of light), the above Hamiltonian and Liovillean constitute one of
the most studied model systems of quantum optics, the Jaynes–Cummings model. A taste of the
rich physics of this model: Rabi oscillations, atom–field entanglement, atom–atom entanglement,
decoherence of Schrödinger-cat states [40, 41].

Here, however, we are interested in the external dynamics, i.e., in the motion of the atoms, that
takes place on a timescale several orders of magnitude longer than that of the internal dynamics
of the atom or of the cavity field. A straightforward approach is the adiabatic separation of the
timescales. Note that the Markov approximation already involved such a separation of timescales,
we assumed that the correlation time of the vacuum field, τv ≈ 1/ωA [10], is much shorter than
any other characteristic timescales of the system. Now we can expect that due to the dissipative
coupling to the vacuum, the internal dynamics equilibrates on a timescale of 1/γ or 1/κ, whichever
is larger. If the atoms are moving slowly such that the timescale of the atomic motion exceeds both
of these by far, λ/v � γ−1, κ−1, then we can solve the internal dynamics (Heisenberg–Langevin
equations) and obtain the values of â and σ̂k assuming fixed atomic positions x̂k. This amounts to
slaving the internal variables to the external variables in a manner similar to the Born-Oppenheimer
approximation of molecular physics. Although one might be tempted to construct an “effective
Hamiltonian” for the atomic motion by substituting the x̂k-dependent steady-state values of â and
σ̂k into Eq. (1.6), as we discuss in Chapter 6, this leads to nonphysical results. Instead, for the
external variables, the operators p̂k and x̂k, we take the Heisenberg equations of motion directly
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from the dipole Hamiltonian (1.6):

d

dt
x̂k =

i

~
[x̂k, Ĥ] =

1
m

p̂k; (1.8)

d

dt
p̂k = F̂k =

i

~
[p̂k, Ĥ] = i~

[
∇g(x̂k) σ̂

†
kâ−∇g

∗(x̂k) â†σ̂k

]
. (1.9)

We assume that the atoms are well localized in position and momentum state, such that a
semiclassical approximation can be applied, and we can treat the position and momentum of the
atoms as classical variables. For a more detailed discussion of the precise requirements, see [10].
Thus we exclude situations such as Bose-Einstein Condensates trapped in cavities [42, 29], or
atoms cooled to the ground state of harmonic potentials [43] where alternative approaches are
called for (e.g., [44, 45]). Within the semiclassical limit we approximate x̂k by its expectation
value xk = 〈x̂k〉 and p̂k by pk = 〈p̂k〉. We then wish to give the dynamical equations for xk and
pk that follow from the Heisenberg equations of motion.

The adiabatic separation of the timescales provides us with the formulas for the expectation
values of â and σ̂k, and thus, for the expectation value of F̂k, the light-induced forces on the atoms.
As with the optical forces on plastic beads, in the general case the (expectation value of the) force
is a sum of two types of forces, but the usual terminology here is slightly different:

Radiation pressure arises from the absorption and subsequent spontaneous emission of photons,
in the example of Eq. (1.3), it is proportional to the gradient of the phase Φ(x) [10].

Dipole force arises from the stimulated transfer of photons between laser modes, for Eq. (1.3), it
is proportional to the gradient of the field amplitude E(x) [10].

However, taking just the expectation value of the force is not enough. Vacuum fluctuations
induce noise in the polarization σ̂ and the cavity field â, and these fluctuations thus enter the
optical force as well. On the other hand, the separation of the timescales between internal and
external variables is not perfect: the state of the atom, and that of the cavity, follow the atomic
position with some small, but finite, time delay. This effect, which for fast atoms in a high-Q
cavity can be quite substantial, can lead to heating, but also to cooling, and is thus very important
from the point of view of optical trapping.

In this Thesis, we take two different approaches to consistently derive the classical stochastic
differential equations for the dynamics of the atoms. Both approaches are discussed in [25], and
are introduced in the corresponding Chapters, but we here give a brief overview and compare them.

The first approach (detailed in [10] for atoms in free space) is to retain only the xk and pk

as dynamical variables, but modify the equations of motion, adding Langevin white noise terms
and viscous friction terms to the expectation value of the Heisenberg equation, ṗk =

〈
F̂k

〉
. The

Langevin terms are chosen so that the the noise in the dynamics reproduces the quantum noise
faithfully. The linear friction terms arise from perturbation in the atomic velocities vk, detailed
in [25]. Briefly, we write 〈σ̂k〉 = s

(0)
k +

∑
l vls

(1)
lm , and 〈â〉 = a

(0)
k +

∑
l vla

(1)
lm , and in the

semiclassical approximation of the Heisenberg – Langevin equations for the internal variables, we
replace d/dt by ∂/∂t +

∑
k vk∇k. Then we can solve for the steady state of the semiclassical

approximation of the Heisenberg–Langevin equations to obtain the coefficients in the expansion
of the force:

〈
F̂k

〉
= f (0)

k +
∑

l f
(1)
lm vl.

The advantage of this approach is that it gives explicit expressions for the heating and cooling
arising from the corrections to adiabaticity, allowing predictions to be made about expected final
temperatures without actually performing the simulations. Its disadvantage is that because of
its perturbative nature, it cannot be used to treat fast atoms in very high-Q cavities, where the
equilibration time of the field is long.
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An alternative approach [25] is to do away with the adiabatic approximation for the cavity
field altogether. We treat the expectation value of the cavity field, α = 〈â〉, on the same footing
as the classical variables xk and pk. For simplicity, now the atomic polarizability is “slaved”
to the atomic position and the cavity field, and this is done on the operator level, before making
the semiclassical approximation, so that the noise is treated consistently. As above, Langevin
terms are to be added to the equations of motion, but now their second-order correlations are
derived in a different way. As in [46], the quantum master equation is used to derive a partial
differential equation for the Wigner function representing the atomic motion and the state of the
cavity light field. This partial differential equation is truncated to second-order derivatives giving a
Fokker–Planck equation, which can then be exactly modeled by the ordinary stochastic differential
equations for the dynamical variables α,xk,pk.

This second approach has the advantage of reproducing the cavity–induced friction correctly
even in the limit of fast atoms and very high-Q cavities. It can be used to show explicitly the time-
lag of the cavity field responsible for the cooling. However, it does not take into account Doppler
cooling, and it can only be used if the cavity field has a large number of photons.
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Chapter 2

Publication: Correlated motion of two
atoms trapped in a single-mode cavity
field

2.1 Introduction

It is a well established fact, both theoretically and experimentally, that light forces on atoms are
substantially modified within resonant optical cavities [25, 47, 48, 49, 50, 51, 52, 53]. Possible
experimental realizations range from single atoms or ions [54, 55] in microscopic super cavities to
several thousand [56, 57] or up to a million atoms [50, 58] in a high Q ring cavity. Applications
of these systems include possible implementations of quantum information processing setups [59,
60], and controlled nonclassical light sources [61, 62] as well as new possibilities for trapping and
cooling of atoms and molecules. The basic physical mechanism in these setups can be traced back
to the backaction of the atoms on the field. They act as a moving refractive index and absorber,
modifying the intensity and phase of the intracavity field, which in turn governs their motion. This
coupled dynamics is at the heart of cavity enhanced trapping and cooling.

It is clear that if a single atom is able to change the field, it will influence other atoms in
the same field irrespective of their distance. This introduces long range atom-atom interactions,
which are widely tailorable by suitable choices of cavity geometries and operating conditions. On
one hand these interactions are useful and can be used to implement bipartite quantum gates [59].
On the other hand they play a decisive role in the scaling properties of cavity enhanced cooling
[63, 64]. For perfectly correlated atoms, the change of refractive index induced by one atom can
be compensated by a second atom, so that the effective atom-field back reaction can be strongly
reduced. For several atoms in a ring cavity this effect only allows a weak damping of relative
motion, while the center of mass motion is strongly damped [65]. This model is closely related
to the so-called CARL laser, where the kinetic energy of an atomic beam leads to gain into the
counterpropagating mode of a single side pumped ring resonator [66]. New effects were also
found in the study of the coupling of two Bose-condensates in a cavity [67].

Several limiting cases for N atoms commonly interacting with a cavity mode have already been
studied. For the case of N strongly trapped atoms in a standing wave cavity mode, it is possible to
derive a set of coupled equations for the total kinetic and potential energy as well as the field ampli-
tude [68], which exhibit collective, damped oscillations ending in highly correlated steady states.
This approach, however, does not give much insight into the details of the individual dynamics
and correlations. In the opposite limit of N untrapped atoms moving in the cavity field, numerical
simulations show little influence of atom-atom correlations and cooling proceeds independent of

13
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the atom number [63] for proper rescaling of the cavity parameters.

Recently an approach for several atoms in a single mode cavity has been developed, which
concentrates on the effect of the N − 1 other particles on the cooling properties of a single one
[64]. This, in principle, makes it possible to study the combined optical potential and friction
forces. It has been recently proposed theoretically [27] and confirmed experimentally [28], that if
the atoms are pumped directly from the side (as opposed to pumping the cavity), the buildup of
spatial correlations within a cloud of trapped atoms can lead to superradiant light scattering and
enhanced cooling behavior. The theoretical results in this case are based on numerical simulations
of the semiclassical equations of motion for a large number N � 1 of particles [27]. This clearly
demonstrates collective effects, but does not give much quantitative insight in the buildup and role
of atom-atom correlations.

The central goal of the present work is to study the basic physical mechanisms responsible
for the motional correlations and to develop quantitative measures of the established steady state
correlation. For this we restrict ourselves to the simplest nontrivial example, namely two atoms
strongly coupled to a single standing wave field of a cavity. The energy loss is compensated
by cavity pumping, and large detuning from the atomic transition is taken to ensure low atomic
saturation. Moreover, the motion of the atoms is only followed along the cavity axis. As we will
see, this contains most of the essential physics but still allows us to derive analytical expressions
for many relevant quantities. Most of the analytical results are valid for the more general N -atom
case.

The article is organized as follows: after presenting our model and the approximations used in
section II, we analytically discuss the central physical mechanisms present in section III. In section
IV we quantify the results using numerical simulations, which are then analyzed in more detail in
section V.

2.2 The model

Let us start by outlining the system which is shown in Fig. 2.1. We consider N = 2 two-level
atoms with transition frequency ωA strongly coupled to a single mode of a high-finesse cavity
with frequency ωC . The system is driven by a coherent laser field of frequency ω and amplitude η
injected into the cavity through one of the mirrors. The model and its theoretical treatment follow
closely Ref. [25]. Coupling to the environment introduces a damping via two channels. First,
the atoms spontaneously emit with a rate of 2γ into the vacuum outside the cavity. Second, the
cavity photons decay with rate 2κ via the output coupler mirror of the cavity. The atoms can move
freely in the cavity, however, for the sake of simplicity, their motion is restricted to the cavity axis
(dashed line in Fig. 2.1).

Applying the standard Born-Markov approximation the dynamics are governed by a quantum
master equation,

ρ̇ = − i
~
[Ĥ, ρ] + Lρ. (2.1)

Using rotating-wave and dipole approximations the Hamiltonian and the Liouville operators
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Figure 2.1: The setup. The motion of two two-level atoms in a far-detuned, high-Q optical cavity is
studied. The cavity is pumped by a strong laser beam, almost on resonance with the cavity mode.
Atomic motion is discussed along the cavity axis only.

in an interaction picture read [25]:

Ĥ =
N∑

k=1

[
p̂2

k

2m
− ~∆Aσ̂

z
k

]
− ~∆câ

†â− i~η
(
â− â†

)
− i~

N∑
k=1

(
g(x̂k)σ̂

†
kâ− g∗(x̂k)â†σ̂k

)
(2.2a)

L%̂ = κ
(
2â%̂â† − â†â%̂− %̂â†â

)
+ γ

N∑
k=1

(
2
∫
d2u N(u)σ̂ke

−ikAux̂k %̂eikAux̂k σ̂†k − σ̂†kσ̂k%̂− %̂σ̂†kσ̂k

)
. (2.2b)

The atomic and cavity field detunings are defined as ∆A = ω−ωA and ∆C = ω−ωC , respectively.
The annihilation and creation operators of the cavity field are â and â†, while σ̂k and σ̂†k are the
lowering and raising operators of the k-th atom. The Hamiltonian consists of the motional and
internal energy of the atoms, the self-energy of the cavity field, the classical (laser) pump, and the
Jaynes–Cummings-type interaction between the atoms and the field. The position dependence of
the coupling constant is due to the spatial structure of the field mode: g(xk) = g0f(xk), where
in our standing-wave cavity f(xk) = cos(kCxk), with kC = 2π/λ being the cavity wavenumber.
The Liouvillean operator includes the effect of cavity losses and of the spontaneous emissions on
the combined atom-cavity field density operator %̂. This latter is given by the last term, where the
integral goes over the directions of photons spontaneously emitted by the atomic dipole, having
expected wavenumber kA = ωA/c and angular distribution N(u).

We consider cold atoms but with a temperature well above the recoil limit kBTrec = ~k2
A/(2M),

where M is the mass of one atom. In this limit the atomic coherence length is smaller than the op-
tical wavelength and the position and momentum of the atoms can be replaced by their expectation
values and treated as classical variables. We still keep the quantum nature of the internal variables
â and σ̂k. Moreover, if the atoms move much less than a wavelength during the equilibration time
of the internal variables

v � λκ, λγ, (2.3)

we can adiabatically separate the ”fast” internal from the ”slow” external dynamics as in standard
laser cooling models [69].
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2.2.1 The internal dynamics

For given positions of the atoms xk the internal atomic dynamics can be rewritten in the form
of quantum Langevin equations. For low saturation, i.e. when

〈
σ̂†σ̂

〉
� 1, we can approxi-

mate the operator σ̂z by −1/2 (this is called bosonization of the atomic operators). The resulting
Heisenberg–Langevin equations then reduce to the following set of coupled linear differential
equations:

d
dt
â = (i∆C − κ)a+

∑
k

g∗(xk)σ̂k + η + ξ̂ (2.4a)

d
dt
σ̂k = (i∆A − γ)σ̂k − g(xk)â+ ζ̂k. (2.4b)

The noise operators ξ̂ and ζ̂k appear as a result of the coupling to the external vacuum through
the cavity mirrors and through spontaneous emission. They contain the annihilation operators of
the external vacuum modes, and therefore give 0 when acting on the environment’s state. Their
second-order correlation functions are as follows:

〈ξ̂(t1)ξ̂+(t2)〉 = 2κ δ(t1 − t2), (2.5a)

〈ζ̂k(t1)ζ̂+
m(t2)〉 = 2γ δkmδ(t1 − t2), (2.5b)

while all other correlations vanish.
The steady state expectation values of the internal variables â and σ̂k obtained from the

Heisenberg–Langevin equations (2.4) then read:

〈â〉 = η
γ − i∆A

D′
(2.6a)

〈σ̂l〉 = −ηg(xl)
D′

. (2.6b)

Here D′ is the reduced determinant of the Bloch matrix,

D′ = (i∆C − κ)(i∆A − γ) +
∑

l

g(xl)2. (2.7)

Since the factor 1/D′ appears in both expectation values and in later formulae as well, it is worth-
while to rewrite it to reveal its resonance structure with respect to the cavity detuning:

1
D′

=
1

(i∆A − γ)
1

i(∆C − U)− (κ+ Γ)
, (2.8)

where U =
∆A

∑
l g

2(xl)
∆2

A + γ2
= U0

∑
l

f2(xl), (2.9)

and Γ =
γ
∑

l g
2(xl)

∆2
A + γ2

= Γ0

∑
l

f2(xl), (2.10)

and we used g(x) = g0f(x). It is clearly seen that each atom broadens the resonance at most by
Γ0 and displaces it by U0.

2.2.2 The external dynamics

The motion of the atoms is governed by the force operator,

F̂k =
i

~
[p̂, Ĥ] = i~

[
∇g(xk) σ̂

†
kâ−∇g

∗(xk) â†σ̂k

]
. (2.11)
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Since F̂k is normally ordered, its expectation value is easily obtained upon insertion of the sta-
tionary solution (2.6) of the internal variables. For a moving atom this expression is only approx-
imately valid: there will be a time lag in the internal dynamics with respect to the atom’s current
position, and hence we will include corrections to F̂k to first order in the atomic velocities.

The slow evolution of the centers of mass of the atoms, smoothed out on the timescale τ ≈
max{1/κ, 1/γ} is described by the coupled Langevin equations:

ẋk = pk/M, (2.12a)

ṗk = fk +
N∑

m=1

βkmpm/M + Ξk . (2.12b)

In these equations fk =
〈
F̂k

〉
are the vectors giving the steady state v = 0 contribution of the

force, while βkm are the tensors describing the first order corrections to the force acting on atom
k. Ξk denotes the Langevin noise forces due to photon recoil. They correspond to random kicks
along the cavity axis with zero average and second moments given by 〈ΞkΞm〉 = Dkm. Note
that the matrix Dkm, representing the strength of the Langevin noise, depends on the time-varying
atomic positions. It represents the quantum fluctuations of the force due to the fact

〈
F̂k ◦ F̂m

〉
6=〈

F̂k

〉
◦
〈
F̂m

〉
. It is by the addition of the noise terms Ξk that we tailor our classical force to give

the same second-order expectation values as its quantum counterpart[25].

2.3 Interaction channels

The Hamiltonian (2.2) contains no direct coupling between the two atoms: these only arise indi-
rectly due to coupling to the same field mode. Interestingly the atom-atom interaction appears in
all the three types of forces present in classical equations of motion (2.12). First, the steady state
force fk depends on the positions of both atoms via the steady state intensity. Second, not only
does the friction coefficient on one atom depend on the position of the other, but the friction matrix
has off-diagonal terms as well. This means that apart from ordinary viscous friction (ṗk ∝ vk) a
strange phenomenon, which we call cross-friction (ṗk ∝ vl, for l 6= k) is also present. Here the
velocity of one atom influences the friction experienced by the other atom. Third, the Langevin
noise term on one atom has an expected magnitude influenced by the position of the other, and the
noise terms Ξk are directly correlated as well. Hence we get joint “kicks” on both atoms leading
to correlated motion. In the following we will analyze these interaction channels in more detail.

2.3.1 Steady state force f

Formally the expectation value fk of the force operator looks very similar to the case of free-space
Doppler cooling:

fk = −~
∆A

∆2
A + γ2

〈
â†â
〉
∇kg

2(xk). (2.13)

However it additionally depends on the positions of the other atoms via the cavity field intensity.
This dipole force is conservative and can be derived from a potential. The potential looks more
complicated than in free space as it contains the dynamical nature of the cavity field, but still can
be given in closed form [64] :

V =
~∆A |η|2

∆Aκ+ ∆Cγ
atan

γκ−∆A∆C +
∑

l g
2(xl)

∆Aκ+ ∆Cγ
. (2.14)
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To show the effects of dynamic field adjustment, we plot this potential for two typical cases
in Fig. 2.2. For the experimental parameters used in an experiment at MPQ in Garching [70]
(Garching parameters), κ = γ/2, g0 = 5γ, and for a detuning ∆A = −50γ (upper graph) the
effective interaction between the atoms is relatively weak and the potential resembles the familiar
“egg-carton” surface proportional to sin2(kCx1) + sin2(kCx2). For a somewhat stronger atom-
field coupling g0 = 20γ (lower graph in Fig. 2.2) the atomic interaction is quite obvious and the
shape of the potential of the second atom strongly depends on the position of the first atom and
vice versa. Basically in this second case either both atoms are trapped, or both are free.

The peculiar g0-dependence of the interaction and the trapping effects can be understood phys-
ically by looking at formula (2.13). The atoms see each other through the cavity field

〈
â†â
〉
. As

we saw in formulae (2.8,2.9,2.10), the field is in resonance when U(x1,x2) is approximately
∆C ± (Γ + κ). Each atom can shift U in this far-detuned case by approximately U0 ≈ g2

0/∆A,
whereas the cavity linewidth is approximately κ+ γg2

0/∆
2
A. Using the MPQ parameters U0 < κ,

and therefore the back-action of the atoms on the cavity field is weak. In the large-g0 case, U0 > κ,
but Γ0 < κ, meaning that the atoms can shift the cavity resonance significantly more than a
linewidth. Hence if one of the atoms leaves its trap it will shift the cavity out of resonance and
cause the other atom to be released as well. Moreover, the amplitude of the force is proportional
to the cavity field, which in the large-g0 case decreases faster with the distance from the trapping
point. This implies that less work needs to be done to free an atom: the potential is smaller, despite
the same maximum light shift.

Let us now analyze the interaction in a more quantitative way. We start from the limiting case
of neglecting the atomic back-action on the field (i.e. we assume a constant field intensity). This
corresponds to the force (2.13)

fl ≈
~ |η|2

2∆Aκ2
∇lg

2(xl) (2.15)

one obtains in the limit of very large atom-field detuning. We can now find corrections from
the cavity-mediated interaction to this force by expanding the potential (2.14) in a power series.
Setting the driving field to resonance, ∆C = U0 − κ, the potential Eq. (2.14) to second order in
γ/∆A reads

V ≈ ~ |η|2

κ

[
π

4
−

((
1 +

π

4

)
+

g2
0

2κγ

N∑
l=1

f2(xl)

)
γ

∆A

+

{(
1 +

π

4

)
−
(
1 +

π

2

)
N +

(
g2
0

2κγ

)2( N∑
l=1

f2(xl)
)2
}(

γ

∆A

)2
]
. (2.16)

To first order in the small parameter we have a sum of single-atom potentials, giving the “egg-
carton” shape. The corrections to this are given by terms of higher order in our expansion param-
eter, of which we give the first nontrivial term here. Note that since it is not simply the distance of
the atoms upon which the potential depends, the interatomic force between them – as can be read
out from the above formula – is not a “force” in the sense of Newton’s third law.

2.3.2 Forces linear in velocity: friction and cross-friction

To lowest order in the adiabatic separation of the internal and external dynamics we used the
steady state values of the internal variables for fixed positions of the atoms to calculate the above
potentials. As a next step we can include corrections for â and the σ̂k linear in the velocity vm of
each atom, which should be valid for low velocities. As described in [25] this leads to a friction
matrix βkm as first order correction to fk.
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Figure 2.2: Potential as a function of atomic positions The potential (2.14) is plotted as a function
of positions of the two atoms. In a) the Garching parameters (κ = γ/2,g0 = 5γ) are used, in b)
g0 was increased fourfold. In the first case, the potential is well approximated by a sum of two
single-particle potentials. In the second case, it is seen that either both atoms are trapped or both
are free. The trap is deeper for smaller couplings.
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We obtain the following explicit formula for the friction matrix,

βkm = 2~∇kg(xk) ◦ ∇mg(xm)
η2

|D′|2
γ

2∆A

∆2
A + γ2

δkm + ~∇kg
2(xk) ◦ ∇mg

2(xm)
η2

2 |D′|2
·

Im
{

1
D′2

·

(
2(1 + χ)

(
(i∆A − γ)2 −

∑
l

g(xl)2
)

+ (1 + 3χ)D′
)}

(2.17)

where χ = (i∆A + γ)/(i∆A − γ) is a complex factor of unit modulus, which for large atomic
detuning, ∆A � γ, becomes approximately χ ≈ 1. This formula differs somewhat from that
obtained by Fischer et al. [64] by a slightly different approach. The most important difference
is that we find a matrix symmetric in the indices km. This is important because it is these off-
diagonal terms that couple the velocities of the atoms, and have a decisive influence on the buildup
of correlated motion. We defer detailed discussion of the formula (2.17) to Section 2.5.

2.3.3 Random forces due to quantum noise

Spontaneous emission and cavity decay introduce quantum noise into the atomic motion. These
heat up the system and generally tend to decrease motional correlations of the atoms. Following
the line of reasoning briefly mentioned at the end of section 2.2 and discussed in more detail in
[25], we can calculate the influence of the noise operators ξ̂ and ζ̂ of eq. (2.4) on the dynamics.
For N atoms we arrive at the following simple formula:

Dkm = 2~2∇kg(xk) ◦ ∇mg(xm)
η2

|D′|2
γδkm

+ 2~2∇kg(xk)2 ◦ ∇mg(xm)2
η2

|D′|2
∆A

κ∆A + γ∆C

|D′|2
. (2.18)

This is a simple extension of the corresponding formula for one atom given in [25]. Let us remark
here, that the diagonal part of this diffusion matrix Dkm has been also found by Fischer et al. [64].
Surprisingly one also obtains off-diagonal terms, which have not been considered before. These
terms lead to correlated kicks on the atoms, which can .add to the atom-atom correlations, rather
than destroying them.

Spontaneous emission adds recoil noise, which gives an extra term to the noise correlation
matrix of the form:

Dsp
km = δkm2~2k2

Au
2
η2g(x)2

|D′|2
γ. (2.19)

Here kA = ωA/c is the expected wavenumber of the emitted photons and u2 is the correction
factor coming from the spatial distribution of the photons, in our case u2 = 2/5. As expected,
spontaneous emission, being a single-atom process, induces no correlations between the atoms.

2.4 Numerical simulations of the correlated atomic motion

Having discussed the qualitative nature of the combined atom field dynamics, we now turn to nu-
merical simulations for some quantitative answers. We numerically integrate the Langevin equa-
tions (2.12), varying the ratio of the cavity loss rate to the linewidth of the atom κ/γ as well as
the relative coupling strength g0/γ. Note that the relative magnitude of radiation pressure and
dipole force can be changed by varying the detuning between pump frequency and the atomic
resonance. As we are interested in cooling and trapping the atoms we fix the cavity frequency at
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Figure 2.3: Typical trajectories in coordinate space. In the left column, in a) and b), the parameters
of the Garching group are used, in the right column, in c) and d), we considered a better resonator
(κ = 0.1γ, g0 = 10γ) and larger detuning (∆A = −10000γ). In both cases the first 50µs, in a)
and c), and the first 3ms, in b) and d), are shown. The coordinate is the distance from the nearest
trappping point.

∆C = NU0 − κ to ensure efficient cooling [71, 25]. The pump power is always chosen to keep
the atomic saturation low and approximately at (

〈
σ̂+

k σ̂k

〉
< 0.1) at all times.

Typical trajectories of atom pairs are shown in Figure 2.3. The atomic positions
(
x1(tn), x2(tn)

)
are plotted at regular time intervals tn. For better visibility the coordinate is always measured from
the nearest trapping point. In the left column the detuning was chosen (∆A = −50γ), with the
cavity parameters of the MPQ group at Garching [70] (κ = γ/2, g0 = 5γ). The first 50µs are
displayed in the figure on the top, and the first 3ms in the one on the bottom. Both atoms local-
ize during the first 50µs to within 1/4 of a wavelength around respective trapping centers, a sign
of cooling and trapping by the cavity. In the right column, the detuning is chosen much larger
(∆A = −104γ) with stronger atom-field coupling (κ = γ/10, g0 = 10γ). In this case the relative
importance of spontaneous emission is strongly reduced. The cooling in the cavity is faster and
both atoms reach a steady state rapidly.

The appearance of a circular structure is the striking feature of the right column. This indicates
that the motion of the atoms is correlated. Both atoms move sinusoidally about their respective
trapping points, with some noise but in such a way that the relative phase of the two oscillations is
likely to be +90◦ or −90◦.

To quantify the correlation between the atomic oscillators we define their oscillator phases.
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Figure 2.4: The phases of the atomic oscillations and the relative phase. The time evolution of
the oscillator phases of the first (upper row) and second (middle row) atoms is shown, with the
phase difference (bottom row). On the left the parameter set of the Garching experiments is used,
on the right a better cavity is taken with larger atomic detuning, as in the text. The phases of the
atoms evolve too fast on this timescale, only noise is seen. The phase difference is slower, with
the ”improved” parameter set it appears to stabilize at +90◦ and −90◦.

This is computed in the simulation using the trap frequency, which is:

ωtrap =
√

2~ |∆A| 〈σ̂†σ̂〉 k2
C/M, (2.20)

if both atoms are well trapped. Here kC is the resonator mode wavenumber, and
〈
σ̂†σ̂

〉
is the

saturation of either atom at the trapping point. This formula can be derived by expanding the
potential (2.14), and substituting our particular choice of η and ∆C .

The measured time evolution of the oscillator phases for the MPQ parameters (left column)
and the “improved” parameters (right column) are shown in Fig. 2.4. For each parameter set,
representative runs shown in Fig. 2.3 are used, and the oscillator phases of atom 1 (upper row),
atom 2 (middle row) and the phase difference (lower row) are displayed. The rapid oscillation of
the atoms (the period is 2.9 µs for the Garching parameters and 0.17 µs for the idealized ones)
means that the time evolution of the phases is too fast to be followed on the timescale shown, in the
upper and middle rows only “noise” is seen. The phase difference, however, evolves more slowly.
This effect is more pronounced for the second parameter set, where the dipole force dominates.
Moreover, in this second case, the phase difference clearly stabilizes around +90◦ or −90◦, with
random jumps in between, as expected from the results shown in Fig. 2.3.

What is left is to define a single number that quantifies the strength of the time averaged
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Figure 2.5: The distribution of the phases (Φ1, Φ2) and the relative phase (phases (Φ12). For the
Garching parameter set (upper figure) the distributions are flat. Slight peaks in Φ1 and Φ2 at 0◦

and ±180◦ signal fast and free atoms. With the improved parameters (lower figure) the trapping is
better. Strong peaks at ±90◦ in Φ12 indicate correlation of atomic motion. The strength of these
peaks is quantified by their width, both for the phase (Noise) and the phase difference (Signal).

correlations. For this we sample the distributions of the oscillation phases and the phase difference
over time to create the histograms shown in Fig. 2.5. As we expect, the distribution of the phases is
relatively flat for both parameters sets. However, there is a significant difference in the distribution
of the relative phase: we find very pronounced peaks around +90◦ and −90◦ for the second
parameter set.

The asymmetry in these peaks is a numerical artefact due to the finite sampling time. It is
strongly diminished if we average over several different initial conditions. A parameter that mea-
sures the magnitude of the correlation is the width W of these peaks, defined through W 2 =
(|∆φ| − 90◦)2, where the overbar denotes averaging over time and over several trajectories with
different initial conditions. Subtracting this width from the width of the flat distribution we get the
signal strength S = 51.96◦ −W , which can be obtained directly during the simulation.

Let us point out here, that this measure S of motional correlation is useful only if the atoms
are well trapped. In fact, fast atoms freely moving along the lattice generate peaks in the single
atom phase distributions of φ1 or φ2 around 0◦ or 180◦. We therefore monitor the single atom
distributions simultaneously and measure the widths of the peaks around 0◦ and 180◦ in the same
way as we did for the signal S. If the “Noise strength” is too large, (> 10◦, an arbitrary value), we
declare our correlation measure unusable.
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Figure 2.6: Correlation vs κ and g0 at various detunings. At small detunings |∆A| < 100γ the
atoms are cooled but not trapped, correlation cannot be measured. At higher detunings trapping
is good enough, and the correlation strength measured as described in the article is shown in with
shades of gray.

2.4.1 Scanning the parameter space

Having defined a suitable measure of correlation between the motion of two atoms in the same
cavity, we are in the position to quantitatively investigate the parameter dependence of this phe-
nomenon. To this end, we ran the simulation program for cavity decay rates of 1/50 γ < κ < 5γ
and coupling strengths γ < g0 < 100γ, at atomic detunings of −104γ < ∆A < −50γ (at detun-
ings of higher magnitude the atoms move too rapidly and adiabaticity does not hold). The results
are plotted in Fig. 2.6.

At atomic detunings of 100γ or less, the atoms are cooled but generally not trapped by the
cavity, except for a small region of g0 < 5γ and κ < γ. In that case the motion of two atoms
will not be correlated. For detunings as large as 5000γ, the cavity field traps and cools the atoms
for any considered values of the parameters. The correlation becomes apparent for g0 > 40κ, and
grows weaker if g0 is further increased.
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Figure 2.7: One atom in the cavity: final temperature vs. κ and g0, for different atomic detunings.
Temperature is shown in units of ~γ with shades of gray. Black denotes temperature above the
Doppler limit of ~γ.

2.4.2 Correlation and cooling

A decisive advantage of cavity cooling of an atom is the fact that it needs little spontaneous emis-
sion [71]. It has been argued that this is a single atom effect and correlations established between
the atoms’ motion will decrease efficiency or even turn off cooling [68] for a trapped thermal en-
semble. On the other hand, in some simulations for very weakly bound atoms, this effect seemed
not to play any role [63].

In our model we can now study the effect of correlations on cavity cooling in a very controlled
way for a large range of parameters. We performed several runs of our simulation with different
cavity parameters and at different detunings, comparing the equilibrium temperature for one and
two atoms in the cavity. Our results are plotted in Figs. 2.7 (one atom) and 2.8 (two atoms). All
shades of gray show temperatures below Doppler temperature ~γ, while black denotes tempera-
tures above that value.

Putting one atom into the cavity (Fig. 2.7), we find that sub-Doppler cooling is achieved in
the good-coupling regime g0 > κ, γ. In that regime, the final temperature does not depend on g0,
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Figure 2.8: Two atoms in the cavity: final temperature vs. κ and g0, for different atomic detunings.
Temperature is shown in units of ~γ with shades of gray, as in Figure 2.7. For low atomic detuning
|∆A| < 100γ the temperature is the same as in the one-atom case. For large atomic detuning new
structures appear in the plots.
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but is approximately proportional to κ, as expected from previous work [72, 69]. Here one has
to be cautious of the results, since if the atom’s kinetic energy is only a few times the ground-
state energy of the harmonic trap potential, the validity of the semiclassical approximation can be
questioned.

Interestingly, the temperature plots look different if we load two atoms into the cavity (Fig. 2.8).
At moderately large detunings, ∆A = −50γ and ∆A = −100γ, temperatures are the same as in
the single-atom case. In these cases the atoms are cooled, but not trapped, by the cavity field.
At larger detunings, ∆A = −500γ and larger, we see regions in the plot where “extra heating”
compared to the single-atom case is observed. This effect is most prominent at extremely large
detunings ∆A = −5000γ and ∆A = −104γ, where for κ < γ a new structure appears in the
temperature plots. This points to the highly reduced efficiency of cavity cooling: whereas for a
single atom a better resonator (lower κ) implies lower final temperature, if there are two atoms in
the cavity, decreasing κ can increase the temperature.

Comparison of the temperature plots in Figs. 2.7 and 2.8 with the plots of the correlation
strength in Fig. 2.6 reveals strong similarities. Indeed one sees that the excess heating caused
by the presence of the other atom coincides with the buildup of correlations in the motion. In
other words, the correlation established between two atoms results in a loss of efficiency of cavity
cooling, with final temperatures pushed up to the Doppler limit.

2.4.3 The origin of correlation: numerical tests

As we have seen above, the motion of the atoms becomes correlated due to the cavity-mediated
cross-talk. This interaction occurs via the force, via the friction, and via the diffusion as well.
We would like to know which of these interaction channels is responsible for the correlation. In
our simulation we can conveniently answer this question if we artificially weaken only particular
channels of interaction and measure the correlation.

The interaction can be eliminated from the deterministic force using the approximation (2.15).
Friction and diffusion contain interaction at various levels. On the one hand, cross-friction and
cross-diffusion are direct interactions between the atoms. On the other hand – through the deter-
minant D′ – the positions of both atoms influence the friction and diffusion constants for the other
atoms. This parametric interaction was not analyzed, but does not seem to play a prominent role.
Both cross-friction and cross-diffusion can be eliminated by simply suppressing the off-diagonal
terms in the friction and diffusion matrices.

The elimination of the interaction can be made continuous with mixing parameters 0 ≤
yF , yβ, yD ≤ 1, giving the force, the friction, and the diffusion with the following formulae:

F ′ = yFF + (1− yF )F0, (2.21)

β′km = yββkm + δkm(1− yβ)βkm; (2.22)

D′km = yDDkm + δkm(1− yD)Dkm. (2.23)

We show an example of what this gives for detuning ∆A = −5000γ, decay rate κ = 0.5γ and
coupling g0 = 30γ in Fig. 2.9. The results of these investigations are quite unanimous. It can be
seen that linearization of the potential has no systematic effect on correlation strength, and corre-
lations are slightly enhanced if the noise is decorrelated. If cross-friction is eliminated, however,
all correlations disappear. We can therefore conclude that the dominant effect leading to correlated
motion is related to cross-friction.
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Figure 2.9: Correlation for various interaction channel strengths. The interaction via the conser-
vative, the friction, and the diffusion forces is weakened by the mixing ratios yF , yβ and yD, as
described in the text. The correlation strength was then measured using our correlation parameter.
Cross-friction is seen to play the dominant role in the establishment of correlation.

2.5 The origin of correlation: analytical expansion for deep trapping

The emergence of motional correlations between trapped atoms can be examined analytically using
the formulas presented in Section 2.3. Both friction and diffusion matrices have an “isotropic” term
proportional to δkm, which acts on each atom separately, and an “interaction” term, containing
cross-friction and cross-diffusion. The latter can be rewritten in the following form, using the
notation gk = g(xk):

2~η2

|D′|2
P ({xl})

 ∇1g
2
1

...
∇Ng

2
N

 ◦

(
∇1g

2
1 · · · ∇Ng

2
N

)
, (2.24)

where the prefactor P depends on the positions of all atoms symmetrically.
For well-trapped atoms xk � λ (xk denoting the distance of atom k from the nearest trapping

site), the coupling constants can be approximated as

gk = g(xk) = g0 cos(kCxk) ≈ g0

(
1− 1

2
k2

Cx
2
k

)
. (2.25)

Substituting these into the interaction parts of the matrices (2.24) yields:

8~η2

|D′|2
P ({xl})g4

0k
4
Cr

2

x1/r
...

xN/r

 ◦

(
x1/r · · · xN/r

)
, (2.26)

where the “radius”, r =
(∑

l x
2
l

) 1
2 , is the distance of the system from the origin in the coordinate

space. This matrix is a projector to the vector (x1, . . . , xN ), and hence the interaction terms affect
only the “radial” motion.

In the well-trapped case we can write the friction and diffusion matrices to second order in the
coordinates xl as:

βkm = β0δkm + β1xkxm, (2.27)

Dkm = D0δkm +D1xkxm. (2.28)
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The following notation is used:

β0 = 2~
η2

|D′0|
2 γg

2
0k

2
C

2∆A

∆2
A + γ2

k2
Cx

2
k, (2.29)

D0 = 2~2 η2

|D′0|
2 γg

2
0k

2
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2
5

+
3
5
k2

Cx
2
k

)
, (2.30)

β1 = 2~
η2

|D′0|
2 g

4
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4
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{
1
D′0

2

[
D′0(1− 3χ)+ 2(1− χ)

(
(i∆A − γ)2 −

∑
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)]}
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D1 = 2~2 η2

|D′0|
2 g

4
0k

4
C 4

κ∆A + γ∆C

|D′0|
2 , (2.32)

where D′0 stands for the Bloch determinant D′ defined in eq. (2.7), evaluated at the trapping site.
Near the trapping site all xk go to zero, and only D0 remains finite. This prevents the atoms from
stopping completely: they are “heated out” from the trapping sites themselves. At some distance
from the trapping sites the interaction terms become important as well, in the coordinate space
this induces extra diffusion and friction in the radial direction. Provided g0 is high enough, radial
friction is enhanced much more than radial diffusion, leading to a “freezing out” of the radial
mode, i.e. a motion at approximately constant distance from the origin.

2.6 Conclusions

As pointed out in several previous papers, the motion of particles in a cavity is coupled quite
generally through the field mode. This implies the buildup of motional correlations, which we
have investigated here in more detail. In general we found that in steady state these correlations
are hard to see directly and it is difficult to find good qualitative measures to characterize them.
Mostly they are strongly perturbed by various diffusion mechanisms. However, they still play an
important role in the dynamics and thus can be observed indirectly. As one consequence they can
lead to a significant change (increase) in the steady temperature, which directly relates to trapping
times and localization properties. This poses limits to cavity induced cooling for large particle
numbers.

From the various mechanisms at work, cross friction turns out to be the most important. It
creates correlation and leads to a fast thermalization of two distant particles without direct inter-
action. Hence, this mechanism should prove vital for the implementation of sympathetic cooling
of distant ensembles coupled by a far off-resonant cavity field. In order to get efficient coupling
the two species should have comparable oscillation frequencies, so that correlation buildup and
thermalization is fast. Also the finesse of the cavity should be large (long photon lifetime).

The second important coupling mechanism, which works via the joint steady state potentials,
was suggested for use in the implementation of conditional phase shifts [59]. It can be viewed as a
cavity-enhanced dipole–dipole coupling. Although this contribution will become more important
for larger atom-field detunings, the conditions for this part to dominate the dissipative cross friction
seem rather hard to achieve in practice. Finally we found that the noise forces acting on different
atoms contain nonlocal correlations too. These are particularly important for large detunings and
relatively low photon numbers, where spontaneous emission is strongly reduced. As a result they
could seriously perturb bipartite quantum gates in cavities.
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Chapter 3

Publication: Self-organization of atoms
in a cavity field: Threshold, bistability,
and scaling laws

3.1 Introduction

The manipulation of cold atoms and molecules by laser light is a rapidly growing field and has
become a suitable ground for studying fundamental phenomena of physics both experimentally
and theoretically [15]. In the last decade, the emphasis has partly been shifted towards many-
body effects in the dynamics of weakly interacting atoms [73, 74]. The mechanical action of the
electromagnetic radiation field on free atoms rarely manifests these effects. The refractive index of
a cloud of atoms is simply composed of the product of the single atom polarizability and the optical
density. Standard laser cooling methods were also conceived on the basis of single-atom processes.
Only at densities as high as the ones achievable in a magneto-optical trap does the dipole-dipole
interaction between atom pairs give rise to a Lorentz–Lorenz-type refractive index and present an
appreciable nonlinearity in the optical density [75, 76]. The underlying process, the reabsorption
of spontaneously scattered photons in the atomic cloud [77, 78], heats the atomic motion and
hence limits the attainable minimum temperature. In addition, this effect also introduces spatial
instability into the atomic cloud and thus hinders degeneracy in phase space by optical means [79].

The mechanical effect of light on atoms inside a high-finesse resonator is substantially modi-
fied with respect to free space, which is the source of a variety of interesting phenomena in optical
cavity quantum electrodynamics [19, 20]. The basic reason is that a cavity photon makes many
round-trips between the mirrors and thus the back action of the atom on the field, enhanced by
the cavity finesse, cannot be neglected. As opposed to the external forces exerted by laser fields,
the light forces in a cavity cannot be separated from the dynamics of the resonator mode, which is
strongly influenced by that of the atom.

The coupled atom-field dynamics can yield an efficient damping of the atomic motion via
the mirror loss dissipation channel [71, 25]. Such “cavity cooling” schemes have recently been
demonstrated experimentally [53, 80]. The fact that cavity cooling allows for replacing the spon-
taneous emission, which is the dissipation channel in all laser cooling schemes, by irreversible
photon loss from the cavity has important consequences. First, the internal structure of the atom
is not important and the mechanism can be operated on a wide range of species. Second, the prob-
lem of the reabsorption of spontaneously scattered photons, the source of the instability of atomic
clouds at high densities, can be suppressed.

The dynamics of atoms in a resonator is inherently a many-body problem even at a small den-

31
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sity of the ensemble [49, 81]. As all atoms are coupled to the same cavity mode, the modification
of the field by one atom is experienced by a remote atom as well as by itself. The cavity cooling
mechanism may become inefficient since the delicate dynamical correlation between one atom
and the field mode could be perturbed by the motion of another atom [64, 31]. Indeed, one of the
cavity cooling schemes was found to slow down linearly with increasing number of atoms [63].

In a recent Letter we have predicted a cooperative behavior of the atoms driven by a laser in a
direction perpendicular to the axis of a standing wave cavity [27]. At high pump laser intensities
(above a threshold) the homogeneous atomic cloud self-organizes into one of two regular checker-
board patterns that maximize scattering into the cavity. The constructive interference of fields
radiated by the individual atoms produces an intensity which depends quadratically on the number
of atoms (superradiance). Corresponding to the two patterns, there are two possible phases of the
output field with 180 degrees difference, which have been observed in an experiment by Black,
Chan, and Vuletic [56].

The onset of self-organization is relatively fast, on the microsecond time scale. A basic prop-
erty of the present system is that the field created by the atoms traps and simultaneously cools
them so that the organized pattern remains stable on a long time scale (10’s of ms). The cav-
ity cooling mechanism now acts on many atoms without losing efficiency. There is no external
finite-temperature heat bath to define the temperature which, instead, is set by the dynamical equi-
librium of the dipole force fluctuations and the cavity cooling effect. This is a distinctive feature
with respect to the recently demonstrated collective atomic recoil laser in a ring cavity (CARL)
[50, 82, 83, 84], where a magneto-optical trap is necessary to stabilize the organized phase and
the otherwise transient gain [85], and also to inject noise for obtaining the phase transition-like
behavior [86, 87, 88].

In the present paper we discuss in detail the self-organization process, from the viewpoint
of phase transitions. A mean-field approach leads to a well-defined threshold in the pumping
strength. Comparison to numerical simulations reveals effects scaling unusually with the atom
density, a characteristic feature of this cavity-coupled many-atom system.

The paper is organized as follows. In Sect. 3.2, the equations of a semiclassical model are re-
capitulated, where the atoms are represented as simple linearly polarizable particles. Thereby the
theory applies to a much wider class of particles than alkali atoms. The main features of the self-
organization process, such as time scales, superradiance, collective cooling, are surveyed using a
numerical example in Sect. 3.3. Then, in Sect. 3.4, we introduce a one-dimensional mean-field
model and determine the threshold and critical exponent. In Sect. 3.5, we present the results of
detailed numerical simulations, which show effects beyond mean-field. The atom number enters
the physics of the system in a form other than the density. Above a certain atom number, stable
defects appear in the self-organized pattern and modify the system properties, which is accounted
for in Sect. 3.6. In Sect. 3.7, the cooperative atomic behavior is discussed in detail by demonstrat-
ing the superradiance, and the ensuing improvement of localization by collectivity. We conclude
in Sect. 3.8.

3.2 Semiclassical model

We consider N atoms in an open optical resonator (Fig. 3.1). The atoms are illuminated from the
side by a “transverse” standing-wave laser pump with frequency ω. This geometry corresponds to
various experimental setups realizing the controlled transport of atoms from the side into a cavity
[57, 80] where the standing-wave pump amounts to a “conveyor belt” [89]. There is an efficient
scattering of photons into the cavity mode quasi-resonant with the pump, ωC ≈ ω, due to the en-
hanced dipole coupling described by the single-photon Rabi frequency g = ω

1/2
C [2ε0~V ]−1/2deg,

for a mode volume V and atomic transition dipole moment deg along the cavity mode polariza-
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Figure 3.1: The setup: transversely driven atoms moving in a standing-wave cavity. The laser
intensity is given by the maximum free-space Rabi frequency (pumping strength) η. The atoms
couple to the cavity mode with 1-photon Rabi frequency g. The loss channels are: spontaneous
emission (rate 2γ) and cavity loss (rate 2κ).

tion. Large detuning of the laser from the atomic transition |ω − ωA| � γ, where 2γ is the full
atomic linewidth at half maximum, ensures that the upper level of the atoms can be adiabatically
eliminated. This model then describes a very general class of linearly polarizable particles—in the
following, we continue to use “atoms” for convenience. For the sake of simplicity, we restrict the
atomic motion to two dimensions, along the pump laser and the cavity axis, coordinates x and z,
respectively, without losing any relevant physical effect. Motion in the third dimension could be
taken into account in the same way as along x.

The quantum master equation for the density matrix reads

ρ̇ = − i
~
[
H, ρ

]
+ Lρ . (3.1)

Here the Hamiltonian is

H =
N∑

j=1

p2
j

2M
− ~∆Ca

†a+ ~U0

N∑
j=1

E†(rj)E(rj) , (3.2a)

where a, a† are the boson operators of the cavity mode, rj = (xj , zj) and pj = (pxj , pzj) are
the position and momentum vectors of the jth atom. The Liouville operator describing the cavity
photon losses with rate 2κ, and the spontaneous emission reads

Lρ = 2κ
(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
− Γ0

N∑
j=1

(
E†(rj)E(rj)ρ+ ρE†(rj)E(rj)

− 2
∫
d2u N(u)E(rj)e−ikAurjρeikAurjE†(rj)

)
. (3.2b)

In the above formulas, E(r) is the dimensionless electric field,

E(r) = f(r)a+ η(r)/g ≈ cos(kz)a+ cos(kx)η/g . (3.2c)

The Rabi frequency of the driving laser is η(r), whose position dependence is given by a cos(kz)
mode function for a standing-wave field. In the following, we are going to refer to the maximum
value of the Rabi frequency η as “pumping strength”. The variation of the pump field along the
cavity axis and that of the cavity mode function f(r) along the transverse direction (Gaussian
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envelope) are neglected. The detunings are defined as ∆C = ω − ωC and ∆A = ω − ωA. The
parameters

U0 =
g2∆A

∆2
A + γ2

, Γ0 =
g2γ

∆2
A + γ2

, (3.3)

describe the dispersive and absorptive effects of the atoms, respectively, as they shift and broaden
the resonance line of the cavity. In the last term of Eq. (3.2b), the integral represents the averaging
over the angular distribution N(u) of the random recoil due to spontaneous emission into the
free-space modes.

Instead of directly using the density matrix, we consider the evolution of the corresponding
joint atom-field Wigner function [72]. This can be systematically approximated by semiclassical
equations for a set of classical stochastic variables, α, pj , rj , the index j = 1, . . . , N labeling the
atoms,

α̇ = i
[
∆C − U0

∑
j

cos2(kzj)
]
α−

[
κ+ Γ0

∑
j

cos2(kzj)
]
α

− ηeff

∑
j

cos(kzj) cos(kxj) + ξα , (3.4a)

ṗxj = −~U0(η/g)2
∂

∂xj
cos2(kxj)− i~(η∗effα− ηeffα

∗)
∂

∂xj
cos(kxj) cos(kzj) + ξxj , (3.4b)

ṗzj = −~U0|α|2
∂

∂zj
cos2(kzj) − i~(η∗effα − ηeffα

∗)
∂

∂zj
cos(kxj) cos(kzj) + ξzj , (3.4c)

where the effective pumping strength for the cavity mode is

ηeff =
ηg

−i∆A + γ
. (3.5)

These equations include Langevin noise terms ξα, ξxj , and ξzj , defined by the non-vanishing
second-order correlations,

〈ξ∗αξα〉 = κ+
N∑

j=1

Γ0 cos2(kzj) , (3.6a)

〈ξnξα〉 = i~Γ0∂nE(rj) cos(kzj) , (3.6b)

〈ξnξm〉 = 2~2k2Γ0|E(rj)|2u2
nδnm + ~2Γ0

[
∂nE∗(rj) ∂mE(rj) + ∂nE(rj) ∂mE∗(rj)

]
, (3.6c)

where the indices n,m = xj , zj . The noise terms associated with different atoms are not cor-
related. The complex dimensionless electric field E(r) is derived from Eq. (3.2c), replacing the
field operator a by the complex variable α. We iterate the coupled, stochastic Ito-type differential
equations (3.4) by a Monte Carlo-type algorithm.

There are two types of force terms in the equations of the momentum components. The terms
in the first lines derive from the usual one-dimensional “optical lattice” potentials, the laser pump
keeps the atoms inside the resonator via this term. In the second lines, the force terms originate
from the coherent redistribution of photons between the pump and the field mode. The potentials
depending on the amplitude α, which itself is a variable, are not conservative (all but the optical
lattice created by the transverse pump). The time-delayed correlations in the dynamics of the
atomic motion and the field mode can result in a friction force on the atoms, known as cavity
cooling [71, 90, 21, 47, 48, 72, 91, 92].
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3.3 Self-organization

Figure 3.2: Two-dimensional trajectories of 40 rubidium atoms in a cavity, during the initial 50
µsec. A checkerboard pattern of trapped atoms emerges, untrapped atoms move mainly along the
cavity axis. Parameters: γ = 20/µsec, (g, κ) = (2.5, 0.5)γ, atomic detuning ∆A = −500γ,
cavity detuning ∆C = −κ+NU0, and the pumping strength η = 50γ.

We study he motion of the atoms in the cavity by numerically integrating the set of stochastic
ordinary differential equations (3.4). To be specific, 85Rb were considered, with the 52S1/2,F = 3
↔ 52P3/2,F = 4 transition. Starting from a gas of thermal atoms (random positions from a
uniform, and velocities from a thermal distribution) and no light in the cavity mode (α = 0),
with the right choice of parameters we observe a buildup of the cavity field accompanied by the
appearance of an organized pattern in the spatial distribution of the atoms. This is illustrated in Fig.
3.2, where the trajectories of 40 atoms during the initial 50 µs of a run are shown. The grid lines
denote points of maximum coupling to the standing-wave cavity or pump field. Trapped atoms
are oscillating about intersections of grid lines, where a single atom can scatter pump photons into
the cavity mode most efficiently. For many atoms, however, destructive interference can inhibit
the scattering process: the source term in Eq. (3.4a) contains the factor

∑
j cos(kxj) cos(kzj),

which can be small even if all the atoms are maximally coupled due to the alternating signs of
the summands. In contrast to this, in Fig. 3.2, only every second “maximally coupled” site—the
black or the white fields of a checkerboard—is occupied, leading to an efficient Bragg scattering
of pump photons into the cavity.

The emergence of a checkerboard pattern of atoms with every second point of maximum cou-
pling empty happens only due to the good choice of the parameters ensuring positive feedback, as
explained in the following. Initially, in the random position distribution some atoms scatter into
the cavity in a given phase and some with an opposite phase, and thus most of the scattered field is
canceled. The dipole force (first term of Eq. (3.4b)) attracts atoms towards antinodes of the pump
(for red detuning, ∆A < 0), but almost no field in the cavity means no substantial modification of
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the uniform position distribution along the cavity axis. This can be seen in Fig. 3.2, where most
atoms are well trapped along the transverse axis but some meander along the cavity axis. Due
to statistical fluctuations either the in-phase or opposite-phase scatterers will be in tiny majority,
and a small cavity field does build up. The dipole force due to the cavity field, first term of Eq.
(3.4c), now attracts atoms towards antinodes of the cavity. The crucial point to consider is the
interference of the cavity and pump fields, giving the second terms in Eqs. (3.4b,c). The product
cos(kxj) cos(kzj) alternates sign between the black and white fields of the checkerboard. For a
right choice of detuning ∆C , there is a positive feedback and the atoms are attracted towards the
“majority” sites and are repelled from the “minority” sites, due to the interference.

The initial fast buildup continues over a longer timescale, with the kinetic energy of the oscil-
lating and the free-flying untrapped atoms dissipated owing to the cavity cooling mechanism (for
the transverse pumping case and for the chosen detuning ∆C , it is the one described in Ref. [92]).
This leads to an increase of the ratio of trapped atoms and to a stronger localization in the vicinity
of the antinodes. Simultaneously, the coherent scattering into the cavity improves, giving a slow
increase in the cavity field intensity. The time evolution of the photon number is plotted in Fig.
3.3 for this self-organization process of 40 and 160 atoms. In the latter case, the photon number
scale was rescaled by a factor of 16. This way, the overlap of the two curves demonstrates the
superradiance effect, i. e., the intensity is quadratically proportional to the atom number.
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Figure 3.3: The time evolution of the photon number in the cavity on a long time scale, forN = 40
andN = 160 atoms (note the different vertical scaling). The parameters are the same as in Fig. 3.2

In this phase transition-like process, the reduction of the kinetic energy is not a good char-
acterization of the cooling efficiency. For the motion along the cavity axis, the transition from
vanishing photon number to the “superradiated” light field is accompanied by a change of the heat
capacity of the atomic ensemble since the number of quadratic degrees of freedom changes from
one (kinetic energy) to two (kinetic and potential energy). In deep harmonic traps, even a very
low level of excitation can correspond to high kinetic energies. Thus even though the temperature
can increase, cavity-induced dissipation increases the phase space density of the system by im-
proving localization. An appropriate measure of this process is the effective phase space volume
of the system (the inverse of the phase space density), measured by the Heisenberg uncertainty
product ∆x∆px/~ and ∆z∆pz/~ for each degree of freedom. Here (∆x)2 and (∆z)2 are the
averages of the squared distance of the atom from the nearest antinode along the direction x and z,
respectively. For a harmonic potential, the dimensionless effective phase space volume amounts
precisely to the mean number of excitation quanta. For untrapped atoms with mean kinetic energy
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〈
p2/m

〉
= kBT , the phase space volume is λ

√
mkBT/(4

√
3~).

In Fig. 3.4, the time evolution of the Heisenberg uncertainty product is shown for three cases.
When the pumping strength is below threshold (N = 40, η = 10γ), the uncertainty product is
a constant. Here the spatial distribution of the atomic ensemble remains uniform—the transverse
pump is too weak to induce any noticeable spatial modulation at temperatures kBT ≈ ~κ. Thus
〈∆z∆pz〉 = const. and 〈∆x∆px〉 = const. reveal that the temperature itself does not change in
either direction. At the cavity cooling limit kBT = ~κ the numerical value for the phase space
volume from the last paragraph is 13.4~, in accordance with the value along the transverse x direc-
tion. Along the cavity axis z, however, the phase space volume is above this estimate, indicating
a higher temperature. Above threshold, the phase space volume transiently jumps to high values
for both directions, and then it is gradually decreased. Compression is apparently more efficient
along the cavity axis, here the phase space goes considerably below the value corresponding to the
uniform distribution. In both plots the two curves corresponding toN = 40 andN = 160 are very
similar, which manifests that the cooling rate of the ensemble is independent of the atom number.
This is a very important observation, being at variance with the expectation that the efficiency of
cavity cooling mechanism is reduced for increasing number of atoms. This prediction was made
for a setup where the external pump field is injected directly into the cavity. Apparently it does not
apply to the transverse pumping case studied here.

With the help of these few examples, we surveyed three important properties appearing in the
dynamics of a laser-driven atomic ensemble coupled to a cavity mode: (i) the system rapidly self-
organizes into a checkerboard pattern in a trapping field, (ii) which is generated by a collective,
superradiant scattering into the cavity, and finally, (iii) the energy of the atoms is dissipated at a
rate independent of the number of atoms. This behaviour requires a sufficiently strong pumping
strength, indicating the possibility of a well-defined threshold separating two different stability
regions. This threshold is discussed in the next section within the framework of a mean field
approximation.

3.4 Mean-field approximation

The essence of the self-organization process can be understood on the ground of conservative
mean-field forces acting on the atoms. This amounts to treating the cavity field as if it responded
immediately to the positions of the atoms. Cavity cooling, which is directly related to the time lag
of the cavity field, is absent in this model. Moreover, the mean-field approach corresponds to the
thermodynamic limit of the system: N → ∞, g → 0, κ = const. with Ng2 = const. Physically,
the limit can be thought of as taking larger cavities (cavity length lcav → ∞) filled with a gas of
atoms of constant density (atom number N ∝ lcav). Due to the V −1/2 dependence of the coupling
constant g on the mode volume V , one then has Ng2 = const., neglecting the variation of the
waist of the mode. Moreover, due to larger photon travel time between the mirrors, the reflectivity
has to scale like ∝ l−1

cav to keep κ = const. For the sake of simplicity, we analyze one-dimensional
motion along the cavity.

3.4.1 Potentials

Taking xj = 0, j = 1, . . . , N , according to Equation (3.4c) each atom moves in a potential

V (z) = U2 cos2(kz) + U1 cos(kz) (3.7)

composed of the sum of a λ/2 periodic potential stemming from the cavity field and a λ periodic
one arising from the interference between cavity and pump fields. The potential depths are given
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Figure 3.4: Evolution of the phase space volume, along the cavity axis (up) and along the trans-
verse pump (bottom), on a long time scale for various settings, same parameters as in Fig. 3.3.
The number of atoms is N=40 and N=160 (black line), and N=40 but pumped below threshold,
η = 10γ, for the dashed line.
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by

U2 = N2〈cos(kz)〉2 ~I0 U0 (3.8a)

U1 = 2N〈cos(kz)〉 ~I0 (∆C −NU0〈cos2(kz)〉) . (3.8b)

These, in the mean-field approximation, depend on the position of the individual atoms only via
the mean value

Θ = 〈cos(kz)〉 =
1
N

N∑
i=1

cos(kzi) , (3.9)

which can be considered a spatial order parameter, and via the bunching parameter

B = 〈cos2(kz)〉 =
1
N

N∑
i=1

cos2(kzi) . (3.10)

The order parameter Θ has characteristic values: (i) Θ ≈ 0 describes the uniform distribution,
(ii) Θ → ±1 corresponds to a self-organized phase with atoms in the even or odd antinodes,
respectively. Finally, I0 represents the maximum number of photons each atom can scatter into
the cavity:

I0 =
|ηeff |2

[κ+NΓ0B]2 + [∆C −NU0B]2
. (3.11)

In equilibrium the spatial distribution of the atoms and the above averages are time-independent,
which makes it possible to attribute a physical meaning to the potential (3.7). Since the potential
depends on the position distribution, however, the system is highly nonlinear.

For U0 < 0, obviously U2 < 0 and the cavity field gives a potential with “even” wells at
kz = 2nπ and “odd” ones at kz = (2n + 1)π. The interference term (∝ cos(kz)) discriminates
between the even and odd sites, raising the energy of one of them and lowering that of the other.
If 2 |U2| < |U1| this effect is so strong that V (z) yields a potential with wells at the even and hills
at the odd sites – or the other way around, depending on the sign of U1.

The sign of U1 is crucial. To simplify the dependence, let us require a cavity detuning ∆C <
−N |U0| so that the second factor in U1 is always negative regardless the momentary configuration
of the atoms. To be specific, in the following we are going to use

∆C = NU0 − κ . (3.12)

If the atoms accumulate around the even (odd) antinodes, then Θ ≈ +1 ( Θ ≈ −1 ) and the
U1 cos kz potential is attractive at the even (odd), while repulsive at the odd (even) sites. Therefore
Eq. (3.12) is the proper choice for positive feedback that makes the runaway solution of self-
organization possible.

Two more parameters describing spatial order are used later in this work: (i) the “defect ratio”,
the ratio of atoms closer to minority sites than majority sites; (ii) the “localization parameter”, the
position variance (along the cavity axis and/or the transverse pump)

Dz =
1
N

N∑
i=1

(
kzi
π

)2

, (3.13)

where zi is measured from the nearest antinode of the cavity mode function. A uniform distribution
of atoms gives a defect ratio close to 50 % and a localization parameter of 1/12. For a self-
organized pattern, both parameters approach 0.
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3.4.2 Canonical distribution

We suppose that the phase-space distribution of the atoms factorizes to position and momentum
dependence, the latter simply given by a thermal distribution with mean energy kBT . There is
no external finite-temperature heat bath to set kBT , it is instead determined by the dynamics
(3.4) through the equilibrium of the cavity cooling and the Langevin noise terms. This allows
for a position- and time-dependent effective temperature, effects neglected in this model. For a
far-detuned pump, cavity losses dominate spontaneous emission, and an estimate kBT ≈ ~κ is
provided by the Einstein relation. The spatial density of the atoms in the potential V (z) is then
given by a canonical distribution,

ρ(z) =
1
Z

exp(−V (z)/(kBT )) , (3.14)

with the partition function Z =
∫

exp(−V (z)/(kBT ))dz ensuring that ρ(z) is normalized to
unity. In our case the potential V (z) is a function of the density ρ(z), therefore this equation has
to be solved in a self-consistent manner.

A direct approach to solving (3.14) is to use it iteratively to determine the ρ(z) for given values
of the physical parameters. We set the temperature to the cavity cooling limit kBT = ~κ. Note that
the temperature parameter T just rescales the pumping strength η, e.g., taking kBT = 2~κ would
correspond to increasing η by a factor of

√
2. The results thus obtained after 100 iterations of

(3.14) for an experimentally realistic example are shown in Fig. 3.5 (empty diamonds). There we
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Figure 3.5: Numerical iterations of the mean-field approximation. The percentage of atoms near
odd sites after 10 (full circles) and 100 (empty diamonds) iterations is shown varying the pumping
strength η. The vertical line is at η∗ of (3.19). The two insets show two steady-state position
distribution functions at two different pumping strengths. Parameters: κ = γ/2,∆A = −500γ,
Ng2 = 200γ2 ∆C = −κ−Ng2/|∆A|, kBT = ~κ.

plot the percentage of atoms near odd sites, i.e., with |(2m+1)λ/2− z| < λ/4 for any integer m,
as a function of the pumping strength. Below a certain threshold in the pumping laser amplitude
η∗ (vertical dotted line) the atoms are distributed uniformly, for stronger pumping this symmetry
is broken. Two examples of such self-organized position distributions obtained by the iterations
are shown in the insets. Note also that the convergence of the iterations is slow near the critical η∗
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(critical slowing down), this is evidenced by plotting the results after 10 iterations (full circles) as
well.

The uniform distribution, ρ(z) = 1/λ leads to Θ = 0, B = 1/2, which give V (z) = 0, thus
the distribution fulfills (3.14) trivially for any values of the physical parameters. To investigate its
stability, we add an infinitesimal perturbation to it:

ρ(0)(z) =
1
λ

+ εg(z)
1
λ
, (3.15)

with ε infinitesimal, and the general λ-periodic perturbation function

g(z) =
∞∑

m=1

(Am cos(mkz) +Bm sin(mkz)) , (3.16)∑
m

A2
m +B2

m = 1 .

Since the spatial average of g(z) disappears, ρ(0)(z) is normalized to 1. Iterating (3.14) once leads
to the new density function

ρ(1)(z) =
1
λ
−Nε

A1

λ

~I0
kBT

(∆C −
N

2
U0) cos(kz) + o(ε2). (3.17)

To lowest order in ε the only relevant perturbation is that proportional to cos kz. Stability requires
that the first-order correction in ε be self-contracting. Substituting (3.12) for the cavity detuning,
we have the following instability threshold for the uniform distribution:

NI0~
(
N

2
|U0|+ κ

)
> kBT . (3.18)

For far-detuned atoms |∆A| � Ng2/κ, i.e., when the total cavity mode shift by the atoms is much
smaller than the cavity linewidth N |U0| � κ, this translates to the following threshold on the
pumping strength:

η > η∗ =

√
kBT

~κ
κ |∆A|√
Ng

√
2 . (3.19)

This approximation of the critical value η∗ is in good agreement with the simulations shown on
Fig. 3.5, giving η∗ = 35.4γ, which differs by less than γ from the actual value. To make the phys-
ical content more transparent, this condition can be expressed in terms of the transverse pumping
power density (energy/unit area/unit time) as

Pin > kBT

(
∆A

γ

)2

κ
4k3

3N/V
. (3.20)

As shown in the next Section, the condition (3.19) amounts to requiring that the potential depth
along the cavity axis of a self-organized checkerboard pattern exceed significantly the energy scale
of thermal fluctuations.

3.4.3 Critical exponent

The stability analysis of the uniform distribution of atoms ρ(z) = 1/λ has revealed the critical
value of the pumping strength η∗. Moreover, we have seen that for η ≈ η∗, the relevant perturba-
tion gives

ρ(z) = 1/λ+ ε cos(kz)/λ. (3.21)



42 OPTOMECHANICAL COUPLING IN A HIGH-Q CAVITY

Going beyond first-order perturbations, the above formula allows us to solve Eq. (3.14) self-
consistently.

Pumping the atoms slightly above threshold, η = η∗(1 + δ), with δ � 1, we expect (3.21) to
give a good approximation of ρ(z), with ε depending nonlinearly on δ. Substituting it into (3.14)
we need to expand the exponential to third order to obtain a solution to lowest order in the small
parameters. This analytical calculation yields ε ∝ δ1/2, i.e., above the critical value ε increases
from 0 as the square root of the dimensionless excess pumping strength. The order parameter
θ = ε/2 and the percentage of majority atoms (2ε/π) both depend linearly on the small parameter
ε. Therefore, the analytical result shows the critical exponent of this phase transition to be 1

2 .

3.5 Numerical simulations of the phase transition

In the mean-field description of the steady state, the number of atoms enters only in the form of
the atomic density N/V ∝ Ng2. The approximation is expected to be valid in the thermodynamic
limit, i.e., N → ∞ with the atomic density and the cavity loss rate constant. Trying to approach
this limit in simulations of Eq. (3.4) we are in for a surprise. In Fig. 3.6, we show the measured per-
centage of defect atoms after 4 ms of simulation time as a function of the pumping laser strength.
The thermodynamic limit is approached in three steps, N = 50, 200, and 800. The parameters
are the same as in Fig. 3.5, the atoms had random initial velocities from a thermal distribution
with average kinetic energy ~κ. The initial positions were either uniformly distributed (“up”) or at
“odd” points of maximal coupling (“down”). In this controlled way we mimic the ramping of the
laser power. Although the “down” curves show reasonable agreement with the mean field result,
the “up” curves scale anomalously: a hysteresis is observed, whose breadth increases with the
atom number.
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Figure 3.6: Ratio of defect atoms against pumping strength η, 4ms after the loading of the trap
with a uniform (“up”) or organized (“down”) gas of atoms. The different curves show the approach
towards the thermodynamic limit. The parameters are the same as in Fig. 3.5.

The hysteresis effect observed in Fig. 3.6 but absent from the mean-field prediction is due to
the long timescales associated with reaching a steady state. In fact, thermal fluctuations do not only
alter the equilibrium solution by smoothing out the concentration differences due to the dynamics
(this is correctly rendered by the mean field approach), but they can also delay significantly the
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onset of that equilibrium. This slowing down is effective if the energy scale of thermal fluctuations
is at least of the same order as the potential diffences due to the statistical fluctuations in the initial
positions of the atoms.

The statistical fluctuations for a finite uniformly distributed atomic ensemble lead to (N −
δN)/2 atoms around the kz = 2nπ and (N + δN)/2 atoms are around the kz = (2n + 1)π
positions. Taking uniform distributions around the respective antinodes, we have

∑
cos(kzi) ≈

2δN/π and
∑

cos2(kzi) ≈ N/2. The potential difference then reads

∆E = 2 |U1| = ~I0
8δN
π

(κ−N |U0|/2) = ~
4δN
π

η2g2

κ∆2
A

. (3.22)

For the final expression in the second line, we considered the far-detuned regime, |∆A| � γ ∼
κ ∼ g, and N |U0|, NΓ0 � κ.

The self-organization occurs “instantly” if the trap depth originating from the statistical fluc-
tuations exceeds the average kinetic energy kBT of the atoms. Using the expectation value of the
finite-size fluctuations, δN ≈

√
N , we obtain

η > η↑ =

√
kBT

~κ
κ |∆A|
N1/4g

√
π

2
. (3.23)

Comparison with (3.19) gives η↑ =
√
π/8 N1/4 η∗: the functional dependence of the two thresh-

olds on the physical parameters are the same, except for the “anomalous” scaling of η↑ with N as
the thermodynamic limit is approached.

To check the laboratory timescale threshold for self-organization (3.23), we performed simula-
tions with the same physical parameters as in Figs. 3.5 and 3.6, starting from uniformly distributed
atoms, but this time increasing the atom number with Ng4 = const. In Fig. 3.7, the percentage
of defect atoms is plotted as a function of the pumping η. These numerical results confirm that
the threshold depends on Ng4, moreover, the value η↑ = 83γ from (3.23) with kBT = ~κ is
also consistent with the simulations. In the transition regime, there is a remarkable overlap of the
curves corresponding to various number of atoms with keeping Ng4 constant, indicating that the
equilibration time also scales with Ng4.

The “down” curves of Fig. 3.6 are invariant with respect to the thermodynamical limit, but
the threshold they give is only 50–80 % of the mean-field prediction η∗ of Eq. (3.19). Again,
this can be explained with an argument based on the comparison of energy scales. Instead of
the statistical fluctuations in the position distribution, we now have a well defined initial state:∑

cos kzi =
∑

cos2 kzi = N . The threshold ∆E > kBT now gives the particularly simple
result: η > η↓ = η∗/2. This is slightly below the “down” curves of Fig. 3.6, the difference can be
attributed to the nonoptimal coupling due to the position spread of the trapped atoms.

In the last curve of Fig. 3.7, N = 3200, the atom-cavity coupling g is the smallest parameter,
and thus the system does not strictly realize the strong-coupling regime of cavity QED. In fact,
self-organization does not depend on strong coupling: small g can be compensated by increasing
the number of atoms. We remark that the experimental setup of [56] was also operated out of the
strong coupling regime.

3.6 Stable defect atoms

The curve in Fig. 3.7 corresponding to N = 3200 deviates slightly from the other data and for
large pumping strength it converges to a nonzero value of the defect atoms. In fact, for the param-
eters chosen there, defect atoms can be stably trapped at the minority sites of the checkerboard
of maximally coupled points, which presents another important physical element of the system
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Figure 3.7: Ratio of defect atoms in the ensemble (measure of the spatial order) as a function of
the control parameter η (given in units of γ). There is a clear threshold for self-organization which
is independent of the atom number provided Ng4 is kept constant. Parameters are the same as in
Figs. 3.6 and 3.5.

beyond the capabilities of the simple mean-field theory. In the following we discuss the condition
for the appearance of defects and the upper limit on their number.

For the analytical treatment of the defect atoms we use the 1D model of Section 3.4. If the
atoms are perfectly self-organized, say, kzj = 2njπ with integer nj for every j, then the potential
depths of Eqs. (3.8a) scale with the number of atoms as U2 = −N2 I0 |U0|, and U1 = −N 2I0κ.
Thus, for large enough N , the λ/2-periodic potential is dominant and atoms can be trapped in the
minority sites. These stable “defect” atoms reduce the superradiant scattering of the self-organized
pattern.

How many defects can stably reside in the pattern? For simplicity, we take N −M atoms
exactly at kz = 2nπ and M < N/2 “defect” atoms at kz = (2n + 1)π, neglecting the position
spread. We then obviously have

∑
cos(kzi) = N − 2M and

∑
cos2(kzi) = N . Substituting this

and the prescription (3.12) for the cavity detuning into (3.8a) we obtain

U2 = −(N − 2M)2 |U0| ~I0 , (3.24a)

U1 = −2(N − 2M)~I0κ , (3.24b)

I0 =
|ηeff |2

[κ+NΓ0]2 + κ2
. (3.24c)

Defect atoms can persist if at every kz = nπ there is a potential minimum:

0 < 2 |U2| − |U1| = 2~I0(N − 2M) [(N − 2M) |U0| − κ] ,

which entails
N

2
− κ

2 |U0|
> M . (3.25)

If some defect atoms appear, the rise in their number is limited by the above inequality. In particu-
lar, if the left-hand-side is negative, there can be no stable defects: the condition for the possibility
of stable defects reads

N > Nthr =
κ

|U0|
. (3.26)
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Note that this threshold is independent of the pumping strength. The maximum number of defects
is limited by

M < Mmax =
N −Nthr

2
. (3.27)

Working at large atomic detuning, |U0| ≈ g2/ |∆A|, we find that defects can appear if the total
mode frequency shift due to the atoms exceeds the cavity linewidth:

Ng2 > κ |∆A| . (3.28)

This inequality puts a lower bound on the atomic density. Equivalently, it amounts to an upper
bound on the atomic detuning ∆A: to avoid the occurrence of defects a large detuning can be
chosen. This, |∆A| � Ng2/κ, is exactly the “far-detuned” limit of the previous Sections, used to
derive the thresholds η∗, η↑ and η↓. Likewise, none of the curves in Fig. 3.6 satisfy Eq. (3.28). On
Fig. 3.7, however, the curve corresponding to N = 3200 is above the critical density (3.28).

For comparison to the full solution of the dynamics, we numerically simulated the equations
(3.4) at fixed κ = γ/2, g = 5γ/2, ∆A = −500γ, and η = 50γ. The number of atoms was varied
from 0 to 200, 25 runs with different random seeds were performed for each atom number for a
duration of 5 ms. The conditions for self-organization derived in Sects. 3.4 and 3.5, give for this
parameter setting a threshold atom number N & 10–40 (for kBT = ~κ–~γ).

The numerical results presented in Fig. 3.8 show that the ratio of defect atoms averaged over
the 25 trajectories is well below 50%. For small atom numbers this is merely a “finite size” effect
compatible with a balanced binomial distribution. For 15 atoms the defect ratio is still about half,
for 18 atoms it is only a quarter of that expected from the uniform distribution. The ratio then drops
down to the percent range, indicating stable self-organization, for 50 or more atoms. Concerning
the appearance of defect atoms, Eq. (3.26) gives N > Nthr ≈ 40. Due to non-perfect bunching
this threshold is shifted to somewhat higher values. The insert of Fig. 3.8 shows the absolute
number of defect atoms after 5 ms, averaged over the runs: the minimum at N ≈ 60 followed by a
rise can be identified with the threshold, which is in accordance with the previous, simple estimate.

The transition from the perfectly ordered phase to the one where defect atoms can be present
manifests itself in the statistical properties of the system. As discussed in Sect. 3.3, the appropriate
measure of the thermal excitations is the phase space volume, given by the Heisenberg uncertainty
product ∆z∆pz/~. In Fig. 3.9, this is plotted as a function of the atom number: both the final
phase space volume of individual runs after 5 ms (dots) and the average over these trajectories
after 2, 3, 4 and 5 ms (continuous lines) are shown. For very few atoms, the phase space volume is
scattered around the value of 13.4, corresponding to uniform spatial distribution and mean kinetic
energy kBT = ~κ. For N ≈ 50, the decrease of the average phase space volume and the reducing
variance around the mean show that the more stable the self-organized pattern, the less thermally
excited the system is. At N ≈ 60, a broad peak (due to the transition to a double well potential)
heralds the appearance of stable defect atoms. This is followed by a slow but steady increase,
which can be attributed to the rising percentage of defects.

To indicate some of the dynamics, Fig. 3.9 shows the Heisenberg product at earlier times as
well: at 2, 3, and 4 milliseconds. The appearance of defect atoms slows down the equilibration pro-
cess, but the respective curves converge uniformly to the one obtained at 5 ms. This demonstrates
that the cooling time is closely independent of the atom number.

3.7 Collective effects in the self-organized phase

The most direct evidence of cooperative action is superradiance into the resonator mode that can
be measured by detecting the power output from the cavity. In the self-organized checkerboard
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Figure 3.8: Defect atom ratio 5 ms after loading the trap as a function of the atom number. Each
point is an average over 25 runs of the simulation. The inset shows the average number defects.
The physical parameters are: κ = γ/2, g = 2.5γ, ∆A = −500γ, η = 50γ.
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Figure 3.9: The normalized phase space volume of the system. Dots represent the values taken at
individual trajectories at 5 ms, the thick solid line is their average. The thin lines correspond to the
average over the trajectories at 2, 3, and 4 ms. The physical parameters are the same as in Fig. 3.8
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pattern each atom radiates with the same phase, and so the cavity photon number |α|2 increases
quadratically with the number of atoms. This can be observed in the numerical simulations of
Eq.(3.4), gradually increasing the number of atoms as detailed in the previous Section. The cavity
photon number is shown on a logarithmic scale in Fig. 3.10. For many atoms in the cavity (N >
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Figure 3.10: Photon number in the cavity 5ms after loading. At high atom numbers (N > 20)
the simulation results (dots) are fitted well by a quadratic function (black line), indicating that the
atoms scatter cooperatively. The physical parameters are the same as in Fig. 3.8

20) the intensity data are well approximated by the fitted quadratic function |α|2 = 0.08N2. The
steady-state solution of Eq. (3.4a) reads

|α|2 = I0 〈cos(kzj) cos(kxj)〉2N2 . (3.29)

If all atoms are perfectly at the antinodes (〈cos(kzj) cos(kxj)〉2 = Θ = B = 1) this yields a
coefficient of 0.125. The value from the simulations is 30% below this: the difference can be
attributed to the position spread and to the defect atoms.

The superradiance has important effects on the spatial distribution of the atoms about their
respective field antinodes. With increasing number of atoms the trap deepens so that the size of
the atomic clouds about the antinodes is compressed, as shown in Fig. 3.11. We note again the
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Figure 3.11: The localization parameter Dz =
∑

i (kzi/π)2/N measured by the simulation (dots)
and averaged over runs (continuous black line) shows an overall 1/N dependence as a function of
the atom number. The dashed line is the approximation of Eq. (3.31). The physical parameters are
the same as in Fig. 3.8
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appearance of the shoulder at N ≈ 60 due to the transition into the double-well potential with
stable defect atoms. Apart from this, the overall decrease of the localization parameter in the
rangeN = 10, . . . , 200 is proportional to 1/N . As we show below, this scaling law can be derived
by a careful examination of the self-generated trap potential.

We consider one-dimensional motion of the atoms in the limit where they are strongly lo-
calised in the vicinity of the antinodes. In this limit of harmonic oscillation the field amplitude
in Eq. (3.4a) is coupled to the atomic positions only through the sum

∑
z2
i , i.e., through the lo-

calization parameter defined in Eq. (3.13). It is instructive to introduce new coordinates in the

configuration space: the mean radius r =
√∑

z2
i /N , and a number of N − 1 angular coordinates

ϕj with canonically conjugate momenta pϕj = Nmr2ϕ̇j , these latter decoupled from the field
dynamics. Only the radial motion is damped by the cavity cooling mechanism, the angular ones
are not. For the coordinate r the potential is composed of the harmonic attraction ∝ r2 and a cen-
trifugal repulsion ∝ 1/r2. There is a potential minimum and the radius is damped into it by cavity
cooling. For large number of atoms the cloud size at an antinode can be simply estimated by the
radius at the potential minimum. In this way we discard the role of fluctuations in this coordinate,
assuming that the variance is much smaller than the mean.

For a quasi-stationary field amplitude, the harmonic potential is mν2Nr2/2 with vibration
frequency

ν =

√
~k2

m

(
|U0|η
g

|α|+ 2|U0||α|2
)
. (3.30)

The angular kinetic energies are of the form p2
ϕj
/(2mNr2), j = 1, . . . , (N − 1). The momenta

pϕj can be estimated by their initial value in the unorganized phase, when all degrees of freedom
have the same energy kBT/2 and the radius is r = λ/

√
48. The potential minimum is just at

the radius where the harmonic potential energy equals the sum of the centrifugal energies. Simple
algebra leads to the cloud size

r2 ≈ λ2

8π
√

3

√
kBT

~|U0|

(
η

g
|α|+ 2|α|2

)− 1
2

, (3.31)

and since |α|2 ∝ N2, the 1/N law for the localization parameter follows. Altogether, the increase
in atom number results in a smaller cloud size in the vicinity of the antinodes, a very important
virtue of the collective atomic action. This compression is limited by the dipole-dipole interaction
of the atoms near the same antinode, which effect was not taken into account in the present model.

3.8 Conclusion

A dilute cloud of non-interacting cold atoms in a high-Q cavity can undergo a phase transition if
driven from the side by a laser sufficiently red detuned from an atomic resonance. Increasing the
laser power above a threshold the atoms self-organize into a lattice so as to scatter most effectively
into the cavity mode. In this way the atoms minimize their energy in the optical potential generated
from the interference pattern of the cavity and pump field. Under proper conditions the atoms are
cooled in this process giving long term stability to the pattern.

The phenomenon has been previously seen in simulations and strong evidence was found in
experiments [56], but threshold, scaling and efficiency of the effect with atom number, cavity
parameters and system size remained unclear. Here we gave a thorough analytical discussion
of the effect. A continuous density approach allowed us to derive analytical formulas for the
critical pump power as a function of atom number and cavity volume and showed that the effect
should persist if one scales up the volume at fixed atomic density, i.e., Ng2 = const. Numerical
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simulations of the evolution for finite durations revealed a hysteresis between the ordered and
homogeneous density phase on varying the control parameter, i.e., the pumping strength. This
shifts the observable threshold in the pumping strength, which then scales with Ng4. We still have
a cooling mechanism for large numbers of any type of optically polarizable particles.

The system is composed of non-interacting atoms that communicate via a commonly coupled,
single cavity mode. The cavity component of the system plays a multiple role. First, the binding
energy of the ordered phase is stored in the superradiantly enhanced field intensity of this single
mode. Next, as an attractive feature of this system, the outcoupled field intensity directly serves
as a possibility of time-resolved monitoring of the formation of the ordered phase. Note that in
setups without resonator, the uncontrolled scattered field can lead to a binding of micrometer-sized
particles in an ordered pattern in liquid [30, 93]. In the cavity scheme, finally, the viscous motion
is provided by the dynamically coupled single-mode cavity field. Apart from the geometry, this is
also a distinctive feature with respect to CARL.

From the laser cooling point of view, the picture is complicated by the phase transition. The
appropriate measure of the cooling efficiency is the phase space volume occupied by the system.
The self-organization process reduces this volume below that of a system at the cavity cooling limit
with uniform spatial distribution. Moreover, the steady state is established within milliseconds, and
this is closely independent of the number of atoms in the cloud (numerical simulations confirm this
up to few hundreds of atoms). Collective cooling was previously known only for the stochastic
cooling method [94] and has been predicted for common vibrational modes of trapped particles
[95]. The collective behaviour strongly improves the localization, i.e., the size of the atom cloud
pieces at the trapping sites is proportional to the inverse of the atom number.

This work could be extended to various directions. First of all, the numerical simulations
should confirm some of the statements of the present paper on a larger range of the atom number,
or on a longer time scale (e.g., the dependence of the hysteresis on the duration of the evolution).
Our prescription for the pump-cavity detuning ∆C in Eq. (3.12) is probably impractical in the
limit of large atom numbers, as one has to go closer to the resonance in order to initiate the self-
organization. Next, the maximum achiveable densities can not be determined in the present model
as some of the limiting factors were omitted, e.g., vacum-mediated dipole-dipole interaction be-
tween the atoms, the eventual superradiant enhancement of the spontaneous scattering into lateral
directions, etc. In extremely good cavities, quantum effects in the motion of the atoms begin to
play an important role [96, 44], which was not studied here. Finally, the nature of the phase tran-
sition is strongly determined by the geometry of the cavity mode: the possible trapping sites are
defined by the antinodes of the cavity mode and the transverse pumping field. This situation can
be essentially modified in a cavities with different geometry, e.g., ring or confocal resonator.
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Chapter 4

Publication: Self-organization of a
laser-driven cold gas in a ring cavity

4.1 Self-organization in a Ring Cavity

The system is composed of a gas of N polarizable particles coupled to two degenerate optical
modes of a ring resonator, described by the plane wave mode functions f1(x) = eikx and f2(x) =
e−ikx, with coherent amplitudes α1 and α2. The particles are driven by a pump laser oriented
perpendicular to the cavity axis. The electric field in the cavity is then given byE(x) = f1(x)α1+
f2(x)α2 +Epump, where the last pumping field term is assumed to be constant along the resonator
axis ‘x’. For simplicity, we consider the system only along this spatial dimension: the atoms
are supposed to be confined near the resonator axis by e.g. a strong dipole trap. The interaction
is in the dispersive regime, i.e. the pump laser is very far detuned with respect to the resonance
frequencies of the gas particles: no real excitations need take place. The gas can then in principle
even be composed of molecules, but we refer to the gas particles as “atoms”. The atoms redistribute
photons by coherent scattering between the two modes and the pump field. This process feeds the
cavity modes with an effective amplitude η. The dynamics of the cavity modes with the scatterers
at xj , j = 1...N is given by the following differential equations [25]:

d

dt

(
α1

α2

)
= A

(
α1

α2

)
− iη

N∑
j=1

(
f∗1 (xj)
f∗2 (xj)

)
, (4.1)

using a formal vector notation, with the coupling matrix

A =
(
i(∆C −NU0)− κ −iNU0σ

−iNU0σ
∗ i(∆C −NU0)− κ

)
. (4.2)

The diagonal terms include the detuning between the pump laser and the cavity modes, ∆C =
ω − ωC , the cavity decay rate κ, and the shift of the cavity resonance with an amount of U0

per atom. This shift is due to forward scattering and is related to the atomic properties by U0 =
−ωCχ

′/V , where χ′ is the real part of the linear polarizability and V is the mode volume. The total
frequency shift due to the polarized gas, expressed in terms of a dimensionless collective coupling
parameter ζ = NU0/κ, will later be used to describe the density of the atom cloud (neglecting a
filling factor). The off-diagonal terms, i.e. the coupling between the cavity modes stems from the
stimulated back reflection off the gas. This process is heavily dependent on the positions of the
atoms, through the complex parameter σ = 1

N

∑
j e

−2ikxj describing spatial order. Similar to the
Debye-Waller factor, |σ| is 1 if the gas forms a perfect lattice with period of an integer multiple
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of λ/2, and less than 1 for a non-perfect lattice; for a homogeneous gas, it is |σ| ∝ 1/
√
N . The

phase of σ gives x0, the “position of the lattice” modulo λ/2, with the definition σ = |σ| e−2ikx0 .
Interaction between the gas and the cavity field lifts the degeneracy of the cavity modes. The

eigenmodes of the cavity are

h−(x) = sin k(x− x0) , h+(x) = cos k(x− x0) , (4.3)

these have nodes (h−(x)), or antinodes (h+(x)) at x0 + nλ/2, respectively. The corresponding
amplitudes,

β− = ieikx0α1 − ie−ikx0α2 , β+ = eikx0α1 + e−ikx0α2 , (4.4)

are not coupled by the interaction with the atom gas. The frequencies of the eigenmodes h− and
h+ are shifted with respect to the empty cavity, giving the effective detunings

∆− = ∆C − (1− |σ|)NU0 , ∆+ = ∆C − (1 + |σ|)NU0 . (4.5)

With the atoms at fixed positions xj , the mode amplitudes take on the stationary values

β− =
2η

∆− + iκ

∑
j

sin k(xj − x0) , β+ =
2η

∆+ + iκ

∑
j

cos k(xj − x0) . (4.6)

If the atoms are uniformly distributed, both amplitudes vanish by destructive interference of the
components scattered by different atoms (kx0 is an arbitrary phase in this case). If the polarized
gas roughly forms a lattice with period λ (x0 giving the position of the lattice modulo λ/2), mode
h− will only be weakly coupled to the pump laser, since it has nodes at the lattice points. On the
contrary, mode h+ has antinodes at the atomic positions and thus is driven via stimulated Bragg
scattering off the gas [84, 56].

The possibility of optical trapping of high field seekers with negligible spontaneous emission
loss requires large red detuning, whereby the resonance shift U0 is negative. It is known from
cavity cooling theory that the pump field has to be detuned below the cavity frequency to ensure
damped motional dynamics [25]. For large enough density ζ, however, if the polarized gas forms
a more and more periodic structure, |σ| increases from 0 to 1, and the frequency of mode h+ may
drop below the pump frequency, i.e. ∆+ may become positive. This yields heating and instability
of the gas. The effect is all the more prominent since at ∆+ ≈ 0 the population of mode h+ is
resonantly enhanced. We will discuss ways to avoid this problem and the effect of the detuning
∆C and the density ζ on the dynamics below.

4.2 The dynamics of the atoms

Up to this point, the polarized gas was considered as inert background against which the dynamics
of the cavity field takes place. Now we relax this assumption, and treat the distribution of the gas
particles as a dynamic quantity. As the gas particles move little on the characteristic timescale of
the buildup of the cavity field, κ−1, the atomic and cavity dynamics can be separated adiabatically,
in a way reminiscent of the Born-Oppenheimer approximation for molecules. The motion of the
gas particles is governed by the forces from the light field that depends on their positions. Since
the field is far detuned from the atomic resonance, scattering into other than the cavity modes is
negligible so that the motion of the particles is solely determined by the dipole force [65]. This
can be decomposed into two terms: F (x) = Fc(x) + Fp(x), with

Fc(x) = 4~kU0Im[e2ikxα1α
∗
2] , (4.7a)

Fp(x) = 2~kIm[η(eikxα1 − e−ikxα2)]. (4.7b)
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The first term arises from stimulated transfer of photons between the counterpropagating plane-
wave modes of the cavity, and the second term from stimulated transfer of pump and cavity pho-
tons. In the limit of high particle number N , the back-action of a single particle on the cavity field
is negligible, and we can integrate the forces to arrive at the potential governing the dynamics.
Using the eigenmodes h−(x) and h+(x) we have

V (x) = 2~η
(
Reβ− sin k(x− x0) + Reβ+ cos k(x− x0)

)
+

+
1
2

~U0

(
(|β+|2 − |β−|2) cos 2k(x− x0) + 2Re[β∗+β−] sin 2k(x− x0)

)
. (4.8)

The first line corresponds to scattering from the pump into the cavity: if the gas forms a λ-periodic
grating, this describes a potential with attractive points at the lattice sites, i.e. the gas density
maxima. The second line originates from multiple scattering between the running wave modes.
This latter has a strong dependence on the density and causes deviations from a medium with
linear refractive index: it attracts particles to maxima of the cavity field, and can create defects in
the lattice, as explained later on.

4.3 Mean field approximation

For a large number of atoms but each of them weakly coupled to the cavity modes, the cloud can
be treated by a mean field approach using a continuous position distribution p(x). In the present
model we phenomenologically add that the cloud has a finite temperature, microscopic calcula-
tions reveal that it is on the order of kBT = ~κ. The thermodynamic limit then corresponds to
taking a large cavity with mirrors whose reflectivity is scaled down with cavity length, homoge-
neously filled with the gas. The cavity length is limited by the requirement of large longitudinal
mode spacing (as mentioned in the introduction). In this limit, we can apply the canonical distri-
bution to the gas, giving

p(x) =
1
Z

exp
(
−V (x)
kBT

)
, (4.9)

with the partition function Z ensuring normalization
∫
p(x)dx = 1. Now since V (x) depends on

the mode amplitudes β− and β+, and these latter depend on the distribution p(x) of the scatterers,
eq. (4.9) has to be solved self-consistently.

Numerical solutions to the implicit equation (4.9) can be found by iterating the following
steps. (i) Start from a random distribution p(0)(x) = λ−1 + ξ(x), where ξ(x) is white noise:
〈ξ(x)ξ(x′)〉 = εδ(x− x′), with amplitude ε � λ−2. (ii) Obtain from (4.6) the steady-state mode
amplitudes β1,2 for the given distribution p(0)(x). (iii) Calculate the dipole potential V (x) by
substituting β1,2 into (4.8). (iv) The canonical distribution eq. (4.9) furnishes the new distribution
p(1)(x) with which the procedure can be restarted. If the iterations converge, we obtain a self-
consistent solution of (4.9), p(x) = p(∞)(x). For weak pump amplitude η, this solution is the
uniform distribution of the gas, p(x) = λ−1. Above a certain threshold ηc, the uniform distri-
bution is no longer stable and a nontrivial p(x − x0) builds up, with x0 depending on the initial
fluctuations. Fig. 4.1(a) shows this transition with a plot of the spatial order |σ|2 as a function
of the pumping strength. The narrowing of the “self-organized” density distributions is shown in
fig. 4.1(b) using two specific values for the pump η above threshold.

The critical pump amplitude ηc can be determined analytically by a stability analysis of the
uniform distribution. The only relevant Fourier components of a perturbation are those with period
λ, as only these affect the amplitudes β±: we can therefore take p(0)(x) = λ−1[1 + εA cos k(x−
x0) + εB sin k(x − x0)], with arbitrary x0. The condition of stability then becomes that the
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Figure 4.1: (a) Square of the order parameter |σ|2 as a function of the effective pumping strength
η. (b) Two typical atomic position distributions (solid lines) and the corresponding adiabatic po-
tentials (dashed lines) for the specific pump strengths indicated by the arrows in (a), η = 0.08κ
(thick, marked by (1)) and η = 0.2κ (thin, marked by (2)). Parameters: ∆C = −4κ, ζ = 1.2,
U0 = −0.004κ.

magnitudes of A and B decrease during a single iteration of eq. (4.9) to first order in ε. For both
A and B this translates to the condition η < ηc, with the critical pump amplitude

ηc =

√
kBT

~κ

√
κ |U0|
ζ

√
δ2 + 1
2 |δ|

. (4.10)

PL ≥ cκkBT
~ω

(
N
V χ

′2
)−1

δ2+1
2δ Here we use δ = (∆C−NU0)/κ. The lowest pump power allowing

for self-organization to happen is at the detuning δ = −1, i.e. ∆C = NU0 − κ.
As hinted in the introduction, this light-matter system is of particular interest because of the

highly nonlinear dependence of the dynamics on the density of atoms. The order |σ|2 as a function
of the density parameter ζ at fixed pumping strength η = 0.1κ is plotted in fig. 4.2(a). In accor-
dance with eq. (4.10), below a critical density ζc the uniform distribution is stable. At densities
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Figure 4.2: (a) Square of the order parameter as a function of the density of cloud (expressed by
the collective coupling ζ) at a fixed pumping strength, η = 0.1κ, and detuning ∆C = −4κ, atomic
light shift U0 = −0.004κ. (b) The position distribution p(x) showing “defect” atoms (solid line)
and the self-consistent mean-field potential V (x) (dashed line) for ζ = 2, as indicated by the arrow
on (a).

ζ > ζc, where the pump is above threshold, a rough but surprisingly good approximation is that
the atoms form a perfect lattice of period λ, which from eq. (4.8) gives for the potential:

V (x) ≈ −~
2Nκη2

∆2
+ + κ2

(−2∆+

κ
cos k(x− x0) + ζ cos 2k(x− x0)

)
. (4.11)
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The lattice is defined by the first term having attractive minima at kx = kx0 + 2nπ. Due to
the second, density-dependent term, a secondary peak can build up in the atomic density at kx =
kx0+(2n+1)π, roughly for ζ > −∆C/(4κ). “Defect” atoms can then appear in the lattice which
radiate into the cavity mode h+ in opposite phase with the atoms being at x0, thus decreasing the
photon number. However, in a thermal distribution these sites are hardly occupied such that the
order parameter does not indicate this transition, which is at ζ = 1 in the numerical example of
fig. 4.2(a). The distribution p(x) shows the presence of defects but is still dominated by a single
peak around x0 whose width decreases with increasing pump power.

At even higher optical densities, pumping above the threshold results in an instability of the
atom cloud – this is the reason why the curve in fig. 4.2(a) is only plotted up to ζ = 2. The iterations
of eq. (4.9) no longer converge, but enter a loop of flipping between two localized distributions
which differ in a shift by λ/2. This indicates a frustration of the system: when more atoms happen
to be, say, close to the positions x = x0 + nλ, for ∆+ > 0 they create a potential favoring the
sites at x = x0 + (n + 1

2)λ. The detuning ∆+ becomes positive at large pump power when
ζ > −∆C/(2κ), which in fig. 4.2(a) corresponds to ζ > 2. Note that in fig. 4.2(b), presenting
a still stable, but markedly two-peaked distribution, the potential depths at the two possible sites
become very close to each other.
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Figure 4.3: Phase diagram for fixed ∆C = −4κ and U0 = −0.004κ. The four regimes are
indicated on the log-log plane of the dimensionless pumping strength η/κ and the optical density
expressed in terms of the collective coupling parameter ζ.

We summarize the numerical results on a phase diagram in fig. 4.3. Choosing a fixed pump-
cavity detuning, ∆C = −4κ, two parameters, namely the dimensionless optical density ζ and the
pumping strength η/κ determine the equilibrium distribution. A complete map of sharply sepa-
rated regimes, “uniform distribution”, “self-organized lattice”, “lattice with defects” (i.e. where
the potential in the steady state has secondary minima, allowing the existence of defect atoms),
and “no convergence”, are presented. The overall ηc ∝ ζ−1/2 dependence of the stability limit
of the uniform distribution, see eq. (4.10), shows up clearly in this log-log plot. The unstable
region is cut by a sharp resonance at ζ = 4, which corresponds to the density where the detuning
∆C = NU0. In accordance with eq. (4.10), this density leads to δ = 0 and yields a divergence of
the critical pump amplitude. For this setting the uniform distribution is stable against infinitesimal
perturbations, no matter how strong the laser pump is. Finite fluctuations can, however, be am-
plified and for strong pumping the uniform distribution does become unstable. The other region
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boundaries are in good agreement with the analytical results for large η (ζ ≈ 1 and ζ ≈ 2), and
are parallel with the η axis in the large η limit. This is due to the fact that in this limit the density
distribution is sharply peaked, and then practically all η does is to set the potential depth, but not
change the shape.

4.4 Conclusion

By mean-field analysis we revealed the various phases of an ensemble of cold atoms which are
strongly coupled to the radiation modes of a lossy ring cavity and off-resonantly driven by a trans-
verse laser. The interaction of linearly polarized particles with light is demonstrated to be strongly
nonlinear in the large intensity and large density limit. In the proposed system of homogeneously
pumped atoms moving along the axis of a ring resonator, both dependences are well resolved and
the role of the density-dependent multiple photon scattering which is the source of nonlinearity
is well displayed. A complete phase diagram has been obtained where the phase boundaries are
interpreted by simple physical arguments.

The work was supported by the National Scientific Fund of Hungary (Contract Nos. T043079,
T049234) and the Bolyai Program of the Hungarian Academy of Sciences. We acknowledge
funding from the Austrian Science Foundation (P17709 and S1512).



Part II

Optomechanical coupling in the
super-strong coupling regime
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Chapter 5

Background

In the second Part of this Thesis we explore the interaction due to optomechanical coupling in
systems where the theoretical approach of the first Part cannot be applied. Again, the Chapters
contain their own introductions, however, it is useful to provide the background and the basic
ideas here.

Quite generally, optical manipulation of the motional state of objects relies on the modification
of the propagation of light by matter. As seen in the first Part, it is the deflection of photons that
gives rise to the forces acting on the object. However, to talk of photons, one first needs to define
the modes of light, whose excitations can be quantized. In the context of atomic physics, the choice
of modes is usually straightforward: in free space, the modes are given by the type of laser used,
whereas in a high-Q optical cavity, they are defined by the boundary conditions due to the cavity
mirrors. In the case of the resonator modes, the back-action of the atoms on the light manifests
itself by a shift of the eigenfrequency of these modes that varies according to the position of the
atoms.

We must be conscious of the fact that taking a fixed mode function, independent of the density
distribution of the atoms, is always an approximation. In many cases, this approximation can
work very well. However, if the number of trapped atoms is very large, and if their effective
scattering cross-section is substantial, this is no longer the case. For the case of atoms in cavities,
the approximation can be said to break down when the frequency shift due to the presence of all
the trapped atoms together is comparable to the free spectral range. Equivalently, it breaks down if
by reconfiguring the positions of the trapped atoms, one can shift the atoms+cavity coupled system
from one resonance to the next. Clearly, in this case the forces on the atoms cannot be described
by assuming a fixed mode function. In a recent article by Meiser and Meystre [97], this situation
is referred to as the “super-strong coupling” regime.

As recent experiments are approaching the “super-strong coupling” regime [83, 98, 29], setting
up the proper theoretical framework for such systems is a pressing task.

Assessing the possibilities for the appearance of band gaps in 1-dimensional optical lattices,
in 1995 Deutsch et al. have proposed a model [36], where the back-action of atoms on the light is
taken into account. They treated the trapped atoms as Dirac-delta concentrations of polarizability,
and calculated the propagation of light solving the Helmholtz equation to all orders in multiple
scattering, via the transfer matrix method. The lattice constant was then found self-consistently,
claiming that “Since this configuration is self-consistent, with zero net force on the atoms, it must
represent a state of minimum potential energy”.

In a pair of recent articles [99, 97], Meiser and Meystre have applied this model to atoms
trapped in a high-Q standing-wave cavity in the super-strong coupling limit. Based on the mini-
mization of the dipole energy, they have predicted a bistability of the atoms+cavity system. How-
ever, we believe that this approach is flawed. In a Comment to their papers, which is reproduced
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in Chapter 6, we have shown that this system is not expected to minimize the dipole Hamiltonian
in steady state, and this invalidates the prediction for bistability.

How should one model the dynamics of the trapped atoms in the “super-strong coupling”
regime? Instead of searching for an “energy funtion” to be minimized, one should compute the
optical forces, as done for atoms in cavities. There, the conservation of momentum was used when
the force was calculated based on “photon counting”, and this should form the basis for the force
calculations here as well. Following a well-established approach, we can find the force on the
trapped particles by examining the rate of momentum extraction from the electromagnetic field.
This can be calculated using the Maxwell Stress Tensor [100],

Tij = εEiEj + µHiHj −
1
2
δij
(
εE2µH2

)
, (5.1)

where i, j denote Cartesian coordinates. To find the force, we need to integrate the Stress Tensor
on an arbitrary surface enclosing the trapped particle. This approach has been used, e.g., to find
the stationary configuration of arrays of microspheres in 3 dimensions [101] and of rods in 2
dimensions [102]. We note here that although the momentum of the electromagnetic field in
dielectric media has been the subject of a long debate, there are clear reasons to write this formula
for the stress tensor, as summed up in [103].

To obtain the Maxwell Stress Tensor, one needs to calculate the electromagnetic fields around
an object, which can be a very involved task. A hallmark of the “super-strong coupling” regime
is that multiple scattering plays an important role, and thus the field has to be calculated self-
consistently. In 2 or 3 dimensions, this is a highly nontrivial task [104, 105], but in the simple
1-dimensional model systems studied here the transfer matrix method as used in [36] is perfectly
adequate. For further discussion, see Chapter 7.

One could expect that once having mapped out the forces as functions of the positions of the
scatterers, we can “reverse engineer” a potential by integrating these forces, as done in Chapter 2
for two atoms in a cavity. However, this is not always possible, as there is no guarantee that the
value of the potential does not depend on the path of integration. Already in the simple case of
Chapter 2, if the laser is shone at the atoms “transversely” instead of feeding the cavity directly,
no such potential can be produced. Curiously, we find in Chapter 7, that for 1-dimensional optical
lattices, the existence of a potential depends on the relative power of the laser beams used to form
the trap.



Chapter 6

Publication: Comment on ”Coupled
dynamics of atoms and
radiation-pressure-driven
interferometers” and ”Superstrong
coupling regime of cavity quantum
electrodynamics”

In two recent articles [99, 97], Meiser and Meystre describe the coupled dynamics of movable
atoms, mirrors and light in a pumped optical cavity. They take the effect of the atoms on the
light field into account using a 1-dimensional non-perturbative model introduced by Deutsch et
al. [36]. The mechanical effects of the off-resonant light on the atoms are described by a dipole
Hamiltonian. They claim that the atoms trapped in the cavity field self-organize to form a regular
lattice of atom clouds which behaves as a beam splitter (BS). This BS effectively splits the single
cavity into two coupled resonators (“left” and “right”). An important prediction of [99, 97] is a
bistability effect: optical forces will push this “atom BS” to a position where it is approximately an
integer multiple of the half-wavelength away from the left (right) cavity mirror. Thus for a certain
parameter regime the “left” (“right”) cavity is on resonance with the pump laser, and has intense
light, while the other cavity has weak field.

We argue that the model used by Meiser and Meystre contains contradictions and errors in-
volving the way the dynamics of the atoms (taking place on a much shorter timescale than that of
the movable cavity mirror in [99]) is treated. The model hinges on two key assumptions. The first
is a claim based on [36]: (i) the gas of atoms forms a regular lattice of pancake-shaped clouds with
lattice constant d0 = λ/2(1 + 2 tan−1 Λ/π), and can thus be replaced by a fictitious “atom BS”.
Here Λ = kηα/(2ε0) is the dimensionless polarizability density of a cloud of surface density η
composed of atoms of polarizability α < 0, with k = 2π/λ denoting the free-space wavenumber
of the pump laser. The second assumption is used to find the steady state position of the atom
BS: (ii) the atoms strive to minimize the total dipole potential Hint (eq. (2) of [99], or eq. (3) of
[97]). In this Comment we show that these assumptions are inconsistent, and that (ii) has to be
replaced by a formula for the force on the atoms. We present the required expression for the force
which allows us to determine the steady state of this system. This does not exhibit the bistability
phenomenon of [99, 97].

The setup considered in [99, 97] is an open system: laser light enters the cavity through the
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Figure 6.1: (color online) A configuration found by Monte-Carlo type minimization of the dipole
potential, for N = 100 atom clouds with polarizability Λ = 0.1, symmetrically pumped in free
space (no cavity). The local lattice constant (blue dots, in units of the original d0 = 0.468λ)
and the electric field intensity at the atomic positions (red line, exponential scale, in units of the
pump intensity I0) are plotted. The total dipole energy is some 1000 times lower than that of the
regular optical lattice of assumption (i). The atoms form two slabs with lattice constant exceeding
d0, impervious to the pump laser (pump frequency deep in the band gap, see [36]). These two
self-organized atom mirrors constitute a high-Q cavity, trapping light in the middle. There the
intensity is some 104 times that of the pump lasers. Inside the “atom mirrors” the intensity falls
off exponentially.



DIPOLE POTENTIAL VS DIPOLE FORCE 65

mirrors, carrying momentum and energy, and is coupled out of the cavity at the mirrors. It is not
at all clear what function of the system parameters is minimized in a steady state. Minimizing the
dipole energy certainly does not lead to steady state configurations. To illustrate this point, it is
worthwhile to consider a conceptually simpler situation, namely atoms trapped in a standing wave
laser field without any cavities involved. As illustrated in Fig. 6.1, using the model of Meiser and
Meystre but allowing all of the atom clouds to move independently, a Monte Carlo algorithm to
minimize the dipole energy leads to configurations differing from a simple lattice. Starting from
the regular lattice configuration, the atoms decrease the dipole energy by forming a self-organized
cavity resonant with the pump beam. The intensity inside this cavity is thus enhanced by the
resonance, and a few atoms coupled to this intense field contribute to the total dipole potential
by such a large amount, that its absolute value exceeds that of the original energy by orders of
magnitude (see the figure caption for details). The mirrors of this self-organized cavity are slabs
of an atomic lattice with lattice constant exceeding d0 such that the pump field is in the band gap
[36] of these slabs and decays exponentially inside them. The complicated spatial structure of this
solution clearly shows that assumption (ii) cannot lead to (i), one of them has to be dropped. The
configuration represented in Fig. 6.1 is not a steady state at all: as we discuss below, radiation
pressure would push the two slabs apart. Thus, assumption (ii) has to be revisited. We remark that
inside an optical cavity, dipole energy minimization leads to similar artifacts, in the “superstrong
coupling” limit as well.

The reason why dipole energy minimization does not supply the steady states is that the
atomic positions are coupled parametrically to the light field. This problem is met, and is tack-
led in a very neat way, when the motion of atoms coupled to a single-mode high-Q optical res-
onator is to be described in a classical approximation (Ehrenfest theorem). In the standard ap-
proach (e.g., [31]), the starting point is the quantum Hamiltonian Ĥ =

∑N
j=1 Ĥatom(p̂j , σ̂j , σ̂

†
j) +

Ĥfield(â, â†) + ~
∑N

j=1 g(ẑj)(σ̂
†
j â + σ̂j â

†), with ẑj , p̂j , and σ̂j denoting the position, momen-
tum, and deexcitation operator of the j-th atom, g(z) the mode function of the cavity, and â the
cavity photon annihilation operator. The coupling between atoms and the cavity field is of the cel-
ebrated Jaynes–Cummings type. The classical approximation should furnish equations of motion
for zj = 〈ẑj〉 and pj = 〈p̂j〉. In order to derive these, for slowly moving atoms, the separa-
tion of the timescales is invoked. The internal variables â and σ̂j , which equilibrate fast on the
timescale of atomic motion, are replaced by their adiabatic steady state expectation values, which
depend on all of the atom coordinates ẑl (as well as the intensities and phases of the pumping
lasers). One could be tempted to use the “effective” Hamiltonian Ĥeff(ẑj , p̂j) obtained from Ĥ
in this way, and derive the atomic dynamics from it via the Heisenberg equations of motion, i.e.,
dpj/dt =

〈
−dĤeff/dẑj

〉
= −d

〈
Ĥeff

〉
/dzj = −d

〈
Ĥ
〉
/dzj . The correct procedure, however,

is to apply the adiabatic approximation to the original Heisenberg equations

d

dt
p̂j =

1
i~

[p̂j , Ĥ] = − d

dẑj
Ĥ = F̂j , (6.1)

where the force operator is F̂j = −~(σ̂†j â + σ̂j â
†) dg(ẑj)/dẑj , and use dpj/dt =

〈
F̂j

〉
. In

other words, the differentiation should only be applied w.r.t. explicit zj-dependence of
〈
Ĥ
〉

, since〈
dĤ/dẑj

〉
is not the same as d

〈
Ĥ
〉
/dzj . Using d

〈
Ĥ
〉
/dzj to define the dynamics supplies

steady states where the “dipole potential”
〈
Ĥ
〉

=
〈
Ĥeff

〉
is minimized, but these are not the true

steady states of the system: in these states the force on the atom
〈
F̂j

〉
does not vanish.

We now turn to the setup considered by Meiser and Meystre, where the back-action of the
atoms on light is so substantial that the cavity no longer has a fixed mode function. To be self-
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contained, and to fix notation, we briefly summarize the model, detailed in [99, 97, 36].
Assuming that the atoms are fixed on the timescale of the field dynamics, the light field is

calculated by solving the Helmholtz equation in a one-dimensional approximation,

∂2
zE(z) + k2E(z) = −2kΛE(z)

∑
j

δ(z − zj). (6.2)

The right-hand-side embodies the polarizability of the trapped atoms, which are assumed to form
pancake-shaped clouds of axial size much smaller than a wavelength. The solution of this equation
is trivial: between two atom clouds, the electric field is a superposition

E(zj−1 < z < zj) = Aje
ik(z−zj) +Bje

−ik(z−zj)

= Cj−1e
ik(z−zj−1) +Dj−1e

−ik(z−zj−1). (6.3)

The field has to fulfil boundary conditions:

E(z = zj − 0) = E(z = zj + 0); (6.4a)

∂zE(z = zj − 0) = ∂zE(z = zj + 0) + 2kΛE(zj). (6.4b)

These conditions are equivalent to representing the atom clouds by BS’s, i.e., Aj = tCj + rBj ,
Dj = tBj + rCj with complex reflection and transmission coefficients r = iΛ/(1 − iΛ), t =
1/(1− iΛ) [36].

The dynamics of the atoms is given by the dipole force acting on them. Instead of minimizing
a dipole potential, the true steady state of the system is then specified by the positions of all the
atom clouds zj , j = 1, . . . , N such that the optical field of the cavity – the solution of (6.2) – exerts
no net force on any of the clouds. In the following we show two ways to calculate this force acting
on an infinitely thin atom cloud (BS).

The force on an atom cloud is can be obtained by integrating the the force on a single atom over
the whole cloud. A microscopic model of light-matter interaction leads to two types of force: the
dispersive dipole force and the dissipative scattering force [10]. This latter is often referred to as
“radiation pressure”, but following Meiser and Meystre we use this term to denote the mechanical
effects of light in general. In [99, 97] the atom-pump detuning is assumed to be so large that
the scattering force can be neglected, tantamount to assuming Λ ∈ R. For linearly polarizable
particles the dipole force time-averaged over an optical period is given [10] F = 1

4α∇ |E(x)|2.
Calculating this force for an infinitely thin disk-shaped atom cloud poses a problem, as the electric
field E(z) is not differentiable at the atomic positions zj . One must calculate the force on a disk
of finite extent zj − w . . . zj + w, and only then take the limit w → 0. Since the electric field
is polarized in the plane of the disk, there is no surface contribution [106], and the integral in the
limit of vanishing width gives

Fj =
ηα

8

(
∂z |E|2 (zj − 0) + ∂z |E|2 (zj + 0)

)
(6.5)

for the force on a unit surface (“radiation pressure”). This result is independent of the way in
which the limit is approached, i.e. of the axial density distribution of the cloud. Substituting the
modal decomposition of Eq. (6.3), using the BS relations, and the fact that as Λ ∈ R, we have
|Aj |2 + |Dj |2 = |Bj |2 + |Cj |2, some algebra leads to the simple formula

Fj =
ε0
2

(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
. (6.6)

There is another, macroscopic way to arrive at the light-induced force on a scatterer. This
consists of calculating the Maxwell stress tensor and integrating it on an arbitrary fictitious surface
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enclosing the body (see, e.g., Ref. [101]). In the 1D model of [36, 99], this is very easily done.
For a selected atom cloud, we take the surface around it to consist of two planes orthogonal to
the cavity axis, between the atom cloud and the two neighbouring clouds. As the electromagnetic
wave inside the cavity is transverse, both the E and B vectors lie in the planes, and the only part
of the stress tensor contributing to the integral is the term with the energy density. For the plane
waves of (6.3) this results in (6.6). We remark that this line of thought is also alluded to by Meiser
and Meystre, and although is not applied to the atoms, it is used to derive the force on the movable
cavity mirror in Eq. (10) of [99].

The difference between (a) minimizing the dipole potential, and (b) requiring the dipole force
to vanish is illustrated in Fig. 6.2. Here we put a weakly reflective BS ( Λ = 0.1) in a high-
Q cavity composed of two Dirac-δ distributions of polarizability with Λ = 10, corresponding
to transmission probability T ≈ 0.01, as in [99, 97]. To a good approximation the cavity only
supports a single sin(z)-mode, and since the BS is weakly reflective, we are not in the “superstrong
coupling” limit: the Hamiltonian approach would constitute a reasonable approximation. Note
however, that in Fig. 6.2(a), the intensities to the right of the trapped atom are slightly higher than
to its left, indicating the corrections to the single-mode approximation, and also the bistability of
[99]. When minimizing the dipole energy (a), the BS occupies a position where it is not coupled
strongly to the cavity, far from an antinode of the mode function. Thus the system is near-resonant
with the driving field, and the intracavity intensity is enhanced by the resonance, some 500 times
the intensity outside. Extremely high intensity means large negative dipole energy for the trapped
atom – however, note that at the position of the atom, the derivative of the intensity is nonvanishing,
and thus the force F is nonzero. Requiring this force to vanish brings the atom to a mode function
antinode (b), where the coupling is stronger, hence the frequency shift is larger, than in (a). For
this specific example, this is already enough to shift the system out of resonance and to decrease
the intracavity intensity below the free-space value.

The BS used to model the atom cloud in the cavity considered by [99, 97], has an effective
Λ ≈ 1, and thus the system is in the “superstrong coupling limit”. We plot the force exerted by the
cavity field on such a BS as a function of its position and of the detuning (equivalently, cavity size)
in Fig. 6.3. The boundaries between the gray shaded and white areas correspond to equilibrium.
Note however, that for a fixed drive detuning, of the two equlibrium solutions per half wavelength
only one is stable, the one where ∂/∂za F < 0. Thus there is no bistability of the kind predicted in
[99]. The areas enclosed by the solid contour lines, where the force on the BS becomes very large,
indicate that the system is on resonance and the field gradient at the BS position is high. These
correspond to the black structures on Fig. 2. of [97], where the determinant D (Eq. (12) of [97])
becomes small, which there are falsely interpreted as equilibrium positions.

In the example shown in Fig. 6.2, the maxima of the intensity to the left and to the right of
the trapped BS are equal. In fact, an analogous statement holds for the steady state of any one-
dimensional system composed of N consecutive beam splitters, held together by the dipole force,
regardless of the BS parameters of the system components. This follows from formula (6.6) for
the dipole force, whereby for every j = 1, . . . , N : |Aj |2 + |Bj |2 = |Cj |2 + |Dj |2. Furthermore,
since there is no absorption, |Aj |2 + |Dj |2 = |Bj |2 + |Cj |2 at every BS. These relations imply
that |A1| = |A2| =, . . . ,= |AN | = |C1| = |C2| =, . . . ,= |CN |; |B1| = |B2| =, . . . ,= |BN | =
|D1| = |D2| =, . . . ,= |DN |, i.e., the plane waves pass the atom clouds unattenuated, suffering
only phase shifts. Thus, the envelope of the intensity oscillations of the electric field is constant
throughout the sample. This is in line with the intuitive picture of “radiation pressure” caused by
the collisions of photons with the atom clouds. However, these results are in direct contradiction to
those obtained by Meiser and Meystre: the nonconstant field envelopes in the “bistability regime”
are explicitly plotted in Fig. 3 of [97].

We now revisit assumption (i). Assuming that there exists a steady state of N identical disk-
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Figure 6.2: (color online) Steady states of a single atom (atom cloud) of polarizability Λ = 0.1
in a symmetrically pumped cavity, according to (a) minimization of the dipole energy; and (b)
vanishing dipole force. The cavity is formed by two highly reflective mirrors (Λ = 10) at z = 0 and
z = 1.501λ. The position of the atom (black dot and vertical dotted line) induces no substantial
change of the mode function of the cavity. However, it influences the intensity of the cavity mode
(filled red curve, in units of the free-space intensity I0, mirrored for better visibility). In (a), the
system is on resonance, the intracavity intensity is so high (some 500I0) that the intensity outside
the cavity is hardly seen on this range; in (b), the atom is maximally coupled to the cavity, shifts it
out of resonance and reduces the intensity below the free-space value.
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Figure 6.3: Force on a single beam splitter with Λ = 1 in a standing-wave cavity with parameters
as in [99, 97] (mirror transmission probability T ≈ 0) pumped by a laser via one of the end mirrors.
Contour lines are: solid, |F | = 10F0; dashed, |F | = F0/10; dotted, |F | = F0/1000, where F0 is
the radiation pressure force that would act on the beam splitter in the absence of the cavity. Gray
background indicates positive (rightward) forces, white background negative (leftward) forces.
Extremely high forces (|F | > 10F0, the small areas enclosed by the solid contour lines) occur
whenever a part of the cavity is on resonance with the drive. The boundaries between the gray and
white areas, where F ≈ 0, are the (stable or unstable) equilibrium positions.
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shaped atom clouds trapped by the light field in a cavity, we find that these clouds have to form
a perfect lattice. This is true because in the steady state the light permeates the stack of clouds
unattenuated. Thus |E(x)|2 = |E0|2 + |E1|2 + 2 |E0E1| cos(2kx − Φ(x)) everywhere in the
sample, the clouds only contribute to the phase: Φ(xj < x < xj+1) =

∑j
l=1 χl. The phase slip

at the l’th cloud χl depends not only on the polarizability density Λ of the clouds, but also on the
pump asymmetry, i.e., the ratio of the intensities of the left- and rightwards propagating waves, see
[35] for details. Since the clouds are identical, and the light fills the structure unattenuated, both
these parameters are equal for all clouds. Thus, χl = χ for every l = 1, . . . , N , therefore the atom
clouds form a perfect lattice (possibly with gaps of an integer multiple of λ/2) with lattice constant
d = λ

2π (π − χ). However, the value of the phase slip χ, and thus of the lattice constant d, is not
trivial to determine, due to the dependence on the pump asymmetry. For the atoms trapped inside
the asymmetrically pumped cavity considered by Meiser and Meystre, this asymmetry varies with
the pump detuning: on resonance, it is negligible, while far from resonance, it is substantial. Thus
Eqs. (24) and (25) of [99] (taken from [36] for symmetric pumping) cannot be applied to this
system. Even more crucially, whether or not the equilibrium sets in depends on the dynamics.
We have found [35] that for large lattices, even a small pump asymmetry can lead to a dynamical
instability of the equilibrium configuration.

Common wisdom holds that “dipole force is conservative”. Even in the strong coupling
regime of cavity QED it is often possible to construct a “potential” by integrating the dipole
force (e.g., [31]). For many particles trapped in the same cavity, this potential should also in-
clude the field-mediated (parametric) interaction between those particles. We have found [35],
that in the generic case even this approach breaks down. For asymmetric pumping (as in [99, 97]),
∂Fj(z1, . . . , zN )/∂zl 6= ∂Fl(z1, . . . , zN )/∂zj , and thus no potential function V (z1, . . . , zN ) can
be constructed that obeys the Young theorem about the commutativity of partial derivatives.



Chapter 7

Publication: Optomechanical coupling
in a one-dimensional optical lattice

Optical lattices (OL) are perfectly periodic arrays of particles trapped by the standing wave in-
terference pattern of several laser beams [107, 18]. OL’s are created in 1,2, or 3 dimensions, in
various shapes and sizes. Whereas in the 90’s occupancies of about 1% were realistic, OL’s can
now be loaded from Bose-Einstein condensates and filling factors of up to 5 can be achieved [108].
OL’s have important applications as model systems for solid state physics [109], for quantum in-
formation science [110], or metrology [111].

Optical Lattices are generally produced using extremely far detuned lasers: detunings of about
107 times the atomic transition linewidth are not uncommon. On the one hand, this ensures that
the dipole force dominates the scattering force, and the particles are only slightly heated by the
light used to trap them. On the other hand, in this regime the particles do not affect the propagation
of light very much, and thus optical back-action is avoided. The advantage is that this way light is
a tool to produce an inert potential. However, in related systems, it is the optical back-action that
gives rise to useful or interesting phenomena such as cavity-induced cooling of atoms [25, 53], or
cooling of micromirrors [22, 23, 24].

So far, the only back-action effect seen in Optical Lattices is a tiny but observable reduction of
the lattice constant with respect to the naive expectation (in a one-dimensional OL, this would be
half of the wavelength of the trap laser, d = λ

2 ). This has been predicted [36] , and subsequently
demonstrated [112], by I. Deutsch et al., and unambiguously observed in an experiment of Wei-
demüller et al. [37]. This phenomenon can be simply understood as a consequence of the fact
that the effective wavelength of light is reduced as it has to pass through the thin cloud of trapped
particles [36].

A generic physical effect due to the back-action is that the trap light mediates an interaction
between the particles, which can affect the equilibrium configuration and open the possibility of
collective motion. In many experimental setups this interaction is negligible, and therefore it has
largely been overlooked to this day. An exception is when the trap light is spatially confined
in a high-Q optical resonator [83, 98], where this interaction creates correlations between the
motion of trapped atoms [31], and can lead to the formation of ordered structures in real space
(self-organization, [27, 32, 56]) or in momentum space (correlated atomic recoil laser, [86, 88,
113, 114]). Another important exception is the phenomenon of “optical binding”, discovered in
1989 by Burns, Fournier and Golovchenko [30], which has very recently attracted the attention of
several groups [93, 115, 116, 117, 102]. The description of this phenomenon is rather involved,
including the solution of multiple scattering in a 2- or 3-dimensional situation, and thus, analytical
results are rarely found (an exception is [118]).

In this paper we study the radiative atom-atom interaction due to opto-mechanical coupling in

71
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the simplest possible case, a one-dimensional optical lattice in free space. Using the framework
of Deutsch et al. [36] as a starting point, the trapped clouds of atoms will be identified with single
scattering centers, i.e., beam splitters in one dimension. We derive the optical force on such a beam
splitter and generalize the standard “radiation pressure” and “dipole force” [10]. These latter can
be considered as perturbative approximations to our exact result, in which the back-action of the
scatterer on the optical field is neglected. The exact result accounting for back-action can be
interpreted by means of a simple physical picture, in terms of multiple reflection within the beam
splitter.

The modification of the optical force, due to back action, on a single atom cloud is small.
However, we have found that tuning a hitherto neglected parameter of an optical lattice its conse-
quences can become striking. This parameter, the “asymmetry”, is the relative power of the pump
beams constituting the trap. For symmetric OL’s — created by two counterpropagating beams
with the same intensity — the back-action induced interaction leads to the reduction of the lat-
tice constant d mentioned above, and we predict that it also causes the center-of-mass oscillations
to soften. In asymmetric lattices, the reduction of the lattice constant d is enhanced (in some
cases by several orders of magnitude), and arises even for blue detuning, where the first intuition
would suggest that d increases. However, this equilibrium phenomenon is masked by dynamic
effects. The interaction induced by back-action leads to a dynamic instability of optical lattices,
which happens already at moderate pump asymmetries. Small lattice fluctuations give rise to an
exponentially increasing density wave propagating along the direction of the weaker beam, which
ultimately leads to a destruction of the lattice: the particles will all be pushed away by the stronger
beam. Viscous friction can prevent this instability, but even with an arbitrary amount of friction
(overdamped limit) there is a critical asymmetry beyond which the OL becomes unstable. Cu-
riously, the propagating density waves arise in the overdamped limit as well, in spite of the fact
that the dynamics is first-order. We study these effects numerically and analytically, providing an
analytical characterization of the density waves and closed formulas for the critical asymmetries.

This Article is organized as follows. We first introduce the model of Deutsch et al. [36] we
use to compute the back-action of trapped particles on the trapping field, in Section 7.1. Then we
derive simple closed formulas for the optical forces on trapped atom clouds, using the Maxwell
Stress Tensor, in Section 7.2. We calculate the equilibrium optical lattice configuration revealing
that the lattice constant is reduced if the pump asymmetry is increased in Section 7.3. This effect,
however, is masked by the dynamics of the lattice, which we explore using numerical simulation
in Section 7.4. We characterize the vibrational modes of the lattice by a full analytical solution
of the dynamics close to equilibrium in Section 7.5. Although the analytical calculations are for
a perfect lattice, the main features of the dynamics persist even in the presence of noise, as we
illustrate in Section 7.6. We address some of the experimental issues and give estimations for the
real-life values of the physical quantities involved in Section 7.7. Finally, we give an outlook and
show how some of the features of dynamics arise in related systems in Section 7.8.

7.1 The light in an optical lattice

We consider a one-dimensional dipole trap constituted by two counter-propagating laser beams of
equal polarization and frequency, coming from the same “master laser”, and thus phase stabilized
with respect to each other. The transverse profile (y and z dependence) of the electric fields is
assumed to be Gaussian, with beam diameter much larger than the wavelength, w � λ. Thus
the intensity maxima and minima are both thin disks. Suppressing the vector indices, in the usual
complex notation we write the electric field incident from the left as E(x, t) = E0e

ikx−iωt, and
from the right E(x, t) = E1e

−ikx−iωt. In the following, for brevity we drop the trivial phase
factors e−iωt. Although the two incident plane waves have the same frequency, their intensities
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Figure 7.1: A dipole trap created by two lasers of equal frequency but unequal power. The intensity
(in light red), mirrored for better visibility, ranges between Imin = 1

2ε0 c (|E0|−|E1|)2 and Imax =
1
2ε0 c (|E0| + |E1|)2. Trapped particles form disk-shaped clouds (in dark blue), and are modeled
as beam splitters. Due to the pump asymmetry, the electric field has no nodes. Back-action of
trapped particles distorts the field and reduces the lattice constant.

Ij(x) = 1
2ε0c |Ej(x)|2, for j = 1, 2, can be different — for definiteness, we choose I1 > I0. We

quantify this intensity imbalance using two alternative dimensionless quantities, the normalized
difference of the intensities, the pump asymmetry

A =
I1 − I0√
I0I1

> 0 ; (7.1)

and the pump power ratio

P =
I1
I0

=
|E1|2

|E0|2
=

1
4

(
A+

√
4 +A2

)2
> 1 . (7.2)

For almost symmetric pumping (A � 1), the two are related by P = 1 + A, whereas for highly
asymmetric pumping (A � 1), roughly P = A2.

The trap is used to hold particles, which can be (ultra-)cold atoms or sub-micron size plastic
beads, with diameter much smaller than the wavelength. For simplicity we assume linear polariz-
ability of these particles (the dipole transitions are not saturated). The particles can be “high-field
seekers”: cold atoms, with the trapping light red detuned with respect to the characteristic fre-
quency ωA of the atomic resonance, or sub-micron plastic beads, where the index of refraction
of the surrounding medium is lower than that of the trapped particles. In this case, the particles
accumulate around the intensity antinodes. Alternatively, they can be “low-field seekers”: for cold
atoms, this corresponds to blue detuning of the lattice lasers, ω < ωA, for microscopic particles
it means that they are surrounded by a medium with an index of refraction exceeding their own.
In that case, the particles are expelled from regions where the intensity is high: if some external
trap mechanism prevents their escaping the beam in the transverse y and z directions, they will
gather around the nodes of the trapping field. In either case, we assume that the particles are cold
enough and the laser beams intensive enough so that they are deeply trapped, and thus form a stack
of pancake-shaped clouds. Within a single cloud, we average over transverse motion of particles,
thus each cloud is represented by an infinitely thin plane of linearly polarizable material. The
limits of validity of these simplifying assumptions are discussed briefly in Section 7.7.
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The strength of interaction of a cloud of trapped particles with the laser depends on the linear
polarizability α of the particles (a complex quantity), and on their areal density

η =
Nλ

λ2
=

(number of particles in a cloud)
(cloud cross-section)

, (7.3)

with Nλ denoting the number of atoms in a part of the cloud with area λ2. Together these give the
dimensionless complex coupling constant ζ, the (areal density of the) polarizability of a cloud :

ζ = kη
α

2ε0
. (7.4)

The real part, Re ζ, describes dispersive atom-light interactions. It is positive for red detuning (of
the trap laser with respect to the atomic resonance), negative for blue detuning. The imaginary
part, Im ζ, which is always positive, corresponds to dissipation. For a detailed discussion of how
ζ is related to the parameters of the trapped atoms or microbeads and the laser, see Section 7.7.

As is well known, the polarizability ζ is proportional to the optical forces that trap the particles
in the lattice, which we are going to discuss in the next Section. However, it also gives the magni-
tude of the back-action of the cloud on the trapping light. Following Deutsch et al. [36], we take
this effect into account by calculating the propagation of the trap light via the scalar Helmholtz
equation, with the N clouds represented by Dirac-δ distributions of linearly polarizable material:

(∂2
x + k2)E(x) = −2kE(x)

N∑
j=1

ζδ(x− xj). (7.5)

If the dissipative part of the light-matter interaction (spontaneous emission) can be neglected,
ζ ∈ R, the Helmholtz equation (7.5) for propagation of light is identical to the Kronig-Penney
model in solid state physics for the propagation of electrons. Even with dissipation, for general
ζ ∈ C, the solution of Eq. (7.5) between two clouds is a superposition of plane waves,

E(xj−1 < x < xj) = Aje
−ik(x−xj) +Bje

ik(x−xj) (7.6)

= Cj−1e
−ik(x−xj−1) +Dj−1e

ik(x−xj−1).

Integrating Eq. (7.5) over xj , for j = 1, . . . , N , reveals that the scatterers constitute boundary
conditions for the field:

E(x = xj − 0) = E(x = xj + 0); (7.7a)

∂xE(x = xj − 0) = ∂xE(x = xj + 0) + 2kζE(xj). (7.7b)

Substituting the modal decomposition (7.6), the boundary conditions give simple algebraic rela-
tions between the mode amplitudes to the left and to the right of each atom cloud. These have the
form of Beam Splitter (BS) relations:

Aj = rBj + tCj ; (7.8a)

Dj = tBj + rCj , (7.8b)

with reflection and transmission coefficients [36]

r =
iζ

1− iζ
, t =

1
1− iζ

, whereby ζ = −ir
t
. (7.9)

We note that a general linear optics four-port can be described by 4 independent real parameters,
whereas here we have only 2: the real and imaginary parts of ζ. The reason is that we require that
the electric field be continuous at the position of the BS (infinitely thin beam splitter):

A+B = C +D, (7.10)
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Figure 7.2: The Transfer Matrix relates the mode amplitudes to the left of an optical element to
the mode amplitudes to the right of it. As an illustration, we give the Transfer Matrix of a Beam
Splitter.

which leads directly to r + 1 = t. As a result of interference the electric field is reduced at the
position of the BS with respect to its expected value based on the incoming amplitudes B and C:
A+B = C +D = t(B + C). As discussed in the following Section, this leads to a reduction of
the “dipole force” and “radiation pressure”. The imaginary part of ζ describes dissipation,

|A|2 + |D|2 = |B|2 + |C|2 − 2Im ζ |t(B + C)|2 , (7.11)

and
|r|2 + |t|2 = 1− 2 |t|2 Im ζ (7.12)

For purely dispersive interaction, ζ ∈ R, photon number is conserved, |r|2 + |t|2 = 1, and time
inversion invariance is expressed by r∗t + t∗r = 0. In that case, the reflection and transmission
coefficients are r = i sinχ0e

iχ0 and t = cosχ0e
iχ0 , with χ0 = tan−1 ζ.

7.1.1 The Transfer Matrix Method

Since a single atom cloud is modeled as a beam splitter, an optical lattice consisting of several
(hundreds of) such clouds can be represented by cascaded BS’s, as illustrated in Figure 7.1. The
beam splitter relations and those for free propagation of light give 4N linear equations for the 4N
mode amplitudes Aj , Bj , Cj , Dj , j = 1, . . . , N , where E0 = B1 and E1 = CN are the incident
electric fields. The most straightforward way to obtain the simultaneous solution of all of these
equations is via the transfer matrix (TM) method, as used, e.g., in [36].

The essence of the Transfer Matrix method, as illustrated in Fig. 7.2, is that instead of relating
the outgoing modes to the incoming ones, we relate the modes to the left of an optical element to
the modes to the right of it. For a linear system the relationship will be linear, and thus is given by
a matrix; in our case, its size is 2× 2. The advantage of the approach is that it is very easy to scale
up a system: the TM of a composite (cascaded) system is just the matrix product of the TM’s of
its components.

For a single atom cloud, the BS relations (7.8) give

MBS =
1
t

(
t2 − r2 r

−r 1

)
=
(

1 + iζ iζ
−iζ 1− iζ

)
= 1 + iζ

(
1 1
−1 −1

)
= 1 + iζB, (7.13)

with the parametrization (7.9) for r and t, and the matrix B defined by the last equality. This
can be contrasted with the TM for the corresponding incoherent scattering process, where for the
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intensitiesA, B, C, andD we haveA = RB+TC, andD = RC+TB, withR, T > 0, R+T =
1:

MSC =
1
T

(
T 2 −R2 R
−R 1

)
=
(

1− ρ ρ
−ρ 1 + ρ

)
= 1− ρB† (7.14)

where ρ = R/T . Now B = (1;−1)† ◦ (1; 1) is the dyadic product of two orthogonal vec-
tors, and thus B2 = B†2 = 0. It follows directly that MSC(ρ)MSC(ρ′) = MSC(ρ + ρ′) and
MBS(ζ)MBS(ζ ′) = MBS(ζ + ζ ′): two subsequent scattering processes can be represented by a
single process, and the parameters ρ, respectively, ζ, are additive. For incoherent scattering pro-
cesses this relation is used to show that ρ is proportional to the resistivity. For coherent scattering,
however, no simple conclusions involving the “reflectivity” of a cascade of BS’s can be drawn. The
complication is that whereas the intensities do not change during free propagation, the amplitudes
acquire phases, and in coherent processes these phases play a role. Thus it is vitally important to
include the propagation of light with wavevector k between BS’s over length d into the transfer
matrix of a unit of an optical lattice:

M = MBSP(d) = MBS

(
eikd 0
0 e−ikd

)
=
(

(1 + iζ)eikd iζe−ikd

−iζeikd (1− iζ)e−ikd

)
. (7.15)

Due to the nontrivial propagation there is now no simple additive parameter.
We can rewrite the transfer matrix M into a form useful for analytical calculations, and giving

the TM of a regular optical lattice instantly. For this, first note an important property of the TM of
a beam splitter: reflection symmetry along x. By “reflection” we here refer to the exchange of the
amplitudes of the left- and right-propagating components, which for the formal vector composed
of the field amplitudes can be realized by multiplication by a matrix:(

D
C

)
= σ

(
C
D

)
; σ =

(
0 1
1 0

)
(reflection along x). (7.16)

As this is a reflection, σ−1 = σ. For a beam splitter, reflection along x corresponds to the
simultaneous swapping of the amplitudes A ↔ D and B ↔ C. By Eq. (7.8), this is a symmetry
of the BS relations, (

A
B

)
= MBS

(
C
D

)
⇔

(
D
C

)
= MBS

(
B
A

)
, (7.17)

regardless of whether the BS is purely dispersive, ζ ∈ R, or there is some dissipation, ζ ∈ C.
Using the more concise formalism introduced above, we have:

σMBSσ = M−1
BS. (reflection symmetry of a BS). (7.18)

Reflection symmetry also holds for free propagation, σP(d)σ = P(−d), and therefore also
for P(d/2)MBSP(d/2). Due to reflection symmetry then, the product of the eigenvalues of
P(d/2)MBSP(d/2) has to be 1. Since this TM has the same spectrum as M = MBSP(d),
the same holds for M: detM = 1, and its eigenvalues can be written as m± = e±iΘ, where Θ is
a complex number1. The characteristic equation of M is m2

± − tr Mm± + 1 = 0, whose solution
supplies us with the formula for Θ:

cos Θ =
1
2

tr M = cos kd− ζ sin kd. (7.19)

1For Im Θ 6= 0, we have |m−| < 1 < |m+| or |m+| < 1 < |m−|. Multiplication of many transfer matrices is
therefore numerically ill conditioned: Important variables can take on different orders of magnitude and are then added
together. In numerical calculations in mesoscopic physics it can therefore be advisable to fall back to the scattering
matrix. For the transfer matrices in our case, usually |Im Θ| is of the order of Im ζ, and as normally |NIm ζ| < 1
(required so that absorption does not alter the asymmetry too much throughout the sample), these numerical issues do
not concern us.
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We can use this result to rewrite the transfer matrix M:

M = cos Θ + i

(
ζ cos kd+ sin kd ζe−ikd

−ζeikd −ζ cos kd− sin kd

)
= cos Θ + iA sinΘ (7.20)

where the last equation defines the matrix A. Now obviously tr A = 0, and its eigenvectors u and
w are the same as those of M, the corresponding eigenvalues have to be±1 (to havem± = e±iΘ).
Therefore A2 = 1, and thus, as noted in [36], M = eiΘA. For the TM of equidistant lattices, we
then simply have MN = eiNΘA = cos(NΘ)+iA sin(NΘ). Thus, Θ/d is analogous to the Bloch
quasimomentum, and (7.19) is the transcendental equation giving the dispersion relation of Bloch
states.

7.2 Dipole force

We have described how to calculate the amplitudes of the modes inside a 1D system of optical
scatterers. We now address the question of how to specify the equilibrium positions of these
scatterers, more generally, what the optical forces on them are. The first issue is important since
in standard textbooks the optical forces are usually derived from the dipole coupling Hamiltonian,
and therefore it is tempting to identify the zero-temperature equilibrium configuration of a system
with the one minimizing the dipole potential (e.g., [119, 99, 97]). However, as discussed in [34],
this approach is flawed, and in the regime where the atomic back-action is substantial, it can lead
to nonphysical results. Instead of deriving the potential, we have to derive the force on the trapped
particles.

The optical force on a body is the rate of the extraction of momentum from the electromagnetic
field due to the presence of the body. To quantify this, we can enclose the body in a fictitious “box”,
and integrate the momentum flux (the Maxwell Stress Tensor) on the boundary of this box, as, e.g.,
in [101]. For the planar atom clouds in our 1D model this is very easily done. For a selected atom
cloud, we take the surface around it to consist of two planes orthogonal to the x axis, between the
atom cloud and the two neighbouring clouds. As the electromagnetic wave is transverse, both the
E and B vectors lie in the planes, and the only part of the stress tensor contributing to the integral
is the term with the energy density. For the plane waves of (7.6) this results in a simple formula for
the areal density F of the optical force (the force divided by the transverse area, with dimensions
of pressure) on a cloud:

F =
ε0
2

(
|A|2 + |B|2 − |C|2 − |D|2

)
. (7.21)

Although the simple formula (7.21) for the force is very practical for both numerical and
analytical work, we can gain more insight into the physics it represents by rewriting it to show
its position dependence explicitly. Taking incident field amplitudes B(x) = E0e

ikx and C(x) =
E1e

−ikx, the BS relations of Sect. 7.1 supply us with the outgoing amplitudes A(x) and D(x),
which can be substituted into Eq. (7.21) to give

F (x) = 2
I0 − I1
c

Im ζ

|1− iζ|2
− 4

√
I0I1
c

Re ζ
|1− iζ|2

sin(2kx+ ϕ) + 2
I0 − I1
c

|ζ|2

|1− iζ|2
, (7.22)

where ϕ = argB(x = 0)− argC(x = 0) is the relative phase of the two incident trapping beams
at x = 0. For low density or weak polarizability |ζ| � 1, the force is typically dominated by
the first two terms. To first order in ζ, these arise from the standard microscopic light-induced
forces [10] acting on each scatterer independently. To apply the model of [10], we assume large
detuning from the atomic resonances and low saturation of the dipoles (linear regime). Then if
we neglect the back-action of the particles on the light, each of them experiences the electric
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field E(x) = E0e
ikx + E1e

−ikx, and we can directly apply the formulas from [10] giving the
“dissipative” and “reactive” part of the mechanical effects of light. This reproduces the first two
terms of Eq. (7.22), apart from the factors of |1− iζ|−2. Thus the formula (7.22) for the force
can be seen as a generalization of the standard theory for light-induced forces to the regime where
it is not enough to account for the effect of the dipoles on the electric field only perturbatively.
Alternatively, if the individual dipoles interact weakly with the field — which is the standard
case for trapped ultracold atoms — Eq. (7.22) can be derived from the microscopic forces, and
thus embodies the effects of multiple scattering within the cloud, similarly to the Lorentz-Lorenz
formula. We present this derivation in Appendix 7.9.

The first term of Eq. (7.22) embodies a part of “radiation pressure” arising due to absorption of
light in the cloud. It is proportional to the difference of the incident photon fluxes, and always gives
a force pointing towards the weaker source.2 The second term, using the terminology of [10], is up
to the factor of |1− iζ|−2 the density of the reactive or “dipole” force, also referred to as “gradient
force”. It arises due to the interference of reflected and transmitted light, i.e., absorption of photons
from one trap beam and stimulated emission into the other one. As expected, for Re ζ > 0, the
gradient force attracts particle clouds towards areas of high intensity, for Re ζ < 0, it expels the
clouds from such regions. The third term can be rewritten as c−1(2 |r|2 I0 − 2 |r|2 I1), revealing
that it is due to the incoherent reflection of the photons off the atom cloud, i.e., taking reflection
into account without the effects of interference (which are supplied by the second term). This third
term is proportional to the square of the polarizability, |ζ|2, and thus is usually negligible for single
atoms. However, in dense atom clouds, it can be of the order of, or much larger than, the first two
terms.

For a single trapped cloud, we can always construct a potential by simply integrating the force
(7.22): V (x) = −

∫ x
0 F (x′)dx′. As this can be useful to understand the possibilities of trapping

with two beams of different intensities, we plot it, along with some of its naı̈ve approximations,
for a specific example in Fig.7.3. However, as soon as two or more clouds are trapped by the same
field, their back-action on the field creates an effective interaction between them, and this potential
cannot directly be applied. One might expect that a potential can be constructed that takes the
interaction into account as well (as for atoms trapped in a high-Q cavity [31]), but, as we find later,
in Sect. 7.5, this turns out not to be the case. In an asymmetric dipole trap, no potential can be
constructed that supplies the dynamics of several trapped clouds.

Clearly the force (7.22) describes a sequence of (asymmetric) potential wells in one dimension
if the intensity difference of the beams is so small that the dipole force (second term) dominates
the scattering forces (first and last terms). A cloud can be trapped at the origin, x = 0, if

sinϕ = −1
2
A|ζ|

2 + Im ζ

Re ζ
; cosϕ = ±

√
1− A

Amax
, (7.23)

where ± is “+” for red detuning, ζ > 0, and “−” for blue detuning, ζ < 0, and

Amax = 2
∣∣∣∣ Re ζ
|ζ|2 + Imζ

∣∣∣∣ (7.24)

is the maximum of the asymmetry for trapping along x; for A > Amax there are no traps. Thus a
BS which is illuminated by mutually coherent laser beams from the two sides can be at equilibrium
even if the lasers have unequal intensities, but only if A < Amax (see [120] for a similar analysis
of the gradient force counteracting the dissipative force). In the purely dispersive case, i.e., if the
imaginary part of ζ can be neglected (Im ζ � (Re ζ)2), the relation (7.24) assumes the simple

2Note that the fluctuations of this force, arising from the spontaneous emission accompanying absorption, lead to a
heating of the cloud, which limits the timescale of experiments. We come back to this issue in Sect. 7.7.
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Figure 7.3: Potential of the force for a single trapped cloud, with polarizability ζ = 0.5 + 0.025i,
incident intensities I1 = 4I0. Dotted (blue) line: potential obtained by integrating the sum of
the microscopic forces, the “dipole force” and the “radiation pressure” [10] on the particles in
the cloud, neglecting the change of the mode amplitudes due to the atoms. The depth of the
resulting sinusoidal potential is V1 = 4Re ζ

√
I0I1/ω, slightly decreased (increased) to the left

(right) by πIm ζ(I1 − I0)/ω. Slashed (green) line: potential obtained by including the factors of
|1− iζ|2, accounting for the decrease of the intensity inside the clouds (similarly to the Lorentz-
Lorenz formula). For these parameters this amounts to a reduction of the potential depth by 20%.
Continuous (red) line: the correct potential, defined as V (x) = −

∫ x
0 F (x′)dx′ with the force

calculated via the Maxwell Stress Tensor, Eq. (7.22). Besides the decrease of the potential depth,
this correctly accounts for the mechanical effects of reflected light, including the third term of
Eq. (7.22). This decreases (increases) the potential height to the left (right) by approximately
π |r|2 (I1 − I0)/ω.
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form
ζA < 2; Amax = 2/ζ; ζmax = 2/A. (7.25)

This criterion can be intuitively understood in the following way. If |E0|2 < |E1|2, more photons
are incident on the right of the BS than the left, giving a force on it. If enough light is transmitted
(|t| > 1

2 |r| A), and the interference is favourable (depending on the position of the BS), the im-
balance in the outgoing number of photons is enough to counteract this force, leading to a steady
state.

7.2.1 Equilibrium of a single cloud

The simple and very sugggestive formula (7.21) for the mechanical effects of light can be used to
make statements about objects which are only acted on by optical forces and are at equilibrium.
Since the force (7.21) has to vanish,

|A|2 + |B|2 = |C|2 + |D|2 (force vanishes), (7.26)

Furthermore, due to the possibility of dissipation inside the object, we have

|A|2 + |D|2 ≤ |B|2 + |C|2 , (dissipation) (7.27)

Together, these relations give

|A| ≤ |C| and |B| ≤ |D| , (7.28)

with equality if Im ζ = 0. When passing through the object, both beams lose in intensity, this loss
is proportional to Im ζ. For purely dispersive interaction (ζ ∈ R), the intensities of the beams are
unchanged.

Although in this one-dimensional setting the presence of an optically trapped purely dispersive
BS cannot be inferred by observing the intensities of the transmitted light, the BS does alter the
phases of the fields. Consider a single trapped pancake-shape atom cloud modeled as infinitely
thin sheet of nondissipative polarizable material. At equilibrium, arg(A+B) = arg(C+D) leads
via (7.28) to argA+argC = argB+argD. For the two relative phases χ = argD− argC and
ϕ = argB − argC we then find, using |A+B| = |C +D|:

sinϕ± = −1
2
ζA; , cosϕ± = ±1

2

√
4− ζ2A2; (7.29)

sinχ± =
ζ
√

4 +A2 ± ζ
√

4− ζ2A2

2(1 + ζ2)
; cosχ± =

−ζ2
√

4 +A2 ±
√

4− ζ2A2

2(1 + ζ2)
. (7.30)

Here, the “±” refers to “+” (“−”) being stable, and “−” (“+”) being unstable equilibrium for red
(blue) detuning. Clearly, Eq. (7.29) is just Eq. (7.23) rewritten for ζ ∈ R. The angle ϕ shows
the effect of the “back-action” force directly: for symmetric pumping and red (blue) detuning,
it is zero (−π), and if I1 is increased with respect to I0, it increases too, showing that the atom
cloud has been pushed by the “back-action” force. Since both the trap depth and this “push” are
independent of the sign of ζ, we have ϕ(ζ,A) − ϕ(ζ,A= 0) = ϕ(−ζ,A) − ϕ(−ζ,A= 0). It
is not so intuitive, but follows directly from (7.30), that the change in χ due to asymmetry is also
insensitive to the sign of the detuning: χ(ζ,A)− χ(ζ,A = 0) = χ(−ζ,A)− χ(−ζ,A = 0).

Finally we can calculate the phase slip ∆φ of the intensity function at the position of the BS:

2/(ε0c) · Ileft(x) = |A(x) +B(x)|2 = |C|2 + |B|2 + 2 |BC| cos(2kx− χ); (7.31)

2/(ε0c) · Iright(x) = |C(x) +D(x)|2 = |C|2 + |B|2 + 2 |BC| cos(2kx+ χ). (7.32)

We can read off ∆φ = 2χ.
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Figure 7.4: Back-action of trapped particles (e.g., atoms) on the intensity of light constituting
an optical dipole trap. Top line: the empty trap, created by two counter-propagating beams with
equal (a) or unequal (d) intensity. In the asymmetric trap, the intensity ranges between Imin =
(
√
I1−

√
I0)2 and Imax = (

√
I1+

√
I0)2. The total power is the same for both traps (I0+I1 = 2I).

Middle line: blue detuning. For symmetric pumping (b), the trapped atoms sit in the dark and have
no effect on the lattice. For asymmetric pumping (e), destructive interference between the trap
beams cannot be perfect, and thus the atoms are polarized. As a result, the trap contracts. Bottom
line: red detuning. The lattice constant is reduced in both symmetric (c) and asymmetric (f) trap,
but this reduction is enhanced by the asymmetry.

7.3 Self-consistent lattice constant

The result of Eq. (7.28) obtained in the previous Section implies that in any 1-dimensional struc-
ture held together by monochromatic light, with no other types of (external or interaction) forces
present except for those from the purely dispersive dipole interaction with the trap light, the light
permeates the structure unattanuated. This is a generalization of the finding of Deutsch et al. [36],
who have shown that light permeates a regular lattice unattanuated. In formulas, at equilibrium

|A1| ≤ |A2| ≤ . . . ≤ |AN |≤ |CN | = |C| , (7.33)

|B| = |B1|≥ |B2| ≥ . . . ≥ |BN | ≥ |DN | , (7.34)

with equality if and only if ζ1, . . . , ζN ∈ R. Although one might expect that due to disorder, light
would be localized in a 1D lattice, this is not so if it is the light which creates the lattice itself is
considered. The random variation of the coupling constants ζ causes a random variation of the
lattice constant, the two types of disorder are obviously correlated. For the propagation of the light
creating the lattice, either of these noises alone would localize light, but they combine to ensure
that the trap light is not localized at all.

Now consider the steady state of N > 1 identical, purely dispersive trapped clouds, with
ζ1 =, . . . ,= ζN = ζ < 2/A. Since at every cloud |Cj/Bj | − |Bj/Cj | = A, the phase slips
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are all equal: χ1 =, . . . ,= χN = χ. Thus the equilibrium configuration is an equidistant lattice,
xj = x

(0)
j = x

(0)
1 + (j − 1)d. The lattice constant d is clearly independent of N , and from

∆φ = 2χ, we find explicitly

red detuning, ζ > 0 : d(ζ,A) =
λ

2

(
1− χ(ζ,A)

π

)
; kd = π − χ; (7.35a)

blue detuning, ζ < 0 : d(ζ,A) =
λ

2

∣∣∣∣χ(ζ,A)
π

∣∣∣∣ kd = −χ; (7.35b)

For symmetric pumping, A = 0, we recover the results of Deutsch et al. [36]: for blue detuning
d(ζ < 0,A = 0) = λ/2, whereas for red detuning we have d(ζ > 0,A = 0) = dsymm(ζ) =
λ
2 (1− 2 tan−1(ζ)/π). For a given ζ, increasing the pump asymmetry A causes the phase shift χ
to increase, and d to be reduced; this extra reduction turns out to be exactly the same for both red
and blue detuning. Contraction of a blue detuned lattice is somewhat counter-intuitive. Naively
one could expect the wavelength of the trap light to be increased due to the trapped particles as
it happens if the particle positions are random. For symmetric pumping, as noted in [36], the
equilibrium positions of the particles are exactly at the antinodes, where they do not interact with
the field, and thus do not affect the wavelength. For asymmetric pumping, we find that near the
intensity minima the atoms decrease the effective wavelength, as illustrated in Fig. 7.4. Near the
intensity maxima however, their effect is to increase the wavelength by such a large amount that
for randomly positioned atoms the expected effective increase of the light passing through the gas
is recovered.

The reduction of the lattice constant resulting from the pump asymmetry is shown in Fig.7.5
(thick red lines). For A > 2/ζ, the inequality (7.25) is violated, the stronger beam pushes all the
particles away: thus the thick (red) lines in the Figure all terminate at some at A = 2/ζ. For red
detuning, the lattice constant at this critical asymmetry is, remarkably, exactly half of its value
at symmetric pumping: d(ζ >0, A=2/ζ) = 1

2dsymm(ζ), a decreasing function of ζ. For blue
detuning, the critical lattice constant d(ζ<0, A=2/ζ) increases with increasing ζ.

7.4 Dynamics of the lattice

We have found the interesting phenomenon that back-action related effects can be enhanced by
using an optical lattice where the trapping beams have unequal intensities. The next step is to
investigate this situation in a computer simulation.

7.4.1 Numerical simulation, overdamped dynamics

Numerical simulation of the dynamics of the optical lattice is quite straightforward. Given the
positions and velocities of the N atom clouds, the electric fields to the right and to the left of
any cloud can be computed by the Transfer Matrix Method, as outlined in Section 7.1.1. Having
obtained the mode amplitudes, the optical force on all clouds is given by (7.21). The dynamics of
the lattice is then given by a set of second-order ordinary differential equations:

mẍj = −µẋj + Fj(x1, . . . , xN ), for j = 1, . . . , N. (7.36)

In addition to the optical forces, we have also included viscous friction with coefficient µ (related
to the single-particle friction coefficient µA by µ = ηµA) to the system: this should stabilize
the optical lattice. In experiments with cold atoms in vacuum, this can correspond to some laser
cooling mechanism, whereas for plastic beads immersed in water, µ follows from the Stokes law.
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Figure 7.5: The lattice constant as a function of the asymmetry is shown in thick (red) curves for
red detuning in (a), and blue detuning in (b). Shaded (green) areas indicate regions of stability,
for N ≤ 1000 (darkest shade), N ≤ 100, N ≤ 10 and N ≤ 2 (lightest shade). The white area
is unstable, see Eq. (7.25). The (orange) circle in (a) marks the parameter regime of Figs. 7.9 and
7.10.
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Before discussing the simulation results, we digress on the timescales in this dynamical system
and introduce the overdamped limit. Without damping, the characteristic timescale of the cloud
dynamics is given by the oscillation period of deeply trapped clouds. From formula (7.22) for the
force, it can be seen that for small displacements, |x| � λ, trapped clouds experience a harmonic
restoring force F = zsinglex, where

zsingle = −β |cosϕ|
|1− iζ|2

, with β = 8
k

c
|Re ζ|

√
I0I1, (7.37)

and cosϕ is given by Eq. (7.29). Thus the oscillation frequency of a single trapped cloud is

ωsingle = ωosc

√
|cosϕ|
|1− iζ|

, with ωosc =

√
β

m
. (7.38)

For low asymmetries, A � Amax, where |cosϕ| ≈ 1, and weak coupling, |ζ| � 1, whereby
|t|2 ≈ 1, we have ωsingle ≈ ωosc, and the characteristic timescale of undamped cloud motion is the
oscillation period of a single trapped cloud:

τosc = 2π
√
m

β
. (7.39)

Due to the viscous friction, the velocity relaxes towards the value F/µ exponentially in timescale

τvel =
m

µ
, (7.40)

as can be seen by setting F to a constant in (7.36). For small damping, this timescale exceeds τosc
by far (τvel � τosc), and we expect the system to perform many oscillations before the mechanical
energy is totally dissipated. On the other hand, if τvel � τosc, the system is overdamped: the clouds
reach the velocity F/µ in the short timescale of τvel, and then, on longer timescales, their motion
can be described by the first-order equation obtained by dropping the inertial term of (7.36):

µẋj = +Fj(x1, . . . , xN ), for j = 1, . . . , N. (7.41)

For harmonically trapped clouds, using (7.22), (7.37), and (7.41), we can expect them to relax to
the equilibrium positions at the bottom of their respective traps exponentially during time

τd =
µ

β
. (7.42)

For consistency, we can check if during time τvel the variation of the force, dF = vτvel(dF/dx)
is really small for v = F/µ and F = −βx. From dF = Fβm/µ2 � F we obtain the condition
that we are in the overdamped limit if

βm� µ2; equivalently τvel � τd; or τosc � τd. (7.43)

The last condition is equivalent to the first two because τosc = 2π
√
τvelτd. In fact, for plastic

beads trapped in water, the experiments are typically in this overdamped regime (see Section 7.7
for more details).

For the moment, we consider the dynamics of perfectly identical and purely dispersive clouds
(ζ1 = ζ2 =, . . . ,= ζN ∈ R) with no dynamical noise. This first step towards understanding the
dynamics of real optical lattices already provides important surprises. In any realistic simulation,
absorption and noise also have to be considered. Inclusion of absorption amounts to setting Im ζ >
0. To include dynamical noise, Langevin terms need to be added to to (7.36) or (7.41). To account
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for the uncertainty in the number of particles per cloud, we have to have ζ1 6= ζ2 6= . . . , 6= ζN . We
address these questions later, in Section 7.6.

We explore the dynamics of optical lattices by slightly perturbing the equilibrium and using
numerical simulation to find how the system reacts. Specifically, we fix the cloud polarizabilities
ζ, the pump asymmetry A, and set up a lattice configuration,

x
(0)
j = x

(0)
1 + (j − 1)d, such that Fj(x

(0)
1 , . . . , x

(0)
N ) = 0, for every j = 1, . . . , N. (7.44)

The lattice constant d depends on the choice of parameters ζ andA according to Eq. (7.35), and the
position x(0)

1 is fixed by the relative phases of the pump beams. Next we add a small perturbation
to this lattice, in the form of a random configurational noise. We denote the position of each cloud
with respect to its equilibrium position by ξj , such that

xj(t) = x
(0)
j + ξj(t), (7.45)

and the initial displacement ξj(t = 0) is a uniformly distributed random varible between −ξinitial

and +ξinitial, with specifically ξinitial = 5 · 10−4λ. We also start the clouds with random velocities
uniformly distributed between −ωosc ξinitial and ωosc ξinitial.

In optical lattices with symmetric pumping (an example shown in Fig. 7.6), the atom clouds os-
cillate almost independently, and roughly with the expected timescale of τosc (as seen on Fig. 7.6a).
However, instead of centering on ξ = 0, these oscillations are uniformly displaced, and this dis-
placement itself varies with time in an oscillating fashion. Thus, the center-of-mass oscillations of
the whole lattice have a longer timescale, in the example shown in Fig. 7.6, this is roughly 10ωosc.
The total intensity inside the structure is not homogeneous: the random displacements create some
“cavities” where some extra light is trapped, or from where extra light can be expelled. As the
atom clouds oscillate, so does the intensity, around the average value of I0 + I1 roughly with the
frequency ωosc. The local pump power ratio, the ratio of left– to right–propagating intensities,
however, is roughly independent of position in the lattice, and oscillates at the same rate as the
center-of-mass, at ωosc. This produces a signal — the variation of the transmitted intensities —
that could be used for detection of the “slow” center-of-mass oscillations. This is the signal that
would be expected for a single beam splitter oscillating at the slow frequency 10ωosc, resulting
from the change of the phases acquired by the beams until they reach the beam splitter.

Friction damps the oscillations of the atom clouds, and in the overdamped limit — an example
shown in Fig. 7.7 — as expected, instead of oscillations we only see the damping of the initial
noise. The center of mass relaxes on a longer timescale here too, but much longer: in Fig. 7.7, this
timescale is roughly 100τd.

This picture is drastically changed in the presence of pump asymmetry. In the example shown
in Fig. 7.8, we set I1 = 1.42I0. Initially, in the first 10τosc, the qualitative features familiar from
the symmetric pumping case can be observed, the only difference being that the local pump power
ratio now depends on x, as seen in Fig.7.8c. Thereafter, however, the oscillations of neighboring
atom clouds appear to phase lock, and thus a density wave appears in the system, propagating in the
direction opposite to the stronger laser beam, crossing the whole lattice once every τosc. This wave
determines all of the three plotted properties, and is amplified in time. In fact, this amplification is
exponential, and after roughly another 10τosc the amplitudes of the cloud oscillations are so large
that some clouds merge, and, eventually, the whole lattice is pushed away by the stronger beam.

The overdamped limit of the dynamics in an asymmetric trap reveals even more surprises.
Starting the simulation with the same realization of noise as in Fig. 7.7, but a larger pump asym-
metry, I1 = 1.87I0, we observe (see Fig. 7.9) that most of the initial excitation is damped out as
before. However, the same phase-locked oscillations as seen for the undamped case appear here,
and the clouds oscillate in spite of overdamping. The amplitude of oscillations is larger for larger
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Figure 7.6: Numerical simulation of the dynamics of an optical lattice of N = 100 clouds with
polarizability ζ = 0.1 each, with symmetric pumping I0 = I1, after initial excitation (random
displacement from the equilibrium with maximum magnitude ξinitial = 5 · 10−4λ and random
velocity of maximum magnitude ωoscξinitial). No friction forces are assumed (µ = 0). Color
coding stands for position distortions ξ in (a), excess intensity I(x)− (I0 + I1) in (b), and excess
pump asymmetry Ileft(x)/Iright(x)− I1/I0 in (c).
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Figure 7.7: Numerical simulation of the dynamics of an optical lattice of N = 100 clouds with
polarizability ζ = 0.1 each, with symmetric pumping I0 = I1, after initial excitation (random dis-
placement from the equilibrium with maximum magnitude ξinitial = 5 · 10−4λ). The overdamped
limit is assumed (µ2 � βm). Color coding stands for position distortions ξ in (a), excess intensity
(I(x)− (I0 + I1) in (b), and excess pump asymmetry (Ileft(x)/Iright(x)− I1/I0) in (c).
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Figure 7.8: Numerical simulation of the dynamics of an optical lattice ofN = 100 clouds with po-
larizability ζ = 0.1 each, with asymmetric pumping, I1 = 1.42I0, after initial excitation (random
displacement from the equilibrium with maximum magnitude ξinitial = 5 · 10−4λ and random ve-
locity of maximum magnitude ωoscξinitial). No friction forces are assumed (µ = 0). Color coding
stands for position distortions ξ in (a), excess intensity (I(x)− (I0 + I1) in (b), and excess pump
asymmetry (Ileft(x)/Iright(x)− I1/I0) in (c).
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Figure 7.9: Numerical simulation of the dynamics of an optical lattice of N = 100 clouds with
polarizability ζ = 0.1 each, with asymmetric pumping I1 = 1.87I0, after initial excitation (ran-
dom displacement from the equilibrium with maximum magnitude ξinitial = 5 · 10−4λ). The
overdamped limit is assumed (µ2 � βm). Color coding stands for position distortions ξ in (a),
excess intensity (I(x)− (I0 + I1) in (b), and excess pump asymmetry (Ileft(x)/Iright(x)− I1/I0)
in (c). In (a), for better readability, for t > 10µ/β some contour lines are shown, from top to
bottom: ξ = −0.04 ξinitial (dash-dotted), ξ = −0.05 ξinitial (dash-dot-dotted), ξ = −0.06 ξinitial

(short dashed), and ξ = −0.06 ξinitial (long dashed).
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Figure 7.10: Numerical simulation of the dynamics of an optical lattice of N = 100 clouds
with polarizability ζ = 0.1 each, with asymmetric pumping I1 = 1.88I0, after initial excitation
(random displacement from the equilibrium with maximum magnitude ξinitial = 5 · 10−4λ). The
overdamped limit is assumed (µ2 � βm). Color coding stands for position distortions ξ in (a),
excess intensity (I(x)− (I0 + I1) in (b), and excess pump asymmetry (Ileft(x)/Iright(x)− I1/I0)
in (c).
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Figure 7.11: Snapshot of the simulation plotted in Fig. 7.10 at time t = 25µ/β. The local lattice
constant is shown in blue points, with the lattice constant dsymm corresponding to symmetric
pumping, and the equilibrium lattice constant d with the asymmetry used here A = 0.643 also
displayed for reference. The continuous (red) lines show the variation of the intensities in the left-
and rightwards propagating modes inside the structure (their sum is the total intensity).

x, i.e., it increases towards the source of the stronger pump. The oscillations are all damped with
the same timescale of – for these parameters – roughly 22 τd, and on a longer timescale of roughly
100τd the center-of-mass relaxes as well. Increasing the asymmetry further, to I1 = 1.88I0, leads
to an instability very similar to that occurring in the undamped case. As seen in Fig. 7.10a, after
a few τd most of the initial excitation dies out, except for the displacement of the center-of-mass
and for the density wave with wavelength equal to the system size. Now, however, this wave is
amplified, and between 15 and 20 τd the dynamics of the lattice is changed. The lattice breaks
into two blocks, each of them with roughly the original lattice constant d, the one to the left is
displaced towards the right, the one to the right displaced towards the left. As shown in Fig. 7.11,
in both slabs the average lattice constant is slightly above the expected value based on Eq. 7.35.
At their boundary, which in this run happens to be around x = 30λ, the lattice constant is reduced,
and, as shown in Fig. 7.10b, the intensity is reduced as well. Thus optical forces push the two
blocks towards each other. Later, at about t ≈ 45τd, the blocks meet, and at their boundary two
atom clouds merge (this is not shown in the Figure). Subsequently, other clouds merge as well and
eventually (after thousands of µ/β) the whole structure will be pushed away by the stronger beam.
Note that I1/I0 ≈ 1.87 corresponds to A ≈ 0.64 and therefore the Figs. 7.9 and 7.10 are both in
the parameter regime denoted by the (orange) circle in Fig. 7.5.

After giving a taste of the dynamics in the undamped and overdamped limit, we now summa-
rize some of the qualitative observations based on the simulations of the full equations of motion
(7.36).

- For symmetric lattices, both the oscillation and the damping timescales of the center of mass
of the structure are longer than those of the motion of the individual clouds.

- At small asymmetries, due to damping, the system still settles down to an equlibrium, which
can be a regular optical lattice.

- For asymmetries exceeding a critical value A > Acrit, but easily satisfying A < 2/ζ,
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however, the steady state optical lattice configuration is never attained. Clouds merge, and,
in typical runs, eventually the whole structure is pushed away by the stronger beam.

- Increasing the friction µ can help to stabilize the system, i.e., increase Acrit. However,
friction only helps up to a limit: there is a value of the asymmetry A∗, such that if A > A∗,
even the overdamped dynamics fails to converge to the optical lattice – and, typically, for
this second limit we also have A∗ � 2/ζ.

- Curiously, although oscillations die out faster and faster if the damping coefficient µ is
increased, they do not disappear as µ → ∞. We have oscillations even in the overdamped
limit.

- As intuitively expected, bothAcrit andA∗ are smaller if the clouds have larger polarizability
ζ.

- Quite surprisingly, however, Acrit and A∗ depend on the number of clouds N in the struc-
ture: both Acrit(ζ, µ,N) and A∗(ζ,N) decrease with increasing N . Thus, an asymmetric
trap can only support a finite number of atom clouds with polarizability ζ: even though an
equlibrium optical lattice configuration with any N exists, this configuration is unstable for
N > Ncrit(ζ, µ,A).

Due to the above listed curious effects, the asymmetry-induced contraction of the optical lat-
tice given by (7.35) and plotted in Fig. 7.5 would not occur in a real experiment with extremely
asymmetric dipole trap. Even with an arbitrary amount of viscous friction, if A > A∗(ζ,N), the
lattice would become unstable and be destroyed. This is already illustrated on Fig. 7.5, where the
(green) shaded areas limited by dashed lines are the parameter regimes where optical lattices of
specific sizes can be created (i.e., stabilized by viscous friction), for various values of N . The
boundary between the darkest and second darkest areas (which is hardly resolved in Fig. 7.5 (b))
corresponds to the onset of the instability for N = 1000; the two subsequent boundaries are for
N = 100 and N = 10. The last dashed line, the one that separates the white area from the one
with the lightest shade, corresponds to ζ = 2/A, and is in fact the limit of stability for an OL con-
sisting of 2 clouds as well as for a single cloud. These limits of stability are also plotted directly
as functions of ζ and A in Fig. 7.12, where the color coding is the same as in Fig. 7.5, but data for
larger lattice sizes is also included.3

7.5 Dynamics near equilibrium: analytical results

We can gain an analytical understanding of the phenomena listed above by studying the dynamics
infinitesimally close to an equilibrium configuration. There we can develop the optical force on
all of the clouds into a Taylor series, and from the nonlinear equation (7.36) we obtain, using the
notations introduced in Eqs. (7.45) and (7.44), the linearized form

mξ̈j = −µξ̇j +
N∑

l=1

Djlξl, (7.46)

3The color coding and slashed lines denoting the regimes of stability come in fact from the analytical calculations
detailed in Section 7.5, and not directly from simulations themselves (the computational cost is only linear with N , but
simulations with N = 106 are still impractical). Therefore they correspond to stability with respect to infinitesimal
perturbations. As such, they have been checked via simulation and seen to be correct several times, as illustrated in the
examples in Figs. 7.9 and 7.10.
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Figure 7.12: Parameter regimes where an optical lattice can be stabilized by viscous friction. White
area is unstable, see Eq. (7.25). Thick slashed lines correspond to the slashed lines on Fig. 7.5

where the matrix D is defined by

Djl =
∂

∂xl
Fj(x1 = x

(0)
1 , . . . , xN = x

(0)
N ), (7.47)

or, in a more suggestive way,

Djl = lim
ξ→0

1
ξ
Fj(xn = x(0)

n + δln ξ, n = 1, . . . , N). (7.48)

In (7.46) we have a set of N coupled linear differential equations. The diagonal part of D de-
scribes the oscillations of the clouds around their equilibrium positions. The off-diagonal terms
are responsible for coupling these oscillations: they contain the interaction mediated by the trap-
ping laser field. To understand the dynamics we need to find the eigenvectors and eigenvalues
of D. These will provide us with the noninteracting vibrational modes: their spatial structure,
their frequencies and their damping coefficients. We detail the calculations below, broken down
into several steps. For these calculations, for simplicity we assume purely dispersive interaction,
ζ ∈ R.

7.5.1 Eigenmodes of light in the lattice

To find the force on the j’th cloud, given by Eq. (7.21), we have to obtain Aj , Bj , Cj and Dj .
The first step to their calculation is to find the eigenvectors of the transfer matrix of one unit of
the lattice, M(k, d) (see Section 7.1.1). We fix the pump power ratio P , which gives the lattice
constant d via Eq. (7.35), and set set k = 2π/λ, i.e., we calculate the transmission of the light
constituting the periodic dipole trap. The periodicity of the optical lattice suggests that one of the
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eigenvectors is

u = eikdP(−d)
(√

P
eiχ

)
=
(√

P
e−iχ

)
; eigenvector of M, eigenvalue e+iΘ (7.49)

where the factor eikd was introduced for convenience, and we used Eq. (7.35). We find that indeed
eiΘu = MBSP(d)u, if Θ = ϕ + χ + kd, whereby, using Eq. (7.29) and Eq. (7.35) we have for
both red and blue detuning,

sinΘ =
1
2
|ζ| A; , cos Θ = −1

2

√
4− ζ2A2. (7.50)

The other eigenvector can be found using Eq. (7.17), the reflection symmetry of the BS:
σP(d)u = MBSσe

iΘu = eiΘMBSP(d)(P(−d)σu, and by the reflection symmetry of free
propagation σP(d) = P(−d)σ we have

w = e−ikdP(−d)σu =
(
eiχ√
P

)
; eigenvector of M, eigenvalue e−iΘ , (7.51)

corresponding to asymmetric pumping with I0 > I1. As expected, for propagation of the trap
beams we have Θ ∈ R, ensuring that these beams do indeed permeate the lattice unattanuated.
Note that as M is not Hermitian, u and w do not form an orthonormal basis: u†u = w†w = 1+P ,
and u†w = 2

√
Peiχ.

7.5.2 Propagation of light in the perturbed lattice

We now compute the mode amplitudes Aj , Bj , Cj , Dj inside an optical lattice composed of
purely dispersively scattering identical clouds. At equilibrium, with |E1|2 = P |E0|2, we have an
equidistant lattice with lattice constant given by Eq. (7.35), and, as seen above,(

Aj

Bj

)
= MN−j+1

(
CN

DN

)
= MN−j+1E0u = E0e

i(N−j+1)Θu, (7.52)

with the complex factor E0 = E1e
−ik(xN+d)P−1/2, note that |E0| = |E0|.

Now if we perturb the optical lattice by displacing the l’th element by ξ, as in Eq. (7.48), the
transfer matrix of the whole structure is changed, and this affects the outgoing modes. We can
then write the fields at the far left end of the structure in terms of the fields at the far right end in
the following way:

eiNΘu +
ξ

k

(
a(l)

0

)
= Ml−1P(ξ)MBSP(−ξ)P(d)MN−l

[
u +

ξ

k

(
0
b(l)

)]
. (7.53)

The perturbations can be expanded in the basis given by the eigenvectors u and w:(
a(l)

0

)
= a(l)

u u + a(l)
w w; a(l)

u = −
√
Peiχa(l)

w ; a(l) = −(P − 1)eiχa(l)
w (7.54a)(

0
b

)
= b(l)u u + b(l)w w; b(l)w = −

√
Pe−iχb(l)u ; b(l) = −(P − 1)e−iχb(l)u . (7.54b)

Note that to first order in ε = ξ/k,

P(ε/k)MBSP(−ε/k) = MBS − 2εζσ, (7.55)
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with the matrix σ corresponding to reflection about x as defined in (7.16). We can now gather the
first-order terms from (7.53), and have

a(l)
u u + a(l)

w w = MN (b(l)u u + b(l)w w)− 2εζMl−1σP(d)MN−lu

= b(l)u eiNΘ u + b(l)w e−iNΘ w + 2 |ζ| e−iχei(N−2l+1)Θ w. (7.56)

The u and w components of this equation, together with the relations (7.54) give

a(l)
w = −2 |ζ| e−iχei(2N−2l+1)Θ 1

Pe−iNΘ − eiNΘ
(7.57a)

b(l)u = 2 |ζ|
√
Pei(N−2l+1)Θ 1

Pe−iNΘ − eiNΘ
(7.57b)

Note that each of these expressions contains the denominator Pe−iNΘ − eiNΘ, which can give a
resonant enhancement for certain values of the asymmetry.

We can now proceed to calculate the mode amplitudes inside the perturbed optical lattice using
the transfer matrices.

For j > l, i.e., light to the right of the displaced cloud (the stronger beam is the one incident
from the right), we have

j > l :
(
Aj

Bj

)
= E0MN−j+1

[
u + εb(l)u

(
u−

√
Pe−iχw

)]
= E0e

i(N−j+1)Θu + εE0b
(l)
u

[
ei(N−j+1)Θu− e−i(N−j+1)Θ

√
Pe−iχw

]
. (7.58)

To first order in ε we then have

|Aj |2 + |Bj |2

|E0|2
= P + 1 + 2ε(P + 1)Re b(l)u − 4PεRe

[
b(l)u e−2i(N−j+1)Θ

]
. (7.59)

For j < l, the transfer matrix of the displaced l’th cloud also enters the calculation:(
Aj

Bj

)
= E0

[
MN−j+1 − 2εζMl−jσP(d)MN−l

] [
u + εb(l)u

(
u−

√
Pe−iχw

)]
= E0e

i(N−j+1)Θu + εE0

[
b(l)u ei(N−j+1)Θu− b(l)u e−i(N−j+1)Θ

√
Pe−iχw

−2ζei(N−2l+j)Θeikdw
]
. (7.60)

In this case, to first order in ε the sum of the intensities gives

|Aj |2 + |Bj |2

|E0|2
= P + 1 + 2ε(P + 1)Re b(l)u − 4PεRe

[
b(l)u e−2i(N−j+1)Θ

]
+ 8 |ζ|

√
PεRe ei(2j−2l−1)Θ. (7.61)

7.5.3 Explicit form of D

Using the above formulas (7.59) and (7.61), we can read off the forces, and obtain

Djl =



−2β sinΘ Im
Pe2i(j−l)Θ

P − ei2NΘ
, j > l

−2β sinΘ Im
P

P − ei2NΘ
+ β cos Θ, j = l

−2β sinΘ Im
e2iNΘe2i(j−l)Θ

P − ei2NΘ
, j < l

(7.62)
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where β is given by Eq. (7.37), and ωosc by Eq. (7.38).
For symmetric pumping we can take the limit |E1| → |E0| of (7.62), and find quite simply4

Djl = −βδjl + β
Nζ2

1 +N2ζ2
. (7.63)

7.5.4 Lattice vibration eigenmodes

For symmetric pumping, close to equilibrium, substitution of Eq. (7.63) into Eq. (7.46) gives

Fj = −β 1
1 +N2ζ2

ξj + β
Nζ2

1 +N2ζ2

∑
l 6=j

(ξl − ξj). (7.64)

The clouds behave as uniformly coupled oscillators. The coupling of the oscillators is independent
of the distance j−l of the sites, but does depend on the sizeN of the whole structure. This coupling
can be enhanced by increasing the system sizeN , however, it reaches a maximum of β |ζ| /2 when
N |ζ| = 1, and further increase of N results in a decrease of the coupling roughly as 1/N . It is
quite clear that the coupling does not affect the common mode (or center-of-mass motion) of the
lattice, i.e., when all of the clouds oscillate with the same phase. As seen from (7.64), the “spring
constant” and the oscillation frequency, of this mode are

z0 = −β 1
1 +N2ζ2

, ω0 =
ωosc√

1 +N2ζ2
. (7.65)

The spring constant z0 is lower in magnitude than the naive expectation of zsingle = −β/(1 + ζ2)
from Eq. (7.37), whereby the oscillations of the center-of-mass are slower than naively expected.
For all other modes of vibration, orthogonal to the center-of-mass mode, however, the coupling
increases the frequencies. Using (7.63) it is directly seen that they are degenerate, and have the
spring constant and oscillation frequency

z1 = z2 =, . . . ,= zN = −β; ω1 = ω2 =, . . . ,= ωN = ωosc. (7.66)

slightly larger in magnitude than the naive expectations zsingle and ωsingle. For the examples plotted
in Figs. 7.6 and 7.7, Nζ = 10 resulted in the approximately tenfold slower oscillations and 100
times slower damping of the center-of-mass, than of the other modes.

For asymmetric pumping (|E1| > |E0|), the analysis of the dynamics is considerably more
involved. The main problem is that the matrix D itself is not symmetric any more. Thereby, the
force Fj is not conservative, not even in the infinitesimal neighbourhood of the equilibrium config-
uration: If it were, Fj = −∂/∂xj V (x1...xN ) would imply that D is a Hessian matrix, symmetric
by Young’s theorem. We remark that asymmetric force matrices have been found in studies of
the stability of the 2-dimensional equilibrium configurations of optically trapped microspheres in
a single plane transverse to the standing wave [116].

Although for asymmetric pumping D is not symmetric, we can still look for the eigenmodes
of lattice vibrations, given by the eigenvectors of D. This task is involved, since the eigenvalues
and eigenvectors of a nonsymmetric real matrix can be complex, not orthogonal to each other,
and are in general complicated to find. Note, however, an important symmetry of the system
close to equilibrium, revealed by (7.62): D is a Toeplitz matrix (i.e., Dj+1,l+1 = Dj,l for every
j, l = 1, . . . , N − 1), and thus the coupling between two clouds only depends on their distance
l − j. If D was a circulant matrix, i.e., it had the additional property that Dj,N = Dj+1,1 for

4In fact, the derivation of (7.62) is not valid for symmetric pumping, and therefore one must use a different approach.
However, as we show in Appendix 7.10, a mathematically sound procedure also leads to (7.63).
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every j = 1, . . . , N − 1, its eigenvectors would be the Fourier vectors [vb]j = eibj2π/N , for
b = 0, . . . , N − 1. Although D does not have this property, a similar statement does hold for
it: Dj,N = PDj+1,1 for every j = 1, . . . , N − 1. Thus we can look for its eigenvectors in the
following form:

[vb]j = (Pe2πib)j/N , (7.67)

corresponding to density waves with complex wavenumbers, the imaginary part the wavenumbers
given by α = log(P)/(Nd). Direct application of (7.62) shows that these vb are indeed eigenvec-
tors, and after some algebra the corresponding eigenvalues zb of D, with b = 0, . . . , N − 1, are
found to be

zb = β cos Θ

[
1 +

ζ2 N
√
P A2

( N
√
Peiπb/N − e−iπb/N )2

]−1

. (7.68)

This can be contrasted with the naively expected zsingle = β cos Θ[1 + ζ2]−1, based on Eq.(7.38).
As expected, the eigenmodes (7.67) of the lattice vibrations are complex, except for b = 0,

which corresponds to a distorted center-of-mass mode and, if N is even, b = N/2, the density
wave of highest wavenumber possible (π/d). Both of these modes are stable, as zN/2 < z0 < 0,
and damped if µ > 0. Since D is real, all other modes form conjugate pairs: zb = z∗N−b and
vb = v∗N−b.

We now discuss the physical meaning of complex eigenmodes and eigenfrequencies. Consider
a pair of complex eigenvalues zb = z∗N−b with 0 < b < N/2, and the corresponding eigenvectors
vb = v∗b . Both Revb and Imvb describe density waves of wavenumber kb = 2πb/(Nd), modu-
lated so their amplitude increases exponentially with rate α = (logP)/(Nd) towards the source
of the more intensive beam. Now since DRe(vb) = Re (Dvb) = Re (zbvb) = RezbRevb −
ImzbImvb, and DIm(vb) = Im (Dvb) = Im (zbvb) = ImzbRevb + RezbImvb, time evolution
by Eq. (7.46) does not lead out of the subspace of RN spanned by the modes Revb and Imvb. For
any superposition

ξ(t) = p(t)Re(vb) + q(t)Im(vb) = Re
{[
p(t)− iq(t)

]
vb

}
, (7.69)

with p(t), q(t) ∈ R, Eq.(7.46) can be rewritten as

mp̈ = −µṗ+ (Rezb) p+ (Imzb) q (7.70)

mq̈ = −µq̇ − (Imzb) p+ (Rezb) q. (7.71)

A linear combination of these two differential equations givesm(p−iq)̈ = −µ(p−iq)˙+zb(p−iq),
a single complex homogeneous second-order linear differential equation, whose general solution
can be written down straight away:

p(t)− iq(t) = c+e
(κ+

b −iω+
b )t + c−e

(κ−b −iω−b )t. (7.72)

Here c± = p± − iq± are arbitrary constants, and

(κ±b − iω±b ) =
−µ±

√
µ2 + 4mzb
2m

, (7.73)

with κ−b < κ+
b to fix notation, which also means ω−b < 0 and ω+

b > 0. Substituting the solution
(7.72) together with Eq. (7.67) into Eq. (7.69), we have ξj(t) = ξ(x = jd, t) for every j =
1, . . . , N , with

ξ(x, t) = Re
(
c+e

κ+
b teαxei(kbx−ω+

b t)
)

+ Re
(
c−e

κ−b teαxei(kbx−ω−b t)
)
. (7.74)
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Figure 7.13: Damping rate κ+
b (thick) and frequency ω+

b (thin) of the first few eigenmodes b = 0
(continuous light grey), b = 1 (continuous purple), b = 2 (slashed blue), b = 3 (dotted green)
of optical lattices in the overdamped (left column) and undamped (right column) limit. In the
overdamped case, these are directly given by the real and imaginary parts of the eigenvalues of
the force matrix D: κ+

b τd = Rezb/β, and ω+
b τd = Imzb/β, whereas in the undamped case, by

the square root of zb: κ+
b /ωosc = Re

√
zb/β, and ω+

b /ωosc = Im
√
zb/β. In (a) and (b), a lattice

of N = 100 clouds of polarizability ζ = 0.1 is taken, the same choice of parameters as used for
the illustrations of the dynamics in Figs.7.6 – 7.10. As Nζ = 10, this is in the strong collective
coupling regime, clearly separated resonances are seen at the predicted positions. In (c) and (d),
N = 10 and ζ = 0.1, and thus the collective coupling is weaker, the resonances overlap strongly.
As A approaches 2/ζ = 20, the trap depth decreases sharply, and for A > 20 the curves do not
continue as the dipole force is no longer able to hold the clouds against the scattering force. In (e)
and (f), N = 1000, and ζ = 10−4 means that the collective coupling is weak, Nζ � 1. Although
the resonances can still be distinguished, they overlap almost completely, and the instability rate
κ, the maximum of the κb, is a smoothly increasing function of the asymmetry.
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Figure 7.14: Exponential rate κ of instability (the largest of the κb) for an undamped optical
lattice, for various settings of the collective coupling as function of the asymmetry (a), and for
various settings of the asymmetry A as functions of the collective coupling Nζ (b). For these
plots we set N = 1000, but for N � 1, a change in N does not affect the curves except for the
termination point of the lines (which is at ζA = 2). Note that ωosc itself depends on both the
asymmetry A and the coupling constant ζ (but not on the total number of occupied sites N ) in a
nontrivial way. On both plots, the dotted line shows the growth rate if the asymmetry is set near
the first resonance, i.e., A = 2π/(Nζ). The ripples on the plots at large instability rates κ > 1
are caused by the resonances illustrated in Fig. 7.13. For low instability rates κ < 0.1, and weak
total coupling Nζ < 1, we find that for κ varies smoothly with Nζ andA. Under these conditions
at low asymmetries A < 1, κ ≈ ωosc(Nζ)2A3/(2π)3 (analytical estimate), whereas for large
asymmetries A > 10, the data can be well fitted with κ ≈ 0.015ωosc(Nζ)2A1.7.
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Thus a general solution of the dynamics (infinitesimally close to equilibrium) in this subspace
corresponds to two superimposed density waves of wavelength Nd/b, one copropagating with
the stronger beam (ω−b < 0), and one counterpropagating (ω+

b > 0). Their phase velocities are
given by Nd

∣∣ω±b ∣∣ /(2πb). As κ−b < 0 for any values of the variables, the copropagating wave is
exponentially damped with characteristic timescale 1/

∣∣κ−b ∣∣, but the counterpropagating wave can
be either damped or amplified. Thus, this pair of modes is stable if κ+

b < 0, which corresponds to

m(Im zb)2 < −µ2Re zb. (7.75)

An analogous criterion of stability has been derived for the distorsions of the equilibrium patterns
of optically trapped microspheres in a single plane transverse to the trap axis, in [116].

For symmetric pumping A = 0, the matrix D is symmetric, the eigenmodes (7.67) are the
Fourier components, and the eigenvalues (7.68) are all real and negative, thus the lattice is stable.
As discussed a few paragraphs earlier, almost all modes have the same frequency as a single
trapped cloud, z1 = z2 =, . . . ,= zN = −β, except the center-of-mass mode, with z0 = −β/(1 +
N2ζ2). With the introduction of a pump asymmetryA > 0, the eigenmodes and eigenvalues (apart
from b = 0, and b = N/2, if N is even) acquire imaginary parts, and as A is further increased,
the real parts of the eigenvalues turn positive one by one. The first few eigenvalues are shown as
functions of A for two examples in Fig. 7.13. In the “strong collective coupling”, Nζ � 1 limit
(Fig. 7.13 a), we observe clearly separated resonances. In this limit, whenever π − Θ . π/N ,
we have N

√
P ≈ 1, and the denominator of Eq. (7.68) is approximately 1 − sin2 Θ/ sin2(πb/N),

which, with Eq.(7.50), places the resonance for mode b at A ≈ Ab, where

Ab = b
2π
Nζ

. (7.76)

The simple relation A = 2π/(Nζ) indeed fits the boundaries between the shaded green areas of
Fig. 7.5 and Fig. 7.12 almost perfectly forA < 1. Outside of the strong collective coupling regime
(Fig. 7.13 b), the resonances are not well resolved. It may even happen (as in the plotted example)
that mode b = 2 becomes absolutely unstable (Re z2 > 0) at lower A than mode b = 1. This
causes the “shoulder” in the N = 10 instability limit on Fig. 7.5, and on all of the slashed lines at
around A ≈ 10 on Fig. 7.12. In Fig. 7.13 (c) and (d), the critical asymmetry is A = 2/ζ = 20,
there we have Θ = π/2 and all eigenvalues are 0; for A > 20 all modes are unstable. The
instability rate, i.e., the largest of the κb, is plotted for a wider range of parameters in Fig. 7.14.

In the absence of damping, µ = 0, Eq. (7.73) gives ω±b = ±Im
√
zb/m and κ±b = ±Re

√
zb/m.

With asymmetric pumping the eigenvalues zb of all modes with b 6= 0, N/2 are complex, and thus
an instability always ensues, but might be very slow on the experimental timescale (discussed in
Section 7.7). As shown by Eq.(7.75), damping can restore the stability of the modes as long as
the real parts of the eigenvalues are negative. The bth mode is overdamped if µ2 � |zb|m, its
dynamics is then effectively first-order (cf. Subsection 7.4.1), and the copropagating mode disap-
pears (is damped out on a very short timescale). For the counterpropagating mode we then have
ω+

b = −Im zb/µ, and κ+
b = Re zb/µ. Even with arbitrarily strong damping, the OL becomes

unstable if Re zb > 0, as then κ+
b > 0 (and the right hand side of Eq. (7.75) is negative). This

“absolute instability” is used to define the shaded areas in Figs. 7.5 and 7.12. The overdamped
dynamics close to this absolute instability limit is illustrated in Figs. 7.9 and 7.10, which show the
results of numerical integration of Eq. (7.41) near this limit.

7.6 Stability with respect to noise

For the simulation reported in Section 7.4 as well as for the analytical calculations we considered
a perfectly regular lattice made of purely dispersive and infinitely thin clouds with deterministic
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dynamics. However, the phenomena we found are fairly robust: these approximations can be
somewhat relaxed without altering the qualitative picture. We do not go into the details very much
here but illustrate this statement with examples from “noisy” simulations in Fig. 7.15. We simulate
clouds of finite thickness by placing many (on average 10) infinitely thin sheets at a single site,
the only interaction between them being that mediated by the trap light. To simulate the density
inhomogeneity of an optical lattice, the sheets are distributed randomly (Poissonian distribution),
in a way as to model a parabolic external confinement: p(x) ∝ exp

(
[x− 20λ]2/[2× (15λ)2]

)
.

1000 sheets of ζ = 0.01 + 2i × 10−5 are distributed this way over 100 lattice sites, and so
an optical lattice of roughly 30 sites with ζ ≈ 0.3 + 6 × 10−4i is formed, the polarizability
decreasing smoothly towards the edges. Furthermore, Dirac-δ correlated noise terms are added to
the equations of motion, which, using the reduced units (length in λ, time in τosc (7.39), electric
field in E0), read:

ẋj(t+ ∆t) = ẋj(t) + fCU
η1

ηj

(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
− µCU ẋj(t)D

√
∆tΞ, (7.77)

with dimensionless constants fCU = π/
[
4 |Re ζ1|

√
P
]
, µCU = µA [πη1λc]

1/2 /
[
4mA |Reζ1|

√
PI0

]1/2
,

and a choice of D0 = 0.01, where Ξ is a random noise variable of average zero and variance of 1.
Similarly, in the overdamped limit, where the time unit is τd of Eq. (7.42), we add the noise terms
to obtain

xj(t+ ∆t) = xj(t) + f ′CU

η1

ηj

(
|Aj |2 + |Bj |2 − |Cj |2 − |Dj |2

)
+D

√
∆tΞ, (7.78)

where now f ′CU =
[
16π |Re ζ1|

√
P
]−1

, and D0 = 0.01 as above.

As seen in the Fig. 7.15, in the regime of large collective coupling
∑

j ζj = 10 the same
qualitative features as observed on Figs. 7.8-7.10 appear. In the undamped case (a), the center of
mass oscillations are 10 times slower, and the other oscillations synchronize so that a density wave
propagating towards the source of the stronger laser beam arises, which crosses the whole system
in τosc. In the overdamped case, we also find the same qualitative feature of synchronization of the
oscillations, and a sharp instability limit, although this occurs at slightly higher pump asymmetry,
and the propagation of the wave is slower, than in the noiseless case (oscillation timescale is
roughly 2τd). Due to the inhomogeneous density distribution the shape of the propagating density
wave is altered, but is still quite smooth as the long-range interaction averages out the local noise.

7.7 Experimental issues

7.7.1 Cold atoms

For optical lattices consisting of ultracold atoms trapped in vacuum it is cumbersome to produce
viscous friction forces. In the absence of friction our model predicts that any asymmetry in the
intensities of the trap beams should give rise to a dynamic instability of the lattice. However, obser-
vation of this instability can be hampered by noise. Even if all experimental precautions are made,
one source of noise cannot be canceled: absorption and spontaneous emission of photons from
the trapping lasers by the atoms. In the following, we discuss what experimental parameters are
necessary for the dynamic instability to be substantially faster than the heating due to absorption.

Most optical lattice experiments use alkali atoms, since they have simple electronic level struc-
ture, with the trap lasers tuned near the D line. We use the notation of [10], the fields are assumed
to be polarized along z, the quantization axis for the atoms. The dipole transition matrix element
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Figure 7.15: Numerical simulation of the dynamics of an optical lattice with noise. 1000 sheets
of ζ = 0.01 are distributed over 100 lattice sites according to a Gaussian centered on x = 20λ of
width 15λ. Thus ζ ≈ 0.3 in the center of the structure, and decreases to ζ ≈ 0 near the edges,
with Poissonian distribution of ζ. At each site, Imζ = 2 × 10−3Reζ. Color coding stands for
the average displacement ξ of the sheets at each site is after initial excitation (random independent
displacement of each sheet from equilibrium with maximum magnitude ξinitial = 5 · 10−4λ and
random velocity of maximum magnitude ωoscξinitial). In (a), no friction forces are assumed (µ =
0), and I1 = 1.39I0. In (b) and (c) the overdamped limit is taken, with I1 = 1.902I0 and I1 =
1.904I0 respectively.
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87Rb 23Na

mA 1.44 · 10−25kg 3.82 · 10−26kg

λ λ = 0.78µm λ = 0.59µm

mAc
2 1.30× 10−8J 3.43× 10−9J

~ω 2.5× 10−19J 3.37× 10−19J

~Γ 4.02× 10−27J 6.49× 10−27J

Erec 5.00× 10−30J 3.32× 10−29J

~ω/(mAc
2) 1.963× 10−11 9.83× 10−11

Table 7.1: Some physical constants for the D lines of 87Rb and 23Na

deg is related to the linewidth Γ and frequency ω0 by

Γ =
ω3

0

3πε0~c3
d2

eg. (7.79)

The Rabi frequency Ω gives the characteristic energy of the dipole coupling:

~Ω(r) = −deg |E(r)| . (7.80)

Note that the value of the Rabi frequency depends on the position r of the atom. For red detuning,
atoms will be near antinodes, and we can take |E(r)| ≈ |E1| + |E0|. For blue detuning, cold
atoms will initially be near the nodes, |E(r) ≈ ||E1| − |E0|||, however, if they are heated, the
latter expression underestimates the electric field, for atoms with high kinetic energies |E(r)| ≈
|E1| + |E0| is more appropriate. Linear polarizability is only a good approximation if the atomic
transition is not saturated. This can be ensured by choosing |Delta| � |Ω|: the upper-state
population σee then reads

σee =
Ω2/4

∆2 + (Γ/2)2
≈ Γ/2
|∆|

3λ2(I0 + I1)
4π~ |∆|ω

Q, (7.81)

where the Q is a dimensionless correction factor accounting for the effects of localization in the
asymmetric trap:

red detuning: Q = 1 +
2
√
P

P + 1
; (7.82a)

blue detuning, well trapped atoms: Q = 1− 2
√
P

P + 1
; (7.82b)

not well trapped atoms: Q = 1. (7.82c)

We require σee < 10−2, say. In the large detuning (|∆| � Γ) and low saturation (|Ω| � |∆|) limit
the complex polarizability α of a single atom can be expressed as

α = −
d2

eg

~
1
∆

(
1 + i

Γ/2
(−∆)

)
=

Γ/2
(−∆)

3
4π2

ε0λ
3

(
1 + i

Γ/2
(−∆)

)
. (7.83)

Thus the polarizability (divided by the transverse area) of an atom cloud reads simply

ζ =
kηα

2ε0
=

Γ/2
(−∆)

3Nλ

4π

(
1 + i

Γ/2
(−∆)

)
. (7.84)
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By virtue of Eq. (7.84), the back-action of the atom clouds on the field, i.e., ζ, can be enhanced by
working at only moderately large detuning (as opposed to the ∆ ≈ −107Γ of many optical lattice
experiments).

The trap depthUdip of the dipole trap, for single atoms moving independently, can be estimated
by neglecting any feedback effects on the field. The trap then has a U(x) ∝ cos2 kx form, with
the trap depth given by:

Udip =
1
4
|α|
(
(|E0|+ |E1|)2 − (|E0| − |E1|)2

)
= |αE0E1| = 2~ |∆|σee

2
√
P

Q(P + 1)
. (7.85)

The trapped atoms absorb part of the trapping laser beams, and most of this absorbed power is
reemitted as radiation with frequency close to ω, corresponding to spontaneous emission, but some
of it heats the motion of the atom. On average, each absorbed and spontaneously emitted photon
increases the kinetic energy of the atom by an amount known as the recoil energy,

Erec = kBTrec =
~2k2

mA
. (7.86)

Since the rate of spontaneous emission of photons is dN/dt = Γσee, the heating rate, or the rate
of increase of kinetic energy of the atoms, can be expressed as

Pheat = ΓσeeErec = Γσee
~2k2

mA
. (7.87)

Heating due to absorption leads first to a breakdown of the Dirac-δ approximation used in our
model (7.5), and, more crucially, on a longer timescale of theat, the atoms eventually “evaporate”
from the optical lattice. We can estimate the timescale for heating of the atoms out from the trap
by:

theat =
Udip

Pheat
=

1
ω

|∆|
Γ/2

mAc
2

~ω
2
√
P

Q(P + 1)
(7.88)

For 87Rb and 23Na, this is roughly theat ≈ 10−5 |∆| /(Γ/2)s, and theat ≈ 1.6·10−6 |∆| /(Γ/2)s,
respectively.

The back-action induced dynamic instabilities can only be observed in an experiment if they
are much faster than the evaporation:

κ theat � 1. (7.89)

As seen from Eqs.(7.73), (7.37), (7.68), both κ±b and ω±b are proportional to the oscillation fre-
quency ωosc of a single atom cloud (which is the same as the oscillation frequency of a single
atom) in the trap is, which is

ωosc =

√
8k |ζ|
cηmA

4
√
I0I1 =

√
2Udipk2

mA
=
√

2~Γ
mAc2

√
|∆|
Γ/2

√
σeeω

√
2
√
P

Q(P + 1)
. (7.90)

As shown in Fig. 7.14, the constant of proportionality depends sensitively on the choice of asym-
metry. Using the estimates of the caption of Fig. 7.14, we find that the instability is faster than
dipole heating at low asymmetries A < 1 if

1 � κtheat = 0.008
√
σee

√
Γ/2
|∆|

N2

(
3Nλ

4π

)2
√

Γ/2
ω

√
mAc2

~ω
Q−3/2A3, (7.91)
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87Rb 23Na
∆/(Γ/2) −104 −105 −104 −105

I0 + I1 0.21 kW/cm2 21 kW/cm2 0.79 kW/cm2 79 kW/cm2

ζ 2.39× 10−4 2.39× 10−5 2.39× 10−4 2.39× 10−5

theat 77 ms 770 ms 11 ms 116 ms

τosc 1.73µs 0.547µs 0.53µs 0.17µs

tinst = κ−1 0.33 ms 10 ms 0.10 ms 3.2 ms

Table 7.2: Some experimental requirements and the relevant timescales for the instability, for an
optical lattice of N = 500 disk-shaped clouds of areal density η = 10/λ2 each (corresponding to
a 3D lattice with filling factor of 2.5). The pump asymmetry is set at P = 10, and laser power is
chosen so that the population of the upper level is σ = 10−3.

whereas for large asymmetries A > 10 we have

1 � κtheat = 0.085
√
σee

√
Γ/2
|∆|

N2

(
3Nλ

4π

)2
√

Γ/2
ω

√
mAc2

~ω
A−1.3. (7.92)

Roughly for 87Rb, ωosctheat ≈ 0.14 [|∆| /(Γ/2)]3/2, whereas for 23Na, ωosctheat ≈ 0.070 [|∆| /(Γ/2)]3/2.
Some concrete examples are given in Table 7.2.

7.7.2 Plastic beads

Although the largest optical lattices to date consist of trapped atoms, optical forces can be used
to trap much bigger objects as well. Since the earliest days of optical trapping [120] a large
amount of work has gone into trapping plastic microspheres (or “beads”) of diameter comparable
to, or even larger than, the wavelength of the trap laser. It has been realized as early as 1989
[30], that the interference between the incident and the scattered fields gives rise to an effective
interaction between microscopic beads, which later has been shown to modify the structure of 1-
dimensional arrays of trapped beads significantly [93, 115, 119]. Recently, research has focused
on the transverse motion of particles which are in the same plane, trapped at an antinode of the
standing-wave interference pattern of two opposing laser beams; note that this is the degree of
freedom averaged out in our model. It has been found in [116] that the beads can “crystallize” into
intricate periodic or quasiperiodic structures, and with the addition of new beads some modes of
motion of these structures can become unstable.

In most experiments with trapped microspheres, the size of the beads is of the same order of
magnitude as the wavelength of the lasers. It is usually assumed that much smaller beads, which
are Rayleigh scatterers, do not have interesting dynamics [116]. However, the type of instability
explored in this Article could be studied with optically trapped beads of very small size instead of
cold atoms. The radius of the beads should be small enough so that they can be taken as pointlike
scatterers. Such experiments could be hard to perform as stronger Brownian motion makes trap-
ping of very small beads more difficult. However, due to the overdamped dynamics of these beads,
the experimental signatures of optomechanical coupling would be more straightforward to detect.
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7.8 Conclusions

We have considered the dynamics of a 1-dimensional optical lattice due to the nonlinearities caused
by multiple reflections of photons within the lattice. We adopted the simple model where the trap
beams are approximated as plane waves, and all transverse dynamics is neglected [36]. Here the
atom clouds affect the fields as beam splitters with dimensionless coupling constant ζ = −ir/t.
We supplemented this model by a derivation of the force on the trapped atom clouds, based on the
Maxwell Stress Tensor. We have shown the corrections this force brings to the standard “radiation
pressure” and “dipole force”. These corrections are substantial in the regime of strong coupling
(dense atom clouds, ζ > 1), and impose a limit on the asymmetry between the trap beam intensities
even for purely dispersive atom-light interaction. We then analyzed the dynamics of large lattices,
including the mechanical interaction between the trapped atom clouds that is mediated by the trap
light. Since the system is 1-dimensional, the interaction does not decay with the distance of the
atom clouds, and thus alters the dynamics more and more substantially as the system size (number
N of clouds) is increased. For symmetric pumping, this leads to a softening of the center-of-mass
oscillations, and a slight identical shift of all other modes of oscillation. For asymmetric pumping,
it gives rise to an instability of the lattice which has the form of a density wave copropagating
with the weaker beam. In the limit of strong collective coupling (Nζ � 1) the propagation
velocity and growth rate of these waves can be resonantly enhanced at certain values of the pump
asymmetry A. Although viscous friction can restore the stability of the optical lattice, there is a
critical asymmetry (depending nontrivially on both N and ζ), above which the density waves arise
and eventually destroy the lattice even in the overdamped limit.

The interaction due to multiple scattering is important for microscopic particles, trapped by
light, whose size is comparable to the wavelength. In such systems effects similar to those we
describe here (nonconservative forces, oscillating and unstable modes even in the overdamped
limit) have already been predicted for the 2-dimensional motion of “photonic clusters” in a plane
transverse to the trap beams [116]. There, however, the situation is much more complex due to the
higher dimensionality and to the more complicated scattering. In the Mie regime, multiple reflec-
tions within a single bead lead to nontrivial modifications with respect to the pointlike (Rayleigh)
scatterer, and this is thought to be essential: in [116], it is stated that vibration frequencies of
photonic clusters of Rayleigh particles are always real.

In the 1-dimensional OL studied in this paper, the asymmetric pumping drives a net energy and
momentum flow through the system, relating it to crystals driven far from equilibrium. Indeed,
traveling density waves have been predicted to arise in arrays of vortices in a type-II superconduc-
tor [121], and have been experimentally observed and analyzed in a chain of water drops dragged
by oil [122, 123]. These systems, and the one we study in this Article, share the common trait that
the interaction between the components (arising from the Lorentz force in the first case, and from
the hydrodynamic interaction in the second) is not symmetric in the sense of Newton’s third law.
However, for the vortices and the water droplets, this interaction has finite range, and therefore
leads to a well-defined dispersion relation in the thermodynamic limit. In our 1-dimensional sys-
tem, however, as the interaction is infinite range, the thermodynamic limit does not make sense.
Thus there is no dispersion relation and we cannot speak of “phonons”.

In this paper we have revealed that tuning the pump asymmetry opens the possibilities of using
optical lattices as a model system for driven crystals far from equilibrium, a largely uncharted topic
of physics. Although some of the intriguing features of the dynamics, in particular, the resonant
enhancement of the instability, are specific to the optical lattice, some of them are generic (travel-
ing density waves, complex wave vectors, etc.). This shows a novel way, based on optomechanical
coupling, of using optical lattices to explore a subject traditionally belonging to condensed matter
physics.
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Figure 7.16: A single atom cloud, with ζ = 0.5 + 0.025i, and a slice (dark background). The
intensity of the electric field (continuous red line) varies inside the atom cloud, and so does the the
“radiation pressure” (dotted blue line) and “dipole force” (slashed blue line), the 1st and 2nd terms
of the force (7.93) on a single slice. The forces are plotted in units of λdβ = 8πε0Re dζ |BC|,
where n = 200 slices were taken with coupling constant dζ1 = dζ2 =, . . . ,= dζ200 = dζ =
ζ/200. The dipole trap is asymmetric, with |C| = 1.5 |B|.
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7.9 Appendix: Derivation of the force based on multiple scattering

In Section 7.2 we have derived the optical force on an atom cloud in an asymmetric dipole trap.
We have shown that to first order in the polarizability ζ of the cloud, the force can be explained
in terms of the standard theory of the mechanical effects of light on atoms: it is the sum of the
“radiation pressure” and the “dipole force” on each particle due the incident fields. However, the
force depends nonlinearly on the polarizability ζ. Inasmuch as this nonlinearity is due to the large
polarizability of the individual particles, our formula (7.22) provides an extension of the standard
formulas for the optical forces. If, however, the polarizability of each particle is small, the force on
the atom cloud can be derived from the standard optical force. We provide this derivation below.

According to the standard theory of optical forces on atoms [10], in the regime of linear
polarizability the force an atom in a superposition of two counterpropagating standing waves,
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E(x) = Heikx +Ge−ikx, reads

F =
k

2

(
|H|2 − |G|2

)
Imα− k ImGH∗ Reα (7.93)

= −k
2
Re
{[

2 (ImGH∗) + i
(
|H|2 − |G|2

)]
α
}
. (7.94)

Here we have united the first term, the “radiation pressure”, and the second term, the “dipole
force”, in a complex quantity. We would like to use this formula to find the total force on a pancake-
shaped thin atom cloud, with width l � λ, transverse area w � λ2, and total polarizability ζ, in
a trap with electric field incident from the left, Beikx, and from the right, Ce−ik(x−l). For ζ � 1,
the back-action of the atoms on the light field can be neglected in a zeroth approximation, and the
formula (7.93) can be applied directly. This is equivalent to calculating the optical force based
on the Maxwell Stress Tensor and taking into account the modification of the light field due to
the cloud only to first order in ζ. For ζ of the order of 1 (or for very asymmetric pumping and
Imζ < ζ2), this approach constitutes a bad approximation: we need to go on.

To proceed, we divide the atom cloud into a sequence of slices such that the polarizability of
each size is infinitesimal,

ζ =
n∑

i=1

dζj , with |dζj | � 1 for every j = 1, . . . , n. (7.95)

This is illustrated in Fig. 7.16. Since the whole cloud is assumed to be much thinner than λ, we
neglect the phases picked up be the light during propagation between the slices. As shown in
Sect. 7.1, for such infinitesimally closely spaced beam splitters the polarizability parameter ζ is
additive, hence the requirement (7.95). Now each slice only effects the electric field perturbatively
(|rj | = |dζj | / |1− idζj | � 1), and thus the field at the jth slice is to a good approximation the
superposition of just two plane waves: E(x−xj) = Gje

ik(x−xj)+Hje
−ik(x−xj), with xj denoting

the position of the slice. We can find the amplitudes Gj and Hj simply using the additivity of ζ:(
Hj

Gj

)
=

(
(1 + iζ ′) iζ ′

−iζ ′ (1− iζ ′)

)(
C

D

)
, with ζ ′ =

n∑
l=j+1

dζl. (7.96)

Multiplying this force by the areal atom density of the jth slice, ηj = (dζj/ζ)(Nλ/λ
2), we obtain

the areal density of the force on the jth slice:

dFj = −ε0Re
{[

2
(
ImGjH

∗
j

)
+ i
(
|Hj |2 − |Gj |2

)]
dζj

}
. (7.97)

The force on the whole cloud is the sum of the forces on the individual slices, which in the limit
of infinitesimal slices becomes a complex integral:

F =
∑

j

dFj =
∫
dF = ε0Re

∫ ζ

0

{
−2ImDC∗ − i(|D|2 − |C|2) + 2 |D + C|2 ζ ′∗

}
dζ ′,

(7.98)
using Eq. (7.96) to express Gj and Hj . Since the integrand is linear in ζ ′, the integral is easily
evaluated to give

F = ε0(|D|2 − |C|2)Im ζ − 2ε0(ImDC∗)Re ζ + ε0 |D + C|2 |ζ|2 . (7.99)

Here, formally, the first term is exactly the “radiation pressure”, the second, the “dipole force”,
summed over all the particles due to an electric fieldDeikx+C−ikx, and all the nonlinear “multiple
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scattering” corrections are in the third term. Bear in mind, however, that some of the nonlinearity
is “hidden” in D, which is related to the incident amplitude B nonlinearly in ζ:

D =
1

1− iζ
(iζC +B). (7.100)

Substitution of this relation into (7.99) yields

F = 2
I0 − I1
c

Im ζ

|1− iζ|2
− 4

√
I0I1
c

Re ζ
|1− iζ|2

sin(2kx+ ϕ) + 2
I0 − I1
c

|ζ|2

|1− iζ|2
, (7.101)

with the incident intensities I0 = 1
2ε0c |B|

2 and I1 = 1
2ε0c |C|

2, and the relative phase ϕ =
argB − argC. This is identical to the formula (7.22) derived via the Maxwell Stress Tensor in
Sect. 7.2.

7.10 Appendix: Symmetrically pumped lattice

We have derived the analytical form of the force matrix D in Section 7.5, and we could describe
the dynamics of a symmetrically pumped lattice simply by taking the limitA → 0 of the formulas.
This seems to make perfect sense, as the final formulas, i.e., the force matrix D (7.62), eigenmodes
of vibration vb (7.67), and the corresponding eigenvalues zb (7.68) have well defined limiting
values for I1 → I0. However, it is quite disturbing that the derivation of these formulas does not
work for I0 = I1. If P = 1, the two vectors u (7.49) and w (7.51) are parallel and thus they
do not subtend a basis (not even a nonorthogonal one). We therefore fill a gap in this Section
by deriving the formulas for symmetric pumping. Reassuringly, the same results are found as by
directly taking the limit.

In the symmetric pumping case the 2 × 2 transfer matrix M only has one eigenvector u (=
e−iχw). This awkward situation arises because for symmetric pumping Θ = π, thus tr M = 2 (see
Eq. (7.19)), and then the characteristic equation has a the single eigenvalue 1 with a multiplicity of
2. Although such matrices are not diagonalizable, their functions can still be computed efficiently
using the Jordan form. Instead of just referring the reader this general recipe, we here give the
detailed calculation.

Since we have a single eigenvector u, it is useful to take a second vector z orthogonal to it:

u =
1√
2

(
1

e−iχ

)
; z =

1√
2

(
1

−e−iχ

)
. (7.102)

Note that with these definitions u and z provide an orthonormal basis. Substitution of χ leads to:

red detuning, ζ > 0: u =
e−i tan−1 ζ

√
2
√

1 + ζ2

(
1 + iζ

1− iζ

)
; z =

e−i tan−1 ζ

√
2
√

1 + ζ2

(
1 + iζ

−1 + iζ

)
;

(7.103a)

blue detuning, ζ < 0: u =
1√
2

(
1
−1

)
; z =

1√
2

(
1
1

)
. (7.103b)

It can easily be checked by direct calculation that a decomposition analogous to Eq. (7.20) can be
given:

M = −1 + 2i |ζ|u ◦ z†, (7.104)
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and this can be used directly to show that for any n ∈ N,

Mnu = (−1)nu; (7.105a)

Mnz = (−1)nz + n(−1)n−12i |ζ|u. (7.105b)

Mirror reflection of u along x is now simpler then for the asymmetric pumping case. We have

ζσP(d)u = − |ζ|u. (7.106)

Perturbation of the optical lattice (infinitesimal displacement of the lth cloud by ξ → 0) given
in Eq. (7.53) still only affects the outgoing modes, but now for a(l) and b(l) of Eq. (7.53) we have(

a(l)

0

)
= a(l)

u u + a(l)
z z; a(l)

u = a(l)
z =

a√
2
; (7.107a)(

0
b

)
= b(l)u u + b(l)z z; b(l)u = −b(l)z =

beiχ√
2
. (7.107b)

(7.107c)

Using these decompositions, to first order in the small parameter ε = kξ, Eq. (7.53) can be written
as

1√
2
a(l)(u + z) =

b(l)eiχ√
2

(−1)N
[
(1 + 2N |ζ| i)u− z

]
− 2(−1)N |ζ|u. (7.108)

The u and z components of this equation together give

b(l) =
√

2 |ζ| e−iχ

1 +N |ζ| i
(7.109)

Having obtained b, we can use the transfer matrices to find the mode amplitudes Aj and Bj

inside the structure, from right to left successively.

j > l :

(
Aj

Bj

)
= E0MN−j+1

[
u + ε

beiχ√
2

(u− z)
]

= (−1)(N−j+1)E0

{
u + ε

beiχ√
2

[
(1 + (N − j + 1)2 |ζ| i)u− z

]}
. (7.110)

Now due to u† · z = 0, it is easier to compute the sum of the mode intensities to first order in ε:

|Aj |2 + |Bj |2

|E0|2
= 1 + 2 εRe

beiχ√
2

[
1 + (N − j + 1)2 |ζ| i

]
. (7.111)

j ≤ l :

(
Aj

Bj

)
= E0

[
MN−j+1 − 2εζMl−jσP(d)MN−l

] [
u + ε

beiχ√
2

(u− z)
]

= (−1)(N−j+1)E0

{
u + ε

beiχ√
2

[
(1 + (N − j + 1)2 |ζ| i)u− z

]
− 2 ε |ζ|u

}
. (7.112)
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To first order in ε we now have:

|Aj |2 + |Bj |2

|E0|2
= 1 + 2 εRe

beiχ√
2

[
1 + (N − j + 1)2 |ζ| i

]
− 4ε |ζ| . (7.113)

Having found the intensities, we now only need to subtract them to find the force (7.21):

Djl =
k

ε
Fj =

ε0
2

[
2Re

(
beiχ√

2
2 |ζ| i

)
− δlj4 |ζ|

]
2k |E0|2 = β

(
Nζ2

1 +N2ζ2
− δlj

)
(7.114)

with β = 8k |ζ| I0/c = 4k |ζ| ε0 |E0|2 as in Eq. (7.37). This is identical to Eq. (7.63), found in
Section 7.5 as the limit of the full result Eq. (7.62) as |E1| → |E0|.
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Chapter 8

Publication: A computable measure of
nonclassicality for light

Quantum mechanics, and in particular quantum electrodynamics, enjoys impeccable internal con-
sistency and shows unmatched agreement with experimental observations. Something remaining
unresolved is determining its borderline to the classical world, where quantum rules are not ob-
served. A first step towards understanding the quantum to classical transition is to find a descrip-
tion of classical states within quantum theory. One can then ask how much non-classicality any
given state possesses.

Coherent states [124] are generally accepted to be the most classical of the quantum states of a
harmonic oscillator. They reflect the wave-like nature of fields, are generated by classical currents,
and are pointer states in realistic environments. Adopting this notion, we call a state classical if it
is a coherent state, or a mixture thereof (cf. [125]). All other quantum states are nonclassical.

With recent progress in quantum optics an increasing wealth of light fields are created devi-
ating more and more from coherent states [126, 127, 128, 129, 130]. Such nonclassical states are
distinguished by e.g. sub-Poissonian photon statistics, squeezing, photon number oscillations or
negative values of the Wigner function. Most of these signatures can be quantified defining degrees
of nonclassicality.

As a central problem, however, none of the above properties detects nonclassicality infallibly
[131]: e.g. a so-called Schrödinger cat state |α〉 + |−α〉, with α � 1 has Poissonian photon
statistics, negligible squeezing, and yet is highly nonclassical. It is therefore desirable to have a
general measure of nonclassicality. This could quantify a resource for a variety of applications that
are brought about by the quantum features of light.

A clear-cut “universal” approach to quantifying nonclassicality has been formulated by Hillery
[132]. He defined the trace distance of a state σ from the set of classical states as a measure of
its nonclassicality. This gives 0 for coherent-state mixtures and nonzero for any other state. How-
ever, its computation involves minimization over an infinite number of variables. Consequently
Hillery’s nonclassical distance has not yet been evaluated exactly for any nonclassical state (for
alternative ‘distance–based’ measures and approximations see [133, 134, 135, 136]). Another uni-
versal measure, proposed by Lee [137], is the amount of Gaussian smoothing required to transform
the Glauber P–function into a positive distribution and quantifies the noise necessary to wash out
nonclassicality. This measure, however, lacks continuity: it lies between 0 and 1/2 for Gaussian
states, but is 1 for any non-Gaussian pure state, no matter how close it is to a Gaussian [138].

In this Letter we propose a universal measure of nonclassicality, the Entanglement Potential
(EP), that can be computed efficiently for single-mode states of light. It is based on the observation
that coherent states are the only pure states that produce uncorrelated outputs when split by a
linear optical device [139, 140, 141]. We define the EP of a state σ as the amount of two-mode

115



116 ADDITITIONAL RESEARCH
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Figure 8.1: (top) A linear optics “black box” (dashed line) creating entanglement between A and
B from a nonclassical input state σ. Classical states enter via auxiliary input ports. Photon number
measurements are made at the extra output ports. (bottom) An equivalent form of the black box
for empty auxiliary ports. The dash-dotted box is local to B.

entanglement (quantum correlations) that can be produced from σ and auxiliary classical states
with linear optics and photodetectors. A precise definition follows below.

Entanglement is a genuine quantum feature that gives rise to the most striking “nonclassical”
effects [142, 143]. With the advent of Quantum Information Technology (QIT) it has become a
crucial resource for many applications. The leading role of quantum optics in the study of the
foundations of quantum mechanics [144, 145] and in the implementation of many QIT protocols
has recently triggered a lot of interest in the characterization, generation, and distillation of entan-
glement between optical fields [146, 147, 148, 149, 150, 151, 152]. This provides EP with a direct
physical meaning: single-mode nonclassicality as an entanglement resource. Moreover, it supplies
a pool of results and methods from QIT for the study of nonclassicality.

At first glance, computation of EP seems prohibitively complicated. For any nonclassical state
σ one has to find the optimal linear optical transformation and auxiliary states to create the most
two-mode entanglement. However, as we show below, the optimal linear optics entangler is the
same for any state, and consists of a single beamsplitter (BS) and an additional vacuum input.

A representation of the transformations that we allow in the definition of the EP is shown
in Fig. 8.1 (top). A passive linear optical transformation can be modeled by a circuit of BS’s
(including phase-shifters) [153]. This transforms input and auxiliary states according to a linear
unitary map a′i =

∑
i Uijaj between input and output mode operators. At the output two modes
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are sent to A(lice) and B(ob), all others are measured by ideal photodetectors. Linear operations
conditioned on a measurement outcome (e.g. [154]) are excluded, since they can increase the
amount of existing nonclassicality.

The displacement of one input mode with D(α) = exp(αa† − α∗a) amounts to (local) dis-
placement of all output modes by amounts depending on the circuit of BS’s. Mixing the displaced
input modes translates to local mixing of the output modes with additional classical communica-
tion. As these operations cannot increase entanglement, vacuum ancillas are optimal for entangling
the modes of Alice and Bob.

With vacuum ancillas, the circuit of BS’s inside the box can be simplified to a standard form.
As shown in Fig. 8.1 (bottom), this consists of a single BS splitting the input in two modes going
to Alice and Bob, and a series of additional BS’s further splitting the signal in Bob’s side. Now
all measurements can be carried out in Bob’s auxiliary modes, and since local operations do not
increase entanglement on average, Bob can expect no advantage from splitting off and measuring
a part of his beam. The optimal entangling device is therefore a single BS. Although we currently
lack of a general proof, all examples we checked analytically and numerically indicate that the
transmissivity of the optimal BS is 1/2 independent of the input state. We denote by UBS this
50:50 BS transformation, which induces the mapping a = 2−

1
2 (aA + aB) on the input mode

annihilation operator.
Clearly, the EP is zero for classical states. Moreover, any decomposition of a given output

two-mode mixed state in terms of pure states ρ =
∑

i pi |Ψi〉〈Ψi|must be consistent term-by-term
with a pure input |ψi〉 |0〉 = U−1

BS |Ψi〉: this is necessary for the corresponding input mixed state
to have a vacuum auxiliary mode. Thus any separable output state must correspond to a convex
combination of input states |αi〉 |0〉, whereby all nonclassical input states, pure or mixed, will
generate entanglement, and have a positive EP. This can be seen as an extension of the results of
[140, 141]. Since coherent displacement and phase shifting can be realized on a single BS with
an additional strong coherent beam, the EP is invariant with respect to “classical” operations, as
defined in [136].

To obtain a specific measure of nonclassicality an entanglement measure has to be chosen. The
value of the EP of a state depends on this measure, and different choices may give rise to different
orderings between states. Here we consider two alternatives.

A computable measure of nonclassicality for pure as well as for mixed single-mode states is
obtained by taking the logarithmic negativity EN [155] leading to the following definition for the
Entanglement Potential,

EP (σ) ≡ EN (ρσ) = log2 ||ρTA
σ ||1. (8.1)

Here ρσ = UBS(σ ⊗ |0〉〈0|)U †BS , ρTA denotes the partial transpose of ρ, and || · ||1 is the trace
norm. A nonzero value of EN reveals nonseparability, however, the converse is not true in general
[156]. The so-called bound entangled states are not detected by the partial transposition criterion.
Although examples of such non-Gaussian states exist [157], it remains an open question whether
bound entanglement can arise in our setup, i.e. whether or not EP detects all nonclassical states.

An entanglement measure that does detect all entangled states is the relative entropy of en-
tanglement ERE [158]. We will call the induced nonclassicality measure Entropic Entanglement
Potential (EEP ), defined as

EEP (σ) ≡ min
ρ∈D

tr ρσ(log2 ρσ − log2 ρ) (8.2)

where minimization is carried out over the set D of all two-mode separable states. EEP detects
all nonclassical states, and can be calculated for important classes of states. For finite dimensional
mixed states, it can be numerically computed by an iterative procedure [159]. For pure states, it
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reduces to the von Neumann entropy in one of the output arms. Moreover, EEP gives a lower
bound to the nonclassical relative entropy distance.

In the remainder of this Letter we calculate the EP and EEP for a variety of nonclassical
states.

The EP and the EEP of a Fock state |n〉 are

EP (n) = −n+ 2 log2

n∑
k=0

√(
n

k

)
, (8.3)

EEP (n) = n− 2−n
n∑

k=0

(
n

k

)
log2

(
n

k

)
. (8.4)

In the large-n limit, the two diverge logarithmically and differ only in a constant: EP (n) ≈
1
2 log2(2πn); EEP (n) ≈ EP (n)− (1− 1/ ln 4). The entanglement potential can thus detect the
nonclassicality of Fock states, and shows that it increases with the photon number.

For any finite superposition of coherent states |Ψ〉 =
∑

k ck |αk〉 both EP and EEP can
be calculated exactly using the “metric tensor” of [160]. This yields complicated formulas, a
notable exception being the “odd coherent state” |α〉 − |−α〉, for which both EP and EEP are
1, independent of α. If the coherent states constituting |Ψ〉 are truly distinct |αi − αk| � 1,
the nonclassicality is determined by the probability amplitudes ck, and the coherent amplitudes
αk bring only an exponentially small correction. Such “Schrödinger cat” (SC) superpositions are
typical examples of nonclassical states. Neglecting the correction arising from the overlaps, we
obtain for the EP and the EEP of a SC state:

EP (Ψ) ≈ 2 log2

∑
k

|ck| (8.5)

EEP (Ψ) ≈ −
∑

k

|ck|2 log2 |ck|
2 . (8.6)

The most nonclassical superposition of N coherent states is that where the probability amplitudes
are of equal magnitude: in that case EP = EEP = log2N .

Gaussian states are displaced squeezed thermal states: ρ(α, r, φ, n̄) = D(α)S(r, φ)ρn̄S(r, φ)†D(α)†.
Here ρn̄ is a thermal state of average photon number n̄, and S(r, φ) = exp(1

2r[e
iφ(a†)2−e−iφa2])

is the squeezing operator. It is well known [161] that Gaussian states are classical for r ≤ rc,
where the nonclassicality threshold is rc = ln(2n̄+ 1)/2. Using the results of Wolf et al.[152], it
immediately follows that the EP of a general Gaussian state is given by the nonclassical part of
the squeezing,

EP (ρ(α, r, φ, n̄)) =
r − rc
ln 2

, (8.7)

if r > rc and 0 otherwise. For Gaussian states EP detects nonclassicality (cf. [162]), and is a
monotonous function of Lee’s nonclassical depth [137]. The EEP of a pure Gaussian state is
found by noting that for a BS, displacement in the input is mapped to (local) displacements at
the output, and squeezing is mapped to two-mode squeezing followed by local squeezing in each
mode. Hence, the EEP is the entropy in a single mode of the corresponding two-mode squeezed
vacuum,

EEP (ρ(α, r, φ, 0)) = cosh2(r/2) log2 cosh2(r/2) − sinh2(r/2) log2 sinh2(r/2). (8.8)

For strong squeezing (r � 1 ) we again find approximate equality with EP up to a constant:
EEP (ρα,r,φ,0) ≈ r/ ln 2 − (2 − 1/ ln 2). For weak r � 1 squeezing, however, EEP increases
more slowly with r: EEP (ρα,r,φ,0) ≈ log2(r e−1/2/2) r2/2.
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A quantitative measure allows us to investigate how much nonclassicality is lost in a physical
process. As an example we study photon dissipation, the dominant decoherence process for states
propagating in an optical fiber. The corresponding interaction picture master equation is ρ̇ =
1
2γ(2aρa

† − a†aρ − ρa†a). For coherent states this results in an exponential damping of the
amplitude, thus the Glauber P function of any state changes as P (α) → ξ−1 P (ξ−1/2α) with
ξ = exp(−γt).

For a SC undergoing photon loss the EP can be calculated exactly using the metric tensor
[160]. For weak dissipation, decoherence dominates power loss, and the constituent coherent states∣∣ξ1/2αi

〉
can still be considered approximately orthogonal. The whole state, however, becomes

more and more entangled with the environment, resulting in a deterioration of its purity. This also
reduces the EP: we obtain explicitly

EP (t) ≈ log2

(
1 + 2

∑
i<k

|〈αi| αk〉|1−ξ(t) |ci| |ck|

)
. (8.9)

Although the EP or EEP of SC states is independent of the phase-space distance of the con-
stituent coherent states, this distance determines the decoherence behaviour. For a two-component
cat, at intermediate times |α1 − α2|−2 < γt� 1 theEP is given byEP (t) ≈ exp(−t/TD)2 |c1c2| / ln 2,
with the well-known decoherence timescale TD = 2 |α1 − α2|−2 γ−1.

Formula (8.7) can be used to study the nonclassicality of Gaussian states in Gaussian channels.
In particular, for a nonclassical Gaussian state (r > rc) linearly coupled to a heat bath of mean
photon number nT we find

EP (t) = −1
2

log2

[
e−γte−2(r−rc) + (1− e−γt)(2nT + 1)

]
.

For nT > 0 this formula is valid up to a finite time tc = γ−1 log[1 + (1 − e−2(r−rc))/(2nT )]:
thereafter the state is classical (EP (t ≥ tc) = 0). We now concentrate on photon dissipation,
i.e. nT = 0, where the state remains nonclassical at any time. For weak squeezing, 0 < r−rc � 1,
the above formula reduces to an exponential decay, EP (t) ≈ (ln 2)−1 (r − rc)e−γt. For strong
squeezing, r−rc � 1, we find a different decoherence behaviour. Initially, EP decreases linearly
with time,

γt� e−2(r−rc) : EP (t) ≈ r − rc
ln 2

− e2(r−rc)

2 ln 2
γt. (8.10)

The loss rate of EP is exponentially large in the initial squeezing. After a short time τ =
γ−1e−2(r−rc) the EP of the highly squeezed state follows a general curve:

γt > e−2(r−rc) : EP (t) ≈ −1
2

log2

(
1− e−γt

)
. (8.11)

The initial squeezing now only adds a minor correction, exponentially small in r − rc, to the EP .
On longer timescales, γt � 1, the EP of strongly squeezed states also decreases exponentially,
EP (t) = (2 ln 2)−1

(
1− e−2(r−rc)

)
e−γt. Here we explicitly included the small correction in r,

which is the only memory of the initial parameters.
Fig. 8.2 shows the time dependence of EP during photon loss for various states. Squeezed

states retainEP better than other nonclassical states: although the weakly squeezed state (r−rc =
0.1) initially has lessEP than either the single-photon Fock state or the two examples of SC states,
after t > 2γ it is more valuable than these for entanglement generation. The most fragile states
are the SC’s, which lose EP on short timescales given by the TD mentioned above. Notice that
(8.9) gives an excellent approximation of the EP for SC’s.

The definition of EP in (8.1) has brought up the still open question of whether bound en-
tanglement can be obtained from single-mode nonclassical light, auxiliary classical states, linear
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Figure 8.2: TheEP of Gaussian states with strong (r−rc = 5, dash-dot-dot) or weak (r−rc = 0.1,
dash-dot) squeezing, the single-photon Fock state (dashed), and the even coherent states with
α = 3 and α = 4. For these latter states, besides the exact values (dots) the approximation of
Eq.(8.9) (continuous lines) is also shown.
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optics and photodetectors. The study of the additivity properties of the Entanglement Potential—
some examples show that it is super-additive—and the extension of the concept to multi-mode
nonclassical fields are subjects of further research.

This work was supported by the Austrian Science Fund (S 1512), the DFG, the European
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[37] M. WEIDEMÜLLER, A. GÖRLITZ, T. W. HÄNSCH, and A. HEMMERICH, Local and global
properties of light-bound atomic lattices investigated by Bragg diffraction, Phys. Rev. A 58,
4647 (1998).

[38] J. K. ASBOTH, J. CALSAMIGLIA, and H. RITSCH, Computable measure of nonclassicality
for light, Phys. Rev. Lett. 94, 173602 (2005).

[39] A. YARIV, Quantum Electronics, John Wiley and sons, 1989.

[40] S. M. BARNETT and P. M. RADMORE, Methods in Theoretical Quantum Optics, Oxford
University Press, USA, 2003.

[41] J. M. RAIMOND, M. BRUNE, and S. HAROCHE, Manipulating quantum entanglement
with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001).

[42] P. HORAK, S. M. BARNETT, and H. RITSCH, Coherent dynamics of Bose-Einstein con-
densates in high-finesse optical cavities, Phys. Rev. A 61, 033609 (2000).

[43] S. ZIPPILLI and G. MORIGI, Mechanical effects of optical resonators on driven trapped
atoms: Ground-state cooling in a high-finesse cavity, Phys. Rev. A 72, 053408 (2005).

[44] A. VUKICS, J. JANSZKY, and P. DOMOKOS, Cavity cooling of atoms: a quantum statistical
treatment, J. Phys. B 38, 1453 (2005).

[45] A. VUKICS, Mobile atoms in a cavity field: Statistical and quantum aspects, PhD thesis,
University of Szeged, 2006.

[46] J. DALIBARD and C. COHEN-TANNOUDJI, Atomic motion in laser light: connection be-
tween semiclassical and quantum descriptions, J. Phy. B: At. Mol. Opt. Phys. 18, 1661
(1985).
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