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1 Introduction

The study of open quantum systems has recently attracted considerable attention due to its
crucial role in understanding the behaviour of quantum systems interacting with their environ-
ments. Unlike closed systems, which are isolated from external influences, open quantum systems
exchange energy and information with their environment. This exchange leads to many phenom-
ena being central in modern quantum technologies such as quantum information processing or
quantum communication which rely on the understanding of quantum states and their dynamics.

The ability of describing the time evolution of open quantum systems accurately is fundamental.
The master equation provides a fundamental description of the time evolution of the density
matrix in these systems and is therefore a powerful tool to model the dissipative processes of
such systems. However, solving the master equation for large systems with many constituents
remains a challenging task due to the exponential growth of the Hilbert space with the number
of constituents.

To address this complexity, various approximation techniques have been developed. One such
method is the cumulant expansion approach, which truncates higher-order quantum correla-
tions, thereby simplifying the dynamics while retaining essential physical characteristics. This
approach is particularly useful for studying systems with many particles where exact solutions
are computationally infeasible.

In this thesis, we focus on a specific model of an open quantum system, where N two-level
atoms are coupled to a single-mode cavity with alternating coupling. We employ the Quantum-
Cumulants.jl framework, a computational tool based on the cumulant expansion approach, to
simulate and analyse the dynamics of this system. The framework is well-suited for handling
large open quantum systems and allows us to demonstrate the phenomena of cavity sub- and
superradiance for this system.
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2 Basic concepts

The purpose of this chapter is to introduce the fundamental theoretical concepts underlying the
physical results of this thesis. We begin by explaining the concept of open quantum systems and
continue with the introduction of the master equation. Then, we discuss the cumulant expansion
as an approach to derive a numerical approximation for the time evolution of the system. Finally,
we present the QuantumCumulants.jl framework, which utilizes the cumulant expansion.

2.1 Open quantum systems

The time evolution of a state vector |Ψ(t)⟩ in a closed quantum system follows the Schrödinger
equation:

iℏ
d

dt
|Ψ(t)⟩ = H|Ψ(t)⟩. (2.1)

However, real-world systems interact with their environment, necessitating the description of
such systems as open quantum systems. A prime example is a laser, where photons escape the
cavity. In essence, an open quantum system comprises a system S coupled to its environment B,
representing another larger quantum system. Typically, it is assumed that the combined system
S+B is closed. The state of subsystem S evolves not only due to its internal dynamics but also
owing to interactions with its surroundings. Figure 2.1 schematically depicts the system S and
its environment B. The Hilbert space of the total system is described by the tensor product
H = HS ⊗ HB, where HS represents the Hilbert space of the reduced system S, and HB denotes
the Hilbert space of the environment B. The environment B is alternatively referred to as a
reservoir if it possesses an infinite number of degrees of freedom. Moreover, the environment is
termed a bath or heat bath when it is a reservoir in a thermal equilibrium state. The Hamiltonian
of the combined system S+B can be expressed as

H(t) = HS ⊗ IB + IS ⊗ HB + Ĥint(t) (2.2)

where HS and HB denote the Hamiltonians of the systems S and B and Ĥint(t) denotes the
Hamiltonian of the interaction of the two systems [1].

Solving the Schrödinger equation for the closed quantum system S+B , the coupled setup of
the system and the environment, is excessively intricate and usually unnecessary, since we are
only interested in the dynamics of the subsystem S, the open quantum system. To describe such
an open quantum system, the master equation is introduced in the following section.
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2 Basic concepts

Figure 2.1: Schematic picture of an open quantum system S. With Hs the Hilbert space and ρs the
density matrix of the system. In analogy HB and ρB are the Hilbert space and the density matrix of the
environment.

2.2 Master equation

Since we are only interested in the time evolution of the subsystem S, which constitutes an
open quantum system, energy conservation is no longer assured. Consequently, there exists no
Schrödinger equation describing the dynamics of the subsystem. The von Neumann equation is
now employed to characterize the Quantum System S+B:

dρSB

dt
= i

ℏ
[ρSB, H] (2.3)

where ρSB denotes the density matrix. Conceptually, the density matrix assumes the role of
the state vector |Ψ⟩ and encapsulates all information concerning a quantum mechanical system.

The density matrix can be expressed as

ρ =
∑

α

ωα|Ψα⟩⟨Ψα| (2.4)

where the |Ψα⟩ are normalized state vectors akin to those in the Schrödinger equation 2.1 and
ωα are their positive weights. Consequently, the density matrix can depict the system being
in a mixed state [2]. Equation 2.3 can be easily derived by considering that the states |Ψα⟩
satisfy the Schrödinger equation. Hence, differentiating ρ using the product rule and utilizing the
Schrödinger equation for the derivatives of the states |Ψα⟩ yields the von Neumann equation [1].
To obtain an equation solely describing the open subsystem, we need to perform the partial trace
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2 Basic concepts

over the environment in the von Neumann equation. To introduce the concept of the trace over
a matrix, let’s examine the expectation value of an observable for a mixed state, which can be
expressed as

⟨A⟩ρ =
∑

α

ωα⟨Ψα|A|Ψα⟩ (2.5)

This expression can also be written using the trace of a matrix:

Tr(ρA) = Tr

(∑
α

ωα|Ψα⟩⟨Ψα|A
)

=
∑

n

∑
α

ωα⟨n|Ψα⟩⟨Ψα|A|n⟩

=
∑

α

ωα⟨Ψα|A
∑

n

|n⟩⟨n|Ψα⟩

=
∑

α

ωα⟨Ψα|A|Ψα⟩

(2.6)

utilizing the definition of the trace

Tr(D) :=
∑

n

⟨n|D|n⟩. (2.7)

Due to the definition of matrix multiplication, it’s evident that Tr(AB) = Tr(BA). By
substituting, for example, B with the product BC, the invariance under cyclic permutation
becomes apparent, hence [2]

Tr(ABC) = Tr(BCA) = Tr(CAB). (2.8)

Our objective now is to derive an equation describing the dynamics of the subsystem, known
as the master equation. To obtain the density matrix of system S, we employ the partial trace
operation [1]

ρS = trB{ρSB}. (2.9)

Applying this operation to the von Neumann equation yields

dρS

dt
= i

ℏ
trB[ρSB, H]. (2.10)

Therefore we have now derived an equation of motion for the reduced denstiy matrix ρs.
The dynamics of the reduced system S, defined by the exact equation 2.10 are quite involved.
Therefore two assumptions are now taken. Firstly, we assume that the interaction between the
system and the environment is absent at t = 0. Secondly, we assume that the interaction between
the system and the environment does not alter the state of the environment. Consequently, we
can express the density matrix as ρSB = ρS ⊗ ρB, known as the Born-Markov approximation.
As a result, there is no back-action of the system on itself, as the influence of the system on
the environment is neglected. Applying these assumptions enables the derivation of the master
equation, which describes the dynamics of the system S, as demonstrated in [1].

The resulting equation is
d

dt
ρS = −i[H, ρS ] + L[ρS ] (2.11)
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2 Basic concepts

with the density matrix ρS the Hamiltonian H and the Liouvillian super-operator L. It is impor-
tant to notice, that H is not always equal to the Hamiltonian HS of the reduced system, since H

may contain additional terms which are due to the coupling of the system to its environment [1].
The Liouvillian L characterises dissipative processes such as atomic or cavity decay and can be
expressed in the standard Lindblad form as:

L[ρS ] = 1
2
∑

j

Rj(2JjρJ†
j − J†

j Jjρ − ρJ†
j Jj) (2.12)

under consideration of the Born-Markov approximation [3]. Here Jj are the jump operators
describing the dissipative processes of the system. For instance, in the case of a laser, these
operators would delineate phenomena such as cavity photon loss, decay of atoms coupled to the
cavity and dephasing of atoms. Meanwhile, Rj denotes the rates associated with these processes,
such as the rate of photons leaving the cavity, the decay rate, and the dephasing rate of the
atoms. A more detailed description of a single atom laser is given in section 2.4.1.

In conclusion equation 2.11 describes the time evolution of an open quantum system S which
is interacting with its environment B.

2.3 Cumulant expansion

The solution of the master equation would provide the full time evolution of the density matrix
and since the density matrix is describing the complete quantum state of the system, the solution
equals the full description of the open quantum system. However the master equation is usually
not analytically solvable, therefore a numerical approach to solve the equation is needed. Another
problem is that the size of the Hilbert space describing the system is growing exponentially with
the constituents of the system. An example for this exponential growth is the description of the
state of a system with N two-level atoms. The vector describing the state of the atoms is then of
a size scaling as 2N and the operators are of a size 2N × 2N . Therefore exact numerical solutions
are limited to small systems and in order to treat configurations of higher numbers of subsystems
a technique to reduce the problem size is needed. One approach is the cumulant expansion which
is neglecting quantum correlations of higher order, this leads to a sufficiently accurate description
of systems with low quantum correlations. This approach was initially introduced by R. Kubo [4].

Since one is often only interested in specific operator expectation values it is advantageous
to look at the time evolution of those operator expectation values. An equation for the time
derivative of an operator expectation value can be derived from the master equation 2.11. As-
suming that the operators are not explicitly time dependent in the Heisenberg picture, the time
derivative of an operator can be expressed as

d

dt
⟨O⟩ = tr{Oρ} = tr{O d

dt
ρ}. (2.13)

Inserting the master equation 2.11 and the Liouvillian 2.12 we obtain

d

dt
⟨O⟩ = −itr{O[H, ρ]} + 1

2
∑

j

Rj(2tr{OJjρJ†
j } − tr{OJ†

j Jjρ} − tr{OρJ†
j Jj}) (2.14)
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2 Basic concepts

Using the cyclic permutation property of the trace it follows [3]

d

dt
⟨O⟩ = −i⟨[H, O]⟩ + 1

2
∑

j

Rj(2⟨J†
j OJj⟩ − ⟨OJ†

j Jj⟩ − ⟨J†
j JjO⟩). (2.15)

We now encounter the problem that equation 2.15 depends on other expectation values of opera-
tors and operator products. In order to find the solution of the operator O we would need a closed
set of coupled differential equations to calculate all appearing expectation values. Therefore we
would also need to derive the time derivatives of all appearing operator products. Those deriva-
tives of operators then consequently depend again on operator products of higher order for which
again the equations of motion need to be derived to find a closed set of differential equations.
Doing this procedure to its end would be equal to solving the full master equation. Our goal
is to find a good approximation for the solutions of the time evolution of the operators we are
interested in via the cumulant expansion. In order to introduce the assumption which is made
with the approach of the cumulant expansion we need to investigate the quantum correlation of
a product of operators. A measure of the quantum correlation in a product of n operators is the
joint cumulant

⟨O1O2...On⟩c =
∑

p∈P (I)
(|p| − 1)!(−1)|p|−1 ∏

B∈p

⟨
∏
i∈B

Oi⟩ (2.16)

with I = {1, 2, ...n}, P(I) the set of all partitions of I, |p| denotes the length of the partition
p, and B runs over the blocks of each partition [3]. The joint cumulant represents the difference
between the average of order n and lower orders. A vanishing joint cumulant indicates, that at
least one operator in the product is independent of the others. Looking at the equation 2.16 we
see that if the joint cumulant vanishes we can write the product of the average of n operators
as an expression of only n-1 and lower order products. As an example we take two Operators
O1 and O2 with a vanishing joint cumulant. Equation 2.16 gives us the expression for the joint
cumulant

⟨O1O2⟩c = ⟨O1O2⟩ − ⟨O1⟩⟨O2⟩ (2.17)

Due to the absence of quantum correlations between O1 and O2 2.17 simplifies to

⟨O1O2⟩ = ⟨O1⟩⟨O2⟩. (2.18)

In general the average value for a product of n operators with at least one independent operator
can be expressed as [3]

⟨O1O2...On⟩ =
∑

p∈P (I)\I
(|p|−1)!(−1)|p| ∏

B∈p

⟨
∏
i∈B

Oi⟩. (2.19)

Equation 2.19 is exact if the joint cumulant of the operator product is zero, otherwise it yields
an approximation. The cumulant expansion is assuming that the joint cumulant of an operator
product is zero and is therefore neglecting quantum correlations in case of operator products with
no independent operator. Equation 2.19 yields the cumulant expansion of (n-1)-th order for a
vanishing joint cumulant. An example for the second order cumulant expansion is:

⟨O1O2O3⟩ −→ ⟨O1O2⟩⟨O3⟩ − ⟨O1⟩⟨O2O3⟩ − ⟨O1O3⟩⟨O2⟩ + 2⟨O1⟩⟨O2⟩⟨O3⟩. (2.20)
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2 Basic concepts

Keeping products to the n-th order is called the n-th order cumulant expansion. To make
the procedure of the cumulant expansion more clear we take a closer look at the equations of
motion of a single-atom laser as an example. This example is explained in more detail in the
section 2.4.1. We use the equation 2.15 to derive the time evolution of the operators a, σ̇ge and
σ̇ee. Calculating the commutators and products of the operators and averaging over the resulting
equations yields

⟨ȧ⟩ = −(i∆ + κ

2 )⟨a⟩ − ig⟨σge⟩ (2.21a)

⟨σ̇ge⟩ = −γ + ν

2 ⟨σge⟩ + ig⟨aσee⟩ (2.21b)

⟨σ̇ee⟩ = −γ⟨σee⟩ + ν(1 − ⟨σee⟩) + ig(⟨a†σge⟩ − ⟨aσeg⟩) (2.21c)

[5]. Looking at the averaged equations 2.21 operator products appear on the right hand side.
To obtain a closed system of coupled differential equations the cumulant expansion of first order
is now applied to the operator products. This leads to

⟨ȧ⟩ = −(i∆ + κ

2 )⟨a⟩ − ig⟨σge⟩ (2.22a)

⟨σ̇ge⟩ = −γ + ν

2 ⟨σge⟩ + ig⟨a⟩⟨σee⟩ (2.22b)

⟨σ̇ee⟩ = −γ⟨σee⟩ + ν(1 − ⟨σee⟩) + ig(⟨a†⟩⟨σge⟩ − ⟨a⟩⟨σeg⟩). (2.22c)

These equations now are a closed set of equations which is solvable. In conclusion the cumulant
expansion approach is neglecting quantum correlations of operator products and therefore makes
it possible to describe larger quantum systems since the number of equations is only scaling as
Nn for the n-th order cumulant expansion of a system with N constituents [3].

2.4 The QuantumCumulants.jl framework

This section demonstrates the usage of the QuantumCumulants.jl framework with the example of
a single atom laser. Additionally, it introduces the extension of symbolic indices and summation.

2.4.1 Usage

The QuantumCumulants.jl framework is written in the Julia programming language and is based
on the cumulant expansion approach. It is able to automatically derive the equations of motion
for operator averages in the Heisenberg picture. Consequently the framework enables the user to
simulate large open quantum systems. This section provides a brief overview of the fundamental
workflow when using the framework. We will describe the usage of the framework with a well
known example, the simplest quantum model of a laser. In this model a two-level atom is placed
inside an optical cavity as depicted in 2.2. The dynamics of this system are described by the
Jaynes-Cummings Hamiltonian, expressed as

HJC = ℏg(a†σge + aσeg), (2.23)

7



2 Basic concepts

Figure 2.2: Schematic picture of a single atom laser. The frequency g is the coupling between the cavity
and the atom. |g⟩ is the ground state of the atom and |e⟩ the excited state. The atom can spontaneously
emit a photon at a rate γ and is also incoherently driven from the ground to the excited state at a rate ν

. The cavity is losing photons at a rate κ. Figure from [5].

in the absence of detuning between the cavity resonance frequency and the atomic transition
frequency [5]. Here, g represents the coupling strength between the cavity and the atom. The
transition operators σge and σeg describe the atomic transitions between the ground state |g⟩
and the excited state |e⟩. The atom spontaneously emits photons at a rate γ, represented by the
jump operator σge, and is also incoherently driven from the ground state to the excited state at
a rate ν, described by the jump operator σeg. The photonic annihilation operator a accounts for
cavity photon loss at a rate κ.

To address a problem using the mentioned framework, one must first define the Hilbert space.
The Hilbert spaces we use here are the FockSpace and the NLevelSpace. The FockSpace de-
scribes the quantum harmonic oscillator, while the NLevelSpace represents a finite set of discrete
energy levels. An example of the NLevelSpace’s usage is the description of multi-level atoms.
The framework implements operators as non-commutative variables defined on Hilbert spaces.
Therefore, as explained in Section 2.1, the Hilbert spaces of the subsystems need to be defined
first. The complete Hilbert space is then determined by the tensor product of the subsystem
Hilbert spaces. Operators must be defined on the complete Hilbert space to perform algebraic
combinations of operators. We can now proceed by defining the Hilbert space for the single atom
laser that has already been introduced.

using QuantumCumulants

h_cav = FockSpace(:cavity)
h_atom = NLevelSpace(:atom, (:g,:e))
h = h_cav ⊗ h_atom

In the first line the framework is imported. Then, the Hilbert space of the cavity is defined as
h_cav using the FockSpace, in the next line the Hilbert Space of the atom is defined as h_atom
using the NLevelSpace. Finally the tensor product of both Hilbert spaces defines the entire
Hilbert space h.

The next step is defining the fundamental operators and the parameters. Using these, the
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2 Basic concepts

Hamiltonian of the system can be defined, as demonstrated in the following code sample.

@cnumbers κ γ ν g
@qnumbers a::Destroy(h) σ::Transition(h)

H = g*(a'*σ(:g,:e) + a*σ(:e,:g))
J = [a,σ(:g,:e),σ(:e,:g)]
rates = [κ, γ, ν]

All variables are defined using the @cnumbers annotation, while the operators are defined using
the @qnumbers annotation and their corresponding callable functions acting on the total Hilbert
space h. We can now use these operators and variables to define the Hamiltonian H, which in
this case is the Jaynes-Cummings Hamiltonian without detuning, as introduced earlier. Next,
the dissipative processes are specified. The array J contains the jump operators representing the
decay processes of the system. The array rates then defines the corresponding rate for each
dissipative process.

The framework can now derive the equations of motion for a set of operators, demonstrated
here for the single atom laser in the following code sample:

eqs = meanfield([a, σ(:g,:e), σ(:e,:e)], H, J; rates=rates, order=2)
eqs_completed = complete(eqs)

When invoking the meanfield function, equations of motion are derived for the specified op-
erators in the first argument. The last argument of the function determines the order of operator
products retained in these equations, corresponding to the order of the cumulant expansion em-
ployed. These equations are referred to as n-th order meanfield equations, with n denoting the
chosen order in the meanfield function. Here, we derive the second-order meanfield equations.

Subsequently, the equations are finalized by invoking the complete function. In our case, the
output of the complete function leads to the following closed set of equations:

∂t(⟨a⟩) = (0 − 1im) · g · ⟨σge⟩ − 0.5⟨a⟩ · κ

∂t(⟨σge⟩) = (0 + 2im) · g · ⟨a · σee⟩ + (0 − 1im) · g · ⟨a⟩ − 0.5⟨σge⟩ · (γ + ν)

∂t(⟨σee⟩) = ν + (0 − 1im) · g · ⟨a · σeg⟩ + (0 + 1im) · g · ⟨a† · σge⟩ + ⟨σee⟩ · (−γ − ν)

∂t(⟨aσee⟩) = ⟨a · σee⟩ · (−γ − ν) − 0.5⟨a · σee⟩ · κ + ⟨a⟩ · ν

+ (0 + 1im) · g · (⟨aσge⟩ · ⟨a†⟩ + ⟨a†σge⟩ · ⟨a⟩ + ⟨σge⟩ · ⟨a† · a⟩ − 2⟨a†⟩⟨a⟩ · ⟨σge⟩)
+ (0 − 1im) · g · (2⟨a · σeg⟩ · ⟨a⟩ + ⟨a · a⟩ · ⟨σeg − 2(⟨a⟩2) · ⟨σeg⟩)

∂t(⟨aσeg⟩) = (0 − 1im) · g · ⟨σee⟩ + (0 + 1im) · g · ⟨a†a⟩
− 0.5⟨a · σeg⟩ · (γ + κ + ν)
+ (0 − 2im) · g · (⟨σee⟩ · ⟨a†a⟩ + ⟨a†⟩ · ⟨a · σee⟩
+ ⟨a⟩ · ⟨a†σee⟩ − 2⟨σee⟩ · ⟨a†⟩ · ⟨a⟩)
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∂t(⟨aσge⟩) = (0 − 1im) · g · ⟨a · a⟩ − 0.5⟨a · σge⟩ · (γ + κ + ν)
+ (0 + 2im) · g · (⟨σee⟩ · ⟨a · a⟩ + 2⟨aσee⟩ · ⟨a⟩
− 2⟨σee⟩ · (⟨a⟩2))

∂t(⟨a†a⟩) = (0 + 1im) · g · ⟨a · σeg⟩ + (0 − 1im) · g · ⟨a†σge⟩ − ⟨a† · a⟩ · κ

∂t(⟨a · a⟩) = (0 − 2im) · g · ⟨aσge⟩ − ⟨a · a⟩ · κ

With an increasing number of atoms in the cavity, the number of equations grows rapidly,
leading to a corresponding increase in computational complexity. A recent update to Quantum-
Cumulants.jl addresses this issue by leveraging specific symmetries to simplify both the equations
and the computational workload. This extension introduces symbolic indices and summations,
which are further discussed in the next section [6].

2.4.2 Symbolic indices and summations

In this chapter, the usage of indices and summations in QuantumCumulants.jl is introduced. An
index is a named object that includes the entire Hilbert space, a specified range, and the Hilbert
space of the subsystem on which the index operates [6]. The following code sample demonstrates
an exemplary definition of an index:

@cnumbers N

#Hilbert space
h1 = FockSpace(:cavity)
h2 = NLevelSpace(:atom,2)
h = h1 ⊗ h2

k = Index(h,:k,N,2)

In the example, we defined a complete Hilbert space h composed of two individual Hilbert
spaces, h1 and h2. An index named k is then defined on the Hilbert space h, specifying that it
acts on the second Hilbert space h2. The upper limit of the index is N, which is defined as a
c-number using the @cnumbers macro. Now, we can utilize these Index objects in combination
with operators to define IndexedOperators. The definition of an IndexedOperator looks like
this:

σ(α,β,k) = IndexedOperator(Transition(h, :σ, α, β, 2),k)

Here the transition operator σ is defined with the index k. Additionally, it is possible to per-
form summations over this defined index, as illustrated in the following example of defining a
Hamiltonian.

H =
Ω*0.5*

∑
((σ1(2,1,i)+σ1(1,2,i)),i) +

Ω*0.5*
∑

((σ2(2,1,j)+σ2(1,2,j)),j) +
g1*
∑

(( a'*σ1(1,2,i) + a*σ1(2,1,i) ),i) +

10



2 Basic concepts

g2*
∑

(( a'*σ2(1,2,j) + a*σ2(2,1,j) ),j)

Here the summation over the indices i and j is performed. The extension is utilized in the
following to simulate the model which is introduced in the next chapter.
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3 The model

The purpose of this chapter is to explain the model of the system that will be simulated using
the QuantumCumulants.jl framework in the subsequent chapter. First, we present the setup
and components of the system. Next, we discuss the Hamiltonian that describes the system’s
dynamics. Finally, the mean-field equations of the system are presented.

3.1 Setup

Figure 3.1: Cavity Sub- and Superradiance Model. A dilute, homogeneous ensemble of two-level atoms
at random but fixed positions coupled to a standing wave optical resonator is depicted. The ensemble is
coherently driven by a transverse plane wave laser with a frequency Ω. Each atom is coupled to the cavity
mode with a coupling gj = (−1)jg with alternating signs. Every atom j has a ground state |1⟩j and an
excited state |2⟩j , the atomic decay rate is Γ. The cavity photon loss rate is κ and the dephasing rate is
ν.

The system that we simulate consists of a dilute, homogeneous ensemble of two-level atoms at
random but fixed positions coupled to a standing wave optical resonator, where each atom j has
a ground state |1⟩j and an excited state |2⟩j . The ensemble is coherently driven by a transverse
plane wave laser with a frequency Ω. We assume that there is no detuning between the laser and
the atomic transition, as it is shown in Figure 3.1. The system includes a damped cavity mode,
along with atomic decay and dephasing, described by the cavity photon loss rate κ, the atomic
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3 The model

decay rate Γ and the dephasing rate ν. Furthermore, we assume a weak single atom coupling but
a strong collective regime, i.e.,

κ,
∑

j

g2
j

κ
≫ Γ ≫ g2

j /κ (3.1)

[7]. This regime implies a very large atom number, making a full quantum simulation of the model
impractical. However, we can effectively address this problem using a second-order cumulant
expansion, which will be detailed in the following chapter.

Another assumption we make to describe this model is that the atoms are located close to
the cavity mode antinodes, with half of the atoms at the maxima and the other half at the
minima of the mode function along the cavity axis. Due to this assumption, their coupling can
be approximated by gj = (−1)jg.

3.2 Hamiltonian and Liouvillian

In order to simulate the dynamics of the system the Hamiltonian of the system is required.
Therefore we first need to define the operators appearing in this Hamiltonian. We defined the
states of the N two level atoms as |1⟩j and |2⟩j . The atomic transition operator is generally
defined as

σkl = |k⟩⟨l| (3.2)
hence we identify the two atomic transition operators σ12 and σ21 for the two level atoms, where
σ12 represents a transition from the excited state to the ground state and σ21 a transition from the
ground state to the excited state [7]. The products of atomic transition operators are computed
as [5]

σijσkl = δjkσil. (3.3)
Consequently, the product either gives another atomic transition operator or vanishes. In the
context of the cavity field, the photon creation operator a† and the photon annihilation operator
a are used. They are defined as

a†|n⟩ =
√

n + 1|n + 1⟩ (3.4)
and

a|n⟩ =
√

n|n − 1⟩, (3.5)
where |n⟩ is an eigenstate of the number operator n̂ = â†â. Consequently, the relation n̂|n⟩ = n|n⟩
holds. Note that the explicit notation Ô is used for operators to clearly distinguish them from their
eigenvalues [8]. In the case of our cavity field n reflects the number of photons, consequently the
creation operator increases the photon number by one and the annihilation operator decreases
the photon number by one. The annihilation and creation operators satisfy the commutation
relation [5]

[a, a†] = 1. (3.6)
Therefore the product aa† is equal to a†a + 1. The Hamiltonian of the system in the rotating
frame of the pump laser is the Tavis-Cummings Hamiltonian with an additional drive term:

H =
N∑

j=1
gj(σ21a + σ12a†) +

N∑
j=1

Ω
2 (σ21

j + σ12
j ) (3.7)
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3 The model

where gj is the coupling rate of the j-th atom [7]. The described system is an open quantum
system, consequently we also need to define all jump operators Ji and their corresponding rates
Ri, since the Liouvillian in the master equation is describing the dissipative processes of the
system. In Table 3.1 all decay processes with their jump operators and rates are listed.

i Ji Ri Description
1 a κ cavity decay
2 σ12

j Γ atomic decay
3 σ22

j ν dephasing of the j-th atom

Table 3.1: Dissipative processes. The system includes a damped cavity mode, along with atomic decay
and dephasing, described by the cavity photon loss rate κ, the atomic decay rate Γ and the dephasing rate
ν.

Before simulating the system using the QuantumCumulants.jl framework with a second-order
cumulant expansion, we present the mean-field equations for a qualitative description of the
system.

The mean-field equations of the model 3.1 encapsulate the key physics of the system and can
therefore be employed for a qualitative analysis. The equations are

d

dt
⟨a⟩ = −κ

2 ⟨a⟩ − i
N∑

j=1
gj⟨σ12

j ⟩ (3.8a)

d

dt
⟨σ22

j ⟩ = −Γ⟨σ22
j ⟩ + i

Ω
2 [⟨σ12

j ⟩ − ⟨σ21
j ⟩] + igj [⟨a†⟩⟨σ12

j ⟩ − ⟨a⟩⟨σ21
j ⟩] (3.8b)

d

dt
⟨σ12

j ⟩ = −Γ + ν

2 ⟨σ12
j ⟩ + i

(Ω
2 + gj⟨a⟩

) [
2⟨σ22

j ⟩ − 1
]

(3.8c)

These simplified equations already explain some of the behaviour of the model simulated in
the next section. For instance the sum

∑N
j=1 gj⟨σ12

j ⟩ shows the significance of the alternating
coupling, the summation indicates that the cumulative dipole moment of the atoms projected on
the cavity mode only vanishes for alternating coupling [7]. In general the number of equations
for a first order treatment is 1 + 2N and for a second order treatment it is N(N−1)

2 + 2N + 1,
where N is the number of subsystems and is equal to the number of atoms if we treat them
individually. Since all atoms start in the same state, we can assume that (⟨σ22

1 ⟩ = ⟨σ22
3 ⟩ = ...)

and (⟨σ22
2 ⟩ = ⟨σ22

4 ⟩ = ...). Due to the alternating coupling, the model consists of two non-
identical subsystems and we obtain five mean field equations and six equations for a second order
treatment. This approach drastically reduces the number of equations and allows us to study
systems with large atomic numbers [3].
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4 Simulation of the dynamics

In this section, we simulate the dynamics of the model previously described using the Quan-
tumCumulants.jl framework. We begin by examining the superradiant behaviour of an inverted
ensemble and then demonstrate the subradiant behaviour of a non-inverted ensemble. Finally,
we quantitatively describe the phenomena.

4.1 Results

The parameters that were used for this simulation are N = 2 ·105, κ = 103 Γ, Ω = 104 Γ, ν = 10 Γ
and the coupling is g1 = 10 Γ for half of the atoms of the ensemble and g2 = −10 Γ for the other
half. For the chosen parameters the relation 3.1 holds:

κ ≫ Γ ≫
g2

j

κ
⇐⇒ 103 Γ ≫ Γ ≫ 0.1 Γ (4.1a)

∑
j

g2
j

κ
≫ Γ ⇐⇒ 2 · 104 Γ ≫ Γ (4.1b)

First, we consider an inverted ensemble. An ensemble is inverted if more than 50% of the atoms
are excited. Here, we prepare it such that initially 100% of the atoms are excited. The average
of the operator σ22 corresponds to the probability of an atom being excited, hence ⟨σ22⟩ = 1
initially. To achieve this, the atoms are inverted with a fast π-pulse, meaning they are coherently
driven by the laser for a time t = π

Ω . If the pulse duration is shorter than that, the atoms will be
less excited, resulting in a lower inversion, wich is much faster than any other time scale of the
system.

The time evolution of the operators ⟨σ22⟩ and ⟨a†a⟩ is depicted in Figure 4.1. Figure 4.1 a)
shows the time evolution of ⟨σ22⟩, starting at 1.0 after the preparation. Initially, the inversion
remains relatively constant, followed by a rapid decrease of the excited state population. This
decrease is caused by cavity-enhanced superradiant decay, where synchronized emission in the
cavity is stimulated [7]. Figure 4.1 b) illustrates the time evolution of ⟨a†a⟩ for the inverted
ensemble. Initially, there are no photons in the cavity. After a certain time, the photon number
increases, reaching its peak value. Subsequently, the intracavity photon number decreases back
to zero. The initial increase in photon number is a result of superradiant decay of the atoms in
the cavity. Photons leave the cavity at a rate κ, and since the atoms are only initially driven for
a time t = π

Ω , the photon number decreases again, eventually leading to the emission of a delayed
intense light pulse.
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4 Simulation of the dynamics

Figure 4.1: Time evolution of the operators ⟨σ22⟩ and ⟨a†a⟩ for an inverted ensemble. Figure a) shows
the time evolution of ⟨σ22⟩ for an inverted ensemble. The atoms are prepared at ⟨σ22⟩ = 1. The inversion
of the ensemble decreases after time due to cavity-enhanced superradiant decay [7]. Figure b) shows the
time evolution of the intracavity photon number. We see a time delayed increase of the photon number in
the cavity due to the cavity-enhanced superradiant decay of the inverted ensemble. Next, the intracavity
number decreases again due to photons leaving the cavity. A delayed intense light pulse is emitted.

Next, we examine a non-inverted ensemble, where initially the atoms are less than 50% excited.
This condition requires the pulsing time t to be shorter than π

2Ω . Figure 4.2 illustrates the time
evolution of the average operator ⟨σ22⟩ and the intracavity photon number ⟨a†a⟩ for a pulsing
time t = π

3Ω , corresponding to a non-inverted ensemble. In Figure 4.2 a), we observe the evolution
of ⟨σ22⟩. Initially, the atoms are prepared with ⟨σ22⟩ ≈ 25%. The inversion of the atoms remains
nearly constant over time. Comparing this with the time evolution of the intracavity photon
number depicted in Figure 4.2 b), we observe that not a significant amount of photons is emitted
into the cavity. Consequently, in this scenario, superradiant emission is strongly suppressed due
to the lack of initial inversion, characteristic of subradiant behavior [7].

Figure 4.2: Time evolution of the operators ⟨σ22⟩ and ⟨a†a⟩ for an non inverted ensemble. Figure a)
shows the time evolution of the excited state population ⟨σ22⟩. The ensemble is prepared at ⟨σ22⟩ ≈ 25%.
⟨σ22⟩ is nearly constant over time. Figure b) shows the time evolution of the intracavity photon number
⟨a†a⟩. The maximum value of ⟨a†a⟩ is below 0.03 meaning that not a significant amount of photons is
emitted in the cavity. The ensemble features subradiant behaviour.
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4 Simulation of the dynamics

The behaviour of the ensemble depends on its initial inversion ⟨σ22⟩. Consequently, the number
of photons leaving the cavity over time also depends on this inversion. Figure 4.3 illustrates the
total number of emitted photons ⟨a†a⟩out = κ

∫
⟨a†a⟩dt per atom as a function of the ensemble’s

inversion. The plot shows two regimes, the subradiant regime for initial ⟨σ22⟩ < 0.5 and the
superradiant regime for ⟨σ22⟩ > 0.5. For the subradiant regime the plot shows that the total
number of emitted photons is almost zero since not a significant amount of photons are emitted
in the cavity and superradiant emission is strongly suppressed. In contrast, the superradiant
regime ⟨a†a⟩out/N increases linearly with ⟨σ22⟩. When ⟨σ22⟩ = 1, each atom emits a photon into
the cavity.

Figure 4.3: Cavity-output photon number ⟨a†a⟩out = κ
∫

⟨a†a⟩dt/N as a function of the excited state
population ⟨σ22⟩ of the ensemble . The subradiant regime for ⟨σ22⟩ < 0.5 , the superradiant regime for
⟨σ22⟩ > 0.5.

In the next section the superradiant regime is described quantitatively.
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4 Simulation of the dynamics

4.2 Subradiance and superradiance

In this section, we quantitatively describe the phenomena of subradiance and superradiance.
Our approach focuses on examining the scaling of the emitted peak photon number for different
numbers of atoms. To observe superradiance, we initially prepare an inverted ensemble and
analyze the time evolution of the intracavity photon number. In Figure 4.4, the time evolution
of ⟨a†a⟩ is depicted for an inverted ensemble with N = 2 · 104 atoms (blue curve) and N = 4 · 104

atoms (orange curve). For an inverted ensemble, the peak photon number in the cavity scales
proportionally to the square of the number of atoms [7].

In the case depicted in Figure 4.4, the proportionality of peak photon numbers to the square
of the number of atoms does not apply perfectly for several reasons. Firstly, there are multiple
peaks in both graphs, with the highest peak having a lower photon number. The smaller peaks
arise because some photons do not leave the cavity directly; instead, they are reflected at the
cavity mirrors and may re-excite atoms. Secondly, the scaling with N2 occurs for atoms coupled
to the same bath or in the bad-cavity limit. In the case where multiple peaks are observed for
each graph in Figure 4.4, the back action of photons on the atoms is evident. This scenario
indicates that we are not in the bad-cavity limit, where exact scaling of the peak photon number
cannot be demonstrated perfectly.

Nevertheless, it can be demonstrated that the peak photon number scales more than linearly
with the number of atoms coupled to the cavity mode. This contrasts with the typically expected
exponential decay observed for independent atoms due to spontaneous emission. Additionally, a
time delay of the emitted light pulse is generally observed. Figure 4.4 illustrates that the time
delay decreases as the number of atoms increases.

Figure 4.4: Time evolution of the intracavity photon number ⟨a†a⟩ for two inverted ensembles with
different atom numbers. In blue an atom number of N = 2 · 104 is coupled to the cavity. The peak
intracavity photon number is ⟨a†a⟩peak = 31362 for this ensemble. In comparison the orange graph shows
an ensemble with twice as many atoms coupled to the cavity, the resulting peak intracavity photon number
is ⟨a†a⟩peak = 100064.
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4 Simulation of the dynamics

In Figure 4.5, the time evolution of ⟨a†a⟩ is depicted for a non-inverted ensemble with N = 2·104

atoms (blue curve) and an inverted ensemble with N = 4 · 104 atoms (orange curve). The peak
photon number for the non-inverted ensemble is orders of magnitude smaller than that for the
inverted ensemble, and it scales less than linearly with the number of atoms N coupled to the
cavity mode.

Figure 4.5: Time evolution of the intracavity photon number ⟨a†a⟩ for two non inverted ensembles with
different atom numbers. In orange an atom number of N = 2 · 104 is coupled to the cavity. The peak
intracavity photon number is ⟨a†a⟩peak ≈ 0.023 for this ensemble. In comparison the blue graph shows an
ensemble with twice as many photons coupled to the cavity, the resulting peak intracavity photon number
is ⟨a†a⟩peak ≈ 0.034.
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5 Conclusion

This thesis has examined the dynamics of open quantum systems, focusing on a model with
N two-level atoms coupled to a single mode cavity. By leveraging the QuantumCumulants.jl
framework we have effectively simulated the system’s behaviour.

We began by explaining the basic concepts necessary for understanding the dynamics of open
quantum systems. This included an introduction of the master equation, which provides a funda-
mental description of the time evolution of the density matrix in these systems. We then discussed
the cumulant expansion approach, which allows for the approximation of complex quantum dy-
namics by truncating higher-order quantum correlations. The QuantumCumulants.jl framework
was introduced as a powerful tool for the simulation of large open quantum systems, since it is
based on the cumulant expansion approach.

In the modeling section, we described the setup of our specific system, a model of N two-level
atoms coupled to a single mode cavity with alternating coupling. The Tavis-Cummings Hamilto-
nian was introduced as the Hamiltonian of the system and the Liouvillian was derived describing
the systems dissipative processes. This provided the necessary foundation for simulating the
system’s dynamics.

Through simulations, we analysed the behaviour of the system for inverted ensembles and non
inverted ensembles. For an inverted ensemble we have demonstrated cavity-enhanced superradi-
ant decay and for a non inverted ensemble we have demonstrated the strong supression of the
superradiant emission. Therefore the separation in the subradiant regime for ⟨σ22⟩ < 0.5 and the
superradiant regime for ⟨σ22⟩ > 0.5 was demonstrated.

This behaviour was already experimentally confirmed, as shown in [9]. This paper additionally
demonstrates how to take advantage of the sub- to superradiant transition that was demonstrated
in this thesis, highlighting practical applications of this transition.

In conclusion, this thesis has provided a comprehensive study of the dynamics of a single mode
cavity with coupled two-level atoms, demonstrating the phenomena of sub- and superradiance
with the use of the QuantumCumulants.jl framework.
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