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Zusammenfassung

Das K�uhlen und Einfangen von Atomen in einer quantisierten Stehwelle eines op-

tischen Resonators hoher G�ute werden untersucht. W�ahrend im ersten Teil ein
�Uberblick �uber das Grundwissen der semiklassischen Laserk�uhlung unter beson-

derer Ber�ucksichtigung des Dopplerk�uhlens gegeben wird, besch�aftigt sich der

Rest der Arbeit mit den neuen E�ekten, die im Hohlraum auftreten. Es wird ein

anschauliches Bild mit Hilfe eines Sisyphus-K�uhlschemas f�ur eine nur in verlus-

tarmen Resonatoren vorhandene K�uhlkraft gegeben. Di�usion und Temperatur

der gefangenen Atome werden abgeleitet. Es wird gezeigt, da� das Dopplerlimit

unterschritten werden und eine Temperatur von kBT = �h� erreicht werden

kann, wobei � die Linienbreite des Resonators ist.
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Preface

In my thesis I investigate the interaction of a two level atom with a cavity

standing wave in the strong coupling regime. Dissipation through spontaneous

emission and the cavity mirrors is included in my model. In the good cavity

limit a new cooling mechanism appears which is entirely di�erent from standard

Doppler cooling. As a consequence equilibrium temperatures far below the

Doppler limit can be reached.

The thesis is organized as follows: In the �rst chapter I will give a review

on the standard theory of semiclassical laser cooling, which is the basis for

understanding the new concepts introduced in the following chapters. It will be

discussed what is meant by semiclassical approximations and the validity of the

semiclassical framework will be investigated. Important physical concepts like

that of friction coe�cient and that of di�usion constant will be introduced and

the idea of trapping atoms by means of light is presented. Special attention will

be paid to the case of an atom moving in a classical standing wave light �eld.

Analytical solutions to the optical Bloch equations and the corresponding force

expressions for 'small' velocities are presented. In that context the 'Doppler

limit' will be investigated .

The rest of the thesis will be concerned with an atom in a standing wave

light mode inside a cavity. It is well known that radiative properties are changed

inside a cavity. The mode structure in a cavity is di�erent from free space, which

led Pourcel to predict enhancement in the spontaneous decay rate for an atom

placed in a resonant cavity [1]. Kleppner, on the other hand, pointed out the

possibility of inhibiting spontaneous emission [2]. Also the Jaynes Cummings

model [3] in the 'good cavity limit' has been investigated in detail. A scheme to

cool free atoms in colored vacua characteristic for cavities was proposed in recent

papers [4, 5]. The situation changes again in the case of an external coherent

light source driving the atom inside the cavity and e�ects like positive stationary

population inversion [6] and changes in the atomic decay rates [7] are some of

the possible consequences. Another paper dealt with the interaction between

the cavity mode and an atom , which was additionally strongly driven by a laser,

in the bad cavity limit [8]. In experiment, however, photons must be fed into

the cavity and photons can also leak out of the cavity. No proposals for cooling

an atom in a driven cavity have been made so far. Similarly to the driven atom
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case, one also expects new physical e�ects to appear. A necessary prerequisite

for that is the strong in
uence of a single atom on the cavity dynamics. This

can only be reached if the atom-mode coupling g is stronger than cavity decay

� and spontaneous emission � ( 'good cavity' limit), which was only made

possible by the advent of better and better optical cavities in the past years.

In this limit Turchette, Kimble et al. [9, 10] demonstrated experimentally the

strong in
uence of a single atom on transmission and intracavity intensity of

a weakly driven cavity. This is also the regime we are interested in, as due to

strong coupling and small decay rates only small numbers of atoms and photons

are necessary to signi�cantly a�ect the system as a whole [9]. It is based on

those experimental achievements that the cooling scheme proposed in this work

becomes feasible.

Therefore the model of an atom interacting with a quantised standing wave in

a weakly driven cavity will be presented. In this model the intracavity intensity

is strongly dependent on the atomic position. An expression for the friction

force is analytically derived. Subsequent adiabatic elimination of cavity mode

or atomic operators respectively shows that the total friction force can be seen as

the sum of two forces. The �rst contribution is shown to be related to standard

Doppler cooling whereas the second contribution arises from the cavity dynamics

and is a new kind of cooling force ('cavity cooling'). Driving the cavity near

resonance it turns out to be the dominant force and a simple physical picture of

it in terms of dressed states and Sisyphus cooling [11] is given. A derivation of

the the di�usion using the Quantum Regression Theorem (QRT) shows that an

additional term also arises in the di�usion, which does not appear in a classical

treatment of the cavity standing wave. Again an interpretation of this term is

given in terms of 
uctuations in the Sisyphus forces. It is shown that equilibrium

temperatures in the order of �h� can be achieved, which can be signi�cantly below

the Doppler limit for su�ciently 'good' cavities. Finally, we make comparisons

to results obtained through a fully quantum treatment of the problem including

quantization of the atomic motional degrees of freedom which are in very good

agreement to the semiclassical results.
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Chapter 1

General theory of laser

cooling

Einstein already pointed out in his fundamental work on radiative absorption

and emission processes of an atom in a thermal �eld that the momentum ex-

change between light and matter could be used to slow atomic motion [12].

Essentially the atom will come into thermic equilibirum with its surroundings.

When the surrounding electromagnetic �eld has a spectral distribution corre-

sponding to 0K (monochromatic light) the atom would also be expected to

approach this temperature and would so transfer its kinetic energy to the sur-

rounding heat bath (The atomic temperature is actually limited by the width

of the transfer channel, i.e. the atomic linewidth). In fact, experiments of that

kind have recently been done with di�use light [13].

One can get a better understanding of the underlying physical mechanisms

by considering the interaction of an atom with a plane travelling or standing

electromagnetic wave, described by a c-number �eld:

E(x; t) = ~�A(x)
1

2
e�i!t�i�(x) + c:c:; (1.1)

where A(x) is the space dependent amplitude, �(x) the space dependent

phase and ~� the polarization of the laser electric �eld. In a quantum picture it

would be described by a similar expression containing �eld operators:

EL(x; t) = i~�u(x)
�
ae�i!P t�i�(x) � a+e+i!P t+i�(x)

�
: (1.2)

Their expectation values evaluated for a coherent �eld would yield the same.

The interaction of the laser with the atom in the standard dipole approximation

(long wavelength approximation), where the interaction between the atom and

the electromagnetic �eld is only expanded to �rst order in x
r
, can be character-

ized by the following Hamiltonian:
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H = HA +HV + VAL + VAV ; (1.3)

where

HA =
P 2

2m
+ �h!10jeihej (1.4)

is the atomic Hamiltonian for the external and internal degrees of freedom re-

spectively.

HV =
X
k

�h!k

�
a+k ak +

1

2

�
(1.5)

is the Hamiltonian describing the vacuum free �eld (heat bath).

VAL = �dEL(x; t) VAV = �dEV (x) (1.6)

are the interaction terms between atomic dipole d̂ and the laser and vacuum

electric �eld respectively. The vacuum electric �eld can be expanded as follows

EV (x) = i
X
k

r
�h!k

2�0V
~�kake

ikx + h:c:; (1.7)

where V is the volume of quantization. Now we also make the rotating wave

approximation, which keeps only energy conserving terms and which is valid for

quasi resonant interaction (like in the case we consider). Expressing the dipole

operator

d = ~d
�
�+ + ��

�
(1.8)

and inserting it into (1.6) applying the rotating wave approximation yields

VAL =
�h!R(x)

2

�
e�i!P t�i�(x)�+ + h:c:

�
; (1.9)

where

!R(x) = ~�~dA(x) (1.10)

is the associated Rabi frequency. In the same way one only retains the terms

�+a; a+�� in VAV and omits the nonresonant terms.

For the force acting on the atom we �nd [14, 15]:

F = _P

=
i

�h
[H;P]

= �rVAV (x) �rVAL(x): (1.11)
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As only these contributions to the total Hamiltonian depend on x, the gra-

dient acts only on the atom-laser and the atom-vacuum coupling with their

respective space dependencies. Forming the Heisenberg equations for the �eld

operators we �nd

_ak = �i!kak �
r

!k

2�0V �h
e�ikx�� (1.12)

and upon integration

ak(t) = ak(0)e
�i!kt +

Z t

0

dt0e�i!k(t�t
0)

r
!k

2�0V �h
e�ikx��(t0): (1.13)

The �eld operators can be split into a freely evolving term and into a source

term radiated by the atomic dipole. Inserting this into EV one obtains

EV (~x; t) = Efree(~x; t) +Esource:(~x; t) (1.14)

The source term is found by summing up all the contributions of the in-

dividual source components over the set of wavenumbers k. The components

depend on k through the frequency !k, and the exponential e
ik(x�~x), which upon

summation(integration) over k yields an even function of x� ~x, the gradient of

which vanishes when evaluated at the position of the atomic centre of mass x.

This means that the electric dipole �eld does not exert force on the dipole itself,

which is well known from classical electrodynamics. The remaining free evolving

term only contains �eld operators a(0); a+(0) linearly, with the consequence

h�rEfree(x; t)i = 0

when averaged over the vacuum �eld.

Note that the commutator of E�

free with E+
free does not average to zero,

which gives rise to 
uctuations in the force and thus to di�usion (see below).

As for the moment we are interested in the mean force only, we are left with

the contribution due to the atom-laser coupling �rVAL.
Up to now we have assumed x̂ to be the position operator for the atomic

centre of mass. Assuming well localized wave packets for the atom one can

replace its expectation value by the classical coordinates of the atomic centre

of mass and neglect the quantum mechanical nature of the external degrees of

freedom [16, 14, 17].

Later I will give a brief account on the necessary requirements for this so

called 'semi classical' approximation. Now one can change into a frame rotating

with the laser frequency !P and get rid of the explicit time dependence in VAL.

One obtains for the force operator:
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F(x) = ��hr!R(x)
2

�
�+e�i�(x) + ��e+i�(x)

�
�ir�(x)�h!R(x)

2

�
�+e�i�(x) � ��e+i�(x)

�
: (1.15)

Its mean value can be obtained by tracing over the internal degrees of free-

dom.:

f(x) = Tr f�F (x)g (1.16)

= ��hr!R(x)ux(t)� �h!Rr�(x)vy(t); (1.17)

where ux(t) and vy(t) are the components of the 'Bloch vector' 1

ux(t) = Re
n
�ge(t)e

�i�(x)
o

(1.18)

vy(t) = Im
n
�ge(t)e

�i�(x)
o
: (1.19)

This yields the dipole force, which is proportional to the intensity gradient

r!R(x) of the laser and the radiation pressure force proportional to the phase

gradient r�(x) of the laser. What is left to do is to calculate the density matrix

elements and insert them into the expression for the force.

The parts of the total Hamiltonian describing the vacuum free �eld HV and

the coupling of the atomic dipole to the vacuum modes VAV can be replaced

by a Liouvillian operator in a density matrix equation for the atomic operators

alone [18]. This enables us to restrict ourselves to the internal atomic degrees

of freedom while we get rid of the ini�nte set of vacuum modes the dissipative

action of which is accounted for by the Liouvillian in the atomic density matrix

equation, which is presented in a rotating frame below. One changes into the

rotating interaction picture by the unitary transformation2

U(t) = e�i!P t(�
+��) (1.20)

and thus eliminates the time dependence in the in the interaction term as

well as introducing the frequency di�erence

�a = !P � !10

in the atomic Hamiltonian. The standard master equation is then found to be

1They are the �x; �y expectation values for �(x) = 0
2Note that F(x) of (1.15) has already been transformed into the rotating frame
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_� = � i

�h
[H; �]� �

��
�+��; �

	
+
� 2����+

�
; (1.21)

where

H = ��h�a�
+�� +

�h!R(x)

2

�
�+ + ��

�
: (1.22)

� is the spontaneous decay rate of the excited atomic state (HWHM at

resonance)3.

If one expresses the master equation above in terms of excited and ground

states of the atom (jei; jgi), one obtains the following equations:

_�ee = i
!R

2

�
�ege

+i�(x) � �gee
�i�(x)

�
� 2��ee

_�gg = �i!R
2

�
�ege

+i�(x) � �gee
�i�(x)

�
+ 2��ee

_�ge = �i�a�gee
�i�(x) � i

!R

2
(�ee � �gg)� ��gee

�i�(x)

_�eg = _��ge: (1.23)

One of them is redundant as the populations sum up to one:

�ee + �gg = 1:

It is more convenient to introduce the quantities ux(t) and vy(t) de�ned

above and an additional quantity wz(t) =
1
2 (�ee � �gg), which can be related

to the expectation values of the cartesian components of a pseudospin 1/2 [19].

This set of equations is called Bloch equations. The density matrix equations

(1.23) can be solved for the case of a motionless atom in steady state case

( _u = 0; _v = 0:::) to yield

ux =
�a

!R

s

1 + s

vy = =
�

!R

s

1 + s

�ee =
1

2
+ wz

=
1

2

s

1 + s
; (1.24)

where s is the saturation parameter de�ned as

s =
!2R=2

�2
a + �2

: (1.25)

3half width at half maximum
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1.1 Plane wave : the radiation pressure

For the case of a plane wave one has �(x) = �kx, where k is the wavevector,

and the intensity along the wave is constant. Thus

r!R(x) = 0 (1.26)

r�(x) = �k: (1.27)

So one �nds for the radiation pressure force

frp(x) = �h!R(x)kvy

= �hk�
!2R=2

�2
a + �2 + !2R=2

: (1.28)

This expression shows that the radiation pressure is a dissipative force as

it varies like an absorption curve with �a. For high saturation it reaches a

maximum of

fmax = �hk�

corresponding to accelerations in the range of 105g for Na-atoms. For an

atom moving in a plane wave with constant velocity, the Bloch equations can

again be easily solved analytically for the steady state. The atom sees the

incoming photon frequency shifted by

~!P = !P � kv (1.29)

and thus �a = !P �!10 in (1.28) must be substituted by �a�kv to obtain

the force for the moving atom. The resulting velocity dependent force can be

expanded in powers of v to obtain the friction coe�cient � as de�ned

f� = f(v = 0) + �v +O(v2): (1.30)

One �nds

� = �hk2!2R
�a�

[�2
a + �2]

2 : (1.31)

The radiation pressure force (1.28) can be understood as the product of the

transferred photon momentum �hk and the photon scattering rate, which is the

rate of absorption-spontaneous emission cycles. The average momentum trans-

fer of one cycle equals �hk due to the symmetrical distribution of spontaneous

emission. So the radiation pressure force can also be written 4 as �hk2��ee.

It can be used in atomic beam de
ection, deceleration and velocity collima-

tion experiments [20].

4As stimulated emission goes into the beam direction, absorption- stimulated emission

cycles do not contribute to the force
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1.2 Standing wave : the dipole force

For a laser standing wave the intensity varies as

!R(x) = !0cos(x)

along the cavity axis while the the phase �(x) remains constant. This is

also what we will be interested in when discussing the interaction of the atom

placed inside a weakly driven cavity, where the atom interacts with the cavity

standing wave. For the case of the motionless atom the Bloch equations yield

the steady state dipole force, which can be immediately found by substituting

eqn.(1.24) into eqn.(1.17):

fdp(x) = �r!R(x)ux
= �r!R(x)�a

!R

s

1 + s

= ��h�a

4

r!2R
�2
a + (�)

2
+ !2R=2

: (1.32)

One sees, that fdp(x) varies like a dispersion curve 5 with respect to �a.

The dipole force reaches a maximum for !R in the order of �a:

fmax
dp � �hk!R:

As a standing wave is the sum of two opposite running waves the dipole

force can be associated with absorption of photons from one component of the

standing wave and stimulated emission into the other component. The net

momentum transferred to the �eld also changes the atomic momentum. It

can be shown that energy is only absorbed through the dissipative radiation

pressure but no energy is absorbed by the dipole force, where photons of the

same frequency are absorbed from and reemitted into the standing wave.

The expression of the dipole force shows that atoms are attracted to high

intensity regions for �a < 0 and it is said that the atom is a 'high �eld seeker'.

The dipole force can be related to an optical potential

V (x) =
�h�a

2
ln

�
1 +

!2R(x)

�2
a + �2

�
: (1.33)

For an atom moving with small velocity inside the standing wave the Bloch

equations cannot be solved analytically as the coe�cients of the linear di�er-

ential equations depend sinusoidally on x through !R(x). However, numeri-

cal results were obtained by the method of continued fractions [21, 22], where

5A two level system including dissipative processes can be seen completely analogous to the

the Rabi oscillations of an electron subjected to a sinusoidally varying magnetic �eld which

are damped by an additional decay channel. There the �x and �y expectation values also

show absortpive and dispersive character respectively.
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Fourier expansions of the force were calculated. We want to �nd solutions only

to �rst order in kv
� and therefore follow a perturbative treatment �rst suggested

by Gordon and Ashkin [23], which yields the same result as computing the �rst

few spatial components of the force. One can expand the density matrix into a

zeroth and �rst order term in v. Retaining only components to �rst order in v

and noting that

_� =

�
@

@t
+ v

@

@x

�
�;

where @
@t

can be omitted as we are looking for the steady state solutions, we

obtain

v
@

@x
�0 = L�1; (1.34)

where

L� = � i

�h
[H; �]� �

�
�+���+ ��+�� � 2����+

�
: (1.35)

This means that we substitue the zeroth order solution on the left side to

obtain a matrix equation for the �rst order solution on the right side. We will

concentrate only on the weak saturation limit (s� 1) which will be needed later

when extending our model. Inverting the above matrix equation6, substitutung

the solution found for ux to �rst order in the velocity into (1.17) we �nd

f� = �hk2
�!0
2

�2 2�a�

[�2
a + �2]

2 2sin
2(kx)v: (1.36)

Averaging over a wavelength this yields

�dp = �hk2
�!0
2

�2 2�a�

[�2
a + �2]

2 : (1.37)

Comparing it with equation (1.31) for the friction coe�cient of a plane wave

one sees that it is the sum of the friction coe�cient of the wave propagating to

the left and the wave propagating to the right7. The interpretation of this cool-

ing mechanism, called 'Doppler cooling' [24, 25], is that owing to the Doppler

e�ect, the moving particle tends to absorb photons from the laser wave counter-

propagating its velocity rather than from the copropagating wave, if the laser

is tuned below resonance.

6after expressing � in terms of jei; jgi,given by eqns.(1.23)
7The amplitude !0 of a standing wave must be associated with two times the amplitude of

the running waves of which it is comprised to yield the same averaged intensity., !Run:wave
R

!

!0=2 in this comparison.
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One has to bear in mind, however, that this applies only to the low intensity

limit, where interference e�ects can be neglected. Note further that the friction

force becomes zero at the antinodes, the region where atoms are supposed to

collect as they are 'high �eld seekers'. This has implications for the attempt

to trap them stably in a potential pot located at the antinode. For strong

intensities a di�erent approach over dressed states may be taken [11].

1.3 The semiclassical approximation

One question remaining to be answered is under which circumstances the re-

placement of the x̂ operator by a classical variable is valid [17]. For this to hold,

one certainly has to assume, that the spatial spread of the atomic wavepacket

is much smaller than the laser wavelength [16].

�Xk � 1 (1.38)

Furthermore, the momentum spread of the wavepacket must induce only

small Doppler shifts compared to the natural linewidth:

k�P

m
� �: (1.39)

Considering the Heisenberg inequality

�X�P � �h

2

one then �nds

Erec =
�hk2

2m
� �h�: (1.40)

Thus the atomic recoil energy must be much smaller than the linewidth

as a necessary condition for a semiclassical treatment. This ensures that the

atom will still be on resonance after emitting several photons. Considering that

external processes have a timescale in the order of Text = �h=Erec and internal

processes a timescale in the order of Tint = �h=� one �nds

Text � Tint: (1.41)

So on sees that a clear separation between external and internal time scales

is a necessary precondition for the application of semiclassics. This allows to

regard the velocity of the atom (varies on a scale of Text ) as constant while

averaging over the fast changing internal variables.
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1.4 Di�usion and the Doppler limit

Although there is a force slowing down and cooling the atoms if the detuning

is correctly chosen, there is also a source of heating counteracting this process.

So far we have only calculated time averaged mean forces, but the force itself

arises from discrete photon momentum transfers and 
uctuates around its mean

value, which increases the momentum variance. This gives rise to di�usion D

[23, 14]. It is de�ned as

2D =
d

dt
�P 2(t): (1.42)

There are several distinct components of di�usion with di�erent physical

orgins. For both cases of a standing and a travelling wave there is di�usion due

to the random directions of the spontaneously emitted photons. Considering

that the atomic momentum undergoes a random walk in momentum space, the

corresponding change of the variance in time should be determined by8

2DSE = �h2k22��ee (1.43)

= �h2k2�
s

s+ 1
: (1.44)

For a travelling wave another source of di�usion is the randomness in the

number of absorbed photons. Similarly one can deduce

Dabs = DSE :

Things change for a standing wave, where a di�erent contribution Ddp to the

di�usion due to 
uctuations in the dipole force, arises. Similarly to the dipole

force, which in the weak intensity limit can be understood from the contributions

of two counterpropagating travelling waves, also Ddp can be related to Dabs.

Whereas for the radiation pressure in a traveling wave the randomness results

from the random number of photons being absorbed, for the dipole force it can

be thought of resulting from the random direction of absorption of the incoming

photons. So in the weak intensity limitDdp can be set equal to 2Dabs, arising

from the contributions of the two running waves. Note however, that like when

thinking of the standing wave friction coe�cient as arising from the friction

coe�ecients of two travelling waves, the space dependence has been averaged

out in the expression for Ddp. A more accurate analysis for the weak intensity

limit yields [23]

8This rough estimate coincides with the result obtained through a more thorough calcula-

tion. For a more serious discussion of the di�usion occuring in our 'driven cavity model' see

below.
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D = DSE +Ddp

= �hk2
s(!0)

2
�(sin2(kx) + cos2(kx)); (1.45)

so that the overall space dependence cancels out again. s(w0) stands for the

saturation parameter evaluated on the standing wave amplitude !0.

s =
!20=2

�2 +�2
a

Now the question remains to which temperatures atoms may be cooled when

cooling and heating through di�usion are taken into account [26, 27, 17]. Let

us give a simple guess. We know from above that for small velocities

f = �� � v
and so

dP

dt
= � �

m
P

dP 2

dt
= �2�

m
P 2;

and from the de�nition of the di�usion

dP 2

dt
= 2D:

Both cancel in steady state so that

�

m
p2 = D:

Accordingly we obtain for the temperature in our one dimensional model

kBT

2
=

P 2

2m
=

D

2�
: (1.46)

So from the expression(1.37) for the friction coe�cient evaluated at �a �
�� for maximum damping and the expression(1.45) for the di�usion at low

saturation one �nds for the minimum temperature attainable

kBT � �h�; (1.47)

which is called the Doppler limit. It has also been investigated more rig-

orously in treatments including the quantization of the motional degrees of

freedom [28].
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Chapter 2

Mechanical light e�ects in a

driven cavity

In the preceding chapter the laser mode the atom was interacting with was as-

sumed to be in a quasi coherent state so that replacement of the mode operators

by c-numbers was possible. Standing waves formed by two counterpropagating

laser beam would very well apply to that situation. A standing wave also forms

in a cavity. However, things are di�erent for that case. In our model, like in real

experiment, there is a coupling introduced between the cavity mode and a laser

beam driving the cavity via the cavity mirrors. There is also a coupling between

the cavity mode and the vacuum �eld which accounts for the depletion of the

cavity mode (cavity decay). In other words, photons are fed into the cavity and

may leak out of it. A schematic representation of the system is given in �g. 2.

For strong coherent pumping many photons are in the cavity and one expects

the cavity to be in a coherent state with constant intensity. Treating the mode

classically as a c-number is then justi�ed. However, when the number of intra-

cavity photons is small and the pumping is weak, the 'nonclassical behavior' of

the cavity mode is likely to introduce new cooling e�ects and di�usion terms,

which cannot be derived from the classical model above. For this we quantise

the cavity mode and add the following terms to the Hamiltonian (1.3) above:

HC = �h!ca
+
c ac (2.1)

VCV =

Z
�!

d!g(!)
�
aca

+
! + a!a

+
c

�
(2.2)

VAC = �hg
�
a+�� + �+a

�
(2.3)

HP = �i�h� �ae+i!P t � a+e+i!P t
�
; (2.4)

where Hc is the free cavity Hamiltonian and VCV is the cavity vacuum inter-

action Hamiltonian. Here the sum over the vacuum modes has been converted
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Figure 2.1: Particle moving in a weakly driven cavity with losses from sponta-

neous emission � and cavit decay �.

into a frequency integral and like in the case of the atom interacting with the

vacuum �eld, the interaction is restricted to a certain bandwidth �! [18]. Also

the rotating wave approximation was made and the coupling g(!) is assumed to

be quasi constant over the range of integration. Note that the coupling g(!) is

not space dependent, as the vacuum �eld couples to the mode only at the mirror.

HP is the term describing the coherent pumping of the cavity from a coherent

laser over the cavity mirror. Note that the term VAL of eqn.(1.9) is written now

in the context of a quantized cavity standing wave (�=0) interacting with the

atom as

VAC =
�h!R(x)

2

�
a�+ + �a+

�
;

where

�h!R(x)

2
= �hg(x)

= �h

r
!c

2�0V �h
~�~dcos(kx): (2.5)

Note that the coupling strength !0=2 = g0 depends on the quantization

Volume V and becomes larger for smaller cavities with smaller volume V. This

is important in creating large coupling between cavity and atom in comparison

to the cavity decay � and spontaneous emission � (good cavity limit), which

has been achieved in the past years with the advent of better optical cavities.

In this conetxt a paramter N0 , the critical atom number, may be introduced

which decribes the number of atoms necessary to a�ect signi�cantly the system

as a whole [9, 10]:
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N0 =
��

2g20
: (2.6)

Now one can eliminate the vacuum �eld degrees of freedom again and derive

a master equation for the atom-cavity mode density operator alone. To get rid

of the time dependence appearing in HP one changes to a rotating (interaction)

frame by the unitary transformation

U(t) = e�i!P t(�
+�+a+c ac)

introducing the frequency shifts in the transformed Hamiltonian

�a = !P � !10 �c = !P � !c: (2.7)

Finally one �nds for the master equation (in a rotating frame) for a two

level atom inside a laser cavity interacting with a cavity standing wave while the

cavity is driven by a coherent source with losses through spontaneous emission

and cavity damping included:

_� = � i

�h
[HJ:C:; �]� i

�h
[HP ; �]� �

��
�+��; �

	
+
� 2����+

�
��
��

a+a; �
	
+
� 2a�a+

�
; (2.8)

where

HJ:C: = ��h�a�
+�� � �h�ca

+a+ �hg
�
a�+ + ��a+

�
HP = �i�h� �a� a+

�
(2.9)

are the expressions for the Jaynes Cummings and the Pump Hamiltonian

respectively.

2.1 Heisenberg equations

An equivalent way of treating this problem is via the Heisenberg equations for

the atomic and mode operators. One �nds

_a = i�ca� ig(x)�� � �a+ � + F1
_�� = i�a�

� + ig(x)�za� ��� + �zF2; (2.10)
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where F1 and F2 are noise operators which essentially contain only free input

�eld operators. It is important to know that their expectation values are zero

when evaluated for a heat bath at T = 0:

F1jvaci = 0 = F2jvaci: (2.11)

Now we want to linearise the above equations. For the averages one has to

note that

�za = (jeihej � jgihgj)
 
j0ih1j+

X
n=2

p
njn� 1ihnj

!
:

If the cavity is very weakly driven there is at the most one photon in the

cavity and the atom is in the ground state or there is no photon at all and

the atom is in the ground or the excited state. In that case states je; 1i; jg; 2i
or states of even higher photon number do not contribute and can be omitted.

Thus

h�zai = �hai:

But even for a higher number of photons in the cavity this relation holds

approximately, if the population of the ground state is much larger than the

population of the excited state, i.e. the saturation of the transition is very

small. In that case and considering (2.11) the equations for the expectation

values may be written as

h _~Y i = Ah~Y i+ ~Z� ; (2.12)

where

~Y =

�
a

��

�
A =

�
i�c � � �ig(x)
�ig(x) i�a � �

�
~Z� =

�
�

0

�
: (2.13)

These equations can be solved for h _ai = 0 = h _��i to obtain

hai0 = �
�� i�a

det(A)
(2.14)

h��i0 = �
�ig

det(A)
; (2.15)

where det(A) is the determinant of A, given by

det(A) = ��+ g2 ��a�c � i (�c� +�a�) : (2.16)
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Similarly one can derive equations for the expectation values of operator

products. One uses

d

dt
h�+ai = h _�+ai+ h�+ _ai (2.17)

so that one can substitute (2.10) into the equations above. Note that the

ordering is important for the averages of the products involving noise operators.

We introduce

X1 = a+�� + �+a

X2 =
1

i

�
a+�� � �+a

�
X3 = a+a

X4 = �+�� (2.18)

and derive the following equations for those operator products:

h _~Xi = Bh ~Xi+ �h~Ii; (2.19)

where

~X :=

0
BB@

X1

X2

X3

X4

1
CCA

B =

0
BB@
�
 �� 0 0

� �
 �2g 2g

0 g �2� 0

0 �g 0 �2�

1
CCA

~I =

0
BB@

�� + �+
1
i
(�� � �+)

; a+ a+

0

1
CCA (2.20)

with � = �a ��c and 
 = �+ �.

Solving those equations for h _~Xi = 0 one obtains

h ~Xi0 = �2

jdet(A)j2
�
2�ag;�2g�;�2

a + �2; g2
�

(2.21)

and by comparison with (2.15) one �nds the equalities:
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ha+��i = ha+ih��i
ha+ ai = ha+ih ai:

This is somewhat surprising as it shows that operator products factorize

when the cavity is weakly driven. In general this is not the case and the entan-

glement between mode and atom produces e.g. additional terms in the di�usion.

Let us take a look at the intracavity intensity. One �nds from (2.21)

ha+ai = �2
�2
a + �2

(��+ g(x)2 ��a�c)
2
+ (�a�+�c�)

2 : (2.22)

This shows that the intracavity intensity depends on the atomic position x.

The atom introduces a shift in the cavity resonance frequency and therefore of

the transmitted intensity [9]. From input-output formalism it is easy to �nd the

following relations for the transmitted and re
ected light for a cavity formed by

two mirrors of equal loss rates � [29, 30]:

hairef = �p
2�

i�c

2�+ i�c

haitra = �p
2�

�2�
2�+ i�c

:

Thus for zero detuning (�c = 0) the transmitted intensity is maximal,

whereas for large detunings most of the light is re
ected back at the input

mirror. When an atom is present in the cavity this simple rule is not valid any

longer [9, 31].

Driving the cavity resonantly yields maximum intensity for the atom being

at the nodes, as the cavity does not 'see' the atom there. Hence it does not expe-

rience any change in refractive index which would only shift it out of resonance

and decrease the intracavity intensity (�g.2.2).

Quite opposite, if the cavity is driven out of resonance by an amount larger

than the Rabi splitting �c = ��=2�
p
�2 + 4g20=2 (see 4.2), the strong atom-

mode interaction at the antinodes shifts the cavity back to resonance and there-

fore the intensity is largest at the antinodes (�g 2.3). This proves the strong

atomic in
uence on the intracavity intensity.

From (2.21) it is also easy to calculate the force on the atom. As the part of

the total Hamiltonian describing the mode-vacuum �eld interactions (VCV ) is

space independent, its gradient equals zero. Analogous to the arguments of the

preceding chapter one concludes that the gradient due to the radiated source

�eld equals zero and the gradient of the free evolving �eld averaged over the
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Figure 2.2: �c = 0 and so the cavity intensity (in units of (�=�)2) is maximal

at the nodes. Note that the standing wave is represented by the dotted line for

comparison. The averaged mean photon number n = 0:51(�=�)2.

vacuum �eld yields zero. One is left with the contribution due to the atom-mode

interaction VAC (2.3) and �nds for the dipole force operator in analogy to (1.15)

F (x) = ��hrg �a+�� + �+a
�

(2.23)

and inserting the above results

f(x) = Tr f�F (x)g

= ��h�2 �arg2
(��+ g2 ��a�c)

2
+ (�a�+�c�)

2 : (2.24)

Upon integration the corresponding potential reads:

V (x) = ��2�h�a

d
Atan

�
u
d

�
d 6= 0

V (x) = �2�2�h�a

u3
d = 0:

Here u and d are the real and imaginary part of det(A) respectively . One

�nds that for zero laser-atom detuning �a the force is also zero. For negative

detuning �a < 0 the atom is attracted to the antinodes 'high �eld seeker',

whereas the opposite holds for positive detuning. Figures 2.4 show the steady

state force and its potential for �xed � > 0 where the cavity is once driven near

resonance (low �eld seeker) and then the atom is driven slightly below resonance

(high �eld seeker). We will come back to the steady state force and its potential

later.
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Figure 2.3: �c > 0 and the cavity is shifted into resonance at the antinodes.Note

that the standing wave is represented by the dotted line for comparison. The

averaged mean photon number n = 0:36(�=�)2.

2.2 The friction force

It is straight forward and in complete analogy to chapter 1 eqn.(1.34) to �nd

an expression for the friction coe�cient, the linear velocity dependence of the

force for small velocities. What is meant by 'small' velocities? There are two

decay channels, one through the cavity and the other one through spontaneous

emission. The velocity of the atom is certainly 'small', if it moves only a fraction

of a wavelength before either decay may occur, i.e.

kv � �; �: (2.25)

It is generally not necessary for both ratios to be much smaller than one ,

depending on what decay channel is the predominant one and which type of

cooling is chosen. For us it is the cavity decay which is of greater interest and

the magintude of � is of little importance for the magnitude of velocities up to

which a linear dependence is justi�ed. We will come back to this in the next

chapter.

For �nding the friction coe�cient one obtains the following equations:

v
@

@x
h~Y i0 = Ah~Y i1 (2.26)

v
@

@x
h ~Xi0 = Bh ~Xi1 + �h~Ii1; (2.27)

where h ~Xi0; h ~Xi1 denote the zeroth order expectation values (calculated

above) and �rst order expectation values (to be found!) respectively. The same

applies to h~Y i0 and h~Y i1, as well as h~Ii1. It does not present any di�culty
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Figure 2.4: Dipole force acting on a motionless atom for � = 2�; g0 = 4� and

�xed cavity-atom detuning � = 8�. In the left pictures �a = �2� (high �eld

seeker) and in the right column �a = 10� (low �eld seeker). For comparison we

have also plotted the �eld (dotted line).
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either �nding the derivative of the zeroth order expectation values nor inverting

the two matrices B;A again. 1 The friction force is simply written as

f1(x) = ��hrghX1i1: (2.28)

The expression found is somewhat long and complex and hence it is listed

in the appendix A.1. We will not discuss it now but come back to it in the next

sections.

2.3 Factorizing operator expectation values

Above we proceeded in an analytical way (in the limit of weak driving �eld)

to obtain an expression for the friction force. However, for force exerted on an

atom at rest we found that the h�+ai operator product expectation values could
be decorrelated at steady state. Can this also be done for a slowly moving atom?

In order to check this one makes the following ansatz for the friction force:

f(x) = ��hrg �h�+ihai+ c:c:
�
: (2.29)

Now h�+i; hai can be expanded in powers of v for small velocities like follows
(in the above notation):

h�+i = h�+i0 + h�+i1
hai = hai0 + hai1:

Those expansions inserted into eqn.(2.29) yield a term zeroth order in v

which is the steady state force of the motionless atom, a term second order in

v which we have to omit in this approximation and a linear term as follows:

f1(x) = ��hrg (hai0h�i1 + c:c:)

+ ��hrg (h�i0ha1i+ c:c:) : (2.30)

If one inserts the expressions for hai1; h��i1 found from eqns.(2.26), the

expression of the friction force can be represented by two contributions

f1(x) = fca + fat

= ��hrgrh��i0Tca + c:c:

��hrgrh ai0Tat + c:c:; (2.31)

1Note that it is advantageous having a real matrix with the force operator expectation

value being the �rst basis element of the matrix representation. This considerably simpli�es

inversion and later on calculation of force correlations.
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where Tca; Tat are not further speci�ed linear combinations of hai0; h��i0.
We will see that the two contributions to the force are the same one obtains

through adiabatic elimination of mode (fat) and atom (fca) respectively, which

is discussed in the next chapter. The sum of both is found to be equal to the

friction force found before in eqn(2.28). It thus seems that in the low veloc-

ity limit the steady state atom-mode operator products can be decorrelated

(see also appendix C). Furthermore, the total friction force was separated into

two contributions proportional to rh��i0 and rhai0 respectively. Those two

contributions will be identi�ed in the next chapter.
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Chapter 3

Bad and good cavity limit

This chapter is dedicated to the adiabatic elimination of the �eld mode in the

bad cavity limit or the atom in the good cavity limit respectively. It is helpful

in distinguishing between a well known cooling mechansim (Doppler cooling)

that is dominant in the bad cavity limit and the new one ('cavity cooling') that

occurs because the cavity mode has its own dynamics. A simple explanation

why Doppler cooling is prevalent in the bad cavity is that the situation resembles

a free atom interacting with a standing wave (no cavity), where only Doppler

cooling occurs.

3.1 Elimination of the cavity mode

We will now transform the master equation for atomic and mode operators into

a master equation for atomic operators alone. This can be done by assuming

that the cavity relaxation is much faster than the atomic relaxation so that the

cavity adiabatically follows the atomic evolution. As a consequence one can get

rid of the cavity operators and �nd a master equation for the atomic degrees

of freedom alone. To derive it, it is not necessary to introduce a weak driving

�eld approximation, as one starts from the Heisenberg equation for the mode

operator, which is already linear. One makes the ansatz

_a = 0 = i�ca� ig(x)�� � �a+ �: (3.1)

The noise operator F1 can be omitted as it doesn't play any role when the

mode is coupled to a vacuum �eld (T=0) and only normally ordered operator

products are formed. One �nds

a =
� � ig(x)��

�� i�c

(3.2)
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and similarly one can express a+ and a+a by atomic operators. These expres-

sions can be resubstituted into eqns.(2.9) for HJ:C:; HP and after some algebra

and omitting constant energy o�sets in the Hamiltonian one obtains

Htot = HJ:C: +HP

= �h�c

g2p
�2
c + �2

�+�� � �h�a�
+�� + �hg(x)

�
�

�� i�c

�+ + h:c:

�

��hg(x)� �

�2
c + �2

�
�� + �+

�
: (3.3)

We still have to substitute the mode operators appearing in the Liouvillian

describing the mode losses through cavity decay for eqn.(3.2)

Lc = �� �a+a�+ �a+a� 2a�a+
�

(3.4)

which yields

Lc = � �g2

�2
c + �2

�
�+���+ ��+�� � 2����+

�
: (3.5)

This describes the cavity decay expressed through atomic operators

We also �nd an additional contribution to the atomic Hamiltonian

Hadd: = +�hg(x)�
�

�2
c + �2

�
�� + �+

�
(3.6)

It cancels the last term of the Hamiltonian (3.3) above. Adding all contribu-

tions from atomic decay, cavity decay and the di�erent Hamiltonians one �nds

the following master equation for the atomic operators:

d�

dt
= � i

�h
[Hat; �] + L�; (3.7)

where

Hat = ��h�+��
�
�a ��c

g(x)2

�2
c + �2

�
+ �hg

�p
�2
c + �2

�
�+ + ��

�
(3.8)

L� = �
�
� + �

g(x)2

�2
c + �2

��
�+���+ ��+�� � 2����+

�
: (3.9)

It would be interesting to examine this master equation further, e.g. mod-

i�ed spontaneous emission and things related to that. Here we will primarily

concentrate on the induced light forces.

The general expression for the force with the mode adiabatically eliminated

reads:
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F (x) = �@Hat

@x

= ��h�c

rg(x)2
�2
c + �2

�+�� � �hrg(x) �p
�2
c + �2

�
�+ + ��

�
: (3.10)

The master equation (3.7) is valid for any pumping rate � and eqn.(3.10)

yields the corresponding force. To �nd the exact force without the 'weakly

driven cavity' approximation we note that the master equation (3.7) can be

de�ned by

Hat = ��h�+�� ~� + �h~g(x)
�
�+ + ���

L = �~� ��+���+ ��+�� � 2����+
�
; (3.11)

with

~� = �a ��c

g(x)2

�2
c + �2

~g =
g(x)�p
�2
c + �2

~� = � + �
g(x)2

�2
c + �2

:

Noting the analogy to (1.21) we can immediately take the results (1.24) for

ux and �ee of the optical Bloch equations and insert them to �nd for the force

f(x) = Tr f�F (x)g

= ��h�c

rg(x)2
�2
c + �2

1

2

s

s+ 1

��hrg(x) �p
�2
c + �2

~�

2~g(x)

s

s+ 1
; (3.12)

where s is de�ned as

s =
2~g(x)2

~�2 + ~�2
:

Note again, that expression (3.12) is valid for any driving amplitude �. It can

be shown by expanding (3.12) in powers of �2 that the expression for the force

we found before in (2.24) is just the contribution proportional to �2 of (3.12).
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Let us check, if we obtain the same result by linearisation of the master equation.

As we want to discuss the weakly driven cavity it is possible to linearise (3.7)

for weak pumping and to obtain the corresponding Heisenberg equation (with

the noise terms omitted) for the atomic operator �� :

_�� = i

�
�a ��c

g(x)2

�2
c + �2

�
�� �

�
� + �

g(x)2)

�2
c + �2

�
�� � ig(x)

�p
�2
c + �2

:

(3.13)

As we showed in the preceding chapter, for weak pumping (linearised Heisen-

berg equations as as consequence) the h�+��i steady state expectation values

factorize:

h�+��i = h�+ih��i: (3.14)

The same of course applies here and this enables us to �nd the force by

calculating the �� expectation values for v = 0 or very small velocities. Taking

the expectation values over eqn.(3.13) and setting the rigth side equal to zero

one obtains h��i0, and using relation (3.14) for the factorization as well as

eqn.(3.10) for the force one obtains the result for the force on the motionless

atom found before in (2.24).

Let us now can consider the friction coe�cient proceeding anlogously to

section 2.3. One �nds the contribution fat to the total friction, introduced

before in (2.31) and listed in the appendix (A.2). The necessary equations

describing the calculation of the �rst order term which has to be substituted

into the expression for the force are:

vrh��i0 =
�
i ~�� ~�

�
h��i1

fat = ��h�c

rg(x)2
�2
c + �2

�h�+i1h��i0 + h�+i0h��i1 + c:c:
�

��hrg(x) �p
�2
c + �2

�h�+i1 + c:c:
�
:

3.1.1 Velocity independent intensity

For standard Doppler cooling in a standing wave, the electric �eld is assumed

una�ected by the presence of the atom. In our model the intensity of the stand-

ing wave is strongly dependent on the atomic position. Mechanical light e�ects

of a two level system interacting with a cavity mode have been investigated

before in a paper by Doherty et al. [32]. For comparison we want to take a

close look at this paper now. To simplify calculating e�orts they suggested the

following approximations to the problem at hand:
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i.) The evolution of mode operators is very fast and the mode does not only

follow the atom adiabtically but to a �rst approximation the mode can also be

assumed to be independent of the atomic velocity (This is the ultimate limit of

our adiabatic approximation when the mode is completely decoupled from the

dynamics.)

ii.) The �eld inside the cavity is more or less coherent and thus atom-mode

operator products factorize (coherent approximation).

So they replaced the mode operators by c-numbers which were calculated

for the steady state and v = 0 from the master equation. The cavity loss and

the driving term appearing in the master equation can then be omitted and the

coupling parameter in the Jaynes Cummings interaction term is replaced by

!0 ! !0jhai0j: (3.15)

One is left with the optical Bloch equations (1.23) for which analytical ex-

pressions can be found for f(v=0) (1.32), for the friction force (1.36) and for the

di�usion (1.45). Let us check how those results compare to what we �nd in the

exact description All we do is take the previously calculated results for (s� 1)

of the Bloch equations and use (3.15).

For the force at low saturation we �nd from (1.32)

f(x) = ��h�a

2

r!2R=2
�2
a + �2

= ��h�a

2

rcos2(kx)!20=2
�2
a + �2

�2
a + �2

jdet(A)j2

= ��h�2 �arg2
jdet(A)j2 ; (3.16)

which is just the expression for the steady state force found before in (2.24).

So for the atom at rest the results are the same what was to be expected as the

dynamics does not enter. For the di�usion we �nd analogously starting from

(1.45) and substituting (3.15):

Dtot = �h2k2g2
�2�

jdet(A)j2

+�h2 (rg)2 �2�

jdet(A)j2

= �h2k2
g20�

2�

jdet(A)j2 : (3.17)

This result does not hold in general as we will see later (5.23). It does not

consider the di�usion caused by atom-mode interactions and omits an important
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term to the total result. Now what about the friction force? We can take

expression (1.36), do the replacement (3.15) again.We get

f1(x) = v�hk2g204sin
2kx

�a�

�2
a + �2

jdet(A)j2 (3.18)

and averaging the resulting force over a wavelength to obtain the friction

coe�cient we only �nd agreement to the friction force obtained from (2.28)

when � � �; g, that is when the atom is 'quasi free'. In this limit the results

actually match perfectly and �g 3.1 shows the typical Doppler dispersion pro�le

of the averaged friction force along the �a axis, whereas hardly any variation

occurs along the � axis. Note that cooling occurs for �a < 0.

Figure 3.1: For � � �; g the friction force is given by fat which is related to

Doppler cooling. The left �gure displays a plot of fat against �;�a and the

right one gives a crosscut for � = 0 where fat is maximal.

In summary, the force obtained through the recipe (3.15) suggested by Do-

herty et al. turns out to be only valid in the limit �� �; g. In this limit fat is

also a correct expression for the total friction force (2.28).

We may ask ourselves when the adiabatic approximation holds after all.

Comparison between the total friction force f1 of eqn.(2.28) and the Doppler

cooling force fat for di�erent sets of parameters shows that

p
�2
c + �2 � g

�a � 0

�
! f1 � fat; (3.19)
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that is when the atom is driven more or less resonantly and when the cavity

is far detuned and decays much quicker than a period of the Rabi oscillations

between ground and excited state. Note that fat is even the dominant contribu-

tion when � is small if the detuning �c is big enough and (3.19) becomes exact

when �a = 0 : f1 = fat for �a = 0.
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3.2 Elimination of the atomic operators

In the opposite limit of a very good cavity one can assume the internal atomic

dynamics to be much faster than the cavity dynamics. Proceeding analogously

to the preceding section in this limit one makes the ansatz

_�� = 0

and obtains1 from the second (linearised) Heisenberg equation (2.10)

�� =
�ig(x)a
�� i�a

: (3.20)

From this one can express ��; �+�� through mode operators and substi-

tute it into the master equation (2.8). The total Hamiltonian turns out to be

(omitting constant energy shifts):

Hca = HJ:C: +HP

= ��ha+a
�
�c ��a

g(x)2

�2
a + �2

�
� i�

�
a� a+

�
: (3.21)

The term in the master equation (2.8) describing atomic spontaneous decay

LSE� = �� ��+���+ ��+�� � 2����+
�

must also be expressed by a; a+ which yields upon substitution of (3.20)

LSE� = �� g(x)2

�2
a + �2

�
a+a�+ �a+a� 2a�a+

�
and so for the complete master equation we have

d�

dt
= � i

�h
[Hca; �] + L� (3.22)

with Hca given above (3.21) and

L� = �
�
�+ �

g(x)2

�2
a + �2

��
a+a�+ �a+a� 2a�a+

�
: (3.23)

Equivalently the Heisenberg equation (with noise term omitted) can be writ-

ten as:

_a = (��� 
 (x) + i�c � iU (x)) a+ �: (3.24)

1Here again the noise operators are omitted as they cancel when averages are calculated

and operator products are written in normal ordering.
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with


(x) = �
g (x)

2

�2
a + �2

U(x) = �a

g (x)
2

�2
a + �2

:

For the force one �nds

F (x) = � @

@x
Hca

= �a+a d

dx
U(x): (3.25)

Now one can calculate the steady state force for v = 0 or v very small

assuming

ha+ai = ha+ihai
like before. Again one �nds for the force on the motionless atom eqn.(2.24).

For very small velocities one proceeds analogously to section 2.3 and �nally

obtains the component fca introduced in (2.31) and listed in the appendix (A.3).

The necessary equations are:

vrhai0 = (��� 
(x) + i�c � iU(x)) hai1
f = � �ha+i0hai1 + ha+i1hai0 + c:c:

� d
dt
U(x):

So together with the last section one has derived the relation for the friction

force

f1(x) = fat + fca (3.26)

of section 2.3 with fat; fca indenti�ed as the Doppler cooling ( _a = 0) and

'cavity cooling' ( _�� = 0) forces respectively. One can analogously to (3.19) �nd

the parameters where the 'cavity cooling' force is the dominant one. Those are

found to be

p
�2 +�2

a; g � �

�c � 0

�
! f1 � fca: (3.27)

This is the case when the cavity is more or less in resonance with the pump

and when spontaneous decay or detuning from the atomic transition are much
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Figure 3.2: The particle is cooled while moving along the laser standing wave

until its kinetic enrgy gets so low that it is trapped in a potential well where

oscillates back and forth.

larger than cavity decay. It is also essential for the Rabi oscillations to be

larger than cavity decay as otherwise conditon (3.19) implies strong in
uence

of the Doppler cooling force fat. For high velocities the force contributions

obtained from adiabtically eliminating the atom or the mode don't necessarily

sum up to obtain the total force as 'cross terms' may occur, but for small

velocities we have shown they do. Also the operator products can't necessarily

be decorrelated any more and only in the case of the cavity being in a coherent

state the dynamical equations for the mode and atomic motion (3.24),(3.25) can

be written as

_� = (��� 
(x) + i�c � iU(x))�+ �

_p = � j�j2 d

dx
U(x)

_x =
p

m
: (3.28)

This is a purely classical set of equations with the atomic internal degrees

of freedom adiabitcally eliminated, the mode replaced by a c-number and the
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pumping assumed to be weak. Still, with the choice of certain parameters ,

where fca is by far bigger than fat , the model gives the exact cooling force

for small velocities and for large velocities it is a good approximation as well.

This equation can be easily generalised to three dimensions. Integration of

(3.28) gives a useful physical picture of the particle being cooled down until it

is trapped in a periodic potential. This is shown in �gure 3.2, where a particle

moves along a laser standing wave with detunings and decay rates chosen such

that the main contribution comes from the 'cavity cooling' force. Note that it

does not take into account di�usion of any kind nor does it include Doppler

cooling, which is, however, small for the chosen parameters. In the following we

will give two useful interpretations for this force.

3.2.1 Dressed state interpretation

Note that much of what follows is in direct connection to the next chapter

on 'dressed states' where many of the new concepts are treated in more detail.

Similarly to the picture given by Cohen Tannoudji for the movement of an atom

in a standing wave [11], one can consider the particle moving in the potential

U(x) with a space dependent decay rate given by � + 
(x). This potential

corresponds to the dressed state which consists to the biggest part of jg; 1i (see
section 4.4). So the primary decay is over the cavity � which is also pumped

close to resonance. As the atom is interacting with the mode which is described

by the coupling g, the atom is moving in a combined state containing a small

admixture of the excited state jei, which can decay spontaneously depending

on the particle position. The cavity decay does not depend on the position as

the combined state remains to the most part the ground state at all positions.

Assuming �c = 0, that is the cavity is driven resonantly, and � > 0, that is

!c > !10, the atom is preferentially pumped into the nodes of the combined

state which varies according to U(x). When the particle moves slowly
�
kv
�
� 1

�
that it decays through the cavity before it reaches the 'top of the hill', it loses

some of its kinetic energy. This scheme is called Sisyphus cooling and has been

treated in detail in connection with atomic movement in a strong standing wave

[11] or polarization gradient cooling [33] before. The sign of �a and the constant

energy o�set �C are determining whether it is 'up' or 'down' that the atom is

moving and thus whether it is gaining or losing kinetic energy. The analogies

for �a � g between the dressed state model and the adiabatic model presented

in this chapter will be shown in section 4.4. Fig.3.4 gives a representation of the

Sisyphus cooling scheme when the atom is pumped to the antinodes of the lower

dressed level. This is also con�rmed by �g. 3.5 and 3.6, where the averaged

friction force is plotted against the detunings �a;�c for g > �; �. As one can

see, there are two main areas of cooling, marked on the contour plot. The area

along
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Figure 3.3: !c > !10: The atom is pumped to the node of the upper dressed

level from where it moves upwards and decays back to the 
at ground level.

�c = 0 � > 0 (3.29)

corresponds to driving the cavity resonantly , i.e. pumping the atom into

the nodes of the upper dressed level, from where it loses kinetic energy on the

way up. This is shown schematically in �g.3.3. The second area is is around

�c = ��=2�
q
�2 + 4g20=2 � < 0; (3.30)

which corresponds to pumping the antinodes of the lower dressed level. This

is shown in �g.3.4. Note that in both cases the level pumped is the one that

turns into jg; 1i for zero atom-mode coupling (g = 0) and contains only small

admixtures of je; 0i at the antinodes. The reason why similar features do not

appear when we pump the other level is given in section 4.3.

The 'heating' features can be explained analogously. The very good agree-

ment to the predictions of the dressed state scheme is again found in �g.3.7 for

similar parameters, where the thick lines are drawn according to

�c = ��=2�
q
�2 + 4g20=2 � < 0

�c = ��=2 +
q
�2 + 4g20=2 � > 0;
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Figure 3.4: Sisyphus cooling scheme for !c < !10: The atom is pumped to the

antinode of the lower dressed level from where it moves upwards and decays

back to the 
at ground level.

which correspond to pumping at the antinodes to obtain cooling for (� < 0)

or heating for (� > 0). It shows that the contours of the friction force features

match with the contours suggested by the dressed state model.

What about the two peaks around the origin? They result from Doppler

cooling and can be obtained independently by using (3.18). This force appears at

very small detunings whereas the dressed state force appears for large detunings.

This is because the splitting between the levels must be large enough in order

to prevent coherences and populating the other dressed level so that the simple

picture of an atom moving in a potential is valid . On the other hand, increasing

the splitting also means decreasing the height of the potential wells which goes

like g0
� for large �. Thus maximum cooling is achieved somewhere in between

the two extremes where coherences are still moderately small and the potential

wells high enough.

One can see in the spatial variation of the friction force in �g.3.8, that we are

not entirely in the limit where adiabatic elimination of the atom holds (3.27).

There is still a signi�cant contribution due to the Doppler e�ect, which produces

an antidamping force at the nodes, whereas the 'cavity cooling' force fca alone

equals zero at the nodes. This can be suppressed by choosing larger g and �.

Note that the additional Doppler contribution to the Sisyphus force is a cooling

one when � < 0 and the antinodes of the lower dressed level are pumped as

in �g.3.4. This is because the laser is tuned below the atomic resonance and
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Figure 3.5: � = �; g0 = 3 13�. The averaged friction force is plotted against the

detunings �a;�c. The longstretched features can be explained by the Sisyphus

scheme and the two sharp peaks at the origin by Doppler cooling.

so Doppler cooling occurs. However, for � > 0 and pumping of the nodes of

the upper level as suggested in �g.3.3, the additional Doppler contribution is an

antidamping one. This is because the laser is tuned above atomic resonance and

so Doppler heating occurs, which slightly reduces the Sisyphus cooling e�ect as

can be seen in �g.3.8.

In the range of parameters given by (3.27) The splitting between the dressed

states can be much larger or smaller than the linewidth of the atomic transition

�. In �g. 3.5 we considered the case g > �. If � > g the dressed state char-

acter of the friction force disappears for �a < � as the two dressed levels are

not clearly separated. Coherences build up and destroy the Sisyphus cooling

scheme. The 'sidefeatures' arising from driving the cavity at the antinodes be-

come smaller and pushed back into a region where �a > � and the dressed levels

are separated again. Furthermore, the Doppler peaks of �g.3.5 have completely

disappeared. This can be seen in �g.3.9

3.2.2 Dynamical intensity interpretation

Let us now look at the same model from a di�erent perspective. In principle

it is the same argument as above. The cavity intensity is strongly dependent
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Figure 3.6: contourplot to �g. 3.5

Figure 3.7: Contour plot of the friction force for � = �; g0 = 5:5�. The bold lines

indicate the pumping of the antinodes of the lower(left) and the upper(right)

antinode.
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Figure 3.8: The spatial dependence of the total friction force and the 'cavity

cooling' force fca (dotted line) for �; �; g0 like in �g. 3.5. �c = 0 and � = 3�

yielding the maximal friction force were chosen.

Figure 3.9: The friction force (mainly fca) for � = 12�; g0 = 4�. Note that the

contribution from pumping the nodes is very small and only gets larger again

when �a and hence splitting between the dressed levels increases.
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on the atomic position (2.22). This is because the particle shifts the cavity

resonance frequency considerably, which is only possible if the coupling between

cavity mode and particle is strong enough g � � (see also 3.27). For certain

parameters (i.e. �a � g;�c = 0), the intensity is a maximum at the nodes of

the standing wave whereas the potential U(x) is a minimum there. However,

if the particle is moving slowly along the potential U(x) the maximum �eld

intensity will be reached after it has passed the potential minimum due to the

�nite cavity response time. Accordingly, the particle sees a higher intensity and

thus a stronger damping force when going up U(x) than it sees an antidamping

force when going down U(x). On average this leads to a damping force.

3.2.3 The cooling force for arbitrary velocities

It is possible to integrate (3.28) considering periodic boundary conditions.

v
@�

@x
= D(x)�+ �; (3.31)

where D(x) is given by (3.28). Solving this linear di�erential equation for x

yields

�(x) = m(x0; x)�(x0) +

Z x

x0

dx0m(x0; x)
�

v
; (3.32)

where

m(x0; x) = e

R
x

x0

dx00
D(x00)

v : (3.33)

Making use of the periodic boundary conditions, we set

x0 = x� �

and obtain

�(x) =

R x
x��

dx0m(x0; x)�
v

1�m(x� �; x)
: (3.34)

The inde�nite integral overD(x) can be found analytically and so one obtains

after some simpli�cations and algebra

�(x) =
�

v
g(x)G(�x; � � x)

1� g(x)g(�� x)
; (3.35)

where

g(x) = e
x
v

�
��+i�c�

g2
0
2

�+i�a

�2a+�
2

�
�
sin(2x)

v

g2
0
4

�+i�a

�2a+�
2

(3.36)
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Figure 3.10: Velocity dependence of the adiabatic (internal dynamics of the

atom eliminated) cooling force for � = 2�; g0 = 4�;�c = 0;�a = 12�.

and

G(x1; x2) =

Z x2

x1

dxg(x):

Fig. 3.10 shows the force plotted against the velocity for typical parameters.

One clearly sees the linear increase for kv
�
� 1. At these velocities the atom

only covers a small distance before it decays over �. For higher velocities the

decay is averaged over many wavelenghts which yields a hyperbolic decrease of

the force. This curve can be seen in analogy to the velocity dependence of the

Sisyphus e�ect of an atom moving in a strong classical standing wave as derived

by Cohen Tannoudji et al. [11].
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Chapter 4

The dressed state model

In this chapter we want to discuss the nice interpretation of the new 'cavity

cooling' force found in the previous chapter using dressed states. Although

it is analytically tiresome expressing the master equation in the dressed basis

[34, 11], the e�orts are justi�ed by the simple physical picture one �nally obtains.

A calculation of the friction coe�cient using the dressed master equation, which

does not provide new physical insights, but allows a comparison to the results

derived in chapter 1, is put into the appendix.

4.1 Dressed states of the atom-�eld Hamilto-

nian

The total Hilbertspace of the system Htot may be represented as the product

space of the atom state space and the �eld state space, i.e. Htot = Hatom 

Hfield. The atom may be represented in the fjei; jgig basis, corresponding to

the excited state and the ground state respectively. For the �eld the single mode

Fock states fjnig form a convenient basis, with 'n' denoting the number of pho-

tons in the single mode of frequency !c. Thus the tensor product space may be

represented in the fje; ni; jg; nig basis. HJ:C: splits the state space into di�erent

manifolds En with each manifold spanned by the vectors fje; ni; jg; n+ 1ig for a
�xed 'n'. The Hamiltonian may now be represented in that basis and diagonal-

ized to obtain the eigenvectors of the manifold En. From now on we set �h = 1

for convenience and introduce the resonant Rabi frequency !R = 2g
p
n+ 1:

HJ:C: =

0
BB@ ��a � n�c

!R
2

!R
2 � (n+ 1)�c

1
CCA =
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0
BB@ ��c (n+ 1)� �

2 0

0 ��c (n+ 1)� �
2

1
CCA� �

2

0
BB@ 1 �!R

�

�!R
� �1

1
CCA : (4.1)

On diagonalising the above matrix, one �nds the eigenvalues corresponding

to the upper and the lower eigenenergy respectively:

�+ = � (n+ 1)�c � �

2
+


n

2

�� = � (n+ 1)�c � �

2
� 
n

2
; (4.2)

where the e�ective Rabi frequency


n =
p
�2 + 4g2n (4.3)

and the atom-cavity detuning

� = �a ��c = !c � !10

were introduced. The eigenvalues yield the following normalized eigenfunctions

(the index n of 
n has been omitted):

j+; ni = �

r

��

2

je; ni+

r

+�

2

jg; n+ 1i

j�; ni =
r


+�

2

je; ni+ �

r

��

2

jg; n+ 1i: (4.4)

The � introduced above stands for sign (!R) and (as !R is a periodic function

in the wavelength �) jumps accordingly between �1 and +1. For � > 0, j+; n >

and j�; n > as introduced above in eqns. 4.4 can be di�erentiated with respect

to space. For � < 0 , above equations must be multiplied by � | preserving the

normalization requirement | to obtain di�erentiability. This shall be important

later. It turns out to be convenient to use trigonometric functions and express

above equations in a simpler form. We introduce

sin�n =
q


+�
2
 cos�n = �

q

��
2
 � > 0

sin�n = �
q


+�
2
 cos�n =

q

��
2
 � < 0

(4.5)

and arrive at the so called dressed states equations. Note that !R and thus 


depend on n, which again makes �n dependent on n !
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j+; ni = cos�nje; ni+ sin�njg; n+ 1i
j�; ni = �sin�nje; ni+ cos�njg; n+ 1i; (4.6)

which can be inverted to obtain

je; ni = cos�nj+; ni � sin�nj�; ni
jg; n+ 1i = sin�nj+; ni+ cos�nj�; ni: (4.7)

Irrespective of the sign of � it follows that:

sin2�n = 2sin�ncos�n =
!R




cos2�n = cos2�n � sin2�n = ��



: (4.8)

Note further that for g0
� ! 0+ it follows that j+i ! jg; 1i and j�i ! je; 0i,

whereas for g0
� ! 0� it is the other way round. This is obvious as for weak

coupling and !c > !10 the upper dressed level j+; ni must naturally consist to

the biggest part of the ground state jg; n+ 1i and vice versa.

4.2 Master equation in terms of dressed states

Let us express all the operators appearing in the master equation in terms of

dressed states projectors, i.e. we set

�+ � �+ 
 EField = jeihgj 

1X
n=0

jnihnj

�� � �� 
 EField = jgihej 

1X
n=0

jnihnj

�+�� � �+�� 
 EField = jeihej 

1X
n=0

jnihnj

a+ � Eatom 
 a+ = (jeihej+ jgihgj)

1X
n=0

p
n+ 1jn+ 1ihnj

a � Eatom 
 a = (jeihej+ jgihgj)

1X
n=0

p
n+ 1jnihn+ 1j

a+a � Eatom 
 a+a = (jeihej+ jgihgj)

1X
n=0

njnihnj
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Eatom+field = Eatom 
 Efield =
1X
n=0

je; nihe; nj+ jg; nihg; nj;

where EField; Eatom and Eatom+field are the �eld, atom and combined atom-

�eld system unity operators. The latter can be expressed in the dressed basis

by the sum over the projectors onto the di�erent manifolds + the projector onto

the ground state:

Eatom+field = jg; 0ihg; 0j+
1X
n=0

(P+;n + P�;n) (4.9)

with

P+;n = j+; nih+; nj P�;n = j�; nih�; nj: (4.10)

Using eqns. (4.7) the operators above can be entirely rewritten in a dressed

basis, which yields rather unhandy expressions and just some examples are

listed:

HJ:C: =

1X
n=0

�+nP+;n + ��nP�;n (4.11)

�+�� =

1X
n=0

cos2�nP+;n + sin2�nP�;n

�sin�ncos�n (j�; nih+; nj+ j+; nih�; nj) : (4.12)

As one can see, there are in�nitely many coupled equations. So far no

approximations have been made, either about the strength or the coherence

properties of the cavity standing wave. In our case we make some assumptions

below and proceed in a di�erent, easier way to obtain equations for the lowest

energy state jg; 0i and the �rst pair of dressed states j+; 0i; j�; 0i forming the

�rst manifold.

4.2.1 The 3-state approximation

As before we assume that the pump beam is weak and that there is only one-

photon at most in the standing wave inside the cavity. Without the pump

beam the system decays to the state jg; 0i and there is no occupation of higher

levels in the dressed atom ladder. Due to the low intensity of the pump beam

driving the cavity we assume that the system is excited only to the �rst dressed

atom manifold consisting of j+; 0i and [�; 0i, linear combinations of je; 0i and
jg; n+ 1i. Thus we only consider the three states

jg; 0i � j0i; j+; 0i � j+i; j�; 0i � j�i

49



and their respective couplings. They form a three dimensional state space.

It is easy to show that �+ only couples to a higher manifold and �� only

couples to a lower manifold. Similarly, a+ only couples a higher manifold and

a only couples to a lower manifold, i.e.:

hi;mj�+jj; ni = 0 hi;mja+jj; ni = 0 m 6= n+ 1

hi;mj��jj; ni = 0 hi;mjajj; ni = 0 m 6= n� 1

hi;mj�+��jj;mi = 0 hi;mja+ajj; ni = 0 m 6= n; (4.13)

where ji;mi stands for either j+; ni or j�; ni, the two states forming a man-
ifold. Likewise, also jg; 0i can be regarded as a one dimensional manifold at the

bottom of the dressed states ladder and (4.13) may be applied. In appendix A

the calculation of all nonzero operator matrix elements in the dressed basis is

explicitly given (B.1). Using the master equation (2.8) and (4.13,B.1) it is easy

to establish the equations of evolution for the system matrix elements. To do

so, one has to insert the unity operator 4.9 in between the operator products

and use eqn.(4.13) to retain only the non zero operator matrix elements. The

remaining ones can be found through eqns.(B.1). The calculation of the essen-

tial matrix elements is given in the appendix B. (Note that j�ih�j is short for
j+ih+j+ j�ih�j, the unity operator within the E0 manifold. The same applies
to j�; 1ih�; 1j, the unity operator within the E1 manifold.) Those terms may

thus be omitted according to our assumptions.

Putting the above results together, one �nally obtains the following equa-

tions for the density matrix elements:

_�0+ = i�+�0+ � �
�
�0+cos

2� � �0�sin�cos�
�� �

�
�0+sin

2� + �0�cos�sin�
�

�� (�++sin� + ��+cos� � �00sin�)

_�0� = i���0� � �
�
�0�sin

2� � �0+sin�cos�
�� �

�
�0�cos

2� + �0+cos�sin�
�

�� (���cos� + �+�sin� � �00cos�)

_�00 = 2�
�
�++cos

2� + ���sin
2� � (��+ + �+�) sin�cos�

�
+2�

�
�++sin

2� + ���cos
2� + (�+� + ��+) sin�cos�

�
�� (�+0sin� + ��0cos�)� � (�0+sin� + �0�cos�)

_�++ = �� ��++2cos2� � (��+ + �+�) sin�cos�
�

�� ��++2sin2� + (��+ + �+�) sin�cos�
�
+ ��+0sin� + ��0+sin�

_��� = �� ����2sin2� � (��+ + �+�) sin�cos�
�

�� ����2cos2� + (��+ + �+�) sin�cos�
�
+ ���0cos� + ��0�cos�

_��+ = i
��+ � � (��+ � (�++ + ���) sin�cos�)

�� (��+ + (�++ + ���) sin�cos�) + ���0sin� + ��0+cos�

_�+� = _��
�+: (4.14)
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As one can see, _�00; _���; _�++ sum up to zero as expected.

4.2.2 Time evolution

The basic equation for � can be written like:�
@

@t
+ v

@

@x

�
� = L� (4.15)

As we assume to be in steady state, the �rst term on the left can be omitted.

The remaining equation can be written in any chosen basis. Using the ordinary,

uncoupled basis je; 0i; jg; 1i; jg; 0i and picking out the equation for jg; 1i, this
gives :

vhg; 1j @
@x

�jg; 1i = v
@

@x
hg; 1j�jg; 1i = hg; 1jL�jg; 1i: (4.16)

Note that the partial derivative
�
@
@x

�
commutes with jg; 1i, which does not

explicitly depend on x. However, expressing eqn.4.15 in terms of the dressed

basis introduced above, the states j+i, j�i explicitly depend on x and do not

commute with
�
@
@x

�
. Thus, their respective derivative must be taken into ac-

count as well, when expressing the left side of (4.15) in terms of dressed states.

Picking out the state j+i, this gives:

vh+j @
@x

�j+i =

v
@

@x
h+j�j+i �

�
@

@x
h+j
�
j+i � h+j

�
@

@x
j+i
�

= h+jL�j+i:
Using the expression (4.6) for the dressed states, one can show | using the

abbreviation j _+i � v @
@x
j+i| that:

h0j�j _+i+ h _0j�j+i = vr��0�
h0j�j _�i+ h _0j�j�i = �vr��0+
h _+j�j+i+ h+j�j _+i = vr� (��+ + �+�)

h _�j�j�i+ h�j�j _�i = �vr� (��+ + �+�)

h _+j�j�i+ h+j�j _�i = �vr� (�++ � ���)

h _�j�j+i+ h�j�j _+i = �vr� (�++ � ���) :

Above results can be used to express the left side of (4.15) in the dressed

state basis and to specify �nally

_�0+ := vr�0+ � vr��0�
_�++ := vr�++ � vr� (��+ + �+�) (4.17)

etc. in eqns.(4.14). As Tr f�g = 1, one can expres �00 in terms of ���; �++.
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Figure 4.1: For � = �; g0 = 2�;� = 6� and �c = 0, j+i is strongly populated

whereas ��� remains small.

4.3 Stationary population of the dressed levels

In the following we assume that the splitting � between the dressed levels

j+i; j�i is su�ciently large. We will show that in this limit the picture of an

atom moving in a potential is valid. Note that this section is the continuation

of section 3.2.1. Let us then look at two di�erent situations.

1.) We tune our laser so that it is on resonance with the dressed level which

turns into jg; 1i for zero coupling (g = 0). From the expressions obtained for the

steady state density matrix it can be shown that it is almost exclusively that

level which is populated. Furthermore, the coherences between the two dressed

levels become negligibly small. This can be seen clearly in �g. 4.1, where � > 0

and the upper level �++ corresponds to the unperturbed jg; 1i. Its population
is three orders of magnitude higher than that of the lower level.

2.) If, however, the laser is tuned to the dressed level, which turns into je; 0i
for zero coupling (g = 0), this is not the case at all. In fact, in that case the

populations of both dressed states are about equal and very small compared

to the populations obtained in 1.) Again �g. 4.2 shows that even when ���,

corresponding to the unperturbed je; 0i, is pumped resonantly, its population

remains small and just about the same magnitude as �++.

This is because the driving laser pumps the cavity and not the atom. It is

only through the atom-cavity coupling g, that the atom 'sees' the pump laser.

Driving the dressed state which is to the biggest part made up of jg; 1 > { as was

assumed in 1.) { is therefore much more e�cient. The atom is then e�ectively

pumped into this state and can be thought of experiencing the potential and
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Figure 4.2: same parameters as in �g 4.1 apart from �a = 0 and �c = �6.
Though ��� is pumped resonantly it remains hardly populated.

force connected to this level alone.

4.4 Comparison of 'Adiabatic elimination' and

'Dressed states' model

Coming back to (4.5),(4.3) we will now develop the expressions for 
; sin2�; cos2�

in powers of g2=�2
a assuming that the cavity is driven near resonance i.e.,

�c � 0;�a � �. In the following we set � > 0, i.e. !c > !10 and we excite

predominantly j+i, the level that turns into jg; 1i for zero coupling (g = 0).1

We obtain


 =
p
�2 + 4g2 � �a +

2�ag
2

�2
a

sin2� =

+�

2

� 1

cos2� =

��

2

� g2

�2
a

: (4.18)

Now we try to �nd the force acting on the atom. Considering expression

(B.17), we omit the coherence term (which is assumed to be small) and retain

only the term proportional to �++ to obtain.

1For � < 0 we would in turn have to pump j�i
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f � ��hr

2

�++ � �rg
2�a

�2
a

�++ � � rg2�a

�2 +�2
a

�++; (4.19)

where we made the approximations

�a � g;� (4.20)

and used (4.18). Those approximations correspond to the assumption that

the dressed levels are clearly separated and their minimum separation � is much

larger than g and � so that it is possible to excite only one level. Now we revert

to (4.14) and note that the equations for �++ and �0+ can equivalently be

written as follows:

_�0+ = i�+�0+ � �
�
�0+cos

2� � �0�sin�cos�
�

�� ��0+sin2� + �0�cos�sin�
�
+ �

_�++ = �� ��++2cos2� � (��+ + �+�) sin�cos�
�

�� ��++2sin2� + (��+ + �+�) sin�cos�
�

+� (�+0 + �0+) : (4.21)

Inserting approximations (4.18) and using expression (4.2) for �+ we �nally

obtain

d

dt
�0+ = i

�
��c +

�ag
2

�2
a

�
�0+ � �

g2

�2
a

�0+ � ��0+ + �

d

dt
�++ =

�
�2� g2

�2
a

� 2�

�
�++ + � (�0+ + �+0) : (4.22)

Note that for the time derivatives on the left side of above equations the

additional coherences appearing according to (4.17) were omitted, because they

are small for resonant pumping. On the right sides populations and coherences

of the other dressed level j�i were omitted as well in the same approximation

as in eqn.(4.20). Substituting �2
a ! �2

a + �2 in the denominator (approx.

4.20) we obtain the same equations as for ha+i; ha+ai in the adiabatic model

(3.24), where d
dt
ha+ai can be found by di�erentiating the product and inserting

(3.24). Also the expression for the force obtained from the dressed state model

(4.19) is equivalent to the expression obtained from the adiabatic model (3.25)

. Summing up it may be said that in the limit of large detuning �a � �; g;�c,

the equations for the adiabatic model can be rederived in the dressed states

model. For the dressed model coherences between the dressed levels can in

this limit be neglected and only one level is e�ectively populated for resonant

pumping. It is therefore justi�ed to present a picture of an atom moving along

a dressed level experiencing a force proportional to �rU(x) = �r
(x) and
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proportional to the population of the dressed level (4.19) as is suggested by the

simple Sisyphus cooling picture 3.4.
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Chapter 5

Di�usion and temperature

We already saw in chapter 1 that there is a heating process due to random

momentum transfer counteracting the cooling e�ect of the friction force on the

atom. This prohibits that the atom completely stops. In equilibrium the con-

tributions of friction and heating cancel and an equilibrium temperature can be

inferred from the knowledge of D and � (1.46). The arguments for obtaining

an expression for D in chapter 1 were rather vague and the situation is quite

di�erent for the case of a standing wave inside a cavity. We will therefore give

a more rigorous mathematical derivation of the di�usion constant in a a cavity

standing wave by use of the Quantum Regression Theorem (QRT). The QRT

states that operator two time averages ha�(t)a�(t0)i obey the same equations as
one time averages ha�(t)i. If one can write

d

dt
ha�i = ���ha�i (5.1)

it follows that

d

dt
ha�a�i = ���ha�a�i: (5.2)

Now we come back to the de�nition of the di�usion of chapter(1) and derive

an equation for it involving force correlations [23]:

2D =
d

dt
�P 2(t)

=
d

dt

�hP 2i � hP ihP i�
= 2Re fhPF i � hP ihF ig

= 2Re
Z 0

�1

dt (hF (t)F (0)i � hF (t)ihF (0)i) : (5.3)
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For quasistationary conditions the above correlations are independent from

the starting point of integration and the integral can be written as:

D = Re
Z

1

0

dt (hF (0)F (t)i � hF (0)ihF (t)i) : (5.4)

From (2.23) and the abbreviations (2.20) we know that the dipole force

operator can be written as

F (x) = ��hg(x)X1 (5.5)

and thus calculating the dipole di�usion amounts to calculating the two time

averages of the operatorX1 . But there is also a second contribution, which we

omitted for the average force as this contribution averaged over the vacuum �eld

yields zero. It is the atom-vacuum coupling VAV and it is this contribution we

will deal with at �rst. One has

fvac = �drEfree: (5.6)

Now we know that

hfvaci = 0 (5.7)

and thus (5.4) reads

DSE = Re
Z

1

0

dthd(0)rEfree(0)d(t)rEfree(t)i: (5.8)

Above we used the fact that the dipole operator d commutes 1 at all times

with the free �eld gradient, which can be proved using (1.14) and the fact

that rEsource = 0. The free �eld operator products contain annihilation and

creation operators whose average over the vacuum �eld is only nonzero for terms

in antinormal ordering. Considering the rotating wave approximation, which

includes terms like ak�
+; ��a+k , one obtains for the integrand

h�+(0)��(t)~drE+
free(0)

~drE�

free(t)i =

h�+(0)��(t)i
X
�k

�
~d~�k

�2
j~kj2 �h!k

2�0V
e+i!kt =

h�+(0)��(t)i�hk22��(t); (5.9)

where the last line has been found by taking the sum over the two polariza-

tion directions, converting the sum into an integral over frequency and including

1In all calculations the atom is assumed to be stationary at a position x.
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the free space density of modes. Then the Marko� approximation was made as-

suming the factors appearing next to the exponential to be quasi constant over

the range of integration so that they can be taken out of the integral, which then

can be approximated by a � function. Taking the characteristic dipole radiation

pattern into account this result would have to be modi�ed by a constant factor

( 25 for circularly polarized light for instance).

Substituting this result for the integrand back into (5.8) and using (2.21) for

h�+��i at steady state, we �nally obtain

DSE = �h2k2�
�2g2

jdet(A)j2 : (5.10)

Now we return to the calculation of the 
uctuations of the dipole force. We

want to introduce the following abbreviations:

ha�a�i � ha�iha�i = h�a��a�i =: ha� ; a�i; (5.11)

where �a� = a� � ha�i is the 
uctuation of the operator a� around its mean

and ha� ; a�i is called the operator covariance. The part of the di�usion due to

the dipole 
uctuations can be written as

Ddp = �h2 (rg)2Re
Z

1

0

dth�X1(0)�X1(t)i: (5.12)

One can now introduce the Laplace transform

L fg(t)g =

Z
1

0

dte�stg(t)

= ~g(s)

with the property

L

�
d

dt
g(t)

�
= �g(0) + s~g(s) (5.13)

and write (5.12) in terms of the Laplace transform of the covariance:

Ddp = �h2 (rg)2 Re fL f�X1(0)�X1(t)ggjs=0 : (5.14)

So one only needs the real part of the Laplace transform evaluated for s = 0

for the X1 operator covariance. It turns out to be very convenient to have

introduced a real matrix B (2.20) with the force operator being one of its basis

elements. This requires only one covariance to be calculated (hX1(0); X1(t)i and
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enables one to take the real part from the initial conditions only (see below),

which considerably simpli�es analytical e�orts. Laplace transforms are easy to

calculate for linear di�erential equations and they also take care of the intial

conditions (c.f. 5.13) in a simple way.

Starting from (2.19) and (2.12) we can derive the following covariance equa-

tions where the QRT is invoked to obtain equations for the two time averages:

d

dt
hX1(0); ~Y (t)i = AhX1(0); ~Y (t)i; (5.15)

where

hX1(0); ~Y (t)i =
� hX1(0); a(t)i
hX1(0); �

�(t)i:
�

(5.16)

By comparison with (2.12) one sees that ~Z� does not appear in this equation.

This is because the inhomogenous part is cancelled by the second component of

hX1(0); ~Y (t)i which is hX1(0)ih~Y (t)i. This can be seen as follows: For h~Y (t)i
in steady state we �nd

d

dt
hX1(0)ih~Y (t)i = 0

and by comparison with (2.12)

Ah~Y ihX1(0)i = � ~Z�;

which shows why the inhomogenity on the right side of (2.12) cancels. Sim-

ilarly one �nds

d

dt
hX1(0); ~X(t)i = BhX1(0); ~X(t)i + �hX1(0); ~Ii (5.17)

with analogous meaning of hX1(0); ~X(t)i. One can now take the Laplace

transforms on both sides, set s = 0 on the spot and retain only the initial

conditions for the covariances. Inverting the resulting matrix equation we obtain

L
n
hX1(0); ~X(t)i

o���
s=0

= �B�1
h
hX1(0); ~X(0)i+ �L

n
hX1(0); ~I(t)i

o���
s=0

i
(5.18)

and considering that ~I is a linear combination of ~Y ; ~Y + (2.20), the Laplace

transforms of the last two have to be found analogously from (5.15) which yields

L
n
hX1(0); ~Y (t)i

o���
s=0

= �A�1hX1(0); ~Y (0)i: (5.19)
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So solving (5.19) and inserting the result into (5.18) produces the desired

correlation as the �rst vector element. Note further that as B is real and we

further want to take the real part of the solution of (5.18), we simply take the

real part of the multiplying vector on the right side.

Now the initial conditions need to be calculated from which the two sets of

equations (5.19),(5.18) can be successively solved. For example we have:

hX1(0); X1(0)i = hX1(0)X1(0)i � hX1(0)ihX1(0)i
= h�a+�� + a�+

� �
a+�� + a�+

�i � hX1(0)ihX1(0)i
= ha+a�+��i+ haa+�+��i � hX1(0)ihX1(0)i
� h�+��i+ ha+ai: (5.20)

For the last line another approximation was introduced. Up to now we only

assumed the cavity to be weakly driven or far away from atomic resonance which

results in a low saturation of the atomic transition. This would also allow for

several intracavity photons to be accurately described. Above we assumed now

that there is only one intracavity photon at the most, which implies

� � �; �: (5.21)

The operator a is then simply given by j0icch1j and the state space is reduced
to the three states jg; 0i; jg; 1i; je; 0i already introduced in the last chapter for

the dressed state model. One can then check that the above approximation

becomes exact apart from the term �hX1(0)ihX1(0)i, which was omitted as it

scales as �4 whereas the other terms scale as �2, Actually, an exact calcu-

lation of (5.20) yields the same result as obtained in the above 'one

photon approximation'. This involves the evaluation of expectation values

like ha+a���+i but the problem can be solved with some tricky algebra and is

treated in appendix C. For the derivation of all other initial conditions needed

in (5.18,5.19) we can proceed in an analogous way. This is rather involved but

does not present any problem and will therefore be omitted. We insert the

results and take the real parts . Picking out the �rst element of the solution

vector to (5.18) we obtain

Re fL fhX1(0); X1(t)iggjs=0 =
�2

jdet(A)j2�
�
1 +

4�ag
2

�

�c� +�a�

jdet(A)j2
�
: (5.22)

This result can be substituted into (5.14) and we �nally get

Dtot = DSE +Ddp

= �h2k2g2
�2�

jdet(A)j2
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+ �h2 (rg)2 �2�

jdet(A)j2
�
1 +

4�ag
2

�

�c� +�a�

jdet(A)j2
�
: (5.23)

Apart from the term appearing in the brackets next to 1 in the expression

for Ddp this expression for the total di�usion is equivalent to the expression

found in (3.17) for the classical treatment of the cavity mode when the coupling

g0 is replaced by g0! g0jhai0j as suggested by Doherty et al. They argued that
this would yield to a good approximation the correct di�usion as the intracavity

state could be considered as quasi coherent (see section 3.1.1). The expression

derived above now shows that this is not generally correct. The quantum nature

of the mode introduces a correction term. The correction term can be much

larger than the remaining terms, if the cavity is driven near resonance (like

in the Doherty paper) and the splitting between cavity and atomic resonance

� � �a is large. This is just the case when we want to make e�ective use of the

new 'cavity induced cooling' mechanism, which can be pictured by a dressed

state model with �a � g;�c � 0 (sections 3.2.1,4.4). In the opposite case,

when the atom is driven resonantly and the 'Doppler cooling' force is dominant,

�a � 0 and the correction term disappears. This is shown in �g. 5.1 below. The

wavelength averaged di�usion with and without the corrective term is plotted

against the laser-atom detuning �a for �xed �. For �a small they nicely agree

whereas they strongly diverge for �a � �.

Fig. 5.2 shows the spatial variation of the di�usion for �a = 12 where

maximal di�usion occurs in �g. 5.1.

5.1 Sub-Doppler cooling

Now we have all the the terms needed for �nding the equilibrium temperature

as given in section 1.4. There we found the Doppler limit for classical cooling

to be

kBT =
D

�
� �h�: (5.24)

To investigate the temperature limits for cavity cooling we simply take some

typical parameters where this cooling force is maximal, which can be easily

deduced from the dressed states picture. Hence it is possible to drive the cavity

exactly resonant for !c > !10 or to drive the cavity slightly o� resonance by an

amount given by �c = ��=2�
p
�2 + 4g20 for !c < !10. In both cases the atom

is preferentially pumped into a 'valley' and decays on the way to the top losing

kinetic energy. Those paramters may be inserted into the expressions for the

di�usion and friction coe�cient respectively and averaged over a wavelength.

The temperature may then be found through

kBT =
D

�
(5.25)
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Figure 5.1: The total di�usion and the di�usion given by (3.17) plotted against

the atomic detuning �a for � = 12�;� = �; g0 = 3 13�.

Figure 5.2: The total di�usion (above) and the approximated di�usion (below)

for all parameters like in �g.5.1 and �a = 12 where maximal di�usion occurs.
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Figure 5.3: Temperature in units of the Doppler limit for pumping the node of

the upper dressed level. � = �; g0 = 3 13�;�c = �0:28�;

and plotted for a range of detunings. Fig.5.3 shows the variation of the

temperature with �a for �c = �0:28� and the other parameters as in �g.3.5.

In this �gure we are pumping the nodes of the upper level (� > 0;�c � 0),

whereas in �g.5.4, where �c = �2�, we are pumping the antinodes of the lower
level (� < 0;�c = ��=2 �

p
�2 + 4g20=2). Compare with �g.3.6, where the

friction force for those two areas is plotted.

One can see that the temperature, plotted in units of the Doppler limit �h�,

can actually be slightly lower than the Doppler limit. Can this be possible?

Is there a way to go far below the Doppler limit? One must consider that for

Doppler cooling the energy transfer channel is the atomic spontaneous decay

and temperatures in equilibrium can be as low as the width of this transfer

channel (natural linewidth). In our case of 'cavity cooling', the dominant trans-

fer channel is over the cavity and temperatures are determined by the width

of the cavity decay rate. So choosing � � � should yield temperatures below

the Doppler limit. If favorable parameters are chosen, the temperature may ap-

proach the cavity decay width which is much smaller than the natural linewidth.

This is really what one �nds and what is shown in �g.5.5, where the equilibrium

temperature is plotted against the cavity loss rate �. One clearly sees the linear

dependence on � for small �, when the Sisyphus cooling is dominant. For �

larger than the height of the potential wells, which is determined by g and �,

Sisyphus cooling disappears and Doppler cooling is dominant. The temperature

therefore approaches the Doppler limit. In �g.5.5 it is actually slightly larger,

as the detunings are not chosen such that maximal Doppler cooling occurs and

consequently the Doppler limit cannot be exactly reached. Quantum Monte
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Figure 5.4: Temperature in units of the Doppler limit for pumping the antinode

of the lower dressed level. � = �; g0 = 3 13�;�c = �2�;
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Figure 5.5: Going beyond the Doppler limit for � � �. g0 = 2�;� =

�1:9�;�c = �1:3�; The crosses mark the results obtained for Quantum Monte

Carlo simulations.
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Figure 5.6: The spatial variation of the total friction force and the cavity me-

diated Sisyphus force fca (dotted line). The total force is slightly larger due to

the damping contribution of the Doppler force. � = 8�, other parameters as in

�g.5.5.

Carlo simulations, the results of which are denoted by the black crosses along

the curve, con�rm the semiclasscially derived results. They were done by Peter

Horak in a fully quantum (external degrees of freeedom quantized) model.

For �g.5.5 we have chosen � < 0 and pumping the lower dressed level like

shown in �g.3.4. This has the advantage that �a < 0 as well and so Doppler

cooling adds additionally to the Sisyphus cooling e�ect. Fig.5.6 shows that the

total friction force is slightly larger than the cavity mediated Sisyphus force

alone. For higher atomic velocities

kv

�
� 1 (5.26)

the Sisyphus e�ect becomes smaller like shown in �g.3.10. As �� �, Doppler

cooling is still very e�cient for higher velocities (it reaches a maximum around
kv
� = 1

2 ) and thus becomes the dominant contribution to the force. It slows

the faster atoms down until their velocities are small enough for Sisyphus cool-

ing to appear, which in the low velocity limit in turn becomes the dominant

contribution.

If we had chosen � > 0 and pumped the node of the upper dressed level

like shown in �g.3.3, the Doppler e�ect would have counteracted the Sisyphus

cooling, which is shown in �g.3.8, where the total force is smaller than the cav-

ity mediated force alone. For velocities satisfying eqn.(5.26) the antidamping

Doppler e�ect becomes dominant and accelerates the atoms instead of cooling
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them. This was also con�rmed by the results of quantum Monte Carlo simula-

tions done by Peter Horak, where cooling with above parameters appeared to

be strongly dependent on the intital conditions chosen and only for very small

initial momentum Doppler heating could be prevented and the atoms cooled.

5.2 Thermal distribution - Trapping conditions

For keeping an atom stably trapped it is necessary to keep the ratio

R =
U0

Eeq

(5.27)

as large a possible. Here U0 indicates the depth of the potential well as

given by (2.25) and Eeq the equilibrium temperature. Note that this potential

pot is located at an antiode (�g.2.4) for � < 0, when the lower dressed level is

pumped resonantly as indicated in �g.3.4 and that the friction force is a min-

imum at the antinodes (�g.5.6). The di�usion, which is for the parameters of

interest essentially only the corrective term, is largest between the node and the

antinode (�g.5.2). An optical trap by de�nition consists of an optical �eld con-

�guration with a point of stable equilibrium. Displacements of the atom result

in a restoring force. If the equilibrium atomic kinetic energy is higher than the

well depth, the atom can escape con�nement. For standard Doppler cooling of

chapter 1 the equilibrium energy can be as low as �h� for certain parameters, but

unfortunately the trap depth is found to be of the same magnitude. This does

not allow for stable trapping to occur. For the new cooling scheme, however,

higher Boltzmann factors may be obtained.

As an example: � = 8�;�a = �25:6�;�c = �10:4�; g0 = 16� yields Eeq �
0:3�h� � 2:5�h� and U0 � 0:25�h�

�
�

�

�2
. We see that the trap depth depends on

the driving amplitude �. For su�ciently low saturation of the atomic transition

we must choose a driving amplitude not larger than � � 7�. Thus we arrive at

a Boltzmann factor

R � 0:25

2:5
50 = 5;

which is better than for standard Doppler cooling. Quantum Monte Carlo

wave function simulations done by Peter Horak also �nd good localisation of

the atom at the antinodes for similar parameters. This is an indication of the

potential to stably trap a single atom in a cavity.
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Chapter 6

Conclusions and comparison

In this work I derived an expression for the friction force of an atom moving in

a cavity standing wave mode. This friction force can be split into the sum of a

contribution related to the well known Doppler cooling and a new contribution

arising from the cavity dynamics. The new part can be explained by a Sisyphus

cooling scheme and is for certain parameters the dominant contribution. For

the same parameters also a new term in the di�usion arises which partially

counteracts the cooling process. For this new cooling scheme the cavity is driven

more or less at resonance and the dominant decay channel is through the cavity

�, whereas for Doppler cooling the atom is pumped near resonance and the

decay is through spontaneous emission. In the Sisyphus cooling picture of an

atom in a weakly driven cavity it is either possible to pump the atom at the

antinodes of the lower dressed level for !c < !10 or to pump the atom at the

nodes of the upper dressed level for !c > !10. For �� � the Doppler limit of the

atomic temperature may be surpassed as the atomic equilibrium temperature is

limited by the cavity decay width �, just as it approaches the natural linewidth

� for Doppler cooling. This may be used to actually cool a two level system

below the Doppler limit inside a cavity mode �eld. Also trapping of an atom

seems feasible as Boltzmann factors larger than unity may be gained. All the

results derived for the temperature are in very good agreement to fully quantum

Monte Carlo wave function simulations in the semiclassical limit. Note that the

calculations still need to be generalised to the three dimensional case. Using

a matrix continued fraction method as outlined in [22] it would be possible

to calculate the total cooling force for arbitrary velocities. As the new cavity

induced cooling e�ects are based on the experimental setups used by Kimble et

al. [9], the results should have major impact on ongoing experiments with laser

cooled atoms in high �nesse cavities.
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Appendix A

Dipole force

A.1 Expression for the friction force

The total friction force can be regarded as the sum of the 'Doppler cooling'

force fat (obtained through adiabatic elimination of the mode) and the 'cavity

cooling' force fca(obtained through adiabatic elimination of the atom):

f1 = fat + fca; (A.1)

where

fat = ��h(rg)2�24(��3
a�

4
c���2

a�
3
cg

2� +�a�
2
cg

4� +�cg
6���a�

4
c�

3 +�3
cg

2�3

�2�3
a�

2
cg

2�+ 2�ag
6�+ 2�cg

4�2�� 2�3
a�

2
c��

2 ��2
a�cg

2��2 + 3�ag
4��2

�2�a�
2
c�

3�2 +�cg
2�3�2 � 2�3

ag
2�3 ��3

a��
4 ��a�

3�4)
1

jdet(A)j6 (A.2)

fca = ��h(rg)2�24(�2�2
a�

2
c� + 2g4�� 2�2

c�
3 � 4�3

a�c�+ 4�2
ag

2�

�4�a�c�
2�+ 4g2�2�+ 2�2

a��
2 + 2�3�2)

�ag
2

jdet(A)j6 (A.3)

and

jdet(A)j6 =
h�
��+ g2 ��a�c

�2
+ (�a�+�c�)

2
i3
: (A.4)
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Appendix B

Dressed states

At �rst the tables of matrix elements of atom-mode operator products needed

for the dressed representation of the master equation in chapter 3 are given.

Then we continue from where we ended in chapter 3, that is we will calculate

the force acting on the atom up to �rst order in v. Expressions for the force

and the mean photon number will be derived which are the same as the ones

already obtained in chapter 1.

B.1 Operator matrix elements

For obtaining all non-zero operator matrix elements in the dressed basis (4.13)

and (4.6) may be applied. In our 3-dim. state space one �nds for the operators

a; a+; a+a; ��; �+; �+�� :

h0jaj+i = h0; gjaj (cos�je; 0i+ sin�jg; 1i) = sin�

h0jaj�i = h0; gjaj�; 0i = cos�

h+ja+aj+i = sin2�hg; 1ja+ajg; 1i = sin2�

h�ja+aj�i = cos2�hg; 1ja+ajg; 1i = cos2�

h�ja+aj+i = sin�cos�hg; 1ja+ajg; 1i = sin�cos�

h0j��j+i = cos�h0; gj (jg; 0ihe; 0j) je; 0i = cos�

h0j��j�i = �sin�h0; gj (jg; 0ihe; 0j) je; 0i = �sin�
h+j�+��j+i = cos2�he; 0j (je; 0ihe; 0j) je; 0i = cos2�

h�j�+��j�i = sin2�he; 0j (je; 0ihe; 0j) je; 0i = cos2�

h+j�+��j�i = �sin�cos�: (B.1)
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B.2 Master equation represenation in j+i; j�i; j0i

_�0+ :

h0jHJ:C:�� �HJ:C:j+i = ��0+�+
h0j�+���j+i = 0

h0j��+��j+i = h0j�j�ih�j�+��j�i
= �0+cos

2� � �0�sin�cos�

h0j�q���+j+i = h0j��j�ih�j�jj�; 1ih�; 1j�+j+i
h0ja+a�j+i = 0

h0j�a+aj+i = h0j�j�ih�ja+aj+i
= �0+sin

2� + �0�cos�sin�

h0ja�a+j+i = h0jaj�ih�j�j�; 1ih�; 1ja+j+i
h0ja�j+i = h0jaj�ih�j�j+i

= sin��++ + cos���+
h0j�aj+i = h0j�j0ih0jaj+i

= �00sin�

h0ja+�j+i = 0

h0j�a+j+i = h0j�j�; 1ih�; 1ja+j+i

_�0� :

h0jHJ:C:�� �HJ:C:j�i = ��0���
h0j�+���j�i = 0

h0j��+��j�i = h0j�j�ih�j�+��j�i
= rho0�cos

2� � �0+sin�cos�

hoj����+j�i = h0j��j�ih�j�jj�; 1ih�; 1j�+j�i
h0ja+a�j�i = 0

h0j�a+aj�i = h0j�j�ih�ja+aj�i
= �0�cos

2� + �0+cos�sin�

h0ja�a+j�i = h0jaj�ih�j�j�; 1ih�; 1ja+j�i
h0ja�j�i = h0jaj�ih�j�j�i

= cos���� + sin��+�
h0j�aj�i = h0j�j0ih0jaj�i

= �00cos�

h0ja+�j�i = 0

h0j�a+j�i = h0j�j�; 1ih�; 1ja+j�i
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_�00 :

h0jHJ:C:�� �HJ:C:j0i = 0

h0j�+���j0i = 0

h0j��+��j0i = 0

hoj����+j0i = h0j��j�ih�j�j�ih�j�+j0i
= cos2��++ + sin2���� � cos�sin� (rho�+ + �+�)

h0ja+a�j0i = 0

h0j�a+aj0i = 0

h0ja�a+j0i = h0jaj�ih�j�j�ih�ja+j0i
= sin2��++ + cos2���� + sin�cos� (��+ + �+�)

h0ja�j0i = h0jaj�ih�j�j0i
= cos���0 + sin��+0

h0j�aj0i = 0

h0ja+�j0i = 0

h0j�a+j0i = h0j�j�ih�ja+j0i
= sin��0+ + cos��0�

_�++ :

h+jHJ:C:�� �HJ:C:j+i = 0

h+j�+���j+i = h+j�+��j�ih�j�j+i
= cos2 ��++ � sin�cos���+

h+j��+��j+i = h+j�j�ih�j�+��j+i
= �++cos

2� � �+�sin�cos�

h+j����+j+i = h+j��j�; 1ih�; 1j�jj�; 1ih�; 1j�+j+i
h+ja+a�j+i = h+ja+aj�ih�j�j+i

= �++sin
2� + ��+sin�cos�

h+j�a+aj+i = h+j�j�ih�ja+aj+i
= �++sin

2� + �+�sin�cos�

h+ja�a+j+i = h+jaj�; 1ih�; 1j�j�; 1ih�; 1ja+j+i
h+ja�j+i = h+jaj�; 1ih�; 1j�j+i
h+j�aj+i = h+j�j0ih0jaj+i

= �+0sin�

h+ja+�j+i = h+ja+j0ih0j�j+i
= �0+sin�

h+j�a+j+i = h+j�j�; 1ih�; 1ja+j+i
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_��� :

h�jHJ:C:�� �HJ:C:j�i = 0

h�j�+���j�i = h�j�+��j�ih�j�j�i
= sin2 ���� � sin�cos��+�

h�j��+��j�i = h�j�j�ih�j�+��j�i
= ���sin

2� � ��+sin�cos�

h�j����+j�i = h�j��j�; 1ih�; 1j�jj�; 1ih�; 1j�+j�i
h�ja+a�j�i = h�ja+aj�ih�j�j�i

= ���cos
2� + �+�sin�cos�

h�j�a+aj�i = h�j�j�ih�ja+aj�i
= ���cos

2� + ��+sin�cos�

h�ja�a+j�i = h�jaj�; 1ih�; 1j�j�; 1ih�; 1ja+j�i
h�ja�j�i = h�jaj�; 1ih�; 1j�j�i
h�j�aj�i = h�j�j0ih0jaj�i

= ��0cos�

h�ja+�j�i = h�ja+j0ih0j�j�i
= �0�cos�

h�j�a+j�i = h�j�j�; 1ih�; 1ja+j�i

_��+ :

h�jHJ:C:�� �HJ:C:j+i = ����+ � ��+�+
= �
��+

h�j�+���j+i = h�j�+��j�ih�j�j+i
= ��+sin

2� � sin�cos��++
h�j��+��j+i = h�j�j�ih�j�+��j+i

= ��+cos
2� � ���sin�cos�

h�j����+j+i = h�j��j�; 1ih�; 1j�jj�; 1ih�; 1j�+j+i
h�ja+a�j+i = h�ja+aj�ih�j�j+i

= ��+cos
2� + �++sin�cos�

h�j�a+aj+i = h�j�j�ih�ja+aj+i
= ��+sin

2� + ���sin�cos�

h�ja�a+j+i = h�jaj�; 1ih�; 1j�j�; 1ih�; 1ja+j+i
h�ja�j+i = h�jaj�; 1ih�; 1j�j+i
h�j�aj+i = h�j�j0ih0jaj+i = ��0sin�

h�ja+�j+i = h�ja+j0ih0j�j+i
= �0+cos�

h�j�a+j+i = h�j�j�; 1ih�; 1ja+j+i
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B.3 Expansion up to �rst order in v

In the case of an atom moving slowly in a cavity standing wave the solution of

eqn.(2.8) can be expanded to �rst order in v. This expansion is valid only for
kv
� � 1. This means that the atom doesn't move far on the scale of the cavity

mode wavelength before it decays spontaneously. Terms of higher order than

�rst order in v are neglected. Thus, with respect to eqn.(4.15)

L�0 = 0 (B.2)

provides the zeroth order solution and

v
@

@x
�0 = L�1 (B.3)

provides the �rst order solution in v (c.f.(1.34)). The same we will do now

with the equations expressed in dressed states together with a perturbation

theory in the driving �eld amplitude �.

As outlined above, � is assumed to be very small to excite only the �rst

manifold. Without any external driving �eld the atom is assumed to be in

the ground state and no photon in the cavity. Even with a weak perturbation

the occupation number of the ground state �00 will be close to 1, whereas the

occupation numbers of the higher levels �++ and ��� will be of order of �2.

Eqns.(4.14) can be written in a compact form:

vD~� = M~�+ ~K�; (B.4)

where D stands for a matrix with elements combining linear di�erential

operators(r) with factors like r�, as is given by eqn.4.17. M again can be split

into two parts

M =Mo +M�; (B.5)

where M� stands for a matrix containing the driving amplitude � (to �rst

order) which represents together with Mo the homogeneous part in ~�, which in

turn is a column vector:

~� = (�0+; �0�; �++; ���; ��+; �+�) :

The column vector ~K� represents the inhomogeneous part, which appeared

when we set �00 = 1� �++ � ��� in eqns.(4.14).Note that all but the �rst two

elements of ~K� are zero. Solving eqn.(B.4) for v = 0:

M~�(0) = � ~K�: (B.6)
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At the same time we only want to retain terms of order of �2 or less and

thus we may drop the driving terms in eqns.(4.14) which are proportional to

�++�; ����. This results in a decoupling of the equations for �0+; �0� from

the remaining ones. First the equations coupling only �0+ and �0� are solved

with the inhomogenity given by ~K�. The result is inserted into the driving

terms (which are only governed by �0+; �0�) of the remaining equations, which

again are solved for the resulting inhomogenity.

This procedure yields coherences �0+; �0� of �rst order in � and populations

of (and coherences between) the higher levels which are of second order in � as

was assumed. ~�(0) (the solution for v=0) can be split into

�(0) = ~�(01) + ~�(02); (B.7)

where �(01) is �rst order in � and �(02) is second order in �. For the solution

to �rst order in v, one can use the result obtained for v=0. Keeping the terms

�rst order in v, eqn.(B.4) can be written analogously to eqn.(1.34):

vD~�(0) =M~�(1): (B.8)

Here again we have to take into account the perturbation theorie in �, which

allows us only to keep the terms up to �2. Thus we expand ~�(1) the same way

as ~�(0):

~�(1) = ~�(11) + ~�(12); (B.9)

where the terms are �rst and second order in � respectively. This gives the

following equations:

v
�
~I(1) + ~I(2)

�
= (Mo +M�)

�
~�(11) + ~�(12)

�
; (B.10)

where

~I(1) = D~�(01)

~I(2) = D~�(02): (B.11)

Note that D only combines elements of �rst order with other elements of

�rst order in �. The same holds for elements second order in �. Thus, only the

�rst two elements of ~I(1) (terms in �0+; �0� )are nonzero. For ~I(2), the �rst two

elements are zero, whereas the remaining ones (terms in �++; ���; :::) are not.

Comparing terms of same order in � yields:

v~I(1) = Mo~�(11)

v~I(2) = Mo~�(12) +M�~�(11) (B.12)
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and so

~�(12) = M�1
o

�
v~I(2) �M�~�11

�
= vM�1

o

�
~I(2) �M�M

�1
o
~I(1)

�
: (B.13)

This procedure for obtaining the solution for �rst order in v (~�(1)) is anal-

ogous to the one used for ~�(0). One has to solve a 2*2 equation set (right

sides of the �rst two of eqns. (4.14) without driving terms) for f�0+; �0�g with
the inhomogenity this time being in principle the derivative of the zeroth or-

der solution. This yields the terms of �rst order in �. The result is inserted

into the inhomogenity of a 4*4 equation set (last four equations of eqns.(4.14)

without driving terms) of f�++; ���; ��+; �+�g where the second part of the

inhomogenity is again in principle the derivative of the zeroth order solution .

The 4*4 equation set then has to be solved to obtain the terms of second order

in �.

Summarising, the matrixMo de�ned above, which is in principle the matrix

de�ning the last four equations of eqns.(4.14) without the driving terms on

the right side, may be split into two submatrices (2*2 and 4*4) which have to

be diagonalised for obtaining the zeroth order terms of � as well as the �rst

order terms. In order to diagonalise these matrices more easily it is useful to

take advantage of the symmetries found in their structure and de�ne linear

combinations of their basis variables and express them in terms of this newly

found basis. It turns out to be convenient to introduce linear combinations

�a = �++ + ���

�b = �++ � ���

�g = ��+ + �+�

�u = ��+ � �+�:

B.3.1 Two important matrices

Using eqns.(4.14), forming linear combinations and omitting the driving terms,

using basic trigonometric theorems and eqns.(4.8), one �nds the following ex-

pressions for the (2*2) and (4*4) matrix systems:

A(�0+; �0�) =

�
i�+ � 
=2� �
=2 
+�


+� i�� � 
=2 + �
=2

�
(B.14)
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B(�a; �b; �g; �u) =

0
BB@

�
 ��
 
+� 0

��
 �
 0 0


+� 0 �
 i


0 0 i
 �


1
CCA ; (B.15)

where


 = (� + �)

�
 =
�



(�� �)


+� =
!R



(�� �) :

The determinants of the two matrices are

det(A) = ��+�� + i�c
 + i��+ ��

det(B) = 4
2
�
��+ g2 +

���2


2

�
: (B.16)

Note that the two matrices are the dressed analogues of A;B in (2.13),(2.20)

of chapter 1.

By inversion of (B.6) we get the required matrix elements for calculating the

force:

f(x) = hdP
dt
i

= ��hrgTr �� ��+a+ ��a+
�	

= ��hrg
X
n=0

�he; nj�+a�je; ni+ hg; n+ 1ja+���jg; n+ 1i�
+hg; 0ja+���jg; 0i

= ��hrg (he; 0j�jg; 1i+ c:c) :

Note that for the last step the sum was reduced to n = 0 only, which is the

restriction to the �rst manifold as was assumed above. Note also that a; a+ act

only on j1ic; j0ic and thus only contribute
p
1 as a factor. Using eqns.(4.7) and

(4.8) one �nally obtains

f(x) = ��hr!R
2

�
!R



�b � �



�g

�

= ��hr

2

(�++ � ���)� �h
r� (��+ + �+�) : (B.17)
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Solving the matrix equations for v = 0 (B.6) as outlined above, one �nds

simple analytical expressions for populations and coherences of j+i; j�i which
are second order in �. Those may be inserted into eqn.(B.17):

f(x) = �h�2
�rg2�a

jdet (A)j2 : (B.18)

This is the same expression as we found in chapter 1(2.24), which is what

we expected.

The same applies to the intracavity photon number, which can also be found

through inversion of (B.6):

hni = Tr
�
�Pjg;1i

	
= hg; 1j�jg; 1i
=


+�

2

�++ +


��

2

��� +

!R

2

(��+ + �+�)

=
1

2
�a +

�

2

�b +

!R

2

�g : (B.19)

Again eqns.(4.7)(4.8) were used for above transformations. Inserting the

solutions found for the density matrix for v = 0 yields for the mean photon

number

hni = �2
�2
a + �2

jdet(A)j2 : (B.20)
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Appendix C

Higher order expectation

values

In this chapter we want to come back to the question of calculating expectation

values of operator products as ha+a���+i, which are needed in the calculation

of the di�usion constant.

We know the following relation for the mode operators:

�
a; a+

�
= 1: (C.1)

We assumed that the atom would only be weakly excited and thus linearised

the Heisenberg equations (2.10). This linearisation is equivalent to using

�
��; �+

� � ���+ � 1: (C.2)

Hence we have approximately the same algebra for atomic and mode opera-

tors Now we can solve the linearised equations (2.10) for steady state. That is

we demand _a = 0 = _�� and we obtain an expression

ast = Ca + F1

��st = C� + F2; (C.3)

where Ca; C� are c numbers corresponding to the expectation values in

steady state and F1; F2 are noise operators for which (2.11) holds as well. In-

stead of specifying them (which would not present a big problem) we require

the commutation properties (C.1),(C.2) to be ful�lled, from which we deduce

h
F1; F1

+
i
= 1h

F2; F2
+
i
= 1: (C.4)
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Now expectation values of combined atom-mode operator prodcuts in steady

state can be calculated as follows:

ha+ai = h
�
c�a + F1

+
��

ca + F1
�i

= c�aca

= ha+ihai; (C.5)

where we used property (2.11) for F1; F2. This can be done for all operator

products where the ordering is such that a; �� are to the right of a+; �+. So

one obtains (2.21). For higher order operators products it can be done the same

way,e.g.

ha+���+ai = h
�
c�a + F1

+
��

c� + F2
� �

c�� + F2
+
� �

ca + F1
�
: (C.6)

Considering property (2.11) all terms containing noise operators are zero

except for the term containing the noise operators of ��; �+ in antinormal order

which is

hc�aF2F2
+
cai: (C.7)

Using (C.4) gives:

hc�aF2F2
+
cai = c�aca = ha+ai; (C.8)

where we used (C.5) for the last line. In total we get one contribution from

the terms containing no noise operators at all and one contribution from one of

the terms containing noise operators:

ha+���+ai = ha+aih�+��i+ ha+ai: (C.9)

Analogously one can proceed for all operator products. This way all expecta-

tion values in steady state can be calculated very quickly from the known lower

order expectation values. This is tricky but helpful and all initial conditions

can be calculated in a wink. We will give an example by calculating one of the

covariance initial conditions of (5.20):

hX1(0); X1(0)i = hX1(0)X1(0)i � hX1(0)ihX1(0)i
= h�+��i+ ha+ai+ (c�ac� + cac

�

�)(c
�

ac� + cac
�

�)

�hX1(0)ihX1(0)i
= h�+��i+ ha+ai: (C.10)

Thus one obtains for the covariances in steady state the same result as

when assuming that only one photon is in the cavity and neglecting additional
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terms of higher order than �2, which was shown in (5.20). The same applies

to all covariances and so the approximation that there is only one intracavity

photon and additional perturbation expansion in � becomes unnecessary. The

result for the di�usion (5.23) therefore still holds for several photons

inside the cavity, provided that the saturation of the atomic transition is

small. One comment is worth making: Whereas for the calculation of the force

operators could in principle have been replaced by c-numbers to obtain the

correct result, the noise operators caused the appearance of an additional term

in the calculation of the covariances which dominates the dipole di�usion. Thus

one needs a quantum treatment to obtain the correct di�usion.
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