Super-resolution using transverse-spatial N00N states

M. Hiekkamäki^{*1}, F. Bouchard ² R.F. Barros ¹ M. Ornigotti ¹ R. Fickler ¹

1. Photonics Laboratory, Physics Unit, Tampere University, Tampere, FI-33720, Finland 2. National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

Photonic N00N states, i.e. states of light where N photons are in an extremal superposition between two orthogonal states $\frac{1}{\sqrt{2}}(|N,0\rangle + |0,N\rangle)$, have an increased phase-sensitivity in comparison to their classical counterparts. Using the increased phase sensitivity offered by N00N states, in conjunction with the intrinsic properties of transverse-spatial modes, enables various types of measurements with sensitivities beyond the classically allowed limits. In the present work, we harness the angular sensitivity of orbital angular momentum (OAM) modes [1] and create two-photon twisted N00N states for arbitrary OAM values through photon bunching [2]. We then use these twisted N00N states to demonstrate angular super resolution, in a single beam [3].

Fig. 1: Super-resolution rotation measurements with the OAM values 1 (a) and 100 (b). The single photon measurements are shown in black, while the two-photon measurements are shown in green having a better resolution.

To demonstrate the systems capabilities, we measured rotation sensitivities of heralded single photons and two-photon N00N states with OAM values up to 100 (see Fig. 1). Our results show that the angular uncertainty for twisted N00N states scales as $\Delta \phi \propto \frac{1}{2N\ell}$ when *N* is the photon number and ℓ the amount of OAM. The flexibility of the system also allows the generation of N00N states between radial modes which we have further used to demonstrate super-resolution in the longitudinal direction [4]. Finally, these radial-mode N00N states have allowed us to examine the Gouy phase of two-photon Fock states.

References

 V. D'ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino, Nat. Commun. 4, 1–8 (2013)

- [2] M. Hiekkamäki and R. Fickler, Phys. Rev. Let. 126(12), 123601 (2020)
- [3] M. Hiekkamäki, F. Bouchard, R. Fickler arXiv:2106.09273 (2021).
- [4] M. Hiekkamäki, R. F. Barros, M. Ornigotti, R. Fickler, in preparation.

^{*}Corresponding author: markus.hiekkamaki@tuni.fi