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des Denkens reißen konnte...!
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Chapter 1

Introduction

During the last decades a great deal of theoretical and experimental re-
search was focused on cavity QED - the study of a single two-level atom
interacting with a single or a few field modes of an optical resonator. Var-
ious configurations to analyze the atom-field dynamics have been inves-
tigated theoretically (cavity QED) [1, 2, 3]. Experiments combining cavity
QED with optical trapping and cooling experiments have been realized in
recent works [4, 5]. The basic idea for the research on light and matter
is rooted in the Jaynes-Cummings model [6]. This at first only theoreti-
cal model of a two-level atom interacting with a single mode of the elec-
tromagnetic field was developed by E. T. Jaynes and F. W. Cummings in
the 1960′ies in order to compare the predictions of Quantum Mechanics
with those of the classical Maxwell equations. It could be realized ex-
perimentally with good adjustment to the theoretical idealization in the
meanwhile. The idealization in this model is the restriction to a two-level
system and to one single mode of the electromagnetic field. Although each
atom has an infinite number of states with an infinite number of permitted
transitions between them, it is possible to neglect all energy levels except
the two levels whose energy difference is near the energy of the field. Such
a two-level system can be described by the Pauli spinoperator σz and the
transition frequency of the 2-level system ωa. The operator-representation
of the field is more complex. The simplest case that though describes ba-
sic aspects of the interaction is to disregard all field modes except for one.
A single mode is comparatively easy to describe by the creation a† and
annihilation a operators. The Hamiltonian of the field contains the laser
frequency ωL and the operator product a†a which counts the number of
photons.

2



- INTRODUCTION -

Figure 1.1: The dipole-interaction between the 2-level atom and the electromag-
netic field.

The Jaynes-Cummings description of the interaction of the atom and the
field mode is related to the classical description of the interaction between
an atom and an electromagnetic field, namely the scalarproduct of the
electric field vector ~E and the vector for the atomic dipole moment ~d. Ac-
cording to the correspondence principle the classical variables are replaced
by the corresponding quantum mechanical operators. The dipole opera-
tor has non-disappearing elements only between states with different par-
ity and is therefore proportional to the x-component of the Pauli-matrices
σx = (σ+ + σ−). The field operator for a single mode is proportional to the
sum of a creation and an annihilation operator a+a†. The resulting interac-
tion operator HJC = −i~g(x)

(
σ+a− a†σ−

)
, where only energy-conserving

processes are taken into account, describes the processes of annihilation of
a photon and simultaneous increase of the atomic energy and the reverse
process of decreasing the atom’s energy and simultaneous creation of a
photon. Thus HJC describes absorption and emission of photons by the
atom. The interaction operator includes the coupling g(x) of the atom to
the field, which depends on the atomic dipole moment, the mode volume
and the position of the atom in the mode. The energy difference between
two states of the combined atom-field system is zero if the laser frequency
ωL equals the resonance frequency ωa of the atomic transition. Otherwise
the energy difference is just the detuning from resonance. The system con-
tains an infinite series of such states which are called ’dressed states’.
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The exchange of photon momentum between light and matter is used to
control atomic motion. An atom interacting with an electromagnetic field
will experience forces occurring on the one hand from the radiation pres-
sure of the electromagnetic field and on the other hand from the electric
dipole interaction.

The radiation pressure force arises from absorption and spontaneous
emission of photons and can be described as the product of the transferred
photon momentum ~k and the photon scattering rate Γ of the atom, which
is the rate of absorption-spontaneous emission cycles. This force can ac-
celerate or slow down atoms respectively. The mechanism is based on the
Doppler effect and therefore is called Doppler-cooling [7, 8]. The moving
particle tends to absorb photons from the laser wave counterpropagating
its velocity rather than from the copropagating wave, if the laser is tuned
below resonance. The Doppler-cooling though is limited by the atomic
linewidth such that after some cycles the force decreases and the mini-
mum attainable temperature is reached. This minimum temperature is
called the Doppler limit kBT ≈ ~Γ [9, 10, 11]. The cooling force can be in-
creased by imposing a magnetic field gradient on the system which varies
the energy of the atomic states via the Zeeman effect. Nevertheless there
are fundamental limits of this cooling method arising from the quantum
mechanical behavior of the radiation field. In fact there are fluctuations
around the mean value of the force, due to the discrete photon momen-
tum transfer. These fluctuations give rise to diffusion due to the random
directions of spontaneous emission of photons which leads to a broaden-
ing of the velocity distribution. Diffusion thus counteracts as a heating
process.

The dipole force is independent of spontaneous emission. It arises from
the induced dipole moment of the atom which according to the detuning
of the laser draws the atom to high or low intensity regions of the field re-
spectively. The steady state dipole force for the case of a motionless atom
shows that atoms are attracted to high intensity regions for a red detun-
ing, which means the laser frequency is bigger than the atomic transition
frequency. The induced dipole moment is in phase with the laser field and
the atom can decrease its energy in a field of high intensities - the atom
is said to be a ’high field seeker’. For blue detuning, meaning the laser
frequency is smaller than the atomic transition frequency and the induced
dipole moment is 180◦ out of phase with the laser, the atoms are drawn
to low intensity regions (low field seeker). To investigate the dipole force
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independent of spontaneous emission, it is useful to operate with high de-
tunings of the laser frequency from atomic transition frequency. One then
finds that the dipole force is proportional to the gradient of the interaction
energy F = −∇HJC . In contrast to the radiation pressure force, the dipole
force is not limited by the atomic linewidth. A very interesting feature of
the dipole force is that it does not depend on the details of the structure
of the atom, therefore it is applicable to molecules and even macroscopic
objects. One takes advantage of this feature in so-called optical tweezers,
where the objects of interest are trapped in the focus of a laser.

The idea now is to put the atom inside a cavity and study the interaction
with the standing laser cavity field. Trapping and cooling properties are
investigated in models of an atom strongly coupled to a single mode of
a cavity standing laser field, where one gets alternative cooling methods.
The conventional methods rely on cycles of optical pumping and sponta-
neous emission of a photon by the atom. Cavity cooling, however, does
not require spontaneous emission by the atom, but cavity loss replaces this
role. Cavity cooling can be related to a classical picture based on the no-
tion of a refractive index. For strong atom-cavity coupling the intracavity
intensity is strongly affected by the atomic motion. At a node of the cavity
standing mode the atom is not coupled to the field. For resonant pumping
the field intensity is large, whereas if the atom is at an antinode, it shifts the
cavity out of resonance which leads to a small intracavity intensity. Since
atomic excitation is low at all times, the minimum attainable temperature
is not limited by the atomic linewidth but by the linewidth of the cavity,
which can be much smaller, and temperatures below the Doppler limit can
be reached.

This thesis is organized as follows:
The first chapter will be a review of the case of one atom interacting with
a single mode of the cavity field. We will derive the Hamiltonian in the
rotating frame approximation and calculate the Heisenberg equations of
motion for the atom and the cavity field in the good cavity limit and by
assuming the atomic excited state weakly populated. Finally with these
approximations we will present the force acting on the atom.
In the second chapter we will enclose the backaction of the atom on the
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field. This backaction will be modelled by a time-dependent potential,
which we model as a harmonic potential with a time-dependent perturba-
tion δ(t). At first we will check the quality of this model by keeping this
perturbation time-independent in our calculations. Then we will calculate
the time-dependent case and find numerical solutions for expectation val-
ues of the atom and the field amplitude.
The third chapter deals with the interaction between two atoms and the
cavity field. We will apply the perturbative treatment of the previous
chapter. And we will try a different ansatz and look for the eigensystem
in order to find self-consistent eigenstates of the system.
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Chapter 2

One atom interacting with a
single cavity mode

2.1 Introduction

In the following chapter, we shortly review the case of one atom interact-
ing with a single mode of a cavity standing field, including losses through
decay of cavity photons. The Hamiltonian, describing a Jaynes-Cummings
type interaction between the atom and a single mode of the standing laser
field and the interaction of the cavity field with an external heat bath, will
be calculated in a rotating frame to derive a master equation for the sys-
tem. We will derive the Heisenberg-Langevin equations of motion for the
atomic and mode operators, where we assume that the excited state of the
atom is weakly populated (low saturation) and, as we consider the good
cavity limit (κ À g), the atomic operators are treated as stationary values.
With these approximations we will find an equation for the cavity field
and the force acting on the atom.

2.2 The setup

We consider a 2-level atom with transition frequency ωa and mass m cou-
pled to a single mode of a high-finesse cavity with resonance frequency ωc.
The system is driven by a coherent laser field of frequency ωL with pump
rate η, injected through one of the mirrors of the cavity. For simplicity we
neglect spontaneous emission of the atom, which is true for large atomic
detunings |ωa − ωL| À γ, and restrict atomic motion to one dimension.
The cavity field is being damped by coupling to the environment, photons
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- ONE ATOM INTERACTING WITH A SINGLE CAVITY MODE -

Figure 2.1: One atom in a coherently pumped cavity

decay with rate κ via the cavity mirror.
A schematic representation of the system is shown in Fig. 2.2

2.3 The Hamiltonian and the master equation

Hsys = Ha + Hc + Hac + Hp (2.1)

The Hamiltonian for this system contains several terms describing the mo-
tional and internal energy of the atom Ha, the self energy of the single
mode cavity field Hc, the Jaynes-Cummings-type interaction between the
atom and the cavity photons Hac and the creation of cavity photons via the
classical laser pump Hp.

Ha =
p2

2m
+ ~ωaσ

+σ− (2.2)

Hc = ~ωca
†a (2.3)

Hac = −i~g(x)(σ+a− a†σ−) (2.4)

Hp = −i~η(aeiωLt − a†e−iωLt) (2.5)

σ+ and σ− denote the operators of the atomic polarization, a† and a the
creation and annihilation operators of the cavity field. The coupling be-
tween the atom at position x and the cavity mode is given by g(x) =

d
√
~ωc/2ενu(x), where d is the atomic dipole moment, u(x) the mode func-

tion and ν the mode volume. g(x) gives the frequency of the energy ex-
change between atom and field at position x, known as Rabi-oscillations.
For our standing wave cavity the mode function is u(x) = cos(kx), with
k = 2π/λ being the cavity wave number.
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In order to get rid of the explicit time dependence appearing in Hp we
apply the unitary transformation U on the Hamiltonian Hsys so we get the
new Hamiltonian H in a frame rotating with the pump frequency ωL.

U = eiωLt(a†a + σ+σ−) (2.6)

H = UHsysU
† + i~(

dU

dt
)U † (2.7)

The new Hamiltonian in a rotating frame, where ∆a = (ωL − ωa), ∆c =
(ωL− ωc) are the frequency shifts for the atom and the cavity mode, reads:

H =
p2

2m
− ~∆aσ

+σ− − ~∆ca
†a− i~g(x)(σ+a− a†σ−)− i~η(a− a†) (2.8)

As mentioned above, in our model there is no spontaneous emission of
photons by the atom, which is approximately true if the photon scattering
rate Γ0 - which describes the loss of photons via the atom - tends to zero.

Γ0 =
γ

∆2
a + γ2

g2
0n̄ . (2.9)

Here γ denotes the spontaneous emission rate of the atom (inverse linewidth),
g0 = d

√
~ωc/2εν is the coupling constant and n̄ the average photon num-

ber.
This is true for large atomic detuning

∆a À γ . (2.10)

To complete the Hamiltonian we have to add another term describing
the interaction of the cavity field with the environment, i.e. the annihila-
tion of a cavity photon and the simultaneous creation of a photon in the
reservoir

Vcr = ~
∫

dω B(ω)
(
b(ω) + b†(ω)

)
(a + a†) . (2.11)

Where b(ω) are the bosonic field operators of the reservoir. They fulfill
[
b(ω), b†(ω′)

]
= δ(ω − ω′) . (2.12)

The evolution of the system can be described in terms of the density
operator

ρ̇tot(t) = − i

~
[
Htot(t), ρtot(t)

]
, (2.13)

with the total Hamiltonian Htot = Hsys+Vcr. We cannot solve this equation
in general but with a few approximations the equation becomes solvable:
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• The initial state of system and reservoir is assumed to be not entan-
gled.

• Markoff-approximation: The autocorrelation time τc (i.e. the inverse
bandwidth) of the reservoir is much smaller than any other charac-
teristic time scale of the system.

• The density operator can be factorized for all times, which means the
reservoir has to be large enough that the backaction of the system can
be widely neglected.

ρtot(t) = ρsys(t) ⊗ | vac >< vac | (2.14)

By applying these approximations we know the density operator for the
system for all times by tracing out the environment

ρsys(t) = Trres

(
ρtot(t)

)
= ρ(t) , (2.15)

and we get the master equation [12]

ρ̇(t) = −i
[
Hsys, ρ(t)

]
+ Lρ(t) . (2.16)

The Liouville operator L includes the effects of cavity losses due to cou-
pling to the environment.
The Hamiltonian and the Liouville operators in an interaction picture read

H =
p2

2m
− ~∆aσ

+σ−− ~∆ca
†a− i~g(x)(σ+a− a†σ−)− i~η(a− a†) , (2.17)

Lρ(t) = κ(2aρa† − a†aρ− ρa†a) , (2.18)

where κ denotes the decay rate for the cavity mode.

2.4 Heisenberg-Langevin equations and
the low saturation limit

An equivalent way of treating this problem is via the Heisenberg-Langevin
equations for the atomic and mode operators. The internal dynamics fol-
low the equations

ȧ = (i∆c − κ)a + g(x)σ− + η + ξ(t) (2.19)

σ̇− = i∆aσ
− + g(x)σza + ξ(t) . (2.20)
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where ξ(t) denotes the noise operator [12]. Noise originates from fluctua-
tions due to the coupling to the environment. The reservoir is assumed in
the vacuum state (T=0), hence their expectation values vanish:

< vac|ξ|vac >= 0. (2.21)

In the low saturation limit, which means that the atomic excited state is
weakly populated, we can approximate the population inversion opera-
tor σz by −1. Furthermore, in the good cavity limit (κ À g) the operators
σ± evolve on a much faster timescale than the cavity field operators a, a†.
Hence the atomic operators can be approximated by their stationary val-
ues, i.e. we set σ̇± ≈ 0. This yields for the atomic dipole moment

σ− = −i
g(x)

∆a

a . (2.22)

By inserting this in the equation for the cavity field, we get

ȧ = −κa + i
(
∆c − U0u

2(x)
)
a + η , (2.23)

where U0 =
g2
0

∆a
is a measure for the shift of the cavity resonance frequency

caused by the presence of the atom at position x. The atom shifts the cavity
field into resonance with the pumping field if U0 ≈ ∆c.

2.5 Steady state dynamics,
mean photon number and the force

As already mentioned in the previous section, the atom causes an effective
cavity frequency shift which depends on the position distribution of the
atom, i.e. the atom acts as a refractive index.
In order to get an overview of these dynamics it is useful to have a look
at the steady state situation, i.e. the limit of a very slow atom such that a
stationary value of the field according to the atom’s position is obtained.

Taking the expectation value of the above equation for the cavity field
(2.23) and substituting < a >= α, one gets the equation for the coherent
field amplitude α

α̇ = −κ + i
(
∆c − U0u

2(x)
)
α + η . (2.24)

By setting α̇ = 0, the steady state solution can be easily calculated

αs =
η

−κ + i
(
∆c − U0u2(x)

) . (2.25)

11
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Figure 2.2: The mean photon number n̄ = |αs|2 as a function of the position
distribution of the atom. a) |∆c| > |U0|, the cooling regime. The atom sitting at a
node (kx = 0) is not coupled to the cavity mode and therefore intensity is highest.
At the antinode (kx = π), where the atom is coupled to the cavity, it shifts the
cavity to a higher frequency, this leads to a smaller intensity.

From the above equation we can calculate the steady state mean photon
number n̄ = |αs|2:

n̄ =
η2

κ2 +
(
∆c − U0u2(x)

)2 (2.26)

As printed in Fig. 2.5, the intensity is highest at the nodes of the cavity
standing wave, where kx = 0, since the atom is not coupled to the cavity.
The intensity decreases, however, if the atom approaches an antinode of
the field mode, and is lowest at the antinode (kx = π), where the atom is
strongly coupled to the cavity. It shifts the cavity to a higher frequency,
which tunes the cavity out of resonance and leads to a small intensity.

The force operator F is proportional to the derivative of the momentum:

F = ṗ = −i[p,H] = −∇H (2.27)

The only term in the Hamiltonian H , that will give a contribution, is the
atom-photon interaction term Hac

F = −∇Hac (2.28)

= −i~∇g(x)(σ+a− a†σ−) (2.29)

12
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If we do the adiabatic elimination σ̇± ≈ 0 of the atomic operators σ+ and
σ−, we get for their stationary values:

σ+ = i
g(x)

∆a

a†

σ− = −i
g(x)

∆a

a (2.30)

By inserting these equations in eq.3.2, we get an effective Hamiltonian

Heff =
p2

2m
− ~(∆c − U0u

2(x))a†a− i~η(a− a†) , (2.31)

where U0 =
g2
0

∆a
, as specified above.

Now we can find the force acting on a motionless atom by taking the
directional derivative of the effective Hamiltonian Heff

F (x) = −~U0

(∇u2(x)
)
a†a (2.32)

When we take the mean value of the force, we can insert the mean photon
number (2.26) for < a†a >= |α|2 and get

F (x) = −~U0

(∇u2(x)
)
n̄

= −~U0η
2 ∇u2(x)

κ2 +
(
∆c − U0 < u2(x) >

)2 (2.33)

Hence the force is proportional to the photon number and the gradient of
the square of the mode function.
For U0 > 0 the atom is drawn to field maxima (high field seekers), while
U0 < 0 corresponds to low field seeking atoms.
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Chapter 3

One atom in a time-dependent
harmonic trap

3.1 Introduction

In most applications of laser-atom interaction, the backaction of the atom(s)
on the field can be largely neglected. For large enough atom-field detun-
ing the influence of atoms on the field can be understood as a kind of
dynamic refractive index. The field then forms a time dependent potential
in the atomic Hamiltonian. In order to study this backaction, we consider
an atom strongly coupled to a single mode of a driven high-Q optical res-
onator. The laser field is chosen far off resonance with the atomic transi-
tion frequency but close to cavity resonance, such that a coherent field can
build up in the cavity but almost no spontaneous emission occurs. Thus,
the atom basically acts as a moving refractive index, being large close to
antinodes and showing almost no effect at a node of the cavity mode. In
a first approximation the system can be related to a particle in a time-
dependent harmonic trap, which is formed by the cavity field. For this
we consider the atom well localized around a field antinode, where it sees
a potential minimum. This allows to replace the optical potential locally
by a harmonic potential. This suggests a mapping to a harmonic oscillator
with time-dependent frequency. A method using parametrized oscillator
eigenfunctions for any given ω(t) to solve such problems has been pre-
sented by Lewis and Riesenfeld [13]. In our case, however, we have no
prescribed explicit form for the time-dependent frequency ω(t) and thus
we will go for numerical solutions for the atomic expectation values and
finding the field dynamics in parallel.

14
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In this chapter, we investigate the coupled quantum dynamics of an
atom in the cavity field by studying a system of an atom in a time-dependent
harmonic trap. As a first step we start with a fixed harmonic potential and
treat the time dependence by a time-dependent perturbation δ(t)x2. We
will model the optical potential by a harmonic potential and rewrite the
Hamiltonian for the atomic energy as a harmonic oscillator of frequency
ω0 to which the small perturbation δ(t)x2 is added. To check the validity of
this perturbation expansion, we will keep δ constant and see if we get the
same results as for a Hamiltonian with ω2 = ω2

0 + δ. Then we will apply
this model to a time-dependent perturbation δ(t) where we will find, that
the system traps and localizes itself dynamically due to the backaction of
the atom on the field.

3.2 The model

Figure 3.1: The atom in the laser potential

We consider the system discussed in the previous chapter and will now
have a closer look on the backaction of the atom on the cavity field. The
laser field is described by the mode function u(x) = cos(kx) and an ampli-
tude α. As mentioned initiatively, the atom is supposed to be found close
to an antinode of the field, so that the optical potential can be expanded in
a Taylor series around the potential minimum (kx=0):

cos2(kx) ≈ 1− k2x2 . (3.1)

This approximation models the laser potential locally as a harmonic os-
cillator potential. The interaction of the field and the atom sitting in this
potential effects the depth of the laser potential, see Fig.3.2. We will model
this effect by adding a small perturbation δ to the Hamiltonian for the har-
monic oscillator. Let us assume that these changes are small compared to

15
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the average field.
The Hamiltonian for the atom then reads

H(t) = H0 + δ(t)x2 , (3.2)

with

H0 =
p2

2m
+

mω2
0

2
x2 . (3.3)

H(t) thus describes a harmonic oscillator with time dependent frequency.
We will perform this approximation by rewriting the Hamiltonian with
frequency ω as harmonic oscillator H0 to which the perturbation term δx2

is added

H(t) =
p2

2m
+

mω(t)2

2
x2

=
p2

2m
+

mω2
0

2
x2 +

m

2
(ω2 − ω2

0)︸ ︷︷ ︸
δ(t)

x2 . (3.4)

One can see, δ is proportional to the difference of the frequency ω and the
harmonic oscillator eigenfrequency

δ(t) =
m

2
(ω(t)2 − ω2

0) . (3.5)

Rewriting ω in terms of the potential depth, which depends on the photon
number |α|2, we get

ω(t)2 =
2

m
U0|αt|2 . (3.6)

In order to calculate ω0 in a way to keep δ(t) small, we choose the average
field amplitude |α0|2 in the unperturbed system (δ = 0), and by taking
< x2 >= 0, as a reference field.
α0 = α|<x2>=0

|α0|2 =
η2

κ2 + (∆c − U0)2
. (3.7)

With this, we can calculate the Eigenfrequency in terms of the field ampli-
tude

ω2
0 =

2

m
U0|α0|2 . (3.8)

Inserting the equations for ω and ω0 in equation (3.5) we get the time-
dependent δ(t)

δ(t) = U0(|αt|2 − |α0|2) . (3.9)
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3.3 Time-independent treatment

The idea is now to use the eigenstates of H0 as a basis for the time-dependent
calculation.
Nevertheless, at first we choose δ time-independent, in order to test the
validity of the model and the calculations.
For a time-independent δ the results for the expectation values of position
and momentum of the atom have to be the same as the solutions for the
harmonic oscillator of frequency ω expressed in the basis ω0. We will see in
the further treatment, if we do our calculations in the basis of the harmonic
oscillator | φi > the corrections to the expectation values for the atom will
be proportional c∗ncn′ and therefore will have no effect. Of course, the addi-
tional term δx2 will lead to a coupling of the equations for the coefficients
cn(t), meaning that coefficients that initially are zero will start oscillating.

In order to calculate the expectation values for the system we expand
the wavefunction | ψ > in the Eigenbasis | φn > of the harmonic oscillator
H0

| ψ >=
∞∑

n=0

cn | φn >, (3.10)

and insert this ansatz in the Schrödinger equation, where we used the
Hamiltonian (3.2).

< φm |
/

i ˙| ψ > = H | ψ > (3.11)

By doing the scalar product with < φm | we get the differential equation
for the coefficients

ċm = −iωmcm − icnδ < φm | x̂2 | φn >︸ ︷︷ ︸
kmn

, (3.12)

where kmn are the elements of the matrix

K =
1

2mω




. . . 0
. . . 0 0

0
. . . 0

√
n + 1

√
n + 2 0

. . . 0 2n + 1 0
. . .

0
√

n + 1
√

n + 2 0
. . . 0

0 0
. . . 0

. . .




. (3.13)
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So we have a set of coupled differential equations for the coefficients:

ċm = −iωmcm − i
δ

2mω
kmncn . (3.14)

We find the numerical solutions and calculate the expectation values for
the position < x > and momentum < p > of the atom

< x >=< ψ | x | ψ >=
∑

n,n′
Lnn′c

∗
ncn′ , (3.15)

< p >=< ψ | p | ψ >=
∑

n,n′
Mnn′c

∗
ncn′ . (3.16)

Where L and M are the matrices we find when calculating the expectation
values < φ | x | φ > and < φ | p | φ > in the basis | φ > of the harmonic
oscillator. As one can see in the above equations, the solutions for a time-
independent δ are similar to the solutions for the harmonic oscillator H0,
since the real numbers c∗ncn′ do not contribute to the expectation values.
But, as the additional term δx2 causes a coupling of the coefficients, the
coefficients that are initially zero start oscillating with amplitudes of order
10−4 till 10−15, see Fig. 3.4. We choose the initial wavefunction as a super-
position of the ground state and the first excited state of the unperturbed
oscillator. The operating parameters are chosen: ∆c = −10 and U0 = −5.

We compare the solutions of the method described above with the nu-
merical solutions of the coupled differential equations that we derive from
the time-independent Hamiltonian with frequency ω:

H =
p2

2m
+

mω2

2
x2 (3.17)

where ω2 = 2
m

δ + ω2
0 .

d

dt
(x2) = −i[x2, H] =

1

m
(xp + px) (3.18)

d

dt
(p2) = −i[p2, H] = −mω2(xp + px) (3.19)

d

dt
(xp + px) = −i[xp + px,H] = 2

p2

m
− 2mω2x2 (3.20)

d

dt
(x) = −i[x,H] =

p

m
(3.21)
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Figure 3.2: Expectation values of the position x and momentum p of the atom in
the cavity field for the perturbational method (solid line) and for the equations of
motion with ω2 = 2

m
δ + ω2

0 (dashed line). The parameters are κ = 30, ∆c =
−10, η = 200, U0 = −5.
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Figure 3.3: N=10 coefficients, all of them initially zero, except for c1 = c2 =
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2
. The perturbation term δx2 causes a coupling of the coefficients, such that

coefficients that are initially zero start oscillating with amplitudes of order 10−4

till 10−15. Parameters: κ = 30, ∆c = −10, η = 200, U0 = −5.
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d

dt
(p) = −i[p,H] = −mω2x (3.22)

These coupled differential equations are fairly easy to solve numerically,
independent of the form of the initial wavefunction.
We find the same curves when we plot the expectation values < x > and
< p >, as shown in Fig. 3.3.
Hence we see that our model works out right and we will use it to calculate
the time-dependent Hamiltonian H(t) in the next section and we will also
apply it on the calculations for a system of two atoms inside a cavity, which
will be performed in the next chapter.

3.4 Time-dependent perturbation δ(t)

Now lets come to the full time dependent case and include the equation
for αt as well.
In the case of a time-dependent system, the Hamiltonian reads

H(t) =
p2

2m
+

m

2
ω(t)2x2 (3.23)

Again, we split the Hamiltonian into a harmonic part plus the time-dependent
perturbation term

H(t) = H0 + δ(t)x2 (3.24)

with
δ(t) = U0(|αt|2 − |α0|2) (3.25)

now being time-dependent.
Again we solve the equations

ċm = −iωmcm − i
δ(t)

2mω
kmncn (3.26)

and
α̇t = −κ + i

(
∆c − U0(1− k2 < x2 >)

)
α + η , (3.27)

numerically. Note that Eq. (3.27) contains < x2 > which depends on the
state of the atom described by the cn.

Again, we choose the initial wavefunction as a superposition of the
ground state and the first excited state and take a weak initial value for
the field α(0) = 1. The operating parameters ∆c = −10 and U0 = −5 are
chosen such that the system is in the cooling regime, the optical potential
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Figure 3.4: Expectation values for the position and momentum of the atom. The
expectation values < x > and < p > are damped. We chose κ = 1, ∆c = 10, η =
200, U0 = −5.
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Figure 3.5: Expectation values for the squared position and squared momentum
of the atom, and the field amplitude α. The expectation values < x2 > and < p2 >
are slightly damped. We chose κ = 1, ∆c = 10, η = 200, U0 = −5.
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Figure 3.6: The coefficients for the time-dependent calculation. We chose the
parameters: κ = 1, ∆c = 10, η = 200, U0 = −5.
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attracts the atom. Looking at Fig. 3.4, we see, that the the average potential
energy proportional < x2(t) > and the cavity field amplitude α(t) tend to
a stationary value, while the atomic motion is very weakly damped (Fig.
3.4). Hence, after some time the atom oscillates in self generated deep po-
tential well with an almost constant field, i.e. the system dynamically traps
and localizes itself around an antinode of the field. In contrast to classical
mechanics, quantum mechanics allows states where < x2(t) > is constant
while < x(t) > is oscillating.

Cavity cooling in the quantum regime:
The cavity damping is used to extract energy from the system which al-
lows dynamic localization of the wavefunction.
If ∆a < 0, which is equivalent to a red detuning from the transition fre-
quency, the atom is pushed towards a field antinode, where it is strongly
coupled to the field. When the atom moves away from a node, the in-
tensity in the high-finesse cavity does not drop instantaneously, but leads
to an increase of the energy stored in the field. The photons escape from
the cavity and this extracts kinetic energy from the atom. The effect of
acceleration of the atom when approaching the antinode is much smaller
because the intracavity intensity there is small. This cooling process does
not require atomic excitation and the lowest attainable temperature is not
limited by atomic linewidth but by the cavity linewidth.
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Chapter 4

Two interacting atoms inside a
cavity

4.1 Introduction

We have seen in the one atom case, using the coupled atom-field dynam-
ics, that the atom generates a potential well, where it traps itself dynami-
cally.
Now if we put two atoms in the cavity together, they interact with the
same field and although they are localized at distant positions they see
each other through the cavity field. So even without direct coupling be-
tween the atoms one atom can influence the other because they commu-
nicate via the same field [14]. We additionally take into account a direct
interaction between the atoms, i.e. if we allow collisions between them
in our model. The interaction-potential is modelled by a delta-function
multiplied with the parameter a which describes the interaction strength
[15] between the atoms: V (x1, x2) = a δ(x1 − x2). This shape-independent
approximation where the physical interaction is replaced by a point-like
potential of zero range is well justified for ultracold atoms since their
de Broglie wavelength is large enough to neglect the finer details of the in-
teraction potential. One can relate the one-dimensional parameter a with
the scattering length in 3 dimensions.

4.2 The Hamiltonian

We now are interested in the effects of two atoms in a cavity. The laser
field is described by the mode function u(x) = cos(kx). The approxima-
tion u2(x) ≈ 1 − k2x2 near the potential minima we already introduced in
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Figure 4.1: Two atoms in a coherently pumped cavity

the previous chapter, models the laser potential as a harmonic oscillator
potential. The effect of the atoms on the cavity field shall be described by
a time dependence of their harmonic potential as in the previous chapter.
Again, we model this effect by adding a small perturbation δ to the Hamil-
tonian for the harmonic oscillator.
In addition, the atoms are considered to interact directly with each other
via collisions. The delta-function V (x1, x2) = a δ(x1 − x2) represents the
interaction-potential of this interaction, where a describes the interaction
strength between the atoms.
As in the 1-atom case, we apply the low saturation approximation and in-
troduce in a rotating frame the Hamiltonian for two atoms inside a cavity
interacting with each other and interacting with a single mode of a driven
laser field as

Heff = H1,2
0 +~δ(t)k2(x2

1 +x2
2)−~(∆c−2U0)|α|2− i~η(α−α∗)+~V (x1, x2) .

(4.1)
The Hamiltonian consists of the motional and internal energy of each atom

H1,2
0 =

∑
i=1,2

p2
i

2m
+

mω2
0

2
x2

i , (4.2)

the perturbation term proportional δ(t), the atom-field interaction and the
pumping term, which are independent of the atomic parameters, and the
atom-atom interaction potential.

4.3 The differential equation for the coefficients
in the harmonic eigenbasis

We expand the wavefunction for the 2-atoms system in the eigenbasis |
φn(x1)φm(x2) > of the unperturbed harmonic oscillator,

| ψ(t) > =
∞∑

n,m=0

cn,m(t) | φn(x1)φm(x2) > . (4.3)
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By inserting this wavefunction in the Schrödinger equation

| ψ̇(t) >= − i

~
Heff | ψ(t) > (4.4)

we get the following differential equation for each coefficient ckl(t)

ċkl(t) = −i
(
ω0(k + l)ckl − iEαckl + δ(t)A+ U)

, (4.5)

As Eα is independent of n,m, k, l, it gives only a global phase shift. So we
will omit this term in the further calculations.

Eα = i(∆c − 2U0)|α|2 − η(α− α∗) (4.6)

A contributes to the perturbation term, which is calculated via the expec-
tation values for the unperturbed system

A =
∑
n,m

k2cnm(t) < φ1
kφ

2
l |(x2

1 + x2
2)|φ1

nφ
2
m > , (4.7)

which yields

A =
k2x2

0

2

∑
n,m

cnm(t)(δlmxkn + δknxlm)

=
k2x2

0

2

∑
n,m

(cnl(t)xkn + ckm(t)xlm) .

The xij denote the matrix elements we get when calculating the expecta-
tion values for the harmonic system and k2 is the wave vector of the field
mode.
As the first nontrivial case we restrict ourselves to n,m = 1, 2. Hence,
we only take into account the first two levels in the harmonic oscillator
potential for each atom. The wavefunction for the system then reads

| ψ > = c11 | φ0(x1)φ0(x2) > + c12 | φ0(x1)φ1(x2) > +

c21 | φ1(x1)φ0(x2) > + c22 | φ1(x1)φ1(x2) > . (4.8)

The coefficients describe both atoms in the ground state (c11), one atom in
the ground state, one atom in the first excited state and vice versa (c12, c21)
and both atoms in the first excited state (c22).
Taking into account that we are dealing with only 2 states of the atoms, we
get

A =
k2x2

0

2
(2x11c11 + 2x22c22 + (x12 + x21)(c12 + c21)) , (4.9)

28



- TWO INTERACTING ATOMS INSIDE A CAVITY -

which yields the matrix

A =
k2x2

0

2




6 0 0 0
0 8 0 0
0 0 8 0
0 0 0 10


 . (4.10)

As one can see, the matrix is diagonal and does not couple different co-
efficients ckl. Hence, the perturbation thus does not lead to vibrational
transitions, but only to time dependent phase shifts.

The last term, describing the direct interaction between the two atoms,
reads

U =
∑
n,m

cnm(t) < φ1
kφ

2
l |V (x1, x2)|φ1

nφ
2
m > . (4.11)

We model the potential by the delta function described above

V (x1, x2) = aδ(x1 − x2) , (4.12)

with a being the interaction parameter of the two atoms.
Let us now have a deeper look at the scalar product in equation (4.11). We
integrate the delta function and are left with the 1-dimensional integral

< φ1
kφ

2
l |δ(x1 − x2)|φ1

nφ
2
m >=

∫ ∫
dx1dx2φ1∗

k φ2∗
l δ(x1 − x2)φ

1
nφ

2
m

=

∫
dx1φ∗kφ

∗
l φnφm =: Uklnm . (4.13)

The two possible states for each atom are the ground state

φ0(x) = 4

√
mω

~π
e
− 1

2
( x

x0
)2

, (4.14)

and the first excited state of the oscillator potential

φ1(x) =
2x

x0

4

√
mω

~π
e
− 1

2
( x

x0
)2

. (4.15)

If we are looking at the integrals Uklnm, we can exclude those combinations
of φi

′s that have an impair part of antisymmetric wavefunctions φ2, i.e.
U1222, U1112, U2122, etc. , because integration of an odd function gives zero.
We can separate the treatment of all other Uklnm into solving 3 different
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integrals:
case I: all φ are in the ground state

U1111 =
mω

~π

∫
dxe

−2( x
x0

)2
, (4.16)

case II: all φ are in the 1st excited state

U2222 =
mω

~π

∫
dx(2

x

x0

)4e
−2( x

x0
)2

, (4.17)

case III: two φ in ground state, two φ in the 1st excited state

Umixed =
mω

~π

∫
dx(2

x

x0

)2e
−2( x

x0
)2

, (4.18)

where the index ’mixed’ = 1212, 2121, 1122, 2211, 1221, 2112.
The integrals are of the form:

∫ ∞

−∞
e−px2

x2qdx =
(2q − 1)!!

(2p)q

√
π

p
. (4.19)

In our case p = 1, q = 0, 1, 2. By substituting ξ =
√

2 x
x0
−→ dx = x0√

2
dξ and

writing the constant mω
~ in terms of x0 we get

2q

x0π
√

2

∫ ∞

−∞
dξe−ξ2

ξ2q =
2q

x0π
√

2

(2q − 1)!!

2q

√
π

=
(2q − 1)!!

x0

√
2π

. (4.20)

case I: q = 0
∫∞
−∞ dξe−ξ2

=
√

π

U1111 =
1

x0

√
2π

. (4.21)

case II: q = 2
∫∞
−∞ dξ e−ξ2

ξ4

U2222 =
3

x0

√
2π

. (4.22)

case III: q = 1
∫∞
−∞ dξ e−ξ2

ξ2

Umixed =
1

x0

√
2π

, (4.23)
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We resume the Uklnm in matrix form and obtain

U =
1

x0

√
2π




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 3


 . (4.24)

The matrix U shows off-diagonal terms and appears in a block form.
The off diagonal terms cause a coupling of the differential equations for
the coefficients. The block form of the matrix lets us assume that there
are actually two independent systems, meaning coefficients c11 and c22 are
coupled and c12 and c21 are coupled.
We will see later that this assumption is right (4.4.1).

4.4 Numerical solutions

Having calculated the scalar products of the different terms in the equation
for the coefficients, we express the 2-atom Schrödinger equation in matrix
form

~̇c = −i[ω0S + δ(t)A + aU ]~c , (4.25)

where

S =
∑

k,l=1,2

(k + l) =




2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 4


 (4.26)

is the matrix arising from the harmonic oscillator term H0.
To complete the set of differential equations we need the equation for the
cavity field, which depends on the atomic motion:

α̇ = [−κ + i
(
∆c − U0(2− k2 < x2 >)

)
]α + η (4.27)

where < x2 > now is the expectation value of the squared atomic positions
which are proportional to the atomic potential energies:

< x2 >=< x2
1 > + < x2

2 >=
∑
nm

|cnm|2(xnn + xmm) . (4.28)

These expectation values can be calculated from the solution of the Schrödinger
Equation (4.25).
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Again as a reference state for detuning the unperturbed basis, we choose
α0 by setting < x2 >= 0
α|<x2

1>+<x2
2>=0 = α0

|α0|2 =
η2

κ2 + (∆c − 2U0)2
. (4.29)

And the equation for δ(t) according to the previous chapter reads

δ(t) = ω2
t − ω2

0 =
2

m
U0(|αt|2 − |α0|2) . (4.30)

We numerically solve the coupled differential equations

~̇c = −i[ω0S + δ(t)A + aU ]~c (4.31)

and
α̇ = [−κ + i(∆c − U0(2− k2 < x2 >))]α + η . (4.32)

Looking at the plots, we see that the two atoms exchange their energy pe-
riodically. The cavity field α tends to its stationary value after some time
and the squared expectation values for position < x2 > and momentum
< p2 > are slightly oscillating around their steady state values.
The plots show the coupled atom-field dynamics for different values of
the interaction strength a = 0.001, a = 0.01, a = 0.05 and a = 0.1. For
a small interaction strength (a = 0.001 to 0.01) the field dynamics relax
after several oscillations and reach a stationary value. The atoms’ posi-
tion and momentum expectations oscillate with periodically shifted am-
plitudes and the period at which the atoms exchange the energy seems to
be much longer compared to the case of bigger interaction strengths a.
With growing values of a the field amplitude α does not reach the station-
ary value but it oscillates around it sinusoidally. The expectation values
for the squared atomic position < x2 > and momentum < p2 > oscillate
around their steady state values too.

4.4.1 Initial conditions

It is interesting to see that for certain initial conditions of the coefficients
cik in the wavefunction | ψ > the system stays stationary.

| ψ > = c11 | φ0(x1)φ0(x2) > + c12 | φ0(x1)φ1(x2) > +

c21 | φ1(x1)φ0(x2) > + c22 | φ1(x1)φ1(x2) > (4.33)
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Figure 4.2: Expectation values for the two atoms in the cavity (upper picture), the
combined expectation values for both atoms and the cavity field α (lower picture)
with an interaction strength a = 0, 001 and operating parameters κ = 1, ∆c =
10, η = 200, U0 = −5.
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Figure 4.3: Expectation values of the position x and momentum p of the first
and second atom in the cavity field (upper picture) and expectation values of the
position x and momentum p of both atoms in the cavity field and the expectation
value of the cavity field α (lower picture). Parameters: κ = 1, ∆c = 10, η =
200, U0 = −5, interaction strength a = 0, 01.
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Figure 4.4: Expectation values for the two atoms in the cavity (upper picture), the
combined expectation values for both atoms and the cavity field α (lower picture)
with an interaction strength a = 0, 05 and operating parameters κ = 1, ∆c =
10, η = 200, U0 = −5.
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Figure 4.5: Expectation values for the two atoms in the cavity (upper picture), the
combined expectation values for both atoms and the cavity field α (lower picture)
with an interaction strength a = 0, 1 and operating parameters κ = 1, ∆c =
10, η = 200, U0 = −5.
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As an example, if the system initially is in a superposition of both atoms
in the ground state and both atoms in the first excited state (c11 = c22 =
1√
2

, c12 = c21 = 0), i.e.

| ψ > =
1√
2
| φ0(x1)φ0(x2) > +

1√
2
| φ1(x1)φ1(x2) >, (4.34)

the expectation values for the position and momentum remain stationary
while those for the potential and kinetic energies of each atom are slightly
oscillating. The field is damped after some oscillations but it keeps oscillat-
ing with bigger a amplitude the bigger the value of the atomic interaction
strength a.
If we choose the superposition of one atom being in the ground state, the
second in the first excited state and vice versa, i.e. c12 = c21 = 1√

2
, c11 =

c22 = 0,

| ψ > =
1√
2
| φ0(x1)φ1(x2) > +

1√
2
| φ1(x1)φ0(x2) > , (4.35)

the expectation values for the position and momentum and the squared
position and squared momentum remain stationary. The field is oscillat-
ing and reaches a stationary value after some time independent of the in-
teraction strength a between the atoms.

Recalling the matrix U , which describes the direct interaction between
the two atoms,

U =
1

x0

√
2π




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 3


 , (4.36)

we see that the observations described above are a consequence of the
special shape of the matrix U . As we already assumed in section 4.3, if we
take either c11, c22 non-zero or c12, c21 non-zero for the initial conditions,
the cases described above will occur because the differential equations for
˙c11 and ˙c22 such as ˙c12 and ˙c21 are not independent.

On the other hand, if we initially take any mixture of the two sets, say
c11 = c12 = 1√

2
, c22 = c21 = 0,

| ψ > =
1√
2
| φ0(x1)φ0(x2) > +

1√
2
| φ0(x1)φ1(x2) > , (4.37)

the atomic position and momentum expectation values oscillate with shifted
periodically varying amplitudes, as shown in fig 4.4, where we chose the
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above initial condition.

There is another interesting feature if we are looking at the matrix A
arising from the perturbation term. As we already pointed out in section
4.3, the matrix A is diagonal. We compare it with the matrix K (Eq.(3.13),
section 3.3) in the perturbation term in the one atom case, where the matrix
is of the form

K =
1

2mω




. . . 0
. . . 0 0

0
. . . 0

√
n + 1

√
n + 2 0

. . . 0 2n + 1 0
. . .

0
√

n + 1
√

n + 2 0
. . . 0

0 0
. . . 0

. . .




. (4.38)

in contrast to the matrix K in the perturbation term for the one-atom case,
which shows entries in the main diagonal and in the two second diag-
onals. In the one-atom case this matrix causes the coupling of the dif-
ferential equations for the coefficient with the effect, that coefficients that
initially are zero start oscillating. The coupling does not effect the expec-
tation values for the atom and field.
Here, in the case of two atoms in the cavity, if we consider no interaction
between the atoms, i.e. a=0, we make the following observations:
If initially there is a superposition of both atoms in the ground state and
both atoms in the first excited state the system will remain steady, same for
the superposition of one atom in the ground state, one in the first excited
and vice versa. In the latter case this is also true for a 6= 0.
For the remaining possible initial conditions only one atom remains steady,
for the other one we find harmonically oscillating expectation values <
x > and < p >. As an example, we initially take the first atom in the
ground state, the second in the first excited state and both atoms in the
first excited state. We will see, only the first atom will have oscillating
expectation values for < x > and < p >, the second will remain steady.

4.5 Self consistent eigenstates

Let us now try to investigate the stationary states of the system in more
detail.
We are interested in an analytical treatment of the problem, so we consider
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the algebraic method of finding stationary states of the atom field dynam-
ics. The idea is to look for the eigensystem of the matrix equation (4.25) for
the coefficients in order to find a solution of the form c(t) = vie

−ipt spanned
by the eigenvectos vi. Using such coefficients in Eq. (4.28) the calculation
of the expectation values will yield constant values since the time depen-
dence cancels. When we look for the corresponding field α which depends
on < x2 >, thus will be a constant in this case. By these means we then
found a stationary state of the total system. For self consistency we try to
find an η such that it matches the found α and δ.

To start, we first calculate the eigensystem of the matrix M appearing in
the differential equation for the coefficients

~̇c = −iM~c , (4.39)

where
M = [ω0S + δ(t)A + aU ] . (4.40)

Introducing the abbreviations u =
k2x2

0

2
and v = 1

x0

√
2π

the matrix M reads

M =




2ω0 + 6δu + av 0 0 av
0 3ω0 + 8δu + av av 0
0 av 3ω0 + 8δu + av 0
av 0 0 4ω0 + 10δu + 3av




By diagonalizing the matrix M we find the eigenvalues

p1 = 3ω0 + 8δu (4.41)
p2 = 3ω0 + 8δu + 2av (4.42)

p3 = 3ω0 + 8δu + 2av −
√

(ω0 + 2δu + av)2 + a2v2 (4.43)

p4 = 3ω0 + 8δu + 2av +
√

(ω0 + 2δu + av)2 + a2v2 (4.44)

where p1 does not depend on a, p2 shows a linear, p3 and p4 a hyperbolic
dependence on a, see fig 4.5. The plot shows also the dependence of the
eigenvalues for a negative interaction strength a < 0, which corresponds
to an attractive interaction between the atoms, and a positive interaction
strength a > 0, resembling a repulsive interaction. For a < 0 the energy
levels are shifted downward and for a > 0 levels are shifted upward. In
the case a = 0, meaning no interaction between the atoms, the eigenvalues
p1 and p2 are degenerate.
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Figure 4.6: Eigenvalues as a function of the atomic interaction parameter a. p1

does not depend on a, p2 shows a linear, p3 and p4 a hyperbolic dependence on a.
The plot shows the cases of attractive (a < 0) and repulsive (a > 0) interaction
between the atoms. The parameters are κ = 1, η = 200, ∆c = 10, U0 = −5 and
δ = 0.005.
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The corresponding eigenvectors are:

v1 =




0
− 1√

2
1√
2

0


 , v2 =




0
1√
2

1√
2

0


 (4.45)

and

v3 =




− x√
1+x2

0
0
1√

1+x2


 , v4 =




− y√
1+y2

0
0
1√

1+y2


 (4.46)

where

x =
(ω0 + 2δu + av) +

√
(ω0 + 2δu + av)2 + a2v2

av
, (4.47)

y =
(ω0 + 2δu + av)−

√
(ω0 + 2δu + av)2 + a2v2

av
. (4.48)

The eigenvectors v1 and v2 are zero in the first and fourth component and
resemble the symmetric and antisymmetric excitation states of the atoms.
They are independent of the atomic interaction parameter a.

The eigenvectors v3 and v4 are zero in the second and third component
and they depend on a such that for a = 0 we get the vectors

v3 =




−1
0
0
0


 , v4 =




0
0
0
1


 . (4.49)

The eigenvectors are printed in Fig 4.5 and 4.5.
Again the plots show the dependence of the eigenvectors for a negative
interaction strength a < 0, i.e. an attractive interaction between the atoms,
and a positive interaction strength a > 0, being the characteristic of the
scattering by a repulsive interaction. One can interpret the first two eigen-
vectors as the coefficients c12 and c21, which means one atom in the ground
state - one atom in the first excited state and vice versa; and the second pair
of eigenvectors as the coefficients c11 and c22, meaning both atoms in the
ground state or both in the first excited state.
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Figure 4.7: The eigenvectors v1(a), v2(a). The eigenvectors v1 and v2 are zero in
the first and fourth component and independent of the atomic interaction parame-
ter a. The plot shows the cases of attractive (a < 0) and repulsive (a > 0) inter-
action between the atoms. The parameters are κ = 1, η = 200, ∆c = 10, U0 = −5
and δ = 0.005.
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Figure 4.8: The eigenvectors v3(a), v4(a). The eigenvectors v3 and v4 are zero in
the second and third component and depend on the atomic interaction parameter
a. The plot shows the cases of attractive (a < 0) and repulsive (a > 0) interaction
between the atoms. The parameters are κ = 1, η = 200, ∆c = 10, U0 = −5 and
δ = 0.005.
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For fixed δ the solution for the coefficients is obtained by transforming
the equation for the eigenvalues of the matrix M

M~ci = λi~ci (4.50)

into an equation for the eigenvalues using the eigenvectors of M .

D~vi = λi~vi (4.51)

Where D is the diagonal matrix we find when applying the linear trans-
formation D = P−1MP :

D = P−1MP =




p1

p2

p3

p4


 , (4.52)

where
P =

(
v1 v2 v3 v4

)
. (4.53)

The solution for equation (4.51) is

~v(t) = e−iDt~v(0) (4.54)

with

e−iDt =




e−ip1t

. . .
e−ip4t


 . (4.55)

Doing the reverse transformation, we get for the coefficients

~c(t) = P~v(t)

= P e−iDt~v(0). (4.56)

And finally, by transforming ~v(0) = P−1~c(0), we get an equation for the
coefficients ~c(t):

~c(t) = P e−iDtP−1~c(0). (4.57)

Hence we have derived a solution of Eq. (4.25) in the desired form.

4.6 Stationary state solutions

Our final goal is now to find a general solution to the problem. This moti-
vates to find stationary solutions for each eigenvector vi and find out if a
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general solution by superpositions of the eigenvectors is possible.
We calculate the expectation value for the squared atomic position using
the eigenvectors vi. Hence we get four constant expectation values < x2

i >:

< x2
i >= v∗i Avi , (4.58)

with

A =
k2x2

0

2




6 0 0 0
0 8 0 0
0 0 8 0
0 0 0 10


 . (4.59)

We now use these solutions < x2
i > to calculate the corresponding field

amplitudes αi for each eigenvector vi:

αi =
η

κ− i(∆c − U0(2− k2 < x2 >i))
. (4.60)

Note that < x2
i > does not depend on the phase of vi, so that αi does not

depend on this phase too.

Hence the solutions (4.57) correspond to a constant field and hence con-
stant δ(t).
The remaining problem is now to find conditions for which δi is consistent
with αi. As αi is a monotonic function of ηi, we can try to find the needed
ηi by choosing δi suitably.
For this we want to find η as a function of δi. We try to find it from the
equation for δi:

δi = U0(|αi|2 − |α0|2) (4.61)

Note that η also appears in the equation for α0 and therefore, as we de-

fined ω2
0 = 2

m
U0|α0|2, ω0 and x0 =

√
~

mω0
are also functions of η.

The expectation values < x2
i > enter the equation for αi (4.60), hence an

analytic calculation of ηi(δi) from the above equation (4.61) is only possi-
ble for the cases i = 1 and i = 2, i.e. for the first two eigenvectors v1 and
v2, whose components do not depend on ηi. If we do so, we get a cubic
equation for η1 and η2.
For the eigenvectors v3 and v4 an analytic treatment is not possible, be-
cause the expectation values < x2

3 > and x2
4 who enter the equation for the

field α3 and α4 depend on polynomials in η3 and η4 of a non-trivial form.
But if we choose for α0 a constant η = η0, ω0 and x0 depending on η0 too,
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we can easily calculate η(δi) for each eigenvector vi:

ηi(δi) =

√
(
δi

U0

+ |α0|2)
(
κ2 +

(
∆c − U0(2− < x2

i >)
)2

)
(4.62)
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Pumprate Ηi

Figure 4.9: Pump rate ηi in terms of δi for each eigenvector v1, v2, v3 and v4. The
plot shows η1 and η2 (solid line), which are equal, and η3 (dashed line) and η4

(dash-dotted line) being slightly displaced. The interaction parameter is chosen
a = 0, 01 and the operating parameters are κ = 1, ∆c = 10, η = 200, U0 = −5.

We plot the functions ηi(δi), as shown in Fig.4.6, and see that the curves for
η1 and η2 coincide, as one would expect, since the eigenvectors v1 and v2

(Eq.(4.45)) only differ by a minus sign. The curves for η3 and η4 are slightly
displaced up- and downwards respectively.

A numerical check of the results, where we use the Schrödinger equa-
tion (4.25), reveals that the eigenstates with the corresponding η and δ
yield stationary solutions.

4.7 Conclusions

We have done a review of the formalism to derive in a rotating frame
the Hamiltonian and the master equation for one atom interacting with
a single cavity mode coupled to an external reservoir. We also derived the
Heisenberg equations of motion for the atomic and field operators under
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the assumption of good cavity and low saturation limits. The force acting
on the atom was found to push the atom to low intensity regions if the
laser field is blue detuned and to high intensity regions for a red detuning
respectively.
As a next step we concentrated on the backaction of the atom on the cav-
ity field. We introduced a model for this backaction which resembles the
time-dependent frequency as a perturbation δ(t) to a harmonic potential.
We found that the system dynamically traps and localizes itself around an
antinode of the field.
The actual field of interest were two interacting atoms in a cavity stand-
ing field mode, thus the direct interaction between them and the respec-
tive interaction between the atom and field. We applied the model of the
perturbed harmonic potential on the case of two atoms in the same field
and modelled the direct interaction between the atoms by a delta function
parametrized by the interaction parameter a. We found that the atoms pe-
riodically exchange energy.
As we are interested in analytic stationary states for the system we cal-
culated the eigenstates of the matrix in the matrix representation of the
Schrödinger equation and due to the special shape of the matrix we found
two sets of eigenvectors, linearly independent of each other.
We see that there are two possible classes of states. A first class where
only one atom is excited, thus the coefficients c12 and c21 are non-zero, and
a second class, where either both or none of the atoms are excited, i.e. the
coefficients c11 and c22 are non-zero.
Dynamics only couples states within its class, that means for example if
we have the situation that only one atom is excited, according to our re-
sults the situation that both atoms are excited will not occur.
Hence effectively we have two separate two state systems. These states
could then be used as a basis of further studies of atoms in periodic lat-
tices [16].
A further interesting research topic would be the extension to three or
more states of the atoms or even more than two atoms in the cavity.
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[7] T. W. Hänsch and A. Shawlow, Opt. Commun. 13, 68 (1975)

[8] D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975)

[9] S. Stenholm, Rev. Mod. Phys. 58, 699, (1986)

[10] D. Wineland and W. Itano, Phys. Rev. A 20, 1521, (1979)

[11] V. S. Letokhov and V. G. Minogin, Phys. Rev. 73, 1, (1981)

[12] C. W. Gardiner and P. Zoller, Quantum Noise, Springer Berlin (2000)

[13] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458, (1969)
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