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Abstract

Integer factorization is a problem hard to solve on a classical computer and has practical
relevance for RSA-based cryptosystems. This thesis discusses the factoring problem from
the perspective of adiabatic quantum computation (AQC). We show how the problem of
finding the prime factors of an integer can be formulated as optimization problem. In
the scheme of AQC, this problem is then mapped to the physical problem of finding the
ground state of a system of interacting two-state spins. We discuss an algorithm ensuring
that the Hamiltonian of the system used for the adiabatic evolution only contains local
terms and quadratic interactions. This approach is demonstrated for the number 21.
Two different Hamiltonians of the system are derived and the adiabatic evolution is
implemented for different evolution times using the Julia library QuantumOptics.jl.
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Chapter 1

Introduction

Cryptography is the study of methods of enabling two or more parties to exchange
messages in disguised form so that only the intended recipients can recover the contents
of the conversation. A cryptographic protocol or cryptosystem is used to map the message
to be sent (plaintext) to the disguised message (ciphertext) [1]. A common class of
cryptosystems are the public-key cryptosystems. These are based on two keys: encryption
is performed using a public key, while decryption requires a private key only known
to the message recipient. To prevent third parties from eavesdropping on the contents
of the conversation the encryption stage needs to be difficult to reverse even using the
enciphering (public) key [2].
Many public-key cryptosystems rely on the difficulty of performing certain tasks re-
lated to number theory in order to achieve secure data transmission. Especially, the
commonly used RSA cryptographic protocol (named after the inventors Rivest, Shamir,
and Adleman) depends on the presumed lack of an efficient algorithm for finding the
prime factors p and q of a large integer of the form ω = pq on classical computers. The
public key is produced using a large biprime, while the private key is based on its prime
factors. Thus, the task of inverting the encryption stage is closely related to factoring
[2]. While the tasks to be performed by the intended recipient of the message (primality
testing) are of polynomial or quasi-polynomial time in the size of the input, the runtime
of the state-of-the-art algorithm for prime factorization - the general number field sieve -
scales sub-exponentially with the input’s size. This circumstance is fundamental for the
usability and safety of the RSA cryptosystem [1].
However, in 1994 Peter Shor developed a quantum algorithm for integer factorization
which could solve the factorization problem efficiently, i.e. in polynomial time [3]. Shor’s
algorithm relies on the circuit model of quantum computing, where computations are
performed by application of a sequence of universal gates to a system of qubits, and is
based on the reduction of factoring to period finding, which is performed using quantum
Fourier transform [2]. For factoring a composite number ω having blog2(ω)c + 1 = n
digits, this algorithm requires O{n3} operations [3]. The perspective of breaking the RSA
cryptosystem has contributed to curbing interest and research on quantum computation
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1 Introduction

[4]. Over the last years, Shor’s algorithm has been demonstrated in several experiments
using liquid-state NMR [5] and photonic systems [6], as well as on ion-trap quantum
computers [7]. Up to now, the largest number factored using physical realizations of
Shor’s algorithm was 21 [8].
An alternative approach to the factoring problem is based on adiabatic quantum compu-
tation (AQC). Adiabatic quantum computation relies on the adiabatic theorem to solve
optimization problems and was proposed by Farhi et al [9]. This approach was shown
to be polynomially equivalent to the standard paradigm of quantum computing [10]
and has been successfully applied to many different problems from the fields of physics
and computer science [11, 12]. Schaller and Schützhold provided a quantum adiabatic
algorithm for factoring [13]. Experimental implementations of a simplified version of
this factoring scheme on NMR processors allowed to factor biprimes up to 143 [14, 15].
Furthermore, Dridi and Alghassi managed to factor all biprimes up to 200000 on the
D-Wave 2X processor using computational algebraic geometry, specifically Gröbner bases,
to reduce the size of the problem [16].

The topic of this thesis is a quantum adiabatic algorithm for factoring. In chapter 2 some
theoretical aspects needed for the later chapters are introduced. The algorithm itself is
the topic of chapter 3 and is used in chapter 4 for the factorization of the number 21.
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Chapter 2

Theoretical Concepts

In this chapter we present some ideas which represent the theoretical foundation for
adiabatic quantum computation and for the algorithm described in the following chapter.
First, we introduce the adiabatic theorem of quantum mechanics and give an elementary
proof of it. Then, we show how the timescale for adiabaticity is closely related to
the properties of the Hamiltonian’s spectrum. Further, we briefly present the topic of
optimization. Finally, we describe the idea of adiabatic quantum computation.

2.1 Adiabatic Theorem and Landau-Zener Tunnelling
2.1.1 Dynamics of a Quantum System
In the Schrödinger picture the dynamics of a closed quantum system is described by the
time-dependent Schrödinger equation

i~
d
dt |ψ(t)〉 = Ĥ |ψ(t)〉 . (2.1)

If the Hamiltonian Ĥ of the system does not depend on time, the solution to the
Schrödinger equation (2.1) for the initial state |ψ0〉 at the initial time t = t0 is given by
the time-dependent state

|ψ(t)〉 = Û(t, t0) |ψ0〉 = e−iĤ(t−t0)/~, |ψ0〉 , (2.2)
with the unitary time evolution operator Û(t, t0) = e−iĤ(t−t0)/~ [17]. A system prepared
in the eigenstate |φn〉 of the Hamiltonian satisfies the eigenvalue equation (stationary
Schrödinger equation)

Ĥ |φn〉 = En |φn〉 , (2.3)
where En is the energy of the eigenstate |φn〉. Under time evolution, the system will
remain in such eigenstate and simply acquire the global phase e−iEn(t−t0) [17].
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2 Theoretical Concepts

If the Hamiltonian depends on time, the time evolution of the system does not generally
take this extremely simple form. However, if the change in the Hamiltonian occurs
sufficiently slowly, the adiabatic theorem comes into play and the dynamics of the system
remains relatively simple.

2.1.2 The Adiabatic Theorem
The adiabatic theorem was originally stated by Born and Fock in 1928 as follows [18]:

A physical system remains in its instantaneous eigenstate if a given perturba-
tion is acting on it slowly enough and if there is a gap between the eigenvalue
and the rest of the Hamiltonian’s spectrum.

Let us consider a time-dependent Hamiltonian Ĥ(t) that governs the state of a quantum
system evolving in N -dimensional Hilbert space according to the Schrödinger equation
(2.1). Suppose the Hamiltonian changes smoothly from an initial form Ĥ0 at time t = 0
to some final form Ĥ1 at time t = T . Rescaling the time coordinate

t→ s = t

T
, so that s ∈ [0, 1], (2.4)

we can rewrite the Hamiltonian as a function of the dimensionless parameter s, where
Ĥ(0) = Ĥ0 and Ĥ(1) = Ĥ1 [9]. Then, for T arbitrarily large the Hamiltonian varies
arbitrarily slowly as a function of time and for each time we can define the instantaneous
eigenstates and eigenvalues of Ĥ(s) as

Ĥ(s) |φi(s)〉 = Ei(s) |φi(s)〉 , (2.5)

where E0(s) ≤ E1(s) ≤ . . . ≤ EN−1 for all values of s ∈ [0, 1]. Further, an initial state
|ψ(0)〉 = |ψ0〉 will evolve in time according to the equation

i~
d
ds |ψ(s)〉 = TĤ(s) |ψ(s)〉 , (2.6)

resulting from (2.1) by the chain rule [19].
Suppose |ψ0〉 is an eigenstate of Ĥ0, for simplicity the ground state |φ0(0)〉. The quantum
adiabatic theorem guarantees that, if the Hamiltonian changes slowly enough and the
gap between the two lowest energy levels, E1(s)−E0(s), does not vanish for all values of
s ∈ [0, 1], then

lim
T→∞

| 〈φ0(1) | ψ(1)〉 | = 1, (2.7)

i.e. the evolving state system will remain arbitrarily close to the instantaneous ground
state of the Hamiltonian [9]. In particular, the final state |ψ(1)〉 will be the ground state
of Ĥ1.
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2 Theoretical Concepts

2.1.3 Proof of the Adiabatic Theorem
At any time t the eigenstates of a time-dependent Hamiltonian Ĥ(t) satisfy the stationary
Schrödinger equation (2.3). Further, these eigenstates form a complete orthogonal system,
since

〈φm(t) | φn(t)〉 = δmn. (2.8)
A general solution to the time-dependent Schrödinger equation takes the form

|ψ(t)〉 =
∑
n

cn(t) |φn(t)〉 eiθn(t), (2.9)

with cn(t) = 〈φn(t) | ψ(t)〉 and the dynamic phase θn(t) = −1
~
∫ t

0 En(t′)dt′ [20]. Here
|φn(t)〉 and En(t) denote the time-dependent eigenstates and eigenvalues of Ĥ(t), respect-
ively. Plugging this expression into (2.1), we obtain

i~
∑
n

eiθn(t)
(
ċn(t) |φn(t)〉+ cn(t) |φ̇n(t)〉+ icn(t) |φn(t)〉 θ̇n(t)

)
=

=
∑
n

eiθn(t)cn(t)Ĥ(t) |φn(t)〉 . (2.10)

The term on the right hand side cancels out with the last summand on the left hand
side, since θ̇n(t) = −En(t)/~. Acting on both sides of the resulting equation with the bra
〈φm(t)| and using the orthogonality of the eigenstates (2.8), we find

ċm(t) = −
∑
n

cn(t) 〈φm(t) | φ̇n(t)〉 ei(θn(t)−θm(t))

= −cm(t) 〈φm(t) | φ̇m(t)〉 −
∑
n6=m

cn(t)〈φm(t) | ˙̂
H(t) | φn(t)〉

En(t)− Em(t) ei(θn(t)−θm(t)), (2.11)

where in the last step we used that 〈φm | ˙̂
H | φn〉 = (En−Em) 〈φm | φ̇n〉. This last relation

can be easily verified by taking the time derivative of (2.3) and multiplying the resulting
expression by 〈φm|. Thus, the coefficient of the m-th eigenstate satisfy the differential
equation given by (2.11). The second term on the right hand side of the equation can be
neglected assuming ∣∣∣∣∣∣〈φm(t) | ˙̂

H(t) | φn(t)〉
En(t)− Em(t)

∣∣∣∣∣∣� 1, (2.12)

for a slowly changing Hamiltonian (adiabatic approximation) [21]. Then, equation (2.11)
takes the form

ċm(t) = −cm(t) 〈φm(t) | φ̇m(t)〉 , (2.13)
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2 Theoretical Concepts

leading to the solution for the coefficient of the m-th eigenstate

cm(t) = cm(0) eiγm(t), (2.14)

with the geometric phase γm(t) = −
∫ t
0 〈φm(t′) | φ̇m(t′)〉 dt′ ∈ R [20]. This result plugged

into the general solution (2.9) yields

|ψ(t)〉 =
∑
n

cn(0) |φ(t)〉 eiθn(t)eiγn(t). (2.15)

Since both the dynamic and geometric phase are real, eiθn(t) and eiγn(t) are only phase
factors. Therefore, a system starting out in the n-th eigenstate of the Hamiltonian and
evolving under the Schrödinger equation will remain in the same eigenstate [20].

2.1.4 The Landau-Zener Formula
For practical purposes, we would like to know how the required evolution time T depends
on the properties of the Hamiltonian’s spectrum. This can be understood considering the
probability for a non-adiabatic transition in the Landau-Zener problem (avoided level
crossing), the so-called Landau-Zener formula.
The simple derivation of the Landau-Zener formula that we will discuss can be found in
[22]. Let us consider a two-level system with the basis states |0〉 and |1〉 and associated
energies E0 and E1, separated by the gap E1 − E0 = ~ω0 > 0. Putting E0 = 0, the
Hamiltonian for this system is

Ĥ0 =
(

0 0
0 ~ω0

)
. (2.16)

Considering some additional time-dependent coupling of the two states yields (e.g. an
oscillating electric field in the rotating wave approximation), the Hamiltonian takes the
form

Ĥ =
(

0 ~Ω?eiω
′t

~Ωe−iω′t ~ω0

)
, (2.17)

where ~Ω and ω′ are the strength and frequency of the time-dependent interaction,
respectively. The eigenvalues of (2.17) are

E+ = ~ω0

2 + ~
2

√
ω2

0 + 4|Ω|2 (2.18)

E− = ~ω0

2 − ~
2

√
ω2

0 + 4|Ω|2, (2.19)

with the corresponding eigenstates |+〉 (excited state) and |−〉 (ground state). Thus, the
energy levels are separated by the gap ∆E = E+ − E− = ~ω0 + ~

√
ω2

0 + 4|Ω|2.
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2 Theoretical Concepts

For a constant detuning ∆ = ω − ω0, the system undergoes Rabi oscillations [23].
Accordingly, the probability per unit time for the transition from the state |0〉 into the
state |1〉 is given by the rate

Γ = Ω2 γ

∆2 + γ2/4 , (2.20)

where γ is the decay rate of the Rabi oscillations. Now, let us consider the situation
where the detuning changes linearly with time, i.e. ∆̇ = constant. Then, as described
in [22] we approximate the change of ∆(t) as a succession of small discrete steps each
lasting δt. In each interval δt the detuning is constant and the population dynamic of the
system is described by the Rabi formula (2.20). However, by changing the Hamiltonian
the Rabi oscillations get out of phase and the transition amplitudes get added together
with different phases. Estimating the dephasing time, i.e. the duration in which a phase
difference of 2π is accumulated between consecutive intervals, as τD ∼

√
4π
∆̇ and setting

γ = 1/τD, we can then compute the probability P0(t+ δt) of being in the state |0〉 after
a step δt as

P0(t+ δt) = [1− Γ(t)δt]P0(t) ≈ e−Γ(t)δtP0(t). (2.21)

In this expression P0(t) is the probability of being in the state |0〉 at time t and Γ(t) the
transition rate in the segment between t and t+ δt. Integrating over the duration of the
entire process T = tf − ti, we obtain the probability of remaining in the state |0〉

P0(T ) = exp
(
−
∫ tf

ti
Γ(t)dt

)
= exp

{
−2Ω2

∆̇

[
arctan

(
∆(tf )
γ/2

)
− arctan

(
∆(ti)
γ/2

)]}
. (2.22)

Notice that instead of the transition amplitudes the transition probabilities were added
together. In the limit ∆(ti) � γ/2 � ∆(tf) equation (2.22) yields the Landau-Zener
formula

P0(tf ) = exp
(
−2πΩ2/∆̇

)
, (2.23)

depending on the velocity of change of the detuning ∆̇ and on the minimum gap between
the energy levels which is proportional to Ω. This gives us an estimate for the probability
of tunnelling non-adiabatically from the ground state to an excited state when the system
encounters an avoided level crossing during time evolution [11].
This is illustrated in figure 2.1: starting from far below resonance, the system goes through
the level crossing at ∆ = 0 and ends up far above resonance. For reference, the spectrum
of the Hamiltonian is shown as a function of the separation of the energy levels ω0 for
the uncoupled case (Ω = 0, dashed lines), in which the energy levels cross. In presence of
coupling (Ω 6= 0, solid lines), however, crossing does not occur and there is a minimum
gap gmin = 2~|Ω|.
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0
Detuning ∆ = ω′ − ω0

E
n

er
gy

E
/h̄

gmin = 2Ω

| 0 〉

| 0 〉

| 1 〉

| 1 〉

E1

E0

E+

E−

Figure 2.1: Avoided crossing in a two-level system [22]. The detuning ∆ = ω − ω0 is
swept linearly through resonance. The probability of a diabatic transition is given by the
Landau-Zener formula (2.23).

Population is completely transferred from |0〉 into |1〉 if P0(tf) → 0, corresponding to
an infinitesimally slow change of ∆. Using the notation (2.4) from subsection 2.1.2, this
yields the condition

T �

∣∣∣∣∣ d
dsĤ(s)

∣∣∣∣∣
g2

min
, (2.24)

where gmin = min0≤s≤1E1(s) − E0(s) is the minimum gap above the ground state. If
the evolution time T satisfies this condition, the adiabatic approximation is valid [9].
Thus, for a constant deformation speed of the Hamiltonian, the adiabatic runtime will
approximately scale as T = O

{
g−2

min

}
.

2.2 Optimization
Let us consider the optimization problem [24]

minimize f(x) subject to x ∈ A, (2.25)

where f : Rn → R is the real-valued function that we wish to minimize (cost function).
The vector x = (x1, x2, . . . , xn) ∈ Rn contains the so-called decision variables and the
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2 Theoretical Concepts

set A is a subset of Rn often referred to as feasible set. The task is to solve the decision
problem that involves finding the vector x of the decision variables that minimizes the
cost function over A [24]. In physics it is common to identify the cost function with the
energy of system, so that the solution of the optimization problem corresponds to the
ground state of said system.

2.3 Adiabatic Quantum Computation
In this section we describe the idea of quantum adiabatic computation proposed by Farhi
et al. in [9] and [25]. The basic concept of adiabatic quantum computation (AQC) is to use
the adiabatic theorem to solve optimization problems. The idea is to encode the solution
of a minimization problem in the unknown ground state of a problem Hamiltonian ĤP
and reach this ground state through adiabatic evolution starting from the known ground
state of another Hamiltonian Ĥ0. While doing so, if the evolution time is long enough,
the adiabatic theorem ensures that the evolution generates the desired state encoding
the correct solution.

2.3.1 Quantum Adiabatic Evolution
The first step is to translate the optimization problem from section 2.2 in quantum-
mechanical terms, i.e. find a problem Hamiltonian ĤP whose ground state corresponds
to the solution of the problem. To find its ground state, we evolve adiabatically from the
ground state of a trivial Hamiltonian Ĥ0 whose ground state is known in advance and
easier to prepare. To do so, we consider the Hamiltonian Ĥ(t) smoothly interpolating
between Ĥ(0) = Ĥ0 and Ĥ(T ) = ĤP during the running time of the evolution T . For
instance, we can interpolate linearly [9]

Ĥ(t) =
(

1− t

T

)
Ĥ0 + t

T
ĤP. (2.26)

The system prepared in the ground state |ψ(0)〉 = |ψg(0)〉 of Ĥ0 will then evolve according
to (2.1) into a state |ψ(T )〉 close to the solution |ψg(T )〉. Provided the evolution is
sufficiently slow, a measurement of the final quantum state state at time T will then give
us with high probability the solution to our problem.

2.3.2 Physical System
Many classical computational problems (e.g. satisfiability) can be cast as the minimization
of a cost function f : {0, 1}n → R, mapping n-bit strings z to real numbers. It is intuitive
to identify each binary variable zi ∈ {0, 1} with a spin-1/2 qubit labelled by |zi〉 [9].
The n-qubit Hilbert space the computation is carried out on is spanned by 2n basis

9



2 Theoretical Concepts

vectors |z〉 ≡ |z1z2 . . . zn〉 = |z1〉 ⊗ |z2〉 ⊗ . . . ⊗ |zn〉. Each one of the qubits lives on a
two-dimensional state space with the standard computational basis {|0〉 , |1〉}. We identify

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
, (2.27)

such that the state |zi = 0〉 corresponds to the i-th spin being up and |zi = 1〉 corresponds
to the i-th spin being down [25]. We notice that the states |zi〉 are eigenstates of the
operator

1
2 (1− σz) , (2.28)

where 1 is the unit operator and σz is the Pauli z matrix σz =
(

1 0
0 −1

)
. Therefore, the

operator

ẑi ≡
1
2
(
1− σ(i)

z

)
(2.29)

can be used to extract the value of the qubit it acts on:

ẑi |z〉 = zi |z〉 . (2.30)

2.3.3 Problem Hamiltonian and Initial Hamiltonian
A straightforward choice for the problem Hamiltonian is given according to [9] by

ĤP =
∑

z∈{0,1}n

f(z) |z〉 〈z| . (2.31)

This operator is diagonal in the basis of the Hilbert space and has the eigenvalues f(z).
Further, a common choice for the initial Hamiltonian while dealing with problems that
can be formulated in terms of spin-1/2 variables is given by

Ĥ0 = −
n∑
i=1

σ(i)
x , (2.32)

where σ(i)
x is the Pauli x matrix σx =

(
0 1
1 0

)
acting on the i-th qubit [12]. This

Hamiltonian has the ground state

|S〉 =
(
|0〉+ |1〉√

2

)⊗n
, (2.33)

with all spins aligned in the x-direction, corresponding to an uniform superposition of all
possible states.
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Chapter 3

A Quantum Adiabatic Algorithm for
Prime Factorization

The problem of finding the prime factors of an integer can be formulated as a classical
optimization problem. This can be solved using a quantum adiabatic algorithm as the
one proposed by Schaller and Schützhold [13] for the factorization of biprimes.

3.1 Factoring as Optimization Problem
The fundamental theorem of arithmetic states that every positive integer can be written
as a product of positive prime numbers and that such composition is unique apart
from the order of the factors [26]. Factoring means finding those prime numbers. In the
following, we consider an instance of the factorization problem which is known to be
particularly hard to solve, i.e. the factoring of biprimes [26]. A biprime is the product of
two prime numbers. Thus, given the biprime ω, the goal is to find the prime factors a
and b such that ω = ab.
The factorization problem can be mapped to an optimization problem, where we minimize
a cost function f defined in the most straightforward case as the square of the difference
of ω and the product of the two arguments x and y

f : N2 → R (x, y) 7→ (ω − xy)2, (3.1)
where x and y are positive integers [15]. This fourth degree polynomial has the required
properties to be suitable as cost function for optimization, i.e. it is non-negative and
vanishes at the global minima. These are at most two and are reached when (x, y) = (a, b)
or (x, y) = (b, a) [27].
For both classical and quantum approaches to optimization it is necessary to use the
binary representations of ω

ω =
n−1∑
i=0

ωi2i (3.2)
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3 A Quantum Adiabatic Algorithm for Prime Factorization

and of the factors a and b

a =
k−1∑
i=0

ai2i, b =
l−1∑
i=0

bi2i, (3.3)

where n, k, and l are the number of binary digits of ω, a, and b, respectively. The product
of a k-bit number with a l-bit number has either k + l or k + l − 1 bits [13]. Here we
assume the former case and put l = n− k. Further, the partition (k, n− k) will mostly
be not known in advance. In the worst case, all possible values of k from n/2 to n must
be tried. Verifying the answer of each try corresponds to an overhead growing linearly
with n [13].
Instead of simply plugging these expressions into the cost function (3.1), it is practical
to decompose long-hand multiplication into a set of factoring equations. To do so, we
will use the binary multiplication table for ω = ab as described in [27] and [13]. Let us
consider an example with n = 7 and k = 4. The multiplication method is shown by table
3.1. The significance of the columns increases from right to left and they are numbered
starting from zero corresponding to the increasing powers of two. In table 3.1, the first
two rows represent the binary digits of the multipliers a and b, followed by three rows of
partial products aibj, and two rows of carries zij, where i < j indicates the carry from
the i-th to the j-th column. The last row is the binary representation of the biprime ω.
We can see that the number of auxiliary bits needed for the carry variables grows linearly
with n.

Table 3.1: Binary multiplication table to multiply the 4-bit number a and the 3-bit number
b. The significance of the columns increases from right to left. The top two rows are the
binary representations of the multipliers, while the bottom row is the result ω, which is
obtained summing the partial products aibj and carry bits zij (from the i-th to the j-th
column).

Multipliers a3 a2 a1 a0

b2 b1 b0

Binary multiplication a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

Carries z56 z45 z34 z23 z12

z46 z35 z24

Product ω6 ω5 ω4 ω3 ω2 ω1 ω0

This table generates a system of n factoring equations (3.4) through (3.10). Each one is
obtained from the rule that the sum of the column’s multiplication terms and carries from
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3 A Quantum Adiabatic Algorithm for Prime Factorization

lower significant columns is equal to the sum of the corresponding digit of the product
and the carries generated in higher order columns. The resulting binary equations are

a0b0 = ω0 (3.4)
a1b0 + a0b1 = ω1 + 2z12 (3.5)

a2b0 + a1b1 + a0b2 + z12 = ω2 + 2z23 + 4z24 (3.6)
a3b0 + a2b1 + a1b2 + z23 = ω3 + 2z34 + 4z35 (3.7)
a3b1 + a2b2 + z34 + z24 = ω4 + 2z45 + 4z46 (3.8)

a3b2 + z45 + z35 = ω5 + 2z56 (3.9)
z56 + z46 = ω6. (3.10)

At this point, factoring ω is equivalent to finding a solution for the binary variables
{a1, . . . , ak, b1, . . . , bn−k, zij}. Then, we can introduce a cost function which is the sum of
the squared factoring equations in normal form

f =
n∑
i=1

f 2
i , (3.11)

where fi = 0 represents the i-th factoring equation with the zero on the right hand
side [13]. Therefore, each violated factoring equation translates into a positive penalty,
meaning that the cost function vanishes for the correct solution, while it is strictly
positive otherwise. To ensure that the variables {a1, . . . , ak, b1, . . . , bn−k, zij} are binary
it is enough to supplement (3.11) with the term

m∑
i=1

w2
i (1− wi)2 , (3.12)

where the wi are shorthand for the involved binary variables [27]. The sum (3.12) vanishes
for wi ∈ {0, 1}.

3.2 Factorization in AQC
Once factorization is translated into an optimization problem, it is possible develop a
quantum adiabatic algorithm to solve it. As described in chapter 2, the idea is to design
a Hamiltonian whose ground state encodes the solution to the mathematical problem
and evolve adiabatically into this ground state. The different ways to construct such
Hamiltonian presented here are discussed in [13].

3.2.1 Physical System and Naive Hamiltonian
As stated in subsection 2.3.1, it is straightforward to identify binary variables as a
spin-1/2 qubits. To start with, our goal will be to translate the simple cost function (3.1)

13



3 A Quantum Adiabatic Algorithm for Prime Factorization

into a Hamiltonian. To factor a n-bit biprime ω, we consider a Hilbert space with n
qubits representing the binary digits of the factors a and b defined as in (3.3). The basis
states are then |a0〉 . . . |ak−1〉 |b0〉 . . . |bn−k−1〉. The Hamiltonian can be obtained from the
cost function replacing each of the binary variables with operators of the form (2.29)
acting on the corresponding qubit. This leads to the Hamiltonian

ĤP
(1) =

(
ω − âb̂

)2
, (3.13)

where

â =
k−1∑
i=0

âi2i, âi = 1
2
(
1− σ(i)

z

)
(3.14)

b̂ =
l−1∑
i=0

b̂i2i, b̂i = 1
2
(
1− σ(k+i)

z

)
. (3.15)

The above Hamiltonian contains interactions between at most four qubits. Its couplings
cover an exponential range, hence its spectral range increases exponentially with the size
of the system n [13]. This makes the experimental realization harder and translates into
higher computational costs.

3.2.2 Column Factoring Procedure
A better (polynomial) scaling can be achieved using the cost function (3.11) relying on
the binary multiplication table. As before, the problem Hamiltonian is produced replacing
all binary variables with operators (2.29) leading to

Ĥ
(2)
P =

∑
i

E2
i , (3.16)

were Ei corresponds to the i-th factoring equation fi.
This procedure requires a linear number of additional qubits for the carry variables. The
advantage of Ĥ(2)

P compared to the naive Hamiltonian Ĥ(1)
P (3.13) is that the maximum

penalty generated by a single equation scales as O{(n− k)2}. As a consequence, the
spectral width of (3.16) scales polynomially with the number of qubits asO{n3}. However,
this Hamiltonian still contains four-qubit interactions, which are difficult to realize in
the experiment.

3.2.3 Cell Factoring Procedure
The same paper [13] also presents an alternative approach allowing to obtain an Hamilto-
nian with only quadratic interactions and coupling constants covering a finite range. The
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3 A Quantum Adiabatic Algorithm for Prime Factorization

idea is to rewrite the multiplication table 3.1 using additional auxiliary qubits in order
to break each column equation into multiple smaller equations having the form

Ei = AB + S = 0. (3.17)

Hereby, A and B are single bit variables and S is a sum of single bit variables. Thus,
each one of these equations only contains one quadratic term AB. Actually, the penalty
Pi = E2

i for violating equation (3.17) would contain three-qubit interactions. The trick is
to replace it by the penalty

P ′i = 2
[1
2

(
A+B − 1

2

)
+ S

]2
− 1

8 , (3.18)

involving only quadratic interactions. It is easy to verify that both penalties vanish for
the condition

((AB = 1) ∧ (S = −1)) ∨ ((AB = 0) ∧ (S = 0)) , (3.19)

corresponding to equation (3.17) being fulfilled. The new multiplication table is listed in
table 3.2.

Table 3.2: Binary multiplication table to multiply the 4-bit number a and the 3-bit number
b expanded for the cell factoring algorithm. The significance of the columns increases from
right to left. The top two rows are the binary representations of the multipliers, while the
bottom row is the result ω. From top to bottom, each cell contains the sum of the cell
directly above it Sij , the partial product aibj , and the carry variable zij . The variables
satisfy aibj + Sij + zij = Si−1,j+1 + 2zi+1,j .

Multipliers a3 a2 a1 a0

b2 b1 b0

Top row 0 0 0 0
a3b0 a2b0 a1b0 a0b0

0 0 0 0
0 S21 S11 S01

a3b1 a2b1 a1b1 a0b1

z31 z21 z11 0
Bottom row S32 S22 S12 S02

a3b2 a2b2 a1b2 a0b2

z32 z22 z12 0
Product ω6 ω5 ω4 ω3 ω2 ω1 ω0
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Each cell contains one partial product aibj, a sum variable Sij resulting from the cell
directly above it and a carry variable zij produced by the cell to its right. Therefore, each
cell satisfies an equation having the form

aibj + Sij + zij = Si−1,j+1 + 2zi+1,j, (3.20)

where 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n− k − 1. These new factoring equations match the
required form (3.17). Additional conditions are needed for the boundaries, where invalid
indices occur in (3.20). These are:

zk,j = Sk−1,j+1 leftmost cell of each row
Si−1,n−k = ωn−k+i−1 bottom row
S−1,j+1 = ωj rightmost cell of each row

Si,0 = zi,0 = 0 top row
z0,j = 0 rightmost cell of each row

Sn−k,1 = 0 rightmost cell of the second row. (3.21)

The quadratic Hamiltonian constructed with the penalties (3.18) is

ĤP =
∑
i,j

{
2
[1
2

(
âi + b̂j −

1

2

)
+ Ŝij + ẑij − Ŝi−1,j+1 + 2ẑi+1,j

]2
− 1

8

}
, (3.22)

where once again each binary variable is replaced by the corresponding operator. The
ground state of (3.22) is |ψg〉 = |a0〉 . . . |ak−1〉 |b0〉 . . . |bn−k−1〉 |{Sij}〉 |{zij}〉 where a and
b are the correct prime factors.
Compared to the column factoring procedure from subsection 3.2.2, the cell factoring
procedure requires additional ancilla variables. For all but one of the n−k rows of partial
products in table 3.1 k partial sum variables Sij (only k− 1 for the second row) and k− 1
carry variables zij must be introduced. Thus, (2k − 1)(n− k − 1)− 1 additional qubits
are needed. Considering also the n qubits for the factors a and b, the algorithm requires
at most n− 1 + (2k − 1)(n− k − 1) to factorize a n-bit biprime. This number can be
further reduced to 2k(n− k − 1)− 3 setting the first and last bit of the prime factors
to 1, as shown in [13]. Overall, this corresponds to a quadratic scaling with respect to
the number of bits of the number to be factored. Also, each factoring equations contains
at most six binary variables. Therefore, the number of quadratic interactions required
scales quadratically in n, too. Further, the coupling strength covers a finite range from 1
to 8 and the spectral width scales only quadratically with n, opposed to the previously
discussed cases [13].
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Chapter 4

Example: Factoring 21

In this chapter we use the procedures discussed in chapter 3 to factorize the number 21.

4.1 Construction of the Problem Hamiltonian
The binary representation of 21 is 10101, so n = 5. Thus, to represent its prime factors a
total of 5 or 6 bits is required. Here we assume that the factors a and b are odd and have
k = 3 and l = 2 bits, respectively.
First, we use the simple approach described in subsection 3.2.1. We can directly define
the Hamiltonian as in equation (3.13)

Ĥ
(1)
P =

[
211−

(
22â2 + 2â2 + 1

) (
2b̂1 + 1

)]2
, (4.1)

where the operators â2, â1, b̂1 are obtained according to equation (2.29). Assuming the
state of our system is given by |a2a1b1〉, we can compute traces of Ĥ(1)

P , σ(i)
z Ĥ

(1)
P , and

σ(i)
z σ

(j)
z Ĥ

(1)
P to cast this Hamiltonian into the form

Ĥ
(1)
P = 2101 + 88σ(1)

z + 44σ(2)
z + 84σ(3)

z + 20σ(1)
z σ(2)

z − 20σ(1)
z σ(3)

z −
− 10σ(1)

z σ(3)
z − 16σ(1)

z σ(2)
z σ(3)

z , (4.2)

where we can recognise that it contains one three-qubit interaction.
Further, we construct the quadratic Hamiltonian using the cell factoring procedure from
subsection 3.2.3. The binary multiplication table associated with our problem is listed in
table 4.1.
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4 Example: Factoring 21

Table 4.1: Binary multiplication table for ab = 21, where the factors a and b are both odd
and have k = 3 and l = 2 bits, respectively.

Multipliers a2 a1 1
b1 1

Binary multiplication a2 a1 1
a2b1 a1b1 b1

Carries z34 z23 z12

Product 1 0 1 0 1

In total, six binary variables appear in table 4.1. Three of them correspond to the unknown
binary digits of the prime factors a and b, while the remaining three are required for
the carry variables. Notice that only one row of carry variables is needed, since only up
to three binary variables are added together. From table 4.1 we obtain the factoring
equations:

a1 + b1 − 2z12 = 0
a2 + a1b1 + z12 − 2z23 − 1 = 0

a2b1 + z23 − 2z34 = 0
z34 − 1 = 0. (4.3)

We can reduce the number of qubits needed by solving the last factoring equation for z34
and setting z34 = 1:

a1 + b1 − 2z12 = 0
a2 + a1b1 + z12 − 2z23 − 1 = 0

a2b1 + z23 − 2 = 0. (4.4)
Only five binary variables are left and the state of our system will be described by
|a2a1b1z12z23〉. Each of the remaining equations (4.4) has at most one two-qubit interac-
tion. Therefore, the Hamiltonian obtained by squaring them and adding them together
(equation (3.16)) would contain three-qubit interactions. We get rid of them using the
procedure described in subsection 3.2.3. In this case, the factoring equations (4.4) already
are in the required form (3.17) to write the Hamiltonian according to equation (3.22),
therefore the multiplication table does not need to be rewritten. Hence, we can directly
define the penalties according to equation (3.18). This leads to the total Hamiltonian

Ĥ
(2)
P =

{
2
[
−14 + â1 + b̂1 − 2ẑ12

]2
− 1

8

}
+
{

2
[1
2

(
â1 + b̂1 −

1

2

)
+ â2 + ẑ12 − 2ẑ23 − 1

]2
−

− 1

8

}
+
{

2
[1
2

(
â2 + b̂1 −

1

2

)
+ ẑ23 − 21

]2
− 1

8

}
. (4.5)
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Alternatively, to reduce the complexity of the computation we can assume a fixed length
for the prime factors, i.e. set also the variables a2 and b1 to one. The corresponding
multiplication table 4.2 is listed below.

Table 4.2: Binary multiplication table for ab = 21, where the factors a and b are both odd
and have k = 3 and l = 2 bits, respectively. Here also the most significant bit of each factor
is set to one.

Multipliers 1 a1 1
1 1

Binary multiplication 1 a1 1
1 a1 1

Carries z34 z23 z12

Product 1 0 1 0 1

The associated factoring equations simplify to

a1 + 1− 2z12 = 0
a1 + z12 − 2z23 = 0
1 + z23 − 2z34 = 0

z34 − 1 = 0. (4.6)

Therefore, only four qubits instead of six are required for the computation and the
dimension of the Hilbert space is reduced significantly. We define the new basis states as
|a1z12z23z34〉 and the problem Hamiltonian is obtained using equation (3.22).
The following sections describe the implementation and the results of the algorithm
with the naive problem Hamiltonian (4.1) and with the quadratic problem Hamiltonian
obtained from the multiplication table (4.5).

4.2 Implementation in QuantumOptics.jl
For the implementation of the algorithm, we use QuantumOptics.jl, an open source
numerical framework written in the Julia language providing many useful functions that
make it easy to simulate quantum systems. It allows to define the basis of the desired
Hilbert space and to create states and operators living in it. Further, these objects can
be used to perform different types of time evolution [28].
First, we need to load the library into the current workspace and to define a suitable basis
for the system under consideration. Being this a spin-1/2 system, we use the function
SpinBasis(n) to create the basis for one spin variable with spin number n = 1/2 and
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combine three of such bases with the tensor product tensor to get the basis of the
Hilbert space for the computation using the naive problem Hamiltonian (4.1).� �
# load library
using QuantumOptics
# basis for one spin -1/2
onespin = SpinBasis(1//2);
# composite basis
allspin = tensor(onespin, onespin, onespin);� �
The next step is to create the problem Hamiltonian. To do so, we first define some useful
operators like the Pauli matrices and the identity operator. The corresponding functions
are sigmax(b), sigmay(b), sigmaz(b), and identityoperator(b) and require the basis
b of the system the operator is acting on as argument.� �
# Pauli matrices acting on one qubit
sx = sigmaz(onespin);
sy = sigmax(onespin);
sz = sigmay(onespin);
# identity operator
id = identityoperator(allspin);� �
Further, we need operators of the form (2.29) for each of the N = 3 qubits. This can
be achieved by first defining the operator acting on a single qubit and then using the
function embed(b, indices, operators) to compute a tensor product of operators
specified by the vector operators, acting on the subsystem indicated by the integer
vector indices. Missing indices are filled up with identity operators.� �
# binary operator acting on one qubit
opz = 1./2*(identityoperator(onespin)-sz);
# fill with identity for the other qubits
Sz = [id, id, id]
# order: a2 a1 b1 (z12 z23)
for i=1:N

Sz[i] = embed(allspin, i, opz)
end� �
In order to perform the adiabatic evolution, we define a total Hamiltonian H according
to (2.26). The problem Hamiltonian Hp is given by (4.1) and we choose (2.32) as initial
Hamiltonian H0 for the interpolation. The scaling factor 10 allows us to obtain a larger
minimum gap between the ground state and the first excited state. Also, we can directly
compute the energy eigenvalues using the function eigenstates(op).� �
# problem Hamiltonian
Hp = (21*id-(2*Sz[3]+id)*(4*Sz[1]+2*Sz[2]+id))ˆ2
# initial Hamiltonian
H0 = -10*(embed(allspin, 1, sx)+embed(allspin, 2, sx)+embed(allspin, 3, sx));
# linear interpolation with s = t/T
s = linspace(0, 1, 1001);
Eall = zeros(length(s), 2ˆN);
# spectrum of total Hamiltonian H = (1-s)*H0+s*Hp
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for i = 1:length(s)
H = (1-s[i])*H0+s[i]*Hp;
Eall[i,:] = eigenstates(DenseOperator(H))[1]

end� �
We can now perform the time evolution for different total evolution times T using the
function timeevolution.schroedinger_dynamic(tspan, psi0, f) to integrate the
time-dependent Schrödinger equation. This function requires a vector tspan with the
points for which output should be displayed, an initial state vector psi0, and a function
f returning the time-dependent Hamiltonian. As initial state we use the ground state of
the initial Hamiltonian that can also be obtained with the function eigenstates(op),
where as op we use H0.� �
# total evolution time
T = 1
# initial state , i.e. ground state of H0
psi0 = eigenstates(DenseOperator(H0))[2][1]
# time -dependent Hamiltonian as function
function Ht(t, psi)

return (1-t/T)*H0+t/T*Hp
end
# time evolution
tout1, psi1 = timeevolution.schroedinger_dynamic(s*T, psi0, Ht);� �
The overlap with the correct solution can be obtained as the absolute square of the scalar
product with the ground state of the problem Hamiltonian.� �
# correct solution
psiL = eigenstates(DenseOperator(Hp))[2][1]
# overlap with psiL
P_sol1 = [abs.((dagger(psi1[i])*psiL)).ˆ2 for i = 1:length(s)]� �
Finally, the value of the qubits can be extracted as the expectation value of the associated
operator (2.29) with the function expect(op, psi) computing the expectation value of
the operator op for the state psi.� �
# value of the qubits
display([expect(Sz[i], psi1[end]) for i = 1:N])� �
Using the quadratic Hamiltonian (4.5) instead of the naive Hamiltonian and a system of
five instead of three spins, the same computation can be carried out for the cell factoring
algorithm.
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4.3 Results
The spectrum of the both Hamiltonians is shown in figure 4.1 in dependency of the time
parameter s. The energy of the ground state was subtracted from the energy eigenvalues.

(a) naive Hamiltonian (b) quadratic Hamiltonian

Figure 4.1: Spectrum of the total Hamiltonian for the factorization of 21. The separation
of the energy eigenvalues from the lowest energy level E0 is plotted as a function of the
time parameter s for (a) the naive problem Hamiltonian Ĥ(1)

P (4.1) and (b) the quadratic
problem Hamiltonian Ĥ(2)

P (4.5) obtained from the multiplication table.

In both cases, as needed for the adiabatic evolution the ground state is non-degenerate
for all s ∈ [0, 1] and there is a gap to the excited states. The minimum gap for Ĥ(1)

P
(4.1) is g(1)

min = 17.86 and is located at s = 0.235, while for Ĥ(2)
P (4.5) we find g(2)

min = 2.65
at s = 0.835. These values allow us an estimate of the required evolution time. Since(
g

(1)
min

)−2
= 0.003 and

(
g

(2)
min

)−2
= 0.143, we carry out the time evolution for the total

evolution times T = 0.1, 1, and 10.
Figure 4.2 shows the overlap with instantaneous eigenstate |ψg(s)〉 of the Hamiltonian as
an estimate for the adiabaticity of the process. We notice that for the longest evolution
time - corresponding to a slower interpolation between the initial Hamiltonian and
the problem Hamiltonian - the overlap is almost perfect for the whole duration: the
evolution is adiabatic and the system remains close to the ground state of the Hamiltonian.
In contrast, for shorter evolution times the overlap decreases quickly approaching the
minimum gap, hence there is a substantial probability of finding the system in one of the
excited states.
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(a) naive Hamiltonian (b) quadratic Hamiltonian

Figure 4.2: Overlap with the instantaneous ground state of the total Hamiltonian |ψg〉 as
a function of the parameter s for (a) the naive problem Hamiltonian Ĥ(1)

P (4.1) and (b) the
quadratic problem Hamiltonian Ĥ(2)

P (4.5) obtained from the multiplication table.

Further, figure 4.3 depicts the overlap with the ground state |ψsol〉 of the problem
Hamiltonian encoding the correct solution of the factoring problem. In agreement with
the previous observations, the system approaches the correct solution for the slower
interpolation, while for the shorter evolution times the probability for the system to be
in the desired state is much smaller.

(a) naive Hamiltonian (b) quadratic Hamiltonian

Figure 4.3: Overlap with the ground state of the problem Hamiltonian |ψsol〉 as a function
of the parameter s for (a) the naive problem Hamiltonian Ĥ(1)

P (4.1) and (b) the quadratic
problem Hamiltonian Ĥ(2)

P (4.5) obtained from the multiplication table.
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Finally, we obtain the value of the qubits as the expectation value of the associated
operator (2.29) at the end of the evolution, e.g. for the binary variable a2 we compute
〈â2〉 = 〈ψ(1) | 1−σ

(1)
z

2 | ψ(1)〉. The results along with the correct values are listed in tables
4.3 and 4.4.

Table 4.3: Value of the qubits at the end of the time evolution with the naive problem
Hamiltonian Ĥ(1)

P , approximated to the second decimal place.

variable T = 0.1 T = 1 T = 10
a2 = 1 0.65 0.93 1.00
a1 = 1 0.66 0.99 1.00
b1 = 1 0.65 0.92 1.00

Table 4.4: Value of the qubits at the end of the time evolution with the quadratic problem
Hamiltonian Ĥ(2)

P , approximated to the second decimal place.

variable T = 0.1 T = 1 T = 10
a2 = 1 0.52 0.79 0.99
a1 = 1 0.51 0.61 0.99
b1 = 1 0.52 0.77 1.00
z12 = 1 0.50 0.61 0.99
z23 = 1 0.50 0.58 0.99
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Chapter 5

Conclusions

The problem of finding the prime factors of an integer is hard to solve on a classical
computer. The supposed lack of an efficient factoring algorithm is the basis for secure
data transmission via RSA-based cryptographic protocols [1]. However, Shor’s quantum
algorithm for integer factorization is able to solve the problem in polynomial time [3].
So far, only integers up to 21 could be factored with this approach due to technical
limitations.
In this thesis we showed that an alternative is offered by adiabatic quantum computation
(AQC), consisting in solving optimization problems through adiabatic evolution of a
suitable quantum system. As discussed in chapter 2, the core idea of AQC is to encode
the solution of the problem in the ground state of a Hamiltonian and let the system
evolve adiabatically into it [9]. Chapter 3 provided an overview of the quantum adiabatic
factoring algorithm developed by Schaller and Schützhold [13]. Finally, this approach
was demonstrated for a simple example in chapter 4.
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