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Arrays of coupled mechanical oscillators have been proposed for exploring collective
optomechanical effects, quantum many-body dynamics, topological phonon trans-
port, (quantum) synchronization etc. So far, the experimental strategy has been to
mediate interaction between two clamped oscillators via an optical cavity, thus limit-
ing the scalability of such systems and confining the interaction toolbox to available
cavity interaction techniques. Engineering a direct interaction between an array of
oscillators would allow us to create macroscopic entangled states in order to probe
the quantum-to-classical transition and explore weak forces between two isolated
nanoscale objects.

Optically levitated particles smaller than laser wavelength – effectively induced
dipoles – scatter light in phase with the trapping field. This coherent scattering of
light by the particles has recently been used to achieve motional ground state cool-
ing (Science 367, 892-895 (2020)). We realize a trap array of levitated nanoparticles,
thus providing a fully scalable architecture to generate an optomechanical array in
the quantum regime. We engineer direct interactions between motional degrees of
freedom via dipole-dipole interactions (“optical binding”) and Coulomb force, thus
allowing for a much richer dynamics in a combination with an optical cavity in the
future. I will present first results on strong and tunable interaction between nanopar-
ticles in parallel optical tweezers, a novel platform in the context of optical binding
studies as well, which paves the way for studying quantum many-body physics with
massive solid-state objects.

Fig. 1: Camera image of two silica nanoparticles (diameter of 210 nm) trapped at a
distance of around 5 µm.
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