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1 Introduction

Since their invention lasers have become an important tool in physics. For emitting a
strong, directional beam of laser light, the process of the so-called stimulated emission
of photons is used: When an excited atom decays and emits a photon, this photons can
stimulate other atoms to emit additional photons, hence the acronym LASER (Light
Amplification by Stimulated Emission of Radiation).

One of the most important properties of a laser is its small linewidth. With the almost
monochromatic laser light a lot of physical applications are possible: detecting gravity
waves, defining the second, groundstate cooling and quantum manipulation of nanome-
chanical objects, and quantum computation [1] , or the construction of atomic clocks
to measure time with great precision. From there, there are a lot of different applica-
tions, which rely on measuring time with great precision: GPS, synchronization of data
and communication networks, precise measurements of the gravitational potential of the
earth, radio astronomy, tests of theories of gravity, and tests of the fundamental laws of
physics [11]. However, the main problem in increasing the stability of the atomic clocks
are the lasers which interrogate the ultranarrow clock-transitions. The linewidth of these
lasers is mainly limited by the thermal noise of the cavity mirrors [11]. By using a laser
operating in the “bad-cavity”-regime, also called superradiant laser, one could signifi-
cantly reduce the influence of the thermal noise on the linewidth [1]. These superradiant
lasers have bad mirrors, which leads to very small average photon numbers in the cavity
and therefore only weak influence of the thermal noise of the cavity mirrors. The phase
information, which is carried by the photons in a standard laser, is now stored mainly
in the atoms [1].

The significantly decreased linewidth of these lasers allow for a variety of different appli-
cations. For example, they could be used for cooling and trapping of dipole interacting
clock-atoms [8]. It has even been suggested, that superradiant lasers may lead to searches
for physics beyond the standard model [1].



2 Outline

To understand the basic concept of a laser, one has to consider three important processes:
Absorption, spontaneous and stimulated emission of photons by atoms. The atom has in
general several discrete energy levels and corresponding energy differences. If a photon
with an energy close to such an energy difference hits the atom, it can get absorbed
and the atom changes its state from the ground state to an excited state. Similar to
radioactive decay, these excited atoms decay with a certain lifetime into the ground state
by emitting such a photon. This is called spontaneous emission, and it ensures energy
conservation as the energy of the photon is the energy of the transition. The concept of a
laser is based on a third process: the stimulated emission. When atoms are in an excited
state, an incoming photon with matching energy can stimulate the transition into the
ground state and therefore the stimulated emission of another photon. The two photons
now have the same energy and the same phase. Each of these two photons can stimulate
the emission of another photon by changing the state of an atom from the excited state
to the ground state. By this process of stimulated emission there can emerge a cascade
of photons, all with the same frequency and phase information. However, one must
make sure that the number of atoms in the excited state exceeds the number of atoms
in the ground state (population inversion), as otherwise the probability for absorption
is higher than the probability of stimulated emission and the cascade can not emerge.

To keep it simple, we want to restrict ourselves to a two-level-atom. However, we can
not achieve population inversion using light in a mere two-level-system. If we coherently
pumped the atoms, we would get Rabi-oscillations, where we would maximally achieve
an equal occupation of ground and excited state averaged over time. However, if one
takes the spontaneous emission into account (which is not considered when deriving the
Rabi-oscillations), we would not even achieve equal occupation. Moreover, we can not
achieve population inversion by putting the atoms in a thermal reservoir, as in thermal
equilibrium higher energy states have lower probabilities due to the Boltzmann law.
This can also be understood by looking at the einstein rate equations [4]:

d.N-

d—tz = NlBlgp(wlg) - N2B21P(W12) - NQ’V (21)
dN; dN,

P 2.2
dt dt (22)

Here, N; denotes number of atoms in the ground state and N, denotes the number of
atoms in the excited state. p(wi2) is the energy density at the frequency wys, where wio
is the frequency corresponding to the energy difference of the transition., the time is



2 Qutline

denoted by t. Biy and B, are the einstein B-coefficients, which describe the rate per
energy density p of a transition from the ground state to the excited state (Bjs) and
the reversed process (Bs;). Assuming that both levels are equally degenerate, we can
simplify Bjs = Bg; := B [4]. The spontaneous emission from the excited state into the
ground state is given by 7. As there is no spontaneous emission from the ground state
into the excited state, there is no need for a term +N;vy. The change of the number
of the atoms in the excited state % is therefore given by the rate at which atoms get
excited by the thermal equilibrium (N;Bp(wi2)) minus the rate at which the atoms get
relaxed (NyBp(wiz)) minus the rate of spontaneous decay (Noy). The second equation
follows simply from demanding that N; + Vs is a conserved quantity. We calculate the
steady state solution by demanding % = % = 0, which trivially solves equation 2.2.
From equation 2.1 we get

No _ Bp(wia)
N Bp(wiz) +v

For population inversion to occur, we would need %—f > 1. But looking at equation 2.3
one can see, that this can never be achieved, even with very high energy density p(ws2).
So how can we achieve population inversion in a two-level-system? The answer is by
introducing a third level above the ground state |g) and excited state |e), the auxiliary
state |a). This is depicted in figure 2.1 on the left side. The idea is the following: If we
transfer the atoms from the ground state |g) to the auxiliary state |a) with a rate R°, then
the atoms in the auxiliary state very rapidly decay into the excited state |e) with a rate
of a. If the rate « is large compared to RY and +, then there will be effectively no atoms
in the auxiliary state |a), as these very rapidly decay into the excited state |e). Moreover,
the excitation of the atoms from the ground state over the auxiliary state to the excited
state can be understood as a spontaneous “decay” from the ground state into the excited
state with a rate R. In conclusion we can simplify the three-level-system to an effective
two-level-system with spontaneous “decay” from the ground state into the excited state
with a rate R, this is depicted in the right side of figure 2.1. As we can choose R’ and
this influences R, we can modify the rate R in the experiment. In the following, we will
denote R as the pump rate, as it is the rate at which we “pump” the atoms from the
ground state into the excited state. In the einstein rate equations we take the pump rate
R into account by adding and additional term N;R to the right-hand-side of equation
2.1. This results in an additional R in the numerator of the right-hand-side of equa-
tion 2.3. Choosing R to be greater than v this eventually results in population inversion.

(2.3)

To model the laser, we also need to consider a cavity, in which the photons can travel.
This is depicted in figure 2.2. By achieving population inversion, there will be a cascade
of photons being emitted from the atoms. At the end of the cavity there are mirrors,
which reflect the photons, so that the photons can stimulate emission again. This leads
to a certain light field in the cavity. By having one mirror not completely reflecting all
photons, some of the photons can leak from the cavity. These leaked photons make up
the laser light coming from the cavity. In figure 2.2 there is one two-level-system with
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Figure 2.1: Achieving population inversion with a two-level-system. When « is much greater
than R? and +, this results in almost no occupation of the auxiliary state. The atoms change
from the ground state into the auxiliary state, and from there into the excited state, this can
be understood as a spontaneous “decay” from the ground state into the excited state. In
conclusion, the three-level-system can be understood as an effective two-level-system with a
pump rate R from the ground state into the excited state.

ground state |g) and excited state |e) shown. The two-level-system interacts with the
light field, which is depicted by the black arrows between the two levels, this happens
with a rate g. To describe this process, we will use the Jaynes-Cummings-Model, which
will be derived in section 3.1. Moreover, the two-level-system is influenced by the sponta-
neous decay from the excited state to the ground state with rate v and the pump rate R,
which transfers the atoms from the ground state into the excited state. These processes
can be accounted for by using the master-equation approach. On the left side there is the
mirror with 100% reflectivity (the bold line), on the right side the dashed line indicates a
mirror, whose reflectivity is less than 100%. Therefore photons leak from the cavity with
a certain rate x, this process can be also described by using a master-equation approach.

The goal of the following chapter 3 will be to describe the setup depicted in figure
2.2 mathematically. After that, we will implement the equations into the programming
language julia in sec. 4. Using the extension “QuantumOptics.jl” developed in the
Ritsch CQED-group at the Institute for Theoretical Physics of the University of Inns-
bruck, we can concentrate on the underlying physics, as we will not have to worry about
mathematical details solving the equations.
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Figure 2.2: Complete model of the laser. Depicted is a level system with ground state |g)
and excited state |e). The two-level-system interacts with the light field inside the cavity with
a rate g, depicted by the black arrows. R represents the pump rate from the ground state |g)
to the excited state |e), v stands for the rate of spontaneous emission. The two-level-system
is located inside a cavity, which is confined by a fully reflecting mirror on its right side and

a partially reflecting mirror (dashed line) on its left side. Photons, that get emitted into the
cavity by the atoms, can leak out of the cavity with a rate of k.



3 Derivation of the model

3.1 The Jaynes Cummings-Model

The Jaynes Cummings-Model is a common model to describe an atom interacting with
a surrounding monochromatic field mode of a cavity. It consists of three parts:

o the Hamiltonian for the atom H A
e the Hamiltonian for the field I:[F
« the Hamiltonian for the interaction H AF

The goal of the following sections is to derive these parts, then the final Jaynes-Cummings-

Hamiltonian is given by R . . R
Hyo = Hy + Hp + Hap. (3.1)

The following derivations follow [7], for more details one may have a look into this source.

3.1.1 The Atom-Hamiltonian H,

A two-level-system can be mathematically described by a spin-1/2-system in a magnetic
field B. Without loss of generality, we assume that the magnetic field is oriented in the
z-direction, then the hamilton operator is proportional to 7,: H = a6, with a as a
proportionality constant . As a complete and orthonormal basis we use the eigenstates
|1) and ||) of the o,-operator. Their eigenvalues are +1 and -1 respectively. By defining

1 0 . . .
0o —1 )2 the matrix representation of &,. For
convenience we set the level of zero energy in the middle between the upper and lower
level. We can see, that the proportionality constant in the Hamilton operator must be
AE

=, when AE denotes the energy difference between upper and lower level:

we can use the third pauli-Matrix

WHP - A =a-(1-(-1)=a-2=AE. (3.2)
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Switching from a spin-1/2-system to the two-level-system of an atom, the state |1)
corresponds to the excited state |e) and the state ||) corresponds to the ground state
|g). The energy difference AE equals fuw,, where w, is the frequency of the transition
between excited state and ground state of the atom. In conclusion, the hamilton operator
of the atom reads

0 (3.3)

For the later use we also define 6. and 6_ by 6+ = 5 (6x £ idy) [6]. Using the matrix
representation of oy and &y [7] we arrive at

&+:(8(1)), a—_:(g’g) (3.4)

3.1.2 The Field-Hamiltonian Hy

For the derivation of the field-hamiltonian Hy we start from the Maxwell equations in
vacuum, which means without electric charges p and electric currents j [5]:

V-E(,t) =0 3.5)
V:B(r,t)=0 3.6)
VxE(r,t)——i—]tB (3.7)
V X B(I‘,t) = /L()E()ad—]? (3 8)
(3.9)

Here, E(r, t) denotes the electric field at the point r in space at time ¢, B(r, ) denotes the
magnetic field and pg and ¢y are the vacuum permeability and permittivity respectively.
We introduce the vector potential A(r,¢) and and the scalar potential ¢(r,t) with the
definitions [7]

B(r,t) =V x A(r,t) (3.10)
OA(r,t)

—V¢ = E(I‘, t) + T

(3.11)
As we could always add a gradient-field to A(r,t) in eq. 3.10 and this would not change
the magnetic field B(r,t), we have a certain gauge freedom. In this case we choose
a gauge function in a way, that V - A(r,t) = 0, this is known as the Coulomb gauge
[7]. We can also see, because of p(r,t) = 0, that ¢(r,t) = ﬁ J ﬁ(%/r)/dr’ = 0. By simple
calculations we can see, that eq. 3.6 is trivially fulfilled. As we assume, that the fields are
sufficiently smooth, that we can interchange spatial differentiations with differentiations
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with respect to time, so it is also easy to see, that eq. 3.7 is fulfilled. Inserting eq. 3.10
into eq. 3.8 and using eq. 3.11 to rewrite the electric field E(r, ) in terms of the vector
potential A(r,t) yields a wave equation for the vector potential:

(ia—2 _ v?) Alr,t) = 0 (3.12)
2 Ot? e '
Here, we have used, that V x V x A(r,t) = V(V - A(r,t)) — V2A(r,t) = —V?A(r,t)
and the fact, that pgeq = C%, where c is the speed of light.

We will only look at one space dimension and without loss of generality we will assume
the fields to be position-dependent in the z-direction. We will also assume, that the
vector potential A(r,t) and in consequence also the electric field E(r,¢) points in the
x-direction. By eq. 3.10 this will imply, that the magnetic field B(r,¢) points in the
y-direction. Using the separation ansatz A(z,t) = g(z) - £(t) - e for eq. 3.12, applying
the boundary condition E(z = 0,t) = E(z = L,t) = 0 and only considering the lowest
mode we get the solution

A(r,t) = A(2) e, = C -sin(kz) - £() - ey,  E() = —w? - (1), (3.13)
where k = w.-c. With eq. 3.10 and 3.11 we can calculate the magnetic and electric field
respectively, using £(t) = —w? - £(t) from the separation ansatz and defining q(t) = £(¢)
(q(t) has now dimensions of length [7]) yields

A(z,t
E(z,1) = —¥ — _Csin(k2)g(t)es (3.14)
k
B(z,t) =V x A(z,t) = Ccos(kz) _wzq@f)ey (3.15)
The electromagnetic energy of the fields is given by [5]
1 2 1o
How=> [ aV (eE? + —B?), (3.16)
2 Jv Ho

in our case V denotes the volume of the cavity. Inserting eq. 3.14 and 3.15 into 3.16
and using fOL sin?(kz)dz = fOL cos?*(kz)dz = L/2 we arrive at

How = "% (q<t>2 n wigq'u)?) . (3.17)

This looks a lot like a harmonic oscillator with the hamilton function of a harmonic
oscillator

H = Smu? (q(t) L Lp W) (3.18)

2 w2 m?
ve?
2w?
the harmonic oscillator: Defining the annihilation/lowering operator  and creation /rais-

with p(t) = mq(t). Comparing yields m = €0. We know how to canonically quantize
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ing operator a' by [2]
h

5 At ~

q o (a"+ a) (3.19)
h .

p =i/ m‘; (@' - a) (3.20)

and inserting this into eq. 3.18 we arrive at the known hamilton operator of the quantum
harmonic oscillator

H = hw(a'a+1/2). (3.21)
As we are free to add a constant in the expression for the hamilton operator (this

corresponds to shift the level of zero energy), we can leave out the 1 in eq. 3.18 and
arrive at the final hamilton operator for the electric field:

Hp = hweala. (3.22)

Using the operator expressions for ¢(t) and p(t) (eq. 3.19 and 3.20), we can also express
the electric field and the magnetic field by operators:

E = Ey -sin(kz) - (a' + a) (3.23)
B = —By - cos(kz) -i(al — a) (3.24)

Here, Ey = ”VEJ) and By = %,/ this can be calculated by using m = vee €o from

c Veg? 2w?
the comparison between the electromagnetic energy and the hamilton function of the
quantum harmonic oscillator.

3.1.3 The Interaction-Hamiltonian Hp

Now we want derive the hamiltonian, which describes the interaction between the light
field and the atoms. Classically, the interaction energy U is given by [3]

U=—d- Ert). (3.25)

For canonical quantisation, we have to replace the electric dipolemoment d and the
electric field E by their operator representation. We already derived the operator rep-
resentation of the electric field E in the previous section, now we are focusing on the
operator representation of the dipole moment. The dipole operator is given by

d=gq-t, (3.26)
where ¢ is the charge and r is the position operator. Choosing the two levels of the atom
as a complete and orthonormal basis, we can represent the dipole operator as a matrix,
also we are only interested in the component of the dipole operator in a certain direction
e, the direction of the electric field. The ij-th matrix element d;; is then given by

~

dy= e (i) =g [ et vi o, (3.27)
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When i is equal to j, the integrand simplifies to r - |¢;|?>. This integrand is odd with
respect to the position r, and an odd integrand integrated over a symmetrical region
yields zero (assuming convergence of the integral), therefore the diagonal elements must
be zero. By the definition in eq. 3.27 we can see, that the two off diagonal elements
of the matrix representation of the dipole operator are the complex conjugate of each
other. Without loss of generality, we assume, that the elements are real, as we are
allowed to multiply both atom wavefunctions with a arbitrary, global phase in order to
make the off-diagonal elements real. In conclusion, the (scalar) dipole operator in matrix
representation is given by

sz(? é):d(&++6_). (3.28)

In the last step, we made use of the definition of 64 and 6_ (compare sec. 3.1.1). We
can now insert the matrix representations into eq. 3.25 and arrive at

. dE
Hap=hg (64 +6_)-(a+al), ¢g=-——"sin(kz) (3.29)

Expanding the brackets yields
Hap = hg (64a+ 06,0 +6_a+o_alh) (3.30)
~hg (6.a+6_a") (RWA), (3.31)

where we applied the rotating-wave-approximation (RWA) in the last step. This approx-
imation can be understood by the following considerations: Neglecting the interaction
hamiltonian H AF, one can derive the time evolution of the operators in the heisenberg-
picture [7]:

We see, that w, and w, get added together in the terms for ¢, a’ and ¢_a and subtracted
from each other in the terms for ¢ya and o_af. As w, and w, are of approximately
equal magnitude, the terms where these frequencies add rotate very quickly compared
to the terms where these frequencies are subtracted from each other. Therefore, the
fast-rotating terms are averaging out over time and we neglect them.

3.1.4 Dicke States

In our model we want to consider more than only one atom. However, the dimensions
of the Hilbert space and in further consequence the computing time become big very

10



3 Derivation of the model

quickly. For N two-level-atoms, the dimensions of the corresponding Hilbert space is
2V, To reduce the dimensions of the Hilbert space, we assume that the atoms are
indistinguishable. This leads to only considering symmetrical states, as interchanging
the atoms should not have an impact on the wavefunction. Then the dimensions of the
Hilbert space reduce to N + 1, which is equal to the number of energy levels. Similar
to describing one two-level-system by a spin-1/2-system, we can describe N two-level-
systems by a spin-N/2-basis. We define the collective ladder operators Sy and the
collective S,-operator by summing over the corresponding operators for one two-level-

system ([6] and [13]):
N N
Se=) 8¢ S.=>"59 (3.32)
i=1 i=1

We are allowed to assume indistinguishability of the atoms, because the initial state will
be the ground state of all atoms, and therefore a symmetric state. Furthermore, also
the time evolution does not change a symmetric state into a non-symmetric state [13],
as there are only collective operators responsible for the time evolution. To illustrate
this, we can look at the example of N = 3 atoms:

| Eo) = 59 |g99) = 1999)
|E1) = S. [g999) algge) + |geg) + legg)
| E2) = 52 [gg9) o |eeg) + |ege) + |gee)
|Es) = 5% |ggg) a |eee)

With N = 3 atoms, we have N + 1 = 4 energy levels (0, 1, 2 and 3 atoms in the excited
state). Applying the collective creation operator S, to the ground state |ggg) once yields
|E1) = S, |gg9) algge) + |geg) + |egg). Exchanging for example the first and second
atom we get the same wavefunction again. This works similar for interchanging other
atoms, for other states and also for higher N.

In conclusion, the full Jaynes-Cummings-Hamiltonian considering all terms reads

Hyc = Ha + Hr + Hap (3.33)
hwa A At A & A & A
== S, + hwea'a + hg(Sya + S_a'). (3.34)

This Hamiltonian describing multiple atoms is also called Tavis-Cummings-Hamiltonian

[13].
3.2 Derivation of a prototyp master equation

In the previous section we derived the Jaynes-Cummings-Hamiltonian, which describes
the atoms, the field inside the cavity and their interaction. Now we want to have a

11
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look at the pump and decay rate and also the loss of photons from the cavity by the
leaky mirror. So we want to derive equations of motion for systems interacting with a
reservoir. In the case of the cavity with a certain light field, the light field interacts with
the surroundings of the cavity through the mirrors. Here we are only interested in the
time evolution of the cavity field, and not of the surrounding reservoir. Naturally, when
looking at systems interacting with environments, the energy of the system does not need
to be conserved, as system and environment can exchange energy. This is why there is
no Schrédinger equation for the system disregarding the environment. To describe this
sort of processes, we incorporate methods of statistical physics. Then, the pure states
|1 become mixed states described by a density operator p and the Schrédinger equation
becomes the Liouville equation [12]:

dp ¢ -

T [, H] (3.35)
This equation is can be derived easily, if one recalls that the density operator can be
written as p = Y. p;i - |[¢i)(¢i|, where p; is the probability to be in the state |¢;) and
these states satisfy the schrodinger equation. Differentiating p with respect to time us-
ing product rule and inserting the schrodinger equation yields eq. 3.35. However, this
equation is only true when looking at the system and the environment.
To get an equation of motion only for the system itself, we will trace eq. 3.35 over the
reservoir degrees of freedom. The resulting differential equation is known as a master
equation. In this section we will derive the master equation for a system modelled as
a harmonic oscillator interacting with a reservoir, which can be modelled as a sum of
harmonic oscillators. The reservoir could for example be the vacuum, in which the the
electromagnetic modes at a certain temperature can be described by a harmonic oscil-
lator. From this prototype master equation we will be able to deduce the corresponding
terms for our model of the atoms inside a cavity, which is interacting with an environ-
ment.

As already stated, we assume, that our system can be described by a harmonic oscillator
and the surrounding reservoir is modelled as a sum of harmonic oscillators [12]:

Hy 4 = hwc'e, e, cl] =1, system (3.36)
Hyp =Y hwblb;, [b;,b] = dj, reservoir (3.37)
J

Moreover, we assume the hamilton describing the type of interaction being Hy =
> g;(c'b; + cb}) with g; being coupling constants, this leads to the full Hamiltonian
being

H = hwc'e + Z hwjb;r-bj + Z gi(c'h; + cb;r-) . (3.38)
J J
:;{0 I;;t

12
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For the following derivations, it is convenient to work in the interaction picture, where
an operator A is defined by

A= exp %ﬁot -A-exp —%ﬁot, (3.39)

where A is the operator in the interaction picture. Employing this definition for the
density operator describing the system and the reservoir p4p and differentiating with
respect to time using product rule yields [12]

d i~ .
IZ?B - _i_i[HintvaB]~ (340)
We can also write Hyy as [12]
Hie = WG (t)c" + G (t)e) (3.41)
G(t) = Zgjbj expi(w — wj)t. (3.42)

J

Formally integrating the Liouville equation yields

pan(t) = an(0) + / o (), pan()]d2" (3.43)

Substituting this back into eq. 3.40 and tracing over the reservoir variables yields [12]

O = [ o), (). o] ] o (340

Here we used, that

Trg|[Hint, pas(0)] = 0, (3.45)
which can be shown by assuming no correlation at ¢ = 0 between the system and the
reservoir, and pp being the density operator for a thermal bath of Temperature 7" in
canonical distribution. More details on the derivations are given in [12]. Now we need
to evaluate the double commutator in eq. 3.44 and integrate to get the final result. As
this is a rather long calculation, we will not have a deeper look into it. However, if one
wishes to comprehend the derivations, [9] is a detailed source to look at. An important
step is to assume, that there is no correlation between bath and reservoir, so the full
density operator can be written as

pap(t) = pa(t) ® pp(0), (Markovian assumption). (3.46)

This is known as the Markovian assumption [12]. One can also see, that the state of the
reservoir pg is assumed to not change over time, so the change of the system does not
affect the reservoir. This is justified by making the reservoir a lot larger than the system.

13



3 Derivation of the model

Furthermore, one has to assume, that the modes of the reservoir lie dense enough to
replace the sum with an integral

The final equation of motion for the system, the master equation, reads as follows:

pa =€ (1+7) (2cpc’ —clep — pefe)+ (3.48)
e - - (2¢'pe— cc'p — pech). (3.49)

This equation describes a system with raising/lowering operators ¢/c', interacting with
a thermal reservoir with average photon number n at a certain coupling rate ¢ with
dimension 1/time. The first term, € (1+0) (2cpc’ — cfep — pefe), describes the process
that the system changes its state from a higher state to a lower state [13], this happens
with a rate of € (1+ 7). Analogously, the second term, e - 7 - (2¢/pc— cc'p — pect),
describes the process that the system changes its state from a lower state to a higher
state, this happens with a rate of ¢ - n. This can be seen by setting n = 0, which
corresponds to a temperature of 0 K. Then only the first term survives, and this term
obviously must be the term describing the dissipation (compare [13]). For a thermal
reservoir, these two rates are coupled.

3.3 The differential equation for the laser

To get to the final equation of motion for our model (see fig. 3.1), we have to incorporate
two systems interacting with their surroundings:

o the electromagnetic field inside the cavity, which loses photons to the surrounding

o the atoms, which interact with the inside of the cavity by emitting photons into
the cavity

First, we have a look at the cavity losing photons to its surrounding. From the prototype
master equation we can deduce the following: the system under consideration is the
cavity, more precisely the electromagnetic field with the lowering /raising operators a/a’,
these operators correspond to the operators ¢/¢' in the prototype master equation. We
assume, that the environment does not excite the electric field inside the cavity, which
corresponds to n = 0 in the prototype master equation. Finally, the rate at which the
photons leak from the cavity is given by x (compare fig. 3.1). Altogether this leads to
the following term of so-called Lindblad-form :

L.[p] = k (2apa’ — a'ap — pa'a) (3.50)

This term describes the interaction between the electromagnetic field inside the cavity
with the surrounding modes outside the cavity.
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3 Derivation of the model

Next, we extend the system of the atoms by adding an incoherent pump with rate R
and allowing the atoms to incoherently emit photons outside with the rate v (compare
fig. 3.1). The system of the atoms has the lowering/raising operators S_ /Sy, these
correspond to the ¢/éf- operators of the prototype master equation. The surrounding is
not a thermal reservoir like in the prototype master equation, where the transition rates
are coupled. Now the rate of transition into the higher state is given by the pump rate
R and the rate of transition into the lower state is given by the decay rate ~, so they
decouple, which is again necessary to achieve population inversion. In conclusion, we
get two more terms of Lindblad-form

Lolp) = 2 (2598, = S.5-p = pS_5}) (3.51)

R
Lgp] = B (254pS- — S_S4p— pSyS-) (3.52)

le>
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\
\
\
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1
1
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1
Figure 3.1: Complete model of the laser. Depicted is the two level system with ground state
lg) and excited state |e). The two-level-system interacts with the light field inside the cavity
with a rate g, depicted by the black arrows. R represents the pump rate from the ground
state |g) to the excited state |e), v stands for the spontaneous emission. The two-level-system
is located inside a cavity, which is confined by a fully reflecting mirror on its right side and

a partially reflecting mirror (dashed line) on its left side. Photons, that get emitted into the
cavity by the atoms, can leak out of the cavity with a rate of .

By adding all the terms in Lindblad-form describing the systems interacting with their
environment, we arrive at

l

h

p = <lp, Hycl+r (2apa’ — a’ap — pala)+

5 (25-pSs = S45_p = pS_Si)+

R
+5 (254p5- = 5_5:p — pS45-)
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3 Derivation of the model

Here, p denotes the density operator of the atoms and the field, and Hjc denotes the

Jaynes-Cummings-Hamiltonian. We get the additional [p, Hjc] by changing from the
interaction picture back into the schrodinger picture.

Now we have derived the equation of motion, according to which our system devel-

opes. In the next chapter we will implement this equation into a programming language
and analyse the results.
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4 Quantum dynamics of a single mode
superradiant laser

4.1 The program

Now we want to solve the differential equation for our model and discuss its properties.
This will be done numerically. For this we use the programming language julia, as for
julia there is an extension called “Quantum Optics.jl” developed by the Ritsch CQED
group of University of Innsbruck. In this toolbox, there are many quantum operators
predefined, so one can do quantum optical calculations very conveniently. One also does
not need to worry about approximations when solving differential equations like the
schrodinger equation or a master equation. An extensive documentation including a lot
of examples is given at https://qojulia.org/documentation/.

To implement our laser model, we use the following code (partially taken over from:
https://qojulia.org/documentation/examples/jaynes-cummings.html) First, we need
to include all necessary packages. We need “QuantumOptics” for the predefined op-
erators and equations, “PyPlot” for drawing graphics, and “Linear Algebra” for some
calculations:

using QuantumOptics
using PyPlot
using LinearAlgebra

Now we can define the parameters of our system and the bases. The command “FockBa-
sis(N__cutoff)” creates a basis for the state of electromagnetic field with the base vectors
|n) being the state with n Photons. Together, they form a orthogonal basis of the
Hilbert space [6]. Note, that because of the Neyoe-parameter, which limits the number
of photons in the cavity to Neuos, this basis is not complete and we will have to make
sure that the state can be sufficiently described by this reduced set of base vectors. A
brief discussion of this is given in sec. 4.4.

# parameter
N cutoff=10
wc=0.1
wa=0.1
9=12;
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4 Quantum dynamics of a single mode superradiant laser

#bases
b _fock=FockBasis(N_ cutoff)
N atoms=6

b spin=SpinBasis(N_atoms//2)
b=b fock ® b _spin;

Next, we define the fundamental operators acting on the bases and the Jaynes-Cummings-
Hamiltonian. One has to carefully consider, in which Hilbert space the operators are
defined. Here, the first subspace corresponds to the fock basis describing the electro-
magnetic field, the second subspace describes the state of the atoms.

#fundamental operators
a = destroy(b_fock)
at = create(b_fock)
n = number(b_ fock)

sm = sigmam(b_spin)
sp = sigmap(b_spin)
sz = sigmaz(b_spin);

# Jaynes-Cummings-Hamiltonian

Hatom = wa*sz/2

Hfield = wc*n

Hint = g*(at ® sm + a ® sp)

H = one(b_fock) ® Hatom + Hfield ® one(b spin) + Hint;

We define the initial state and the time interval, within the differential equation should
be solved.

# initial state

Y0 = fockstate(b fock, 0) ® spindown(b spin)
# time interval

T end=1

dt=0.1

T = [0:dt:T end;];

Finally, we are ready to define our master equation and calculate the time evolution:

#master equation and time evolution

y=1 #decay rate
R=20 #pump rate
K=40 #rate of loss of photons from the cavity

J=[sqrt(y)*one(b fock) ® sm,
sqrt(R)*one(b_fock) ® sp,
sqrt(k)*a ® one(b spin)l;
tout, pt = timeevolution.master(T, ¥0, H, J); #time evolution
exp_n _master= real(expect(n ® one(b spin), pt));
exp_sz master = real(expect(one(b fock) ® sz, pt));
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4 Quantum dynamics of a single mode superradiant laser

4.2 Time evolution

In fig. 4.1 we show the time evolution of the average photon number (n) and the expec-
tation value of the atomic population difference S, for the parameter set of N _atoms=6,
g=10, v=1, R=20, k=40. Both (n) and (S,) start at their lowest possible values, as we

10 6
8 47
2 -
6 4
S & 0
4 .
_2 -
2 o]
0 I/-_ T T T T T _6‘ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 4.1: Time evolution of the photon number (n) and the S,-operator with the parameters
Natoms = 67 9210, ’7:1, R:20, rk=40.

defined the ground state to be the initial state. We can see, that after an initial change,
the system does not change significantly anymore, so it reaches its steady state. The
average number of photons stays below 1, but still a lot of atoms are in the upper state
(high (S,)). Clearly, population inversion has been achieved. If we are decreasing the
pump rate R, then (S,) also decreases to the point, where we do not have population
inversion anymore.

4.3 The laser regime

To get an idea, for which parameters population inversion is reached, one can program
a loop calculating the steady state and from that the expected photon number (n) and
(S,) indicating population inversion. This is depicted in fig. 4.2 for R going from 1 to 40.
At the left subplot we can see, that population inversion is reached at an approximate
pump rate of R =~ 10. The number of photons stays low, curiously it gets even lower for
pump rates higher than ~ 15.
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4 Quantum dynamics of a single mode superradiant laser
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Figure 4.2: Expected photon number (n) and population inversion for various pump rates R.
The other parameters are: Natoms = 9, g = 10, v =1, k = 40.

4.4 The photon number distribution

Now we have a look at the photon number distribution in the cavity. From the program
we get a density operator describing the state of the electromagnetic field and the state
of the atoms. As we are only interested in the state of the electromagnetic field, we trace
over the Hilbert space of the atoms. Then, the probability P, to find n photons in the
cavity is

P = (n|Tratoms{p}n) = (nlppnm—tiera|n).- (4.1)

As the density operator pgy_fielq iS given in a matrix representation using the |n)-states
as a basis, P, corresponds to the diagonal elements. In fig. 4.3 the photon distribution
for various Nuioms 18 depicted. The other parameters are set to: g=10, R=20, k=40. We
see that the lower the parameter N,oms, the better the distribution follows a poisson
distribution with the corresponding expectancy value (n). The poisson distribution itself
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Figure 4.3: Photon number distribution inside the cavity for various Natoms compared to an
ideal poisson-distribution. The other parameters are: g=10, R=20, k=40.

is characteristic for coherent states [2], also called quasiclassical states. These states be-
have similar to classical states, for example, the uncertainty does not get increased with
time and the expectancy values of position (z) and momentum (p) behave as classically
expected.

Here we can also see the impact of the parameter N.uof. If we set the parameter at
Neutort = D, we would disregard the states with higher photon numbers, and therefore
have an error in the calculation. However, the parameter should also not be too high,
as this increases dimensions of the basis and therefore the computation time.

21



4 Quantum dynamics of a single mode superradiant laser

4.5 The spectrum and linewidth

One of the most important properties of a laser is its linewidth. To calculate the spectrum
S(w) and the linewidth, we make use of the Wiener-Chintschin-Theorem [10]:

S(w) = /00 dr e ™7 (a'(7) - a(0) ) = /00 dr e ™7 . g(7) (4.2)

[e.9] o0

According to this theorem, the spectrum can be calculated by fourier-transforming the
first order correlation function g(7) := ( a'(7) - a(0) ). This is the quantum mechanical
analog of the classical first order correlation function in electrodynamics.

To calculate the correlation function g(7), we observe

o(r) = {a}(r) a(0) ) = TrsTes{ al(+) a(0) p } =
= TrgTrp{ U *(7)a’(0)U a(0)p} =
= TrgTrp{U(7) U (7)a' (0)U (1) g@e U7} =
= TrsTrp{a'(0) U(T) puew U™ (1)} =
= Trs(a'(0) Trp{U(7) poew UH(7)}) =
= Trs{a'(0) puew(7)}
= (a’(0)poew(7))

For the third line we used, that the trace is invariant under unitary transformations This
suggests the following steps to calculate the spectrum [8]:

o define a new density operator pe. := ap, where p is the density operator of the
system under consideration.

« calculate the time evolution of the new density operator ppew(t) with the same
master equation

o calculate the correlation function g(7) by applying a' to the density operator
Prew(t) and tracing over the system variables.

« calculate the spectrum S(w) by fourier transforming the correlation function g(7)

The progam code for this looks as follows (partially taken over from: https://qojulia.
org/documentation/examples/correlation-spect rum.html)

p_neu= (a ® one(b spin))*pt[end]

T_end=10

t=collect(range(0.0, stop=t_end, length=2"14))
tout, p neu t=timeevolution.master(t, p_neu, H, J)
g t=expect(at ® one(b spin), p neu T)

w, spec = timecorrelations.correlation2spectrum(t,
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g T; normalize spec=true);
plot(w, spec)
xlabel(L"\omega")
ylabel("Intensity")
ylim(-0.1, 1.1)

xlim(-100, 100)

grid()

An example spectrum for the parameters: Nyoms = 7, ¢ = 10, v =1, R = 20, K = 40
is depicted in fig. 4.4. One has to choose the time steps for simulating quite small (24
time bins in the above code example), otherwise the calculated spectrum has an offset.
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Figure 4.4: Normalised example spectrum. The parameters are: Natoms = 7, g = 10, v =1,
R =20, x = 40.

Now we want to study the influence of the number of atoms on the linewidth. Therefor
we program a loop which calculates the spectrum for various Nuioms. From the spectrum
we can extract the linewidth (Full-Width-Half-Maximum FWHM) for the various Nugoms-
In fig. 4.5 the linewidth in dependency of Nuioms is depicted. The other parameters are:
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4 Quantum dynamics of a single mode superradiant laser

g=10,v=2, R =20, k = 30. We can clearly see, that for bigger N,ioms the linewidth
gets smaller. However, for Nuioms > 6, the linewidth begins to increase again. This may

20.0
1751 @
15.0 -
12.5 -

10.0 ~ o

linewidth/y

7.5 7

5.0 A

2.5 7

NEtD ms

Figure 4.5: Linewidth with various Natoms. The other parameters are: g = 10, v = 2, R = 20,
Kk = 30.

be due to the fact, that with increasing N,ioms We leave the parameter regime in which
the system works in laser mode.

4.6 The phase information
Finally, we have a look on the phase information of the states. Therefor we make use of
the Husimi-function, also called Q function [5]. The Q-function is given by

Qo) = %<04‘pEMfield’Oé> (4.3)

and gives a phase space probability distribution. Here, the coherent state o) denotes
the eigenvector to the lowering operator a with the complex eigenvalue « [2]. The Q-
function is already implemented by the “QuantumOptics-Toolbox”, one simply has to
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4 Quantum dynamics of a single mode superradiant laser

evaluate for different o and depict it for example in a contour-plot over a region of the
complex plane. This is done in fig. 4.6 for increasing x. On the x-axis the real part of
« is plotted, the y-axis corresponds to the imaginary part of a. The other parameters

are: Natoms = 9, g=10, R=20. Yellow represents a high probability, blue represents a
low probability.

Im{a}
Im{a}

Im{a}
Im{a}

—4 -2 ] 2 4 —4 -2 0 2 4
Re{a} Re{a}
(c) k=20 (d) k=30

Figure 4.6: Husimi-Q-representation for increasing . The other parameters are: Najoms = 5,
g=10, v=1 and R=20. On the x-axis there is the real part of « plotted, the y-axis corre-

sponds to the imaginary part of «. Yellow represents a high probability, blue represents a low
probability.
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4 Quantum dynamics of a single mode superradiant laser

Theoretically, a coherent state has a gaussian distribution centered at a [5], whereas a
number state p = |n)(n| appears more like a circle. We can see that for slowly entering
the superradiant regime by increasing the photon loss rate x, the distribution changes
from a ring 4.6a to a distribution similar to gaussian 4.6d. In conclusion, the state of the
electromagnetic field changes from a state similar to a number state to a state similar to
vacuum state (= coherent state with eigenvalue a=0) when entering the superradiant
regime.
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5 Conclusion

A modell laser can be described by accounting for the interaction between atoms and
field using the Jaynes-Cummings-Hamiltonian. The statistical processes of pumping and
decay of the atoms and the leakage of photons from the cavity can be described by a
master equation approach. This allowed us to derive the equation of motion for our
model.

Using the programming language julia and the extension “QuantumOptics.jl” developed
by Univ.- Prof. Mag. Dr. Helmut Ritsch’s CQED group at the Institute for Theoretical
Physics of the University of Innsbruck, we were able to calculate the time evolution and
analyse the results. From the initial state, which was the ground state in our model,
the system quickly reaches a steady state. The photon distribution follows a poisson
distribution, at least for a low number of atoms. This indicates, that the electromagnetic
field is in a coherent state. Using the Wiener-Chintschin-Theorem we were able to
extract the spectrum and in consequence the linewidth of the system. We have seen,
that the linewidth decreases with increasing number of atoms. Using the Husimi-Q-
representation for the phase space probability distribution, we could see that the state
changes from a number state to a coherent state when increasing the leakage of photons
and therefore entering the superradiant regime.

A next step would be to include the motion of the atoms into the discussion. For the
application of cooling and trapping of dipole-interacting clock-atoms, for example, this
has already been done in [8].
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