Error-Correction in Long Ion Chains

M. Cetina^{*1}, T. Wang¹, S. Huang^{1,2}, A. V. Horn², J. Kim², K. Brown^{1,2,3}

Duke University Department of Physics
Duke University ECE Department
Duke University Department of Chemistry

We employ the high connectivity of a chain of 23 171 Yb⁺ ions to implement one round of fault-tolerant Steane-type Z-stabilizer readout of the Bacon-Shor [[9,1,3]] quantum error-correcting code. We demonstrate twofold suppression of the error in the logical data and in the Z-syndrome compared to a fault-tolerant Shor-style protocol. The dominant errors in our platform are caused by axial motion of the ions. To counter this, we demonstrate deterministic sorting of mixed-species 171 Yb⁺ $^{-172}$ Yb⁺ chains. Sympathetic cooling using 172 Yb⁺ opens the door to partial readout and qubit reuse in long circuits and the study of controlled dissipation in individually-addressed long ion chains.

^{*}marko.cetina@duke.edu