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Abstract

An atom in an excited electronic state coupled to the electromagnetic
field, will decay via spontaneous emission to a lower energy state.
This thesis discusses spontaneous emission of several near atoms.
We treat the quantisation of the free electromagnetic field and dipole
interaction between the field and atom, the theoretical concepts
of time evolution in quantum mechanics in both, open and closed
systems. We study the Schrodinger, Heisenberg and Interaction
picture for closed systems, define the density matrix and develop the
master equation for open systems from its time evolution.

As an example we establish the master equation in Lindblad form
of an atom, where we find the spontaneous emission or Einstein A
coefficient as a result.

A central result is the superradiance, the enhanced collective emission
of light from several atoms, which results from the established master
equation for a system of N identical atoms. The emission is discussed
in the example of two atoms.
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Chapter 1

Introduction

The fact that matter can spontaneously radiate light has been known for a long time
in the form of Fluorescence and Luminescence. The fist theoretical description of
spontaneous emission was done by Victor Weisskopf and Eugen Wigner in 1930. They
used Dirac’s light-theory and calculated the natural linewidth of atomic crossovers.
They have shown, that an excited electronic state is not an stationary state, as we know
it from Schrédinger’s equation of the electron core system. The nature of this evolution
is due to the coupling of the electromagnetic vacuum fluctuations to the atom [10].
By studying these light sources some other effects like superradiance, stimulated emission
and absorption were discovered. At first glance superradiance and stimulated absorption
look the same. But in fact they are two independent effects. The emitted radiation
of a system with stimulated emission is proportional to the number of atoms and the
light source’s density, for superradiance only the density of atoms is relevant. This was
first discussed by the theory of Dicke. This theory describes the collective spontaneous
decays of more than one atom. These decays are not independent and lead to a higher
photon flux for short times as the same amount of independent decays. This short time
photon flux is proportional to N? for high numbers, where N is the number of atoms.
Therefore Dicke called it an optical bomb [2].

The main reason why quantum optics was found, was a new kind of light source -
the laser. Quantum optics is a field theory which discusses the interaction between
electromagnetic fields and quantum mechanical systems. In quantum optics the theory
of open systems has been a theme since its birth, because sources of light are open
systems. In future superradiance may be used for lasers, which have a linewidth more
than 1000x below the current standard. This can be used for a new generation of
atomic clocks, optical lattices and laser cooling methods. But a lot of development and
work is necessary to fullfill this goal.|6].



Chapter 2

Theoretical Concepts

In this chapter we present the theoretical fundament, which are needed for the under-
standing of the next chapters. We start with a quantum model of the free electromagnetic
field. Over the time evolution of closed and open systems to the master equation of an
electron interacting with vacuum fluctuations.

2.1 Quantisation of the free Electromagnetic Field

In this section the quantisation is achieved by an heuristic approach, where aspects as
Lorentz covariance will not be discussed.

2.1.1 Classical Field

First we state the classical field, which is described by Maxwell’s equations. If the
region is free from charge (p(7,t) = 0) and currents (j(7,¢) = 0), like in the vacuum, the
Maxwell equations for the electric field E(7,t) and magnetic field B(7,t) are given by

4 a B(F,t
divE(r,t) =0, rotE(r,t) = 9 g};’ ), (2.1a)
- _ 1 OE (7, t)
divB(7,t) =0 tB(r,t) = — -, 2.1b
B(F 1) =0, rotB(F 1) = 55 (2.1b)

A usual way is to define the vector potential A’(F, t) and electric potential ®(7,¢). In
vacuum it is very useful to use the Coulomb-gauge (divA = 0). These potentials have
to fullfill the following equations, which can be deduced from the Maxwell equations

102 5 | .
C—Z@A(r, t) — AA(T,t) =0, (2.2a)
) Py L GU O (2.2b)
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The first equation, is a wave equation, which has the general result

A(7,t) = Re | Az &e™ g ()] (2.3)
5y
Here Aj | are the amplitudes of the potential in direction of the polarisation vector ez ,,

k is the wave-vector and g, (t) the time dependent term with the dimension of a length.
The electric and magnetic field can be calculated from the potentials

. A7t
E(7,t) = —grad ¢ — ag;) Re ZAk N G qk/\(t) : (2.4a)
k: A
B(r,t) = ot A(,t) = Re | > (Ag, |k, — Agolklér, ) ie™ gz, (8)] - (2.4b)
;;

For the second equation we chose two orthogonal polarisation vectors and used e /\-lg =0,

which is a property of the e.m. field. Hence 5,31 = 5,;2 X Ik\ and €; €y = 5131 ﬁ We
now choose periodic boundaries appropriate for a cavity with side- length L, therefore
only waves with a wave-vector k= (Famas Kymy» Kzp.) With ki, = n; 2= 7, where i = x,y, 2

and n; = +1,4+2, 43, ... are allowed. The Hamiltonian H for the total field energy in

the Volume L2 is

H= [ avg (\E(r,t)ﬂ + & |B(i )| ) =y (AiA &, () + A2 RPE2, (1))
V=L3 EA
1 . - NG NENG)
:§Zm,;qlz’/\(t)+m,gwng’A(t) = Z 2 Ry (2.5)
kA kA

with my , = L?¢AZ | (which has the dimension of a mass), the angular velocity wy; = c|k|
and the canonical momentum Py = G \(t)mg. One sees that the energy of the system
is a sum of independent harmonic oscillator energies, i.e. each mode and polarisation is
equivalent to a harmonic oscillator.

2.1.2 Quantisation

The quantisation can be made if we identify the pz, and ¢z, in equation (2.5)) as
operators which follow this commutator relations [§]

[qIZ,,\vPIZI,X} = m(SE,E'(SAA” (2.6a)
[qﬁwqﬁw} =0, [PE,M;;/,N] =0. (2.6b)
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It is common to make a canonical transformation to a;, and G,Tg \
1 .
Yn~= m (meEqE,A + zp,;)\) ) (2.7a)
QmEEWE
4 1

Upn = \/ﬁ (mewraz s — ipgy) - (2.7b)

1 .
In terms of az , and ag s equation (2.5) becomes

1
H = hZWE (a%/\a,g’)\ + 2) : (2.8)
9

The operators aj , and aTE , follow the commutator relations derived from (2.6a)) and
(2.6D))

[GEJ\’ aTE/,,\'} - 512,12'5/\,>\/7 (2.9a)
— O,

(970050 i) =0 (2.9)

s
we can write the electric and magnetic field in terms of these operators

These operators are often called annihilation (aj ,) and creation (ar ) operator. Now,

E(7t) =Y EiaCin (“12,,\ - a%Q L (2.10a)
EA
(7 1 = t ik
B(7,t) = - 25,;,)\6,;)\ (a,;’/\ — aE’)\) e (2.10b)
kA

hwz
state energies in equation (2.8)) is infinite. This is a difficulty in quantisation of the

em. field. Practical experiments measuring the total energy of the field do not lead to
any divergence. A detailed discussion may be found in [9]. Hence, we can choose the
energy’s zero point to be Ey = %ZE \ Wi, therefore equation (2.8)) becomes

1
where & | = ( )2 has the dimenison of an electric field. The sum over the ground

H = thEa;)\aEQ\. (2.11)

kA

We define Fock or number states, which are needed in the following chapters. A number
state satisfies the eigenvalue equation

aL*,AaE,,\ g = 1 [0 (2.12)
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where a% ROSRE the number operator, which gives the number of photons ng in the

mode (K, A). A number state can casily be generated from its ground state |0z, ) (which
solves (0 ,| ag’/\aa)\ 07.,) = 0) by using the equations a%)\ Inga) = /Mt 1Ingy+1)
and g\ ‘”E}) RYALRY ’nE,/\ — 1) as

i) (2.13)

2.2 System Dynamics

In quantum mechanics there are different ways to describe the time evolution of a closed
system. The expectation value of any observable does not depend on the chosen way.

2.2.1 Schrodinger Picture

In the Schrédinger picture the closed system-dynamics is given by a time-independent
Hamiltonian Hg. The solutions of the stationary Schrodinger equation (|2.14)) are called
eigenstates [¢(tp)), to the energy (eigenvalue) E;,

Hy [(to)); = E: [¢(to)), (2.14)

Every normalized solution is called wave-function or state vector. In the Schrodinger
picture the state vector evolves with time. The time evolution of the system is given by
the unitary time evolution operator U (t,t0). This operator follows directly from the
time-dependent Schrodinger-equation,

B S0, = Hs [9(0), (2.15)

where |1(t)), = U(t, to) |1 (to)), is the formal solution, with U(t, t,) = exp(—%ﬁg(t—to)).

It is common to write the time evolution operator as U (t) with the convention ¢y = 0.
Therefore, the time evolution of an observable A(t) is A(t) = (¢(t)| A(t) |¢(t)) whereas
dA _ 04

a = o X
A simple example is thf) energy E, which is evaluAated with the Hamiltonian Hg.
(n(t)| Hs [n(t)) = (n(0)|U®) HsU(t) [n(0)) = (n(0)] Hs [n(0)) = E. We assumed that
In(0)) is an Eigenvector of Hg and used [HS, U(t)] = 0.

the total time derivative is given by

2.2.2 Heisenberg Picture

The main difference between the Schrodinger picture and the Heisenberg picture is
that the time evolution of an Observable is incorporated in its operator. An operator
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in the Heisenberg picture is defined by Ag(t) = U(t)TA(t)U(t), in which A(t) is the
known operator in the Schrodinger picture. The time evolution equation or Heisenberg
equation is simply derived from the Schrodinger picture

ot

- ;1 (s, Au(t)] + (&2&))}[. (2.16)

dACﬁ(t) _ jt (OWAOT®) = L AsAn(t) - ;L Ay ()i + <5A(t)>H

The expectation value of an operator Ay (t) is A(t) = (¢(0)| Ag(t)]o(0)) =

= (B0 UBTAD)T () |6(0)) = (d(t)| A(t) |6(t)). As you can see, the result is the
same as in the Schrodinger picture. If an operator in the Schrodinger picture is time
independent and commutes with the Hamiltonian, then the expectation value is a
conserved quantity.

2.2.3 Interaction Picture

The Interaction or Dirac picture is very important in this thesis, because it is used
to derivate the master equation and calculate the system dynamics in the following
chapters. It is often used if no exact analytic solutions of the system in the Schrodinger
picture is known or the Heisenberg equation can not be solved. In the Interaction
picture both, state vector and observable are time-dependent [5].

First, the Hamiltonian in the Schrodinger picture is split into two parts H = Hy + V (1),
where Hy is the part where exact analytic results are known and V() is the rest, which
can depend on time. In our case it is the interaction term between the system and
the reservoir (thermal bath). The idea is to make the observables time-dependent in
terms of Hy, while the explicit time-dependency induced by the interaction of V()
is included in the state vectors. This can be done by defining the state vector as
() p = Uy, (1) [90), where U, (t) = exp(—1 Ho(t)) and [)) = [1(t)) is the state vector
in the Schrodinger-picture. The transformation of an observable into the interaction
picture is given by the claim that the expectation value does not change,

| A

WOl Ap(®) (1) p = (W) At) [$(1))
= (¥(8)] p Uk, () A) U (8) [0(8)) - (2.17)

Therefore, an operator in the interaction picture is given by Ap(t) = ULO(t)A(t)UHO (t).
The dynamic of an observable can be derived similarly to the Heisenberg equation. The
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motion of the state vector can be calculated from its total time derivation,

d d - vt d
4y, = ( L >) [0(0)) + U6 1)

= L B0k, () [9(0) ~ Ol (VB [0(0)
= Ul (t) (Ho = ) Uny(8) [0(2))

= 270 [0 (218)
with Vp(t) = Uy, () V (£) U, (1) (2.18D)

It looks like the Schrodinger equation with the interaction term transformed into the
interaction picture.

2.3 Open Quantum Systems

In reality it is impossible to isolate the system of interest from its surroundings. When
solving the system of interest we always have to consider that there is an interaction
between the system and its surroundings, which can affect the systems solution. Usually,
we are not able to track the system and environment (or reservoir), neither theoretically
nor experimentally. Hence we seek a description which gives the main influence of the
surroundings, without considering the full description of the environment. This is given
by the master equation, which is discussed in section [2.4] An open system consists of
two parts, the system of interest S and the reservoir R. When these two systems are
combined, they are a closed system and its time evolutions is given in section 2.2 The
Hamiltonian of the full system is given by

H=Hs@lz+V +1® Hpg, (2.19)

where the index R or S means that these is an operator in the Hilbert space of R or
S. Therefore, the Hilbert space of the complete system is a product space of R and S.
The operator V' has parts in both spaces and gives the interaction between S and R.
From now on we drop the indices and tensor products.

2.4 Master Equation

The master equation which is formally a Lindblad equation in quantum mechanics
describes a non-unitary time evolution of a density operator.
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2.4.1 Density Operator

The density operator is the most universal way to describe the state of a quantum
mechanical system and is usually defined in the Schrédinger-picture.

The description or measurement of a state is unique, if a complete set of commuting
observables (CSCO) is given or measured or given at time ¢. If the set of observables is
incomplete, there is missing information about the system’s state. This is also called
a mixed state. A mixed state is a statistical ensemble with probabilities p;, that the
system is in the pure state |1);), with (¢;|¢);) = 6; ;. A pure state is reached, when a
CSCO is measured at time t. Some examples for a mixed state are the spin-polarisation
in the Stern-Gerlach experiment or the state of a macroscopic solid (it’s not possible
to measure the state of 10% electrons at the same time). The density operator in a
discrete basis is defined as

pP= sz‘ i) (il , (2.20a)

with0<p; <1, > pi=1 (2.20b)

Hence, the expectation value of an observable Ais given by
A=2 pi i Aly) =2 i v 1AL J4);)
= Z sz wzmn <77n| A |77m> <77m|7/)z>

7,mn

= Z <77n‘ A \%) Zpi (@M?w <77m\¢z>
=D Annpmn =) _(Ap)m

m

= Tr[Ap] = Tr[pA] (2.21)

Tr[] is the trace and we assume that the wave function |n;) is an Eigenvector to A. The
expectation value is a statistical average over the different properties p;, which results
from the incomplete information. The time evolution of the density operator or Von
Neumann equation can be derivated from the Schrodinger equation,

s, [(a 199 (il + 100 5 v

i

—sz[ ) Gl + 140 (] A

H.p(t)] . (2.22)
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2.4.2 Master Equation

In this section, the master equation for a system coupled to a reservoir is derived. First
we begin with a complete Hamiltonian H = Hg + Hr + V', where Hg, Hr are the
Hamiltonians for the System S and Reservoir R and V' is the interaction term in the
Schrodinger picture. To evaluate the time evolution of the density operator x(¢) of the
whole system (S ® R), we have to transform the Von Neumann equation into
the interaction picture. For this we need the unitary operator transformation used in
with Hy = Hg + Hi. From now on we use the ~ symbol for an operator in the
interaction picture

Xt =~ [H(D), x(1)]
2 O (X0} (1) = & [y ()00, (1), Uy ()00, (1]
mmw(—gﬁhxﬁﬂ+ai@)l@&ﬂ——éﬁmﬁﬂﬁﬁ%ﬂﬂﬁﬁﬂﬂ
1 [Ho, X0+ i %(8) =~ [Fly X(0)] —  [V(6), 20
5t = = [0, 1)) (2.23)
The formal integration of gives
R0 =x(0) + o [t V(). 1) (2.24)

As you can see this equation can be solved by iteration. After one more iteration
equation (2.24)) can be written as

0 =x0)+ [ "t (; V() %(0)] - 7112 / a7 e), [V(t”),x(t")”), (2.25)

and after a differentiation of the whole equation, the time evolution is

& _ I ~ 1 ¢ ARV 7 (4I\ (4!

xm—manM—#Aﬁhmmemw] (2.26)
Note, that this equation is exact, equation (2.22)) is only cast into a form, where
reasonable approximations can be made. Now, we define the reduced density operator
p(t) of the system as

p(t) =Trr [x(t)], (2.27)

where the trace is only taken over the reservoir. We assume that the interaction is
turned on at time t=0, therefore the density operator factorizes as x(0) = p(0) Ry, where
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Ry is the initial reservoir density operator. Performing the partial trace in equation
(12.27) we get

36) = 2T {[V0, X0} — o5 [ @t Tra [V, [P x0)]]} . 229)

with Trgr(x) = eW/MHst pe(=i/MHst — 5 Note, that this time evolution is non-unitary
from this point on. An example is the spontaneous decay (see chapter 3) of an atom
(system) in the vacuum field (reservoir). When an atomic state decays, a photon is sent
out into the reservoir. Therefore the energy is not obtained. It is also not a pure state
any more, because tracing over degrees of freedom means, that reservoir observables
can not be evaluated. Hence, a CSCO cannot be found.

If the interaction Hamiltonian V has the specific form

V =h) gl (2.29)

where I'; and f3; are proportional to lowering or rising operators of the reservoir and
system, respectively, then the first term in equation (2.28)) can be evaluated,

Trg { ﬁ/, X(O)H =Trg {e(i/h)HotV(t)e_(i/h)HOtx(O)} +...
= X (Ua] V) + ...

= Z (un| Ly |up) Bi +---=0 (2.30)

where |u,) is the orthonormal basis of the reservoir.

The density operator factorizes at ¢ = 0 and we assume that the coupling V' between
S and R is weak. However, x(t) should only show deviations in the order of V' from
an uncorrelated state. The reservoir is a very large system and should be therefore
unaffected by the interaction. Then the density operator can be written as x(t) =
p(t)Ry + O(V).

The first major approximation is a the so-called Born approximation. We neglect terms

higher than second order in V', so equation ({2.28]) reads

B(t) = —512 | St Trg { [V, [V (1), 5 Ro] (2.31)

The detailed discussion of this approximation can be found in the work of Haake
[3]. An important property of this equation is, that it is not Markovian, the density
operator depends on its past history. The second major approximation is therefore the
replacing of p(t') by p(t). This can be done if the correlation functions in eq.
and are proportional to d(t —t'). After these two approximations (Born-Markov
approximation) it looks like:

At = —;2 / Cat Trg {70, [V ), R |} (2.32)

10
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A detailed discussion of the Markov-approximation can be found in [I] .
Therefore it becomes

=T [t e {[BOF ), (BT ), 500 Ro) |}
=- / At Try {[(B:(0)3;(1)5() — B;(#)A0)Bi(t) ) D(t) D5 (1) o
]

(O30 - 5005,0) B 08,
== % [ {[BWEE)H) - BERORO] T ),

+ BB (1) Bit) = Bi(8)p() B ()| (T3 (E)Ti () g} (2.33)

where we used the correlation functions
(Di(B)T (1)) = Trr [RoDi(OT(8)] ~ 6(t — 1), (2.34a)
(D;(t)Ti(t)) = Trr [Rol;()T(t)| = 6t —1'). (2.34b)

This is the master equation which is needed for the next two chapters.
If the master equation is given in the interaction picture, the back transformation to
the Schrodinger picture is

Ly, ] 4 e rmHo oimot, (2.35)

P =

11



Chapter 3

Spontaneous Emission of a Single

Atom

In the following chapter we want to derive a model for spontaneous emission of an
atom, which is in a thermal bath at zero temperature. That means that the electric and
magnetic fields are zero on average, but not their variances. Hence, vacuum fluctuations
are interacting with the atom and causing it to decay.

3.1 Two Level Atom

A two level system is a very important
model for an atom, which is often used
in quantum mechanics. It consists of the
corresponding two states, the ground (|1))
and excited (]|2)) state. These states en-
ergies Iy and F,, with £, < FE;. We
consider the special case where the two
levels are the two deepest bound electronic
states of the valence electron in an atom
(see figure [3.1).

These approximations are valid as long as
the atom is prepared in state |1) or |2) (or
a superposition) and no higher states can
be reached. This can be achieved if the
electric field is in thermal equilibrium. If
it is not in thermal equilibrium, there is
a chance that state |3) or higher can be
reached, which is not part of this descrip-
tion.

The Hamiltonian of a two level system is

n S p d
OeV ——o0o
-0,85eV —+3
-3,4eV —2 12>

two niveau system

-13,4eV —-1

Figure 3.1: Schematic representation of the
hydrogen term diagram, with a two level system

12



3 Spontaneous Emission of a Single Atom

given by
iy = 1) (11 By +12) (2] Ba, (3.1)

Every two level system can mathematically be described by the Pauli spin matrices.
These matrices are defined as

01
o= (7 o) =+, (3.22)
0 —2 ) )
o= (7 ) =ime-ipal, (3.20)
1 0
o= (o D) =1e-mal, 3:29
if we set |1) = <?> and [2) = (é) Therefore the Hamiltonian can be written as

Hy = 5(Bu+ Bo)1 + 5(By — Eyo.. (3:3)

The first term in eq. (3.3) is a constant energy shift and can eliminated if we move the
atomic energies to the mean of F; and Ey. We identify the atomic transition frequency
wa = (Fy — Ey)/h and write equation (3.3)) as

1

I:[A = §hOJAO'Z. (34)

3.2 Dipole Approximation

In this section we discuss the derivation of the dipole interaction between a charged
particle and the electromagnetic field.

3.2.1 Minimal Coupling

The force on a classical particle in an electromagnetic field is the Lorentz force. Hence
the equation of motion is given by

mi' = q |[E(F,t) + 7 x B(F,)] . (3.5)

Here ¢ is the charge of the particle and m its mass. It can be shown that the Hamilton
function

H= ;n (5 - g A7) + q®(7, 1) (3.6)

leads to (3.5)). This Hamilton function can be won by replacing the kinematic momentum
P by the canonical momentum p’ — gA(7,t) in the Hamilton function of a free particle
and add ¢®(7,t). This is called principle of minimal coupling.

13



3 Spontaneous Emission of a Single Atom

3.2.2 Approximation

The quantisation of equation (3.6) is made by replacing p — —ih%, therefore the
Schrodinger equation has the form

L 0 1 L= a2 . N
it ) = |5 (=07 = g A7) + () + V() 10). (3.7)
We add another potential V'(#), which in our case is the coulomb potential of the core

¥

Core

4 Electron

=

X

Figure 3.2: Representation of the vectors in an core-electron system.

at the position of the electron.

The main approximation is to replace the position operator 7, which is the location of
the electron by the position of the core 74, which is fixed in the terms of A and @ (see
figure [3.2). This approximation is justified if the electromagnetic field force is nearly
constant over the expansion of the atom. Therefore the wavelength A must be greater
than the expansion of the atom. For example, the wavelength of visible light is about
A = 500nm and the Bohr radius is ag = 0.53A, hence there is a difference of about 4
orders of magnitude. Therefore, equation becomes

i 1) = [ (0 - 00 0) 4@ )+ VO ). 39

The gauge freedom of classical electrodynamics can be used to
A'(Ft) = A(F,t) + grad A(F,t), (3.9a)
(7 t) = D(r,t) — ;A(F, t), (3.9b)

14



3 Spontaneous Emission of a Single Atom

where A(7,t) is an arbitrary scalar function. Starting from the Coulomb gauge, then
divA(7a,t) = 0 and ®(74,t) = 0. If we choose A(7a,t) = — (7 — 74) A(7a, t), the vector
and scalar potential becomes

A'(Fa,t) = A(7a, t) — grad FA(74,t) = 0, (3.10a)
(7, 1) = (7, 1) + ;(F— Fa)A(Fa, 1) = (7 = FA);Z(FAat)- (3.10b)
The classical field can be calculated as E(74,t) = —grad ®'(7y,t) — DA (7Fy,t) =
—grad (7 — FA)%E(FA,t) = —QE(FA,t). Therefore equation (3.8)) reads
—h? "
O 1) = | S & —g(p ~ Fa)E(Fart) + V)| ) (3.11)

The second term on the right side looks like the energy of a dipole in a electric field.
Hence we identify ¢(7 — 74) as the dipole operator, which couples to the electric field

7.

3.3 Spontaneous Emission

Now, we want to deduce the master equation for an atom surrounded by a thermal bath
at temperature T=0 (i.e. the vacuum), which acts as a reservoir of harmonic oscillators
(see section [2.1.2)). The first step for this has already been done in section [2.4.2]

3.3.1 Representation of an Operator

If a complete set of orthonormal states as used in (3.1, |1) and |2), is given, every
Operator A can be rewritten as

A

A=141=Y"|n) (n| A|m) (m]. (3.12)

As an example we expand the dipole operator ¢(7# — 74) = ¢7', where 7’ is the distance
between the electron and core in states of the two level atom

—qZ (n| " jm) [n) (m|

m,n=1
= q ((217"]2) 2) (2] + (117" [1) [1) (1] + (1] [2) [1) (2] 4 (2| 7" [1) [2) (1)
= q ((1[#[2) [1) (2] + (2] 7' [1) |2) (1]) = d1 20~ + daa04. (3.13)
Here, we used (1|7 |1) = (2|7|2) = 0 under the assumption that those states are

symmetric, which guarantees a zero dipole moment. We also defined the dipole matrix
elements, which are

(17 12) = dyp = (&2,1)* ; (3.14)

the lowering o_ = |1) (2| and rising o, = |2) (1| operator.
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3 Spontaneous Emission of a Single Atom

3.3.2 Master Equation for a Two-Level Atom in Thermal
Equilibrium

The Hamiltonian which has the form of H = Hg + Hg + V', with

1
HS = QthUZ’ (315&)
Hp=>_ hw,—ﬁ*ag/\aa)\, (3.15b)
V=~ (di2o_ +d;,00) E(Fa, 1), (3.15¢)

The atomic Hamiltonian is given from (3.4), the Hamiltonian of the reservoir is from

(2.11)) and the interaction term is from equation (3.11]).

The interaction term has to be rewritten
V=- (&1 20_ + (_I* 20'_|_> E(FA,t) =

_ zkrA zkrA
= Z( gk/\ek)\ak)\d21a + e"AEL € g 2o 0
+ e hrag. g aty, dyio teihrag. & a d, o (3.16)
EACEAD Tiex 92,10 = EXCEATEAT2,194 ) .

This has to be transformed into the interaction picture of Hg + Hi and changes to

—%

V=- > < zkmgk AEEAE ,\d2 1o et 4 ZkTAgk a0 e Tileamer)
B
4 eTikrag, iACE. /\a~ d2 jo_eiwatep) 4 omikrag, PG, Aa d2 e e’(‘”A+”i¥)) . (3.17)
Now the rotating wave approximation has to be done, therefore all fast oscillating terms

like e~ @atwi) and e'@a+«r) are eliminated [4]. After the transformation back into the
Schrodinger picture the interaction term becomes

V= Z h (/ﬁk /\aE,\U + /f,;y/\ammr) , (3.18a)
: ikr Wy — t
with k;, =e kra QFLEISV ( i dg,l) : (3.18Db)

We identify some terms from equation ([2.29))

51 =0, [a=o04 (3.19a)

Z'{k)\ EA Ly=T= Z“E,,\GE,,\' (3.19Db)
EA

16



3 Spontaneous Emission of a Single Atom

These operators must be transformed into the interaction picture:

Ty (t ZK“ ap e, (3.20a)
Ty(t) = T(t) Z KEAGEAC gt (3.20b)

and
Bi(t) = o_e ™At By(t) = o e, (3.21)

By inserting these operators into equation (2.33)), where the Markov approximation is
not done, we get

§0) == [ {lo-0 p(t) = o plto e EOF L)  + e
004 BlE) = 0 (1) | A (FOP(E)  + e

+ 004 plt) = o p(E)o | e = [FORE))  + hc

Hlowaplt) = o plt )] 4 PO (E)) g + he ). (322

If we set the reservoir in thermal equilibrium, then the density operator Ry =
I1; ehwgala/ksT (| _ o—hwp/keT , where kg is the Boltzmann constant. Therefore, the
reservoir correlation function can explicitly be calculated

(CT D) = Z [ 2R (wp, T), (3.23a)
<f Z K% >\|2 [ n(wg, T) + 1} 5 (3.23b)
NGNS 0, (3.23¢)
(CHTE)) g =0, (3.23d)
where
o~ Twp/ksT
ﬁ(%& T)= 1 o—Twg/haT (3.24)

is the mean number of photons for an oscillator with frequency w; at temperature T.
If we consider, that we discuss this phenomenon at T=0, then only (D(t)['f(#')), is
drifferent from zero. This can be done since n(wWyisipie, 300K) &~ 1073°, i.e. no photons
are in any visible mode at ambient temperature.

The summation in these non-zero correlation functions is changed into an integral,
where the number of modes in the wave vector volume of (k+dk)? is still the same. For
this we have to define the mode density

g(F) = =

o (3.25)
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3 Spontaneous Emission of a Single Atom

Making a variable change to 7 = ¢ — ¢’ in the integral of equation (3.22)), this equation
becomes

o1l
—~
~

— Z/th { oo p(t —7) —o_p(t —7)oy]
/d:ak () () [2e=iRlemoa)r |1, ¢ } (3.26)

If we evaluate as an example the dk, integral, we find an integral which is proportional
to [g° dk, e=*=°T. We can expand this integral to —oo, because the oscillating term will
average this part to zero. Now we have a Fourier transformation of a constant function,
which is proportional to d(7), for a detailed discussion see [I]. Then j(t — 7) can be
replaced by p(t), which is called the Markov approximation. Therefore, we can deduce
that

j6) = S lo-ptt)e — owo-p(t)] [ &% [ ar gRn(ye e s he. (327

We know that the last integral behaves like §(7), therefore we can extend the 7 integration
to infinity and get

t . o P
lim / dr e Wkle=w)™ — 75(|kle — wy) + i——s—, (3.28)
t—oo Jo wa — |]{?|C
where P is the Cauchy principal value. Now we find
B(t) = (; 4 m) o_p(t)os — oy0_p(t)] + he. (3.29)
and
- 2772/d3k G R(F) 28 (|Fle — wa), (3.302)

A= ZP/d3 9Bk} (3.30b)

wa — |k:|c
After some rearrangements we get the following equation,
B i o . . .
plt) = —5Aloz pl + 5 (20-p(t)o — 010 p(t) = p(t)oro-). (3.31)

We finally transform equation (2.35)) back to the Schrédinger picture and get

+ 7 (20_p(t)oy —oyo_p(t) —p(t)oo-), (3.32)

_ ;
p(t) = —§w’A 02, p] 5

18



3 Spontaneous Emission of a Single Atom

with Wy = w4 + A. Note that A is the Lamb-Shift at temperature T=0.
This is the master equation in Lindblad form, which can be written as

A (P

pt) = =5 [ p] + Lo, (3.33)
with A, = w40 and the Lindblad superoperator L[p] = 1 (20_p(t)o; — oro_p(t)—
p(t)oio-).
We identify v as the damping constant. We can solve this integration if we change to
spherical coordinates in k-space

00 T 2 w2v w . N )
v = 27T;/0 dw/o Slﬂ(@)d@/o quWW( E7/\.d172) d(w —wa)

ng T 2m . 5 2
= St /0 sin(6)d /0 a6 (e, - dis)” (3.34)

For each k we choose the orthogonal polarisation state A\; and Ay, such that (5,3 A d:2> =
0, then

Wi

T 2w . - 2
= 87T260hc3/0 31n(9)d9/0 de (@;AQ ‘ dLQ)

PR /0 " sin(0)do /0 7 46 (1 - cos’(0))

— b2872¢0 BB
1 4wid%72
 drmey 3he3
Now we can identify v as the Einstein A coefficient, as obtained from the Wigner-
Weisskopf theory of natural linewidth [10].
As an example we can solve the master equation from with the denisty operator

p = p1|1) (1|4 p2|2) (2|, where |2) and |1) are the excited and ground state from section
3.1l

(3.35)

pr|1) (1] + p212) (2] = % {211) (1] p2 = 212) (2| p2} (3.36)

If we multiply this equation from the left and right with (1| and |1) or (2| and |2) we
get two coupled differential equations

P2 = —"Vp2; (3.37a)
p1 = Vp2, (3.37b)
with the solutions
pa(t) = e, (3.38a)
pi(t) =1—e (3.38b)

Where we assumed po(t = 0) = 1 and used the normalisation p; + p; = 1. The result is
an exponential decay of the probabilities of states.
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3 Spontaneous Emission of a Single Atom
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Figure 3.3: Plot of probability as a function of time, where the time is given in units of
1/T.
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Chapter 4

Collective Atom Dynamics

For want of a better term, a gas which is radiating strongly because of coherence will be
called “superradiant’.

— Robert H. Dicke, 1954 [2]
Spontaneous emission for multiple atoms can be treated independently only if their
distance is large compared to the emitted wavelength. For small distances the coupling
between the atoms and lightfield leads to collective effects like superradiance.

4.1 Superradiance Master Equation for N Two Level
Atoms

This section contains the derivation of the master equation for superradiance effects
of N identical atoms, which are surrounded by a thermal bath at temperature T=0.
This derivation is quite similar to the derivation of the master equation for spontaneous
emission in section 3.3

4.1.1 Hamiltonian

The Hamiltonian for the whole system is given by H = Hg + Hr + V', where Hg and
Hp are the system and reservoir Hamiltonian respectively, with the interaction term V.
We treat these N atoms like N independent two level systems. Therefore, the system
Hilbert space is a tensor product of N two level systems. The reservoir Hamilton is the
same as in section and the interaction term is the dipole coupling between each
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4 Collective Atom Dynamics

single atom and the lightfield. Hence those operators are

1
HA = Z*hUJAO'Zya’ (4,1&)
Hr = Zhwk FUS (4.1b)
5
V=>_n ( a kAT, ,\J—va + “a,E,,\aE,AUJr,a) : (4.1c)
a,k,)\

Here, 0 4, 0_ o and o4 , are the Pauli spin operators for the a'® atom. The interaction
Hamiltonian is already in the rotating wave approx1mat10n which is done in the same

_ 'LkrA
way as in section (3.17)), with Kofx =€ a,/%eovek /\d2717 where 74 , is the location

of the ot atom. Now we have to transform the interaction term into the interaction
picture of Hy = H4 + Hg and it becomes

V= Z h ( wfin g )\0'_@6 “iwawp)t 4 Ko iAORAT+, LA w”)t) (4.2)
a,k,)\

4.1.2 Derivation of the Master Equation
We begin with the master equation (2.31]) from Chapter 2. By inserting V' from equation

, we find
b= [ S (st 7 abt) — 0 aplt)orss

a, k A B,l,@
W e~ Hwa—wp)t pi(wa—wp)t <af9 a;%)\>R (43)
+ R rohn ia D)0 a0 — 04 gp(t)o- o] e AT ileamenl (q

R fglain 0004 ap(t) — o ap(t')o g] @A emileamel (o]
R gRain ()0 a0 g — 0 gp(t)oy o] €A™ e amedt (g GL“A>R} ’
which we already used in (3.23c) and (3.23d]), such that the correlation functions
T T
<af,9 aE,,\> R
= (ap, ag, /\>R = 0. In equation ([2.30)) we have shown that the correlation functions

ar, al —(al a: — 0 for k # 1 and \ # 6. The remaining correlation functions
Lo Yenl g =\ En &
can be evaluated as

fa k) = (e, T) + 1, (4.42)
(ol az,) =g, T). (4.4)
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4 Collective Atom Dynamics

Here n(wg, T') is the same as used in (3.24) and is the mean photon number in the &%
mode. Now we consider, that the temperature is 7' = 0, then n(wg,T") = 0 and only

. T . 2
(agx ag. /\)R is not zero. Therefore p becomes

T ! * ~ ~ (wa—wz)(t—t
p== [t S ko {0 s0ablt) = o apt)o ] €n )
a,B,k,A

+ [p(")o1.00-5 — 0 pp(") 0 0] e_i(wA_w’g)(t_t/)} : (4.5)

Now, the summation over k is changed into an integral, with the mode density g(E) = %

from equation (3.25))

t . ‘ B /
— [t [ gR) 2wy ar o {[050-ab(t) = 0t g] €N
a,B,A

O
+ [p(t)0400— 5 — o_gp(t) o4 4] e*i(wr\k‘\@(tft/)} _

t 00 wzv .

a,B,\
x {0450 ap(t = 7) = 0_ap(t — 7)oy 5] €A
+ [p(t = 7)o400-5 — 0 pp(t — 7)o 0] e’i(“A’“)T} . (4.6)

In the last step we choose spherical coordinates for the integral over k space and a
variable change to 7 = ¢t — /. We have shown in section [3.3 that the correlation
functions are proportional to §(7). Hence, the Markov approximation can be made by
replacing p(t — 7) with p(t). Now can be restated as

. 00 w2V .
p= —/0 dw S73c3 %:A/dﬂ RgEaFa i
a? I’

t .
% {[O-+’BO-_7aﬁ(t) - U—,aﬁ(t)O'_hB]/ dr el(wA—w)T
0
t .
H P01 00— = o pp(t)oea) [ dr e @)

The spherical surface integral can be evaluated by choosing the polarisation vector €) ;
orthogonal to dy ;:

V « I w dQ /2 o o 2 N\ i
So3 Z/dQ K i\ jix /E (’d2,1‘ - <€A,2 : d2,1> ) eMFapTa)
y

B 4dmey TA3h
1 w [sin¢ 5 4 \? 5 A \?\ [cosE  siné
= 1—(dyq 754 1-3(dyy 754 _
ey me3h ( 19 ( ( 21778, ) ) * ( ( 21778, ) ) ( £ &3
1 w
= F 4.
pPm———r (), (4.8)
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4 Collective Atom Dynamics

7 —
"B,

) =0 . R > d 2, . )
with & = |k||Ts.al, Tap — Taa, dog = =+ and 73, = . The time integral was
) ) ) ) |d271| ’ |r['3,a|

already evaluated in (3.28)) . By using the spontaneous emission constant v from ((3.35]),
equation (4.7) becomes

~ o0 w3y
= d F o
P / “ az”;lhuffm ( I7s ‘)
X {20 a0 1.5 — 0250 a(0) — )0+ a] T — )
P
o(t 00— 3 — 00— gp(t)|1 4.9
+[p)4 005 = 7100 1)) i—— (49)
For the second term we use
00 3wy w P
AE :/ d F(*a>. 4.10
@B = f 4qwdm \e 7s.0] wa T w (4.10)

The integral of the first term can be evaluated and equation (4.9)) changes to
3y N - -
-3 { F (2 175l ) [20-af(0)015 = 010 -al) = 5(1)0+ 0]

+i (Aa,ﬂ +AL) (1), 0100 5]} (4.11)
Note, that the rotating wave approximation does not give the correct result for the

1Eamb shift, therefore A7 ; must be included [I]. After some conversions, (@.11]) is given
y

P(t)o 48— 0450 ap(t) = poi oo

—Z
Ang

FiY SEp0), a8 Y A pl0), 0] (4.12)
a,B,0#8 «

We defined I'y 3 = 2 F (%|F57a‘), where Iy o = 7 and Ay 3 = AT 5+ A7 5. Now, we

have to transform the master equation back into the Schrédinger picture with equation

(2.35) and get

. 1
with
1
H = Z 571 (Wa+ Apa) 20 + Z hA, 304 30— o (4.14)
« a,B,a#p
and the Lindblad Superoperator
Ly
Ll =3 22 2o aplt)oss — 7150 aplt) — o so o] (415)
a,B

As an example we plot Iy g, for a # f and 7,4 - dio = 0 as an function of |7s4| in

figure [4.1]
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4 Collective Atom Dynamics

1.0
0.8
0.6
0.4 — Iy

0.2

decay constant [I']

0.0

-0.2

0.0 0.5 1.0 1.5 2.0
2 kA rﬁﬂ'

Figure 4.1: T', g, for o # [ as an function of |73 4|, with 7, 5 - cfl,g = 0.

4.2 Example for Two Two-Level Atoms

In this section we solve the master equation from for two identical atoms and
discuss its photon flux.

In the product Hilbert space of two atoms a complete orthonormal basis is given by
122) = [2), ® |2),,]21) = |2), ® |1),,[12) = ... ,|11) = ... , where the indices denote
the first or second atom and |1), |2) are the state vectors of the two level system from
section . It can be shown, that these vectors are no eigenvectors to Hg from (4.14)).
Therefore we define one triplet

|17 1> = |22> ) (4.16&)
1
1,0) = 7 (121) +[12)), (4.16b)
11, —1) = |11) (4.16¢)
and a singlet state as
0.0) = 5 (21) — 12)). (1164)

V2

which are eigenvectors of Hg. A schematic representation, of the eigenvalues can be
seen in figure [4.2]
Now, we define the projecting operator as

Py = |rm) (r'm/| (4.17)
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4 Collective Atom Dynamics

11) why
'+ Y I'-T»
10) Apg
N\ 0
|00) A
T + Fl.? | r—- FI.Q
-1 -w'y

Figure 4.2: Schematic representation of the state’s energies and their decay rates.

which satisfy

<Prm,r’m’> = prm,r’m’<t>- (418)

These operators fulfil the following identities,

O410-1+0420_9= Pig10+ Poooo +2Pi111, (4.19a)
1
T410-2 =5 (Pro,10 — Poo,oo — Foo,10 + Proo) - (4.19b)

Hence, we can rewrite equation (4.13)) where we use (4.18]) and therefore get four coupled
differential equations for the diagonal elements of the reduced density operator

p11 = —20p11, (4.20a)
p1o= (L' +T12)p11 — (T +Ti2) pro, (4.20b)
Poo = (F - F1,2) P11 — (F - Fl,Z) P00, (4206)
p1—1 =T +T12) pio+ (' = T'12) poo- (4.20d)

The emission rates are shown in figure 4.2 and the numeric solution for the coefficients
in figure . For this example we assumed (FLQ . dl,g) =0 ,p2(t =0) = 1, which can
be achieved by a short m-pulse and |7 »[*4 = 0.6 7.

Il +Tyo>TorI' =I'y 2 > I', then this decay channel it is called superradiant, if its

below I' it is subradiant, see figure where o = 1 and 3 = 2. In the case, that I'; o is
nearly I', then the state |00) is extreme stable and is therefore subradiant.
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4 Collective Atom Dynamics

probability
2
N

N
RS

=
o

0.0

time[ T ™1 ]

Figure 4.3: Numerical plot of probabilities for superradiance effects as a function of
time, where the time is given in units of 1/T".

Now, we can calculate the number of emitted photons. We know, that every time
an electron decays, a photon is emitted. Hence, the photon flux I is proportional
to % > o (0+.a0_ o). Therefore we get I oc 2I'p, for the photon flux for spontaneous
emission of two independent atoms (see ) For the supperradiant case we get
I o< 2T pag + (T +T12)p10 + (I — T'12)p1o- As an example, where |7 o|wa/c = 27 107,
we get a higher photon flux due to superradiant than with spontaneous emission of
independent atoms (see figure [4.4)).

2.0
15 — 2Ipy +{T+T12)p o+ -T'12)pgo
8 - zrpz
s
= 1.0
3
o
0.5
0.0
0 1 2 3 4

time [T™!]

Figure 4.4: Decay rate (which is proportional to the photon flux) for superradiance and
spontaneous emission as a function of time, where the time is given in units of 1/T".
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Chapter 5

Conclusions

As a result of the quantisation of the free electromagnetic field, it was shown, that each
classical mode is equivalent to an harmonic oscillator. With the result of the dipole
approximation it was possible to describe the interaction of the atoms and field.

We specially discussed the time evolution of the density operator of open systems,
where we made a Born Markov approximation. This master equation was solved for
the spontaneous emission of one atom. As a result we got the exponential decay of the
excited state.

Further we derived the master equation for an ensemble of N identical atoms and solved
it for the case of two atoms.From the discussion of the decay rates,we learned that
the superradiant system’s photon flux is higher for short times,then the system with
spontaneous decay.
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