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die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich
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Abstract

This thesis investigates 2D solitons modelled by the Gross-Pitaevskii-Equation us-
ing numerical methods in the QuantumOptics.jl toolbox. For better understand-
ing the properties of Bose-Einstein-Condensate, Gross-Pitaevskii-Equation and its
soliton solution are discussed shortly. Furthermore the QuantumOptics.jl frame-
work is presented. The solitons were approximated by a Gaussian wave packet.
Dynamic of a single soliton and collision of two solitons are studied for a negative
coupling factor g. The soliton was found to be unstable; it either contracted or
expanded. Two coupled solitons were stable for a longer time and the collision
between two coupled solitons showed interference pattern.
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1 Introduction to Bose-Einstein-Condensate

1 Introduction to Bose-Einstein-Condensate

In a period of less than ten years the study of dilute quantum gases has changed
from an esoteric topic to an integral part of contemporary physics, with strong
ties to molecular, atomic, subatomic and condensed matter physics.[PS08]

1 Nowadays the field of Bose-Einstein-Condensate (BEC) is a major topic of re-
search. BEC is a state of matter that occurs when a dilute gas of bosons is
cooled down to temperatures close to zero. The gas condenses and behaves as a
macroscopic object but still shows quantum phenomena.

It lasts only 23 years back that BEC was accomplished for the very first time.
100 years ago nobody thought about this state of matter. It was Einstein to
discuss it in 1924 for the first time. This is fascinating: theory was way ahead
of experiments in this field of physics. Einstein’s thoughts were based on Bose’s
paper [Bos24] about photon statistics and the Planck distribution. Einstein de-
veloped a similar theory for particles[Ein24]. The statistic that arose is called
Bose-Einstein-Statistic. In the second treatise Einstein predicts the existence of
what we today call Bose-Einstein-Condensate. However Einstein’s theory was
criticized by George Uhlenbeck. The criticism was mainly accepted and it kept
Einstein and other physicists from discussing this state of matter any further.

Fritz London developed the idea of a “macroscopic wave function” for the theory
of superconductivity starting in 1935. In 1937 London heard about Einstein’s
paper on BEC because Uhlenbeck had taken back his criticism. In the following
Fritz London, Lazlo Tisza, Lew Landau and Nikolay Bogoliubov were dealing with
superfluidity and superconductivity. These two concepts have strong analogies to
BEC. London realized that and published a paper persisting on the connection
between BEC and the superfluidity of liquid 4He. This awoke interest in many
physicist about BEC.

Griffin calls the years from 1957 to 1965 the “Golden Period”: “In this period,
many important theorists attacked the interacting Bose-condensed gas problem. It
was a hot topic during this period and, in my opinion, the final theoretical edifice is
one of the great success stories in theoretical physics.” [Gri99] This time brought
many insights and a lot of literature about the “fictitious” Bose-condensed gas.
Today the major equation describing BEC with atomic interaction is the Gross-
Pitaevskii-Equation (GPE). It was derived by Gross and Pitaevskii independently
in 1961.

At this point the level of technology was still not ready to experimentally show
that such thing as BEC exists. But as time comes technology improves.

1For a more detailed report on the history I suggest to read [Gri99]. [Ket02] has a good
description of the experimental evolution of BEC. [PS08] and [PS16] are comprehensive
books explaining the phenomena of BEC and the theory of BEC.
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1 Introduction to Bose-Einstein-Condensate

Figure 1: The concept of Bose-Einstein Condensation. (image from [Pro05])

Laser-cooling and evaporative cooling were developed and still are key concepts
for reaching very low temperatures. Finally Wolfgang Ketterles group at MIT
and Cornell and Wieman at JILA accomplished it for the first time. This was
awarded with the nobel prize in 2001.

The first successful experiments were performed with rubidium and sodium atoms.
Nowadays it is possible to make a condensate out of a list of atoms: 1H, 7Li, 23Na,
39K, 41K, 52Cr, 85Rb, 133Cs, 170Yb, 4He [PS08, in 2008] and probably a few more.

The following section gives a brief understanding of BEC. For further reading
there are several comprehensive books.

1.1 Bose-Einstein Condensate

[PS08] Bose-Einstein Condensation is an extreme state of matter that occurs
under the right conditions: A dilute gas of bosons has to be cooled down close
to 0 K and the density has to be of the right dimensions. But lets have a look in
more detail.

In quantum statistics particles are classified in two groups: fermions with an
odd-half-spin s = n

2
with n = {1, 3, 5, ...} and bosons with an integer spin s =

{1, 2, 3, ...}.
Bosons obey the Bose-Einstein statistic: The mean number of occupation of a
state ν at temperature T is given by

f 0(εν) =
1

exp( εν−µ
kBT

)− 1
, (1)
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1 Introduction to Bose-Einstein-Condensate

where εν is the energy of the state ν, µ is the chemical potential, and kB the
Boltzmann factor. Fermions follow the Fermi-Dirac-statistic

f 0(εν) =
1

exp( εν−µ
kBT

) + 1
. (2)

The major difference between fermions and bosons regarding BEC is the occu-
pation of quantum states. Fermions cannot occupy the same quantum state but
bosons can. When two bosons occupy the same quantum state they are indistin-
guishable. This characteristic is important for Bose-Einstein-Condensate.

Assume a system of two identical bosons. The wave function for such a system is
symmetric under interchange of those two bosons:

Ψ(r1, r2) = Ψ(r2, r1). (3)

Same holds true for a larger number of atoms under the right conditions. When
cooling down bosons the deBroglie wavelength λdB = h/mv ∝ T−1/2 of these
bosons becomes larger and so the uncertainty of their position becomes larger.
Another effect when cooling down bosons is that they start to occupy the same
quantum state - the ground state. So we have a large number of bosons in the
same quantum state. They are indistinguishable and delocalized. Meaning we
can write the system of these particles as one macroscopic wave function

Ψ(r1, r2, ..., rN) = Ψ(r)N. (4)

So we can treat this large number of particles as one particle. When this occurs
it is called Bose-Einstein-Condensate. The mechanism is illustrated in figure 1.

This state of matter is fascinating because quantum phenomena can be observed
on a macroscopic object. In experiments temperatures need to be of order 10−5 K
or less. For that laser cooling is used followed by evaporative cooling. Evaporative
cooling means removing atoms with higher energy and so cooling the remaining
atoms.

The density of the gas is in the order of 1013− 1015 cm−3 (which is low compared
to air with 1019 cm−3). In figure 2 one can see the first experimental observation
of BEC in 1995 at JILA in Boulder, Colorado. At first the BEC is located inside
a trap. In the next step the trap is turned off and the atoms can follow their
own momentum. Now one sends a light pulse on the gas of particles. Behind
the particles there is a detector. So when all the particles remain at the same
place one can see a dark spot on the detector. This means that the major part of
particles had no momentum which means BEC has occurred.

We have briefly described the state of matter BEC. In the next chapter we focus
on the case that the bosons interact with each other. This is described by the
Gross-Pitaevskii-Equation.

3



2 Gross-Pitaevskii-Equation

Figure 2: Typical image showing the observation of a Bose-Einstein-Condensate.
Shown is the momentum distribution of the particles. Left: before the
gas condenses; middle: partly condensed gas and right: almost all atoms
are part of the condensate and have no momentum(Image from the first
observation at JILA [CW02])

2 Gross-Pitaevskii-Equation

In this chapter I want to describe the Gross-Pitaevskii-Equation. A full derivation
can be found in [ESY10]. The GPE is a nonlinear Schrödinger equation which
describes BEC with atomic interactions. Because it is nonlinear it is hard to solve.
For the one-dimensional case there exist analytical solutions called solitons which
will be discussed later.

The time-independent GPE is given by

µΨ(r) =

(
−~2∇2

2m
+ Vext(r) + g|Ψ(r)|2

)
Ψ(r), (5)

with µ the chemical potential, ~ the reduced Planck constant, ∇ the nabla oper-
ator, m the particle mass and Vext(r) the external trapping potential. The term
g|Ψ(r)|2 describes the atomic interaction; the so called coupling factor g is given
by

g =

∫
Veff (r, t)dr =

4π~2a

m
(6)

with the scattering length a. In equation (5) the eigenvalue of the wave function
is the chemical potential µ and not the energy as for the normal Schrödinger
equation (SE). For g = 0 equation 5 becomes the classical SE with a different
eigenvalue. The wave functions is normed by∫ ∞

−∞
|Ψ(r)|2dx2 = 1. (7)
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2 Gross-Pitaevskii-Equation
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Figure 3: A Gaussian wave packet Ψ(x) = 1
π1/4
√
σ

exp(−x
2

2σ2 ) with the width σ = 2.

In the left figure a potential Veff = −|Ψ(x)|2 is illustrated; in the right
one with positive sign.

Substituting µ with the derivation of time i~ ∂
∂t

we obtain the time-dependent
GPE

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t). (8)

Again we have a kinetic term, an external potential and the term g|Ψ(r, t)|2. The
meaning of the first two is clear and in the following we discuss the case where
the external potential is Vext = 0. The latter one is also a potential and described
in the following.

We know that the absolute square of the wave function is the probability density
in position space. So the potential g|Ψ(r, t)|2 has the form of the probability
density in position space. It is a function of position r and time t.

In figure 3 one can see a Gaussian wave packet and the probability density
|Ψ(r, t)|2 times a factor g = −1 and g = +1.

Now consider a wave packet moving to the right. The probability density is
moving to the right as well. So g|Ψ(r, t)|2 describes a potential that is coupled to
the wave function. It also changes the width when the wave function changes the
width. For g > 0 the GPE describes repulsive interaction and for g < 0 attractive
repulsion. This is obvious when looking at figure 3.

For a wave function Ψ(r, t) which is an eigenstate of the interaction potential
g|Ψ(r, t)|2 the configuration is stable and should not change in time. This is the
case for a special solution of the GPE called Solitons.
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Figure 4: The dark soliton solution and its density distribution.

2.1 Solitons

[PS08] A soliton/solitary wave is a wave propagating in a nonlinear medium with-
out changing its form. Today there are many theoretical and experimental studies
about solitary waves. The first description of solitons dates back to 1834. The
engineer John Scott Russell was riding his horse next to a canal where he ob-
served a wave that almost did not change its form. This phenomenon of solitons
in water is described mathematically by the Kortewegâde Vries equation which
dates back to 1895. In 1973 the existence of solitons in optical fibre was predicted
and experimentally shown in 1980. [Wik18]

Solitons are solutions for different nonlinear wave equations and the GPE is one
of them. There are several kinds of solitons. In the following we differ bright
solitons from dark solitons. Bright soliton have a positive amplitude; an example
would be a light pulse in a fibre. Dark solitons are solitary waves with a negative
amplitude, for example in matter.
The dark soliton solution of the stationary 1D GPE has the form

Ψ(x) = Ψ0 tanh

(
x√
2ξ

)
(9)

with the coherence length

ξ =
~

(2mn0g)
(10)

where n0 is the density of the condensate.
This wave function is shown in figure 4. For the time-dependent GPE (8) one can
insert the ansatz

Ψ(x, t) = f(x− ut) exp(
−iµt
~

) (11)

with velocity u and obtain the differential equation

− ~2

2m
f ′′ + g|f |2f = −i~uf ′ + µf, (12)
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Figure 5: The bright soliton solution and its density distribution.

where f ′ is the derivation df
d(x−ut) . Solving this equation leads to the soliton wave

function [PS08]

Ψ(x, t) =
√
n0

[
i
u

s
+

√
(1− u2

s2
) tanh

(
x− ut√

2ξu

)]
exp(
−iµt
~

), (13)

where s = (n0g/m)1/2 is the sound velocity of the condensate and

ξu =
ξ

[1− (u/s)2]1/2
(14)

describes the width. The density distribution is given by

|Ψ(x, t)|2 = n0

[
i
u2

s2
+ (1− u2

s2
) tanh2

(
x− ut√

2ξu

)]
. (15)

The bright soliton solution has the form

f =
b

cosh(ax)
= b sech(ax) (16)

where a and b are given by

a2 = −2mµ

~2
(17)

and

b2 =
2µ

g
. (18)

It is shown in figure 5. A requirement for this solution is that µ < 0 and g < 0.
So the wave function of the bright soliton at rest is

Ψ(x, t) =

(
2µ

g

)1/2
1

cosh[(2m|µ|/~2)1/2x]
exp(
−iµt
~

) (19)
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Figure 6: Comparison of the exact bright soliton solution (sech) to the approx-
imation by a Gaussian distribution (gauss) on linear and logarithmic
scaling.

with its density distribution

|Ψ(x, t)|2 =

(
2µ

g

)
1

cosh2[(2m|µ|/~2)1/2x]
. (20)

2.2 Model of a soliton

This thesis investigates bright solitons modelled by a Gaussian wave packet.
The wave function of the approximated soliton (AS) is given by

Ψ(x) =
1

π1/4
√
σ

exp

(
−x2

2σ2

)
(21)

where the density distribution is given by

|Ψ(x)|2 =
1

π1/2σ
exp

(
−x2

σ2

)
. (22)

In figure 6 one can see the difference between the exact soliton solution (19) and
the approximation (21). Major differences of the two are the maximum amplitude
and the behaviour close to zero.
The potential g|Ψ(r, t)|2 for a Gaussian wave packet can be approximated using
Taylor expansion:

g|Ψ(r, t)|2 ≈ g√
πσ
− gx2

√
πσ3

+O(x)3. (23)
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2 Gross-Pitaevskii-Equation

We approximate the potential to be harmonic as g|Ψ(x)|2 ≈ gx2√
πσ3 so we can easily

estimate the ground state.

We have the quantum harmonic oscillator with the Schrödinger equation:

µΨ(x) =

(
−~2∇2

2m
+

gx2

√
πσ3

)
Ψ(r), (24)

for which we obtain the ground state

Ψ0(x) =
1

π1/4
√
σ

exp

(
−x2

2σ2

)
(25)

with

σ =

√
~2

2mµ
. (26)

Consequential we obtain the requirement for the coupling factor g

g =
~2
√
π

2mσ
. (27)

Using these parameters the Gaussian wave packet should be an eigenstate of the
potential and so the wave should be stable. Testing it in the simulation did not
bring the expected result. Reasons might be the approximation of the potential
by a Taylor series or the normalization of the coupling factor. So I checked if
there is a configuration with stable Gaussian waves by heuristic means. In one
dimension it is possible to find one:
For good parameters we get the results that are shown in figure 7 for the Gaussian
wave packet and figure 8 for the exact result. As one can see the Gaussian
approximation has some little disturbances but it is still stable. The 2D case will
be discussed later in this thesis.

2.3 Units

For the simulation we need to choose reasonable units for the time t and the cou-
pling factor g. This is derived here. In the following x̄ and m̄ are the characteristic
length and mass scale.
The absolute square of the wave function |Ψ(r, t)|2 is the probability density and
has the unit 1/x̄dimension. Because we are in two dimensions we find

|Ψ(r, t)|2 =
1

x̄2
. (28)

The term g|Ψ(r, t)|2 in equation (8) behaves like a potential and so it has the unit
of energy:

g|Ψ(r, t)|2 =
m̄x̄2

t2
. (29)
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Figure 7: A soliton approximated by (21). There are some little disturbances but
the soliton remains stable.

Using equation (28) and (29) we obtain the unit of g:

g =
m̄x̄4

t2
. (30)

The kinetic part of the Gross-Pitaevskii-Equation (8) ~2∇2

2m
has also the unit of

energy:
~2∇2

2m
=
m̄x̄2

t2
. (31)

We substitute ∇2 with x̄−2 and we can write the unit of the time as

t =
m̄x̄2

~
. (32)

3 QuantumOptics.jl

So far we discussed the properties of BEC, GPE and solitons. Now we investigate
the question if there is a stable soliton solution in the 2D GPE. We simulate
the problem by numerical methods in the framework QuantumOptics.jl (QO.jl).
QO.jl runs on the programming language Julia. Both are presented shortly.

3.1 Julia

“Julia is a high-level, high-performance dynamic programming language [...]”[BEKS17]
which aims to be simple but still efficient. It is designed for numerical analysis

10
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Figure 8: The analytical result (19) for the Gross-Pitaevskii Equation remains
stable over time.

and computational science. The programming language comes with many pack-
ages involving the subjects physics, mathematics and analysis, geology, economy,
chemistry, robotics and many more.
Some interesting packages for physicists are

• QuantumOptics.jl for simulation of closed and open quantum systems. It
will be discussed in detail.

• DifferentialEquations.jl which can be used for the numerical solution of
differential equations.

• Measurements.jl for errors computation and calculation of variables with
uncertainties.

• PhysConst.jl provides the most important constants together with uncer-
tainties, units etc.

• Unitful.jl for the calculation with units.

• PyCall.jl for directly calling and interoperating with Python. You can
use Python functions, import Python modules and share data structures
between Python and Julia.

On https://juliaobserver.com/ there is a ranking of the most popular packages
sorted by subject. One last thing to mention is the possibility to run Julia in the
browser-based application Jupyter.
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4 Code

3.2 QuantumOptics.jl

[KPOR17] QuantumOptics.jl is an open source computational framework built
for the simulation and investigation of open quantum systems. It is built in Julia
and aims to be intuitive to use with better performance than other alternatives
like Quantum Toolbox in Python (QuTip) or Quantum Optics Toolbox in Matlab
(QO). The architecture is modelled on QuTip but has some fundamental differ-
ences.

In QuantumOptics.jl there are different bases which are used for defining a prob-
lem. After defining a basis one uses quantum objects like states and operators
which “know” in which base they are defined. It is not possible to apply an op-
erator to a state that is not in the same basis by mistake. Furthermore you can
apply various time evolutions or other operations on the quantum objects. It
has to be mentioned that QO.jl comes with a comprehensive and very helpful
documentation with many examples.

In the following I give a short introduction to this toolbox by presenting the code
used for implementing two dimensional solitons.

4 Code

In this thesis the version of Julia is 0.6.3 and QuantumOptics.jl is used in version
0.5.2. For the Numerical Simulation of a given problem in QuantumOptics.jl one
can follow the steps as described below.

At first the QuantumOptics.jl framework has to be imported into Julia. This is
done by

� �
using QuantumOptics, PyPlot, PyCall, JLD� �

where PyPlot and PyCall are used for plotting the data. The package JLD can
be used to save data into a separate file.

4.1 Defining a Basis

Now we go on by choosing a basis which represents the dimensions of our Hilbert-
Space. For the implementation of various systems there are the following pre-
defined bases:

• Particle for a system in position and momentum space.

• Spin for a spin-system of arbitrary spin number.

• Fock for implementing a fock space with a variable number of particles.

12



4 Code

• N-Level for an atom which can be reduced to a few relevant levels.

• Many-Body for describing a system of many identical particles.

• Subspace can be used to restrict a large Hilbert-Space to a subspace in-
cluding all essential information.

• GenericBasis can be used when your system is not defined yet. It just
needs to know the dimension of your Hilbert-Space. Another option is to
define a new basis type.

We use the Particle-Basis for defining position and momentum space in x:

� �
x_min= -10

x_max = 10

x_steps = 32

dx = (x_max - x_min) / x_steps

b_x = PositionBasis(x_min, x_max, x_steps)

b_px = MomentumBasis(b_x)

xsample = samplepoints(b_x)� �
with a resolution of 32 in x direction. It is reasonable to use powers of 2 for better
performance.

Because we want the simulation in 2D we also need a position and momentum
space in y-direction

� �
y_min= -10

y_max = 10

y_steps = 32

dy = (y_max - y_min) / y_steps

b_y = PositionBasis(y_min, y_max, y_steps)

b_py = MomentumBasis(b_y)

ysample = samplepoints(b_y)� �
where we used the same size and steps as in x.
At this point these two bases are not yet composite. One can create a composite
basis with the tensor()-function or the equivalent unicode symbol ⊗ as follows.

� �
b_comp_x = tensor(b_x, b_y)

b_comp_p = b_px ⊗ b_py� �
4.2 Operators

The size of the Hilbert-Space becomes large in two dimensions and computing
time can be long. For better performance it is convenient to use a Fourier-
Transformation for switching from Position to Momentum Space. This is done
by

13
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� �
Txp = transform(b_comp_x, b_comp_p)

Tpx = transform(b_comp_p, b_comp_x)� �
Our Hamiltonian

H =
~2∇2

2m
+ g|Ψ(r, t)|2 =

p2

2m
+ g|Ψ(r, t)|2 (33)

can be defined as follows. First we need the momentum p

� �
px = momentum(b_px)

py = momentum(b_py)� �
in x and y.

Next we define the kinetic term p2

2m
of the Hamiltonian in x and in y:

� �
Hkinx = LazyTensor(b_comp_p, [1, 2], [px^2/2, one(b_py)])

Hkiny = LazyTensor(b_comp_p, [1, 2], [one(b_px), py^2/2])

Hkinx_FFT = LazyProduct(Txp, Hkinx, Tpx)

Hkiny_FFT = LazyProduct(Txp, Hkiny, Tpx)� �
with the more efficient Fourier Transformation. We have set m = 1. The Lazy-
Operators “allow delayed evaluation of certain operations. This is useful when
combining two operators is numerically expensive but separate multiplication with
states is relatively cheap.” [doc]

The interaction potential |Ψ(r, t)|2 is defined by

� �
HΨ =diagonaloperator(b_comp_x, Ket(b_comp_x).data)� �

and the full Hamiltonian is the sum of all parts.

� �
H0 = LazySum(Hkinx_FFT, Hkiny_FFT, HΨ)� �

4.3 State

Now we go on by defining our initial state. As already mentioned we model a
soliton with a Gaussian wave packet. For now we want a state without momentum
so

� �
x0 = 0

y0 = 0

p_x = 0
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4 Code

p_y = 0

σ =1.5� �
are our constants. x0 and y0 describe the initial position; p_x and p_y describe
the initial momentum and σ is the width of the wave packet. For the wave packet
itself QuantumOptics.jl has a pre-defined function so it is easy to create one

� �
Ψx =gaussianstate(b_x, x0, p_x, σ)
Ψy =gaussianstate(b_y, y0, p_y, σ)
Ψ =normalize(Ψx ⊗ Ψy)� �

where Ψ is our wave packet in 2 dimensions.

4.4 Time Evolution

In QO.jl there are different time evolutions that are based on DifferentialEqua-
tions.jl:

• timeevolution.schroedinger() for solving the classical Schrödinger equa-
tion describing closed quantum systems. There is the possibility of using a
time-dependent Hamiltonian with timeevolution.schroedinger_dynamic().

• timeevolution.master() for open quantum systems described by the mas-
ter equation in Lindblad form

• timeevolution.mcwf() is another option for open quantum systems. It
uses the Monte Carlo wave function (MCWF) method. ”For large numbers
of trajectories the statistical average then approximates the result of the
Master equation.“

Our Hamiltonian is time-dependent and so we need to create a function for up-
dating the term g|Ψ(r, t)|2:

� �
function H(t, Ψ)

HΨ.data.nzval .=g*abs2.(Ψ.data)

return H0

end� �
After defining our coupling factor g and the time span T

� �
T = [0:1:15;]

g = 0� �
we use timeevolution.schroedinger_dynamic() for time evolution.
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� �
tout, Ψt =timeevolution.schroedinger_dynamic(T, Ψ, H)

density = [reshape(abs2.(Ψ.data), (x_steps, y_steps)) ' for Ψ=Ψt]� �
and the reshape()-function for creating a matrix for plotting. We obtain the
probability density of the wave function at different times.

5 Results

This chapter discusses the results of the simulation using QuantumOptics.jl. We
want to find out whether stable solitons approximated by a Gaussian wave packet
exist in 2D. At first the behaviour of one soliton is investigated. Then we discuss
the dynamics of two coupled solitons. The chapter ends with a method by [SM06]
for stabilizing solitons in 2D. All figures come with a video showing more frames
of the simulation. One thing to note is that the time steps in the videos differ.

Two dimensional solitons approximated by a Gaussian wave in the GPE are found
to be not stable. First we discuss the meaning of the coupling factor. For a
resolution of 32 steps in x, 32 steps in y and a width σ = 2 the dependence of
the coupling factor g is as follows. For too small g the soliton expands and for
too strong g a contraction and a problem in the simulation occurs: the norm
of the wave function starts to grow. From zero up to a coupling factor of g =
−15.1 [m̄x̄4/t2] the time of stability of the soliton increases. Further increasing
the factor g still increases the time of stability but also brings the effect of the
contraction starting at g = −15.2 [m̄x̄4/t2] after about 120 time units. From
there increasing g quickens the wave to contract. This dependence of the time of
stability to the factor g is shown in Figure 9.

In Figure 10 one can see a single soliton underlying the Gross-Pitaevskii Equation
at four different times. The coupling factor g is zero. As expected the wave
expands. Comparing this to a coupling factor of g = −15.1 [m̄x̄4/t2] in Figure
11 one can see a difference in time. For g = 0 the wave diverges after 6 time
steps where for g = −15.1 [m̄x̄4/t2] the wave exists for 80 units of time. But it
still expands after 80 time steps. Oscillation of the width of the wave can be seen
when looking at more time steps.

In Figure 12 one can see the behaviour for g = −15.2 [m̄x̄4/t2]. The soliton looks
good at 80 time units. But after 119 time steps the soliton “contracts“ and the
norm of the wave function starts to grow.

Increasing the resolution of the simulation brings an earlier expansion of the wave
and decreasing brings the contraction of the wave. The smaller one chooses the
resolution the earlier occurs the contraction in this configuration.
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Figure 9: The stability time of the soliton in dependence of the coupling factor g.
For a coupling factor up to −15.1 the wave expands and from there a
contraction occurs.
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Figure 10: A single 2D Gaussian wave in the Gross-Pitaevskii Equation. The
coupling factor is chosen to be zero. One can clearly see how it expands.
[video]
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Figure 11: Here the coupling factor is g = −15.1. It takes more time to expand
than for g being zero. [video]
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Figure 12: For g = −15.2 the wave contracts after 119 time steps and problems in
the simulation occur. One can see the contraction and that the norm
starts to grow in the last plot. [video]
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Figure 13: Two coupled solitons remain stable for a longer time than a single one.
(g = −29.45) [video]
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Figure 14: The stability time of two coupled solitons in dependence of the coupling
factor g. For a coupling factor up to −29.45 the wave expands and from
there a contraction occurs.

5.1 Two solitons at rest

Now we investigate what happens when we create two solitons that are coupled
to each other. The resolution is now 62 steps in x and 32 steps in y direction. In
Figure 13 one can see two coupled solitons which are a distance of x = 20 apart.
This configuration is stable for a longer time than a single soliton. It is stable up
to 460 time steps but then starts to expand. The same configuration with the two
solitons closer together is shown in this video . Here the attraction is too strong
and the solitons merge to a single one. This single soliton contracts because for a
single soliton the coupling factor g is too strong.
The relation between the time of stability for two solitons and the strength of g
is shown in Figure 14. It shows similar behaviour as for a single soliton.
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Figure 15: Two solitons with opposite momentum. The coupling factor is g =
−29.45 and the momentum is p = 4. [video]

5.2 Collision of two solitons

Here we discuss the collision of two solitons. We have a set of two coupled soli-
tons that both have the same momentum but in opposite directions. Having a
momentum of p = 4 m̄x̄/t brings the result shown in Figure 15. When colliding
the two solitons show interference and then separate. After separating they do
not expand but problems with the norm occur. For a momentum of p = 1 m̄x̄/t
the behaviour is shown in this video. When colliding they again show interference
but then stretch and expand at the same time.
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Figure 16: Two solitons that have the shape of an ellipse. In the beginning σy is
3 times larger than σx. We have g = −29.45 and p = 1. [video]

5.3 Other configurations

Now we change the shape of the initial state to an ellipse. We have a Gaussian
wave packet with σx = 1 and σy = 3. Without momentum the two solitons
become round and expand after 10 time steps. In Figure 16 two such waves have
opposite momentum p = 1. The solitons become round and when contracting
they show a stronger interference than for the configuration in Figure 15. After
this they expand.

Another configuration is two solitons brushing each other. The two solitons collide
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Figure 17: Two solitons brushing each other. the coupling factor is g = −29.45
and the momentum is p = 1. [video]

and show interference but afterwards they expand. One thing to mention is that
they have swapped their momentum. The upper one now has a momentum to
the left.
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Figure 18: The nonlinearity is restricted to a region with radius r < 2. The soliton
remains stable for the full time tested. [video]

5.4 Method by Sakaguchi and Malomed

Hidetsugu Sakaguchi and Boris Malomed published a paper [SM06] on how to
stabilize 2D solitons in the Gross-Pitaevskii Equation. They show how to spatially
restrict the nonlinearity of the GPE. The GPE then has the form

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g(r)|Ψ(r, t)|2

)
Ψ(r, t). (34)

with the nonlinearity coefficient

g =

{
1 r < R

0 else

where ρ and R are parameters for restricting the region of the nonlinearity. In
this thesis this ansatz to stabilize the solitons was tested with the parameter
R = 2. The coefficient g was chosen to be g = −15.1 as this coupling strength
worked well for a single soliton. In Figure 18 one can see the result at times
t = 0, 375, 750 and 1000. The soliton remains stable for the full time tested
and the norm remains 1. Hence, our work confirms the method of [SM06] for
stabilizing solitons.
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6 Conclusion

We numerically studied solitons approximated by a Gaussian distribution in the
QuantumOptics.jl toolbox. The implementation in the toolbox was very intu-
itive and straightforward. In one dimension the approximation of a Gaussian
distribution brings stable solitons even though some disturbances occur.
In two dimensions the solitons are found to be unstable. For weak coupling factor
g the wave function expands and for strong g contraction occurs. Interestingly
two coupled solitons are stable for a longer time than a single soliton.
The collision of two solitons shows typical interference pattern. For small momen-
tum the wave function expands during the collision but for stronger momentum
the solitons separate afterwards.
The method by [SM06] for stabilizing solitons in two dimensions was confirmed
for a single soliton.
A challenging open problem is the relation between the coupling factor g and
the wave width σ. Another interesting aspect would be the comparison of the
exact soliton solution ∝ sech(x) to the Gaussian distribution in two dimensions.
Additional features may arise by implementing other configurations such as e.g
three or more coupled solitons or solitons with an angular momentum.
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